Designing and Deploying Online Field Experiments

Eytan Bakshy*
Dean Eckles*
Michael S. Bernstein**

*Facebook

**Stanford

WWW 2014 April 10, 2014

Outline

- Motivation
 - Why run experiments?
 - Problems with running experiments
- Designing experiments with PlanOut
- Deploying experiments:
 - Logging and analysis
 - Management and iterative experimentation
- Discussion

Motivation

Goals

Test complete alternatives

News Feed (2011)

News Feed (2014)

Explore a design space

News Feed (2011)

News Feed (2014)

Understand tradeoffs

Understand tradeoffs

Passive sharing (old sharing model)

Active sharing (new sharing model)

Attribute outcomes to causes

non-social ad

social ad

Attribute outcomes to causes

1 liking friend 0 friends shown

1 liking friend1 friend shown

Experiments can be hard

Organizational problems

- Multiple simultaneous experiments
 - Sometimes need to iterate
- Not clear how to manage changes to experiments
 - Changing experiments breaks randomization

Engineering problems

- Experimental logic is embedded in application code
 - Distributed logic makes experiments brittle
 - Difficult to understand for those who didn't write the code
- Difficult to run experiments on multiple platforms

Parameterization of user experiences

font size

padding

number of social cues

PlanOut

PlanOut scripts are high-level descriptions of randomized parameterizations

The PlanOut idea

- User experiences are parameterized by experimental assignments
- PlanOut scripts describe assignment procedures
- Experiments are PlanOut scripts plus a population
- Parallel or follow-on experiments are centrally managed

Sample PlanOut script

```
button_color = uniformChoice(
  choices=["#ff0000", "#00ff00"],
  unit=userid);

button_text = uniformChoice(
  choices=["I'm voting", "I'm a voter"],
  unit=userid);
```

2x2 factorial design

Compiled PlanOut code

```
"op": "seq",
                                        "op": "set",
"seq": [
                                        "var": "button_text",
                                        "value": {
    "op": "set",
                                           "choices": {
    "var": "button_color",
                                             "op": "array",
    "value": {
                                             "values": [
      "choices": {
                                               "I'm voting",
        "op": "array",
                                               "I'm a voter"
        "values": [
          "#ff0000",
          "#00ff00"
                                           "unit": {
                                             "op": "get",
                                             "var": "userid"
      "unit": {
        "op": "get",
                                           "op": "uniformChoice"
        "var": "userid"
      "op": "uniformChoice"
```

PlanOut code is portable

PlanOut code can be generated by GUIs

How does it work?

```
e = getExp('share_dialog', userid=20)
button_color = e.get('button_color')
```

retrieve experiment script

```
button_color = weightedChoice(
  choices=["#ff0000", "#00ff00"],
  weights=[0.2, 0.8], unit=userid);
```

construct hash string

share_dialog.button_color.20

f(SHA1(str))

"#ff0000"

Examples of PlanOut experiments

What is the marginal effect of social cues on an action?

Social cues experiment

Social cues experiment


```
Clifton , Joey and like Tough Mudder.

TOUGH TOUGH Like
```

```
num_cues = randomInteger(
    min=1, max=min(length(liking_friends), 3),
    unit=[userid, pageid]);
```

Social cues experiment


```
Clifton , Joey and like Tough Mudder.

TOUGHT Like
```

```
num_cues = randomInteger(
    min=1, max=min(length(liking_friends), 3),
    unit=[userid, adid]);

friends_shown = sample(
    choices=liking_friends, draws=num_cues,
    unit=[userid, adid]);
```

How can we increase voting?

Can we motivate voter turnout by invoking the self?

Tell friends you're voting in the 2012 Election and find out where to vote.

Find My Polling Place

Adam, Adam and 4 others are voters in this election.

It's Election Day

Banner exposure

to vote.

I'm Voting

User action

Find My Polling Place

Intensity of social cues

See 63 more posts from Vicki Mizell Sciolaro, Andy Harbath and 61 others

Like - Comment - Share - 2 minutes ago - 18

News Feed exposure

	Has banner	No banner
Has feed stories	2%	1.5%
No feed stories	95%	1.5%
(sum)	97%	3%

```
has_banner = bernoulliTrial(
   p=0.97, unit=userid);

cond_probs = [0.5, 0.98];

has_feed_stories = bernoulliTrial(
   p=cond_probs[has_banner], unit=userid);
```

To what extent does feedback affect content production?

Fact:

Collapsing comment boxes modulates feedback

Expanded comment box

Collapsed comment box

Lower interaction rate

Higher interaction rate

Effect of feedback on content production

```
prob_collapse = randomFloat(
  min=0.0, max=1.0, unit=sourceid);
```

Effect of feedback on content production

```
prob_collapse = randomFloat(
   min=0.0, max=1.0, unit=sourceid);

collapse = bernoulliTrial(
   p=prob_collapse, unit=[storyid, viewerid]);
```

- Simple: prob_collapse vs content production
- Fancy (2SLS): production ~ comments; comments ~ prob_collapse

Logging and analysis

```
e = getExp('share_dialog', userid=20)
```

```
button_color = e.get('button_color')
```

trigger auto exposure log

```
"inputs": {
 "userid": 20
"name": "sharing dialog",
"params": {
  "button color": "#ff0000",
  "button text": "Share with others"
"time": 1396507677,
"salt": "sharing dialog",
"event": "exposure"
```

```
e = getExp('share_dialog', userid=20)
```

```
e.log_event('button_click')
```

log event

```
"inputs": {
 "userid": 20
"name": "sharing dialog",
"params": {
 "button color": "#ff0000",
  "button text": "Share with others"
"time": 1396507677,
"salt": "sharing dialog",
"event": "button click"
```

exposure log

metrics

event log

outcomes joined with exposure log

Hive + R

automatic analysis

SQL + D3

graphical interfaces

e.g. relative change + confidence intervals

results can be looked up by experiment name

Managing and analyzing related experiments

Namespaces: a way of managing experiments

```
e = getExp('share_dialog', userid=20)
      button_color = e.get('button_color')
  Hash userid to a NS-specific segment number
segment to experiment mapping
 Exp 1
              Exp 2
                            Default value store
   log + return values
                               return values
```

Deploying iterative experiments

week 1: launch initial PlanOut script with many conditions week 2: launch same script with more segments

segments

week 4: launch new script with fewer conditions, more segments

Best practices for iterative experiments

- Use namespaces for all experiments
- Changes to experiments done through launching new experiments
- Follow-on experiments analyzed separately
- Pool results of related experiments with care*

*cf. Statistical Inference in Two-Stage Online Controlled Experiments with Treatment Selection and Validation. Deng, Li, Guo. WWW 2014.

Recap

- Experiments are useful for knowledge building
- PlanOut supports good experiments
 - Focuses experimenters on parameters
 - Makes it easy to run complex studies
- Management frameworks prevent you from shooting yourself in the foot

Use PlanOut

http://facebook.github.io/planout

> easy_install planout

Thank you!

Coauthors

Dean Eckles

Michael Bernstein

 Special thanks: Daniel Ting, Wojtek Galuba, Breno Roberto, Wesley May