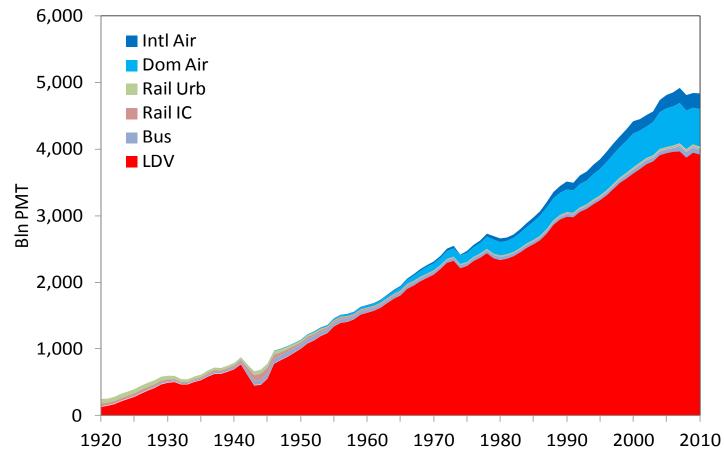

The Future of Personal Mobility Near-term Trends and Long-term Visions

GCEP Research Symposium 2013 - Energy Tutorials 101 **Global Climate & Energy Project** Stanford, CA October 9, 2013


CARS Dr. Sven A. Beiker Executive Director, Center for Automotive Research at Stanford - CARS 416 Escondido Mall Bldg 550/Poom 121 Ot of the Date of the Center of the Cen Center for Automotive Research at Stanford (+1)650 736-1504, beiker@stanford.edu, http://automotive.stanford.edu

Automobile, Mobility ... Why Not Just "Cars"?

or: Mobility = Transportation + Recreational Driving

Personal Mobility = Usage of Automobiles

Source: U.S. Transportation and Energy since 1920", A. Schäfer, Sustainable Transportation Seminar, Stanford University, 09/14/2012

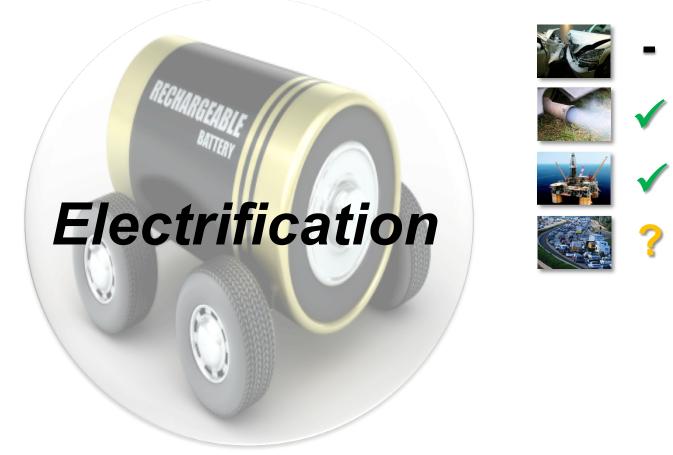
Problems Resulting from Personal Mobility

Accidents: Motor vehicle crashes led to 34,080 fatalities in 2012¹, in 95% of the cases human error was at least a contributing factor²

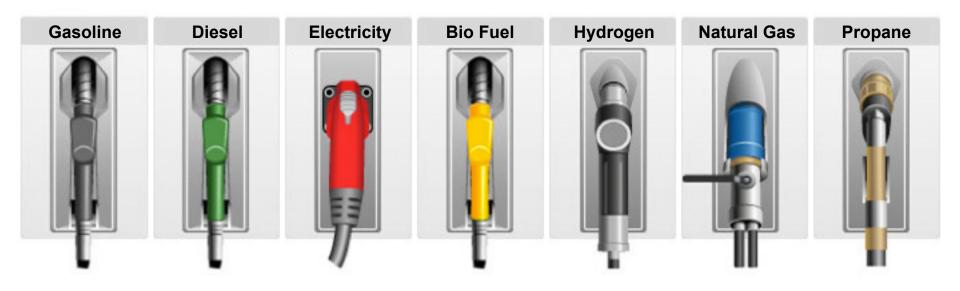
Pollution: Economic impact of health damages from motor vehicle emissions in the U.S. totals to over \$40b (64b) per year³

Consumption: 9m barrel every day (10% of the global petroleum production) are consumed as gasoline in U.S. light duty vehicles⁴

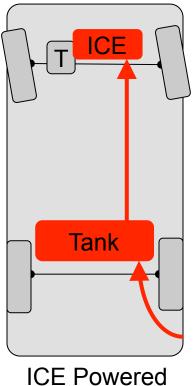
Congestion: Average commuter gets delayed 36 hrs per year due to congestion⁵, 30% of inner city traffic due to parking search⁶



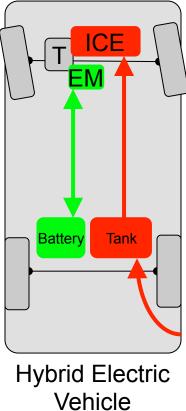
1. NHTSA, 2013; 2. NHTSA, 2008; 3.FHWA, 2000; 4. EIA, 2012; 5. TTI, 2009, 6. IBM 2011


Opportunities to Address Challenges Electrification Automation Integration Communication

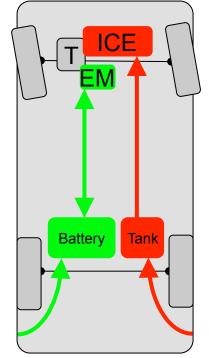
Opportunities to Address Challenges: Part 1


Electric components substitute / replace combustion engine & tank.

