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Tell stories using Twitter
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too much

too little
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Identify events of interest
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Identify events of interest
Label events
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Identify events of interest
Label events
Add context: sentiment? location?
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Identify events of interest
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Streaming
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Identify events of interest
Label events
Add context: sentiment? location?
Streaming

TwitInfo automates the process 
of telling stories using Twitter
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TwitInfo

event detection
event labeling

context
streaming algorithms
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TwitInfo

event detection
event labeling

context
streaming algorithms

sentiment correction algorithm
evaluation: news consumers

evaluation: pulitzer prize journalist
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[Shamma et al. CSCW2010+2011]
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[Andre et al. UIST2007]       [Diakopoulos et al. VAST 2010]
[Diakopoulos+Shamma CHI2010]  [Dork et al. InfoVis2010]
[Go et al. 2010]                        [Leskovec et al. KDD2009]
[Shamma et al. CSCW2010+2011]

TwitInfo is a streaming storytelling layer 
that complements these visualizations
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ui walkthrough
algorithm design
study/evaluation

discussion
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ui walkthrough
algorithm design
study/evaluation

discussion
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Large
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LargeRelatively
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LargeRelatively

Streaming
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LargeRelatively

Streaming
mean deviation
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LargeRelatively

Adaptive Streaming
mean deviation
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LargeRelatively

Adaptive Streaming
Exponentially weighted moving mean deviation
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LargeRelatively

Adaptive Streaming

RFC 2988: Computing
TCP’s retransmission timer

Exponentially weighted moving mean deviation
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LargeRelatively

Adaptive Streaming

RFC 2988: Computing
TCP’s retransmission timer

Exponentially weighted moving mean deviation

TF-IDF
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LargeRelatively

Adaptive Streaming

RFC 2988: Computing
TCP’s retransmission timer

Exponentially weighted moving mean deviation

TF-IDF

2 datasets: earthquakes,
                 soccer games

Precision: 80-100%
Recall: 80-100%
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42MAYBE CUT!
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ui walkthrough
algorithm design
study/evaluation

discussion
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12 participants: four female/8 male
first half: directed tasks

second half: 5 min write article (soccer, Obama)

how do they use the interface?
what can they learn from TwitInfo?
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“After the peace talks, Obama traveled to the 
ASEAN conference and to NATO to work on 
issues in those parts of the world. He then spent 
the week dedicated to domestic economic issues. 
First he proposed a research tax break, then a 
$50 billion investment in infrastructure, then the 
issue came up about whether he should keep 
some tax breaks that Bush had implemented, and 
he’s asking for some tax breaks from business, 
and these are generating some controversy 
because [. . . ]”

Participant 6:
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Everyone
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Everyone
Split
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Everyone
Split

News
Junkies
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earthquakes
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“my thoughts and prayers go out to 
 everyone in that country. I hope...”

earthquakes
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Journalist Interview
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Journalist Interview

backgrounding
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Journalist Interview

backgrounding eyewitnesses
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ui walkthrough
algorithm design
study/evaluation

discussion
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appropriate algorithms for the medium
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appropriate algorithms for the medium

other uses for streaming algorithms/signal processing
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appropriate algorithms for the medium

other uses for streaming algorithms/signal processing

sentiment: caution!
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appropriate algorithms for the medium

other uses for streaming algorithms/signal processing

sentiment: caution!

mixed-initiative storytelling



60

TwitInfo

http://twitinfo.csail.mit.edu

marcua@csail.mit.edu / @marcua

Adam Marcus, Michael Bernstein, Osama Badar,
David Karger, Sam Madden, Rob Miller
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Twitter data for fun and stories
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Twitter data for fun and stories

How can we tell stories with the tweet stream?
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Twitter data for fun and stories

How can we tell stories with the tweet stream?

How can we extract data from the tweet stream?
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Twitter data for fun and stories

How can we extract data from the tweet stream?

TwitInfo

How can we tell stories with the tweet stream?
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Twitter data for fun and stories

How can we extract data from the tweet stream?

TwitInfo

TweeQL

How can we tell stories with the tweet stream?
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TwitInfo

How can we tell stories with the tweet stream?
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TwitInfo

How can we tell stories with the tweet stream?
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TwitInfo Uses

Automatically identify events
e.g., goals, earthquakes
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TwitInfo Uses

Automatically identify events
e.g., goals, earthquakes

Backgrounding
    e.g., Obama's last two weeks
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TwitInfo Uses

Automatically identify events
e.g., goals, earthquakes

Backgrounding
    e.g., Obama's last two weeks

Identifying sources on the ground
e.g., interviewing earthquake survivors
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Cautionary Tweet Tales
Sentiment is tricky
    e.g., “My warmest prayers go out to the 
             people of Christchurch.”
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Cautionary Tweet Tales

Location is evasive
    

Sentiment is tricky
    e.g., “My warmest prayers go out to the 
             people of Christchurch.”
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Cautionary Tweet Tales

Location is evasive
    

Sentiment is tricky
    e.g., “My warmest prayers go out to the 
             people of Christchurch.”

Spam is everywhere
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TwitInfo

Automated event detection makes tweet-based
story-telling possible
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TwitInfo

Automated event detection makes tweet-based
story-telling possible

Interfaces tell a story, people add context
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TwitInfo

Automated event detection makes tweet-based
story-telling possible

Interfaces tell a story, people add context
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TweeQL

How can we extract data from the tweet stream?
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TweeQL

“It's a balmy 89°C in Phoenix”

location=Phoenix, temperatureC=89

How can we extract data from the tweet stream?
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TweeQL

“It's a balmy 89°C in Phoenix”

location=Phoenix, temperatureC=89

“I'm starting to dig Obamacare!”

topic=Obama, sentiment=positive

How can we extract data from the tweet stream?
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Twitter data hacking is hard

● Learn the API
● Transform data
● Stuff it into a database
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Ad-hoc data processing



83

Twitter data hacking is hard
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Ad-hoc data processing
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TweeQL extracts data from tweets as 
they pass through the stream
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TweeQL extracts data from tweets as 
they pass through the stream

Data extraction
e.g., location, sentiment, temperature, opencalais
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TweeQL extracts data from tweets as 
they pass through the stream

Data extraction
e.g., location, sentiment, temperature, opencalais

SQL-like queries
e.g., SELECT location, text FROM twitter 
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TweeQL extracts data from tweets as 
they pass through the stream

Data extraction
e.g., location, sentiment, temperature, opencalais

SQL-like queries
e.g., SELECT location, text FROM twitter 

stream, not table
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TweeQL demo
*nerd alert*
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TweeQL's other features

● Aggregation
● Outlier detection
● Joins/mashups with other sources
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Unstructured
data
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+

Structured
queries

Unstructured
data
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+

Structured
queries

=> Structured
data

Unstructured
data
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+

Structured
queries

=> Structured
data

Meaningful
visualizations

=>

Unstructured
data
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Thanks!

● TweeQL: http://github.com/marcua/tweeql
● TwitInfo: http://twitinfo.csail.mit.edu/
● Ask me about Mechanical Turk + Journalism!

Adam Marcus
@marcua
marcua@csail.mit.edu
http://people.csail.mit.edu/marcua



96



97



98



99

TweeQL Lessons Learned

● Geographic limitations
● Requires grungy regular expressions
● Data is not necessarily relational
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Breadth

Depth
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Challenges
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Challenges

Event 
annotation



110

Challenges

Event 
annotation

Streaming
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Challenges

Event 
annotation

Streaming
Sentiment
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Challenges

Event 
annotation

Streaming
LocationSentiment
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