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Abstract—Visualization design benefits from careful consideration of perception, as different assignments of visual encoding vari-
ables such as color, shape and size affect how viewers interpret data. In this work, we introduce perceptual kernels: distance
matrices derived from aggregate perceptual judgments. Perceptual kernels represent perceptual differences between and within
visual variables in a reusable form that is directly applicable to visualization evaluation and automated design. We report results
from crowdsourced experiments to estimate kernels for color, shape, size and combinations thereof. We analyze kernels estimated
using five different judgment types — including Likert ratings among pairs, ordinal triplet comparisons, and manual spatial arrange-
ment — and compare them to existing perceptual models. We derive recommendations for collecting perceptual similarities, and then
demonstrate how the resulting kernels can be applied to automate visualization design decisions.

1 INTRODUCTION

Visual encoding decisions are central to visualization design. As view-
ers’ interpretation of data may shift across encodings, it is important
to understand how choices of visual encoding variables such as color,
shape, size — and their combinations — affect graphical perception.

One way to evaluate these effects is to measure the perceived sim-
ilarities (or conversely, distances) between visual variables. There are
various ways of eliciting similarity judgments among visual variables.
We broadly refer to subjective measures of judged similarity as per-
ceptual distances. In this context, a perceptual kernel is the distance
matrix of aggregated pairwise perceptual distances. These measures
quantify the effects of alternative encodings and thereby help to create
visualizations that better reflect structures in data. Figure 1a shows a
perceptual kernel for a set of symbols; distances are visualized using
grayscale values, with darker cells indicating higher similarity. The
prominent clusters suggest that users will perceive similarities among
shapes that may or may not mirror encoded data values.

Perceptual kernels can also benefit automated visualization design.
Typically, automated design methods [27] leverage an effectiveness
ranking of visual encoding variables with respect to data types (nom-
inal, ordinal, quantitative). Once a visual variable is chosen, these
methods provide little guidance on how to best pair data values with
visual elements, instead relying on default palettes for variables such
as color and shape. Perceptual kernels provide a means for computing
optimized assignments to visual variables whose perceived differences
are congruent with underlying distances among data points. In short,
perceptual kernels enable the direct application of empirical percep-
tion data within visualization tools.

In this work, we contribute the results of crowdsourced experiments
to estimate perceptual kernels for visual encoding variables of shape,
size, color and combinations thereof. We compare a variety of judg-
ment types: Likert ratings among pairs, ordinal triplet comparisons,
and manual spatial arrangement. We also assess the resulting kernels
via comparisons to existing perceptual models. We find that ordinal
triplet matching judgments provide the most consistent results, albeit
with higher time and money costs than pairwise ratings or spatial ar-
rangement. We then demonstrate how perceptual kernels can be ap-
plied to improve visualization design through automatic palette opti-
mization and by providing distances for visual embedding [8] of data
points into visual spaces.
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Fig. 1: (Left) A crowd-estimated perceptual kernel for a shape palette.
The kernel was obtained using a pairwise rating task on a Likert scale
of 9. (Right) A two-dimensional projection of the palette shapes ob-
tained via multidimensional scaling of the perceptual kernel.

2 RELATED WORK

We draw on prior work in similarity judgments, interactions among
perceptual dimensions, graphical perception and automated design.

2.1 Analysis of Perceptual Similarity Judgments

Prior research has analyzed similarity judgments to model perceptual
spaces. Measurement methods involve asking subjects to rate or match
multiple stimuli. One approach is to ask subjects to rate the perceived
similarity of visual stimulus pairs using numbers on a specified numer-
ical scale (such as a Likert scale). However, pairwise scaling can cog-
nitively overload subjects and differences between subjects may con-
found analysis. These issues led to the use of simpler discrimination
tasks involving ordinal judgments. Consider matching judgments over
triplets: “Is A more similar to B than it is to C?” Ordinal judgments
on triplets have been found more reliable and robust [20]. However,
the number of pairs and triplets increases quadratically and cubically,
respectively, with the number of visual stimuli. The method of spatial
arrangement, where subjects rearrange stimuli in the plane such that
their proximity is proportional to their similarity, was proposed as an
efficient alternative [12]. In our experiments, we use direct judgment
types, including Likert ratings among pairs, ordinal triplet rankings,
and manual spatial arrangement.

Similarities may also be indirectly inferred from measurements
such as subject response time (confusion time) or manual cluster-
ing [12]. For example, use of response time assumes that the simi-
larity between two stimuli is related to the probability of confusing
one with the other. Subjects are asked to quickly decide whether two
given stimuli are the same; it is assumed that they take more time if the
stimuli are more similar. In a clustering measure, subjects are asked to
group given stimuli. It is assumed that the frequency with which two
stimuli are placed in the same group is proportional to their similarity.
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perceptual dimensions, graphical perception and automated design.

2.1 Analysis of Perceptual Similarity Judgments

Prior research has analyzed similarity judgments to model perceptual
spaces. Measurement methods involve asking subjects to rate or match
multiple stimuli. One approach is to ask subjects to rate the perceived
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larity between two stimuli is related to the probability of confusing
one with the other. Subjects are asked to quickly decide whether two
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group given stimuli. It is assumed that the frequency with which two
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ing [12]. For example, use of response time assumes that the simi-
larity between two stimuli is related to the probability of confusing
one with the other. Subjects are asked to quickly decide whether two
given stimuli are the same; it is assumed that they take more time if the
stimuli are more similar. In a clustering measure, subjects are asked to
group given stimuli. It is assumed that the frequency with which two
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perceptual dimensions, graphical perception and automated design.

2.1 Analysis of Perceptual Similarity Judgments

Prior research has analyzed similarity judgments to model perceptual
spaces. Measurement methods involve asking subjects to rate or match
multiple stimuli. One approach is to ask subjects to rate the perceived
similarity of visual stimulus pairs using numbers on a specified numer-
ical scale (such as a Likert scale). However, pairwise scaling can cog-
nitively overload subjects and differences between subjects may con-
found analysis. These issues led to the use of simpler discrimination
tasks involving ordinal judgments. Consider matching judgments over
triplets: “Is A more similar to B than it is to C?” Ordinal judgments
on triplets have been found more reliable and robust [20]. However,
the number of pairs and triplets increases quadratically and cubically,
respectively, with the number of visual stimuli. The method of spatial
arrangement, where subjects rearrange stimuli in the plane such that
their proximity is proportional to their similarity, was proposed as an
efficient alternative [12]. In our experiments, we use direct judgment
types, including Likert ratings among pairs, ordinal triplet rankings,
and manual spatial arrangement.

