
MIT HUMAN-COMPUTER INTERACTION

Analytic Methods for
Optimizing Realtime
Crowdsourcing

Michael Bernstein, David Karger, Rob Miller, and Joel Brandt
MIT CSAIL and Adobe Systems

Tuesday, May 8, 12

MIT HUMAN-COMPUTER INTERACTION

Use queueing theory to understand
and optimize performance of a
paid, realtime crowdsourcing platform.

•Relationship between crowd size and
response time

•Algorithm for optimizing crowd size & cost
vs. response time

• Improvements to the platform: 500
millisecond feedback

Tuesday, May 8, 12

Realtime Crowds
Answering
visual questions
for blind users
[Bigham et al. 2010]

Tuesday, May 8, 12

Realtime Crowds
Answering
visual questions
for blind users
[Bigham et al. 2010]

Crowd-assisted
photography
[Bernstein et al. 2011]

Tuesday, May 8, 12

Realtime Crowds
Answering
visual questions
for blind users
[Bigham et al. 2010]

Crowd-assisted
photography
[Bernstein et al. 2011]

Tuesday, May 8, 12

Paid Crowdsourcing
Pay small amounts of money for short tasks

Amazon Mechanical Turk: Roughly five million tasks
completed per year at 1-5¢ each [Ipeirotis 2010]

Label an image
Requester: Matt C.

Reward: $0.01

Transcribe short audio clip
Requester: Gordon L.

Reward: $0.04

Tuesday, May 8, 12

Retainer Recruitment
Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

Wait at most:
5 minutes
Task:
Click on the verbs
in the paragraph

He leapt the fence and
dashed toward the door.

[Bernstein et al. 2011]
Tuesday, May 8, 12

Retainer Recruitment
Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

Wait at most:
5 minutes
Task:
Click on the verbs
in the paragraph

alert()

Start now! OK

He leapt the fence and
dashed toward the door.

[Bernstein et al. 2011]
Tuesday, May 8, 12

Retainer Recruitment
Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

50% of workers return in two seconds, and
75% of workers return in three seconds.

[Bernstein et al. 2011]
Tuesday, May 8, 12

State of the Literature
Realtime Crowds

• Recruit crowds in two seconds, execute
traditional tasks (e.g., votes) in five seconds

• Maintain continuous control
of remote interfaces

• Opportunities in deployable, intelligently
reactive software

[Bigham et al. 2010, Bernstein et al. 2011, Lasecki et al. 2011]
Tuesday, May 8, 12

The Challenge
Running Out of Retainer Workers

Tuesday, May 8, 12

The Challenge
Running Out of Retainer Workers

Tuesday, May 8, 12

The Challenge
Running Out of Retainer Workers

Tuesday, May 8, 12

The Challenge
Running Out of Retainer Workers

Tuesday, May 8, 12

The Challenge
Running Out of Retainer Workers

Tuesday, May 8, 12

The Challenge
Running Out of Retainer Workers

Tuesday, May 8, 12

The Challenge
Running Out of Retainer Workers

Loss
Non-realtime response

Tuesday, May 8, 12

The Tradeoff
Missed tasks,
non-realtime results

Extra retainer workers,
extra cost

Tuesday, May 8, 12

The Goal

Optimize the tradeoff between
recruiting too many workers and
dropping too many tasks.

Tuesday, May 8, 12

The Goal

Optimize the tradeoff between
recruiting too many workers and
dropping too many tasks.

Budget-optimal crowdsourcing is possible
in non-realtime scenarios
[Dai, Mausam and Weld 2010; Kamar, Hacker and Horvitz 2012;
Karger, Oh, and Shah 2011]

Tuesday, May 8, 12

1 Model

2 Optimization

3 PlatformO
ut

lin
e

Tuesday, May 8, 12

Queueing Theory

• Formal framework for stochastic arrival and
service processes

• Basic idea: random task arrivals and random
processing times for workers

• Quantify how long tasks will need to wait
in line

Model
Optimize
PlatformO

ut
lin

e

Queueing theory for completion times: [Ipeirotis 2010]
Tuesday, May 8, 12

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�

Server

M
M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

ServerTask

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

ServerTask

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Server

Queueing Theory
M/M/1 queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
One server

