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Abstract 
The window manager, a program which helps users organize and access their 

computers’ open windows, is central to many aspects of computer work. Research in 
window managers has recently aimed to leverage users’ tasks to organize the growing 
number of open windows in a useful manner. This research has assumed task 
classifications to be binary – a window is in a task, or not – and context-independent. 
However, our fieldwork and background theory suggest that neither is necessarily the 
case. Instead, we focus on association as an organizational scheme – windows can 
associate with tasks to varying degrees. We then introduce Taskposé, a prototype system 
that capitalizes on this idea through a full-screen graphical interface, and report on a 
weeklong user study. Finally, we comment on future directions for the prototype. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Taskposé software is available for download on any Windows computer at: 
http://www.stanford.edu/~mbernst/Taskpose.zip 
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Introduction 
Human activity is characterized by complex patterns in both the physical and 

digital worlds. Physical desks are nests of barely controlled chaos: reams of paper and 
documents, books and writing implements litter their surface. Most computer desktops 
are likewise dizzying arrays of open programs, files in various degrees of completion, 
and to-dos. Existing solutions to this problem will not scale. Users are now keeping eight 
or more windows open on their desktop 78% of the time (Hutchings, Smith, Meyers, 
Czerwinski, & Robertson, 2004), and this number is sure to rise as screen space and 
memory become cheaper and more aspects of our lives go online.  

The physical desk shows signs of organization even in the face of challenging 
complexity: documents sorted into piles, Post-It notes indicating reminders or items of 
priority, and perhaps even a paper organizer or two. Similar attempts to organize the 
computer desktop have been made, for example using complex file hierarchies and 
multicolored email flags, but overall the computer desktop has resisted such organization. 
Two prime examples, the Windows taskbar and the Mac OS X dock, siphon all open 
programs into a single pile at the bottom of the screen, with little organizing principle 
other than time or program of origin. Why are computers devoid of the organizing 
principles that allow users to semantically tie together disparate pieces of work on their 
physical desks? 

We may find a measure of control over this chaos by considering the implicit 
tasks informing users’ work. A “task” here is a high-level goal towards which a person’s 
actions are directed. Writing an essay, paying bills, or researching camera prices are all 
examples of tasks. In the physical world, the paraphernalia related to a given active task 
may be sprawled out across most of a desk, while that of inactive tasks hovers in piles 
nearby. If the Windows taskbar were meaningfully sorted into tasks, as first explored in 
Rooms (Jr. & Card, 1986) and later in Greg Smith’s GroupBar (Smith et al., 2003), or if 
task contexts could inform project work, as in UMEA (Kaptelinin, 2003) or TaskTracer 
(Dragunov et al., 2005)), human spatial memory and hierarchical thinking could be 
leveraged to help us organize our computational lives. 

Although researchers have spent considerable effort on this proposition, the 
problem is far from solved. Open questions remain: what kind of organizational schemes 
do users already employ? How can computer users communicate their tasks to the 
system? Does this need to be communicated explicitly, or can tasks be intuited from user 
actions? Should specific windows be related to a given task, and how could this be 
communicated? To what extent can users be troubled to organize such short-lived 
windows themselves, and to what extent can the computer help organize the users’ work?   

We have approached these questions in several steps. We began by conducting an 
observational study of how users typically organize their computer desktop during real 
work. Armed with a sense of how users create and interact with windows, and building 
on previous research, we created a semi-automatic task and window organization system 
called Taskposé. We describe this system, its motivation and its mechanisms for window 
relationship tracking. Finally, we evaluate our prototype through an extended user study 
lasting one week in which participants integrated Taskposé into their normal work 
practice. 
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What’s In a Window? 
It is not immediately obvious what a computer window represents to the user, and 

why we should care about them. First we address the question of “why”: here, the answer 
lies in established practice. The window is an artifact – a physical or digital object which 
users manipulate or reference as part of their workflow. In the digital world, most all 
artifacts in use are contained within windows in the operating system. While a wholesale 
reevaluation of how to organize digital artifacts (Dourish, Edwards, LaMarca, & 
Salisbury, 1999; Freeman & Gelernter, 1996; Rekimoto, 1999) may yield a considerable 
gain in workspace understanding and artifact management, we choose to instead take as 
given the primacy of the window idiom. 
 Second, complexity arises when considering what exactly an open window 
represents. In our experience observing computer users in situ, we have seen users treat 
open windows in many different ways, including: 

• Actively working on or referencing the artifact it holds 
• Keeping the artifact open as a reminder of a to-do 
• Representing a process working in the background that is not currently of interest 

– for example, a virus checker or instant message buddy list 
• Keeping a program in computer memory to minimize startup time 

We make a simplifying assumption in this work that open windows correspond to an 
artifact that is currently either in use or being referenced. However, we intend to test our 
system in situations which may include other kinds of windows, so we continue with an 
eye toward continuing to support diverse work practices while actively improving what 
we see as the area of greatest potential improvement. 

Related Work  

Tasks in Cognitive Psychology and Human-Computer 
Interaction 
 The idea of task or goal-based analysis of activities is a well-established theory in 
cognitive psychology. Traditional HCI cognitive modeling, beginning in earnest with The 
Psychology of Human-Computer Interaction (Card, Newell, & Moran, 1983) and 
reviewed in Cognitive Architectures and Cognitive Engineering Models in Human-
Computer Interaction (Pirolli, 1999), has generally looked at micro-scale goals and 
objectives, concerning moment-to-moment activity, whereas computer-based tasks can 
last hours and involve numerous interrelated tasks. Some psychological work that 
examines the nature of daily goal/task-based activity includes Cognitive Psychology of 
Planning (Hoc, 1988) and Plans and the Structure of Behavior (Miller, Galanter, & 
Pribram, 1960). Workflow and IT professionals, coordinating with HCI researchers, have 
likewise explored worker tasks and ad-hoc switching (Bannon, Cypher, Greenspan, & 
Monty, 1983; Czerwinski, Horvitz, & Wilhite, 2004). Lucy Suchman’s Plans and 
Situated Actions (Suchman, 1987) is cited as another influential work in this area for 
sounding the call for context (here, the larger task goal) as an important mediator of 
action.   

