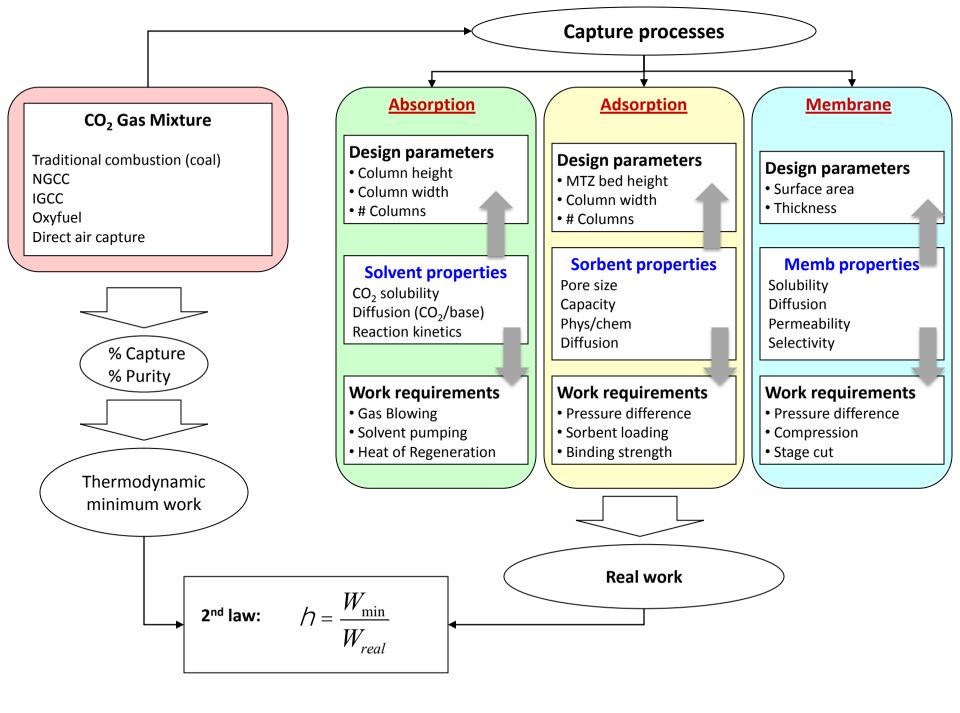
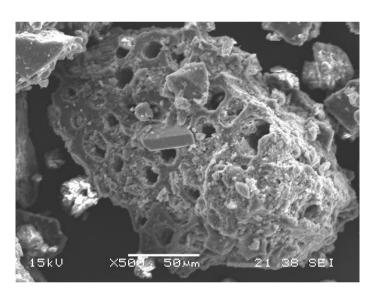


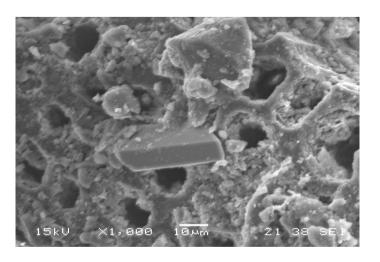
GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Energy Tutorial: Carbon Capture 101


GCEP RESEARCH SYMPOSIUM 2011 | STANFORD, CA

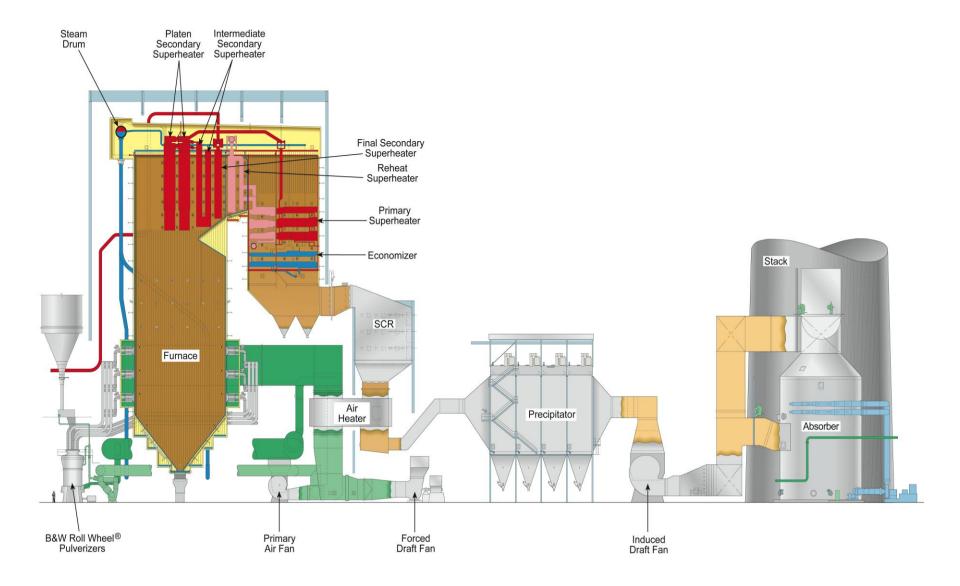
Professor Jennifer Wilcox


Energy Resources Engineering Department Global Climate and Energy Project Stanford University


OCTOBER 5, 2011

GLOBAL CHALLENGES – GLOBAL SOLUTIONS – GLOBAL OPPORTUNITIES

Coal to Electricity



- Furnace is pre-heated by combustion of auxiliary fuel such as natural gas or oil;
 - Pulverized coal powder is blown with air into a combustion chamber (boiler or furnace) through a series of nozzles;
- Heat is transferred from hot combustion products to water circulating in tubes along the boiler walls, producing superheated steam, which is the working fluid for the steam turbines;
- Energy from the hot and pressurized steam is extracted in steam turbines that then transmit the energy to electric generators;
- The electric generators convert the shaft work of the turbines into alternating current electricity;
- Pumps are used to return the condensed water to the boiler, where the cycle is then repeated; and
- Pollution control devices are also in place for NOx, SOx, PM, and Hg.

*Images courtesy of Y. Liu, SU, 2009

Typical Coal-Fired Power Plant

Pulverized Coal Combustion (PCC)

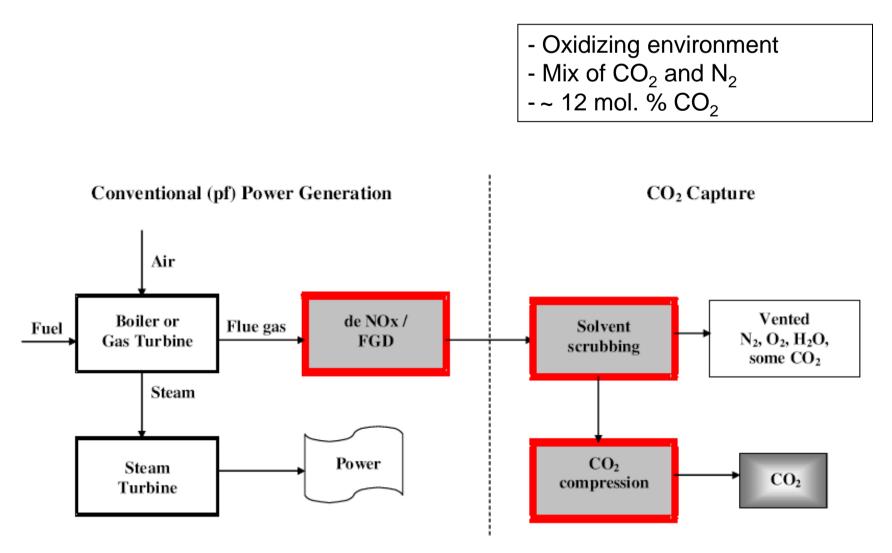


Fig. 1. Illustrative flowsheet for PCC (post-combustion capture) process, with additional unit operations for carbon capture shown bold.

Terry F. Wall, Combustion processes for carbon capture, Proc. Comb. Inst., 31, 2007, 31.

Integrated Gasification Combined Cycle (IGCC)

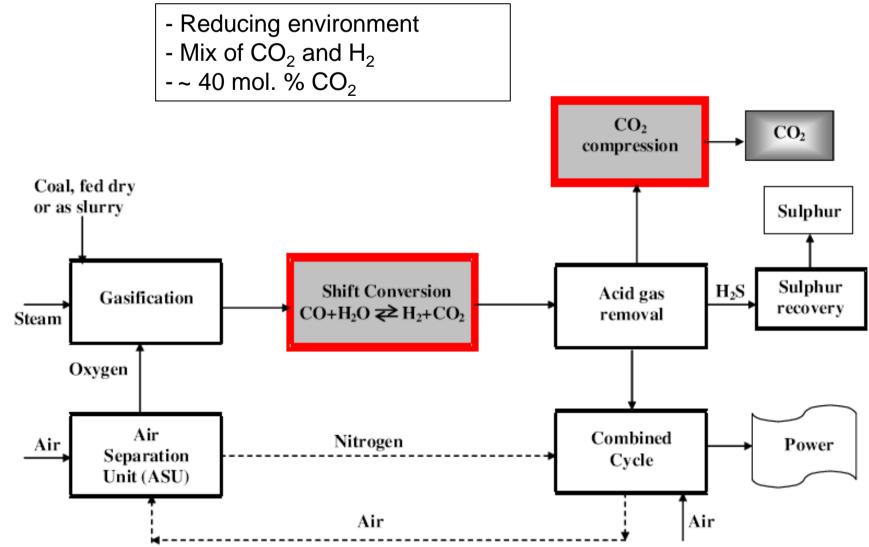


Fig. 2. Illustrative flowsheet for IGCC (pre-combustion capture) process, with additional unit operations for carbon capture shown bold.

Terry F. Wall, Combustion processes for carbon capture, Proc. Comb. Inst., 31, 2007, 31.

