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Abstract

Recessions are associated with increases in uncertainty. This paper shows that a

simple model of creative destruction, in which new productive businesses push out old

obsolete ones, produces increases in measured uncertainty during recessionary periods

even without time-variation in second moments of exogenous shocks. Moreover, the

suggested channel is also borne out by the data. Using an established identification

strategy within a structural vector autoregression, this paper documents that several

popular measures of uncertainty increase significantly in response to creative destruc-

tion shocks. This suggests that variation in measured uncertainty is (at least partly)

and endogenous response of the economy to “standard” first-moment shocks.

1 Introduction

Are recessions fueled by increases in uncertainty, or is uncertainty an epiphenomenon of

economic downturns? Triggered by the seminal paper of Bloom (2009), there is by now

a vast set of studies documenting that economic downturns, including the most recent

recession, are accompanied by increases in uncertainty. However, which way the causality

runs is not entirely clear. Bloom argued that causality runs from uncertainty to economic
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activity, because higher uncertainty makes it more attractive to wait for more information.

Investment and hiring freeze and aggregate economic activity falls.

Instead, this paper shows that a simple model of creative destruction, in which new

productive businesses push out old obsolete ones gives rise to increases in measured un-

certainty without reverting to time-variation in second moments of exogenous shocks.

Moreover, using structural vector autoregressions and an established identification strat-

egy of creative destruction shocks, the paper also documents that this channel is borne

out in the data.

First, this paper builds a relatively standard model of creative destruction and a fric-

tional labor market. The economy is characterized by a technological frontier which grows

along a stochastic trend. While newly created firms posses this frontier technology, older

businesses keep the technological level from the time of their birth unless they managed

to innovate. The process of innovation happens with an exogenous probability and leads

firms to jump to the technological frontier.

When firms are repeatedly unsuccessful in innovation they fall behind the technological

frontier and become relatively more and more unproductive. At the same time, all firms

obtain idiosyncratic productivity shocks at the beginning of each period. Firms with

particularly bad realizations of these shocks become unprofitable and they shut down.

Therefore, an increase in the technological frontier leads to not only greater incentives for

creating new productive jobs, but also to an rise in the mass of exiting firms. Workers

coming from exiting firms reallocate to new jobs, but the frictional labor market makes this

adjustment sluggish resulting in a temporary economic downturn (a rise in unemployment

and a drop in output).

Within the model it is possible to construct measures of uncertainty typically used in

the empirical literature. In particular, this paper uses the same empirical strategy as in

Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) to quantify changes in

uncertainty by estimating firm-specific productivity regressions controlling for firm and

time fixed effects and investigating time-variation in the cross-sectional variance of residu-

als from such regressions. As in the data, also in the model the cross-sectional variance of

residuals moves countercyclically. Moreover, the magnitude of these movements accounts

for about three quarters of that estimated in the data.

The intuition for this result is one of regression misspecification. The true model of

productivity evolution in the model includes an indicator function accounting for the pos-

sibility of innovation (and a jump to the technological frontier). When this possibility is
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not considered, productivity changes among innovating firms are captured by the residual

term of the regression (even when accounting for firm and time fixed effects). The mag-

nitude of this regression “error” then rises when the frontier expands (which is associated

with a recessionary response as explained above).

Second, this paper documents that the channel suggested in the model is also borne

out by the data. Specifically, using structural vector autoregressions (SVARs) to identify

creative destruction shocks as in Gali (1999) and Fisher (2006) this paper shows that

several popular measures of uncertainty increase significantly following a positive creative

destruction shock. Therefore, this paper shows that movements in measured uncertainty

are (at least partly) driven by endogenous responses of the economy to “standard” first-

moment shocks rather than the result of shocks to second moments.

The rest of the paper is organized as follows. The next section summarizes the related

literature. Section 3 builds the structural model of creative destruction and describes the

calibration and solution method. Section 4 then presents the model-results with a focus on

endogenous uncertainty movements. Next, Section 5 identifies creative destruction shocks

in the data using SVARs and documents that uncertainty measures respond to them.