Similarities may also be indirectly inferred from measurements
such as subject response time (confusion time) or manual cluster-
ing [12]. For example, use of response time assumes that the simi-
larity between two stimuli is related to the probability of confusing
one with the other. Subjects are asked to quickly decide whether two
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types, including Likert ratings among pairs, ordinal triplet rankings,
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such as subject response time (confusion time) or manual cluster-
ing [12]. For example, use of response time assumes that the simi-
larity between two stimuli is related to the probability of confusing
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Fig. 7: Visual stimuli overview. We asked subjects to consider and
compare the stimuli before starting the experimental task.

3.5 Data Processing

Our pairwise judgment tasks directly produce a distance matrix among
visual stimuli; we simply rescale the per-user ratings to the range [0,1].
For triplet judgments, we derive per-user kernels from a set of rank-
ordered triplets using generalized non-metric multidimensional scal-
ing [1]. In both cases, we then average the per-user kernels and re-
normalize the result to form an aggregate perceptual kernel.

To safeguard data quality, we use errant ratings of identical stimuli
pairs (both in the pairwise and triplet cases) to filter “spammers.” In
the pairwise cases, subjects were instructed to rate the similarity of
identical pairs as 0. They were also expected to match or filter identical
stimuli pairs in the triplet cases. We excluded the data from subjects
who failed in 40% or more of these judgments.

For spatial arrangements, we first pairwise align the response using
similarity transforms [19] and designate the one with the minimum
average alignment error as the reference. We then align all responses
to this reference arrangement, use in-plane Euclidean distances to con-
struct distance matrices for each subject, and then normalize the re-
sults. To combat spamming, we removed layouts whose alignment er-
ror was greater than a threshold of two standard deviations away from
the mean alignment error. Finally, we average the distance matrices
and normalize the result to obtain a perceptual kernel.

Throughout the paper, we present the resulting perceptual kernels
as matrix diagrams alongside a 2D projection obtained using multidi-
mensional scaling. These projections are intended to provide a more
intuitive, overall sense of the kernel. Note, however, that each pro-
jection is a lossy representation, in some cases providing only partial
insight into the kernel structure.

4 EXPERIMENT 1: UNIVARIATE KERNELS

In the first experiment, we estimated perceptual kernels for stimuli
that change only in one perceptual dimension (i.e., univariate visual
variables). We chose the visual variables shape, color, and size due
to their common use in practice. For values of shape and color, we
used Tableau’s default shape and color palettes, each of which has ten
values. We presented colors to subjects as rectangular chips, which is
customary in perceptual experiments. For the size variable, we used
ten circles with linearly increasing area.

4.1 Estimated Univariate Perceptual Kernels

Figure 10 visualizes the resulting kernels for each palette and judg-
ment type. We summarize specific results for each palette below.

4.1.1 Shape

Figure 1 shows a matrix and two-dimensional MDS projection of the
perceptual kernel estimated from distinct triplet (Td) judgments. The
MDS projection shows distinct perceptual shape clusters. Across all
kernels (Figure 10), we see strong groupings among triangles and
stroked shapes, and a looser cluster of other filled shapes.

4.1.2 Color

Figure 8 shows the matrix and two-dimensional MDS projection for
color values. From the MDS projection we readily see that subjects
judged color similarity primarily by hue and secondarily by lightness.

To further validate the crowd-estimated kernels, we can compare
them to kernels derived from existing color models. CIELAB is an

Fig. 8: (a) A crowd-estimated perceptual kernel for the color palette.
The kernel was obtained using the triplet matching (Tm) task. (b) A
two-dimensional projection of palette colors obtained via multidimen-
sional scaling of the perceptual kernel.

Color Names
CIELAB
CIEDE2000

Kernel (Tm)

Kernel (Tm) CIELAB CIEDE2000 Color Names

Kernel (Tm) 1.00 0.67 0.59 0.75
CIELAB 0.67 1.00 0.87 0.81
CIEDE2000 0.59 0.87 1.00 0.77
Color Names 0.75 0.81 0.77 1.00

Fig. 9: (Top) Projections of a crowd-estimated color kernel and ker-
nels induced by CIELAB, CIEDE2000 and color name distances,
all aligned by similarity transforms. Plotting symbols were chosen
through visual embedding of the rank correlations between metrics.
(Bottom) The rank correlation between kernels.

approximately perceptually uniform color space with a lightness com-
ponent L* and opponent color components a* and b*. CIEDE2000 is
a more complex color difference formula that was developed to bet-
ter fit empirical perceptual judgments than Euclidean LAB distances.
Heer and Stone [18] introduced distances based on color-name associ-
ations to reflect linguistic boundaries among colors. Here, we use the
Hellinger distance between multinomial color name probability distri-
butions estimated from the XKCD color naming survey [28].

Figure 9 compares the triplet matching (Tm) kernel with kernels
constructed using CIELAB, CIEDE2000 and color name distance [18]
distance measures. All kernels are strongly correlated, but we also see
some variation, consistent with the fact that longer distances in exist-
ing perceptual color spaces tend to be less accurate than short proximal
judgments. Interestingly, of the existing models color name distance
correlates most highly with the crowd-estimated kernel. We hypothe-
size that perceptual judgments from crowd participants are influenced
by color name associations in addition to lower-level features.

4.1.3 Size

As shown in Figure 10, of the three visual variables we considered,
size is the most robust across judgment task types. The MDS projec-
tion in Figure 11 clearly demonstrates a one-dimensional structure, in
which linear increases in area map to non-linear perceptual distances.
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compare the stimuli before starting the experimental task.

3.5 Data Processing

Our pairwise judgment tasks directly produce a distance matrix among
visual stimuli; we simply rescale the per-user ratings to the range [0,1].
For triplet judgments, we derive per-user kernels from a set of rank-
ordered triplets using generalized non-metric multidimensional scal-
ing [1]. In both cases, we then average the per-user kernels and re-
normalize the result to form an aggregate perceptual kernel.