Overview Alternative Energy - Fuel Diversity

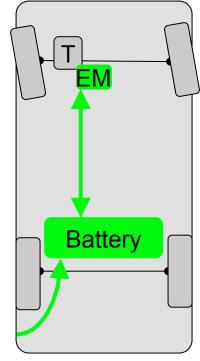

Source: http://www.afdc.energy.gov/ (adapted)

Different Levels of Vehicle Electrification Conventional Electrified



Vehicle

(CV)


(HEV)

Plug-In Hybrid Electric

Vehicle

(PHEV)

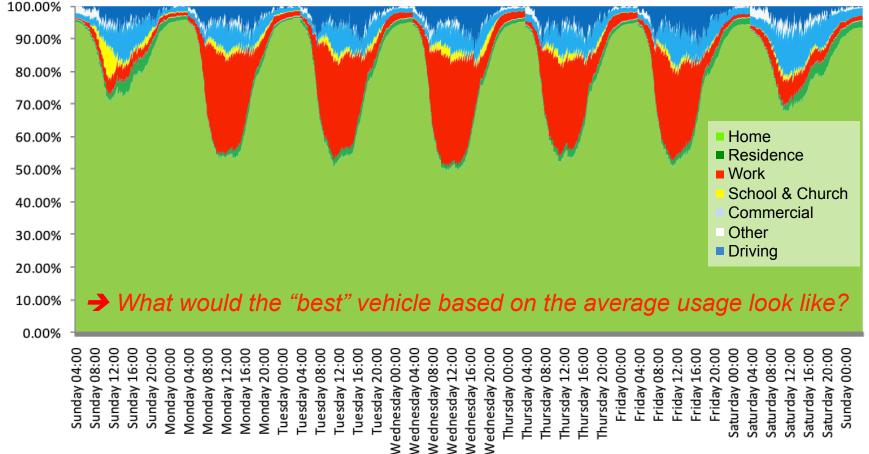
Battery Electric Vehicle (BEV)

Focus on Vehicle Electrification

Under which conditions will electrified vehicles:

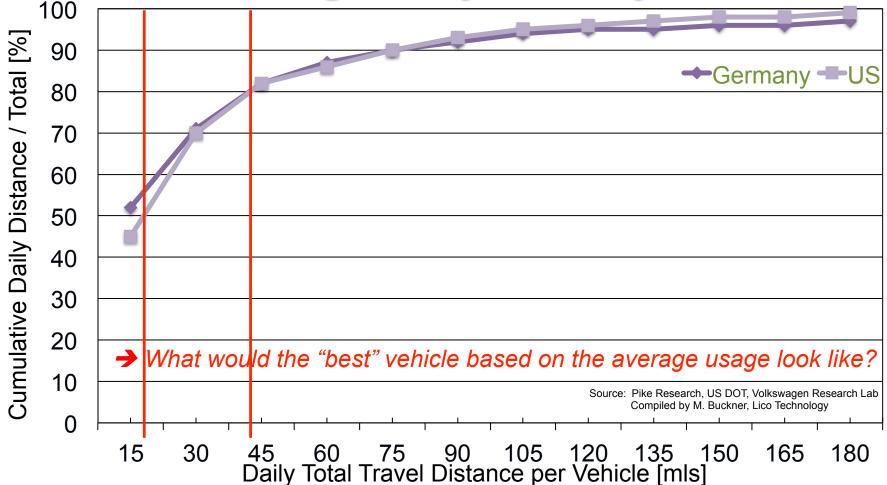
- slow down global warming?
- decrease dependence on (foreign / scarce) resources?
- decrease air pollution?
- integrate into electric infrastructure?
- become the better alternative for consumers?

→ There is (probably) not just one answer!


Climate Resources

Pollution

Infrastructure


Consumers

Fleet Distribution – Where are the Vehicles?

Source: 2001 National Household Travel Survey ; GM Data Analysis (Tate/Savagian) - SAE paper 2009-01-1311