Finally, Section 6 provides some concluding remarks.

2 Related literature

This section briefly summarizes existing papers studying uncertainty (its measures, its

impact on the economy and reasons for why it may be varying over time) as well as papers

investigating “Schumpeterian” creative destruction shocks and their effect on the economy.

2.1 Uncertainty measures

In an influential paper Bloom (2009) presented new evidence on the counter-cyclicality of

measures of uncertainty. In particular, Bloom shows that the VXO index of stock market

volatility covaries negatively with industrial production and positively with cross-sectional

dispersion in profits and stock returns. Moreover, he finds that positive innovations to

the VXO index cause a drop in industrial production in a VAR, where the innovations

are identified using a Choleski-ordering approach. Based on this evidence, Bloom offers

an interpretation in which causation runs from “uncertainty shocks” to real activity.

The above-mentioned paper sparked a large research effort attempting to measure

changes in uncertainty. Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012)
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document that the dispersion of growth rates or sales across listed companies and across

all industries are strongly counter-cyclical. Bachmann and Bayer (2014) find that in a long

panel of German firms the cross-sectional dispersion of productivity, output and employ-

ment growth is counter-cyclical, but that the dispersion of firm-level investment rates is

pro-cyclical. Vavra (2014) uses micro-data underlying the Consumer Price Index and finds

that the cross-sectional standard deviation of price changes is strongly counter-cyclical.

Bachmann, Elstner, and Hristov (2014) use survey data for German manufacturing firms

to directly quantify firm-level investment innovation shocks (a difference between firms’

investment expectations and realizations). They find that the cross-sectional dispersion

in these innovations is strongly counter-cyclical and that measures of firm-level risk have

sizeable fluctuations.

Recently the focus of many researchers has moved towards uncertainty in macroeco-

nomic policies. Baker, Bloom, and Davis (2012) measure uncertainty in macroeconomic

policies using news from the media. Fernandez-Villaverde, Guerron-Quintana, Rubio-

Ramirez, and Uribe (2011) document time-variation in the volatility of the real inter-

est rate faced by a sample of emerging small open economies and Fernandez-Villaverde,

Guerron-Quintana, Kuester, and Rubio-Ramirez (2012) estimate tax and spending pro-

cesses for the U.S. and find time-varying volatility.

Finally, Jurado, Ludvigson, and Ng (forthcoming) take a data-rich econometric ap-

proach in obtaining “direct” measures of uncertainty. In particular, they define uncer-

tainty as the common volatility in the unforecastable component of a large number of

economic indicators. They group these indicators into aggregate variables and firm-level

variables and thus refer to macro- and micro-uncertainty. They find that while uncer-

tainty remains counter-cyclical, quantitatively important uncertainty episodes appear less

frequently than indicated by other popular proxies.

2.2 Effects of uncertainty shocks

As was mentioned earlier, Bloom (2009) presents a model in which positive shocks to

uncertainty (of an empirically plausible magnitude) cause substantial and sharp declines in

real activity. Arellano, Bai, and Kehoe (2012) study how financial frictions and uncertainty

shocks help explain the drop in output as well as the large movements in the labor wedge.

Bachmann and Bayer (2014) find that in a neoclassical model which is calibrated to match

the observed pro-cyclicality of investment rates shocks to the dispersion of firm-level TFP
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cannot be too large and as such cannot cause serious business cycles. Christiano, Motto,

and Rostagno (2010) fit a DSGE model with a banking sector and financial markets to US

and Euro-Area data and find that shocks to the perception of market risk are one of the

prime determinants of economic fluctuations. Chugh (2014) uses a micro-estimated process

for the dispersion of firm-level productivity as an input in a DSGE financial accelerator

model and finds that these shocks explain only a small fraction of GDP fluctuations.

? analyze how uncertainty shocks and financial frictions can give rise to business cycle

fluctuations which are observationally equivalent to TFP-driven fluctuations. Finally,

Schaal (2012) builds a labor market model with idiosyncratic volatility shocks to explain

the large and persistent increase in unemployment and a rise in labor-productivity observed

during the Great Recession in the U.S. economy.