To safeguard data quality, we use errant ratings of identical stimuli
pairs (both in the pairwise and triplet cases) to filter “spammers.” In
the pairwise cases, subjects were instructed to rate the similarity of
identical pairs as 0. They were also expected to match or filter identical
stimuli pairs in the triplet cases. We excluded the data from subjects
who failed in 40% or more of these judgments.

For spatial arrangements, we first pairwise align the response using
similarity transforms [19] and designate the one with the minimum
average alignment error as the reference. We then align all responses
to this reference arrangement, use in-plane Euclidean distances to con-
struct distance matrices for each subject, and then normalize the re-
sults. To combat spamming, we removed layouts whose alignment er-
ror was greater than a threshold of two standard deviations away from
the mean alignment error. Finally, we average the distance matrices
and normalize the result to obtain a perceptual kernel.

Throughout the paper, we present the resulting perceptual kernels
as matrix diagrams alongside a 2D projection obtained using multidi-
mensional scaling. These projections are intended to provide a more
intuitive, overall sense of the kernel. Note, however, that each pro-
jection is a lossy representation, in some cases providing only partial
insight into the kernel structure.

4 EXPERIMENT 1: UNIVARIATE KERNELS

In the first experiment, we estimated perceptual kernels for stimuli
that change only in one perceptual dimension (i.e., univariate visual
variables). We chose the visual variables shape, color, and size due
to their common use in practice. For values of shape and color, we
used Tableau’s default shape and color palettes, each of which has ten
values. We presented colors to subjects as rectangular chips, which is
customary in perceptual experiments. For the size variable, we used
ten circles with linearly increasing area.

4.1 Estimated Univariate Perceptual Kernels

Figure 10 visualizes the resulting kernels for each palette and judg-
ment type. We summarize specific results for each palette below.

4.1.1 Shape

Figure 1 shows a matrix and two-dimensional MDS projection of the
perceptual kernel estimated from distinct triplet (Td) judgments. The
MDS projection shows distinct perceptual shape clusters. Across all
kernels (Figure 10), we see strong groupings among triangles and
stroked shapes, and a looser cluster of other filled shapes.

4.1.2 Color

Figure 8 shows the matrix and two-dimensional MDS projection for
color values. From the MDS projection we readily see that subjects
judged color similarity primarily by hue and secondarily by lightness.

To further validate the crowd-estimated kernels, we can compare
them to kernels derived from existing color models. CIELAB is an

Fig. 8: (a) A crowd-estimated perceptual kernel for the color palette.
The kernel was obtained using the triplet matching (Tm) task. (b) A
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ponent L* and opponent color components a* and b*. CIEDE2000 is
a more complex color difference formula that was developed to bet-
ter fit empirical perceptual judgments than Euclidean LAB distances.
Heer and Stone [18] introduced distances based on color-name associ-
ations to reflect linguistic boundaries among colors. Here, we use the
Hellinger distance between multinomial color name probability distri-
butions estimated from the XKCD color naming survey [28].

Figure 9 compares the triplet matching (Tm) kernel with kernels
constructed using CIELAB, CIEDE2000 and color name distance [18]
distance measures. All kernels are strongly correlated, but we also see
some variation, consistent with the fact that longer distances in exist-
ing perceptual color spaces tend to be less accurate than short proximal
judgments. Interestingly, of the existing models color name distance
correlates most highly with the crowd-estimated kernel. We hypothe-
size that perceptual judgments from crowd participants are influenced
by color name associations in addition to lower-level features.

4.1.3 Size

As shown in Figure 10, of the three visual variables we considered,
size is the most robust across judgment task types. The MDS projec-
tion in Figure 11 clearly demonstrates a one-dimensional structure, in
which linear increases in area map to non-linear perceptual distances.
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3.5 Data Processing

Our pairwise judgment tasks directly produce a distance matrix among
visual stimuli; we simply rescale the per-user ratings to the range [0,1].
For triplet judgments, we derive per-user kernels from a set of rank-
ordered triplets using generalized non-metric multidimensional scal-
ing [1]. In both cases, we then average the per-user kernels and re-
normalize the result to form an aggregate perceptual kernel.

To safeguard data quality, we use errant ratings of identical stimuli
pairs (both in the pairwise and triplet cases) to filter “spammers.” In
the pairwise cases, subjects were instructed to rate the similarity of
identical pairs as 0. They were also expected to match or filter identical
stimuli pairs in the triplet cases. We excluded the data from subjects
who failed in 40% or more of these judgments.

For spatial arrangements, we first pairwise align the response using
similarity transforms [19] and designate the one with the minimum
average alignment error as the reference. We then align all responses
to this reference arrangement, use in-plane Euclidean distances to con-
struct distance matrices for each subject, and then normalize the re-
sults. To combat spamming, we removed layouts whose alignment er-
ror was greater than a threshold of two standard deviations away from
the mean alignment error. Finally, we average the distance matrices
and normalize the result to obtain a perceptual kernel.

Throughout the paper, we present the resulting perceptual kernels
as matrix diagrams alongside a 2D projection obtained using multidi-
mensional scaling. These projections are intended to provide a more
intuitive, overall sense of the kernel. Note, however, that each pro-
jection is a lossy representation, in some cases providing only partial
insight into the kernel structure.

4 EXPERIMENT 1: UNIVARIATE KERNELS

In the first experiment, we estimated perceptual kernels for stimuli
that change only in one perceptual dimension (i.e., univariate visual
variables). We chose the visual variables shape, color, and size due
to their common use in practice. For values of shape and color, we
used Tableau’s default shape and color palettes, each of which has ten
values. We presented colors to subjects as rectangular chips, which is
customary in perceptual experiments. For the size variable, we used
ten circles with linearly increasing area.

4.1 Estimated Univariate Perceptual Kernels

Figure 10 visualizes the resulting kernels for each palette and judg-
ment type. We summarize specific results for each palette below.

4.1.1 Shape

Figure 1 shows a matrix and two-dimensional MDS projection of the
perceptual kernel estimated from distinct triplet (Td) judgments. The
MDS projection shows distinct perceptual shape clusters. Across all
kernels (Figure 10), we see strong groupings among triangles and
stroked shapes, and a looser cluster of other filled shapes.

4.1.2 Color

Figure 8 shows the matrix and two-dimensional MDS projection for
color values. From the MDS projection we readily see that subjects
judged color similarity primarily by hue and secondarily by lightness.

