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Abstract

In this paper we study the amplification feedback between uncertainty and economic
activity. We construct a heterogeneous-firm real business cycle model with agents who
are averse to ambiguity. Firms face Knightian uncertainty about their own productivity
and need to learn it through production. Recessions, caused by either fundamental
supply or demand shocks, are periods where the lower production scale implies higher
uncertainty in the form of a larger posterior variance. The endogenous increase in
uncertainty makes agents less confident and further reduces economic activity. This
feedback mechanism generates (i) strong internal propagation with amplified and
hump-shaped dynamics, (ii) countercyclical labor wedge and ex-post excess return on
capital, and (iii) positive co-movement of aggregate variables in response to demand
shocks. We study the feedback effects of time-varying endogenous uncertainty in
standard business cycle models using linear methods. Linearity facilitates aggregation
in the heterogeneous firm model, where we can additionally analyze the impact of
experimentation and firm-level dispersion shocks. We illustrate the main qualitative
implications in a stylized model and use a quantitative version to evaluate their
magnitudes.

1 Introduction

Is firms’ confidence about their business conditions important for understanding aggregate

fluctuations? How much does this confidence vary over the business cycle? In turn, how do

the variations in confidence feed back into the economic activity and affect the propagation

of fundamental shocks? To answer these questions, we construct a heterogeneous-firm real

business cycle (RBC) model with agents who are averse to ambiguity. Firms face Knightian

uncertainty about their own productivity and need to learn it through production. The

learning process generates countercyclical endogenous uncertainty that feeds from, and

back into, economic activity. We find that our model offers substantial improvements over

∗Preliminary and incomplete. Please do not distribute

1



standard RBC models along three dimensions. It generates: (i) strong internal propagation

with amplified and hump-shaped dynamics, (ii) countercyclical labor wedge and ex-post

excess return on capital, and (iii) positive co-movement of aggregate variables in response to

demand shocks. Our model also generates a government spending multiplier that is larger

than what standard models would predict.

The corresponding implication of our model is that our mechanism, based on the feedback

between economic activity and uncertainty, can replicate some of the major business cycle

patterns without requiring: (i) additional frictions to generate persistence and hump-shape

responses; (ii) labor wedge shocks, traditionally used as the explanation for the measured

countercyclical ”wedge” between the marginal rate of substitution of consumption for labor

and the marginal product of labor; (iii) aggregate uncertainty shocks, traditionally used to

explain the countercyclical excess return of uncertain assets, such as capital, over the risk

free rate1; (iv) additional rigidities usually required to break the Barro and King (1984)

critique and make other types of shocks, besides productivity or intratemporal preference

shocks, generate positive co-movements of macro aggregates.

We embed the idea of asymmetric learning (Veldkamp (2005) and van Nieuwerburgh

and Veldkamp (2006)) into a heterogeneous-firm setting by subjecting firms to idiosyncratic

shocks that they cannot directly observe. Our modeling choice of introducing imperfect

information into an idiosyncratic process is motivated by the empirical fact that firm-level

volatilities are much larger than fluctuations at the macro level. This fact suggests that

uncertainty about idiosyncratic fundamentals may be more important than uncertainty

about aggregate shocks. We introduce two unobservable shocks into a firm’s production.

The first shock is a standard technology shock that affects the marginal return. This shock

is persistent. We will refer to it as the ‘productivity shock’. The second is a transitory shock

that does not scale up with the level of inputs. While what matters for optimal investing

and hiring decisions are the realization of the productivity shock, the path of firms’ output

and inputs is not perfectly revealing about its productivity because it is confounded by the

transitory disturbance.2 Ambiguity averse agents cope with this uncertainty by estimating

the underlying productivity process using a standard Kalman filter and considering a set of

probability distributions around the estimates.

In the model, the level of inputs endogenously determines the informativeness of output

about the idiosyncratic productivity level. Intuitively, when a firm allocates less resources

into production, its estimate about its persistent productivity is imprecise because the level

1See Cochrane (2011) for a review of the evidence.
2We show that our model is observationally equivalent at the aggregate level to a model where firms learn

about their quality or demand of their goods through noisy signals.
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of output is largely determined by the realization of the transitory shock. Conversely, its

estimate becomes more accurate when it uses more resources because output mostly reflects

the realization of productivity. This results in a procyclical signal-to-noise ratio at the

firm level. It follows that recessions are periods of high cross-sectional mean of firm-level

uncertainty because firms on average invest and hire less.

Ambiguity averse agents lack the confidence to assign probabilities to every relevant

events. They act as if they evaluate plans according to a worst case scenario drawn from

a set of multiple beliefs. A wider set of beliefs corresponds to a loss of confidence. In our

model, agents have a set of beliefs about the idiosyncratic productivity shock. The belief set

is parameterized by an interval of means centered around zero. An increase in uncertainty

leads to a wider interval because higher posterior variance makes it harder to distinguish

across processes differing in their means. This loss in confidence makes the “worst case” mean

worse and thus an agent acts as if he received bad news about the future. Importantly, this

loss of confidence does not vanish in the aggregate because agents treat as if mean of each

firm is on average lower.

We first illustrate the main qualitative predictions of our theory using a stylized example,

in which labor is chosen in advance and there is a negative relationship between current

uncertainty and labor choices. We then quantitatively evaluate the role of endogenous

uncertainty using a calibrated version of the baseline model. In addition to a standard

aggregate technology shock, we consider a government spending shock and a firm-level

dispersion shock as in Bloom (2009). While our model allows for time-varying uncertainty,

we can use standard log-linear methods to solve the model. In turn, log-linear decision rules

facilitate aggregation and allow us to study confidence about the idiosyncratic TFP process.

First, we find that endogenous uncertainty is a powerful propagation mechanism. A

positive shock that raises economic activity increases the level of confidence, which in turn

further affects economic activity, leading to an amplified and hump-shaped impulse response.

Second, consistent with the data, our model generates countercyclical labor wedge and ex-

post excess return. During recessions, ambiguity increases and thus leads to an unusually

low equilibrium labor supply. The increase in ambiguity also makes capital less attractive

to hold and thus investors holding an ambiguous asset are compensated by the higher

excess return. Third, the model generates positive co-movements in response to demand

shocks. Consider, for example, a positive shock to government spending. In standard RBC

models, consumption sharply declines due to the income effect and the government spending

multiplier is small. In our model, an increase in hours due to a positive government spending

shock raises the level of confidence, which feeds back and raises the level of the economic

activity. Because of this amplification effect, government spending multiplier is larger and
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the negative response of consumption is mitigated.

We point out two additional features of the model. First, we can easily study the

implications of experimentation using linear methods. This is in contrast to experimentation

in Bayesian setting, which requires non-linear tools. We show that experimentation has a

first-order effect in our setup. For example, we find that equilibrium solved under passive

learning substantially overstates the impact of dispersion shocks. Second, in contrast to

other business cycle theories with news and time-varying uncertainty, our model does not

have to rely on real or nominal rigidities to generate positive co-movement.3 This is because

the level of input (such as labor supply) is chosen before the realization of idiosyncratic

productivity. This timing naturally arises from imperfect information about the underlying

productivity process.

2 A stylized business cycle example

To illustrate the role of endogenous uncertainty in business cycles, we consider a stylized

model. We focus on the qualitative features implied by the feedback between uncertainty

and economic activity. In this simple model we make two key assumptions: (1) labor is

chosen before productivity is known and (2) there is a negative relationship between current

uncertainty and past labor choice. Both of these features arise endogenously in a model

with imperfect information about persistent productivity, which we develop later in the

paper, where the inputs for current production are chosen based on past information. There

imperfect information about current productivity makes labor an intertemporal decision for

which uncertainty matters, thus implying the first assumption. In turn, there we formalize

the feedback from activity to uncertainty by considering a filtering problem where a larger

previous scale of production implies a stronger current signal-to-noise ratio about the time-

varying, hidden state of productivity. Instead, in this stylized model, we simply postulate

the reduced form feedback effect as the second assumption. We use this setup to develop

intuition on the novel economic mechanisms implied by this uncertainty-activity feedback.