2.3 Endogenous fluctuations in uncertainty

The group of papers which tries to investigate the opposite direction of causality, i.e. from

first-moment shocks to uncertainty, is much smaller. Bachmann and Moscarini (2012)

propose a model with imperfect information about demand in an otherwise standard mo-

nopolistically competitive setup. When a firm deviates from competitors’ average prices,

it faces a potential profit loss, but learns more about its elasticity (market power). Disper-

sion in prices then endogenously increases in bad economic times because these are well

suited for price experimentation as the opportunity costs of price mistakes are lower.

Boedo, Decker, and D’Erasmo (2014) use the U.S. Census Bureau’s Longitudinal Busi-

ness Database to show that measures of market reach are pro-cyclical and that the counter-

cyclicality of firm-level volatility is driven mainly by those firms that adjust the number of

markets to which they are exposed. Further, they show that these findings are consistent

with a model in which firm endogenously choose the degree of market exposure and which

is driven by only shocks to total factor productivity.

Cui (2014) shows that reallocation activity is slowed down in a general equilibrium

model in which firms face idiosyncratic productivity risks, are subject to partial irre-

versibility and financing constraints. The reason is that partial irreversibility generates

selling delays and these are exacerbated in bad times when financing constraints are tighter.
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2.4 Schumpeterian technology shocks

The empirical results in this paper are related to Gali (1999), Christiano, Eichenbaum, and

Vigfusson (2003), Francis and Ramey (2005), Fisher (2006), Lopez-Salido and Michelacci

(2007) and Canova, Lopez-Salido, and Michelacci (2013), who study the effects of neu-

tral (and investment specific) technology shocks within a structural VAR framework on

hours worked, unemployment and labor market flows, respectively. The empirical evi-

dence on the effects of neutral technology shocks on hours is mixed and Fernald (2007)

and Canova, Lopez-Salido, and Michelacci (2013) attribute this, at least in part, to the

influence of low-frequency movements. A consensus view does, however, appear for the ef-

fect of technology shocks on unemployment and labor market flows. In particular, neutral

technology (Schumpeterian) shocks have been found to increase (decrease) unemployment

and separations (the probability of finding a job) temporarily.

The role of creative destruction shocks for driving economic fluctuations or growth

has been analyzed in several papers. For instance, Aghion and Howitt (1994) analyze the

link between growth (driven by the introduction of new technologies) and unemployment

(arising from labor reallocation). Caballero and Hammour (1996) study the timing and

efficiency of creative destruction and Mortensen and Pissarides (1998) investigate the

link between productivity growth and unemployment depending on the extent of costs of

technological updating. Lopez-Salido and Michelacci (2007) provide a search and matching

model explaining observed patterns of unemployment and worker flows in response to

neutral and investment specific technological shocks.

3 Model

This section presents a search and matching model with vintage technologies. The “lead-

ing” technology evolves according to an exogenous stochastic process (random walk with

drift) and new jobs are created with the latest leading technology. Jobs keep their initial

technology level, but each period they “upgrade” to the newest leading technology with a

certain probability. It will be shown that in this setup technology shocks (i.e. innovations

to the leading technology) lead to not only an increase in unemployment, but also to a

widening of the cross-sectional dispersion of firm level TFP innovations. In other words,

this model features endogenous movements in measured uncertainty which are driven by

a first-moment productivity shock.
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3.1 Technology and production

The “leading” technology in the economy (the technological frontier) zt evolves according

to

zt = z + zt−1 + εt, εt ∼ N(0, σ2z), (1)

where z > 0 is a constant drift component. At any point in time, an individual firm’s

productivity zi,t is “updated” to the frontier with probability p and it is “downgraded”

with probability 1− p (i.e. P (z0,t+1|zi,t) = p).1

Let γi,t = zt − zi,t be the technological gap of an individual firm. Given that the

technological frontier has a positive drift, remaining at a given productivity level means

that the technological gap increases. Without loss of generality, let i denote the number of

periods an individual firm did not update its technology. Let K be the maximum number

of periods a given firm is allowed not to upgrade its technology before it exits the economy.