Defining a task has proven a difficult venture, possibly as a result of the fuzzy 
nature of what really constitutes a computer-based task. The most complete discussion of 
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the theory behind task work in HCI is based on Activity Theory (Bødker, 1991; 
Kaptilenin & Nardi, 1997; Nardi, 1996), which attempts to place actions in terms of the 
goals being accomplished and treats the interface as a medium through which this 
interaction is possible. Winograd and Flores (Winograd & Flores, 1986) would point out, 
however, that task identification is fundamentally an interpretation forced on an 
unfocused reality, and that when the user is in a state of thrownness (“in the moment”; 
not reflective) there may be little higher order to users’ thinking. This raises the question: 
how much (or how little) do users think about their tasks when working on a computer? 
Do they have a full picture of what artifacts are tied to specific tasks, or are their task 
structures more opportunistic? Could an outside observer, like a computer, pick up 
systematic queues to answer these kinds of questions automatically, or do users have to 
constantly and carefully communicate this with the computer? 
 Two works of note address these questions, and we build on their contribution. 
Bellotti, et al. (Bellotti et al., 2004) was interested in “to-dos” – lists of jobs that needed 
to be done – and how people go about generating and using them. Most strikingly, she 
found that 68% of all to-dos created were finished in one week or less, and only a total of 
81% were completed by the end of their four-week study. In other words, most tasks 
were either finished quickly, or not at all; fully one-half of all to-dos not finished within a 
week were ever completed. However, we must be careful not to misappropriate terms 
here; Bellotti’s study concentrated on to-dos rather than “tasks”; to-dos by their nature 
are reminder-driven rather than action driven, while active tasks are action-driven and 
rarely reflective. 
 Hutchings, et al. (Hutchings et al., 2004) set out to study display space usage, but 
along the way unearthed strong evidence that tasks are composed of multiple windows. 
According to their study, users spent a median amount of 3.77 seconds on a particular 
window before switching away; the mean was 20.9 seconds. Unless users are switching 
tasks quickly and often, it seems clear that synthesizing multiple sources (as represented 
by multiple windows) to inform a specific goal is a common operation. 
 Our work builds on these findings – based on their support, we also assume that 
users’ work can be thought of in terms of tasks. 
 

Tasks and Windows Managers 
 In the realm of commercial windows managers, there have been literally dozens 
of incarnations of unique ideas, from open-source XTerm customizations to commercial-
grade software like the Windows taskbar and Apple OS X Exposé system. Research on 
task management using these tools is mainly useful here in that it addresses the 
engineering and design issues upon which to build a window management system (for 
example: (Bederson & Hollan, 1994; Hutchings et al., 2004)). 
 Researchers tend to either focus on building systems which can intuit users’ task 
structure, or give up on such automation completely and instead focus on giving users 
greater control over manually organizing their workspace. As a result most task-based 
window managers fall into one of two categories: agnostic or predictive. 
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 Agnostic window managers do not attempt to make any generalizations about 
users’ tasks, and rely on the users themselves to define the tasks as they work. The 
strength of this approach is that it does not make task classification mistakes. Agnostic 
window managers have been explored in many shapes and forms: Rooms (Jr. & Card, 
1986), virtual desktops, the Task Gallery (Robertson et al., 2000), GroupBar (Smith et al., 
2003), the ABC Extension to Windows XP (Bardram, 2005) and Scalable Fabric 
(Robertson et al., 2004) are all examples of this type of approach (Figure 1). These types 
of systems offer their most significant return given an equally significant investment in 
manually organizing tasks. Thus, we believe they are best suited to long-term tasks that 
operate in a static set of windows. Rather than explore the relative merits of a new kind of 
agnostic interface, we have chosen to focus on the predictive space.  

Predictive windows managers make an educated “guess” to automatically assign a 
window to its mostly likely task. The clear advantage of predictive windows managers is 
that, if they make correct decisions, they do not impose additional “sorting time” 
requirements on the user in order to extract some benefit. Of course, if they make 
incorrect decisions, users are generally worse off than if the computer had done nothing 
at all. At its root, this approach can suffer from a lack of knowledge about the traceable 
artifacts of task creation and manipulation, as each is forced to choose a heuristic based 
on intuition rather than generalizable theory. Examples of this approach include 
TaskTracer (Dragunov et al., 2005), Kimura (MacIntyre et al., 2001), SWISH (Oliver, 
Smith, Thakkar, & Surendran, 2006) and window-frequency approaches (Nair, Voida, & 
Mynatt, 2005). UMEA (Kaptelinin, 2003), while not a window manager, follows a 
similar approach to create dynamically-updating project spaces (Figure 2).  

Figure 1. Agnostic window managers: Rooms (left), the Task Gallery (center), and the GroupBar (right). 

Figure 2. Predictive window managers: the Kimura system (left) and the TaskTracer interface (right).
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“Fuzzy,” Continuously-Changing Tasks 
 All of the previous work explicitly assigns windows to a specific task group – a 
window is either part of one task, or it is part of another. Our work’s contribution lies in 
incorporating the claim that tasks are “fuzzy” and have continuously changing 
relationships with their contents. We build on a small but growing set of literature which 
indicates task classification, an approach in which work artifacts are placed strictly in one 
task, is an imperfect match for users’ mental models. 

One interesting result arises from the evaluation of the machine-learning 
techniques applied to TaskTracer (Stumpf et al., 2005). In their study, the authors asked 
users to occasionally evaluate whether TaskTracer had made a correct task classification 
prediction based on their activity. These researchers found that users were often unsure 
which task a window should be allied with: 

 
…More interestingly, users are often not 100% sure themselves or may provide 
different answers in different contexts. Users are often able to tell the system what 
it is not, but not what it is. (Stumpf et al., 2005) 
 
Thus, different contexts will find the same window part of related but 

conceptually separate tasks. In the TaskTracer example, a document classified under 
“grant darpa CALO” (the quotes indicate a task title) was later changed to a related 
“projects CALO” classification when in a different context, and could have changed back 
if the user returned to working on the DARPA grant (Stumpf, 2005). In an evaluation of 
the Activity-Based Computing extension to Windows XP, a user likewise mused: “The 
worst thing? Well [...] if you have to put everything into activities, then you need to 
constantly consider ‘where does this one belong’.” This is essentially the problem of 
asking pilers (who, like their namesake, prefer unorganized workspaces) to live in a 
world where filing is the only option (Malone, 1983). 