For that purpose we also abstract here from additional internal propagation such as capital

accumulation.

A representative agent has the following per-period utility function

U(Ct, Ht) =
C1−γ
t

1− γ
− βH

1+η
t

1 + η
.

where Ct is consumption, Ht is the amount of hours worked, γ is the coefficient of relative

3See, however, Angeletos et al. (2014) for an important exception.
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risk aversion, and η is the inverse of the Frisch labor elasticity. We simplify algebra below

by multiplying the disutility of labor by the discount factor β.

Output is produced according to

Yt = ZtHt−1. (2.1)

The t − 1 subscript on hours reflects the assumption that labor input is chosen before the

realization of productivity Zt, which is random. The resource constraint is given by

Ct +Gt = Yt, (2.2)

where government spending, Gt, follows an AR(1) process

lnGt+1 = (1− ρ) ln Ḡ+ ρ lnGt + ug,t+1, (2.3)

where ug,t+1 is distributed i.i.d.N(0, σ2
g). We use upper bars to denote the steady states.

Hence, Ḡ is the steady-state level of government spending.

The productivity process takes the form

lnZt+1 = µ∗t + uz,t+1, (2.4)

where u is an iid sequence of shocks, normally distributed with mean zero and variance

σ2
u. The sequence µ is deterministic and unknown to agents – its properties are discussed

further below. For simplicity, we assume that the realization of the current productivity

level does not affect future productivity. We relax this assumption in the quantitative model

we introduce later.

Agents perceive the unknown component µt to be ambiguous. We parametrize their one-

step-ahead set of beliefs at date t by a set of means µt ∈ [−at, at]. Here at captures agent’s

lack of confidence in his probability assessment of productivity Zt+1. We allow confidence

itself to change over time, and in particular, we assume that at is negatively related to past

labor supply:

at = ā− ζĤt−1, ζ > 0, (2.5)

where we use hats to denote log-deviations from the steady states (and hence Ĥt−1 =

lnHt−1 − ln H̄). If the agent works less last period, he is less confident in his probability

assessments. In the quantitative model, we derive the relationship between at and Ht−1

in equation (2.5) as an endogenous outcome of a learning process. Intuitively, in a model

with random additive shocks to the production in (2.1), lower Ht−1 increases the posterior
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variance around the estimate of the persistent, hidden state component of productivity Zt.

The representative household has recursive multiple priors utility. Collect the exogenous

state variables Zt and Gt in a vector st ∈ S. A household consumption plan C gives, for

every history st, the consumption of the final good Ct (st) and the amount of hours worked

Ht (st). For a given consumption plan C, utility is defined recursively by

Ut
(
C; st

)
= U(Ct, Ht) + β min

µt∈[−at,at]
Eµt

[
Ut+1

(
C; st, st+1

)]
, (2.6)

where β is the subjective discount factor and [−at, at] is the set of conditional probabilities

about the ambiguous component of the next period’s state, namely here the productivity

Zt+1. We restricted attention only to ambiguity about productivity and assumed that the

agent has full confidence in the conditional probability distribution for Gt+1 as given by

the process in (2.3). The recursive formulation ensures that preferences are dynamically

consistent. Details and axiomatic foundations are in Epstein and Schneider (2003b). If

at = 0, we obtain standard separable log utility with those conditional beliefs. If at > 0,

then agents are not willing to integrate over the beliefs indexed by µt and narrow down the

set to a singleton. In response, households take a cautious approach to decision making and

act as if the true data generating process is given by the worst-case conditional mean.

We now solve the social planner’s problem, for which the Bellman equation is

V (H−1, Z,G) = max
H

[
U(C,H) + β min

µ∈[−a,a]
E
µ

V (H,Z ′, G′)

]
,

where the constraints are given by the production function (2.1) and resource constraint

(2.2). The conditional distribution of Z ′ under belief µ is given by (2.4), where ambiguity

evolves according to the law of motion (2.5). The transition law of the exogenous state G is

given by (2.3).

The worst-case belief can be easily solved for at the equilibrium consumption plan: the

worst case expected productivity is low. It follows that the social planner’s problem is solved

under the worst case belief µ = −a. Denoting conditional moments under the worst case

belief by stars and combining the first order condition for labor with the envelope condition,

we obtain

Hη = E∗
[
C ′−γZ ′

]
. (2.7)

The optimality conditions equates the current marginal disutility of working with its expected

benefit, formed under the worst-case belief. The latter is given by the marginal product

of labor weighted by the marginal utility of consumption. In deriving the optimal hours

worked, we assume that the agent does not internalize the effect of hours on the evolution of
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confidence, a form of what is usually referred in the learning literature as ’passive learning’.

This assumption will be relaxed in the quantitative model we introduce later.

To characterize dynamics we use a log-linear approximation of decision rules around the

steady state. As detailed in Ilut and Schneider (2014), a log-linear solution method still

maintains the role of time-varying uncertainty, here manifested in the form of Knightian

uncertainty, since ambiguity is over conditional means and the worst-case mean is linear in

the state variables.

We take logs of the optimality condition with respect to hours in (2.7) and substitute the

log-linearized constraints (2.1) and (2.2). The log-linearized decision rule of hours around

the steady state relates current hours worked with the worst-case exogenous variables as

Ĥt = εZ ât + εGρĜt.

We use the method of undetermined coefficients to find the elasticities εZ and εG. They

are equal to (1− γλY ) / (η + γλY ) and γλG/ (η + γλY ) , respectively, with λY ≡ Ȳ /C̄ and

λG ≡ Ḡ/C̄.

The response of optimal hours to news about expected productivity is affected by the

intertemporal elasticity of consumption (IES), which here also equals the inverse of coefficient

of relative risk aversion. When the IES is large enough, so that γ−1 > λY and thus εZ > 0,

an increase in expected productivity raises hours. In that case the intertemporal substitution

effects dominates the wealth effect that would lower hours through the effect on marginal

utility.

Since expected productivity is formed under the worst-case conditional mean, and the

latter is a function of past hours as in (2.5), we have

Ĥt = ζεZĤt−1 + εGρĜt (2.8)

Substituting the laws of motion for Ĝt together with rewriting optimal hours in (2.8) for

period t− 1, we have

Ĥt = (ζεZ + ρ) Ĥt−1 − ζεZρĤt−2 + εGρug,t. (2.9)

Equilibrium output and consumption follow immediately as

Ŷt = Ẑt + Ĥt−1, (2.10)

Ĉt = λY Ŷt − λGĜt. (2.11)
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The dependence of ambiguity on labor supply (2.5) gives rise to three key properties.

First, the endogenous ambiguity could be an important propagation mechanism. When

there is no ambiguity (ζ = 0), hours and output simply trace the movement of the exogenous

government spending. In contrast, with endogenous ambiguity there is an additional AR(2)

term that could potentially generate hump-shaped and persistent dynamics.