NHTS – Average Daily Mobility Behavior

Consumer Choice: Average vs. Extreme Case

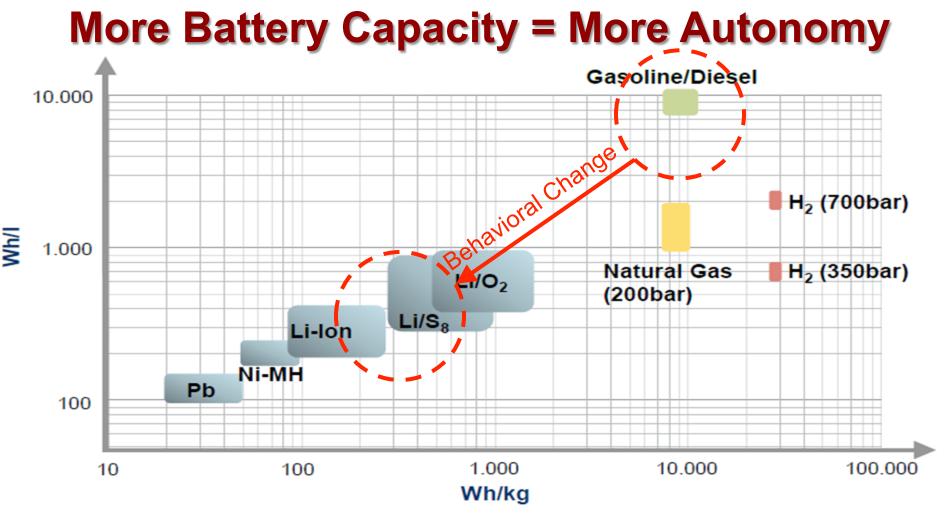
Challenges for EVs – Range, Charge, Cost

Challenges US consumers see regarding electric vehicles [1]

- 28% range and battery life
- 20% availability of charging stations
- 17 % total cost/affordability
- 9% high [purchase] cost of vehicles

Challenges EU industry experts see regarding electric vehicles [2]

65% range


- 57% availability of charging stations
- 55% total cost/affordability
- 30% not suitable for everyday driving

Analysts expect EVs to have 2% to 3% share of the new-car market by 2020 [3]

- [1] "Energy + Environment Study", Market Strategies International, Nov 2010 (1,168 interviews U.S. nationwide, Oct 14-25, 2010)
- [2] "European Automotive Survey 2011", Ernst & Young, Aug 28, 2011
- [3] "Are Americans Willing to Try Electric Cars?", The Wall Street Journal, Dec 1, 2010

Source: "Vehicles of the Future", F. Leohold, Volkswagen Group Research, 2013

More / Faster Charging = More Autonomy

Туре	Power supply	Voltage	Max current	Charge Time*
Level 1	Single phase - 1,9 kW	120 VAC	16 A	12-16 hours
Level 2	Single phase - 3,3 kW	230 VAC	16 A	/ 6-8 hours
Level 2	Single phase - 7 kW	230 VAC 💡	32 A	3-4 hours
Level 2	Single phase - 18 kW	230 VAC		1-2 hours
Level 3	Three phase - 10 kW	400 VAC	16 A	2-3 hours
Level 3	Three phase - 24 kW	400 VAC	32 A	1-2 hours
Level 3	Three phase - 43 kW	400 VAC	63 A	20-30 min
Level 3	Direct current - 50 kW	400-500 VD	00 - 125 A	\ 20-30 min∕
Level 3	Direct current** - 90 kW	480 VDC	200 A	15 min
Gasoline	Gas station - ≈10MW		20 l/min	1 min

Time to recharge 25kWh (≈ 75mls range), except "Gasoline" (≈ 300mls range)

**) Tesla Supercharger

*)

Source: Wikipedia, Tesla Motors

Average Driving and Foregone Trips

Annual MPG /MPGe (Approximate)

Persona#					
Persona1	49	60	72	skip 8 trips	skip 3 trips
Persona2	49	71	70	skip 5 trips	skip 5 trips
Persona3	50	105	99	106	97
Persona4	50	59	73	106	97
Persona5	49	61	85	skip 3 trips	skip 3 trips
Persona6	49	62	90	skip 2 trips	skip 2 trips
Persona7	50	53	49	skip 54 trips	skip 5 trips
Persona8	50	67	99	106	97
Persona9	50	56	61	skip 5 trips	skip 1 trip
Persona10	50	53	49	skip 138 trips	skip 46 trips

1: urban dweller no commute by car, weekend trips 200mls, vacation 350mls

- 2: photographer, coaches students, visits son in Davis quarterly
- 3: teacher 20mls commute, run errands 10mls
- 4: employee 50mls commute, weekend at family villa 100mls
- 5: employee 60mls commute, weekend errands 15mls, vacation 300mls

- 6: employee 36mls commute, weekend errands 15mls, vacation 350mls
- 7: sales person 90-145mls p. day, vacation 300mls

8: employee 50mls commute, weekend errands 15mls, vacation 80mls

9: employee with 40mls commute, shuttle kids 60, vacation 300mls

10: consultant commute 45 / 150 / 300mls, weekend 40mls

Challenges for EVs – Range, Charge, Cost

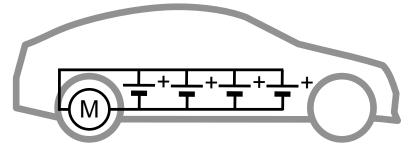
Challenges US consumers see regarding electric vehicles [1]

- 28% range and battery life
- 20% availability of charging stations
- 17 % total cost/affordability
- 9% high [purchase] cost of vehicles

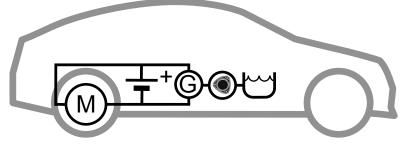
Challenges EU industry experts see regarding electric vehicles [2]