It is important to note here that users should in theory know the classification of 
every window, since they are aware of their own higher-level goals. But this is clearly not 
the case, as users are having difficulty classifying windows: either the classification 
systems in use are too sparse to be useful (unlikely because both these systems allow for 
arbitrary naming of tasks), or the single task classification model does not map well onto 
users’ mental models of their work. 

The idea here rings true in our everyday experiences, as well. Imagine a fictitious 
user who is beginning a new task of buying a book. The user logs on to an online 
shopping web site in order to purchase the book, then is distracted by a related item and 
begins simply browsing the web site. From a task perspective, is the user still “buying a 
book?” Is the user not “buying a book?” This situation is certainly a gray area with 
regards to clean mapping. Or when a second user writes a paper for a conference 
submission (under a “CHI paper” task), but then later refers to the paper when generating 
a set of slides for a research group presentation, should the paper still be part of the “CHI 
paper” task, or not? (Here, we see a situation where an artifact’s task association switches 
due to a context switch.) 
 Bowker and Star (Bowker & Star, 1999) address this concern as part of a larger 
argument on the consequences of classification. They define classification as “a spatial, 
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temporal, or spatio-temporal segmentation of the world” characterized by (1) consistent 
decision principles, (2) mutually exclusive categories and (3) the union of the categories 
encompassing all possibilities. The authors point to examples of our “muddled folk 
classification”: 

…papers that must be read by yesterday, but that have been there since last year; 
old professional journals that really should be read and even in fact may someday 
be, but that have been there since last year; assorted grant applications, tax forms, 
various work-related surveys and forms waiting to be filled out for everything 
from parking spaces to immunizations.  

Of course, the phenomenon extends to computers: 
Here the electronic equivalent of “not yet ready to throw out” is also well 
represented. A quick scan of one of the author’s desktops reveals eight residual 
categories represented in the various folders of email and papers: “fun,” “take 
back to office,” “remember to look up,” “misc.,” “misc. correspondence,” general 
web information,” “teaching stuff to do,” and “to do.” We doubt if this is an 
unusual degree of disarray or an overly prolific use of the “none of the above” 
category so common to standardized tests and surveys. 
 
The research above supports a hypothesis that the relationship between tasks and 

actions is not one-to-one and suggests that it is unwise to build a system that strictly 
categorizes windows into tasks. Our work explores this gray area of task classification. 
We continue to assume with the rest of the literature that tasks exist, but hope to show 
that adding a bit of complexity to the task model will translate to task-based systems 
which map better to users’ mental models of their work. 

Open Questions 
There are important differences in task structure assumed by the task 

classification approach and by our less boundary-oriented approach. Beginning with the 
classification approach, we may use a tree structure to characterize tasks by representing 
the dependencies that typically appear within and between tasks as viewed from a user’s 
perspective. One such task, for writing this paper, might look as in Figure 3: 

 
Figure 3: An example task tree 
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Here we see a task in progress. There is a complex hierarchy of information associated 
even with the seemingly-straightforward task above. The tree is expanded along one path 
down to one level before we might expect to see individual windows appear. For 
instance, the “Find Rooms Citation” task might include an internet browser window open 
to Google Scholar, an Adobe Acrobat window with the paper itself, and perhaps another 
internet window open to a style guide web site. 
 This kind of structure cannot be used once tasks interdependencies are introduced. 
For example, how do we represent the fact that finding the Rooms citation might also be 
important to writing the Cognition literature section of the paper? A directed graph 
(digraph) may be a better representation. For example, research on cognition might also 
require that the writer look up the Rooms citation, as in Figure 4: 

 
Figure 4. The task tree, with additional complexity requiring a digraph 

 
By opening the door to such complexity, we find no easy way to contain it. For example, 
what if the HCI Outline and the Cognition section were dependent on each other, as 
might happen if information gained in researching the Cognition section helped inform 
the HCI outline but we also wish to frame the Cognition section itself by the categories 
described in the HCI outline. Is the cyclic graph appropriate here? At what stage do we 
simply give up the goat? 
 We pause to note that several dimensions of task classification are exemplified in 
the foregoing discussion, summarized by these questions that could be asked about any 
user’s tasks: 

• Are the tasks connected to the graph in a strict fashion (to one parent), or do they 
cross-pollinate and have multiple parents? 

• Are the “leaf nodes” (the windows) only a few levels down, or are they deeply 
nested in a series of sub-tasks? 

• Are particular tasks persistent or transient? Persistent tasks continue over 
relatively long periods: for instance, “feed the dog.” Transient tasks happen once 
and then disappear, such as “return Professor Jones’s email.” 
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• Are the tasks’ compositions discrete or continuous? A discrete task has a set of 
steps necessary for completion (“make dinner”), whereas a continuous task is not 
so structured (“check up on advisees’ progress on the project”). 

• To what extent are tasks interrupt-driven, and to what extent are they 
opportunistic?  

• Do users often interrupt their current tasks to begin a new one because they find 
that they need new information? 

• How much of a “task tree” does a user keep in working memory at any time? The 
entirety or only those elements surrounding the current focus? 

 
 As is often the case with attempts to classify human cognition, a strict 
representation such as the one above will often break down in the face of complex “real” 
cognition. However, because these kinds of questions are new to the literature, it is as yet 
unclear which parts of the theory require significant adjustment, and which only require 
that a little “fuzz” be added. A serious study of users’ approach to tasks on a computer 
will inform us a great deal in this regard. 

Fieldwork 

Goals 
 The goal of this study was to produce a model for task creation and manipulation, 
with an eye to our hypothesis about fuzzy task boundaries. We were particularly 
interested in patterns that carry across interaction styles, such as situations that prompt 
users to create new subtasks, as well as existing coping mechanisms for window 
management. We hoped to capture user mistakes and breakdowns, as they are often a 
useful starting place for future designs. We observed whether users were focusing on a 
single task with contextual tasks in the background; whether their “task trees” were 
shallow or deep; whether there were useful task artifacts left as a result of these users’ 
interactions, and so on. By pulling out cross-user threads from this experiment we hoped 
to be able to provide evidence to guide our research. 