Second, the model can generate countercyclical labor wedge and excess returns. To see

how the model generates countercyclical labor wedge, note that an increase in ambiguity

due to a reduction in labor supply looks like an increase in the labor income tax from the

econometrician. To show this, define the labor wedge as the implicit labor tax that equates

the marginal rate of substitution of consumption for labor with the marginal product of

labor. Because labor is chosen in advance, the econometrician will measure the current tax

from
Hη
t−1

C−γt
= (1− τt)Zt

The key insight is that labor is chosen based on the worst-case probability distribution, so

using (2.7)

1− τt =
E∗t−1

[
C−γt Zt

]
C−γt Zt

In a model with rational expectations, the labor wedge will not be predictable, and Et−1τt =

0, where the Et is formed under the econometrician’s data generating process which uses

µ = 0. Instead here there is a systematic difference between the worst-case distribution and

the average realization under the econometrician’s data generating process. In log-linear

deviations, the labor wedge is proportional to the time-varying ambiguity, which using (2.5),

makes it predictable based on past labor supply as :

Et−1τ̂t = −ζεZĤt−2

The intuition is that when there is ambiguity (ζ > 0) and the substitution effect is strong

enough so that εZ > 0, labor supply at t − 1 is lower as t − 1 confidence is lower. From

the perspective of the econometrician measuring at time t labor and consumption choices,

together with measured productivity, the low labor supply is surprisingly low and can be

rationalized as a high labor income tax at t − 1. In turn, the low time t − 1 confidence is

due to the low lagged labor supply, so the econometrician will find a systematic negative

relationship between lagged hours and the labor income tax. This countercyclical labor

wedge does not arise from separate labor supply shocks but instead is generated by any

underlying shock that moves labor supply.

To understand how the model generates countercyclical excess returns, we analyze a
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decentralized version of our economy. There, one can show [details to be added] that, in

log-linear terms, the excess return on a price of a claim to consumption next period measured

by an econometrician is given by

Etx̂
e
t+1 = −ζĤt−1

As in Ilut and Schneider (2014) and Bianchi et al. (2014), the conditional expected excess

return depends positively on the amount of ambiguity. In this model this conditional

premium arises endogenously from the fluctuations in the economic activity.

Third, output multiplier to government spending may be above one and consumption

may increase in response to an increase in government spending. To see this consider again

the case of no ambiguity (ζ = 0). From (2.9) and (2.10), the initial impact of a unit-increase

in government spending to hours and output are given by ρεh,G and then monotonically

decreases.4 The government spending multiplier is given by

dYt
dGt

≈ λY Ŷt

λGĜt

,

which, given that ρεh,G < λG/λY , is less than one. Using (2.11) the output increase cannot

offset the increase in government spending so consumption declines.

When instead the level of ambiguity is affected by past labor supply, an increase in hours

due to an increase in government spending leads to an increase in confidence, which further

raises hours over time. Because of this amplification effect, government spending multiplier

could be above one and consumption need not decline.

We illustrate the dynamics of this stylized model in Figure 1. We choose parameters

as follows: a ratio of government spending to output of g = 0.2, based upon we have

λY = 1/(1− g) and λG = g/(1− g); γ = 0.5 so the IES=2 and we pick η = 0.5 so the Frisch

elasticity of labor supply=2; a persistence of the government spending shock of ρ = 0.95;

and for the ambiguity model a feedback effect ζ = 1.5.

Figure 1 plots the response of endogenous variables to a 1 percent increase in government

spending and compares the economy with ambiguity (black solid line) to that with rational

expectations (RE, blue dashed line), in which ζ = 0. In the RE model, output and hours

simply track the AR(1) evolution of exogenous government spending and consumption

decreases. The expected labor wedge is zero. When ambiguity is present, output and hours

show more variability and a hump-shaped response. This comes from the AR(2) solution

for hours worked, as shown by formula (2.9). With ambiguity the increase in hours is

4As can be seen from (2.10), the impact of output arrives with a one-period lag.
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large enough so that consumption actually increases after several periods. The government

spending multiplier, which is always lower than one under RE, is larger with ambiguity, to

the point that it can be above one and have a net stimulative effect on output. At the same

time, the measured labor wedge is countercyclical.

To summarize, this stylized model endogenously generates two types of countercyclical

wedges: the labor and the premium wedge. These wedges have been taken as exogenous

sources of fluctuations in standard quantitative business cycle models. In our model they

are simply manifestations of the changing confidence brought upon by the response of the

economy to the fundamental shock. In turn, the endogenous confidence amplifies and

prolongs the response of endogenous variables, giving rise to hump-shape responses. It

thus does not require additional internal sources of persistence, such as habit formation in

consumption.

In the quantitative model, we extend the simple model described above in three ways.

First, we derive the relationship between at and Ht−1 in equation (2.5) as an endogenous

outcome of a learning process. Here we build on van Nieuwerburgh and Veldkamp (2006),

where they assume that production is subject to unobserved persistent marginal productivity

shocks and to unobserved i.i.d additive productivity shocks. In that setup, a larger scale of

production results in a larger signal-to-noise ratio about the hidden state of TFP and thus to

lower uncertainty about the next-period productivity. We then use the methods in Bianchi

et al. (2014) to map the time-varying uncertainty into time-varying confidence using linear

methods. Second, we introduce capital accumulation and variable utilization. This will turn

the stylized model into a relatively standard RBC model. Third, we extend the model to a

heterogeneous firm setting and study ambiguity about the idiosyncratic TFP process. The

aggregation of this economy is facilitated by our use of linearization methods. This extension

not only allows us to consider large changes in confidence, but also to analyze the impact of

experimentation and firm-level dispersion shocks, as those emphasized for example by Bloom

(2009).

3 The model

We now introduce our quantitative model, which is a real business cycle model augmented

with two key features: Agents are ambiguity averse and face Knightian uncertainty about

the firm-level TFP processes. After presenting the environment, we discuss in detail the

information friction that gives rise to equilibrium fluctuations in confidence.
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3.1 Environment

Households

As in the stylized business cycle model presented earlier, the representative household has

recursive multiple priors utility:

Ut(C; st) = lnCt − ϕ
H1+η
t

1 + η
+ β min

p∈Pt(st)
Ep[Ut+1(C; st, st+1)], (3.1)

where ϕ is a scaling parameter that determines hours worked, and η is the inverse of Frisch

labor supply elasticity. Pt(st) is a set of conditional probabilities about next period’s state

st+1 ∈ St+1. They maximize utility subject to the budget constraint given by

Ct +Bt +

∫
P e
l,tθl,tdl ≤ WtHt +Rt−1Bt−1 +

∫
(Dl,t + P e

l,t)θl,t−1dl + Tt,

where Bt is the one-period risk-free bond, Wt is the real wage, Rt is the risk-free interest

rate, and Tt is a transfer. Dl,t and P e
l,t are the dividend payout and the price of a unit of

share θl,t of firm l, respectively.

Firms

There is a continuum of firms, indexed by l ∈ [0, 1], which act in a perfectly competitive

manner. They use capital Kl,t−1, which is utilized at rate Ul,t, and hire labor Hl,t to produce

goods Yl,t according to the production function

Yl,t = At{zl,t(Ul,tKl,t−1)α(γtHl,t)
1−α + γtνl,t}, νl,t ∼ N(0, σ2

ν,t), (3.2)

where γ is the growth rate of labor augmenting technical progress. The scale of the

idiosyncratic i.i.d. shock νl,t grows at rate γ, which ensures that the shock does not vanish

along the balanced growth path. zl,t is an idiosyncratic technology shock that follows

zl,t = (1− ρz)z̄ + ρzzl,t−1 + εz,l,t, εz,l,t ∼ N(0, σ2
z,t), (3.3)

and At is an aggregate technology shock that follows

lnAt = ρA lnAt−1 + εA,t, εA,t ∼ N(0, σ2
A).

We assume that the idiosyncratic shock zl,t follows a normal process instead of a log-normal

process. This technical assumption will be useful in solving the learning problem because
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it makes the information friction linear. We also consider dispersion shocks that affect the

volatility of idiosyncratic shocks:

lnσt = ρσ lnσt−1 + εσ,t, εσ,t ∼ N(0, σ2
σ),

and

lnσz,t = lnσt + ln σ̄z,

lnσν,t = lnσt + ln σ̄ν .

Firms cannot directly observe the realizations of idiosyncratic shocks zl,t and νl,t. This

informational assumption leads to a non-invertibility problem: Firms cannot tell whether an

unexpectedly high realization of output is due to an increase in individual technology or a

favorable transitory disturbance. Instead, they need to form the estimates using all other

available information, including the path of output and inputs. In contrast, they perfectly

observe the aggregate shocks At and σt.

