
Stanford Computer Science Technical Report, CSTR 2009-02

Image-Based Exploration of Massive Online Environments
Siddhartha Chaudhuri Daniel Horn Pat Hanrahan Vladlen Koltun

Stanford University ∗

Figure 1: Two scenes rendered interactively over a broadband network on commodity hardware. (Left and center) A 25-billion polygon,
10,000 km2 Earth-like scene. (Right) A fully three-dimensional scene with 3 billion polygons.

Abstract
This paper presents a system for interactive exploration of massive,
detailed virtual environments over a broadband network. We build
upon the hierarchical image-based framework pioneered by Shade
et al. [1996] and Schaufler and Stürzlinger [1996], introducing key
adaptations for scalability. A cluster of servers maintain a hierarchy
of depth images of bounded regions of the scene. A client displays
the scene using a logarithmic set of depth images that can be main-
tained under constant bandwidth independent of scene size. We
report on techniques used to overcome the daunting visual quality
issues encountered with image-based rendering of general unstruc-
tured scenes with billions of polygons on commodity hardware over
a wide-area network. Experimental results are reported on scenes
that exemplify the extreme demands of large-scale online worlds.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics;

Keywords: network graphics, image-based rendering, depth im-
ages, orthoviews, splatting, massive virtual environments

1 Introduction
Detailed three-dimensional models of vast geographic environ-
ments are becoming common. Services such as Google Earth and
Microsoft Virtual Earth provide large geo-referenced databases of
imagery and terrain data, and three-dimensional models of build-
ings and vegetation are rapidly being integrated [Google Inc. 2008].
Semi-autonomous modeling of extended urban areas is now within
reach [Bosse et al. 2004; Thrun and Montemerlo 2005]. Online
worlds that do not correlate with real spaces already host large
numbers of participants [Miller 2007]. Such worlds now contain
hundreds of thousands of continuous acres covered with detailed
user-generated architecture and flora.

A critical bottleneck in engineering such systems is the display
of complex 3D environments to many simultaneous users in real
time over the Internet. Popular virtual worlds contain terabytes of
data and are far too large to fit on any single machine. Further, they
change over time and contain many different types of objects. A
common solution in practice is to transmit and display only nearby
objects. The typical cutoff radius is a few hundred meters or less,
and the abrupt transition to empty space is frequently obscured by
fog. This hinders participants’ experience by precluding long or
panoramic views and limits the visual impact of the worlds.

∗e-mail:{sidch,danielrh,hanrahan,vladlen}@cs.stanford.edu

The computer graphics research community has advanced a va-
riety of promising approaches to the display of large environments.
Our application scenarios feature a combination of extreme scale
and complexity, large numbers of distinct heterogeneous objects,
and high visibility (see Figure 1). These factors conspire against
exclusive reliance on visibility preprocessing, geometric simpli-
fication, and impostors. They also limit the applicability of ap-
proaches specialized for urban models and terrains [Cignoni et al.
2007; Losasso and Hoppe 2004].

This paper evaluates the suitability of hierarchical image-based
rendering [Shade et al. 1996; Schaufler and Stürzlinger 1996] for
handling massive online worlds. The first contribution of our work
is adapting the framework to guarantee performance under limited
bandwidth. To this end, each cell in the hierarchy contains image-
based representations of only the corresponding bounded region of
the scene, and the representations are collectively valid for all pos-
sible viewpoints. Our second major focus is high visual quality.
We thus undertake a systematic exploration of the visual artifacts
stemming from the large-scale use of image-based rendering. We
report practical approaches to handling these issues, including a
method for splatting depth images representing large collections of
heterogenous objects.

The main contribution of our work is demonstrating the viability
of image-based rendering at previously unseen scales. We evaluate
the system on a 10,000km2 model with 25 billion polygons. The
model depicts a realistic Earth-like environment with sea and land-
masses covered by forests and cities. To the best of our knowledge,
this is the largest pre-modeled general environment reported in the
literature of online exploration to date1. We also report results on
a fully three-dimensional test scene, consisting of about 30,000 ob-
jects, each with roughly 100,000 polygons.

2 Related Work
Image-based systems. Shade et al. [1996] and Schaufler and
Stürzlinger [1996] represent a scene with a hierarchy of image-
based impostors. Impostors are periodically recomputed to remain
valid for the current viewpoint. More distant impostors can be re-
computed less frequently. Chang et al. [1999] use Layered Depth
Images (LDIs) [Shade et al. 1998] in each cell of the hierarchy.
By eliminating parallax error and reducing disocclusion artifacts,
LDIs can be valid for a greater range of possible viewpoints. Max

1Note the contrast to instance-based worlds of Wand et al. [2001] and
systems such as Google Earth that focus on terrain and nearby objects.

1

Stanford Computer Science Technical Report, CSTR 2009-02

[1996], in the context of tree rendering, suggests using multiple
images to cover the full range of possible viewing directions – an
insight adopted by our system.

Aliaga et al. [1999] describe the landmark Massive Model Ren-
dering system (MMR), which divides the scene into a grid of cells
and represents the distant parts of the scene, as seen from the cen-
ter of a cell, with a cubemap of six textured depth meshes [Darsa
et al. 1998; Sillion et al. 1997]. A bottleneck of the system for our
application domain is the preprocessing load: Each per-cell set of
textured depth meshes represents the entire scene and generating
these sets for all cells takes quadratic time.

