

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Energy Tutorial: Solar Energy 101

Professor Nate Lewis

Chemistry Department, California Institute of Technology GCEP Theme Leader – Solar Energy, Stanford University

SEPTEMBER 28, 2010

GLOBAL CHALLENGES – GLOBAL SOLUTIONS – GLOBAL OPPORTUNITIES

Basic Research Needs for Solar Energy

• The Sun is a singular solution to our future energy needs

- capacity dwarfs fossil, nuclear, wind . . .
- sunlight delivers more energy in one hour than the earth uses in one year
- free of greenhouse gases and pollutants
- secure from geo-political constraints

• Enormous gap between our tiny use of solar energy and its immense potential

- Incremental advances in today's technology will not bridge the gap

- Conceptual breakthroughs are needed that come only from high risk-high payoff basic research

- Interdisciplinary research is required physics, chemistry, biology, materials, nanoscience
- Basic and applied science should couple seamlessly

World Energy Demand

EIA Intl Energy Outlook 2004 http://www.eia.doe.gov/oiaf/ieo/index.html

Hoffert et al Nature 395, 883,1998

Renewable Energy

Wind 2-4 TW extractable

Tide/Ocean Currents 2 TW gross

Solar 1.2 x 10⁵ TW at Earth surface 600 TW practical

energy gap ~ 14 TW by 2050 ~ 33 TW by 2100

Biomass 5-7 TW gross all cultivatable land not used for food

Hydroelectric

4.6 TW gross1.6 TW technically feasible0.9 TW economically feasible0.6 TW installed capacity

Geothermal

12 TW gross over land small fraction recoverable

Solar Land Area Requirements

Cost of Solar Electric Power

Solar Energy Utilization

Solar Energy Challenges

Solar electric

Solar fuels Solar thermal

Cross-cutting research

Solar Electric

 Despite 30-40% growth rate in installation, photovoltaics generate /ess than 0.1% of our electricity /ess than 0.01% of total energy

- Decrease cost/watt by a factor 10 25 to be competitive with fossil electricity (without storage)
- Find effective method for *storage* of photovoltaic-generated electricity

Solar Energy Conversion

Optimum Absorption Threshold

Semiconductor Doping

Position (x)

Junctions

The Depletion Region

Thermionic Emission

The Dark Current

The current given by the equation:

$$J = -J_o[\exp\left(\frac{-qV}{kT}\right) - 1]$$

I-V Curves

Photovoltaic I-V Curve

V_{oc}: Open circuit voltage, the voltage when no current flows. $J_{ph} = -J_0$ I_{sc} : Short circuit current, current where V = 0 P_{max} : Maximum power point, greatest value of I * V

Carrier Recombination

In an ideal system, electrons and holes will only recombine at the back face of the semiconductor after they have performed work. In a real system, alternative pathways for recombination will shorten the effective carrier lifetime of the sample and lower the efficiency of photovoltaic devices. The dominant recombination pathways are:

+

Interpenetrating Nanostructured Networks

Revolutionary Photovoltaics: 50% Efficient Solar Cells

Concentrator vs. Flat Plate Arrays

Why not stack several semiconductors to get better energy conversion? A large band gap semiconductor can get higher voltage out of the more energetic photons, then smaller band gap semiconductors underneath can extract additional energy from the remaining photons.

GaAs (1.44 eV)
Metal

Flat Plate Array

Concentrator Array

Ultra-high Efficiency Solar Cells

Dye Sensitization

Semiconductor Photoelectrochemistry

nanocrystalline solar cell

B. O'Regan, M. Grätzel Nature 1991, 353, 737

Nanocrystalline Titanium Dioxide

- Particle Size ~ 15nm
- Surface Area

 is larger than single crystal
 ~1000 times
- No Quantum Size Effects (large electron effective mass)
- Different Electrochemistry from single crystal semiconductors

Dye Sensitized Solar Cells

8-10% Efficient
>15% Efficiency Possible
Stability

Dye-Coated TiO₂ Electrodes

OsL'₂(NCS)₂ RuL'₂(NCS)₂ OsL'₂(CN)₂ RuL'₂(CN)₂

 $OsL_2L' RuL_2L' OsL'_3 RuL'_3$

TIO₂ coated on conducting glass (INAP), deposited TiCl₄ overnight, heated 450 °C for 30 min, cooled to 120 °C, immersed in ethanolic dye solution for 15-24 h