Different from other papers in the asymmetric learning literature (Veldkamp (2005), van

Nieuwerburgh and Veldkamp (2006), Fajgelbaum et al. (2013), Ordoñez (2013), and Saijo

(2014)), we introduce imperfect information into an idiosyncratic process. Our formulation

has two advantages. First, firm-level volatilities are empirically much larger than fluctuations

at the aggregate. This fact suggests that uncertainty about idiosyncratic fundamentals

may be larger and hence more important than uncertainty about the macro-level process.

Second, because firms learn about their individual-specific characteristics, the impact of

imperfect information is unlikely to be substantially affected by an introduction of market

for information or a release of official statistics.

Firms choose {Ul,t, Kl,t, Hl,t, Il,t} to maximize shareholder value

E∗0

∞∑
t=0

M t
0Dl,t,

where random variables M t
0 denotes prices of t-period ahead contingent claims based on

conditional worst case probabilities and is given by

M t
0 = βtλt,

where λt is the marginal utility of consumption at time t by the representative household.
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Dl,t is the dividend payout given by

Dl,t = Yl,t −WtHl,t − Il,t,

where Il,t is investment.

Note that the shareholder value depends on the worst case expectations E∗0 . This is

because state prices reflect the representative household’s ambiguity. An important feature

of ambiguity aversion is that, unlike the case of risk, idiosyncratic uncertainty does not vanish

under diversification. Uncertainty affects ambiguity-averse household’s utility by lowering

the worst-case mean and hence the household acts as if the mean of each individual firm’s

technology is lower. As a result, ambiguity is not diversified away in the aggregate and

uncertainty lowers the mean of the aggregate technology5.

Their capital stock is follows the law of motion

Kl,t = (1− δ(Ul,t))Kl,t−1 + Il,t,

where the depreciation rate is positively related to the intensity of utilization

δ(U) = δ0 + δ1(U − 1) +
δ2

2
(U − 1)2.

Interpretation of the additive shock

Our specification follows van Nieuwerburgh and Veldkamp (2006) by generating a procyclical

signal-to-noise ratio by adding an unobservable additive shock νl,t to the production function.

We offer two interpretations of the additive shock. First, in the Appendix, we argue that at

the aggregate level our baseline model is observationally equivalent to a model where firms

learn about the demand of their goods through noisy signals. In this version of the model,

firms are subject to unobservable idiosyncratic shocks to the weight attached to their goods

in the CES aggregator for final goods.6 It is natural to interpret the shock as a shock to the

quality or demand of goods produced by an individual firm l. The additive shock, which

vanish in the aggregate due to the law of large numbers, is replaced with an i.i.d. observation

error of the underlying idiosyncratic shock; agents observe noisy signals about the demand,

whose precision is increasing in the level of individual production.

Second, using the argument made by van Nieuwerburgh and Veldkamp (2006), it can

5See Marinacci 1999 or Epstein and Schneider 2003a for formal treatments of the law of large numbers
for i.i.d. ambiguous random variables. There they show that sample averages must (almost surely) lie in
an interval bounded by the highest and lowest possible mean, and these bounds are tight in the sense that
convergence to a narrower interval does not occur.

6We thank Yan Bai for helpful discussions that led to this formulation.
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be shown that the procyclical signal-to-noise ratio arises from aggregation of production

units with common and idiosyncratic shocks within a firm. Suppose that a firm’s output

is the sum of production units operating that produce one unit of output using (utilization

adjusted) capital and labor. In turn, the output of each production unit is determined by

the sum of a common firm-specific component zl,t and an idiosyncratic component ν̃il,t, so

that yil,t = zl,t + ν̃il,t. Denoting Nl,t the number of production units operating at period

t, a firm’s output is given by Yl,t =
∑Nl,t

i=1 y
i
l,t = zl,tNl,t +

∑Nl,t
i=1 ν̃

i
l,t. Proposition 1 in van

Nieuwerburgh and Veldkamp (2006) shows that, as long as the idiosyncratic shocks are not

perfectly correlated across production units, the signal-to-noise ratio (defined as the variance

of signal zl,tNl,t divided by the variance of noise
∑Nl,t

i=1 ν̃
i
l,t) is increasing in Nl,t.

7 Intuitively,

this is because the effect of idiosyncratic shocks to each production unit becomes smaller

when we aggregate more production units.

Market clearing and resource constraint

We impose the market clearing conditions for the labor market and the bond market:

Ht =

∫ 1

0

Hl,tdl, Bt = 0.

The resource constraint is given by

Ct + It +Gt = Yt

where It ≡
∫ 1

0
Il,tdl, Yt ≡

∫ 1

0
Yl,tdl, and Gt is the government spending. We assume that the

government balances budget each period (Gt = −Tt). We also assume Gt = gtYt where gt

follows

ln gt = (1− ρg)ḡ + ρg ln gt−1 + εg,t, εg,t ∼ N(0, σ2
g).

Timing

The timing of the event at period t is as follows:

Stage 1 : Pre-production stage

• Agents observe the realization of aggregate shocks (At, σt, and gt).

7We assume that ν̃il,t is independently distributed across time so that tracking individual production does
not reveal additional information.
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• Given forecasts about the idiosyncratic technology and its associated worst-case

scenario, firms make utilization decision and hire labor (Ul,t and Hl,t). The

household supply labor Ht and the labor market clears at the wage rate Wt.

Stage 2 : Post-production stage

• Idiosyncratic shocks zl,t and νl,t realize (but are unobservable) and production

takes place.

• Given output and input, firms update estimates about their idiosyncratic tech-

nology and use it to form forecasts for production next period.

• Firms make investment Il,t and pay out dividends Dl,t. The household makes

consumption and asset purchase decisions (Ct, Bt, and θl,t).

3.2 Learning about idiosyncratic productivity under ambiguity

Firms form estimates about the idiosyncratic shock zl,t from the observables. Since the

problem is linear and Gaussian, Bayesian updating using Kalman filter is optimal from the

statistical perspective of minimizing the mean square error of the estimates. With ambiguity,

firms are not fully confident in a unique probabilistic description of the underlying data

generating process. The agents use the observed data to learn about the hidden technology,

and they do so by using the Kalman filter to obtain a benchmark probability distribution.

Ambiguity is modeled as the one-step ahead set of conditional beliefs Pt(st) in (3.1), which

here consists of alternative probability distribution surrounding the benchmark controlled by

a bound on the relative entropy distance. Thus, our ambiguity-averse agents continue to use

the ordinary Kalman filter to estimate the latent technology and evaluate plans according

to the worst-case means that are implied by the posterior estimates.

To ease notation, we set the trend growth rate γ to zero. The denote learning problem of

the model with positive growth is provided in the appendix along with other equilibrium con-

ditions. We denote Fl,t ≡ (Ul,tKl,t−1)αH1−α
l,t . After production at period t, the measurement

equation of the Kalman filter is given by

Yl,t/At = Fl,tzl,t + νl,t,

and the transition equation is given by

zl,t = (1− ρz)z̄ + ρzzl,t−1 + εz,l,t.
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Note that, unlike standard time-invariant Kalman filter, the coefficient in the measure-

ment equation Fl,t is time-varying.8 The key property of our filtering system is that the

signal-to-noise ratio is procyclical, which follows from the fact that input Fl,t is procyclical.

The flip side implication of this property is that uncertainty is countercyclical; The posterior

variance of idiosyncratic technology zl,t rises during recessions. Intuitively, when a firm puts

less resources into production, its estimate about its productivity is imprecise because the

level of output is largely determined by the realization of the transitory shock. Conversely,

its estimate is accurate when it uses more resources because output mostly reflects the

realization of productivity.