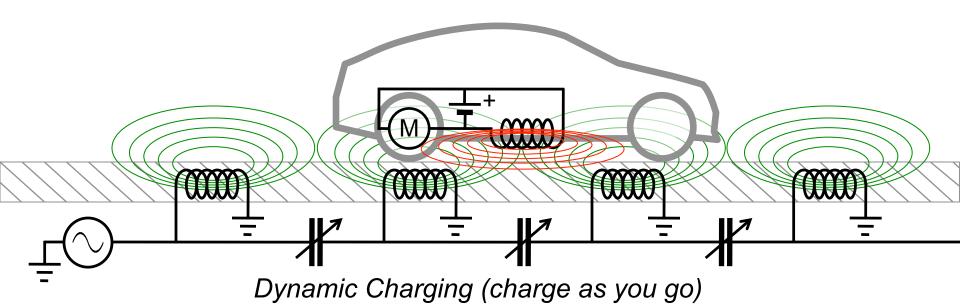
65% range

- 57% availability of charging stations
- 55% total cost/affordability
- 30% not suitable for everyday driving


Analysts expect EVs to have 2% to 3% share of the new-car market by 2020 [3]

- [1] "Energy + Environment Study", Market Strategies International, Nov 2010 (1,168 interviews U.S. nationwide, Oct 14-25, 2010)
- [2] "European Automotive Survey 2011", Ernst & Young, Aug 28, 2011
- [3] "Are Americans Willing to Try Electric Cars?", The Wall Street Journal, Dec 1, 2010




The Range Solution – Today and Tomorrow

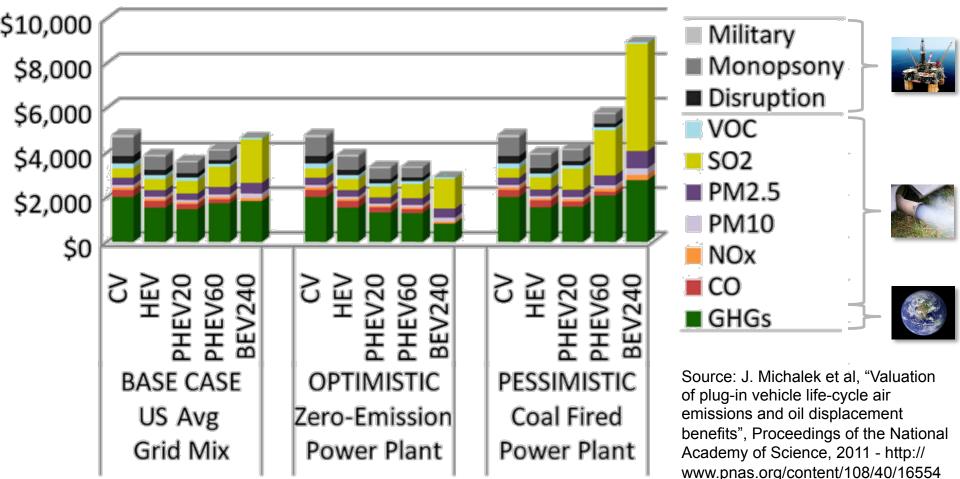
Larger Battery (a little extra charge)

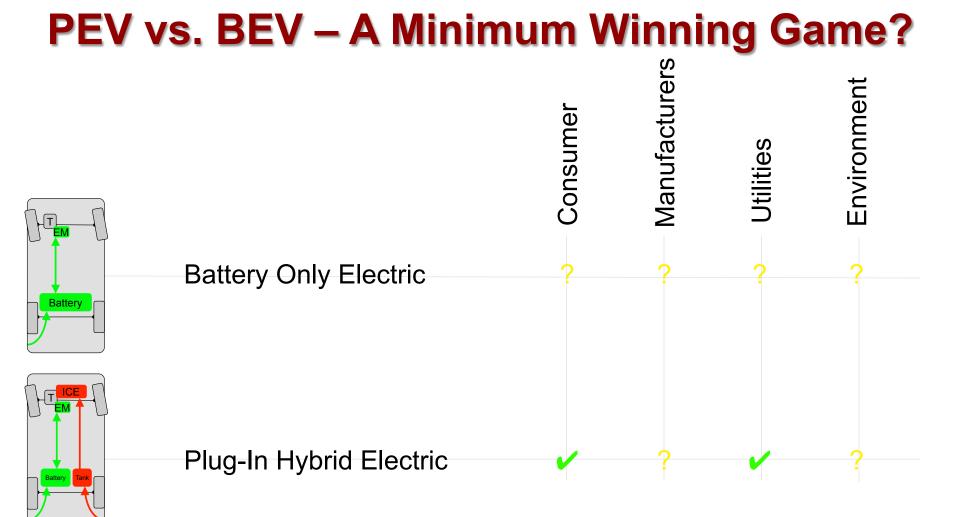
Range Extender (onboard generator)