Method 
 The study was a simple in-situ observational visitation. We recruited subjects who 
came to use a public computer cluster at Stanford University. Participants were of both 
genders, and mainly consisted of undergraduate and graduate students. We asked their 
permission to enter our subject pool. Then, at some point (arbitrarily chosen) during their 
ongoing work, we observed and video-taped their actions, occasionally asking them 
questions about their ongoing activity. Users with multiple windows open were 
preferentially chosen for this interruption. Each of the 19 participants was observed and 
videotaped for a 5-15 minute period of normal computer use, with occasional interruption 
from the researcher for an explanation of the user’s idea of his or her workspace. 

Results 
 Even though we preferentially chose subjects with multiple open windows, most 
of the participants exhibited limited evidence of multitasking. We believe this may be due 
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to contextual variables, especially the fact that the experiment was conducted in a public 
computer cluster rather than on users’ home machines. Public computers are generally 
used for short periods of time and for single purposes such as checking email; this 
environment discouraged multitasking. Few participants remained on the public 
computers for more than an hour. Additionally, these computers are rarely outfitted with 
the specialized programs that many users leave open while multitasking, such as e-mail 
and IM chat clients. As evidence in support of this explanation, participants who had 
brought their own laptops to use in the cluster exhibited a far greater number of 
multitasking behaviors than participants using public computers. 
 In general, among the observed multitasking behaviors, users organized their 
work along task lines. Multitasking often involved one central task (possibly spanning 
several windows) and a series of peripheral tasks. In Figure 5, a participant writes an 
email to her friends about a concert by referencing a web site: 

 
Figure 5. A participant writing an email (foreground) about a concert (background bottom right), with 

additional other windows open in the background. 
 
Task switching is often opportunistic. In Figure 6, a participant editing his resume 
switches to a chat window when his friend greets him, then to several other unrelated chat 
windows before returning to work. 
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Figure 6. A study participant is distracted by a series of messaging windows, and then returns to work. 

 
Users trying to consolidate large bodies of information into a meaningful whole usually 
had the most windows open. In Figure 7, a participant using Firefox tabbed browsing 
holds six tabs open in addition to a Microsoft Word document he is pasting text into. 
 

 
Figure 7. There are six Firefox tabs and several programs open for this user. 

 
 Using the recorded video tape, we analyzed the most interesting video sessions 
for activities such as window switching and dwell time. We have used this data as a test 
set of data for Taskposé. Appendix I contains an example coded data set. 
 

1 2 

3 4 
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Discussion of the Observational Study 
 Rather than holding entire ‘task graphs’ in working memory, users generally are 
aware of a single task at any given time and whatever is currently the focus of attention 
takes priority over all else. As a result, ‘orphaned’ windows are often left open long after 
they are still in use, because users tend to forget about them and they do not make 
themselves apparent. The task graph should therefore be considered ‘random access’, or 
perhaps ‘center-surround’ (Furnas, 1986) where the user is aware of what the current 
task, and only the sub- or super-tasks that are especially relevant to the project at hand. 
 
A cognitive account of desktop multi-tasking might be summarized as follows: 

• Users generally work on a single main task at a time, often spanning multiple 
windows. 

• Task switching does not often happen between main tasks – users tend to 
work in coherent bursts. However, short switches between the current main 
task and background threads such as chat, music or email are not uncommon.  

• New tasks or subtasks are spun off opportunistically, as needed. Old threads 
are often left behind if some new work becomes high-priority, or if the “trail” 
leading back to it becomes too long. This results in windows sometimes 
switching task association quickly, and sometimes migrating between 
associations over a long period of time. 

 

From Classification to Association 
 Based on the foregoing observations and previous research, we believe that the 
following two kinds of situations are a common use case that must be considered in the 
design of task-oriented windows managers:  

1. Users’ task classifications come in many shades of gray, which strict groupings 
cannot support, and 

2. Strengths of association between artifacts may change (slowly) over usage time, 
or immediately if the context switches. 

 
Other research into task-based windows managers, both agnostic and predictive, 

has tended to assume that windows are always cleanly mapped into a specific task and 
that windows are statically part of one task. For example, the GroupBar allows users to 
place windows into one group, and does not provide support for multiple simultaneous 
classifications. Similar claims could be made about the Task Gallery, Scalable Fabric, 
Rooms, and others.  

Following computer science terminology as well as Bowker and Star (Bowker & 
Star, 1999), we term such window managers as performing classification. Classification 
is defined as treating task decisions as a binary yes-or-no problem: is this window part of 
this task, or isn’t it? By way of contrast, we define association as allowing artifacts to 
identify with tasks at varying degrees. A window can be strongly associated with a single 
task, weakly associated with several tasks or associated with none at all.  

As existing research into task-oriented windows managers has been classificatory, 
we can build on previous work by exploring the design of associative window managers. 
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Our goal, then, is to design a proof-of-concept window manager which incorporates 
association in a useful and user-friendly way. 

Taskposé 

Design Goals 
As we have seen, human-computer task activities are characterized by inherent 

complexity. We believe that this complexity can best be understood from the standpoint 
of the following associative, and not classificatory, assertions: 

1. Users’ task classifications come in many shades of gray, which strict groupings 
cannot support, and 

2. Strengths of association between artifacts may change (slowly) over usage time, 
or immediately if the context switches. 

In order to support complex desktop activity, we have developed an associative window 
manager wherein window icons appear in a two-dimensional space. An outline of its 
workings appears in Figure 8. 
 

 
Figure 8. Sketch of the system mechanics 

 
The goal of Taskposé is to visually cluster related windows so that users can 

manage their complex computer activities. It represents open windows by icons where 
the distance between these icons is tied to the predicted “semantic” (i.e., task-based) 
relation between the windows represented by the icons. Taskposé, in fact, has no task 
groupings at all. Rather, as users exhibit behavior implying that windows are related to 
one another, the icons move closer together on the task manager display. The user’s 
Gestalt organizational capacities permit him or her to interpret this layout as a meaningful 
task organization – the spacing suggesting rather than imposing an organization. It is 

 

 

Cluster of related 
windows 

Movement occurs as heuristics 
are updated with additional 

knowledge 

 



 16

fundamental that the visualization can be understood in multiple ways, because windows 
may participate in multiple tasks. For example, a window related to writing a paper and 
to paying bills should be easily interpretable as belonging to either group. 
 The decision to replace actual task groupings with visible degrees of association 
was motivated by our hypothesis that task classifications are not binary decisions to be 
made. Likewise, the continuously-updating nature of the visualization, as well as the 
ability of windows to live “between” two clusters, supports the idea that tasks are 
context-dependent and may change over time.  