Some methods take the particular scene geometry into account in
positioning images. Architectural walkthroughs can be accelerated
by placing impostors for regions visible through portals [Rafferty
et al. 1998]. More generally, Aliaga and Lastra [1999] selectively
replace octree cells with images to guarantee a minimum framerate.
Jeschke et al. [2005] reduce redundancy by noting that impostors
for more distant cells are valid over a greater range of viewpoints.
Cignoni et al. [2007] introduced BlockMaps for urban models.

Wilson and Manocha [2003] choose viewpoints to maximally
capture portions of the scene invisible from previously selected
ones. The depth buffers of images rendered from previous view-
points are used to approximate the “known” portions of the scene.

The priority rendering approach of Regan and Pose [1994] ob-
served that distant environment maps can be rendered less fre-
quently than those up close, implying a constant number of updates
at constant velocity. Similar arguments apply to mipmaps [Tanner
et al. 1998].

Other rendering acceleration techniques. Geometric
level-of-detail techniques [Luebke et al. 2002] produce coarse rep-
resentations for distant objects. The method has been success-
fully applied to terrains: mipmapped textures [Williams 1983] cou-
pled with clipmaps for prefetching and culling [Tanner et al. 1998;
Losasso and Hoppe 2004] make it possible to explore the Earth’s
terrain in real-time.

Airey et al. [1990] and Teller and Séquin [1991] pioneered vis-
ibility culling algorithms for architectural models. A long line of
research pursues visibility techniques for urban environments, cul-
minating with the approach of Leyvand et al. [2003]. Cohen-Or et
al. [2003] provide an excellent survey.

Point-based systems [Rusinkiewicz and Levoy 2000] handle
huge models in real time by sampling points from the surfaces of
the models. Rusinkiewicz and Levoy [2001] also develop view-
dependant progressive transmission that adapts point-based meth-
ods for remote rendering. Wand et al. [2001] randomly sample and
render triangles from the scene.

Remote rendering. As model size increases, the server may
take on some rendering tasks to ease the load on the client. Schmal-
stieg [1997] performs culling and occlusion detection on the server.
Mann and Cohen-Or [1997] and Yoon and Neumann [2000] present
image-based approaches to remote rendering. Schmalstieg and Ger-
vautz [1996] and Teler and Lischinski [2001] consider bandwidth-
limited remote walkthroughs and develop heuristics to guide the
transmission of geometry.

3 Assumptions and Properties
The following assumptions underlie some of our design choices.

Steady world. We assume that most spatially significant objects
(mountains, buildings, large vegetation, etc.) are not in continu-
ous motion. This is a well-established assumption in online explo-
ration of massive environments and reflects the evident realities of
the physical world. Our system does support a bounded quantity
of moving objects, which are simply rendered as geometry.

Bounded velocity. To maintain a seamless view over constant
network bandwidth, the participant’s movement speed must be
bounded. In our system the velocity limit grows exponentially
as the participant moves away from geometric detail, allowing
rapid zooming towards and away from populated regions. Speeds

beyond the limit are also supported, but visual quality degrades
correspondingly.

Bounded density. The world can grow to arbitrary size, but the lo-
cal complexity of geometry must be bounded by a constant. This
means that the density of geometry in any particular area (say,
number of polygons within a cubic meter) cannot exceed a cer-
tain threshold. This is again an accepted assumption in the online
exploration literature [Polis et al. 1995]. It guarantees a bound
on the amount of local geometry (within a fixed radius around the
viewpoint) that can be reached in a unit of time within the velocity
bound.

Our system has the following properties, which are not together
present in any previous work.

– It is appropriate for worlds with fine detail at large scales.
– It can accommodate any environment, not just special classes such

as urban models and terrains. It can handle an unstructured and
unpredictable variety of geometric content. Virtually no human
intervention is required to adapt the algorithm to the specific struc-
ture of the scene.

– The server-side storage overhead is comparable to or smaller than
the original world data.

– Server-side preprocessing takes linear time. It is easily paralleliz-
able on commodity clusters.

– Changes to the environment are quickly and efficiently processed
and the update can be transmitted to clients within a short (though
not real-time) period of time.

– The required bandwidth is bounded as a function of maximal user
velocity and is independent of the size of the world. In practice,
the consumed bandwidth is only fractionally larger than the band-
width required to maintain nearby geometry.

– The lighting and shading of the environment can be customized
in real time on any individual client (Figure 3).

Figure 3: Different client-side lighting for the same environment.

4 System Architecture
Our system has a distributed client-server architecture, in which
each client renders its view of the world using geometry for nearby
objects and a set of depth images for more distant ones.

4.1 Server
The server-side preprocessing partitions the world geometry into
a regular grid of cells. These cells form the leaves of an octree.
The subdivision can have different levels along different axes if the
environment has different extent along them.

The model is distributed among available server nodes for pre-
processing. Each of n servers is responsible for a collection of sub-
trees that represent 1/n-th of the world.

