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MIT HUMAN-COMPUTER INTERACTION

Use queueing theory to understand 
and optimize performance of a 
paid, realtime crowdsourcing platform.

•Relationship between crowd size and 
response time

•Algorithm for optimizing crowd size & cost 
vs. response time

• Improvements to the platform: 500 
millisecond feedback
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Realtime Crowds
Answering 
visual questions 
for blind users
[Bigham et al. 2010]
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Paid Crowdsourcing
Pay small amounts of money for short tasks

Amazon Mechanical Turk: Roughly five million tasks 
completed per year at 1-5¢ each [Ipeirotis 2010]

Label an image
Requester: Matt C.

Reward: $0.01

Transcribe short audio clip
Requester: Gordon L.

Reward: $0.04
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Retainer Recruitment
Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

Wait at most: 
5 minutes
Task:
Click on the verbs 
in the paragraph

He leapt the fence and
dashed toward the door.

[Bernstein et al. 2011]
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Retainer Recruitment
Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

Wait at most: 
5 minutes
Task:
Click on the verbs 
in the paragraph

alert()

Start now! OK

He leapt the fence and
dashed toward the door.

[Bernstein et al. 2011]
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Retainer Recruitment
Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

50% of workers return in two seconds, and 
75% of workers return in three seconds.

[Bernstein et al. 2011]
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State of the Literature
Realtime Crowds

• Recruit crowds in two seconds, execute 
traditional tasks (e.g., votes) in five seconds

• Maintain continuous control 
of remote interfaces

• Opportunities in deployable, intelligently 
reactive software

[Bigham et al. 2010, Bernstein et al. 2011, Lasecki et al. 2011]
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The Challenge
Running Out of Retainer Workers
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The Challenge
Running Out of Retainer Workers

Loss
Non-realtime response
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The Tradeoff
Missed tasks, 
non-realtime results

Extra retainer workers,
extra cost
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The Goal

Optimize the tradeoff between
recruiting too many workers and
dropping too many tasks.
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The Goal

Optimize the tradeoff between
recruiting too many workers and
dropping too many tasks.

Budget-optimal crowdsourcing is possible 
in non-realtime scenarios 
[Dai, Mausam and Weld 2010; Kamar, Hacker and Horvitz 2012; 
Karger, Oh, and Shah 2011]
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1 Model

2 Optimization

3 PlatformO
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Queueing Theory

• Formal framework for stochastic arrival and 
service processes

• Basic idea: random task arrivals and random 
processing times for workers

• Quantify how long tasks will need to wait
in line

Model
Optimize
PlatformO

ut
lin

e

Queueing theory for completion times: [Ipeirotis 2010]
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Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate 
One server

µ
�

Server

M
M
1
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All servers busy

Queueing Theory
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Modeling Retainer 
Recruitment
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Retainer Queue
M/M/c/c queue

c workers, no waiting queue
Task arrivals:  Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Crow
d
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Model Predictions

1. Probability that all workers are busy:
→ the task has to wait for expected time 

2. Cost of keeping a retainer pool of size c
→ cost depends on number of idle servers

1/µ
⇡(c)
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Probability of Loss

• Draw on Erlang’s Loss Formula from 
queueing theory: probability of a rejected 
request in an M/M/c/c queue

• Let      be the traffic intensity:

(roughly, the number of new tasks that will 
arrive in the time it takes to recruit a worker)

⇢
⇢ = �/µ
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Probability of Loss

Erlang’s Loss Formula says:

Remarkably, this result makes no assumptions
about the arrival distribution.

⇡(c) = P (c servers busy)

=
⇢c/c!Pc
i=0 ⇢

i/i!
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Probability of Loss
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Expected 
Waiting Time

P (c servers busy)⇥ (expected recruitment time)

= ⇡(c)
1

µ

=
⇢

c
/c!Pc

i=0 ⇢
i
/i!

1

µ

P (c servers busy)⇥ (expected recruitment time)

= ⇡(c)
1

µ

=
⇢

c
/c!Pc

i=0 ⇢
i
/i!

1

µ

P (c servers busy)⇥ (expected recruitment time)

= ⇡(c)
1

µ

=
⇢

c
/c!Pc

i=0 ⇢
i
/i!

1

µ
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Expected Cost
How much do we pay in steady-state?

Depends on how many workers are usually 
waiting on retainer.
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Expected Cost
Probability of i busy servers in an M/M/c/c queue 
is a more general version of Erlang’s Loss Formula:

Derive the expected number of busy workers:

⇡(i) =
⇢i/i!Pc
i=0 ⇢

i/i!