We made a design decision to visualize the user’s workspace in two dimensions 
because we felt it represented interdependencies better than windows titles arranged in a 
one-dimensional line such as in the Windows taskbar. However, we acknowledge that it 
is an open question whether two dimensions, one, or neither is most natural for 
associative window managers. Additionally, Taskposé may eventually live as a stand-
alone application on a small separate monitor, as multiple-monitor systems become more 
and more prevalent. Given the prevalence of single-monitor users today, we chose to 
instead apply this approach to fashion a full-screen view like Apple’s Exposé (the 
system’s namesake). 
 

Interaction with Taskposé 
 The Taskposé user interface is shown in Figure 9. Each open window is 
represented by a screenshot, a program icon and a window title. Windows are not 
classified into tasks or activities, but over time move near each other if Taskposé believes 
them to be related. Because no classifications are made, ambiguity and context-
dependence can be preserved when necessary. 
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Figure 9. The Taskposé Visualization 

The Taskposé Visualization 
 A few simple rules guide Taskposé’s user 
interface. Related windows appear closer together the 
more related Taskposé believes them to be. So, tightly 
bound windows will move right next to each other 
(Figure 10), and unrelated ones force each other far 
apart. Groups of any number of windows may form in 
this manner. Windows related to several disjoint groups 
will appear between those groups in the visualization. 
The user can move a window to another part of the 
visualization via a drag interaction if he or she wishes. 
However, Taskposé does not currently interpret drag-
and-drop location as new relationship information. A user may “anchor” a window via a 
right-click interaction, preventing it from moving until unanchored. This small piece of 
customization was intended to allow users who wished to keep tasks in specific areas of 
the visualization to do so.  

Important windows inform the other aspects of the Taskposé interface. Most 
critically, window size in the visualization is directly correlated with the window’s 
importance, as estimated by Taskposé. That is, Taskposé displays important windows 
larger than normal, and shrinks unimportant windows.  

Figure 10. Two strongly related 
windows appear close to each other 

in the visualization. 
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One major design concern was that windows would move from remembered 
locations while the user wasn’t looking, and thus he or she would have difficulty 
relocating windows. Thus, in Taskposé, important windows have more “mass”: they 
move less (if at all) as the visualization updates. This “weighting” of important windows 
trades on an assumption that important windows are typically the ones which users will 
want to find, and will be the most disruptive if they unexpectedly shift. Unimportant 
windows were assumed to be less disruptive to move. The user does not currently have 
any method to override Taskposé’s importance beliefs. 

Switching Windows 
 A complete interaction with Taskposé takes only a few seconds. However, 
because of the variety of interaction styles that users incorporate, there are several 
methods of working with the system. The Taskposé visualization may be brought up in 
one of two ways: 

1. Double-clicking the Taskposé icon  in the System Tray. This interaction is 
intended to be used by the visual user, or in setting where the user is already at the 
mouse. 

2. Holding the Alt key and pressing the ` (Accent Grave) key. This interaction was 
chosen for its close physical similarity to the inveterate Alt-Tab key combination 
– the ` key is placed directly above Tab on most American keyboards. Alt-` is the 
faster expert key combination, and especially so when the left hand is on the 
keyboard. 

When called, Taskposé covers the entire screen with its 
visualization, similarly to Apple’s Expose. The current window 
is outlined in red (Figure 11), to help the user orient him or 
herself in the visualization. Taskposé takes continuously 
updating screenshots of its windows while the user is choosing. 
By clicking on a window, the user signals that he or she wishes 
to switch to that window. Taskposé hides and immediately 
switches to the window. If the user decides not to switch 
windows, he or she can hide the visualization by repeating 
either of the show mechanisms above. 
  

Implementation and Algorithms 
The Taskposé prototype is implemented in C# under the .NET platform, and 

hooks into the Win32 API to listen to and publish window events, as well as retrieve 
window icons, labels and screenshots. Three main algorithms underlie the Taskposé 
system: the WindowRank algorithm for determining window importance, the window 
relationship heuristic, and the graph layout algorithm. Each will be discussed in turn. 
Because these algorithms are part of the contribution of this paper, their success will be 
evaluated as part of Taskposé’s user studies. 

 

Figure 11. The most 
recent window of 

attention is surrounded 
by a red border to 

facilitate visual search. 
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The WindowRank Algorithm: Determining Window Importance 
The WindowRank algorithm is responsible for determining window importance. 

It takes as input a series of switches between windows in the operating system, and 
outputs a real number representing its determination of the importance of the window. 
Other algorithms have attempted to utilize window switching to determine window 
relevance with reasonable success (Nair et al., 2005; Oliver et al., 2006), but to our 
knowledge none have attempted to do so to describe window importance.   

WindowRank is best described by analogy to Google’s PageRank (Page, Brin, 
Motwani, & Winograd, 1998), its intellectual inspiration. PageRank treats the Internet as 
a series of nodes on a graph, and links between pages as edges on that graph. A web 
page’s PageRank is determined by the accumulated PageRank of web pages linking to it. 
A page then adds its own PageRank to every page it links to by taking its summed 
PageRank, dividing by the number of outgoing links and adding that amount to each 
linked page’s PageRank. This algorithm is run iteratively until the entire system 
stabilizes. 