Oxy-fuel Combustion

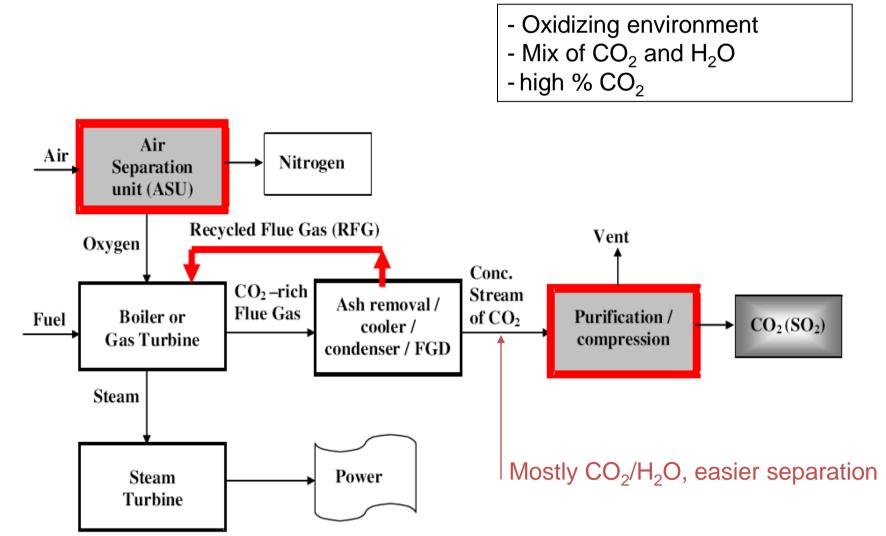
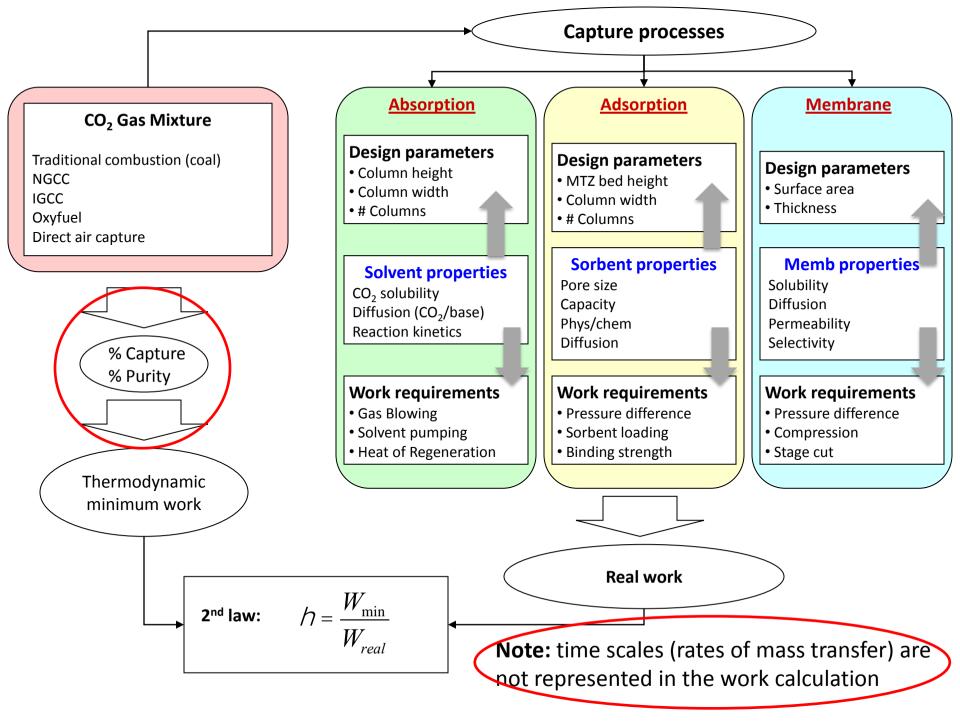
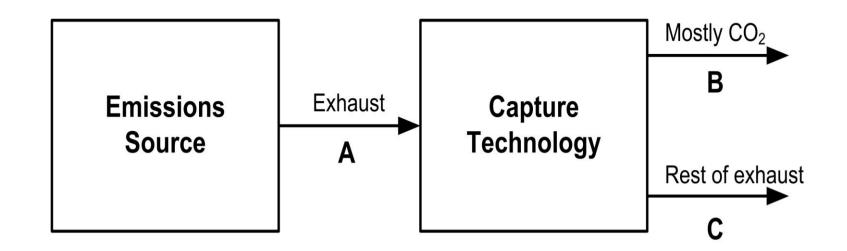
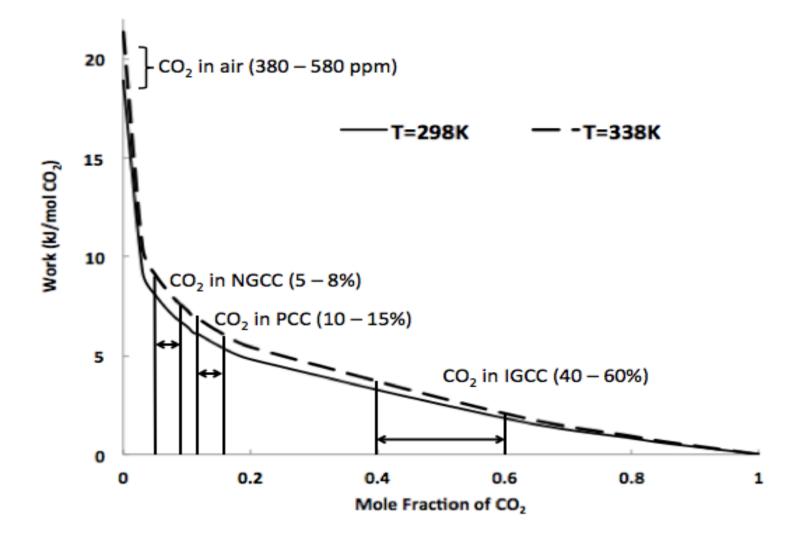



Fig. 3. Illustrative flowsheet for oxy-fuel (Oxyf) process, with additional unit operations for carbon capture shown bold.

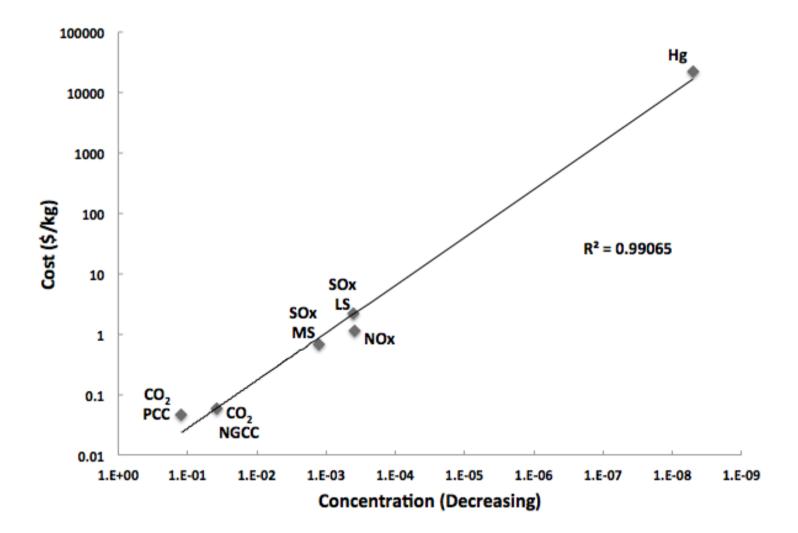
Terry F. Wall, Combustion processes for carbon capture, Proc. Comb. Inst., 31, 2007, 31.


Roadmap

- Concentration of CO₂ in a given gas mixture dictates the energy required for separation
- The energy required for separation only partially dictates the <u>cost</u> and <u>subsequent feasibility</u> of a given separation process


Minimum Work for Separation

combined first and second laws

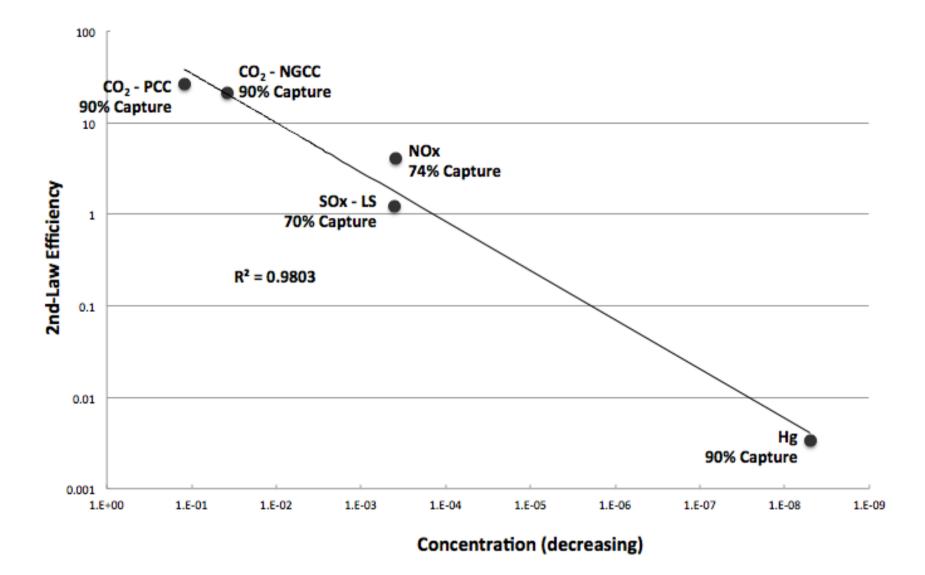


$$W_{\min} = RT \Big[n_B^{CO_2} \ln(y_B^{CO_2}) + n_B^{B-CO_2} \ln(y_B^{B-CO_2}) \Big] + RT \Big[n_C^{CO_2} \ln(y_C^{CO_2}) + n_C^{C-CO_2} \ln(y_C^{C-CO_2}) \Big] \\ - RT \Big[n_A^{CO_2} \ln(y_A^{CO_2}) + n_A^{A-CO_2} \ln(y_A^{A-CO_2}) \Big]$$

Minimum Work for Separation

Sherwood Plot for Flue Gas Scrubbing

*Calculations carried out using IECM, all cases assume 500-MW plant burning Appalachian bituminous, NGCC (477-MW) O&M + annualized capital costs are included in the cost estimates