For each cell of the octree, the preprocessing creates ortho-
graphic depth images, or orthoviews, of the cell’s content from a
number of canonical directions. Computation and storage costs in-
crease linearly with the number of directions, hence we strive to
keep this number small. We use a subset of the principal directions
of a cube, namely {−1, 0,+1}3 \ {0, 0, 0}. For our test scenes this
provides good visual quality (Figure 5). This choice would not be
suitable for some environments, like a regular grid of objects where
the axes of maximum occlusion are precisely these principal direc-
tions: for such scenes a different set of canonical directions would

2

Stanford Computer Science Technical Report, CSTR 2009-02

Figure 2: An overview of the system.

be chosen. Verifying that the utilized set of canonical directions is
appropriate for a given environment is one of the few responsibili-
ties of the system operator.

Orthoviews have color, depth and normal components. Their res-
olution is determined as follows. Assume that ignoring occlusion,
each visible surface is seen along some canonical direction at an an-
gle of at most θ from the perpendicular (e.g. the face views of the
cube give θ ≈ 55 degrees). Let a leaf cell have linear extent s, the
nearest objects displayed via depth images be at distance r, and the
output resolution be p× p pixels for a field-of-view of (horizontal)
angle α. An orthoview resolution of q × q pixels, where

q =
p

cos θ
× s

2 r tan α
2

,

implies that adjacent orthoview pixels for a surface sampled at an-
gle θ from the perpendicular reproject to adjacent pixels on the out-
put display.

Orthoviews for leaf cells are created on the respective servers
by rendering the contents of each cell from geometry. The render-
ing is done with no shading, to allow customized shading on the
client side. The server node reads in the model for a cell, renders
the orthoviews, and then compresses and writes them to permanent
storage.

Orthoviews for non-leaf cells are created from their children us-
ing 2D compositing (Figure 4). Consider a cell that is part of a
subtree handled by a single server. To create an orthoview from a
particular projection direction, the corresponding orthoview images
from the eight children cells are composited. The resulting image
has the same resolution as the original eight but covers twice as
much of the world along each axis. The depth of an output pixel
is the closest of the depths of all candidate pixels intersecting its
projected area in the source images; the color and normal are inter-
polated from unoccluded candidates within a threshold depth of the
closest (see Figure 4).

This compositing can be performed efficiently in graphics hard-
ware. We set up a double-size output buffer, representing the par-
ent’s image space. For each child orthoview, we render an axis-
aligned quad parallel to the image plane. The quad covers half of
the output buffer along each axis. When rasterized, its fragments
correspond bijectively to pixels in the child orthoview. We adjust
the depth of each fragment to locate it correctly in the parent’s pro-
jection volume, and assign it the corresponding color and normal.
This procedure automatically removes hidden pixels. The result is
a double-size depth image that we downsample. Each 2x2 block of
pixels maps to a single output sample that is assigned depth, color,
and normal as described above.

Orthoviews for the highest-level cells that transcend server
boundaries are assembled analogously, the only distinction being
that images are exchanged using a network linking the servers.
Each high-level cell is assigned in a bottom-up process to a server
that handles one of the children cells. Since the highest levels of
a hierarchy contain exponentially fewer nodes than the lower ones,
this final stage is orders of magnitude faster than the intra-server
assembly of lower levels.

Scalability. For a leaf node, a block of geometric data is loaded
and its orthoviews are rendered exactly once. For higher-level
nodes, orthoviews are composited rapidly using image-based op-
erations. The entire preprocessing step takes linear time and the
generated images consume linear space.

By traversing the tree depth-first and caching data on the current
path to the root in main memory, each orthoview is written to per-
manent storage exactly once, never reloaded from it, and transmit-
ted across a network connection at most once (during the top-level
inter-server assembly). At any moment, the number of orthoviews
in a server’s main memory is proportional to the height of the sub-
tree assigned to it; hence the maximum RAM consumed by a server
process is logarithmic in the extent of the scene. The time and per-
manent storage requirements per server are inversely proportional
to the number of servers.

Updates. When the model changes locally, the orthoview hier-
archy can be quickly updated, since only images on paths from af-
fected cells to the root need to be recomputed. If the octree has n
leaf cells, of which k are affected by the change, the time taken to
update the orthoviews is O(k logn). If the leaf cells are contigu-
ous, this update time is O(k + logn).

(a)

(b)

Figure 4: (a) Child orthoviews are composited to form the par-
ent orthoview. (b) A parent pixel (right) is assigned the minimum
depth of child pixels (left) projecting onto it, and the average color
and normal of the children in its four quadrants that are within a
threshold depth ∆z of the minimum.

3

Stanford Computer Science Technical Report, CSTR 2009-02

(a) (b) (c)

(d) (e) (f)

Figure 5: Varying the number of orthoviews. (a) A view rendered
with 5 available canonical projections per cell, showing severe dis-
occlusion artifacts. (b) 9 canonical projections perform consid-
erably better. (c) A reference image rendered from geometry. Note
that this is a particularly challenging scene with many long, narrow
spaces between buildings. (d) 2, (e) 3, and (f) 5 orthoviews selected
per cell by the client, from a maximum of 9 canonical projections.
Disocclusion errors from the use of just 2 orthoviews (highlighted
in pink) are largely solved by adding a third view. Additional views
yield small improvements.