To characterize the filtering problem, we start by deriving the one-step-ahead prediction

from the period t− 1 estimate z̃l,t−1|t−1 and its associated error variance Σl,t−1|t−1. We have

z̃l,t|t−1 = (1− ρz)z̄ + ρz z̃l,t−1|t−1,

Σl,t|t−1 = ρ2
zΣl,t−1|t−1 + σ2

z,t.

Then, given observables (output Yl,t and aggregate productivity Zt) firms update their

estimates according to

z̃l,t|t = z̃l,t|t−1 +Gainl,t(Yl,t/Zt − z̃l,t|t−1Fl,t), (3.4)

where Gainl,t is the Kalman gain and is given by

Gainl,t =

[
F 2
l,tΣl,t|t−1

F 2
l,tΣl,t|t−1 + σ2

ν,t

]
F−1
l,t .

The term inside the bracket is the informativeness of the observation and the term outside

is the adjustment term due to the fact that the signal is multiplied by Fl,t. The updating

rule for variance is

Σl,t|t = (1−Gainl,tFl,t)Σl,t|t−1,

=

[
σ2
ν,t

F 2
l,tΣl,t|t−1 + σ2

ν,t

]
Σl,t|t−1.

(3.5)

The first line says that the error shrinks as we learn more from the observation; the error is

decreasing in the size of the Kalman gain. The second line says that the error variance is

increasing in the un-informativeness of the observation, which is the variance of noise divided

8However, also note that, after production, the coefficient and the variance of shocks are pre-determined,
which allows us to use Kalman filter.
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by the total variance. We can see that, holding Σl,t|t−1 and σ2
ν,t constant, the posterior

variance Σl,t|t increases as input Fl,t decreases.

We now describe the dynamics of the idiosyncratic technology zl,t from the perspective

of a firm.

zl,t+1 = (1− ρz)z̄ + ρzzl,t + εz,l,t+1

= (1− ρz)z̄ + ρz(z̃l,t|t + ul,t) + εz,l,t+1,

where ul,t is the estimation error of zl,t and ul,t ∼ N(0,Σl,t|t). A firm l is not confident in

the estimate z̃l,t. It considers a set of probability distributions, of the form

zl,t+1 = (1− ρz)z̄ + ρz z̃l,t|t + µ∗l,t+1 + ρzul,t + εz,l,t+1, (3.6)

where µl,t+1 ∈ [−al,t, al,t]. From the perspective of the firm, a change in posterior variance

translates into a change in uncertainty about the one-step-ahead realization of technology.

As in Bianchi et al. (2014), the change in uncertainty, in turn, affects the set of possible

µl,t+1 and thus the worst-case mean.

More precisely, agents only consider the conditional means µ∗l,t+1 that are sufficiently

close to the long run average of zero in the sense of relative entropy:

(µ∗l,t+1)2

2ρ2
zΣl,t|t

≤ 1

2
η2
a, (3.7)

where the left hand side is the relative entropy between two normal distributions that share

the same variance ρ2
zΣl,t|t but have different means (µ∗l,t+1 and zero) and ηa is a parameter

that determines the size of the entropy constraint. Agents compare the normal distributions

with variance ρ2
zΣl,t|t because we assume that they only treat the estimation error ut as

ambiguous; They are fully confident in the law of motion zl,t+1 = (1− ρz)z̄ + ρzzl,t + εz,l,t+1

and treat the technology shock εz,l,t+1 as risk. (3.7) implies that the worst-case mean is given

by

−al,t = −ηaρz
√

Σl,t|t. (3.8)

The relative entropy can be thought of as a measure of distance between the two distributions.

When uncertainty Σl,t|t is high, it becomes difficult to distinguish between different processes.

As a result, agents become less confident and contemplate wider sets µl,t+1 of conditional

probabilities.

In Bayesian decision making, experimentation is valuable because it raises expected utility

by improving posterior precision. Ambiguity-averse agents also value experimentation since
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it affects utility by tightening the set of conditional probability considered. In our model,

firms take into account the impact of the level of input on worst-case mean when they

make decisions. Although we allow active learning by firms, our model can still be solved

using standard linear methods. This is in contrast to experimentation in a Bayesian setting,

which requires non-linear tools. When we present our quantitative results, we assess the

contribution of experimentation by comparing our baseline results with those under passive

learning.

4 Equilibrium characterization and solution

We start by discussing the recursive representation of the model. This clarifies the sequence

of events and the information sets that agents base their action on. We then build on the

framework to describe the solution method we use to solve for the equilibrium law of motion.

4.1 Recursive competitive equilibrium

As in Angeletos et al. (2014), it is useful to divide the agents’ problem into two stages;

stage 1 (pre-production stage) and stage 2 (post-production stage). To ease exposition,

we abstract from utilization momentarily. We collect exogenous aggregate state variables

(such as aggregate TFP) in a vector X with a cumulative transition function F (X ′|X).

The endogenous aggregate state is the distribution of firm-level variables. A firm’s type is

identified by the posterior mean estimate of productivity z̃l, the posterior variance Σl, and its

capital stock Kl. The worst-case TFP is not included because it is implied by the posterior

mean and variance. We denote the cross-sectional distribution of firms’ type by ξ1 and ξ2.

ξ1 is a stage 1 distribution over (z̃l,Σl, Kl) and ξ2 is a stage 2 distribution over (z̃′l,Σ
′
l, Kl).

ξ′1, in turn, is a distribution over (z̃′l,Σ
′
l, K

′
l) at stage 1 in the next period.9

First, consider the household’s problem. The household’s wealth can be summarized by

a portfolio
−→
θl which consists of share θl for each firm and the risk-less bond holdings B. We

use V h
1 and V h

2 to denote the household’s value function at stage 1 and stage 2, respectively.

We use m to summarize the income available to the household at stage 2. The household’s

9See also Senga (2015) for a recursive representation of an imperfect information heterogeneous-firm
model with time-varying uncertainty.
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problem at stage 1 is

V h
1 (
−→
θl , B; ξ1, X) = max

H

{
− ϕH

1+η

1 + η
+ E∗[V h

2 (m̂; ξ̂2, X)]

}
s.t. m̂ = WH +RB +

∫
(D̂l + P̂l)θldl

(4.1)

where we momentarily use the hat symbol to indicate random variables that will be resolved

at stage 2. The household’s problem at stage 2 is

V h
2 (m; ξ2, X) = max

C,
−→
θl ′,B′

{
lnC + β

∫
V h

1 (
−→
θl
′, B′; ξ′1, X

′)dF (X ′|X)

}
s.t. C +B′ +

∫
Plθ
′
ldl ≤ m

ξ′1 = Γ(ξ2, X)

(4.2)

In problem (4.1), households choose labor supply based on the worst-case stage 2 value (recall

that we use E∗ to denote worst-case conditional expectations). The problem (4.2), in turn,

describes the household’s consumption and asset allocation problem given the realization of

income and aggregate states. In particular, they take as given the law of motion of the next

period’s distribution ξ′1 = Γ(ξ2, X), which in equilibrium is consistent with the firm’s policy

function. Importantly, in contrast to the stage 2 problem, a law of motion that describes the

evolution of ξ2 from (ξ1, X) is absent in the stage 1 problem. Indeed, if there is no ambiguity

in the model, agents take as given the law of motion ξ2 = Υ(ξ1, X), which in equilibrium is

consistent with the firm’s policy function and the true data generating process of the firm-

level TFP. Since agents are ambiguous about each firm’s TFP process, they cannot settle

on a single law of motion about the distribution of firms. Finally, the continuation value at

stage 2 is governed by the transition density of aggregate exogenous states X.