WindowRank treats windows as nodes in the graph and user window switches as 
edges, analogously to PageRank’s web pages and links. So, each time a user switches 
from Window A to Window B, WindowRank treats the action as Window A “voting” for 
Window B and adds a proportion of its own rank to the destination. Pseudocode for the 
WindowRank algorithm follows: 

 
for(int iteration=0; i<ITERATIONS; i++) 
{ 
 Number incomingRank = 0; 
 Window winA = next window; 
 foreach(Window winB that winA has switched to) 
 { 

incomingRank += winB.WindowRank * (Switches from winB 
to winA / Total Switches from winB 
to any window); 

 } 
 

winA.WindowRank = (1 – BUFFER) + (BUFFER * incomingRank); 
} 

 
In practice, we have found a value of 40 for ITERATIONS to be more than sufficient to 
stabilize the WindowRanks of windows, especially given that this algorithm is being run 
on already-stable values from the previous update cycle and is given only a small delta of 
an extra switch or program event. We follow Page et al. in using a BUFFER constant of 
.85 in our algorithm. 
 There are a few major differences between PageRank and WindowRank. First, 
PageRank prunes “dangling nodes” – pages without outgoing links – until the very end of 
the algorithm because they will accumulate PageRank from their incoming links but not 
disperse it to any outgoing links, unbalancing the calculation. This tactic is appropriate 
for PageRank, which runs on an unchanging set of web pages, but given the dynamic 
nature of new windows opening and closing, WindowRank would be almost useless if 
every new window had to be removed from the algorithm. Taskposé cannot assume that 
there have been any “links” created when it opens. To avoid this potential pitfall, we 
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assume that each “dangling” window has a roughly equal chance of switching to any 
other window, and thus start each new window with one vote for every other window 
open. The net result of this is that new or dangling windows simply redistribute their 
WindowRank equally amongst the rest of the windows. 

WindowRank is useful in the Taskposé context for several reasons. First, 
information is collected without the user having to make any explicit assertions about 
relationships. The algorithm is quietly run every time a new user action (switch, open, 
close, etc.) occurs. Because the number of graph nodes is relatively small, the algorithm 
in practice runs quite quickly, and is not a performance concern. Second, knowing which 
windows are important to the user’s work plays a critical role in differentially weighting 
windows’ opinions about what is related to what (see the section on the window 
relationship heuristic for further discussion). 
 

The Window Relationship Heuristic: WindowRank Applied 
 The most important utilization of WindowRank appears in the window 
relationship heuristic. This heuristic outputs a real number in [0, 1] representing a 
weighted judgment of the strength of the relationship between the two windows. 0 
corresponds to totally unrelated, and 1 corresponds to extremely closely related. This 
heuristic is similar to other window switch relationship heuristics (e.g. (Nair et al., 2005; 
Oliver et al., 2006)), but is unique in its incorporation of window importance. We believe 
that this consideration is important to improving the accuracy of such algorithms. 

WindowRank is necessary here because Window A and Window B may have 
different opinions about how closely related they are to each other. For an illustration, 
consider a naïve heuristic which treats both Window A and Window B as equals in the 
decision. It would likely do something like: 
 

Number AVote = Switches from A to B / Switches from A to any 
window;  
Number BVote = Switches from B to A / Switches from B to any 
window;  
return (AVote * 0.5) + (BVote * 0.5); 

 
This approach breaks down in some circumstances. If Window A is an important window 
(with high WindowRank), it will likely have switched to and from several different 
windows many times. So, its AVote will be relatively small, but also probably accurate, 
as the user has not evinced much behavior indicating a strong relationship between the 
windows. On the other hand, if Window B is unimportant (has been switched to only 
once or twice), and then switches to Window A, BVote is going to be extremely high 
because Switches from B to any window will be small. Thus, by averaging 
AVote and BVote, the algorithm will return an over-inflated estimate of the windows’ 
relationship. 
 WindowRank reduces this problem by allowing important windows to override 
unimportant windows’ over-inflated claims. The heuristic in use weights each vote by the 
ratio of its rank to the two windows’ ranks summed: 
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Number AVote = Switches from A to B / Switches from A to any 
window; 
Number BVote = Switches from B to A / Switches from B to any 
window; 
Number ARatio = winA.WindowRank / (winA.WindowRank + 
winB.WindowRank); 
return (AVote * ARatio) + (BVote * (1 – ARatio)); 

 
This returned value is between 0 and 1, and is used by the Taskposé visualization to 
display window relationships. 

Graph Visualization and Updating 
Given the a posteriori relationship computed between windows, a spring-based 

algorithm lays out the icons. A simulated spring is attached between every two nodes in 
the graph. Each of these springs has an associated natural length and spring constant k, 
which represents the resilience of the spring. These two properties can be manipulated by 
the system to generate desired clustering qualities – for example, two windows connected 
by a short, stiff spring will stay near each other. Each spring’s force acts on its two 
endpoints A and B according to Hooke’s Law: 

||
BABA VVVV xxkF −−=  

Then, the total force on a vertex can be calculated by summing the forces from all n 
outgoing springs: 

 Total Force on Vertex A ∑
=

=
n

x
VV xA

F
1

 

During each program cycle, the window is moved by an amount proportional to the 
overall force acting on it. This proportion is determined by each window’s WindowRank. 
That is, windows with above average WindowRank (important windows) move less, and 
windows with less WindowRank (unimportant windows) move proportionately more. 
This allows the graph to smoothly update without disrupting the positions of important 
windows. In Figure 12, we see the graph with edges displayed. The numbers represent 
the relative forces on the springs: 

 
 

Figure 12. Graph with edges displayed. 
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The program clock ticks at a default rate of one tick every 150 milliseconds. At 
each tick, all window icons move as determined by the sum of the spring forces. Thus, 
over a short period of time, an initially disorganized graph will migrate into an organized 
pattern as a side effect of trying to minimize the total energy of the system, guided by the 
heuristic analysis of the windows’ descriptions and user actions. As the heuristics change 
the associations between the windows, the window icons in the visualization adjust to 
reflect the change. 

The window relationship heuristic does a simple update to achieve its desired 
result. First, it computes the mean and standard deviation of these window relationship 
values across the graph, as calculated by the window relationship heuristic. Then, for 
each pair of windows, it scales the spring stiffness and length based on how many 
standard deviations the relationship value is from the computed mean. It attempts to 
create a “normally distributed” (term used loosely) set of spring lengths and stiffnesses: 
 

/* Not shown: compute mean and stdDev */ 
Number unitsFromMean = (RelationshipHeuristic(WinA, WinB) – mean) 

/ stdDev; 
Number strength = .5 + SPREAD*unitsFromMean; 
 
// Make sure this stays between 0 and 1. 
Number boundedStrength = Maximum(Minimum(strength, 1), 0); 
 
// Now make the spring shorter the closer they’re 
// related, and make the spring stiffer. 
Edge = Graph edge between WinA and WinB; 
Edge.setSpringLength(DEFAULT_SPRING_LENGTH * (1 – 

boundedStrength)); 
Edge.setSpringK(DEFAULT_SPRING_K * boundedStrength); 

 
The result of this operation is that closely related windows end up with short, stiff 

springs, and unrelated windows end up with long but loose springs. The looseness is 
desired for unrelated windows so that there is some flexibility in the windows’ relative 
placement. 
 