To further validate the crowd-estimated kernels, we can compare
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ponent L* and opponent color components a* and b*. CIEDE2000 is
a more complex color difference formula that was developed to bet-
ter fit empirical perceptual judgments than Euclidean LAB distances.
Heer and Stone [18] introduced distances based on color-name associ-
ations to reflect linguistic boundaries among colors. Here, we use the
Hellinger distance between multinomial color name probability distri-
butions estimated from the XKCD color naming survey [28].

Figure 9 compares the triplet matching (Tm) kernel with kernels
constructed using CIELAB, CIEDE2000 and color name distance [18]
distance measures. All kernels are strongly correlated, but we also see
some variation, consistent with the fact that longer distances in exist-
ing perceptual color spaces tend to be less accurate than short proximal
judgments. Interestingly, of the existing models color name distance
correlates most highly with the crowd-estimated kernel. We hypothe-
size that perceptual judgments from crowd participants are influenced
by color name associations in addition to lower-level features.

4.1.3 Size

As shown in Figure 10, of the three visual variables we considered,
size is the most robust across judgment task types. The MDS projec-
tion in Figure 11 clearly demonstrates a one-dimensional structure, in
which linear increases in area map to non-linear perceptual distances.
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3.5 Data Processing

Our pairwise judgment tasks directly produce a distance matrix among
visual stimuli; we simply rescale the per-user ratings to the range [0,1].
For triplet judgments, we derive per-user kernels from a set of rank-
ordered triplets using generalized non-metric multidimensional scal-
ing [1]. In both cases, we then average the per-user kernels and re-
normalize the result to form an aggregate perceptual kernel.

To safeguard data quality, we use errant ratings of identical stimuli
pairs (both in the pairwise and triplet cases) to filter “spammers.” In
the pairwise cases, subjects were instructed to rate the similarity of
identical pairs as 0. They were also expected to match or filter identical
stimuli pairs in the triplet cases. We excluded the data from subjects
who failed in 40% or more of these judgments.

For spatial arrangements, we first pairwise align the response using
similarity transforms [19] and designate the one with the minimum
average alignment error as the reference. We then align all responses
to this reference arrangement, use in-plane Euclidean distances to con-
struct distance matrices for each subject, and then normalize the re-
sults. To combat spamming, we removed layouts whose alignment er-
ror was greater than a threshold of two standard deviations away from
the mean alignment error. Finally, we average the distance matrices
and normalize the result to obtain a perceptual kernel.

Throughout the paper, we present the resulting perceptual kernels
as matrix diagrams alongside a 2D projection obtained using multidi-
mensional scaling. These projections are intended to provide a more
intuitive, overall sense of the kernel. Note, however, that each pro-
jection is a lossy representation, in some cases providing only partial
insight into the kernel structure.

4 EXPERIMENT 1: UNIVARIATE KERNELS

In the first experiment, we estimated perceptual kernels for stimuli
that change only in one perceptual dimension (i.e., univariate visual
variables). We chose the visual variables shape, color, and size due
to their common use in practice. For values of shape and color, we
used Tableau’s default shape and color palettes, each of which has ten
values. We presented colors to subjects as rectangular chips, which is
customary in perceptual experiments. For the size variable, we used
ten circles with linearly increasing area.

4.1 Estimated Univariate Perceptual Kernels

Figure 10 visualizes the resulting kernels for each palette and judg-
ment type. We summarize specific results for each palette below.

4.1.1 Shape

Figure 1 shows a matrix and two-dimensional MDS projection of the
perceptual kernel estimated from distinct triplet (Td) judgments. The
MDS projection shows distinct perceptual shape clusters. Across all
kernels (Figure 10), we see strong groupings among triangles and
stroked shapes, and a looser cluster of other filled shapes.

4.1.2 Color

Figure 8 shows the matrix and two-dimensional MDS projection for
color values. From the MDS projection we readily see that subjects
judged color similarity primarily by hue and secondarily by lightness.

To further validate the crowd-estimated kernels, we can compare
them to kernels derived from existing color models. CIELAB is an

Fig. 8: (a) A crowd-estimated perceptual kernel for the color palette.
The kernel was obtained using the triplet matching (Tm) task. (b) A
two-dimensional projection of palette colors obtained via multidimen-
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approximately perceptually uniform color space with a lightness com-
ponent L* and opponent color components a* and b*. CIEDE2000 is
a more complex color difference formula that was developed to bet-
ter fit empirical perceptual judgments than Euclidean LAB distances.
Heer and Stone [18] introduced distances based on color-name associ-
ations to reflect linguistic boundaries among colors. Here, we use the
Hellinger distance between multinomial color name probability distri-
butions estimated from the XKCD color naming survey [28].

Figure 9 compares the triplet matching (Tm) kernel with kernels
constructed using CIELAB, CIEDE2000 and color name distance [18]
distance measures. All kernels are strongly correlated, but we also see
some variation, consistent with the fact that longer distances in exist-
ing perceptual color spaces tend to be less accurate than short proximal
judgments. Interestingly, of the existing models color name distance
correlates most highly with the crowd-estimated kernel. We hypothe-
size that perceptual judgments from crowd participants are influenced
by color name associations in addition to lower-level features.

4.1.3 Size

As shown in Figure 10, of the three visual variables we considered,
size is the most robust across judgment task types. The MDS projec-
tion in Figure 11 clearly demonstrates a one-dimensional structure, in
which linear increases in area map to non-linear perceptual distances.
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Fig. 7: Visual stimuli overview. We asked subjects to consider and
compare the stimuli before starting the experimental task.

3.5 Data Processing

Our pairwise judgment tasks directly produce a distance matrix among
visual stimuli; we simply rescale the per-user ratings to the range [0,1].
For triplet judgments, we derive per-user kernels from a set of rank-
ordered triplets using generalized non-metric multidimensional scal-
ing [1]. In both cases, we then average the per-user kernels and re-
normalize the result to form an aggregate perceptual kernel.

To safeguard data quality, we use errant ratings of identical stimuli
pairs (both in the pairwise and triplet cases) to filter “spammers.” In
the pairwise cases, subjects were instructed to rate the similarity of
identical pairs as 0. They were also expected to match or filter identical
stimuli pairs in the triplet cases. We excluded the data from subjects
who failed in 40% or more of these judgments.