Energetics of Sensitized TiO₂ Solar Cell

To red-shift the absorption spectra, require: More positive excited state potential, or more negative ground state potential

Solar Energy Challenges

Solar electric Solar fuels Solar thermal Cross-cutting research

Solar Thermal + Electrolyzer System

Report of the Basic Energy Sciences Workshop on Solar Energy Utilization

Solar Thermal

- heat is the first link in our existing energy networks
- solar heat replaces combustion heat from fossil fuels
- solar steam turbines currently produce the lowest cost solar electricity
- challenges:

new uses for solar heat store solar heat for later distribution

Solar Thermochemical Fuel Production

Thermoelectric Conversion

thermal gradient \Leftrightarrow electricity

figure of merit: ZT ~ (σ/κ) T ZT ~ 3: efficiency ~ heat engines no moving parts

Scientific Challenges increase electrical conductivity decrease thermal conductivity

nanoscale architectures interfaces block heat transport confinement tunes density of states doping adjusts Fermi level

Solar Energy Challenges

Solar electric Solar fuels

Solar thermal

Cross-cutting research

Leveraging Photosynthesis for Efficient Energy Production

photosynthesis converts ~ 100 TW of sunlight to sugars: nature's fuel

low efficiency (< 1%) requires too much land area

switchgrass

Modify the biochemistry of plants and bacteria

- improve efficiency by a factor of 5-10
- produce a convenient fuel methanol, ethanol, H₂, CH₄

hydrogenase $2H^+ + 2e^- \Leftrightarrow H_2$

Scientific Challenges

- understand and modify genetically controlled biochemistry that limits growth
- elucidate plant cell wall structure and its efficient conversion to ethanol or other fuels
- capture high efficiency early steps of photosynthesis to produce fuels like ethanol and H₂
- modify bacteria to more efficiently produce fuels
- improved catalysts for biofuels production

Smart Matrices for Solar Fuel Production

- Biology: protein structures dynamically control energy and charge flow
- Smart matrices: adapt biological paradigm to artificial systems

smart matrices carry energy and charge

Scientific Challenges

- engineer tailored active environments with bio-inspired components
- novel experiments to characterize the coupling among matrix, charge, and energy
- multi-scale theory of charge and energy transfer by molecular assemblies
- design electronic and structural pathways for efficient formation of solar fuels

Bacterial Photosynthetic Reaction Center

rhodobacter sphaeroides

Stowell, M.H.B.; Rees, D.C.; et. al. Science 1997, 276, 882.

Boxer, S.G. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 267.

Nature uses two photosystems to span the redox space from O_2/H_2O to NAD⁺/NADH

Defect Tolerance and Self-repair

 Understand defect formation in photovoltaic materials and self-repair mechanisms in photosynthesis

 Achieve defect tolerance and active self-repair in solar energy conversion devices, enabling 20-30 year operation

Efficient Solar Water Splitting

demonstrated efficiencies 10-18% in laboratory

Scientific Challenges

- cheap materials that are robust in water
- catalysts for the redox reactions at each electrode
- nanoscale architecture for electron excitation \Rightarrow transfer \Rightarrow reaction

Fuel from Sunlight

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Photoelectrochemical Cell

Light is Converted to Electrical+Chemical

Optimum Absorption Threshold

Solar H₂ production on Ru/CuInS₂-AgInS₂-ZnS solid solution photocatalyst

Photocatalyst Reactant: $K_2SO_3 + Na_2S$

I. Tsuji, H. Kato, and A. Kudo, Angew. Chem., Int. Ed., 44, 3565 (2005), Chem. Mater., 18, 1969 (2006).

Solar H₂ production on Ru/CuInS₂-AgInS₂-ZnS solid solution photocatalyst

Photocatalyst Reactant: $K_2SO_3 + Na_2S$

I. Tsuji, H. Kato, and A. Kudo, Angew. Chem., Int. Ed., 44, 3565 (2005), Chem. Mater., 18, 1969 (2006).

Lessons from Photosynthesis

April 18-21, 2005

Mission of JCAP

•Melvin Calvin, 1982: It is time to build an actual artificial photosynthetic system, to learn what works and what doesn't work, and thereby set the stage for making it work better

•10-year JCAP Goal, 2010: To demonstrate a manufacturably scalable solar fuel generator, using earth-abundant elements, that, with no wires, robustly produces fuel from the sun, 10 times more efficiently than (current) crops

System Concept

Constructing the Pieces of a Solar (H₂) Fuel Generator

Structure – Radial Advantage

Enables Application of New Materials

Relaxes Catalyst Activity Requirements

Flexible PDMS-Si Wire Composites

Spurgeon, et al., *Appl Phys. Lett.* 93 (3) (2008). Plass, et al., *Adv. Mater.* **21** (325) (2009).