Evaluation 
To evaluate Taskposé, we wished to test the following hypotheses: 

H1 Taskposé’s approach of associating rather than classifying windows maps 
well onto users’ mental models of their work. 

H2 Taskposé successfully scales to situations with many windows open. 
H3 Taskposé’s window importance and relationship tracking algorithms are 

powerful enough to allow users to give unbiased evaluations of H1 and 
H2. 

 
We conducted two studies of Taskposé, encompassing two separate study designs 

(a first-use study and a longitudinal study) and four different types of data collection (free 
form interview, self-reported questionnaire, videotaped observation and computer-
generated usage log).  
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First-Use Study 
We chose a first-use study for its power to rapidly elicit usability problems. Ten 

undergraduate students at Stanford University (six male, four female) were recruited to 
take part in the forty-five minute study. Sessions were held on the participants’ own 
computers or on the researcher’s laptop. 

First, the researcher gave a tour of the interface. Then, the participant was presented 
with a task to compile information from several internet web sites. This task was inspired 
by the multitasking activities we observed in our fieldwork study. Specifically, 
participants were asked to find the following information about the Political Science 
programs at four major universities: 

• Department Address 
• National Departmental Ranking 
• Three professors’ names, biographical information, and publications 

This information was to be compiled into a separate Microsoft Word document for each 
Political Science program. Participants were given 20 minutes to complete the task. At 
the end of the task, participants were paid $10 for their assistance. 

The task required numerous window switches and caused a great deal of window 
thrashing (Jr. & Card, 1986). We encouraged participants to use Taskposé when 
switching windows, but were not required to do so. Participants followed a ‘think-aloud’ 
protocol during completion of the task: this vocalization of participants’ inner thoughts 
and confusion clarified the user’s mental model of the program to the researcher at 
moments of breakdown. Further, the researcher observed and videotaped participants’ 
interactions with the system. 

As the purpose of this short study was mainly to elicit usability problems and 
iterate on Taskposé’s design, we did not attempt to collect quantitative data. The results 
of this study were incorporated in the next version of Taskposé and led into the longer, 
more substantive longitudinal evaluation. 

Longitudinal Evaluation 
Due to the background nature of window managers and the wide variety of 

taskbar use styles, we felt that allowing Taskposé to be used “in the wild” by users over 
an extended period would produce a compelling measure of its success or failure. The 
main strength of a longitudinal approach lies in testing the sustainability and scalability 
of our platform; its main drawback is that allowing users to use the software on their own 
time precludes a researcher from observing the interaction. 

Ten undergraduate students (5 male, 5 female) were recruited for this study. 
Taskposé was installed on their main computers, and the researcher demonstrated its use. 
Participants were asked to use Taskposé in the course of their everyday computer work 
for an hour a day, over seven days. (Participants who wished were allowed to use 
Taskposé more than the required seven hours.) We paid participants $62.50 for their 
weeklong participation. 

No specific task instructions were given, as we were interested in as naturalistic 
an experience as possible. Each participant was given a logbook in which to record 
reactions to the software during use sessions, which would be reviewed by the researcher 
at the culmination of the study. After the week elapsed, researchers held a debriefing 
session and the participants answered a questionnaire about the experience. The software 
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kept automatic usage logs so the researcher could analyze data such as typical number of 
open windows and program usage frequency. 

Results 
This section highlights several outcomes of the longitudinal use study. We 

organize the results around analysis of our hypotheses. 

1 2 3 4 5 6 7

Importance Tracking Accuracy

Importance Tracking Usefulness

Relationship Tracking Accuracy

Relationship Tracking Usefulness

How Easy Is It to Find the Correct
Window

Aides Understanding of Workspace

Enjoyment

Likeliness of Integrating this System As
Part of Regular Work Practice

Median Rating on a 7-Point Likert Scale (N=10)

 
Figure 13. Self-reported user ratings of the Taskposé system. Generally, users reacted more positively to 

the system design than to the implementation of the importance and relationship algorithms. 

Association over Classification 
Users generally expressed an interest in continuing to use Taskposé in their 

everyday computer work. On a 7 point Likert scale, users responded with a median score 
of 6 when asked how likely they would be to integrate a “perfect” version of the system 
into their regular work practice (Figure 13). Enjoyment was likewise rated highly. 

Users’ willingness to integrate an idealized system into their regular workflow, 
especially given the limits they had experienced with the window relationship heuristics, 
suggests that Taskposé’s grouping approach did in fact map well to users’ mental models 
of their work (H1). In interviews, participants generally confirmed that they were in favor 
of the visualization strategy, especially during intense task-based work. Often users asked 
for additional control and customizability over the interface, suggesting that they wished 
to further incorporate individual working styles in their use of the software. No users 
mentioned that strict task groupings would have been preferred, or suggested using them 
as an interface alternative at all. 
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Scaling  
When asked for classes of situations when Taskposé was or wasn’t useful, eight 

of the ten participants responded that Taskposé was much more useful when the number 
of open windows outstripped the space available on the Windows taskbar. Most 
participants preferred Taskposé to the taskbar and alt-tab in this kind of situation. This 
feedback lends strong support to H2. As expected, respondents commented that using 
Taskposé was a burden when the taskbar was still a viable option, or when switching 
back and forth between two windows repeatedly (when alt-tab was preferred). 

Window Importance and Relationships 
Taskposé’s algorithms were found to be powerful enough to allow evaluation of 

the rest of the program, though they were limited in their accuracy and in fact the most 
common target of system criticism. On a 7 point Likert scale, users rated the importance 
tracking algorithm (WindowRank) a median 5.5 and the window relationship heuristic a 
median 4.0.   