4.2 Client
A client renders all objects within a fixed radius r around the view-
point as geometry. r is the minimum distance at which an orthoview
pixel (ignoring surface orientation) projects to a single pixel in the
final image. Thus all objects within a certain radius have guaran-
teed image quality. The rest of the world is displayed by rendering
a small number of orthoviews (3 by default, see Figure 5) for each
cell in a set of octree cells. The orthoviews are chosen to make
small angles with the viewing direction. For constant angular reso-
lution, the number of relevant cells from each level of the hierarchy
is constant. Thus the entire environment outside radius r can be
represented using a logarithmic number of cells. Both geometry
and orthoviews are streamed from the servers.

Regan and Pose [1994] show that a cell in a hierarchy need only
be updated when the user crosses the boundary of a cell of the same
size. Thus, nearby octree cells change at twice the frequency of the
next level of the hierarchy, which changes at twice the frequency of
the next, etc. The required bandwidth is therefore a constant factor
of the viewer’s movement speed and is independent of the scale and
complexity of the world. Streaming local geometry adds a constant
overhead.

We stress that this bandwidth cap is only an amortized estimate.
Certain planes bound cells from all levels of the hierarchy, so cross-
ing these implies that all such levels must be updated. A good
prefetching scheme (Section 6) spreads out the download over time,
allowing us to closely approach the amortized estimate.

If the viewer is not near any geometric objects, orthoviews for
nearby cells are null and need not be rendered. This allows the max-
imal movement speed achievable within a certain bandwidth cap to
increase exponentially as the viewpoint moves away from detailed
information. Also, by modifying a resolution bias parameter, users
may force undersampling of regions, enabling thinner clients to use
fewer orthoviews at the expense of visual quality.

5 Visual Quality
5.1 Server-side antialiasing
We antialias data at every level of the tree. At the base level, ge-
ometry is rendered with 2x antialiasing. When compositing (and
simultaneously downsampling) a set of child orthoviews to create
the parent orthoview, the depth of an output pixel is the closest of
the depths of all candidate pixels intersecting its projected area in

the child orthoviews; the color and normal are interpolated from
all unoccluded candidates. This allows aggregated detail to be fil-
tered up the tree, so that a high-level pixel accurately represents the
large scene volume it covers with a proportional number of subsam-
ples. This yields superior visual quality over regular screen-space
antialiasing, where a constant number of subsamples are used re-
gardless of how much of the scene the pixel covers (Figure 6).

Figure 6: The benefits of server-side antialiasing. (Top) Geometry
rendered with 4x4 antialiasing at 640x480. (Center) Geometry ren-
dered at 2072x1554, with the same antialiasing, and downsampled
to 640x480, showing vegetation on distant hills. (Bottom) Our sys-
tem rendering antialiased orthoviews at 640x480, clearly showing
foliage even in the far distance.

5.2 Client-side splatting
Many authors have addressed the issue of reconstructing and ren-
dering object representations from a point set. One approach is
to recover a collection of surface patches [Darsa et al. 1998; Sil-
lion et al. 1997], which are then simplified and rendered as triangle
meshes. Another is to splat points individually, using grid spacing
and normal information to adjust splat kernels for gap-free cover-
age of a surface [Botsch et al. 2005]. In our setting, the first ap-
proach produces a prohibitively large number of polygons with a
consequent performance hit, and the second doesn’t deal well with
disconnected splats that represent distinct objects or object parts.
We use a hybrid approach to point splatting that combines the ad-
vantages of both techniques. Our method has the following steps:

1. In a preprocessing pass, compute the connectivity of each or-
thoview pixel with its eight neighbors.

2a. If a pixel is highly connected, assume it is part of a larger
surface, model it as an elliptical disk with the corresponding
normal (an approximation to a more refined Gaussian kernel),
and project this disk onto the output image plane.

2b. If a pixel is not highly connected, render it as a sphere (an
approximation to a symmetric Gaussian).

A comparison of this approach with alternatives is shown in Figure
8. Below we present each of the stages in detail.

Connectivity computation. Two neighboring pixels with
image-space depths d1, d2, world-space positions p1,p2 and unit
normals n̂1, n̂2 are considered disconnected from each other if ei-
ther of the following two conditions fail to hold, for pre-specified
τ1, τ2 ∈ R and p̂ = p1−p2

‖p1−p2‖
:

Depth: ‖d1 − d2‖ < τ1.
Normal: |n̂1 · p̂| < τ2 and |n̂2 · p̂| < τ2.

Experiments revealed that these two conditions were not suffi-
cient (Figure 8). We therefore added a third condition, for τ3 ∈ R:

Sphericality: n̂′1 · n̂2 < τ3, where n̂′1 = n̂1 − 2(n̂1 · p̂)p̂.

4

Stanford Computer Science Technical Report, CSTR 2009-02

Intuitively, the normals at two points anywhere on a sphere are re-
flections of each other in the plane orthogonally bisecting the line
segment that connects the points. We found this property to be cor-
related with connectivity in our experiments.

In a second pass, we transitively close the connectivity relation
within every 2x2 block of pixels. Thus, within such blocks, any
two pixels that were connected by a path are made connected by
an edge. In a third pass, if a pixel is connected to more than four
neighbors it is labeled connected, otherwise it is labeled discon-
nected. This flag is stored in the lowest bits of the depth buffer.
Figure 7 illustrates this procedure.