Next, consider the firms’ problem. We use vf1 and vf2 to denote the firm’s value function

at stage 1 and stage 2, respectively. Firm l’s problem at stage 1 is

vf1 (z̃l,Σl, Kl; ξ1, X) = max
Hl

E∗[vf2 (ˆ̃z′l,Σ
′
l, Kl; ξ̂2, X)]

s.t. Updating rules (3.4) and (3.5)
(4.3)
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and firm l’s problem at stage 2 is

vf2 (z̃′l,Σ
′
l, Kl; ξ2, X) = max

Il

{
λ(Yl −WHl − Il) + β

∫
vf1 (z̃′l,Σ

′
l, K

′
l ; ξ
′
1, X

′)dF (X ′|X)

}
s.t. K ′l = (1− δ)Kl + Il

ξ′1 = Γ(ξ2, X)

(4.4)

where we simplify the exposition by expressing a firm’s value in terms of the marginal utility

λ of the representative household. Similar to the household’s problem, a firm’s problem at

stage 1 is to choose the labor demand so as to maximize the worst-case stage 2 value. Note

that the posterior mean z̃′l will be determined by the realization of output Yl at stage 2 while

the posterior variance Σ′l is determined by Σl and the input level at stage 1. In problem

(4.4), the firm then chooses investment taking as given the realization of output and the

updated estimates of its productivity. Note that, as in the household’s problem, firms take

as given the (equilibrium) law of motion of the distribution of firms in the stage 2 problem

but not in the stage 1 problem.

The discussion above highlights one of the key features of our model; the level of labor

input is chosen before the realization of firm-level productivity and that this timing arises

naturally from imperfect information about the underlying productivity process. This

labor-in-advance feature allows us to circumvent the Barro and King (1984) critique and

hence generate feedback effects of time-varying uncertainty consistent with business cycle

co-movement without additional rigidities.

We conclude this subsection by providing a brief definition of the recursive competitive

equilibrium of our model. The recursive competitive equilibrium is a collection of value

functions, policy functions, and prices such that

1. Households and firms optimize; (4.1) – (4.4).

2. The labor market, goods market, and asset markets clear.

3. The law of motion ξ′1 = Γ(ξ2, X) is induced by the firms’ policy function Il(z̃
′
l,Σ

′
l, Kl; ξ2, X).

4.2 Log-linearized solution

We solve for the equilibrium law of motion using standard log-linear methods. This is possible

for two reasons. First, since the filtering problem firms face is linear, the law of motion of the

posterior variance can be characterized analytically (Saijo 2014). Because the level of inputs

has first-order effects on the level of posterior variance, linearization accurately captures

the impact of economic activity on confidence. Second, as in Ilut and Schneider (2014),
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we consider ambiguity about the mean and hence the feedback from confidence to economic

activity is also well-approximated by linearization. In turn, log-linear decision rules facilitate

aggregation because the cross-sectional mean becomes a sufficient statistic for the dynamics

of the distribution of firms.

We follow Ilut and Schneider (2014) and solve for the equilibrium dynamics using a

guess-and-verify approach:

(a) guess the worst case beliefs p0.

(b) solve the model assuming that agents have agents have expected utility and beliefs p0.

(c) compute the agent’s value function V .

(d) verify that the guess p0 indeed achieves the minima.

In what follows we explain step (b) by deriving log-linearized expressions for the expected

worst-case output at stage 1 and the realized output at stage 2.10 We use the example to

illustrate that uncertainty about the firm-level TFP has a first-order effect at the aggregate

and generates a countercyclical labor wedge.

As in Ilut and Schneider (2014), we first find the worst-case steady state by evaluating a

deterministic version of the filtering problem and standard first-order conditions under the

guessed worst-case belief. Potential complications arise because the worst-case technology

depends on the level of economic activity. Since the worst-case technology, in turn, deter-

mines the level of economic activity, there could be multiple steady states. We circumvent

this multiplicity by treating the posterior variance of the level of idiosyncratic TFP as a

parameter and by focusing on the steady state that is implied by that posterior variance.

Next, we log-linearize the model around the worst-case steady state. To do this, we first

log-linearize the expected worst-case output of individual firm l at stage 1:

E∗t Ŷ
0
l,t = Ẑ0

t + E∗t ẑ
0
l,t + F̂ 0

l,t, (4.5)

and the realized output of individual firm l at stage 2:

Ŷ 0
l,t = Ẑ0

t + ẑ0
l,t + F̂ 0

l,t, (4.6)

where we use x̂0
t = xt − x̄0 to denote log-deviations from the worst-case steady state and

set the trend growth rate γ to zero to ease notation. The worst-case individual output

(4.5) is the sum of three components: the current level of aggregate TFP, the worst-case

10We provide a general description of the procedure in the Appendix.
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individual TFP, and the input level. The realized individual output (4.6), in turn, is the

sum of aggregate TFP, the realized individual TFP, and the input level.

We then aggregate the log-linearized individual conditions (4.5) and (4.6) to obtain the

cross-sectional mean of worst-case individual output:

E∗t Ŷ
0
t = Â0

t + E∗t ẑ
0
t + F̂ 0

t , (4.7)

and the cross-sectional mean of realized individual output:

Ŷ 0
t = Â0

t + ẑ0
t + F̂ 0

t , (4.8)

where we simply eliminate subscript l to denote the cross-sectional mean, i.e., x̂0
t ≡

∫ 1

0
x̂0
l,tdl.

So far we have characterized the dynamics of output under the worst-case scenario. Our

final step is to characterize the dynamics under the true data generating process (DGP). To

do this, we feed in the cross-sectional mean of individual TFP, which is constant under the

true DGP, into (4.7) and (4.8). Using (4.7), the cross-sectional mean of worst-case output is

given by

E∗t Ŷt = Ât + E∗t ẑt + F̂t, (4.9)

where we use x̂t = xt− x̄ to denote log-deviations from the steady-state under the true DGP.

Using (4.8), the realized aggregate output is given by

Ŷt = Ât + F̂t, (4.10)

where we used ẑt = 0 under the true DGP. Importantly, E∗t ẑt in (4.10) is not necessarily zero

outside the steady state. To see this, combine (3.6) and (3.8) and log-linearize to obtain an

expression for E∗t ẑl,t:

E∗t ẑl,t = εz,z ˆ̃zl,t−1|t−1 − εz,ΣΣ̂l,t−1|t−1, (4.11)

From (3.5), the posterior variance is negatively related to the level of input F :

Σ̂l,t−1|t−1 = εΣ,ΣΣ̂l,t−2|t−2 − εΣ,F F̂l,t−1, (4.12)

where for simplicity we assumed there is no dispersion shock. The elasticities εz,z, εz,Σ, εΣ,Σ,

and εΣ,F are functions of structural parameters and are all positive. We combine (4.11) and

(4.12) to obtain

E∗t ẑl,t = εz,z ˆ̃zl,t−1|t−1 − εz,ΣεΣ,ΣΣ̂l,t−2|t−2 + εz,ΣεΣ,F F̂l,t−1. (4.13)
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Finally, we aggregate (4.13) across all firms:

E∗t ẑt = −εz,ΣεΣ,ΣΣ̂t−2|t−2 + εz,ΣεΣ,F F̂t−1,

where we used
∫ 1

0
ˆ̃zl,t−1|t−1dl = 0.11 Thus, the level of economic activity F̂t−1 has a first-

order effect on the cross-sectional average of the worst-case mean. During recessions,

firms on average produce less, which leads to lower confidence about their firm-level TFP.

This endogenous reduction in confidence further reduces equilibrium hours worked and

other economic activity. From the perspective of the econometrician who measures labor

productivity from (4.10), this manifest itself as an increase in the labor wedge.

5 Main results

We are interested in studying the role of endogenous firm-level uncertainty in business cycles.

In this section, we evaluate the empirical performance of the calibrated version of our model

and contrast its quantitative implications with those of a standard RBC model.