For spatial arrangements, we first pairwise align the response using
similarity transforms [19] and designate the one with the minimum
average alignment error as the reference. We then align all responses
to this reference arrangement, use in-plane Euclidean distances to con-
struct distance matrices for each subject, and then normalize the re-
sults. To combat spamming, we removed layouts whose alignment er-
ror was greater than a threshold of two standard deviations away from
the mean alignment error. Finally, we average the distance matrices
and normalize the result to obtain a perceptual kernel.

Throughout the paper, we present the resulting perceptual kernels
as matrix diagrams alongside a 2D projection obtained using multidi-
mensional scaling. These projections are intended to provide a more
intuitive, overall sense of the kernel. Note, however, that each pro-
jection is a lossy representation, in some cases providing only partial
insight into the kernel structure.

4 EXPERIMENT 1: UNIVARIATE KERNELS

In the first experiment, we estimated perceptual kernels for stimuli
that change only in one perceptual dimension (i.e., univariate visual
variables). We chose the visual variables shape, color, and size due
to their common use in practice. For values of shape and color, we
used Tableau’s default shape and color palettes, each of which has ten
values. We presented colors to subjects as rectangular chips, which is
customary in perceptual experiments. For the size variable, we used
ten circles with linearly increasing area.

4.1 Estimated Univariate Perceptual Kernels

Figure 10 visualizes the resulting kernels for each palette and judg-
ment type. We summarize specific results for each palette below.

4.1.1 Shape

Figure 1 shows a matrix and two-dimensional MDS projection of the
perceptual kernel estimated from distinct triplet (Td) judgments. The
MDS projection shows distinct perceptual shape clusters. Across all
kernels (Figure 10), we see strong groupings among triangles and
stroked shapes, and a looser cluster of other filled shapes.

4.1.2 Color

Figure 8 shows the matrix and two-dimensional MDS projection for
color values. From the MDS projection we readily see that subjects
judged color similarity primarily by hue and secondarily by lightness.

To further validate the crowd-estimated kernels, we can compare
them to kernels derived from existing color models. CIELAB is an

Fig. 8: (a) A crowd-estimated perceptual kernel for the color palette.
The kernel was obtained using the triplet matching (Tm) task. (b) A
two-dimensional projection of palette colors obtained via multidimen-
sional scaling of the perceptual kernel.
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approximately perceptually uniform color space with a lightness com-
ponent L* and opponent color components a* and b*. CIEDE2000 is
a more complex color difference formula that was developed to bet-
ter fit empirical perceptual judgments than Euclidean LAB distances.
Heer and Stone [18] introduced distances based on color-name associ-
ations to reflect linguistic boundaries among colors. Here, we use the
Hellinger distance between multinomial color name probability distri-
butions estimated from the XKCD color naming survey [28].

Figure 9 compares the triplet matching (Tm) kernel with kernels
constructed using CIELAB, CIEDE2000 and color name distance [18]
distance measures. All kernels are strongly correlated, but we also see
some variation, consistent with the fact that longer distances in exist-
ing perceptual color spaces tend to be less accurate than short proximal
judgments. Interestingly, of the existing models color name distance
correlates most highly with the crowd-estimated kernel. We hypothe-
size that perceptual judgments from crowd participants are influenced
by color name associations in addition to lower-level features.

4.1.3 Size

As shown in Figure 10, of the three visual variables we considered,
size is the most robust across judgment task types. The MDS projec-
tion in Figure 11 clearly demonstrates a one-dimensional structure, in
which linear increases in area map to non-linear perceptual distances.
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compare the stimuli before starting the experimental task.

3.5 Data Processing

Our pairwise judgment tasks directly produce a distance matrix among
visual stimuli; we simply rescale the per-user ratings to the range [0,1].
For triplet judgments, we derive per-user kernels from a set of rank-
ordered triplets using generalized non-metric multidimensional scal-
ing [1]. In both cases, we then average the per-user kernels and re-
normalize the result to form an aggregate perceptual kernel.

To safeguard data quality, we use errant ratings of identical stimuli
pairs (both in the pairwise and triplet cases) to filter “spammers.” In
the pairwise cases, subjects were instructed to rate the similarity of
identical pairs as 0. They were also expected to match or filter identical
stimuli pairs in the triplet cases. We excluded the data from subjects
who failed in 40% or more of these judgments.

For spatial arrangements, we first pairwise align the response using
similarity transforms [19] and designate the one with the minimum
average alignment error as the reference. We then align all responses
to this reference arrangement, use in-plane Euclidean distances to con-
struct distance matrices for each subject, and then normalize the re-
sults. To combat spamming, we removed layouts whose alignment er-
ror was greater than a threshold of two standard deviations away from
the mean alignment error. Finally, we average the distance matrices
and normalize the result to obtain a perceptual kernel.

Throughout the paper, we present the resulting perceptual kernels
as matrix diagrams alongside a 2D projection obtained using multidi-
mensional scaling. These projections are intended to provide a more
intuitive, overall sense of the kernel. Note, however, that each pro-
jection is a lossy representation, in some cases providing only partial
insight into the kernel structure.

4 EXPERIMENT 1: UNIVARIATE KERNELS

In the first experiment, we estimated perceptual kernels for stimuli
that change only in one perceptual dimension (i.e., univariate visual
variables). We chose the visual variables shape, color, and size due
to their common use in practice. For values of shape and color, we
used Tableau’s default shape and color palettes, each of which has ten
values. We presented colors to subjects as rectangular chips, which is
customary in perceptual experiments. For the size variable, we used
ten circles with linearly increasing area.

4.1 Estimated Univariate Perceptual Kernels

Figure 10 visualizes the resulting kernels for each palette and judg-
ment type. We summarize specific results for each palette below.

4.1.1 Shape

Figure 1 shows a matrix and two-dimensional MDS projection of the
perceptual kernel estimated from distinct triplet (Td) judgments. The
MDS projection shows distinct perceptual shape clusters. Across all
kernels (Figure 10), we see strong groupings among triangles and
stroked shapes, and a looser cluster of other filled shapes.

4.1.2 Color

Figure 8 shows the matrix and two-dimensional MDS projection for
color values. From the MDS projection we readily see that subjects
judged color similarity primarily by hue and secondarily by lightness.