(a) (b) (c)

(d) (e)

Figure 7: (a, b, c) Color, depth and normal components of an or-
thoview. (d) The pairwise connectivity graph of a small section of
the orthoview: dots mark original pixel centers and line segments
indicate connectivity. (e) The resulting map of connected (white)
and disconnected (grey) pixels, with the section of (d) marked in
red. Note the difference between buildings and foliage.

Connected splatting. To splat connected samples, we use a
simplification of the method proposed by Botsch et al. [2005]. The
splat is represented by center c and two tangent-space axes u and
v, given in homogeneous coordinates in the projection space of the
orthoview by

u = sx ×
(
1, 0,−nx

nz
, 0
)

and v = sy ×
(
0, 1,−ny

nz
, 0
)
,

where n = (nx, ny, nz) is the sample normal and sx × sy is the
size of an orthoview pixel. In the basis with origin c and axes u,v,
the disk D of diameter

√
2 is chosen to represent the splat.

Let the matrix M transform points from the orthoview’s pro-
jection space to screen space. Also, let the operator ρ convert the
homogeneous vector (x, y, z, w) to the non-homogeneous equiv-
alent (x/w, y/w, z/w). The projected axes, in non-homogenous
coordinates, are given by

u′ ≡ (u′x, u
′
y, u
′
z) = ρ(M(c + u))− ρ(Mc),

v′ ≡ (v′x, v
′
y, v
′
z) = ρ(M(c + v))− ρ(Mc).

Assuming the splats are small (a reasonable assumption since we
choose to display orthoviews with splats roughly the size of an on-
screen pixel), and writing c′ ≡ (c′x, c

′
y, c
′
z, c
′
w) = Mc, the axes

can be approximated as

u′ ≈ (Mu)xyz
c′w

and v′ ≈ (Mv)xyz
c′w

.

The x and y components of ρ(c′) ± 1
2
(u′ ± v′) are the corners

of a screen-space parallelogram that approximately bounds the pro-
jected splat. We render the bounding square S of this parallelogram,

parametrized as [−0.5, 0.5]2. The matrix T, given by(
u′x v′x
u′y v′y

)
,

transforms points from splat space to S. We discard all points
p ∈ S such that ‖T−1p‖ > 1/

√
2, thus approximating the pro-

jection of D. Note that the inverse mapping also gives texture co-
ordinates across the splat, allowing per-fragment shading.

Disconnected splatting. For disconnected samples, we pre-
compute the size of the world-space sphere bounding a single pixel
rectangle of the orthoview. This size, scaled by the z coordinate of
a sample’s eye-space position to account for perspective, gives the
projected size of the splat, and we simply render a circular splat of
this size.

5.3 Popping
When the set of orthoviews rendered by a client changes, the change
can be accompanied by a visual “popping” artifact if the new or-
thoviews appear different from the old ones and these differences
are apparent. This can happen when an orthoview is replaced by
its children, when a set of orthoviews are replaced by their parent,
or when the set of canonical directions closest to the viewing angle
changes.

Popping is most severe if the newly needed set of orthoviews is
not yet present on the client, due to reduced network performance or
excessively high user speeds. If nothing is done to ameliorate this,
large parts of the environment will appear empty while new data
is streamed in. To address this severe variety of popping we retain
orthoviews used in previous frames until new data is received. The
splatting algorithm automatically covers undersampled areas with
correspondingly enlarged splats, providing a coarse but continuous
appearance before more refined orthoviews arrive. However, the
visual impact of not having the needed data is still apparent. To
minimize the occurrence of such situations, a prefetching scheme
is required that aims to anticipate the need for orthoviews ahead of
time and stream them onto the client preemptively. This is reported
in Section 6.2.

A milder form of popping appears when one set of orthoviews
is swapped out for another, with both sets being present client-side.
This visual artifact can be eliminated by ensuring that such swaps
are only performed when the corresponding splats are sub-pixel.
We were interested in pushing the limits of image-based render-
ing and found that trading off some mild (i.e., perceptible but not
bothersome) popping for increased performance was sensible from
our standpoint. We found that the visual impact of this artifact can
be significantly reduced without compromising performance as fol-
lows. We treat the framebuffer from the previous frame, with colour
and depth components, as a depth image (for a perspective projec-
tion). This depth image is reprojected by the current camera param-
eters and blended with the current frame. The blending weight is
proportional to the time elapsed between the frames. Superimposed
pixels are blended if they are within a depth threshold of each other.

This approach has two useful side-effects. First, the temporal
smoothing completely eliminates flicker and z-fighting artifacts.
Second, we can trivially simulate a variable amount of motion blur,
by warping the previous frame to an intermediate projection rather
than the current one.

We refrained from blending individual orthoviews, for perfor-
mance reasons. We expect this compromise to become unnecessary
in the face of increased graphics hardware performance.

6 Implementation
The system was implemented with OpenGL on Linux and tested on
a variety of server and client machines. A basic HTTP server was
set up on each server node. The clients request orthoviews using
coordinate-based filenames that map to the appropriate server.

