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Distribution of corals and
ocean acidification
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Global mean temperature for the
past 136 years
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Probability of 2040-2060 summer
being hotter than hottest on record

Summers in 2040-2060 Warmer than Warmest on Record

percent (%)

0 10 50 70 90 100
Fig. 3. Likelihood (in percent) that future summer average temper- there is greater than a 90% chance that the summer-averaged tem-
atures will exceed the highest summer temperature observed on record  perature will exceed the highest temperature on record (1900-2006)
(A) for 2050 and (B) for 2090. For example, for places shown in red (22).

David. S. Battisti' and Rosamond L. Naylor® 9 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org




Probability of 2080-2100 summer
being hotter than hottest on record

Summers in 2080-2100 Warmer than Warmest on Record
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Fig. 3. Likelihood (in percent) that future summer average temper- there is greater than a 90% chance that the summer-averaged tem-
atures will exceed the highest summer temperature observed on record  perature will exceed the highest temperature on record (1900-2006)
(A) for 2050 and (B) for 2090. For example, for places shown in red (22).

David. S. Battisti' and Rosamond L. Naylor® 9 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org




Temperatures continue to increase throughout this
century in every plausible emissions scenario

(b)

Temperature Change (*C)
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There is no practical way for

emissions reduction to reduce
temperatures this century

What do we do If there is
a climate emergency?
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The Greenhouse Effect

Some of the sun's energy
is reflected back into space

eenhouse gases
in the atmosphere
trap some of the heat

. AR

s

Solar energy passes
through the atmosphere,
warming the Earth

www.environmentalsociety.ca




Caldeira, Cao, and Bala, submitted
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If we removed all
excess CO, from
the atmosphere

today, that would

offset only about
half the warming

Cao et al 2011
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Can sunlight be deflected away

from the Earth?

oto: Sharee Basinger
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Rate of radiative forcing increase

« Each doubling of CO, traps ~2 x 10> W

* To counteract a doubling of CO,, over 100 years, we
would need to be satellites between the Earth and

Sun at a rate of 2.4 km? hrt

L3




Thin/small Is the answer

» To compensate for a CO, doubling,

« Disk area (out in space)
« you need 2 x 10° km? area

« Spherical area (in atmosphere)
« you need 8 x 10° km? area
volume @ 0.1 ym = 0.0008 km?3

This Is equivalent to a cube
of less than 100 m on a side.

About 25 liters per second



Low direct costs of placing aerosols in stratosphere

Heavy lifting
Yearly cost of putting 1m tonnes of
sulphuric acid into the stratosphere
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Temperature effects of doubled CO,

with a uniform deflection of 1.84% of sunlight

Global_1.84
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Temperature change { *C )

Caldeira and Wood, 2008



Precipitation effects of doubled CO,
2xCO,
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Precipitation change ( m /yr)
Caldeira and Wood, 2008



Precipitation effects of doubled CO,

with a uniform deflection of 1.84% of sunlight
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ATemperature ( °C)

APrecipitation (m /yr)
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Climate models indicate —
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Climate intervention could cool
Earth rs

within yea
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“Turning off” climate engineering
could cause rapid warming
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Can the pattern of aerosols be
optimized to diminish the amount of
climate change?



Climate model responses
to idealized stratospheric
aerosol distributions
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A combination of
temperature and runoff

changes can be minimized

simultaneously

Aerosols
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Approximate linearity of
climate system makes it
easier to find near-
optimal aerosol loadings

2xCO,

with uniform
aerosol distribution

with parabolic
aerosol distribution

rms differences based on
zonal mean analysis

Ban-Weiss and Caldeira, in prep.
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Climate md,els indicate —
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Geoengineering
and plant growth

In the model, plants grow
much better in the
geoengineered world than
In the natural world.

Geoengineering results in
CO, fertilization without
the increased heating that
leads to increased plant
respiration

Govindasamy et al., 2002



% increase in crop yields in a high-CO, world
without and with deflection of sunlight

2xC0O2 2xCO2 + |2xCO2 +

minus geo minus |geo minus
pre- pre- 2xC0O2
iIndustrial |industrial

Malize -3

Wheat 6
Rice 19




Crop yields in a high-CO, world
without and with deflection of sunlight

24 C0O-—control

latitude latitude

Benefit of CO2-fertilization without the
costs of higher temperatures




Crop yields in a high-CO2 world
without and with deflection of sunlight
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Probability of 2080-2100 summer
being hotter than hottest on record

Summers in 2080-2100 Warmer than Warmest on Record
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Fig. 3. Likelihood (in percent) that future summer average temper- there is greater than a 90% chance that the summer-averaged tem-
atures will exceed the highest summer temperature observed on record  perature will exceed the highest temperature on record (1900-2006)
(A) for 2050 and (B) for 2090. For example, for places shown in red (22).

David. S. Battisti' and Rosamond L. Naylor® 9 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org
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There are many sources of risk
associated with climate intervention -

international political risk
risk of complacency
chemical risk
ecological risk
management risk
etc, etc, etc
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Intentional intefventionjn the climate
system has th o;entna o reduce
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Massive amounts of carbon-emission-free power
are required to stabilize atmospheric CO, content
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