µ
�M

M
1

Tuesday, May 8, 12

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

All servers busy

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

Queueing Theory
M/M/c/c queue

Markovian (Poisson process) task arrivals, rate
Markovian (Poisson process) server work time, rate
c servers
c max tasks in servers and queue

µ
�M

M
c
c

Tuesday, May 8, 12

Modeling Retainer
Recruitment

Tuesday, May 8, 12

Retainer Queue
M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Crow
d

Tuesday, May 8, 12

Retainer Queue
M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Crow
d

Tuesday, May 8, 12

Retainer Queue
M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Crow
d

Tuesday, May 8, 12

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Retainer Queue
M/M/c/c queue

Crow
d

Tuesday, May 8, 12

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Retainer Queue
M/M/c/c queue

Crow
d

Tuesday, May 8, 12

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Retainer Queue
M/M/c/c queue

Crow
d

Tuesday, May 8, 12

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Retainer Queue
Loss

Crow
d

Tuesday, May 8, 12

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Retainer Queue
Loss

Crow
d

Tuesday, May 8, 12

c workers, no waiting queue
Task arrivals: Poisson process, rate
Worker recruitment time: Poisson process, rate µ

�

Retainer Queue
Loss

Crow
d

All servers busy

Tuesday, May 8, 12

Retainer Queue
Loss

Crow
d

All servers busy

Tuesday, May 8, 12

Retainer Queue
Loss

Crow
d

All servers busy

Tuesday, May 8, 12

Retainer Queue
Loss

Crow
d

All servers busy

P (i servers busy) = ⇡(i)

P (all servers busy) = ⇡(c)

Tuesday, May 8, 12

Retainer Queue
Loss

Crow
d

All servers busy

P (i servers busy) = ⇡(i)

P (all servers busy) = ⇡(c)

Tuesday, May 8, 12

Retainer Queue
Loss

Crow
d

All servers busy

P (i servers busy) = ⇡(i)

P (all servers busy) = ⇡(c)

Tuesday, May 8, 12

Retainer Queue
Loss

Crow
d

All servers busy

P (i servers busy) = ⇡(i)

P (all servers busy) = ⇡(c)

Tuesday, May 8, 12

Model Predictions

1. Probability that all workers are busy:
→ the task has to wait for expected time

2. Cost of keeping a retainer pool of size c
→ cost depends on number of idle servers

1/µ
⇡(c)

Tuesday, May 8, 12

Probability of Loss

• Draw on Erlang’s Loss Formula from
queueing theory: probability of a rejected
request in an M/M/c/c queue

• Let be the traffic intensity:

(roughly, the number of new tasks that will
arrive in the time it takes to recruit a worker)

⇢
⇢ = �/µ

Tuesday, May 8, 12

Probability of Loss

Erlang’s Loss Formula says:

Remarkably, this result makes no assumptions
about the arrival distribution.

⇡(c) = P (c servers busy)

=
⇢c/c!Pc
i=0 ⇢

i/i!

Tuesday, May 8, 12

Probability of Loss

●

●

●

●
●

●
●

●
●

●

2 4 6 8 10

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

(a) Cost of retainer

Size of retainer pool

Pa
ym

en
t u

ni
ts

 p
er

 u
ni

t t
im

e

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1

(b) Probability of waiting

Size of retainer pool

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1
1e

+0
2

(c) Expected wait time

Size of retainer pool

Ex
pe

ct
ed

 w
ai

t t
im

e
(s

ec
on

ds
)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●
●

●
●

●
●

●

2 4 6 8 10

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

(a) Cost of retainer

Size of retainer pool

Pa
ym

en
t u

ni
ts

 p
er

 u
ni

t t
im

e

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1

(b) Probability of waiting

Size of retainer pool

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1
1e

+0
2

(c) Expected wait time

Size of retainer pool

Ex
pe

ct
ed

 w
ai

t t
im

e
(s

ec
on

ds
)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

Tuesday, May 8, 12

Expected
Waiting Time

P (c servers busy)⇥ (expected recruitment time)

= ⇡(c)
1

µ

=
⇢

c
/c!Pc

i=0 ⇢
i
/i!