5

Stanford Computer Science Technical Report, CSTR 2009-02

(a) (b) (c) (d) (e) (f)

Figure 8: Comparison of splat shapes. Each panel shows an image of a tree next to a wall, with two square sections from the image enlarged
by a factor of 4 and placed below it. (a) Original geometry, rendered at high resolution, with the enlarged sections marked in red. (b–f)
Comparison of splatting strategies for orthoviews going diagonally into the page at ≈ 70◦ from the perpendicular: (b) a circular kernel
bounded by the pixel’s area, (c) a circular kernel bounding the pixel’s area warped by the normal [Shade et al. 1998], (d) an elliptic kernel
bounding the pixel’s area warped by the normal [Botsch et al. 2005], (e) our algorithm using a circular or elliptic kernel according to
the pixel’s connectivity, computed without the sphericality criterion, and (f) our algorithm with the sphericality criterion. Our algorithm
preserves both the appearance of distinct leaves on the tree and the connectivity of the wall.

6.1 Representation and rendering
Orthoviews are represented as 512x512 24-bit color and normal
maps, and 16-bit depth maps. While it is known that normals can
be quantized to significantly smaller bit depths with little loss in
shading quality, we retained the extra precision for our connectiv-
ity computations. For the depth data, we found in practice that 10
bits of precision were sufficient. The remaining 6 bits were used to
store per-pixel connectivity data, which was pre-computed on the
server.

Orthoviews are rendered by splatting every pixel. A pre-
generated vertex buffer, with attached colors and normals, con-
sumed too much GPU memory. Instead, we upload the orthoview’s
depth, color and normal channels as textures. (Colors and normals
are S3-compressed and depth is shrunk to 12-bit.) A single generic
vertex buffer is precomputed to index orthoview pixel locations.

Splat shape calculations are performed largely in the vertex
shader. If the point has a valid depth value, we examine its connec-
tivity bits. Based on this, we compute the splat square size and the
transformation T−1 (see Section 5.2). The splat shading is com-
puted from color, normal and lighting information.

Occlusion culling on orthoviews accelerates rendering, some-
times significantly (Figure 10). Each orthoview is divided into a
uniform grid of tiles (4x4 by default). The vertex buffer is corre-
spondingly ordered, so the first segment corresponds to the first tile.
A bounding box is precomputed for depth samples in each tile. Be-
fore rendering a tile, a hardware occlusion query for its bounding
box checks visibility.

We perform full-screen 4x4 antialiasing to reduce noise, improve
the rendering of subpixel splats, and accurately warp the previous
framebuffer for blending with the current frame (Section 5.3). We
found that manually performing FSAA in an offscreen buffer was
more effective than the system version.

6.2 Prefetching
For network prefetching, we maintain a number of “look-ahead”
positions surrounding the viewpoint. These are placed at a distance
equal to the size of the lowest-level octree cell currently in use.
We compute the union of the sets of required orthoviews for these
positions, as well as for the current viewpoint. This set is ordered
first by increasing distance from the current position, and then by
level in the octree. This constitutes the prefetching queue. The

queue is updated when the viewpoint travels more than a certain
distance from the last update location. In our implementation this
distance is set to one tenth the size of the lowest-level octree cell
currently in use. Background threads process the prefetching queue
in order. A local cache holds prefetched orthoviews. An orthoview
is downloaded if it is not already in the cache. When an orthoview
is needed for the current viewpoint, it is located in the cache and
added to the current rendered set. Nearby geometry is prefetched
and handled similarly.

Due to transfer latency, we found that it is also crucial to prefetch
orthoviews and geometry into GPU memory to avoid jerkiness.
GPU prefetching is prioritized similarly to network prefetching,
with the data being fetched from the local cache rather than the
network. This level of prefetching is handled by the display thread.

7 Experimental Results
We report experimental results on two scenes that were constructed
to reflect the scale and generality of online worlds. The first is a
10,000 km2, 25-billion polygon landscape with dense vegetation
and architecture. The second is a fully three-dimensional scene
with 29,264 complex models, each with 97,000 polygons, floating
in space. The preprocessing of the first scene was handled in par-
allel by four workstations. A representative node has a quad core
Intel Q6700 CPU and an NVIDIA 8800 GTX GPU. The prepro-
cessing time was 10 hours. The second scene was preprocessed on
a single server in 1 hour.

The first scene has 10 octree levels and the aggregate size of all
orthoviews is 412 GB . The second scene has 7 octree levels and the
size of the preprocessed image-based hierarchy is 1.9 GB. This data
compares favorably with the size of the original scenes, represented
as geometry: 944 GB for the first scene and 79.5 GB for the second.
Figure 9 shows the sizes and preprocessing times for increasingly
large subtrees of the hierarchy for the first scene, demonstrating
linear scaling.

We tested the handling of changes in the environment, triggering
updates of regions of varying sizes in the first scene. These results
are reported in Table 1. Changes of even large regions are processed
quickly.

The primary test machine for the client was an eight-core work-
station with 8GB RAM and an NVIDIA 285 GTX GPU. Tests were
performed at a screen resolution of 640x480, with both geometry

6

Stanford Computer Science Technical Report, CSTR 2009-02

(a) (b)

Figure 9: (a) Storage vs model size. (b) Preprocessing time on a
single machine vs model size. Both log-log graphs have slope ≈ 1
and show linear relationships.

