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Are Biofuels Better
than Alternatives?

Answer depends on:

What type of biofuels?
How are they produced?
Where are they produced?
What are the alternatives?

Basis for comparison?

Life Cycle Assessment (LCA) is a
valuable tool for comparison

- But LCA methodology
changes can change your
answers...

LCA incorporated into policy:
(CA LCFS, US RFS, UK RTFO, EU

Biofuels Directive...)

NO EXIT © Andy Singer
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Corn Ethanol GHG: Sensitivity to Inputs

Attributional LCA

180 === Yield (t/ha)
Life Cycle GHG emissions s —aN Fertilser application
are sensitive to inputs T
and OutputS, llke.' 140 == Qther fertilisers application
120

= |ime application

100 :
; ==Transport to process
80 ~\

* nitrogen fertilizer
° { m < =a—0n-farm energy
yield changes ) / \\ On-farm energy

* feedstock type

gC02eq/ M)

* fuel processing o Herbicide & pesticde
application

b CO-pI'OdUCtS 20 == Co-product credit

e Iand USE/COVEI‘ Change 0 Energy in conversion

-100% -75% -50% -25% 0% 25% 50% 75% 100% . .
Winrock International 2009

* cultivation techniques




DOE GREET Model: Well-to-Wheel LCA
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_ | Cane Field Burning =
I N,O = 298xco,GwP(100yr)
CH, = 25xco,Gwp(100yr)




(a) Gibbs et al 2008
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Positive Land Use Change Impacts?

Philippines SCBI Reforestation =
~39 to 70 mt co.e/halyr SEQUEStration

| U.S. =~19.3 mt CO.elyr per capita
China = ~5.0 mt CO.elyr
Philippines = ~0.8 mt CO.e/yr
(World Bank 2007)

January 2007




Attributional vs. Consequential LCA

Incorporating indirect impacts in LCA...

GTAP model used to for
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Expanding to Consequential LCA = US Renewable Fuels Standard (RFS)

Data Source / Model Used
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RFS Final LCA Results

Figure 2.6-2. Results for a New Natural Gas Fired Corn Ethanol Plant by Lifecycle Stage
Average 2022 plant: natural gas, 63% dry, 37% wet DGS (w/ fractionation)
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Indirect land use change results depend upon the model used...

Ha/Billion BTU

2022 Change in Land Cover from Corn Ethanol EPA 2010
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Freshwater Use

Crop Total WF Blue WF Green WF Total water

Ethanol m? per GJ ethanol (L water per L fuel)
Sugar beet 59 35 24 1,388
Potato 103 46 56 2,399
Sugar cane 108 G8 49 2,516
Maize 110 43 67 2,570
Cassava 125 18 107 2,926
Barley 159 89 70 3,727
Rye 171 79 92 3,990
Paddy rice 191 70 121 4,476
Wheat 211 123 89 4,946
Sorghum 419 182 238 9,812

Biodiesel m? per GJ biodiesel
Soybean 394 217 177 13,676
Rapeseed 409 245 165 14,201

Jatropha* ‘ 574 Or 6357?7? 335 239 19,924

The table also shows the amount of water needed for a specific crop to produce 1 L of ethanol or 1 L of bic
*Average figures for 5 countries (India, Indonesia, Nicaragua, Brazil, and Guatemala).

et al 2009




Freshwater Quality

FASOM Average Nitrogen Fertilizer Use by Crop,
Non-Irrigated, No Residue Harvesting o
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Dynamics of a biofuels-induced increase in demand
FOOd VS. Fue' for maize, wheat, and soybeans in the United States

(1) Maize (2) Maize

Frice

More demand for ag land
should lead to higher ag

product prices (including
food)

Price

Higher prices bad for urban
| poor, but good for rural
| poor (net producers)?

=%

Cuantity

Quantity

Rising demand for maize leads to ~~ Longer-run shift in supply due
growth in supply along the curve to technical change induced by

that includes production a higher higher prices.
marginal costs.

(3) Wheat

B
frice

Dy

Quantity

Quantity

Higher maize prices increase Greater area sown to maize
demand for wheat in livestock reduces area planted to soy,

markets, causing wheat prices causing soy prices to rise.
to rise. Naylor et al 2007



Table 1. Predictions of price changes under various biofuels-related scenarios

Source

Scenario

Projected price increase

M. W. Rosegrant, 5. Msangi, T. Sulser, and
R. Valmonte- Santos Bmfue!s and the Gfoba.‘

4 percent U.S. gasoline replacement by biofu-
els, E{) percent elsewhere up to 58 percent in

Fojt—t—

Corn, 41 percent; wheat, 30 percent; soy
|[0i|seeds} 76 percent; sugar (sugarcane),

{If a biofuel crop is grown on
4 land that would otherwise
be used to grow food, then
it will impact food prices...

1}, Implications of Increased
Ethanol Production for U.S. Agriculture
(Columbia, MO: University of Missouri,
FAPRI-UMC Report #10-05 2005)

billion gallon biodiesel and ethanol imports by
2012, projected from 2012 to 2015, relative to

baseline.

0.0 percent; sorghum, 3.0 percent

A. Elobeid, and S. Tokgoz, Removal of U.S.
Ethanol Domestic and Trade Distorfions:
Impact on U.5. and Brazilian Ethanol Markets
(CARD Working Paper 06-WP 427, Center
for Agricultural and Rural Development, lowa
State University, 2006).

Long-run oil price of $60 per barrel with the
United States using 30 billion gallons of etha-
nol, projected to 2015, relative to baseline.