To further validate the crowd-estimated kernels, we can compare
them to kernels derived from existing color models. CIELAB is an
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approximately perceptually uniform color space with a lightness com-
ponent L* and opponent color components a* and b*. CIEDE2000 is
a more complex color difference formula that was developed to bet-
ter fit empirical perceptual judgments than Euclidean LAB distances.
Heer and Stone [18] introduced distances based on color-name associ-
ations to reflect linguistic boundaries among colors. Here, we use the
Hellinger distance between multinomial color name probability distri-
butions estimated from the XKCD color naming survey [28].

Figure 9 compares the triplet matching (Tm) kernel with kernels
constructed using CIELAB, CIEDE2000 and color name distance [18]
distance measures. All kernels are strongly correlated, but we also see
some variation, consistent with the fact that longer distances in exist-
ing perceptual color spaces tend to be less accurate than short proximal
judgments. Interestingly, of the existing models color name distance
correlates most highly with the crowd-estimated kernel. We hypothe-
size that perceptual judgments from crowd participants are influenced
by color name associations in addition to lower-level features.

4.1.3 Size

As shown in Figure 10, of the three visual variables we considered,
size is the most robust across judgment task types. The MDS projec-
tion in Figure 11 clearly demonstrates a one-dimensional structure, in
which linear increases in area map to non-linear perceptual distances.
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Fig. 16: Shape, color and size palettes re-ordered to maximize perceptual discriminability according to triplet matching (Tm) kernels.

four clusters seen in Figure 1b. Our shape and color palettes have
been re-ordered such that more perceptually discriminable stimuli are
used first. Of course, this example considers only perceptual aspects,
assuming equivalent distances among input data values.

7.2 Visual Embedding

Perceptual kernels can also guide visual embedding [8] to choose en-
codings that preserve data-space distance metrics in terms of kernel-
defined perceptual distances. To perform discrete embeddings, we find
the optimal distance-preserving assignment of palette items to data
points (e.g., using simulated annealing or other optimization methods).

The scatter plot in Figure 9 compares color distance measures. The
plotting symbols were chosen automatically using visual embedding.
We use the correlation matrix between color models as the distances
in the data domain, and the triplet matching (Tm) kernel for the shape
palette as the distances in the perceptual range. This automatic assign-
ment reflects the correlations between the variables. The correlation
between CIELAB and CIEDE2000 is higher than the correlation be-
tween the triplet matching kernel and color names, and the assigned
shapes reflect this relationship perceptually. For example, the per-
ceptual distance between upward- and downward-pointing triangles
is smaller than the perceptual distance between circle and square.

In a second example, we use visual embedding to encode com-
munity clusters in a character co-occurrence graph derived from Vic-
tor Hugo’s novel Les Misérables. Cluster memberships were com-
puted using a standard modularity-based community-detection algo-
rithm (see [15]). For the data space distances, we count all inter-
cluster edges and then normalize by the theoretically maximal number
of edges between groups. To provide more dynamic range, we re-scale
these normalized values to the range [0.2,0.8]. Clusters that share no
connecting edges are given a maximal distance of 1. We then perform
separate visual embeddings using univariate color and shape kernels
(both estimated using triplet matching). As shown in Figure 17, the
assigned colors and shapes perceptually reflect the inter-cluster rela-
tions.

8 CONCLUSION

We introduce perceptual kernels, perceptual distance matrices formed
from aggregate similarity judgments. Through a set of crowdsourced
experiments, we compare the use of different judgment tasks to es-
timate perceptual distances. We find that ordinal triplet matching —
in which subjects are shown a triplet of stimuli and asked to choose
which of two items is more similar to a designated reference — exhibit
the least inter-subject variance, are less sensitive to subject count, and
enable the most accurate prediction of bivariate kernels from univari-
ate inputs. Pairwise Likert scale judgments also fare well, and in-
volve faster and cheaper experiments than triplet comparisons. Spatial
arrangement tasks, on the other hand, exhibit much higher variance
and can produce results inconsistent with existing perceptual models.
Based on these considerations, we recommend the use of triplet match-
ing judgments unless prohibited by issues of time or cost. We demon-
strate how perceptual kernels enable automated design by re-ordering
palettes to enhance discriminability and using visual embedding [8] to
assign visual stimuli to data points in a structure-preserving fashion.

Our results also have broader implications. Our analysis is relevant

Fig. 17: Graph of character co-occurrences in Les Misèrables, with
node colors and shapes automatically chosen via visual embedding to
reflect connection strengths between community clusters.

to the general problem of crowdsourcing similarity models [1, 20, 31,
44, 47], providing new evidence in support of triplet matching. The
poor performance of spatial arrangement (SA) also has implications
for existing visual analytics tools. Semantic interaction systems (e.g.,
ForceSPIRE [9]) use SA tasks to elicit domain expertise to drive mod-
eling and layout. Our results suggest that this mode of interaction may
engender significant variation among experts and provide insufficient
expressiveness for high-dimensional relations. Such tools may benefit
by incorporating alternative similarity judgment tasks.

With respect to future work, integrating perceptual kernels into vi-
sualization design tools is an important next step. Towards this aim,
we have made our perceptual kernels and experiment source code
publicly available at anonymized URL. While we focused on specific
shape, color, and size palettes, we plan to incorporate additional stim-
uli in each of these perceptual channels. Moreover, we can collect data
for other channels, such as opacity, orientation, and lightness. Future
work should also explore techniques for scaling to larger palettes, such
as partitioning and adaptive sampling [44].

Future research might also extend our approach to more situated
contexts. In this work we used direct measurement types, but it is pos-
sible to derive perceptual similarities through indirect judgments, such
as the time taken to complete low-level graph reading tasks. As visual
variables don’t live in isolation, how different contexts may bias judg-
ment remains an important concern. Gathering similarity judgments
within the presence of competing variables would be valuable for as-
sessing contextual effects. In the meantime, perceptual kernels provide
a useful operational model for incorporating empirical perception data
directly into visualization design tools.

designing palettes visual embedding
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Study Overview
Variables

 size-color
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 size

 shape-size 
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Platform
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Tableau

Tableau

Subjects
600 Turkers based in the US 

95% approval rate  

minimum 100 approved HITs

Tasks

pairwise-5 pairwise-9 triplet matching triplet discrimination manual spatial arrangement
L5 L9 SATm Td

reference

a b

a
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Univariate Perceptual Kernels
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Bivariate Perceptual Kernels

shape-color

shape-size

size-color

L5 L9 SA Tm Td
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Judgment Tasks
1.Pairwise rating on 5-point scale (L5) 