¹Cost and Scale

Process	Price [\$/kg]	Concentration [mole fraction]	Emissions [kg/day]	Cost [1000s \$/day]
CO ₂ -PCC	0.045	0.121	8.59 x 10 ⁶	392
CO ₂ -NGCC	0.059	0.0373	3.01 x 10 ⁶	178
SOx (MS)	0.66	0.00127	8.94 x 10 ⁴	59.6
SOx (LS)	2.1	0.000399 (399 ppm)	2.32 x 10 ⁴	50.4
NOx	1.1	0.000387 (387 ppm)	1.11 x 10 ⁴	12.5
Hg	22000	5 x 10 ⁻⁹ (ppb)	0.951	21.6

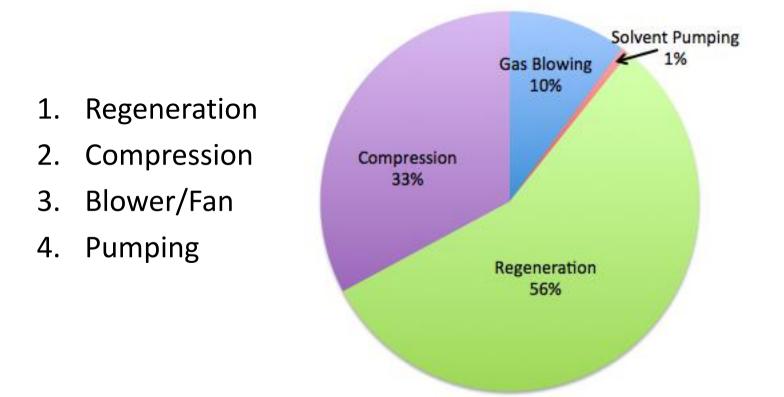
"the recovery of potentially valuable solutes from dilute solution is dominated by the costs of processing large masses of unwanted materials."² -Edwin Lightfoot

¹These can change based upon coal-type burned and scrubbing methods; ²EN Lightfoot, MCM Cockrem, What Are Dilute Solutions, Sep. Sci. Technol., 22(2), 165, 1987.

2nd-Law Efficiency Drops with Concentration

*Manuscript in preparation in collaboration w/ Kurt House, et al.

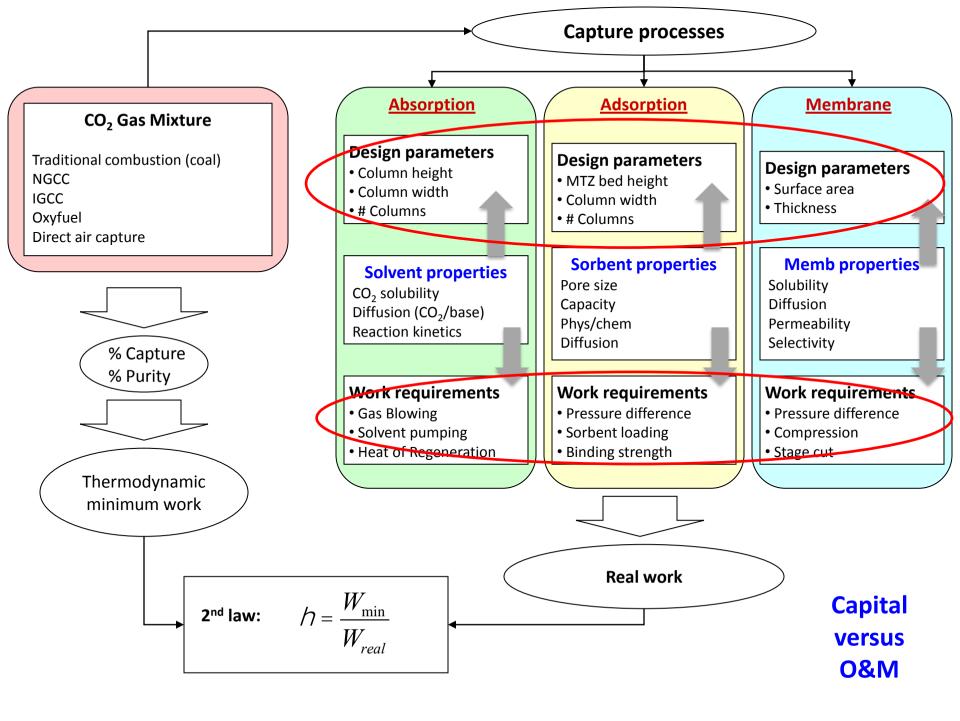
Second Law Efficiency

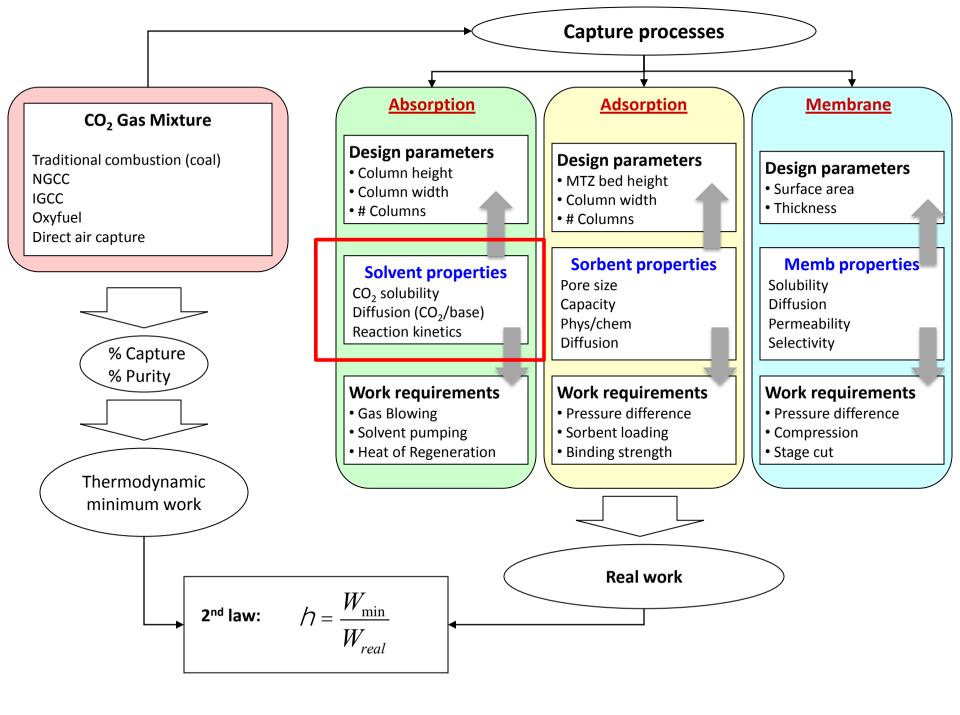

• The second law efficiency or the exergy (maximum work possible) efficiency is used to compare the efficiency of a real process to a corresponding ideal process

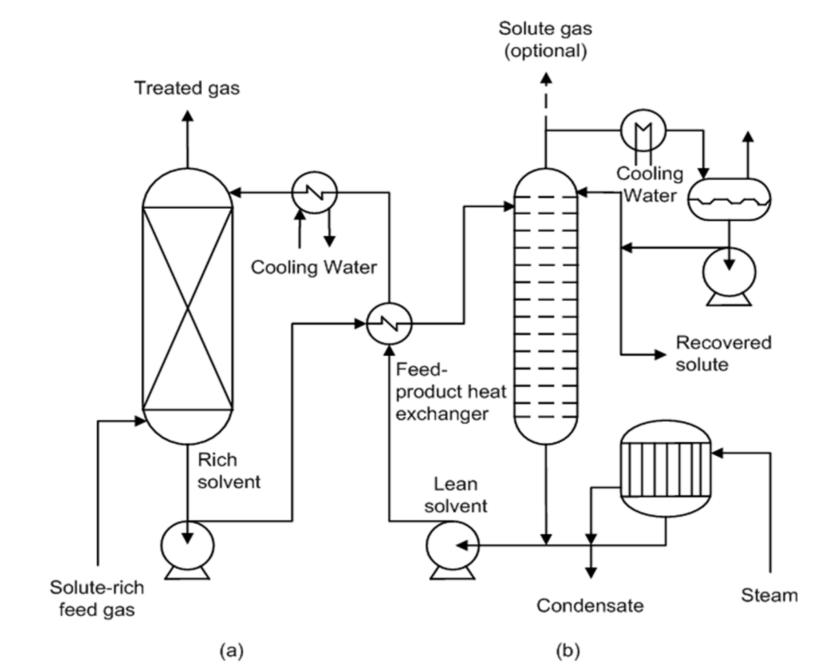
$$h_{2nd} = \frac{W_{real}}{W_{ideal}}$$

• The second law efficiency or the exergy efficiency (or effectiveness) is used to compare the efficiency of a cycle to a corresponding ideal cycle

How to Increase the 2nd-Law Efficiency?

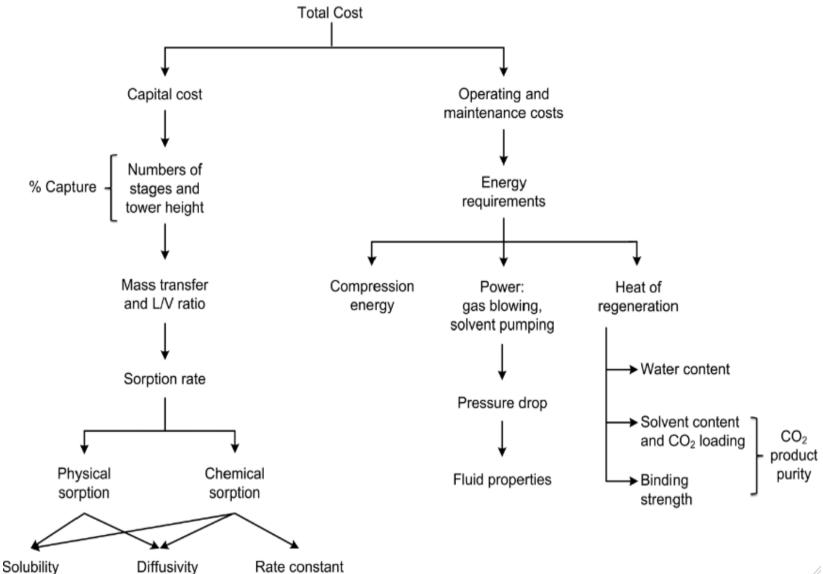

Taking a closer look at absorption via MEA as an example:

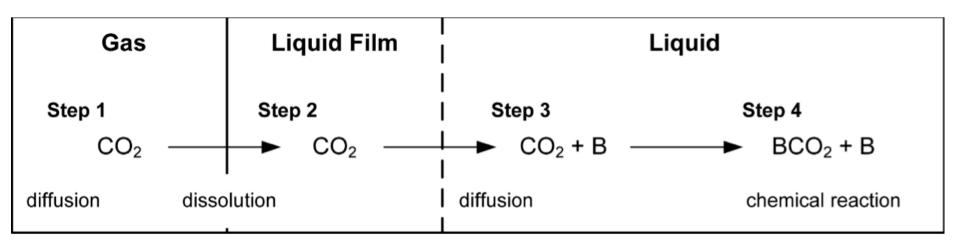



Can we establish targets based upon scientific limits? Should we reconsider the way in which we convert coal to energy?