5.1 Parameterization

Table 1 summarizes the parameters used in our exercise. In order to facilitate comparison

of our model with a standard RBC model, we use common values used in the literature

whenever possible. The annual rate of labor augmenting technological progress is set to

1.6 percent and the discount factor is set to 0.99. The capital share of income is 0.3. The

Frisch elasticity of labor supply is equal to 2 and the annual steady state depreciation rate

is set to 10 percent. The parameter that relates utilization rate to depreciation (δ2/δ1)

implies a fairly elastic capital utilization in equilibrium. Schmitt-Grohé and Uribe (2012),

for example, found a similar value in their estimation. The autocorrelation parameters for

aggregate shocks are broadly in line with the previous literature.12

We choose ρz = 0.7 and σz = 0.4 for the idiosyncratic TFP process. Idiosyncratic TFP

is less persistent than the aggregate, which is in line with the finding in Kehrig (2015). The

values imply a cross-sectional standard deviation of TFP of 0.56 and is in line with the

estimates found in Bloom et al. (2012) using the establishment-level data. We would like to

bound the size of ambiguity ηa by the variability of the data. Based on this concern, Ilut and

11This follows from aggregating the log-linearized version of (3.4) and evaluating the equation under the
true DGP. Intuitively, since the cross-sectional mean of idiosyncratic TFP is constant, the cross-sectional
mean of posterior mean should be constant as well.

12For example, autocorrelation of the dispersion shock ρσ is consistent with the time series of cross-sectional
TFP dispersion reported in Bloom et al. (2012).
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Schneider (2014) argue that a reasonable upper bound for ηa is 2. We choose a conservative

value of ηa = 1. Recall from the discussion in the earlier section that we re-parameterize

the model so that we take the worst-case steady state posterior variance Σ̄0 of idiosyncratic

TFP as a parameter. This posterior variance, together with ρz and σz, will pin down the

standard deviation of additive shock σν . David et al. (2015) estimate the posterior variance

of a firm-specific shock (in the context of our model, a TFP shock) to be around 8–13%. We

choose the worst-case steady state posterior variance so that at the zero-risk steady state

the posterior variance Σ̄ is 12%.

Our parameterization implies that the cross-sectional mean of the worst-case individual

TFP at the zero-risk steady state is about 82 percent of the actual realized level. The

Kalman gain at the zero-risk steady state, normalizing the level of input to one, is 0.45.

To put this in perspective, the gain implies that an observation from quarters ago will

receive a weight (1 − 0.45)4 ≈ 0.09. Thus, learning is fairly precise and quick under our

parameterization. Finally, the ex-post excess return on capital at the zero-risk steady state is

6.4 annual percentage point. We obtain a sizable excess return because our model emphasizes

uncertainty generated by idiosyncratic shocks and firm-level learning.

5.2 Impulse response analysis

Figure 2 plots the impulse response to a positive technology shock. In addition to the

response from the baseline model (labeled ‘Baseline’), we also report the responses from the

model with passive learning (labeled ’Passive’) and the standard rational expectation (RE)

RBC model (labeled ’RE’). The solution to the RE model is obtained by simply setting the

entropy constraint ηa to zero. In this case, agents think in terms of single probabilities and

the model reduces to a rational expectation model. Note also that when ηa = 0, firm-level

learning cancels out in the aggregate due to linearization and the law of large numbers.

Compared to the RE version, our model generates amplified and hump-shaped response

in output, investment, and hours. These dynamics are due to the endogenous variation in

firms’ confidence. In response to a positive technology shock, firms (on average) increase

their inputs, such as hours and the capital utilization rate. The increase in inputs lowers

uncertainty which implies that firms contemplate a narrower set of conditional probabilities;

the worst-case scenarios become less worse. As a result, agents act as if their idiosyncratic

productivities are higher and thus further increase their economic activity. At the same time,

from the perspective of the econometrician, the labor supply and the demand for capital is

surprisingly high. Thus, both labor wedge and ex-post excess return on capital decline.

Finally, we compare our baseline impulse response with the response from the passive
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learning model. Initially the output and hours responses of the baseline model with active

learning are larger than those of passive learning. In the medium run, however, the responses

of passive learning become larger. This is due to a dynamic interaction of two opposing forces.

On one hand, higher production during booms increases the value of experimentation because

it raises the marginal benefit of an increase in expected worst-case technology. On the other

hand, there is an offsetting effect coming from a reduction in posterior variance. Since the

level of posterior variance is downward convex in the level of inputs, the marginal reduction

in posterior variance due to an increase in inputs is smaller during booms. During the initial

period of a positive technology shock, the first effect dominates the second. As the economy

slows down, the second effect becomes more important.

Figure 3 reports the impulse responses to a dispersion shock that increases firm-level

volatilities. An increase in volatilities generates a brief increase in output and hours followed

by a large and persistent decline in economic activity. The initial response is driven purely

by the wealth effect due to bad “news”; households anticipate a future decline in worst-case

technology so they cut consumption and increase hours. In the medium run, the increase

in volatilities reduces firms’ confidence and thus generates a contraction in the economic

activity and an increase in wedges. Compared to the model with passive learning, the effect

of a dispersion shock is significantly smaller under our baseline model with active learning.

Intuitively, agents try to counteract an exogenous increase in uncertainty by increasing

production and by experimenting more. Under passive learning, this effect is absent so

it overstates the effect of a dispersion shock.

Figure 4 shows the impulse response to an increase in government spending. In the

standard RBC model, due to the negative wealth effect hours increase but consumption and

investment decline. In our model, an increase in government spending, due to its effects

of raising hours worked, also raises firms’ confidence, which further stimulates economic

activity. As a result, output and hours increase are larger and investment increases as

well. The negative response of consumption is somewhat mitigated. Figure 5 reports the

government spending multiplier for output. Under the baseline calibration, the government

spending multiplier is always below one in the RE model. Our model generates a larger

multiplier than the RE model and the multiplier becomes larger than one after the initial

period.13

As emphasized by Hall (2009), a more elastic labor supply would increase the value of

government spending multiplier in standard models. In our model, there is an additional

effect coming from a larger amplification: Since firms increase their labor input more

13Note that, in a model with capital, government spending multiplier could be above one even with a
negative response of consumption if it is offset by an increase in investment.
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aggressively, their confidence increases much more. To illustrate the effect of higher labor

supply elasticity, we also report the government spending multiplier when we set η = 0.12.14

The labor supply elasticity implied by this value is close to that implied by the indivisible

labor model – see Hansen (1985) and Rogerson (1988). Figure 5 shows that the government

spending multiplier of our model is much larger, reaching 2.5 at the peak. The effect of

labor supply elasticity is also important for understanding the co-movement in response to

a government spending shock. Figure 6 reports the consumption response to a government

spending shock in our model and the RE version. Again, we show the responses under

both the baseline parameterization and high labor supply elasticity. As we saw earlier,

consumption declines in both models under the baseline parameterization. When the labor

supply is more elastic, the consumption response remains negative in the RE model. In

our model, however, consumption continues to increase after the initial drop and remains

positive after six quarters; the increase in confidence is large enough that it overturns the

negative wealth effect induced by the government spending.

5.3 Business cycle moments

Table 2 reports the HP-filtered second moments. To facilitate comparison with the standard

frictionless RBC model, we assume that the only source of aggregate disturbance is the

technology shock. We choose the standard deviation of the aggregate technology shock so

that the output standard deviation in our baseline model matches the data (100σA = 0.273).

First, our endogenous uncertainty mechanism generates output amplification of (1.11/0.88

=) 26 percent. The baseline model is also successful in generating a larger standard deviation

of hours relative to output. The low volatility of hours has been a major shortcoming of

RBC theories. Our model is less successful in reproducing the volatilities of consumption

and investment. Second, our model can replicate the strong negative correlation with

economic activity and the labor wedge. Third, our model gives a closer match in terms

of autocorrelations. The baseline model generates higher autocorrelations in levels and,

more importantly, positive autocorrelations in growth rates of output and other variables.