1

µ

P (c servers busy)⇥ (expected recruitment time)

= ⇡(c)
1

µ

=
⇢

c
/c!Pc

i=0 ⇢
i
/i!

1

µ

P (c servers busy)⇥ (expected recruitment time)

= ⇡(c)
1

µ

=
⇢

c
/c!Pc

i=0 ⇢
i
/i!

1

µ

Tuesday, May 8, 12

Expected Cost
How much do we pay in steady-state?

Depends on how many workers are usually
waiting on retainer.

Tuesday, May 8, 12

Expected Cost
Probability of i busy servers in an M/M/c/c queue
is a more general version of Erlang’s Loss Formula:

Derive the expected number of busy workers:

⇡(i) =
⇢i/i!Pc
i=0 ⇢

i/i!

E[i] = ⇢[1� ⇡(c)]

Tuesday, May 8, 12

Expected Cost
Probability of i busy servers in an M/M/c/c queue
is a more general version of Erlang’s Loss Formula:

Derive the expected number of busy workers:

Total cost is the number of idle workers:

⇡(i) =
⇢i/i!Pc
i=0 ⇢

i/i!

E[i] = ⇢[1� ⇡(c)]

c� ⇢[1� ⇡(c)]

Tuesday, May 8, 12

Expected Cost

●

●

●

●
●

●
●

●
●

●

2 4 6 8 10

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

(a) Cost of retainer

Size of retainer pool

Pa
ym

en
t u

ni
ts

 p
er

 u
ni

t t
im

e

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1

(b) Probability of waiting

Size of retainer pool

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1
1e

+0
2

(c) Expected wait time

Size of retainer pool

Ex
pe

ct
ed

 w
ai

t t
im

e
(s

ec
on

ds
)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

Cost goes down when ,
but performance suffers.

●

●

●

●
●

●
●

●
●

●

2 4 6 8 10

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

(a) Cost of retainer

Size of retainer pool

Pa
ym

en
t u

ni
ts

 p
er

 u
ni

t t
im

e

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1

(b) Probability of waiting

Size of retainer pool

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1
1e

+0
2

(c) Expected wait time

Size of retainer pool

Ex
pe

ct
ed

 w
ai

t t
im

e
(s

ec
on

ds
)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

c < ⇢

Tuesday, May 8, 12

Expected Cost

●

●

●

●
●

●
●

●
●

●

2 4 6 8 10

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

(a) Cost of retainer

Size of retainer pool

Pa
ym

en
t u

ni
ts

 p
er

 u
ni

t t
im

e

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

●

2 4 6 8 10
1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1

(b) Probability of waiting

Size of retainer pool

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1
1e

+0
2

(c) Expected wait time

Size of retainer pool

Ex
pe

ct
ed

 w
ai

t t
im

e
(s

ec
on

ds
)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

Cost goes down when ,
but performance suffers.

●

●

●

●
●

●
●

●
●

●

2 4 6 8 10

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

(a) Cost of retainer

Size of retainer pool

Pa
ym

en
t u

ni
ts

 p
er

 u
ni

t t
im

e

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1

(b) Probability of waiting

Size of retainer pool

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1
1e

+0
2

(c) Expected wait time

Size of retainer pool

Ex
pe

ct
ed

 w
ai

t t
im

e
(s

ec
on

ds
)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

c < ⇢

●

●

●

●
●

●
●

●
●

●

2 4 6 8 10

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

(a) Cost of retainer

Size of retainer pool

Pa
ym

en
t u

ni
ts

 p
er

 u
ni

t t
im

e

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

●

2 4 6 8 10
1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1

(b) Probability of waiting

Size of retainer pool

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

●

●

●

●

●

●

●

●

2 4 6 8 10

1e
−1

0
1e
−0

7
1e
−0

4
1e
−0

1
1e

+0
2

(c) Expected wait time

Size of retainer pool

Ex
pe

ct
ed

 w
ai

t t
im

e
(s

ec
on

ds
)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

Traffic intensity ρ
0.1
0.5
1
5
10

Tuesday, May 8, 12

Optimal Retainer Size
• Size of retainer pool is typically the only

value that requesters can manipulate

• Minimize costs by keeping the retainer pool
small while keeping low

Model
Optimize
PlatformO

ut
lin

e

⇡(c)