Roadmap

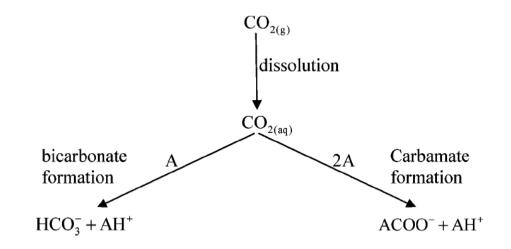
- Operating vs Capital costs
- Where does minimum energy fit in?
- How should cost of CO₂ captured be defined?

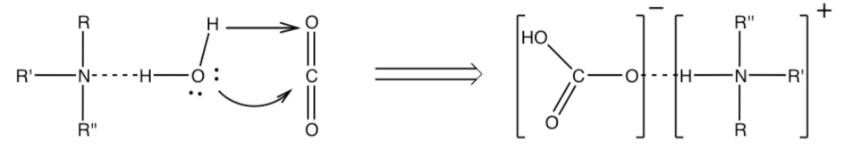



Gas absorber using a solvent regenerated by stripping (a) Absorber, (b) Stripper

Components of Absorption

Mass Transfer of CO₂ in Absorption

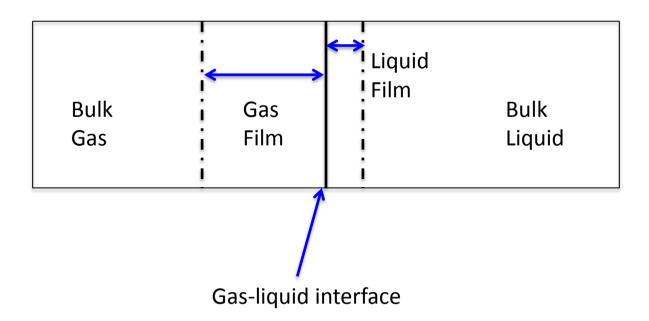

- Gas-phase CO₂ diffusion
- CO₂ concentration in the bulk gas is based upon the CO₂ concentration in the gas mixture
- CO₂ dissolution at the gas-liquid interface
- CO₂ concentration at the interface is determined by Henry's Law
- Liquid-phase CO₂ diffusion
- Simplifying assumption is that bulk liquid-phase CO₂ concentration is zero


Later – Rate of Absorption and what this entails!

Carbonate versus Carbamate

- 1. Dissolution of CO₂ (physical)
- 2. Bicarbonate formation
 - CO₂:amine = 1
 - Low heat of absorption
- 3. Carbamate formation
 - CO₂:amine = 0.5 (lower capacity)
 - High heat of absorption

Tertiary amine acts as a base catalyst, forming a H bond with water, weakening the OH bond and allowing for hydration of CO_2 to bicarbonate



Special Case: Carbonic Anhydrase

- CA is a Zn-containing metalloenzyme
- Facilitates hydration and dehydration of CO₂
- Rate of reaction is up to 8 orders of magnitude faster than CO₂ binding in neutral water w/out catalyst

Gas and Liquid Diffusion Films

Rate of Absorption

• <u>Gas-phase</u>:

$$\begin{aligned} J_{G,CO_2} &= c_{CO_2} G - D_{G,CO_2} \frac{dc_{CO_2}}{dz} \bigg|_i = c_{CO_2} G - \frac{D_{G,CO_2}}{d} \Big(c_{G^{\pm},CO_2} - c_{i,CO_2} \Big) \\ &= c_{CO_2} G - k_{G,CO_2} \Big(c_{G^{\pm},CO_2} - c_{i,CO_2} \Big) \end{aligned}$$

• <u>Liquid-phase</u>:

$$\begin{split} J_{L,CO_2} &= c_{CO_2} L - D_{L,CO_2} \frac{dc_{CO_2}}{dz} \bigg|_i = c_{CO_2} L - \frac{D_{L,CO_2}}{d} \Big(c_{i,CO_2} - c_{L \neq ,CO_2} \Big) \\ &= c_{CO_2} L - k_{L,CO_2} \left(c_{i,CO_2} - c_{L \neq ,CO_2} \right) \end{split}$$

J is the overall flux including bulk and diffusive terms, δ is the film thickness (gas or liquid), c_{∞} is the concentration of the bulk (gas or liquid), i represents the interface, and k is the mass-transfer coefficient

Absorption (chemical)

- Irreversible 2nd-order Reaction: $CO_2 + B \xrightarrow{k_2} CO_2B$ - Assume that bulk CO₂ concentration = 0 (i.e., $c_{\infty} = 0$)
- Rate of Absorption = $k_L c_{i,CO2} E$
- $E = enhancement factor \rightarrow factor by which absorption rate is increased by rxn$
- Enhancement factor is a function of:

$$\sqrt{M} = \frac{\sqrt{D_{CO_2}k_2c_B}}{k_L} \qquad \text{and} \qquad E_i = 1 + \frac{D_Bc_B}{2D_{CO_2}c_{i,CO_2}}$$

• E_i corresponds to instantaneous rxn

Limiting Cases of the Film Model

Limiting Case	Enhancement Factor	Physical explanation
$1. \sqrt{M} > 10E_i$	$E = E_i$	Instantaneous reaction
1. $\sqrt{M} > 10E_i$ 2. $\sqrt{M} < 1/2 E_i$	$E = \left(\frac{\sqrt{M}}{\tanh\sqrt{M}}\right)$	Pseudo first-order reaction
3. #2 satisfied and $\sqrt{M} > 3$	$E = \sqrt{D_{L,CO_2} k_2 c_B}$	Fast pseudo first-order reaction
4. None of the above	Determine <i>E</i> from Fig. 3.9	

In the case of the diffusion ratio between the base and CO_2 in the liquid deviates from unity, the Higbie Model is preferred

Higbie Model

• E_i is calculated from:

$$E_i = \sqrt{\frac{D_{L,CO_2}}{D_B}} + \frac{c_B}{zc_{i,CO_2}}\sqrt{\frac{D_B}{D_{L,CO_2}}}$$

Comparison of Model Absorption Rate Predictions for \downarrow HL; DR=2 Case

	Flue	Fuel
Fast Pseudo-first Order	1.1(-4); 1.0(-6)	3.8(-4); 3.5(-6)
Film Model	5.2(-3); 1.0(-6)	7.9(-3); 3.4(-6)
Higbie Model	4.2(-3); 1.0(-6)	8.5(-3); 3.4(-6)

Enhancement Factor Predictions for Various Applications using the Film and Higbie Models

E _i (Film)				E _i (Higbie)	$ \text{if } \sqrt{M} > 3 \\ \text{and} < \frac{1}{2}E_i $	$E = \frac{\sqrt{M\left(\frac{E_i - E}{E_i - 1}\right)}}{tanh\left(\sqrt{M\left(\frac{E_i - E}{E_i - 1}\right)}\right)}$					
		Air	Flue	Fuel	Air	Flue	Fuel	$E = \sqrt{D_{L,CO_2} k_2 c_B}$	from E Flue	E _i (Film) Fuel	from E _i Flue	(Higbie) Fuel
ш	DR=1	4.6(5)	1.5(3)	4.5(2)	-	-	-	•	2600	520	-	-
HL	DR=2	9.3(5)	3.0(3)	9.1(2)	6.5(5)	2.1(3)	6.4(2)	34.6 (fast);	1600	720	1300	780
NTIT	DR=1	3.9(7)	2.7(4)	8.2(3)	-	-	-	0.316 (slow)	-	-	-	-
HL	DR=2	7.9(7)	5.5(4)	1.6(4)	5.5(7)	3.8(4)	1.1(4)		-	-	-	-

Rate of CO₂ Estimates for Various Applications using the Film and Higbie Models

				$J_{L,CO_2} = c_{i,CO_2} k_{L,CO_2}$	$co_2 E \left(\frac{\mathrm{mol}}{\mathrm{cm}^2} \cdot \mathrm{s}\right)$	s)			
		from	E_i (Film); [fast:sle	ow]	fre	from E _i (Higbie); [fast:slow]			
		Air	Flue	Fuel	Air	Flue	Fuel		
↓HL	DR=1	3.8(-7); 3.0(-9)	8.5(-3); 1.0(-6)	5.7(-3); 3.4(-6)	-	-	-		
	DR=2	3.8(-7); 3.0(-9)	5.2(-3); 1.0(-6)	7.9(-3); 3.4(-6)	-	4.2(-3); 1.0(-6)	8.5(-3); 3.4(-6)		
↑HL	DR=1	4.0(-9); 3.9(-11)	6.3(-7); 6.0(-9)	2.1(-5); 1.9(-7)	-	-	-		
	DR=2	4.0(-9); 3.9(-11)	6.3(-7); 6.0(-9)	2.1(-5); 1.9(-7)	-	-	-		

Potentially Tunable Parameters

Parameter	Name	Typical Units	Likely Range
D	Gas diffusivity	cm ² /s	0.1 - 1.0
H_{CO_2}	Henry's law constant	atm	20 - 1700
D_{L,CO_2}	Liquid diffusivity	cm^2/s	$(0.5 - 2.0) \times 10^{-5}$
D_B	Liquid diffusivity of absorbent		
k_2	Reaction rate constant	L/mol·s	$6.7 \times 10^{-4} - 1.2 \times 10^{8}$
C_B	Bulk concentration of absorbent	mol/L	$0.1-8^{\dagger}$
k_{L,CO_2}	Liquid-phase mass-transfer	cm/s	10 ⁻²
, <u>2</u>	coefficient		
C_{i,CO_2}	Concentration of CO ₂	mol/L	set by p_{CO_2} and H_{CO_2}
$D_{B}/D_{L,CO_{2}}$	Diffusivity ratio		0.2 - 2.0