Corn, 58 percent; wheat, 20 percent; soy
(meal) -42 percent; soy (oil) 20 percent

U.S. Department of Agriculture, Agricultural
Baseline Projections: U.S. Crops, 2007-
2016, http://www.ers.usda.gov/Briefing/
Baseline/crops.htm.

12 billion gallons of ethanol, 700 million gal-
lons of biodiesel in the United States, pro-
jected to 2016.

Corn, 65 percent; wheat, 33 percent; soy,
19 percent; sugar, -8 percent; sorghum, 684

percent Naylor et al 2007
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How Should We Weight Different LCA Impacts?

fate — exposure —= effect

-ﬁ-

—_——

Respiratory —_—
diseases N

[PM]
—_—
Terrestrial —
ecotoxicity

[ETOX] ?

Land occupation
& transformation
[LAND]

emissions/
consumption
—_— Greenhouse
T 3 —— warming potential
i~ [ [GWP]
lj{J L Formation of
T & — summer smog
i) "' Acidifcation
b - [ACID]
® P >
o]
0 % : Eutrophication
8 —> [EUTR]
E >
no—
-] e Cumulated
% —_— energy demand
UO) 3 [CED]
1] e
y —

—» damage

Damage to
human health
(E189)

Damage to
ecosystems
(E199)

integrated
assessment

Depletion of non-
renewable
ressources
(E199)

Ecoindicator ‘99

/

Zah et al 2007

relevance for the society



Zah et al 2007
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necessarily translate to net overall
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Spatially Variable Impacts: Water

Water Use Environmental Impacts (per kg finished cotton textile)®

Cotton
Country

Water Use
(m?3/kg)

Water
Deprevation

(m3/kg)

Ecosystem
Quality
(PDF*m3*yr/kg)

Human Health
(10°° DALY/kg)

Water Use
% of LCIA
(Eco-indicator99)

Argentina

6.1

2.0

2.7

0.2

12%

Australia

3.9

1.4

5.1

0.0

14%

Brazil

0.6

0.0

0.0

0.0

0%

2.4

0.9

0.4

0.6

10.8

10.2

87.1

18.4

4.9

3.2

0.8

0.1

5.7

5.2

2.1

11.9

4.1

1.0

3.3

5.7

4.5

3.1

2.6

0.7

Pakistan

9.9

9.2

15.7

20.7

Syria

3.4

8.0

8.2

7.8

Turkey

7.3

5.4

3.7

3.7

Turkmenistan

14.1

13.7

13.6

12.3

B United States

1.9

0.8

0.5

0.0

11.1

10.6

10.8

11.7

Average

8.5

3.5

3.9

5.7

US cropwat

8.9

3.7

4.9

0.0

US estimation

3.3

2.5

3.6

0.0

Pfister et al (2009)




“Degraded” and “abandoned” agricultural | _ ... Na‘;‘tga:' ',’1;‘?."';‘.5)“°“
areas are attractive places to start... : | s [J0-17
R I 1.8-4.1
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Biofuel Performance vs. Other Alternatives?

GRAMS OF LIFECYCLE CO2 PER UNIT OF ENERGY DELIVERED TO THE WHEELS
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[ EVs

—— Gasoline ICEVS

Potential reductions
— — Gasoline HEV's : 100% coal washh‘ruhy
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FIGURE 2. Fuel-cycle CO; emissions of EVs with the current FIGURE 4. Fuel-cycle SO, emissions of EVs compared to those
electricity generation mix in China. of gasoline ICEVs and HEVs in China.
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Spatial & temporal variability of impacts...

- Whether a technology is a net environmental solution
or liability may depend on your location




Stakeholder
Engagement

RSB

ROUNDTABLE ON SUSTAINABLE BIOFUELS

Principle 1: Legality

Principle 2: Planning, Monitoring and Continuous Improvement

Principle 3: Greenhouse Gas Emissions
Principle 4: Human and Labour Rights
Principle 5: Rural and Social Development

Principle 6: Local Food Security

Principle 7: Conservation

Principle 8: Soil

Principle 9: Water

Principle 10: Air

Principle 11: Use of Technology, Inputs, and Management of Waste

c 0o 0o 0o 0o 0o 0 o0 o0 o0 o0 o

- Sustainability
Certification

Principle 12: Land Rights
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Account for improving technologies...

Advanced Biofuels vs. ...

Tethered Wind Power
* Higher capacity

e (Cost-competitive offshore
wind = lower impact?

e [ess concrete and steel

trash rack XY gantry crane

bypass flow

& NATEL ENERGY

Large (>100 ton) spinning rotor
cannot tolerate pitching motion
from rough seas.

a

—> Tether isolates the wing
High push | from foundation motion.
point ‘
= high
tipping Low pull point = Low
moment 2 mI— tipping moment

1IN TEN

Low-Head Hydro

 Multiple, small dams and diversion
canals to replace one large one;

 70%—85% of large dam w/ only 5% —
10% of the flooded area;

* Less concrete, steel & fish impact



& improve LCA information flow...

Apply LCA to all products and services!

Open data can empower companies,
investors & policy-makers (top down) ...

o EISS

... and all the rest of us! /g

(bottom up) OP@WER

&) GoodGuide
a powerful tool for conveying info

RECYCLEBANK
and aligning incentives 2 2 2> e

<CO




How should we choose between options?

* Quantify tradeoffs, share data

* Account for spatial variation

* Engage stakeholders*

(*aka, all of us)
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Not enough time to wait for perfect information!
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