Fundamental Design Principles and Progress

- Require >1.23 V of photovoltage
- Require membrane to neutralize pH gradient and separate products
- Require catalytic sites to transform individual e⁻-h⁺ pairs into multi-electron transfer reactions

Solar-Powered Catalysts for Fuel Formation

Molecular-Nanoscale Interface

Gaps: How to combine

components into working system; functionality of components individually vs collectively

Approach: Control functionality of integrated components

Exploit 3-D to achieve desired activity and/or functionality

Synthesis and catalytic activity of Ru double gyroid vs planar Ru for O_2 evolution

Heterogeneous Catalyst Discovery

Gaps: Complement with Ultra-high Throughput Experimentation

Schematic of the process of preparing the substrate and making electrical contact to 130 individual materials on a single piece of FTO-coated glass.

Starting Points: H₂/CO₂: MS_x; O₂: MO_x, MO_xN_v

False color images of the photocurrent of a slide that contained spots of binary mixed-metal oxides (top). Three-dimensional plot (bottom). Top-down view.

Outputs: Tie together theory

surface science, electrochemistry, X-ray spectroscopy, high-throughput experimentation

Measured OER overpotential vs calculated adsorption energy

Activity Metrics/Goals: ~x 10^2 for H₂; ~x 10^4 for O₂ >x 10^5 for CO₂

BERKELEY LA

Envisioning JCAPs Products

nm-scale

JOINT CENTER FOR ARTIFICIAL PHOTOSYNTHESIS

Basic Research Needs for Solar Energy Utilization

Report of the Basic Energy Sciences Workshop on Solar Energy Utilization

> Nathan S. Lewis Caltech

with

George Crabtree, ANL Arthur Nozik, NREL Mike Wasielewski, NU Paul Alivisatos, UC-Berkeley

Office of Science

April 18-21, 2005

CONCLUSIONS

- Without **massive** quantities (10-20 TW by 2050) of clean energy, CO₂ levels will continue to rise
- The only sufficient supply-side cards we have are "clean" coal, nuclear fission (with a closed fuel cycle), and/or cheap solar fuel
- We need to pursue globally scalable systems that can efficiently and costeffectively capture, convert, and store sunlight in the form of chemical fuels
 - He that can not store, will not have power after four
- Semiconductor/liquid junctions offer the *only* proven method for achieving this goal, but we have a great deal of fundamental science to learn to enable the underpinnings of a cost-effective, deployable technology
 - Nanorods, randomly ordered junctions to generate the needed potential
 - Catalysts to convert the incipient electrons into fuels by rearranging the chemical bonds of water (and CO₂) into O₂ and a reduced fuel

BES Workshop on Basic Research Needs for Solar Energy Utilization April 21-24, 2005

Workshop Chair: Nathan Lewis, Caltech Co-chair: George Crabtree, Argonne

Panel Chairs

Arthur Nozik, NREL: Solar Electric Mike Wasielewski, NU: Solar Fuel Paul Alivisatos, UC-Berkeley: Solar Thermal

Topics

Photovoltaics Photoelectrochemistry Bio-inspired Photochemistry Natural Photosynthetic Systems Photocatalytic Reactions Bio Fuels Heat Conversion & Utilization Elementary Processes Materials Synthesis New Tools Plenary Speakers Pat Dehmer, DOE/BES Nathan Lewis, Caltech Jeff Mazer, DOE/EERE Marty Hoffert, NYU Tom Feist, GE

200 participants universities, national labs, industry US, Europe, Asia EERE, SC, BES

Charge To identify basic research needs and opportunities in solar electric, fuels, thermal and related areas, with a focus on new, emerging and scientifically challenging areas that have the potential for significant impact in science and technologies.