⁺depending on the corrosive nature, typically less than 1.0 mol/L

Rate of Absorption

• <u>Gas-phase</u>:

$$\begin{aligned} J_{G,CO_2} &= c_{CO_2} G - D_{G,CO_2} \frac{dc_{CO_2}}{dz} \bigg|_i = c_{CO_2} G - \frac{D_{G,CO_2}}{O} \Big(c_{G_{\pm,CO_2}} - c_{i,CO_2} \Big) \\ &= c_{CO_2} G - k_{G,CO_2} \Big(c_{G_{\pm,CO_2}} - c_{i,CO_2} \Big) \end{aligned}$$

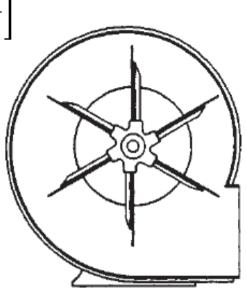
• <u>Liquid-phase</u>:

$$\begin{split} J_{L,CO_2} &= c_{CO_2} L - D_{L,CO_2} \frac{dc_{CO_2}}{dz} \bigg|_i = c_{CO_2} L - \frac{D_{L,CO_2}}{O} \Big(c_{i,CO_2} - c_{L \neq ,CO_2} \Big) \\ &= c_{CO_2} L - k_{L,CO_2} \Big(c_{i,CO_2} - c_{L \neq ,CO_2} \Big) \end{split}$$

These equations may be used to then determine the number and height of the mass-transfer units to determine the design of the absorption (or stripping tower)

Real Work: Fan and Blower Power

- Fans and blowers:
 - Fans operate near atm P w/ $\Delta P < 15$ kPa
 - Efficiency, ε , gas density, ρ , and pressure drop, ΔP , fan power is:

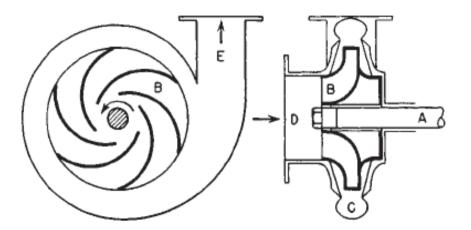

$$Power = \frac{dw_f}{dt} = \frac{\dot{m}\Delta p}{\rho \cdot \varepsilon}$$

- Blowers handle $3 < \Delta P < 500$ kPa
- For adiabatic and reversible compression of an ideal gas, blowing power is:

$$Power = \frac{dw_b}{dt} = \frac{\dot{m}RT_1k}{M(k-1)\varepsilon} \left[\left(\frac{p_2}{p_1}\right)^{(k-1)/k} - 1 \right]$$

 T_1 is the initial gas temperature, p_1 and p_2 are the initial and final gas pressures, and k is the ratio of specific heats (Appendix B of text)

– Efficiencies can range from 65 - 85%



Real Work: Solvent Pumping Power

- Pumps for solvent pumping:
 - To cause liquid to flow work must be expended; a pump can assist in overcoming pressure drop associated with solvent friction in a column and can also assist in raising the solvent to a higher elevation
 - Work is a function of the change in pressure and volumetric flow rate, Q:

$$Power = \frac{dw_p}{dt} = \frac{Q\Delta p}{\varepsilon_i \varepsilon_d}$$

- Intrinsic efficiencies, ε_i range from 40 to 85%, while drive efficiency, ε_d can be approximated as 85%

Real Work: Heat of Regeneration

Heat required for regeneration:

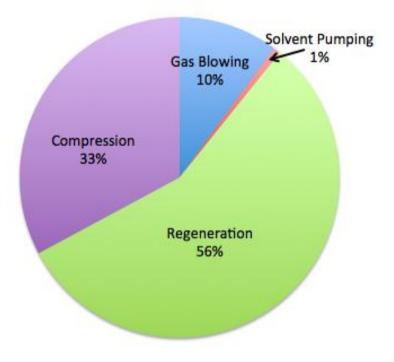
- lean loading: 0.2 mol CO₂/mol MEA
- rich loading: 0.4 mol CO₂/mol MEA
- heat up solvent, e.g., heat capacity of 30 wt.% MEA w/ 0.4 mol bound $CO_2 = 3.418 \text{ J/g} \cdot \text{K}$
- mass of solution = 0.4 mol CO_2 + 7.9 mol H_2O + 1 mol MEA
- 40 to 120 C is ~ 60.5 kJ to just heat up the water
- Additional 16.9 kJ/mol MEA to break the CO_2 bond (~ 84 kJ/mol CO_2)
- For regeneration of 0.2 mol $CO_2/1$ mol MEA:
 - (60.5 + 16.9) kJ/mol MEA x 1.0 mol MEA/0.2 mol CO₂ = 387 kJ/mol CO₂
 - IECM (Rubin et al.) estimates ~ 39 kJ/mol; Rochelle estimates ~ 30 kJ/mol
- Why the gap?
 - Heat exchange from the absorption process (water is an excellent heat transfer fluid)
 - Heat exchange from multiple cycles

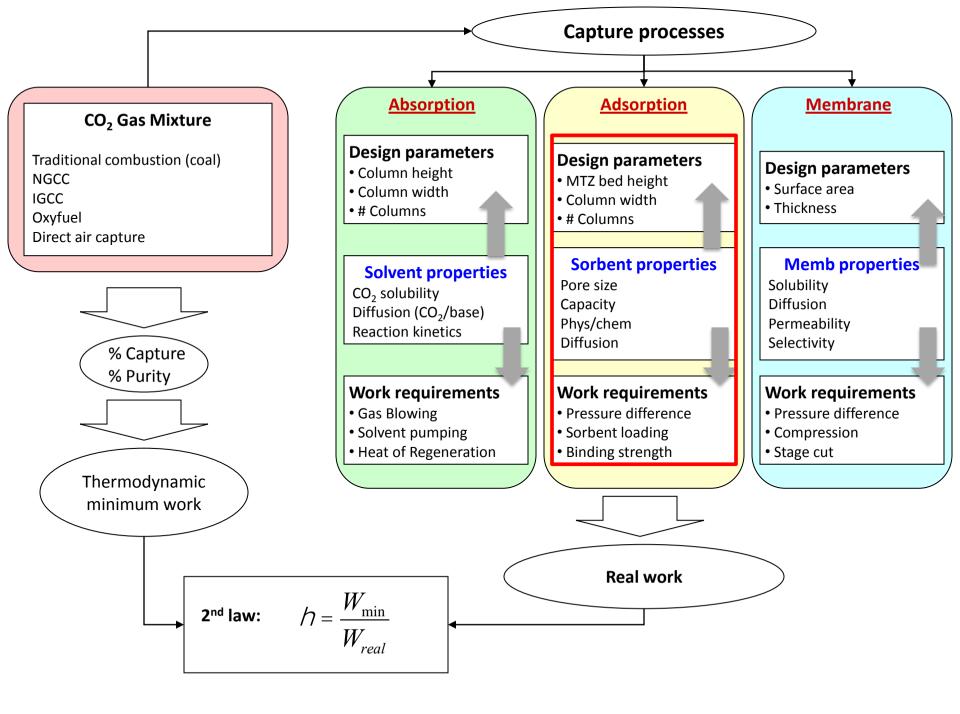
Real Work: Compression

- Compression of CO_2 to 10 MPa is recommended for pipeline transport
- Adiabatic single-stage compression power can be calculated for an ideal gas by:

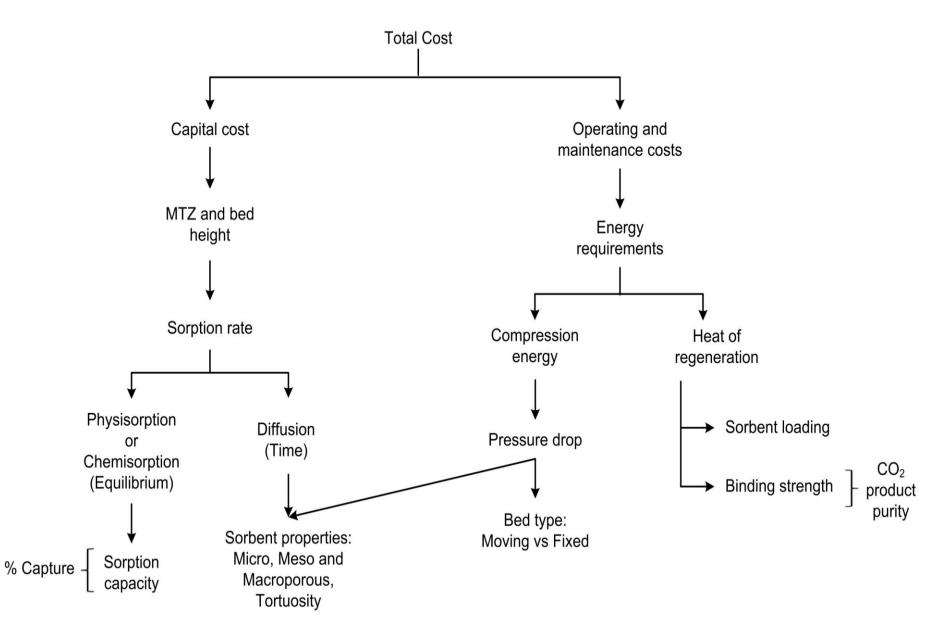
$$P_{ad} = \frac{\dot{m}RT}{M} \frac{k}{k-1} \left(r^{(k-1)/k} - 1 \right)$$

Such that \dot{m} is the mass flow rate, T is the gas temperature, r is the compression ratio, i.e., p_2/p_1 , k is the ratio of heat capacities (i.e., C_v/C_p), and M is the molecular weight of the gas


- Compression of CO_2 from 1 atm (0.101 MPa) to 10 Mpa ~ 20 kJ/mol CO_2
- Rochelle et al. report significantly lower compression (~ 10 kJ/mol CO₂) requirements due to novel stripping schemes that incorporate gas compression within the process
- IECM (Rubin et al.) report compression work ~ 23 kJ/mol CO_2