Tuesday, May 8, 12

Optimal Retainer Size
Based on Maximum Miss Probability

Given a maximum
desired probability
of a miss :

Minimize c subject
to

●

●

●

●

●

●

●

●

●

0 2 4 6 8

1e
−1

0
1e
−0

4

Cost vs. probability of waiting

Expected payments per unit time

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ● ● ● ● ● ●
●

●
●

●
●

●

●●●●●●● ● ● ● ● ● ● ● ● ● ●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

p
max

⇡(c)  p
max

Tuesday, May 8, 12

Optimal Retainer Size
Based on Maximum Miss Probability

Given a maximum
desired probability
of a miss :

Minimize c subject
to

●

●

●

●

●

●

●

●

●

0 2 4 6 8

1e
−1

0
1e
−0

4

Cost vs. probability of waiting

Expected payments per unit time

Pr
ob

ab
ilit

y
of

 w
ai

tin
g

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ● ● ● ● ● ●
●

●
●

●
●

●

●●●●●●● ● ● ● ● ● ● ● ● ● ●
●

●

Traffic intensity ρ
0.1
0.5
1
5
10

p
max

⇡(c)  p
max

Tuesday, May 8, 12

Optimal Retainer Size
Based on Joint Cost

If the “pizza delivery”
property holds: we
can quantify the
cost of loss

●
●

●
●

●
●

● ● ● ●

2 4 6 8 10

1
5

20
10

0
50

0

Total cost of task and retainer

Size of retainer pool

C
om

bi
ne

d
co

st
 o

f r
et

ai
ne

r a
nd

 m
is

se
d

ta
sk

●

●
●

●
●

●
● ● ● ●

●

●

●

● ●
●

● ● ● ●

●

●

●

●

●
● ● ● ● ●

Cost of a missed task
1
10
100
1000

Tuesday, May 8, 12

Improving the
Retainer Model

Model
Optimize
PlatformO

ut
lin

e

1 Subscriptions
2 Shared Pools
3 Predictive

Recruitment

Tuesday, May 8, 12

Retainer
Subscriptions

• Proposal: increase by allowing workers to
subscribe to realtime tasks

• Instead of posting to the global task list, the
platform sends a message to subscribers

• Change crowdsourcing from a pull model
to a push model

µ

Tuesday, May 8, 12

Global Retainer Pools
• Sharing one global retainer pool across

requesters improves performance

• Intuition: Most workers are padding for
unlikely runs of arrivals)

Time

Task 1

Tuesday, May 8, 12

Global Retainer Pools
• Sharing one global retainer pool across

requesters improves performance

• Intuition: Most workers are padding for
unlikely runs of arrivals)

Time

Task 1
Task 2

Tuesday, May 8, 12

Global Retainer Pools
• Sharing one global retainer pool across

requesters improves performance

• Intuition: Most workers are padding for
unlikely runs of arrivals)

Time

Combined

Tuesday, May 8, 12

Global Retainer Pools
• Sharing one global retainer pool across

requesters improves performance

• Intuition: Most workers are padding for
unlikely runs of arrivals)

Time

Combined

Tuesday, May 8, 12

Global Retainer Pools
• Through approximation, individual pools:

• Shared pools across k requesters:

• Loss rate declines exponentially with the
number of bundled retainer pools

⇡(c) ⇡
p
2⇡c

�
e�⇢(e⇢/c)c

�

⇡(c) ⇡
p
2⇡kc

�
e�⇢(e⇢/c)c

�k⇡(c) ⇡
p
2⇡c

�
e�⇢(e⇢/c)c

�

⇡(c) ⇡
p
2⇡kc

�
e�⇢(e⇢/c)c

�k

⇡(c) ⇡

⇡(c) ⇡

Tuesday, May 8, 12

Global Retainer Pools
• Through approximation, individual pools:

• Shared pools across k requesters:

• Loss rate declines exponentially with the
number of bundled retainer pools

⇡(c) ⇡
p
2⇡c

�
e�⇢(e⇢/c)c

�

⇡(c) ⇡
p
2⇡kc

�
e�⇢(e⇢/c)c

�k⇡(c) ⇡
p
2⇡c

�
e�⇢(e⇢/c)c

�

⇡(c) ⇡
p
2⇡kc

�
e�⇢(e⇢/c)c

�k

⇡(c) ⇡

⇡(c) ⇡

Tuesday, May 8, 12

Global Retainer Pools

Cost dramatically decreases
as you combine retainers:
k dollars to log(k) dollars

Tuesday, May 8, 12

Global Retainer
Routing

• Not every worker in a global retainer pool is
good at every task

• If we assigned each worker to any task they
could do, some tasks would starve

Tuesday, May 8, 12

Global Retainer
Routing

• We want to maintain a buffer of workers to
respond to all kinds of tasks

• A linear programming technique can
balance the traffic intensities across all tasks

Tuesday, May 8, 12

Precruitment
• Predictive Recruitment: notify workers

before the task arrives

• Recall workers in expectation of having
a task by the time they arrive 2–3
seconds later

Tuesday, May 8, 12

Precruitment
Formative Study, N=373 tasks

• 3¢ for 3-minute retainer task: whack-a-mole

• ‘Loading...’ screen for randomly-selected time
[0, 20] seconds after worker returns

• Click on randomly-placed mole

Tuesday, May 8, 12

Precruitment
Formative Study, N=373 tasks

• 3¢ for 3-minute retainer task: whack-a-mole

• ‘Loading...’ screen for randomly-selected time
[0, 20] seconds after worker returns

• Click on randomly-placed mole

Tuesday, May 8, 12

Precruitment
Results

• Median time to mouse move: 0.50 seconds

•

• Standard retainer model (start timer @ alert):
median mouse move in 1.36 seconds

Time waiting for task (sec)

R
es

po
ns

e
tim

e
 to

 m
ov

e
m

ou
se

 (s
ec

)

0.5
1.0

5.0
10.0

●

●

●

●

●

●

●

●
●

●

●●

●
●

● ● ●●

●

●

●

●

● ● ●●

●

●

● ●●

●

●
●

●

●
● ●

●

●
●

●●
●

●●●●

●
●

●

●
●

●

●●●

●

●

●
●

●
●

● ●

●● ●

●

●

●

●●
●

●

●
●

●
●●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

● ● ●●●

●

●

●
●

●
●

●

●

●

●

● ● ● ●●
●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

● ● ●●

●

●
●

●

●
●

●● ●●
●

●

●

●●

●
●

●●
●

●
●

●

●

● ●
●

●

● ●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

● ●● ●
●

●

●

●

●

●
● ●●●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

● ●

●

●
● ●

●

●
●

●●

●
●

● ●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
● ●

●

●●●
●

0 5 10 15 20

Tuesday, May 8, 12

Discussion
• Empirics: Can deployed crowdsourcing

platforms support lots of realtime tasks?

• Theory: Crowds as queueing systems

• Reputation: median response time,
overall response rate

Tuesday, May 8, 12

MIT HUMAN-COMPUTER INTERACTION

Use queueing theory to understand
and optimize performance of a
paid, realtime crowdsourcing platform.

•Relationship between crowd size and
response time

•Algorithm for optimizing crowd size vs.
response time

• Improvements to the platform: 500
millisecond feedback

Tuesday, May 8, 12

MIT HUMAN-COMPUTER INTERACTION

Analytic Methods for
Optimizing Realtime
Crowdsourcing

Michael Bernstein, David Karger, Rob Miller, and Joel Brandt
MIT CSAIL and Adobe Systems

Tuesday, May 8, 12