As pointed out by Cogley and Nason (1995) and Rotemberg and Woodford (1996), a

standard RBC model cannot generate persistence in output growth due to its weak internal

propagation mechanism.

14We do not change other parameter values.
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6 Estimation and extensions

In this section, we further explore the implications of our model by conducting Bayesian

estimation. (Details to be added.)
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7 Appendix

7.1 A model of learning about firm-specific demand

In this section, we show that the baseline model with additive shock in the production

function (3.2) can be reinterpreted as a model where firms learn about their demand from

noisy signals.

There is a continuum of firms, indexed by l ∈ [0, 1], which produce intermediate goods

and sell them to a large representative “conglomerate”. The conglomerate, who holds

shares of the intermediate firms, acts in a perfectively competitive manner and combine

the intermediate goods to produce final goods. To ease exposition, we momentarily abstract

from all aggregate shocks, labor-augmenting technological growth, and utilization.

The conglomerate combines intermediate output Yl,t according to the following CES

aggregator:

Yt =

[ ∫ 1

0

z
σ−1
σ

l,t Y
σ−1
σ

l,t dl

] σ
σ−1

, σ > 1

where zl,t follows an AR(1) as in (3.3). In turn, intermediate goods Yl,t are produced

according to

Yl,t = Kα
l,t−1H

1−α
l,t .

We assume that all agents, including the conglomerate and households, cannot observe the

realization of zl,t. Instead, after the production of final and intermediate goods they observe

noisy signals

sl,t = Yl,tzl,t + ν̃l,t, ν̃l,t ∼ N(0, σ2
ν̃) (7.1)

where ν̃l,t is an observation error. Agents use all available information, including the path

of signals sl,t and intermediate output Yl,t, to form estimates about the realization of zl,t.

In this context, it is natural to think zl,t as a “quality” of intermediate good l that is

difficult to observe. Alternatively, since the final good could directly be used for consumption,

zl,t can be interpreted as an unobservable demand for a variety l. Crucially, (7.1) implies

that the signal-to-noise ratio is increasing in the level of output Yl,t. It is plausible that

firms learn more about the quality or demand, zl,t, of their goods when they produce and

sell more. For example, when a restaurant serves more customers it generates more website

reviews and hence people learn more about the quality of their meals.

Intermediate firms l choose price Pl,t and inputs to maximize the shareholder value

E∗0

∞∑
t=0

M t
0Dl,t.
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Dl,t is the dividend payout to the conglomerate given by

Dl,t =
Pl,t
Pt
Yl,t −WtHl,t − Il,t,

where Pt is the price of the final good given by

Pt =

[∫ 1

0

P 1−σ
l,t dl

] 1
1−σ

.

The conglomerate, in turn, choose intermediate inputs Yl,t and shares θl,t to maximize the

shareholder value

E∗0

∞∑
t=0

M t
0Dt,

where Dt is the dividend payout to the households

Dt = Yt +

∫
(Dl,t + P e

l,t)θl,t−1dl −
∫
P e
l,tθl,tdl.

The household side of the economy is the same as in the baseline model except that the

households hold shares θt of conglomerates instead of shares θl,t of intermediate firms.

We now reintroduce aggregate shocks and utilization and describe the timing of the event

at period t.

Stage 1 : Pre-production stage

• Agents observe the realization of aggregate shocks (Zt, σt, and gt).

• Given forecasts about zl,t and its associated worst-case scenario, firms make uti-

lization decision, hire labor, and choose price (Ul,t, Hl,t, and Pl,t). The household

supply labor Ht and the labor market clears at the wage rate Wt.

• Firms produce intermediate output Yl,t and sells it to the conglomerates at price

Pl,t.

Stage 2 : Post-production stage

• zl,t realize (but are unobservable) and production of the final goods Yt takes place.

Agents observe noisy signals sl,t.

• Firms and conglomerates update estimates about zl,t and use it to form forecasts

for production next period.
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• Firms make investment Il,t and pay out dividends Dl,t to the conglomerates. The

conglomerates make asset purchase decisions θl,t and pay out dividends Dt to the

households. Finally, households make consumption and asset purchase decisions

(Ct, Bt, and θt).

In the perfect competition limit (σ → ∞), this version of the model is observationally

equivalent to the baseline model at the aggregate level. The introduction of the conglomerate

is important for two reasons. First, it prohibits households from inferring zl,t from utility

by directly consuming intermediate goods Yl,t. Second, it generates countercyclical ex-post

excess return on equity held by the household. This is because dividend payout by the

conglomerate to the household (Dt) is based on the realized return on capital. Note that

the dividend payout by the intermediate firms to the conglomerate (Dl,t) is not based on the

realized return since the production and market clearing of Yl,t happens before the realization

of zl,t.
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Figure 1: Impulse response for a 1% increase in government spending (the stylized model).
Blue dashed line is the model with rational expectations, black solid line with ambiguity.
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Figure 2: Impulse response for a 1% increase in aggregate productivity. Thick black solid line
is our baseline model with active learning, thin blue dashed line is the model with passive
learning, and thick red dashed line is the frictionless RBC model.
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Figure 3: Impulse response for a 1% increase in the cross-sectional standard deviation of
idiosyncratic productivity. Thick black solid line is our baseline model with active learning,
thin blue dashed line is the model with passive learning, and thick red dashed line is the
frictionless RBC model.
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Figure 4: Impulse response for a 1% increase in government spending share to output. Thick
black solid line is our baseline model with active learning, thin blue dashed line is the model
with passive learning, and thick red dashed line is the frictionless RBC model.
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Figure 6: Consumption response to a 1% increase in government spending share to output.
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Table 1: Parameters

Description Value
Technology and preference
γ Labor augmenting technology growth 1.004
α Capital share 0.3
β Discount factor 0.99
η Inverse Frisch elasticity 0.5
δ0 SS depreciation 0.025
δ2/δ1 Convexity of depreciation 0.3
ηa Size of entropy constraint 1
Σ̄ SS posterior variance 0.12
ḡ SS share of government spending to output 0.2
Shocks
ρz Idiosyncratic technology 0.7
σz Idiosyncratic technology 0.4
ρA Aggregate technology 0.95
ρg Government spending 0.95
ρσ Firm-level dispersion 0.85
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Table 2: HP-filtered moments

Data Our model RBC
Standard deviations
σ(y) 1.11 1.11 0.88
σ(c)/σ(y) 0.72 0.16 0.20
σ(i)/σ(y) 3.57 2.60 3.12
σ(h)/σ(y) 1.64 0.64 0.55
Correlations with output
σ(c, y) 0.86 0.95 0.94
σ(i, y) 0.92 0.99 0.99
σ(h, y) 0.88 0.99 0.99
Correlations with labor wedge
σ(y, τl) -0.83 -0.86 0
σ(c, τl) -0.84 -0.83 0
σ(i, τl) -0.83 -0.85 0
σ(h, τl) -0.97 -0.88 0
Autocorrelations (levels)

σ(yt, yt−1) 0.89 0.78 0.69
σ(ct, ct−1) 0.85 0.75 0.73
σ(it, it−1) 0.93 0.79 0.69
σ(ht, ht−1) 0.95 0.82 0.69
Autocorrelations (growth rates)

σ(∆yt,∆yt−1) 0.39 0.14 -0.05
σ(∆ct,∆ct−1) 0.50 0.07 0.04
σ(∆it,∆it−1) 0.51 0.16 -0.05
σ(∆ht,∆ht−1) 0.71 0.26 -0.05

Notes: Both data and model moments are in logs, HP-filtered (λ = 1600) if the variables are in levels, and
multiplied by 100 to express them in percentage terms. The model moments are the median values from
200 replications of simulations of 120 periods (after throwing away the initial 50 periods). The sample
period for the data is 1985Q1–2014Q4. We choose the standard deviation of the aggregate technology
shock so that the output standard deviation in the baseline model matches the data. Other aggregate
shocks are set to zero.
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