Freeform comments revealed a few classes of problems with the relationship 
heuristic. First, “parent program” relationships were not accounted for in the Taskposé 
model: AIM chat windows would thus not automatically group with each other and with 
the buddy list, but instead place themselves randomly in the visualization. While our 
analysis of task behavior in the fieldwork study indicated such a parent-child relationship 
would not always be desired (consider one chat related to a term paper and another 
related to a book purchase), its availability as a default seemed preferred. Secondly, 
participants reported that when working on multiple tasks, they found Taskposé would 
cluster all the tasks close together as a result of their switching between the tasks; they 
had expected the distinct tasks to be spaced farther apart. Finally, tabbed internet 
browsing was found to decrease the usefulness of the heuristic, as such an internet 
browser started associating with multiple groupings. 

 Logging Results 
Eight of the ten 

participants returned usable 
activity logs (one user 
accidentally deleted his logs, 
and another’s logs were 
corrupted). We attempted to 
analyze this log data to 
gather more quantitative 
usage information. 
Specifically, we had intended 
to measure how often 
participants switched 
programs using Taskposé, 
and compare that to the 
number of times they 
switched using other means 
(taskbar, alt-tab, or simply clicking on the window). Surprisingly, because users left the 

User 
Total Number of 
Window Switches 
Using Taskposé 

Total Time 
Running 

Taskposé (hours) 

Taskposé 
Switches per 
Hour Using 

Taskposé 
1 N/A N/A N/A 
2 19 12.10472 1.569635 
3 196 195.4275 1.002929 
4 181 57.93083 3.124416 
5 161 10.33639 15.57604 
6 21 13.89722 1.511093 
7 75 20.78694 3.608034 
8 237 118.1736 2.005524 
9 48 40.75222 1.17785 

10 N/A N/A N/A 

Table 1. Usage log data analysis, highlighting the unexpectedly 
high number of hours users spent with Taskposé running. Required 

time was 7 hours. 



 26

Taskposé software running in the background for extended periods of time (one user 
logged 195 hours) and sometimes used it continuously, we were left with no indication of 
when they began their official “usage hour” each day. This behavior might have been 
expected: Taskposé does not remember window relationships when it is turned off, so 
every time the software was closed it took a few minutes before Taskposé starting 
grouping windows intelligently. Though we are left with artificially low usage rates as a 
result of this behavior (Table 1), it is an encouraging suggestion as to users’ ability to 
incorporate the Taskposé model successfully into their workflow. 

Design Improvements 
The study also elicited a set of design suggestions for 

the software. In this section we review several of the most 
promising improvements based on the long-term evaluation. 

 Users tended to either use the anchoring functionality 
extensively or not at all. Mainly users credited this to a lack of 
discoverability, as it was hidden in a right-click menu beneath 
each window icon. A simple design solution would be to use a 
pushpin metaphor (Figure 14) to make the interaction more 
visible. In our envisioned prototype, a specific corner of each 
window would be treated as a “hotspot” to allow easier (one-
click) anchoring at the current location. 

A second line of design feedback suggested that we scale the window thumbnails 
to fill the visualization at all times. Under this change, when two windows are open, they 
would appear large to fill the Taskposé display, but shrink to fit a third window when one 
is opened. This leads to problems with the consistency of window position, but is 
certainly a useful direction to head. 

The next major step in interaction for Taskposé is to allow users to specify 
strengths of association if they wish. For example, a user might position a window near a 
specific grouping to indicate that the window is strongly associated with its new 
neighbors. In effect, Taskposé would “remember” manually-specified associations. Such 
a system, if designed well, could lessen the need for a perfectly accurate association 
prediction heuristic. 

Conclusions and Future Work 
Taskposé’s current limitations lie primarily in the accuracy of its window 

relationship tracking. Several lines of predictive task management research have 
proposed other methods; however, the mathematical algorithms underlying these machine 
learning solutions are almost universally only able to make classification decisions rather 
than generate real-valued strength-of-association numbers like Taskposé requires, so 
significant rethinking of these algorithms would be necessary to support the Taskposé 
model. Regardless, doing so would probably yield the single most significant increase in 
Taskposé’s usefulness. Pursuing other data tracking techniques, such as concentrating on 
window dwell time, parent/child relationships, as well as algorithms such as Bayesian 
updating and multidimensional scaling (Cox & Cox, 2000) could also prove fruitful. 

With regards to the interface itself, Taskposé’s extended use study brought to 
light several dimensions of interactivity within its visual grouping paradigm. While we 

Figure 14. Prototype of a 
more visible “pin” 

interaction for anchoring.
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experimented with a linear mapping between associative relationship and visual distance, 
other sorts of mappings (such as logarithmic) might lead to stronger visibility of in-group 
and out-group status. Additionally, a few participants stated that they would have 
preferred a one-dimensional version of the program which could dock to the bottom of 
the screen just like the Windows taskbar (thus obviating the need to call up the 
visualization) – the ideal design for such a system is certainly a difficult problem and a 
direction for future research. 

To conclude, we reconsider the big picture question: how to organize our complex 
world. As the digital re-fuses with the physical (Ishii & Ullmer, 1997; Weiser, 1999), the 
artifacts of attention will cease to be pixel-bound windows and begin to encompass 
physical and embodied interactions. How do we support interaction in this mixed world? 
Papers and books automatically shuffling around and reorienting themselves on a 
physical desk would be considerably disorienting, but the main contribution of this thesis, 
the adoption of an associative rather than classificatory approach to interactive task work, 
would still be applicable. It might even lend new meaning to the concept of having data 
literally “at our fingertips.” 
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Appendix I: Example Coded Video Data Set 
 

Participant 18
Video 2
Time In 1:09:13
Time Out 1:13:13
Total 0:04:00
Characterization Compiling internet documents into a MSWord

Label Program Task Notes
A IE Tests Looking for information on LSAT, GRE, etc.
B MSWord Tests Compiled document
C IE Tests Second window w/ information on tests
D IE Tests Third window w/ information on tests
E IE Tests Fourth window w/ information on tests
F IE Mail Gmail
G IE Axess Axess
H IE News CNN.com
I IE Mail Webmail
J Desktop App Has a magic hat

Switch To
Time at 

switched away
Time Spent

on Window (s)

A 1.09.23 10
B 1.10.04 41
A 1.10.06 2 closed A
C 1.10.10 4 closed C
D 1.10.17 7 closed D
E 1.10.58 41
F 1.11.08 10
G 1.11.12 4 closed G
E 1.11.15 3
H 1.11.28 13 closed H
I 1.11.33 5 closed I  