Real Work – Total

• Total real work required for CO₂ capture includes:

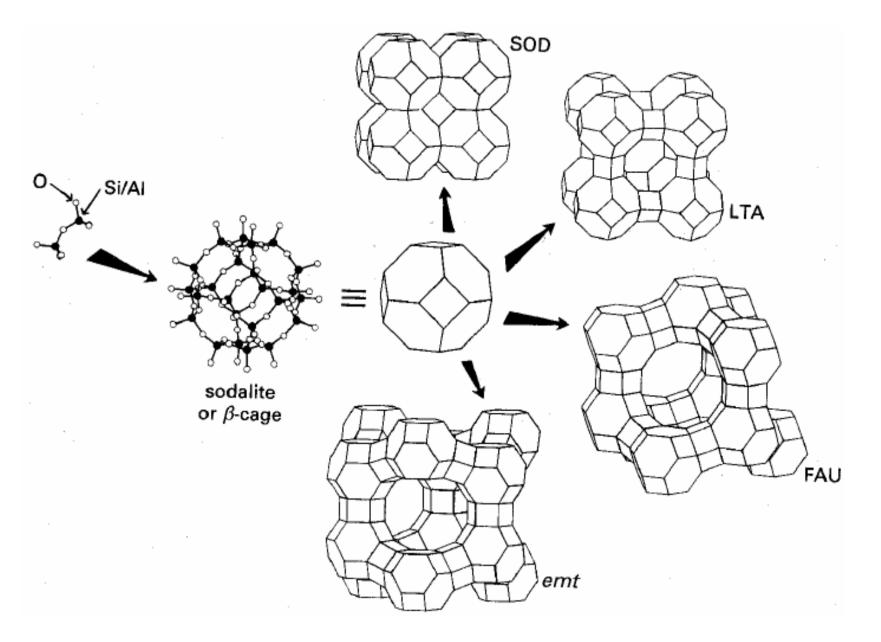

- $W_{fan} + W_{pump} + W_{regen} + W_{comp}$

- On average, estimates for an amine-based absorption process (from IECM)
 - $W_{fan} \sim 7 \text{ kJ/mol CO}_2$
 - $W_{pump} \sim 0.5 \text{ kJ/mol CO}_2$
 - $W_{regen} \sim 39 \text{ kJ/mol CO}_2$
 - $W_{comp} \sim 23 \text{ kJ/mol CO}_2 [1 \text{ atm} \rightarrow 10 \text{ MPa}]$

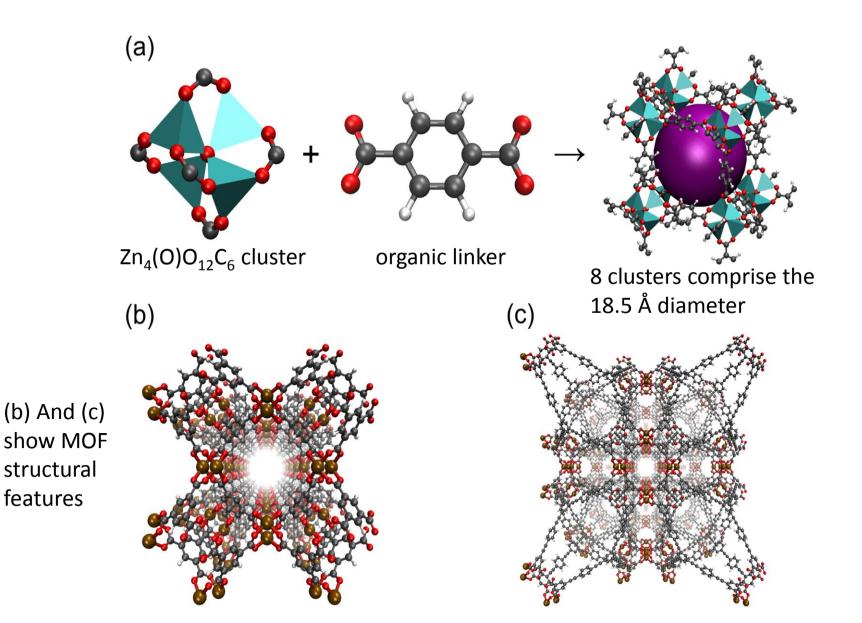
Outline of Adsorption Processes

Physisorption versus Chemisorption

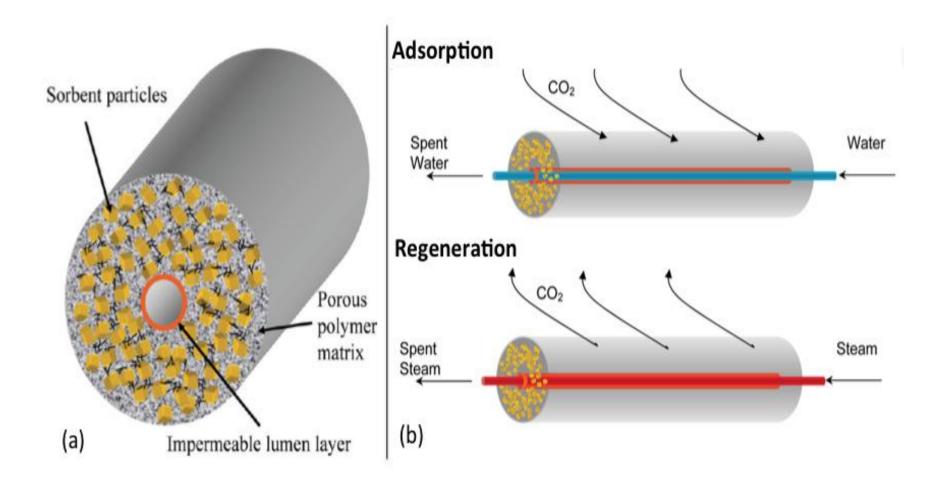
- When CO_2 is held loosely via weak intermolecular forces it's termed physisorption, heat of adsorption ~ 10 15 kcal/mol
- When CO_2 is held via covalent bonds it's termed chemisorption
- Most CO₂ adsorption mechanisms are physisorption due to the need for low heats of adsorption
- Heats of adsorption of zeolites and MOFs can actually be quite high (e.g., ~ 50 kcal/mol)
- Common sorbents: activated carbon, zeolites, MOFs, etc.


Zeolite Properties

- Silicon and aluminum atom structures tetrahedrally bonded with oxygen
- Aluminum typically exists in a 3+ oxidation state, so will have a charge of -1 when tetrahedrally bonded
- Cations (positive charges) are used to stabilize these charges, distributing themselves in a way to minimize the free energy of the system
- How do zeolites work to separate N_2 from O_2 or CO_2 from N_2 ?
 - They actually prefer to adsorb N₂
 - The interaction energy bet/ ions and N_2 are much stronger than ions and O_2
 - O_2 -Na+ (20 kJ/mol); N₂-Na+ (36 kJ/mol)
 - O_2 -Li+ (32 kJ/mol); N_2 -Li+ (51 kJ/mol)
 - N_2 has a higher quadrupole moment than O_2
 - Adsorption is dependent upon the interaction energy bet/ an adsorbate and a cation of a zeolite and includes contributions from van der waals and electrostatic interactions; electrostatic energies include induced dipoles, permanent dipoles and quadrupoles


Kinetic and Electrostatic Properties of Gases

Molecule	¹⁵ Kinetic Diameter (nm)	¹⁶ Dipole Moment (Debye)	¹⁷ Quadrupole Moment (10 ⁻⁴⁰ Coulomb·m ²)	(10 ⁻²⁴ cm ³)	
CO_2	0.33	0	-13.71, -10.0	2.64, 2.91, 3.02	
N_2	0.346	0	-4.91	0.78, 1.74	
O_2	0.346	0	-1.33	1.57, 1.77	
H_2O	0.280	1.85	6.67	1.45, 1.48	
SO_2	0.360	1.63	-14.6	3.72, 3.89, 4.28	
NO	0.317	0.16	-6.00	1.7	
NO_2	0.340	0.316	unknown	3.02	
NH ₃	0.260	1.47, 5.10	-7.39	2.22, 2.67, 2.81	
HC1	0.346	1.11, 3.57	13.28	2.63, 2.94	
CO	0.376	0.11, 0.37	-8.33, -6.92	1.95, 2.19	
N_2O	0.317	0.16, 0.54	-12.02, -10.0	3.03, 3.32	
Ar	0.340	0	0	1.64, 1.83	
H_2	0.289	0	2.09, 2.2	0.81, 0.90	
CH ₄	0.380	0	0	2.6	


Zeolite Framework

MOF Framework

Hollow-fiber Sorbents

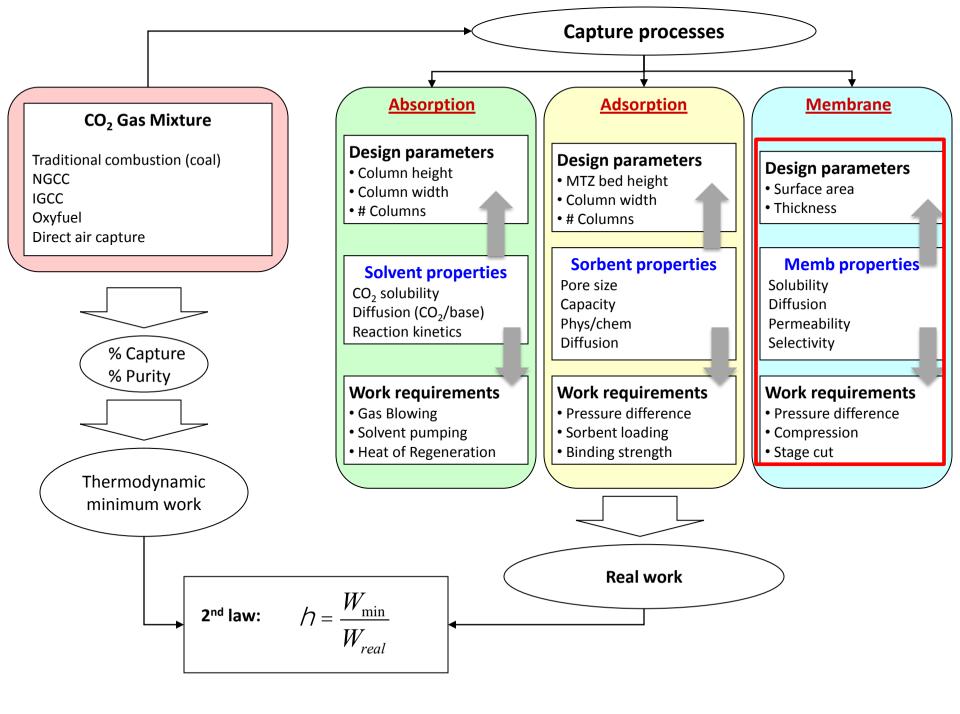
Adsorption Cycles

Process condition	Temperature Swing	Displacement Purge	PSA
Adsorbate concentration in feed, < 3%	yes	unlikely	unlikely
Adsorbate concentration in feed, 3-10%	yes	yes	yes
Adsorbate concentration in feed, $> 10\%$	no	yes	yes
High product purity required	yes	yes	possible
Thermal regeneration required	yes	no	no
Difficult adsorbate separation	possible	unlikely	NA