2.Pairwise rating  on 9-point scale (L9) 

3.Triplet ranking with matching (Tm) 

4.Triplet ranking with discrimination (Td) 

5.Spatial arrangement (SA)
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35



1. Pairwise rating on 5-point scale (L5)

Judgment Tasks
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2. Pairwise rating on 9-point scale (L9)

Judgment Tasks
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3. Triplet ranking with matching (Tm)

Judgment Tasks
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3. Triplet ranking with matching (Tm)

Judgment Tasks
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4. Triplet ranking with discrimination (Td)

Judgment Tasks
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5. Spatial arrangement (SA)

Judgment Tasks
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5. Spatial arrangement (SA)

Judgment Tasks
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Perceptual Kernels & 
Models of Perception 
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Fig. 10: Experiment 1 Results. Univariate perceptual kernels for shape, color and size palettes across different judgment types. Darker colors
indicate higher perceptual similarity. For each palette, the matrices exhibit consistent structures across judgment types.

Fig. 11: (a) A crowd-estimated perceptual kernel for the size palette.
(b) A two-dimensional projection of size values obtained via multidi-
mensional scaling of the perceptual kernel.
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Fig. 12: Stevens’ Power Law fits to kernel-estimated area magnitudes.

Non-linearity of area judgments is consistent with perceptual models
such as the Weber-Fechner Law [10] and Stevens’ Power Law [39].
Stevens posits a power-law relationship between the magnitude of a

physical stimulus and its perceived intensity: S ∼ Iβ , where S and I
are the sensed and the true intensities, respectively.

Figure 12 shows Stevens’ Power Law fits and corresponding ex-
ponent values for each judgment type. Pairwise and triplet kernels
result in exponents consistent with the literature on area estimation
(0.7-0.8). For spatial arrangement (SA) we find an exponent larger
than one, which is inconsistent with prior work. To compute these fits,
we calculated individual area estimates from each row of the kernel,
treating the diagonal value as a reference. We then averaged the re-
sulting magnitude estimates and directly perform least-squares fitting
of the power law exponent. We constrain the lowest and highest ar-
eas to their true values, as the full palette was known to subjects from
the outset. However, the resulting exponents are robust across such
modeling decisions.

5 EXPERIMENT 2: BIVARIATE KERNELS

In the second experiment, we estimated perceptual kernels for stimuli
that change in two perceptual dimensions (i.e., bivariate visual vari-
ables). We chose four elements from each of the univariate palettes and
used their pairwise combinations to create three bivariate palettes with
16 values: color-shape, color-size, and shape-size (Figure 2). To test
interactions among perceptual dimensions, we intentionally included
both highly similar and highly dissimilar values from the univariate
palettes (e.g., two small sizes and two large sizes).

We did not use the complete set of elements from the univariate
palettes, as this would cause the bivariate palettes to become too large
to practically run our experiments. A bivariate variable with 100 val-
ues requires rating 4,950 (=100 × 99/2) pairs. As discussed previ-
ously, this number is even larger when using triplet ratings.

5.1 Estimated Bivariate Perceptual Kernels

Figure 13 visualizes the estimated bivariate kernels for each palette
and judgment type. Figure 14 shows both kernels and two-dimensional
MDS plots for triplet matching (Tm) judgments. In most cases we ob-
serve balancing among visual variables: large distances in one variable

Size (Tm)

Consistent  with Stevens’ Power Law!

perceptual kernel 2D projection
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Stevens’ Power Law  

I ∼ M β

True Magnitude (M)

Perceived 
Intensity (I)
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dependent 
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(β=3.5) (β=1.1)

(β=0.5)
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Stevens’ Power Law Fit
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3) Assess using existing models

I ∼ M β

Stevens’ Power Law

CONTRIBUTIONS
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faster & cheaper than triplet comparisons

Manual spatial arrangement (SA) 
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high variance, high sensitivity
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lowest variance,  most robust,  shortest unit
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CONCLUSIONS

Perceptual Kernels 
operational model

Use ordinal triplet matching 
unless prohibited by time & cost

Avoid manual spatial arrangement 

Read the paper
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Data Processing
Pairwise judgments 

Produce a distance matrix directly 

Identical pairs to detect spammers 

Triplet judgments  

Generalized non-metric multidimensional scaling 

Use triplets with two identical elements to detect 
spammers 

Spatial arrangements 

Align to a reference and filter-out the outliers 

Planar Euclidean distances produce a distance matrix
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Palette Design

Learning Perceptual Kernels for Visualization Design

Anonymous

Abstract—Visualization design benefits from careful consideration of perception, as different assignments of visual encoding vari-
ables such as color, shape and size affect how viewers interpret data. In this work, we introduce perceptual kernels: distance
matrices derived from aggregate perceptual judgments. Perceptual kernels represent perceptual differences between and within
visual variables in a reusable form that is directly applicable to visualization evaluation and automated design. We report results
from crowdsourced experiments to estimate kernels for color, shape, size and combinations thereof. We analyze kernels estimated
using five different judgment types — including Likert ratings among pairs, ordinal triplet comparisons, and manual spatial arrange-
ment — and compare them to existing perceptual models. We derive recommendations for collecting perceptual similarities, and then
demonstrate how the resulting kernels can be applied to automate visualization design decisions.

1 INTRODUCTION

Visual encoding decisions are central to visualization design. As view-
ers’ interpretation of data may shift across encodings, it is important
to understand how choices of visual encoding variables such as color,
shape, size — and their combinations — affect graphical perception.

One way to evaluate these effects is to measure the perceived sim-
ilarities (or conversely, distances) between visual variables. There are
various ways of eliciting similarity judgments among visual variables.
We broadly refer to subjective measures of judged similarity as per-
ceptual distances. In this context, a perceptual kernel is the distance
matrix of aggregated pairwise perceptual distances. These measures
quantify the effects of alternative encodings and thereby help to create
visualizations that better reflect structures in data. Figure 1a shows a
perceptual kernel for a set of symbols; distances are visualized using
grayscale values, with darker cells indicating higher similarity. The
prominent clusters suggest that users will perceive similarities among
shapes that may or may not mirror encoded data values.