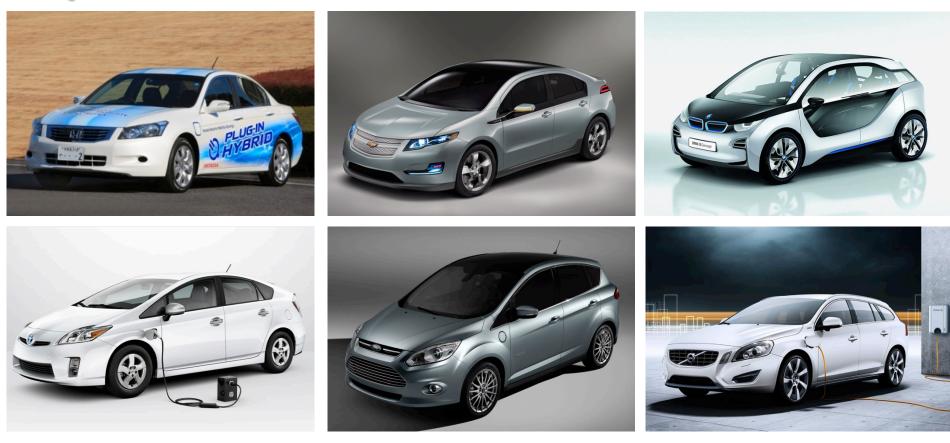
Covering "Perceived Need" w/ Low Weight

Assumption: Daily commute is 40 mls round trip and doing that electrically is the "cleaner" option, but consumers want to have peace of mind that they can drive 300 mls with their vehicle without "complicated" recharging **Question:** What is the "lightest" option for the extra 260 mls?

	Gasoline Range Extender @±⁺©ତଅ	Larger Battery Pack
Range (miles)	260	260
Energy Required (kWh)	66.3	66.3
Efficiency	0.4 x 0.85	-
Gasoline / Battery Weight (kg)	15.5	522.4
Equipment Weight (kg) engine, fuel system, exhaust	117	-
Total Additional Weight (kg)	132.5	522.4


Source: S. R. Ganapathy, "Electrification of Vehicles", Independent Study, Stanford University, 2011


Alternative Range Solution: Battery Trailer


Source: http://www.youtube.com/user/ebuggy01

Lifetime Externalities for Electrified Vehicles

Expectation: Shift from BEV to PHEV and REV

Outlook: From Liquid to Electric

Electric Only		✔ Lea	NiMH	✓ Li-Ion (stat	s Charging ic)	 ? Fuel Cell Mass Market ? Wireless Charging (dynamic) ? Metal Air nge Extender
				🗸 Range Ext	ended BEV	
Hybrid Electric		🗸 [✔ Mild Hy Full Hybrid	✔ Plug-In H ⁄brid	ybrid	
				🗸 Start/Sto	p (Micro Hybr	id)
ICE Only			V 1	Downsizin Natural Gas	? Addition g	al Efficiency Measures
-0	Catalytic Co	DI-Diesel prverter	🖌 Ethar	lol		? H ₂ Mass Market
Sou	1980s rce: Author's own	1990s observation, ex	2000s cept [1]:http://ww	2010s /w.eia.gov/oiaf/a	2020s eo/tablebrowse	Future Vision

Two Main Trends in Electrification

Improved Technology and Infrastructure

- Electrified Vehicles Becoming Viable - e.g. battery, extender, charge network

New Mobility Solutions and Behavioral Changes

- Consumers Adapting to Limitations e.g. e-commuter + sharing, apps

Electrification

Opportunities to Address Challenges: Part 2

Computer takes over (in part) driving task from human.

Definitions for Automated Vehicles

NHTSA level	SAE level	SAE name	SAE narrative definition	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Backup performance of dynamic driving task	System capability (driving modes)
	Human	driver monitors	the driving environment				
o	0	Non- Automated	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	1	Assisted	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes
2	2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the <i>human</i> <i>driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	System	Human driver	Human driver	Some driving modes
	Autom	ated driving syste	em ("system") monitors the driving environment				
3	3	Conditional Automation	the <i>driving mode</i> -specific performance by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task</i> with the expectation that the <i>human driver</i> will respond appropriately to a <i>request to intervene</i>	System	System	Human driver	Some driving modes
	4	High Automation	the <i>driving mode</i> -specific performance by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task,</i> even if a <i>human driver</i> does not respond appropriately to a <i>request to intervene</i>	System	System	System	Some driving modes
4	5	Full Automation	the full-time performance by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes

Source: Summary of SAE International's Draft Levels of Automation for On-Road Vehicles, July 2013

Focus on Automated Driving

Under which conditions can automated vehicles:

- become affordable for mainstream consumers?
- make people feel safe and comfortable while being driven?
- release the driver from the need to monitor the car?
- interact with human controlled vehicles?
- be deployed without massive infrastructure investments?

→ Vision and reality might be worlds apart!