Size of modified region Update time (seconds)
200m×200m 20.82
400m×400m 23.95
800m×800m 42.49

Table 1: Time taken to update the hierarchy of orthoviews for the
first scene after a region is modified.

and orthoviews streamed over a broadband connection. Over the
automated test path for the first scene shown in the accompanying
video, the graphics card processed at most 25 million points per
frame after frustum and occlusion culling (Figure 10).

Figure 10: The total number of orthoview pixels in memory (red),
those in orthoviews intersecting the view frustum (green), and those
actually processed by the graphics hardware after occlusion culling
(blue), over the path shown in the accompanying video for the first
scene. The sharp reduction in the number of processed pixels (and
the resultant increase in framerate that can be observed in Fig-
ure 11(a)) around 120–140s corresponds to city navigation where
building facades cause high occlusion, despite the presence of a
large number of orthoviews in memory.

Framerate and bandwidth utilization for paths from both scenes
are shown in Figure 11. For comparison, rendering a representative
view of the first scene from geometry took 14 minutes on the same
machine.

8 Discussion
We investigated the application of hierarchical image-based ren-
dering to massive online environments. Solutions to critical visual
quality and performance issues were developed and evaluated. This
work demonstrates that hierarchical image-based rendering is a vi-
able approach to handling large-scale heterogenous online worlds.

The chief bottleneck of our approach is the point-rendering per-
formance of graphics hardware. Our approach yields up to 25
million points per frame for our test scenes, stretching current
consumer-grade hardware to the limit. For this reason we currently
avoid blending between individual orthoviews (which would fur-

ther eliminate popping artifacts) and variable shading and opacity
within individual splats (which would further enhance visual qual-
ity). We chose not to use layered depth images for the same reason.
Future growth in graphics hardware performance promises to make
these improvements feasible within a small number of years.

Not all scenes are as large as ours, which were constructed as
a long-term feasibility study. Smaller scenes can already be ren-
dered at higher resolution, higher frame-rates, and with additional
visual effects. Furthermore, a crucial advantage of our approach
is that the client-side performance requirements grow only loga-
rithmically with the size and complexity of the scene. Thus with
every doubling of hardware point-rendering performance, the size
and complexity of detailed online worlds that can be explored in-
teractively on commodity machines is raised to the second power.

9 Acknowledgements
Chris Platz created the elevation map used in the primary test scene.
The city block models were acquired from TurboSquid.com. This
work was supported by NSF grants SES-0835601, CCF-0641402
and CNS-0831163, an Alfred P. Sloan Research Fellowship, and a
PACCAR Inc. Stanford Graduate Fellowship.

References
AIREY, J. M., ROHLF, J. H., AND BROOKS, JR., F. P. 1990. Towards

image realism with interactive update rates in complex virtual building
environments. In Proc. Symp. Interactive 3D Graphics, ACM, 41–50.

ALIAGA, D. G., AND LASTRA, A. 1999. Automatic image placement to
provide a guaranteed frame rate. In Proc. SIGGRAPH, ACM, 307–316.

ALIAGA, D. G., COHEN, J., WILSON, A., BAKER, E., ZHANG, H.,
ERIKSON, C., HOFF, K., HUDSON, T., STUERZLINGER, W., BAS-
TOS, R., WHITTON, M., BROOKS, F., AND MANOCHA, D. 1999.
MMR: An interactive massive model rendering system using geometric
and image-based acceleration. In Proc. Symp. Interactive 3D Graphics,
ACM, 199–206.

BOSSE, M., NEWMAN, P., LEONARD, J., AND TELLER, S. 2004. Simul-
taneous localization and map building in large-scale cyclic environments
using the atlas framework. Int’l J. Robotics Res. 23, 12, 1113–1139.

BOTSCH, M., HORNUNG, A., ZWICKER, M., AND KOBBELT, L. 2005.
High-quality surface splatting on today’s GPUs. In Proc. Eurographics
Symp. on Point-Based Graphics, 17–24.

CHANG, C.-F., BISHOP, G., AND LASTRA, A. 1999. LDI tree: a hierar-
chical representation for image-based rendering. In Proc. SIGGRAPH,
ACM, 291–298.

CIGNONI, P., DI BENEDETTO, M., GANOVELLI, F., GOBBETTI, E.,
MARTON, F., AND SCOPIGNO, R. 2007. Ray-casted BlockMaps for
large urban models streaming and visualization. Comp. Graphics Forum
26, 3.

COHEN-OR, D., CHRYSANTHOU, Y., SILVA, C., AND DURAND, F. 2003.
A survey of visibility for walkthrough applications. Trans. Vis. and
Comp. Graphics 9, 3, 412–431.

DARSA, L., SILVA, B. C., AND VARSHNEY, A. 1998. Walkthroughs
of complex environments using image-based simplification. Computers
and Graphics 22, 1, 55–69.

GOOGLE INC. 2008. Google 3D Warehouse. http://sketchup.
google.com/3dwarehouse.

JESCHKE, S., WIMMER, M., SCHUMANN, H., AND PURGATHOFER, W.
2005. Automatic impostor placement for guaranteed frame rates and
low memory requirements. In Proc. Symp. Interactive 3D Graphics and
Games, ACM, 103–110.