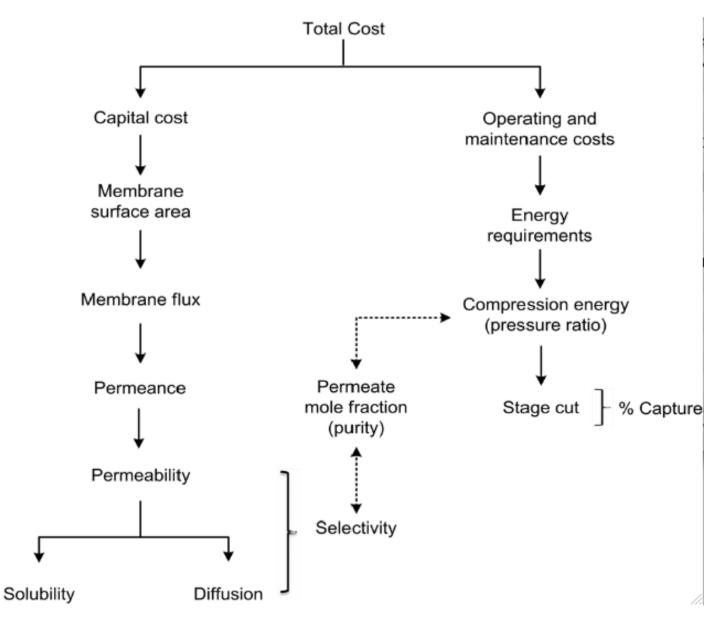
Pressure Drop

• Ergun verified this eqn. for a variety of different shapes of packing material with varying packing densities; the first void space term accounts for the viscous loss component and the second for the KE loss component

$$\frac{\Delta P}{L} = \frac{150\overline{V_0}\mu}{\Phi_s^2 D_p^2} \frac{(1-\varepsilon)^2}{\varepsilon^3} + \frac{1.75\rho\overline{V_0}^2}{\Phi_s D_p} \frac{1-\varepsilon}{\varepsilon^3}$$

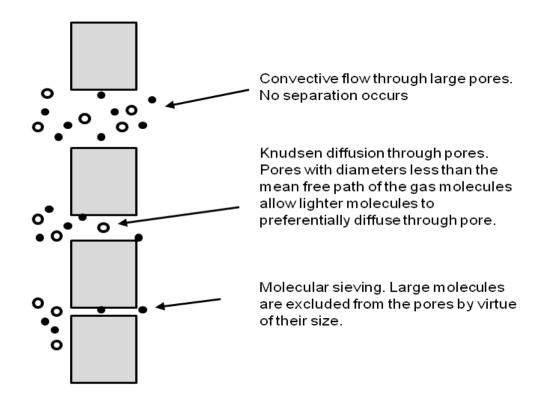

- It is important to note that a small change in ϵ results in a large change in ΔP
- Typical numbers for calculations:
 - Void fractions for spheres, cylinders, and granular packings typically range from 0.3-0.6
 - Sphericity ranges from 0.6-0.95

Real Work: Overcoming Pressure Drop

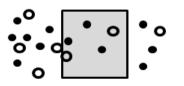

• How much blower power is required to overcome the pressure drop in an adsorption system of a packed tower?

$$Power = P_1 V_1 \left(\frac{k}{k-1}\right) \left[\left(\frac{P_2}{P_1}\right)^{(k-1)/k} - 1\right]$$

- P is power in kilowatts, P_1 is the inlet pressure, P_2 is outlet pressure, V_1 is the flow rate of gas, k is the ratio of specific heat ($k=C_p/C_v$, where C_p and C_v are the heat capacity at constant pressure and volume, respectively)
 - Typical values for k = 1.4 for air

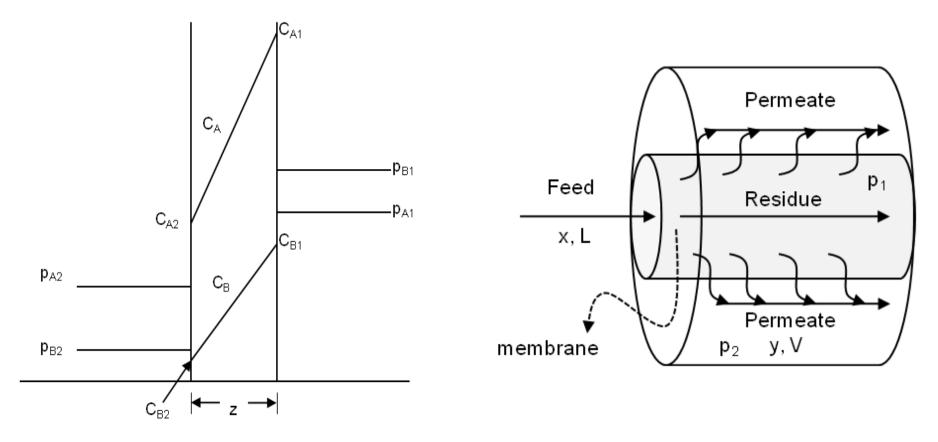


Outline of Membrane Processes



Membrane Separation Mechanisms

A. Porous Membranes



B. Solution-Diffusion Membranes

Gas dissolves into the membrane material and diffuses across it.

Gradients and Terminology

Important Terms:

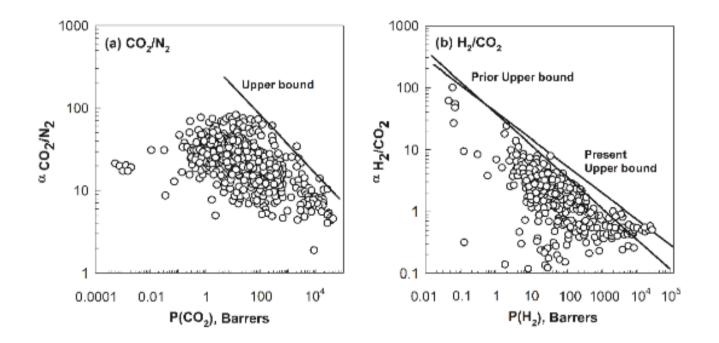
Stage cut = permeate flow rate/feed flow rate Permeate/Residue Concentrations Pressure Ratio = permeate pressure/feed pressure

Permeability vs. Permeance

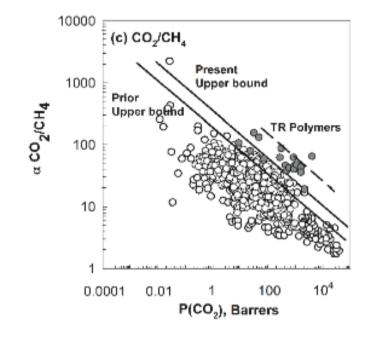
• Permeability vs Permeance

$$J_A = \frac{D_A S_A (p_{A1} - p_{A2})}{Z} = \bar{P}_A (p_{A1} - p_{A2})$$

- J = flux; D = diffusivity, S = solubility, z = membrane thickness, and coefficient of pressure difference is the permeance
- Permeability is the product of diffusivity and solubility and is a property of the material
- Typical units of permeance are GPUs or standard ft^3/ft^2 h atm
- Permeance is a property of a particular membrane
- Typical units of permeability are Barrers


1 Barrer =
$$10^{-10} \frac{\text{cm}^3(\text{STP}) \cdot \text{cm}}{\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}}$$

Selectivity


• Selectivity may be in terms of permeability, diffusivity, or solubility

$$\alpha = \frac{P_A}{P_B} = \left(\frac{D_A}{D_B}\right) \left(\frac{S_A}{S_B}\right)$$

• In 1991, Lloyd M. Robeson quantified the trade-off between permeability and selectivity; displayed in terms of Robeson plots

Robeson Plots

Gas Separation Process Design

- CO₂ capture from natural gas
- Residue is purified CH₄ w/ permeate stream enriched in CO₂
- Note high feed and residue streams

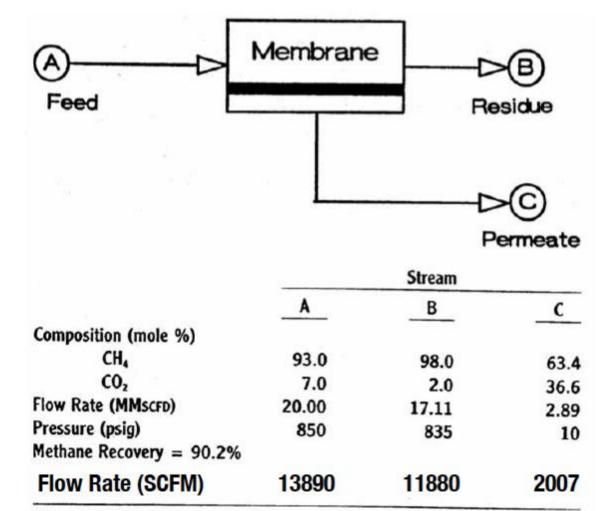
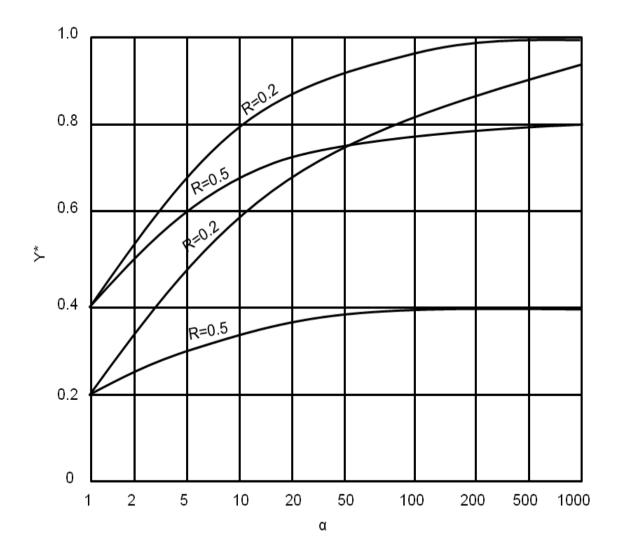