Consumers Trust Liability

Interaction

Independence

Stanford's Prof. Thrun's Automated Car, 2007

Stanford's Prof. Gerdes' Automated Car, 2012

Robotic Race Car Pushes the Limits

Google's Automated Car, 2012

self-driving car

Source: Google

Google

The Vision of Automated Driving

The Reality of Automated Driving

Legal Situation for Automated Vehicles

The Situation is:

- Nevada, Florida, and California are currently the only states to expressly regulate "autonomous vehicles"
- Legislators or regulators in many states are aware of and interested in this topic
- Lobbying determines the fate of these bills

The Situation is NOT:

- These three states have "legalized" autonomous vehicles
- These vehicles are illegal elsewhere
- The legal status of autonomous vehicles is entirely clear in any state

Source: "State of the States on the State of the Art", Bryant Walker Smith, 12/5/2012

Other Automated Ground Vehicles

Consumer and Commercial Equipment

Public and Private Shuttle Systems

Agricultural and Mining Vehicles

Outlook: From Assistance to Automation

Fully Autom. Driving					? Fully Autom On-Demand	
Partially Autom. Driving					Automated H\ omated Stop-a king	6
Assisted Driving	✓ TCS – Tra ABS – Anti Lo	AC ES action Control		utomatic Eme ep Assistance e Assist Syste Cruise Contro Stability Con	rgency Brakin m l trol	g
Warning Information	✓ Navigation	Parking Aid	T Col Driv d Night Vis	Pedestrian I Blind Spot Wa raffic Sign De lision Warning ver Monitoring sion ne Departure	arning tection g	
	1980s	1990s	2000s	2010s	2020s	Future Vision

Two Main Trends in Automation

Driver Assistance in Personal Vehicles

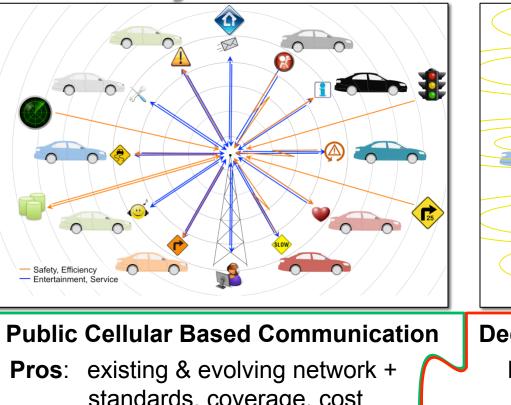
- Systems Taking Over Driving Tasks e.g. traffic jam assist, auto parking

Personalization in Public Transportation

- Fewer Staff, Modular, On-Demand - e.g. automated tram, driverless pod

Automation

Opportunities to Address Challenges: Part 3



Vehicles communicate with one another and with infrastructure.

Two Ways to Communicate - Cellular / DSRC

- standards, coverage, cost
- Cons: security, reliability, centralized base-station network

Dedicated Short Range Communication

- **Pros:** security, reliability, decentralized ad-hoc network
- Cons: no existing network, coverage for V2I very unclear, cost

Focus on Vehicle Communication

How can an online data connection to vehicles:

- improve safety, efficiency by sharing data among vehicles?
- improve productivity, enjoyment without distraction?
- benefit from existing communication infrastructure?
- utilize crowd sourcing for mobility specific needs?
- enable a seamless and sustainable mobility experience?
- → The internet is already in the car but needs to be more integrated!

Safety Infotainment Cellular

Crowd

Intermodality

How Smart is Your Car?

Smart Phone

Dumb Car?

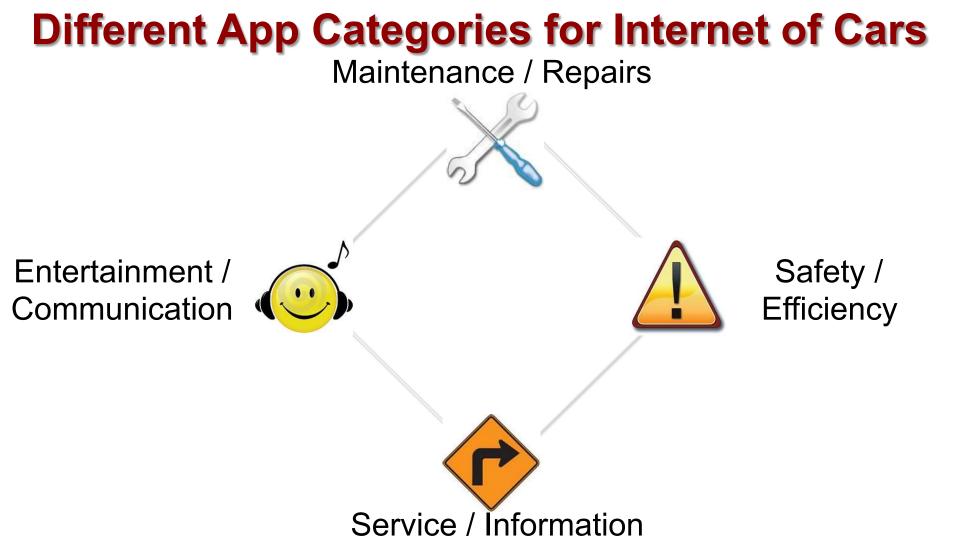
Modern Automobile – Really so Dumb?