LEYVAND, T., SORKINE, O., AND COHEN-OR, D. 2003. Ray space fac-
torization for from-region visibility. In Proc. SIGGRAPH, ACM, 595–
604.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain render-
ing using nested regular grids. ACM Trans. Graphics 23, 3, 769–776.

LUEBKE, D., WATSON, B., COHEN, J. D., REDDY, M., AND VARSHNEY,
A. 2002. Level of Detail for 3D Graphics. Elsevier Science Inc.

MANN, Y., AND COHEN-OR, D. 1997. Selective pixel transmission for
navigating in remote virtual environments. Comp. Graphics Forum 16,
3, C201–C206.

7

http://sketchup.google.com/3dwarehouse
http://sketchup.google.com/3dwarehouse

Stanford Computer Science Technical Report, CSTR 2009-02

(a) (b)

Figure 11: Network bandwidth and framerate for the client over the automated test runs shown in the video for (a) the first and (b) the second
scene.

MAX, N. L. 1996. Hierarchical rendering of trees from precomputed multi-
layer z-buffers. In Rendering Techniques, 165–174.

MILLER, G. 2007. The promise of parallel universes. Science 317, 1341–
1343.

POLIS, M. F., GIFFORD, S. J., AND MCKEOWN JR., D. M. 1995. Au-
tomating the construction of large-scale virtual worlds. Computer 28, 7,
57–65.

RAFFERTY, M. M., ALIAGA, D. G., POPESCU, V., AND LASTRA, A. A.
1998. Images for accelerating architectural walkthroughs. IEEE Comp.
Graphics Appl. 18, 6, 38–45.

REGAN, M., AND POSE, R. 1994. Priority rendering with a virtual reality
address recalculation pipeline. In Proc. SIGGRAPH, ACM, 155–162.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: a multiresolution
point rendering system for large meshes. In Proc. SIGGRAPH, ACM,
343–352.

RUSINKIEWICZ, S., AND LEVOY, M. 2001. Streaming QSplat: a viewer
for networked visualization of large, dense models. In Proc. Symp. In-
teractive 3D Graphics, ACM, 63–68.

SCHAUFLER, G., AND STÜRZLINGER, W. 1996. A three dimensional
image cache for virtual reality. Comp. Graphics Forum 15, 3, 227–236.

SCHMALSTIEG, D., AND GERVAUTZ, M. 1996. Demand-driven geome-
try transmission for distributed virtual environments. Comp. Graphics
Forum 15, 3, 421–431.

SCHMALSTIEG, D. 1997. The Remote Rendering Pipeline. PhD thesis.
SHADE, J., LISCHINSKI, D., SALESIN, D. H., DEROSE, T., AND SNY-

DER, J. 1996. Hierarchical image caching for accelerated walkthroughs
of complex environments. In SIGGRAPH ’96: Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
ACM, New York, NY, USA, 75–82.

SHADE, J., GORTLER, S., WEI HE, L., AND SZELISKI, R. 1998. Layered
depth images. In Proc. SIGGRAPH, ACM, 231–242.

SILLION, F., DRETTAKIS, G., AND BODELET, B. 1997. Efficient im-
postor manipulation for real-time visualization of urban scenery. Comp.
Graphics Forum 16, 3, C207–C218.

TANNER, C. C., MIGDAL, C. J., AND JONES, M. T. 1998. The clipmap:
a virtual mipmap. In Proc. SIGGRAPH, ACM, 151–158.

TELER, E., AND LISCHINSKI, D. 2001. Streaming of complex 3D scenes
for remote walkthroughs. In Eurographics, A. Chalmers and T.-M.
Rhyne, Eds., vol. 20(3). Blackwell Publishing, 17–25.

TELLER, S. J., AND SÉQUIN, C. H. 1991. Visibility preprocessing for
interactive walkthroughs. SIGGRAPH Comp. Graphics 25, 4, 61–70.

THRUN, S., AND MONTEMERLO, M. 2005. The GraphSLAM algorithm
with applications to large-scale mapping of urban structures. Int’l J.
Robotics Res. 25, 5-6, 403–430.

WAND, M., FISCHER, M., PETER, I., AUF DER HEIDE, F. M., AND
STRASSER, W. 2001. The randomized z-buffer algorithm: interac-
tive rendering of highly complex scenes. In Proc. SIGGRAPH, ACM,
361–370.

WILLIAMS, L. 1983. Pyramidal parametrics. SIGGRAPH Comput. Graph.
17, 3, 1–11.

WILSON, A., AND MANOCHA, D. 2003. Simplifying complex environ-
ments using incremental textured depth meshes. ACM Trans. Graphics
22, 3, 678–688.

YOON, I., AND NEUMANN, U. 2000. Web-based remote rendering with
IBRAC. Comp. Graphics Forum 19, 3.

8

	Introduction
	Related Work
	Assumptions and Properties
	System Architecture
	Server
	Client

	Visual Quality
	Server-side antialiasing
	Client-side splatting
	Popping

	Implementation
	Representation and rendering
	Prefetching

	Experimental Results
	Discussion
	Acknowledgements