Perceptual kernels can also benefit automated visualization design.
Typically, automated design methods [27] leverage an effectiveness
ranking of visual encoding variables with respect to data types (nom-
inal, ordinal, quantitative). Once a visual variable is chosen, these
methods provide little guidance on how to best pair data values with
visual elements, instead relying on default palettes for variables such
as color and shape. Perceptual kernels provide a means for computing
optimized assignments to visual variables whose perceived differences
are congruent with underlying distances among data points. In short,
perceptual kernels enable the direct application of empirical percep-
tion data within visualization tools.

In this work, we contribute the results of crowdsourced experiments
to estimate perceptual kernels for visual encoding variables of shape,
size, color and combinations thereof. We compare a variety of judg-
ment types: Likert ratings among pairs, ordinal triplet comparisons,
and manual spatial arrangement. We also assess the resulting kernels
via comparisons to existing perceptual models. We find that ordinal
triplet matching judgments provide the most consistent results, albeit
with higher time and money costs than pairwise ratings or spatial ar-
rangement. We then demonstrate how perceptual kernels can be ap-
plied to improve visualization design through automatic palette opti-
mization and by providing distances for visual embedding [8] of data
points into visual spaces.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Fig. 1: (Left) A crowd-estimated perceptual kernel for a shape palette.
The kernel was obtained using a pairwise rating task on a Likert scale
of 9. (Right) A two-dimensional projection of the palette shapes ob-
tained via multidimensional scaling of the perceptual kernel.

2 RELATED WORK

We draw on prior work in similarity judgments, interactions among
perceptual dimensions, graphical perception and automated design.

2.1 Analysis of Perceptual Similarity Judgments

Prior research has analyzed similarity judgments to model perceptual
spaces. Measurement methods involve asking subjects to rate or match
multiple stimuli. One approach is to ask subjects to rate the perceived
similarity of visual stimulus pairs using numbers on a specified numer-
ical scale (such as a Likert scale). However, pairwise scaling can cog-
nitively overload subjects and differences between subjects may con-
found analysis. These issues led to the use of simpler discrimination
tasks involving ordinal judgments. Consider matching judgments over
triplets: “Is A more similar to B than it is to C?” Ordinal judgments
on triplets have been found more reliable and robust [20]. However,
the number of pairs and triplets increases quadratically and cubically,
respectively, with the number of visual stimuli. The method of spatial
arrangement, where subjects rearrange stimuli in the plane such that
their proximity is proportional to their similarity, was proposed as an
efficient alternative [12]. In our experiments, we use direct judgment
types, including Likert ratings among pairs, ordinal triplet rankings,
and manual spatial arrangement.

Similarities may also be indirectly inferred from measurements
such as subject response time (confusion time) or manual cluster-
ing [12]. For example, use of response time assumes that the simi-
larity between two stimuli is related to the probability of confusing
one with the other. Subjects are asked to quickly decide whether two
given stimuli are the same; it is assumed that they take more time if the
stimuli are more similar. In a clustering measure, subjects are asked to
group given stimuli. It is assumed that the frequency with which two
stimuli are placed in the same group is proportional to their similarity.
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Manually designed with perceptual 
considerations in mind  

discriminability, saliency and naming 
of colors, robustness to spatial 
overlap of shapes 

Provides 
ecological validity and good baseline
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Per-subject SAs: size

The layout with gray background  is the 
medoid of the layouts in affine space. 
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Why SA Performs Poorly?
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Unstructured nature, leading to higher 
variance across subjects 

Expressivity limited to two dimensions 
expression of perceptual structures. 

Why SA Performs Poorly?
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It involves a binary decision (vs. trinary)  

Detects more fine-grained similarities
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Univariate Perceptual Kernels with MDS Projections*
L5 L9 SA Tm Td

*For each 
visual variable,  
projections are 
aligned to the 
projection of 
the L5 kernel 81



Bivariate Perceptual Kernels with MDS Projections
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Bivariate Perceptual Kernels with 3D MDS Projections
L5 L9 SA Tm Td
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kernel	
  
(L5) CIELAB CIEDE2000 Color	
  

Names
kernel	
  
(L9) CIELAB CIEDE2000 Color	
  

Names
kernel	
  
(SA) CIELAB CIEDE2000 Color	
  

Names

kernel	
  (L5) 1.00 0.67 0.59 0.76 kernel	
  (L9) 1.00 0.77 0.66 0.79 kernel	
  (SA) 1.00 0.23 0.09 0.45

CIELAB 0.67 1.00 0.88 0.82 CIELAB 0.77 1.00 0.88 0.82 CIELAB 0.23 1.00 0.88 0.82

CIEDE2000 0.59 0.88 1.00 0.77 CIEDE2000 0.66 0.88 1.00 0.77 CIEDE2000 0.09 0.88 1.00 0.77
Color	
  
Names 0.76 0.82 0.77 1.00 Color	
  

Names 0.79 0.82 0.77 1.00 Color	
  
Names 0.45 0.82 0.77 1.00

	
  

kernel	
  
(Tm) CIELAB CIEDE2000 Color	
  

Names
kernel	
  
(Td) CIELAB CIEDE2000 Color	
  

Names
kernel	
  
(Tm) 1.00 0.68 0.60 0.76 kernel	
  (Td) 1.00 0.69 0.51 0.72

CIELAB 0.68 1.00 0.88 0.82 CIELAB 0.69 1.00 0.88 0.82

CIEDE2000 0.60 0.88 1.00 0.77 CIEDE2000 0.51 0.88 1.00 0.77
Color	
  
Names 0.76 0.82 0.77 1.00 Color	
  

Names 0.72 0.82 0.77 1.00

Comparison of Perceptual Kernels with  
Color Models: Rank Correlation Matrices 
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Comparison of Perceptual Kernels with Color Models
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entries indicate higher correlations)
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Comparison of Perceptual Color Kernels  
with Color Models

The palette shapes representing the models  are chosen automatically  with visual 
embedding (using the triplet matching kernel). They reflect the correlations between the 
variables. For example the correlation between the CIELAB and CIEDE2000 is higher than 
the correlation between the perceptual kernels and color names and the assigned shapes 
reflect this relationship perceptually. 
    
All projections are aligned to the CIELAB projection in the plane using similarity 
transformations 86



Per-subject SAs: size

The layout with gray background  is the 
medoid of the layouts in affine space. 
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Per-subject SAs: shape
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Per-subject SAs: color
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Per-subject SAs: shape-color
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Per-subject SAs: shape-size
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Per-subject SAs: size-color
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