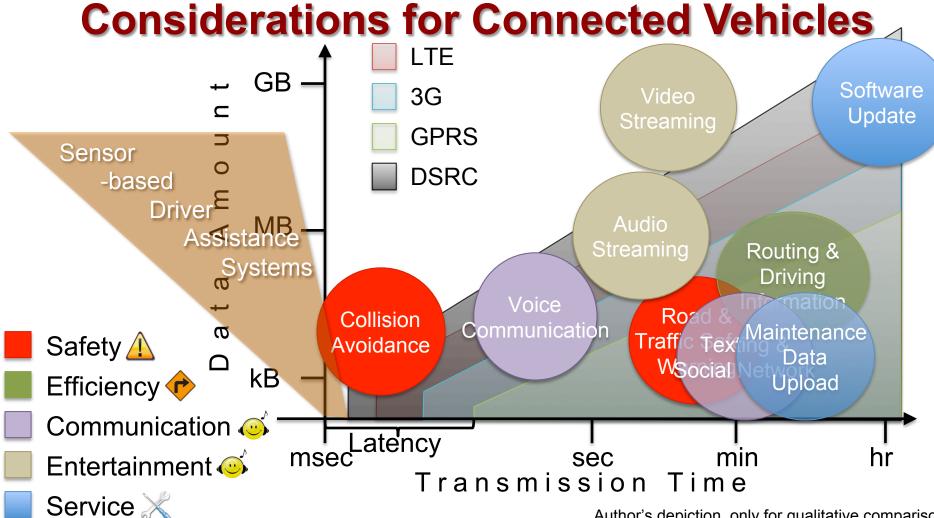
Up to 80 controllers¹

- Powertrain: ignition, injection, emission, transmission...
- Safety: airbag, seatbelts, pre-tensioners...
- Chassis: steering, brakes, dampers...
- Driving Aid: parking, night vision...
- Entertainment: MP3, CD, radio.
- Information: navi, traffic, src...
- Body: seats, doors, roof...
- Cabin: ventilation, heating,

cooling, filtering,

 Vision: lights, wipers, mirrors,


Sources: 1. "Driving Cars Toward technologie in der Automobilindustrie", K. Grimm,


Up to 35-40% of vehicle cost³

>100M lines of code
 > 4200 signals¹

Up to 20 Communications Networks²
 CAN: Powertrain, safety, chassis, driving aid
 MOST: Entertainment and information
 LIN: Body, vision, HVAC

Complexity", I. Krueger (UC San Diego), NPR Interview, 4/30/10, 2."Software-Daimler AG,2009, 3. "This Car Runs on Code", R. N. Charette, IEEE Spectrum, 2/11/13

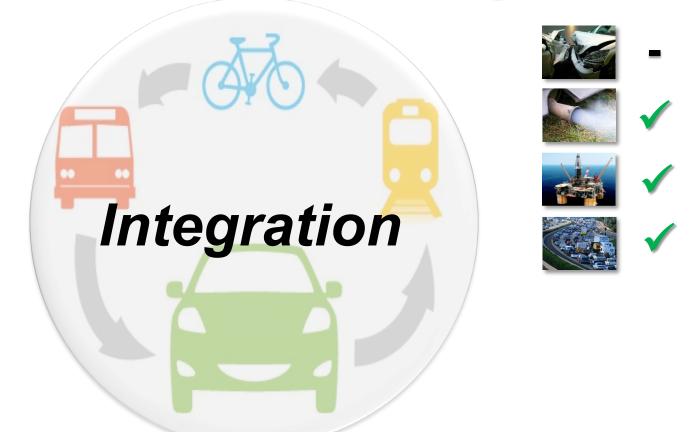
Author's depiction, only for qualitative comparison

Outlook: From P2P to M2M

WiFi WiFi (public)(private)				? V	? Vehi ehicle-to-Vehi	? V2X cle-to-Infrastructure icle
WiFi (public)				? Flas	omplementary h Download Vehicle Integra	
Satellite	🗸 In	-Car Navigatio	 Satellite Portable Non 	T		
			V	Real-Time Na	avi Info	
Cellular Ca	r Phone 🖌	Mobile Phone	✔ Mobile In ✔ Mobile In Text Messagir	✓ In-Car Hot- obile Media S nternet ng ?	Spot	? Internet of Cars
	1980s	1990s	2000s	2010s	2020s	Future Vision

Two Main Trends in Communication

Infotainment Apps via Public Network


- Mobile Internet with Central Servers - e.g. media stream, traffic info, service

Safety Functionalities via Private Network

- Exclusive Network between Vehicles e.g. collision avoidance, traffic light

Communication

Opportunities to Address Challenges: Part 4

Automobiles become integral part of an intermodal mobility system.

Focus on Mobility Integration

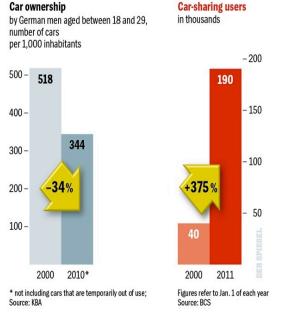
Which relationship will consumers have with their vehicles regarding:

- access to vs. ownership of an automobile?
- the automobile as status symbol?
- new needs for the aging society?
- new values of the young generation?
- impact of mass motorization in emerging countries?
 - → Considerations depend heavily on regional differences!