E[i] = ⇢[1� ⇡(c)]
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Expected Cost
Probability of i busy servers in an M/M/c/c queue 
is a more general version of Erlang’s Loss Formula:

Derive the expected number of busy workers:

Total cost is the number of idle workers:

⇡(i) =
⇢i/i!Pc
i=0 ⇢

i/i!

E[i] = ⇢[1� ⇡(c)]

c� ⇢[1� ⇡(c)]
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Optimal Retainer Size
• Size of retainer pool is typically the only 

value that requesters can manipulate

• Minimize costs by keeping the retainer pool 
small while keeping            low

Model
Optimize
PlatformO

ut
lin

e

⇡(c)
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Optimal Retainer Size
Based on Maximum Miss Probability

Given a maximum 
desired probability 
of a miss              :

Minimize c subject 
to  

●

●

●

●

●

●

●

●

●

0 2 4 6 8

1e
−1

0
1e
−0

4

Cost vs. probability of waiting

Expected payments per unit time

Pr
ob

ab
ilit

y 
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ● ● ● ● ● ●
●

●
●

●
●

●

●●●●●●● ● ● ● ● ● ● ● ● ● ●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

p
max

⇡(c)  p
max

Tuesday, May 8, 12



Optimal Retainer Size
Based on Maximum Miss Probability

Given a maximum 
desired probability 
of a miss              :

Minimize c subject 
to  

●

●

●

●

●

●

●

●

●

0 2 4 6 8

1e
−1

0
1e
−0

4

Cost vs. probability of waiting

Expected payments per unit time

Pr
ob

ab
ilit

y 
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ● ● ● ● ● ●
●

●
●

●
●

●

●●●●●●● ● ● ● ● ● ● ● ● ● ●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

p
max

⇡(c)  p
max

Tuesday, May 8, 12



Optimal Retainer Size
Based on Joint Cost

If the “pizza delivery” 
property holds: we 
can quantify the 
cost of loss
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Improving the 
Retainer Model

Model
Optimize
PlatformO

ut
lin

e

1 Subscriptions
2 Shared Pools
3 Predictive 

Recruitment
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Retainer 
Subscriptions

• Proposal: increase      by allowing workers to 
subscribe to realtime tasks

• Instead of posting to the global task list, the 
platform sends a message to subscribers

• Change crowdsourcing from a pull model 
to a push model

µ
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Global Retainer Pools
• Sharing one global retainer pool across 

requesters improves performance

• Intuition: Most workers are padding for 
unlikely runs of arrivals)

Time

Task 1
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Global Retainer Pools
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Time
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Global Retainer Pools
• Through approximation, individual pools: 

• Shared pools across k requesters:

• Loss rate declines exponentially with the 
number of bundled retainer pools
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Global Retainer Pools

Cost dramatically decreases 
as you combine retainers: 
k dollars to log(k) dollars
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Global Retainer 
Routing

• Not every worker in a global retainer pool is 
good at every task

• If we assigned each worker to any task they 
could do, some tasks would starve
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Global Retainer 
Routing

• We want to maintain a buffer of workers to 
respond to all kinds of tasks

• A linear programming technique can 
balance the traffic intensities across all tasks
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Precruitment
• Predictive Recruitment: notify workers 

before the task arrives

• Recall workers in expectation of having 
a task by the time they arrive 2–3 
seconds later
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Precruitment
Formative Study, N=373 tasks

• 3¢ for 3-minute retainer task: whack-a-mole

• ‘Loading...’ screen for randomly-selected time 
[0, 20] seconds after worker returns

• Click on randomly-placed mole
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Precruitment
Results

• Median time to mouse move: 0.50 seconds

•

• Standard retainer model (start timer @ alert): 
median mouse move in 1.36 seconds
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Discussion
• Empirics: Can deployed crowdsourcing 

platforms support lots of realtime tasks?

• Theory: Crowds as queueing systems

• Reputation: median response time, 
overall response rate

Tuesday, May 8, 12



MIT HUMAN-COMPUTER INTERACTION

Use queueing theory to understand 
and optimize performance of a 
paid, realtime crowdsourcing platform.

•Relationship between crowd size and 
response time

•Algorithm for optimizing crowd size vs. 
response time

• Improvements to the platform: 500 
millisecond feedback
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MIT HUMAN-COMPUTER INTERACTION

Analytic Methods for 
Optimizing Realtime 
Crowdsourcing

Michael Bernstein, David Karger, Rob Miller, and Joel Brandt
MIT CSAIL and Adobe Systems
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