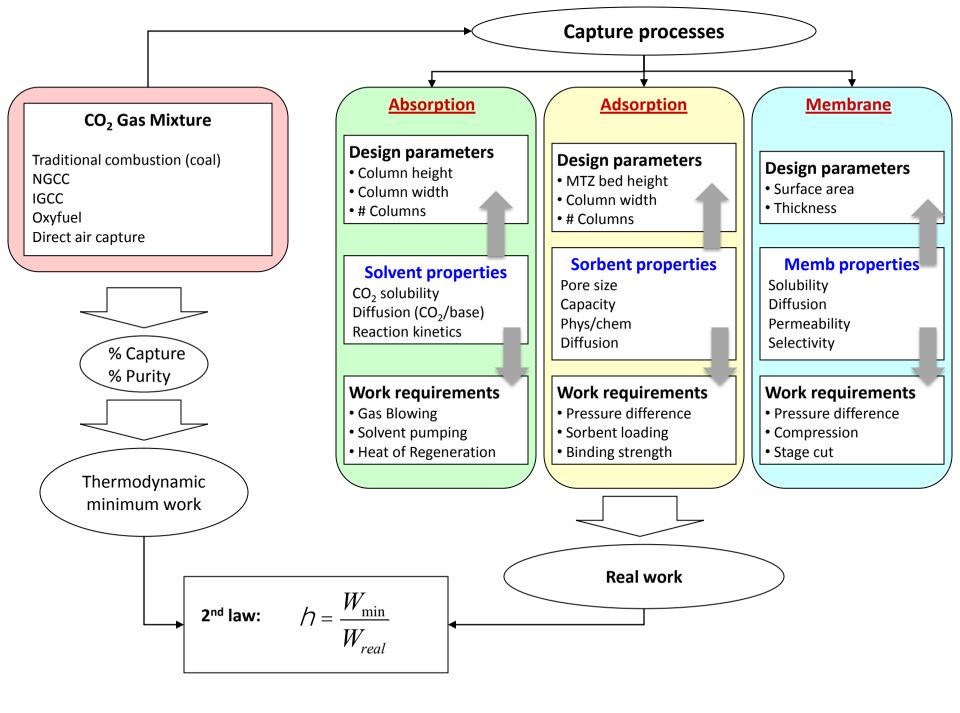
Figure 5. Single-stage membrane process for natural gas treating.

Short-Cut Design Calculation

• Short-cut area calculation described by Hogsett and Mazur, Hydrocarbon Processing, 62, 52 (1983)


$$Area = \frac{x_{1perm}Q_{perm}}{\frac{P_1}{l} \left(p_{feed} x_{\log-mean} - p_{perm} x_{1perm} \right)} @ \frac{permeate flow rate of 1}{flux of species 1}$$
where Q is volumetric flowrate, x is mole fraction, p is pressure
$$\frac{P_1}{l} \text{ is permeance of species 1}$$

$$x_{\log-mean} = \frac{x_{1feed} - x_{1residue}}{n}$$


$$x_{\log-mean} = \frac{1}{\ln c} \frac{x_{1feed}}{\sum_{\substack{i=1\\i \in X_{1residue}}}^{i} \emptyset}$$

• Using values from the previous slide and a CO_2 permeance of 5.5 ft³ (STP)/(ft² 100 psi hr), results in a membrane area of 31,500 ft²

Local Permeate Concentration

Selectivity and pressure ratio effects on the local permeate concentration

Additional Slides

Absorption-Related Mass-Transfer Correlations

Scenario	Correlation	Remarks
Liquid in packed-bed	$k\left(\frac{1}{vg}\right)^{1/3} = 0.0051 \left(\frac{u}{va}\right)^{0.67} \left(\frac{D}{v}\right)^{0.5} (ad)^{0.4}$ $\frac{kl}{D} = 25 \left(\frac{lu}{v}\right)^{0.45} \left(\frac{v}{D}\right)^{0.5}$	Known as best available correlation for liquids Classical result and widely referenced
Gas bubbles in stirred tank	$\frac{kl}{D} = 0.13 \left(\frac{(P/V)l^4}{\rho v^3}\right)^{1/4} \left(\frac{v}{D}\right)^{1/3}$	<i>k</i> is not dependent on bubble size
Gas bubbles in unstirred tank	$\frac{kl}{D} = 0.31 \left(\frac{l^3 g \Delta \rho / \rho}{v^2}\right) \left(\frac{v}{D}\right)^{1/3}$	$\Delta \rho$ = density difference between bubble and fluid
Falling films	$\frac{kz}{D} = 0.69 \left(\frac{zu}{D}\right)^{0.5}$	<i>z</i> = position along film

Notes: a = packing area per bed volume; l = characteristic length (or bubble or drop diameter); ε = bed voidage; P/V = stirrer power per volume; u = superficial velocity (or drop velocity)

Choosing an Appropriate Solvent

- high CO₂ capacity
- fast kinetics with CO₂
- low volatility
- low viscosity
- nontoxic, nonflammable, and noncorrosive
- high thermal stability
- resistance to oxidation
- Examples include amines, carbonates, and ammonia

Common Types of Sorbents

Sorbent	Pore Diameter (nm)	Sorbent Density (kg/m ³)	Sorbent Porosity	BET Surface Area (m²/g)	H ₂ O cap. Wt. %, 25 °C, 4.6 mmHg	CO ₂ cap. Wt. %, 25 °C, 250 mmHg	Regeneration Temp, °C
^{17a} Activated carbon							
Small pore	1-2.5	500-900	0.4-0.6	400-1200	1	5	-
Large pore	> 3	600-800	-	200-600	-	7	-
^{17a} Zeolites							
3A	0.3	670-740	0.2	700	20	-	> 350
4A	0.4	660-720	0.3	700	23	13	120-350
5A	0.5	670-720	0.4	650	21	15	120-350
13X	0.8	610-710	0.5	600	25	16	120-350
Mordenite	0.3-0.4	720-800	0.25	700	9	6	-
Chabazite	0.4-0.5	640-720	0.35	650	16	12	-
^{17a} Silica gel							
Small pore	2.2-2.6	1000	0.47	800	11	3	130-280
Large pore	10-15	620	0.71	320	-	-	130-280
^a Activated alumina	1-7.5	800	0.50	320	7	2	150-315
^{14a, 28} MOFs	0.4-2.4	200-1000	0.79-0.90	150-6200	9	^f 4-14, 15	25-80
[on exchange resins	<1-12	^a 1100, ^b 1270	0.2-0.5	15-120	-	-	60
²⁹ Hollow fibers	2.5-11	1250	0.3-0.8	450-1100	-	-	100-150
^{29a, 30} CMS	0.3-0.9	640-1000	0.5	400	>20	1.2-2.5	100-200
³¹ Amine-based	8-40	1000-1500		5-500	-	5-14	80-120
³² Hydrotalcites	2-20	150-550	0.15-0.5	16-290	-	-	120-400
^{32c, 33} Chemisorbents	0.2-20	2000		250-1250	-	-	°700-920
							^d 150-500
							^e 350

Influence of Pressure Ratio

- Original Case:
 - 100 MSCFH natural gas
 - Feed pressure = 480 psia
 - Permeate pressure = 20 psia
 - $\Delta P = 460 \text{ psia}$
 - Pressure ratio, $\gamma = 0.042$
 - Feed $CO_2 = 12\%$
 - Product $CO_2 = 2\%$
 - Area required = $1,700 \text{ ft}^2$

- New Case:
 - 100 MSCFH natural gas
 - Feed pressure = 1200 psia
 - Permeate pressure = 200 psia
 - $\Delta P = 1000 \text{ psia}$
 - Pressure ratio, $\gamma = 0.17$
 - Feed $CO_2 = 12\%$
 - Product $CO_2 = 2\%$
 - Area required = $7,800 \text{ ft}^2$

Multi-Stage Processes

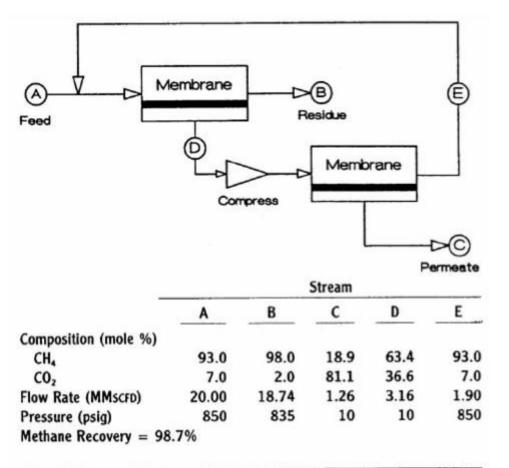


Figure 8. Two-stage gas separation membrane process for natural gas treating.

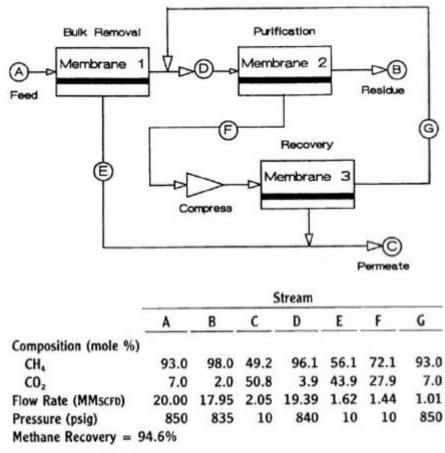


Figure 9. Multi-stage gas separation membrane process for natural and treating.