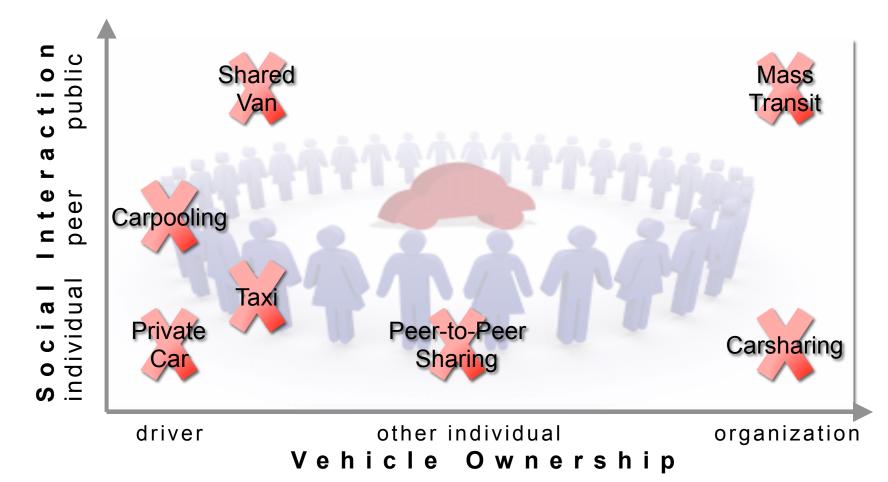
Ownership Status Aging Society New Values Car Boom

Decreasing Interest in the Automobile? Sharing Instead of Buying

□ 1978 in US


- \Box 50% of 16-year-olds had driver's license
- □ ~12 M teenagers total had license
- □ 2010 in US
 - \Box 30% of 16-year-olds had driver's license
 - □ ~10 M teenagers total had license

NOVEMBER 20. 2011


Disruptions: For Teenagers, a Car or a smartphone? The New Hork Times

AUGUST 6. 2013

Auto industry predicts younger people will buy cars again once finances improve The Washington Post

Mobility Solutions – Many Different Options

Outlook: From Freedom to Care-Free

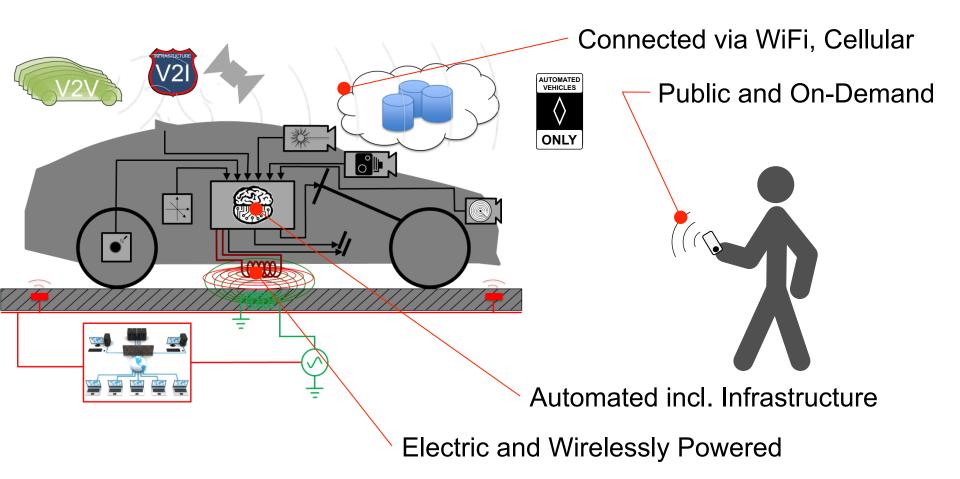
Rideshare	arpooling nce 1940s			? C ✔ Sideca ✔ Lyft Ueber imride	r	desharing app gration car- / ridesharing
					? witl	h public transportation
Carshare	rly carsharing ice 1948 in Cl		ipcar	 VW Qui BMW Dri Daimler Ca Hertz Avis / Zip 	car ve Now r2Go	one seamless service
				? Cons	olidated carsh	aring app
P2P Carshare			v v R	 ✓ Flighto ✓ Wheelz Getaround elay Rides 	ar	
	1980s	1990s	2000s	2010s	2020s	Future Vision

Two (One?) Main Trend(s) in Integration

Automobile Stays Symbol of Independence and Personality

Personal Mobility More than Just A-to-B e.g. personalized vehicles, self identification

Automobile Just One out of Many Mobility Options - Integrated Personal / Public Mobility e.g. car- / ridesharing, on-demand


Integration

Summary: The Future of Personal Mobility

Electrification

- Technology is evolving to enable long-distance travel with EVs Consumer adoption and infrastructure deployment unclear
- Deployment path: range extender > improved battery > infrastructure
 Automation
- Technology would be ready to automate vehicle control very soon
 Mix of standard and automated vehicles imposes many challenges
- Deployment path: stop&go > hwy > parking > dedicated lanes > A-B
 Communication
- Technology would be ready to connect vehicles with one another
 Cost for dedicated vehicle-infrastructure communication network immense
- → Deployment path: X2V cellular > V2V WiFi > V2X multi-standard Integration
 - Alternative transportation systems evolve, especially sharing opportunities
 - Automobile's dominance continues because of its flexibility / independence
- Deployment path: car / ride sharing > integration personal-public transport > multi-modal mobility network

Vision: Electric-Automated-Connected-Public

Use Cases – Different Solutions Needed

Population Density