The stochastic aggregate trend is given by ezt around which the economy fluctuates.

To stationarize the economy, I scale quantities by ezt , unless stated otherwise. Production

happens in firms which employ (one) worker as the only input in production.

3.2 Household

The representative household maximizes the following preferences

∞∑
t=0

βt(lnCt − ζNt)

subject to its budget constraint

Ct = NtWt + Πt, (2)

where Ct is aggregate consumption, Nt is aggregate employment, Wt is the aggregate wage

and Πt are aggregate profits coming from the ownership of firms. The above gives rise to

the familiar first order condition

Wt = Ctζ. (3)

1Note that the “leading technology” need not be the most productive one in the economy. A sequence

of negative shocks εt can push the leading technology below previous levels making some firms which are

not at the frontier more productive.
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3.3 Firms and aggregates

In this model I consider only one-worker firms. Existing firms produce output and pay

a wage to their worker. Conditional on not shutting down in the next period, they then

continue to produce in the future. The value of existing firms can be written as

Vi,j,t = yi,j,t −Wt − φi,t + βΛt

[
p(1− δ0,t+1)V̂0,t+1 + (1− p)(1− δi+1,t+1)V̂i+1,t+1

]
, (4)

where yi,j,t = exp(γi,t)χj,t is output which depends on the productivity gap from the

frontier and on an idiosyncratic productivity shock χj,t. It is assumed that these idiosyn-

cratic shocks are iid shocks from a distribution H. The aggregate wage is given by Wt

and the household’s stochastic discount factor by Λt. φi,t = φ exp(γi,t) is an operational

cost which is assumed to be proportional to expected output. δi,t = δ + (1− δ)H(χ̃i,t) is

the probability of shutting down, where δ is an exogenous parameter and χ̃i,t is a cutoff

for firm-specific productivity below which it is optimal for a firm to shut down. H(χ̃i,t)

then gives the endogenous probability of shutting down. Finally, hatted variables denote

expectations conditional on survival, i.e. x̂ = E[x|χ > χ̃].

The idiosyncratic productivity cutoff is defined implicitly by firm value being equal to

zero. This results in the following expression:

χ̃i,t =
1

exp(γi,t)

{
Wt + φi,t − βΛt

[
p(1− δ0,t+1)V̂0,t+1 + (1− p)(1− δi+1,t+1)V̂i+1,t+1

]}
.

(5)

It is assumed that entry of new firms into the economy is free subject to a payment

of a startup cost κ. Moreover, new firms enter with the frontier technology. Under these

assumptions, entry will occur until the costs are equal to the expected benefits:

κ = β(1− δ0,t+1)V0,t+1. (6)

The evolution of the (active) number of firms is given by

ω0,t =(1− δ̃0,t)(St + pΩt−1), (7)

ωi,t =(1− δ̃i,t)(1− p)ωi−1,t−1, for i = 1, 2, ...,K,

where again Ωt =
∑

i ωi,t and St is the number of startups. Finally, the aggregates must

take into account that at the beginning of the period not all firms survive:

Yt =
∑
i

ωi,tŷi,t, (8)
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Total employment is simply given by the number of firms Nt = Ωt and aggregate

consumption is given by

Ct = Yt − κSt. (9)

3.4 Equilibrium

To be written.

3.5 Calibration

The parameters of the exogenous neutral technology process include the constant drift

term z, its standard deviation σz and at this point also the probability of a given firm

transitioning to the frontier technology p. The drift term is set to 0.0054 such that the

annual growth in output per worker is the observed 2.2 percent (for output per hour in the

non-farm business sector). The standard deviation of σz is set such that in simulated data

the fraction of firms with productivity higher than the current frontier technology is 40%

(following Michelacci and Lopez-Salido). Finally, notice that 1− p is the autocorrelation

coefficient in the firm-level productivity. Therefore, p is set to 0.08 such that the annual

autocorrelation coefficient is 0.7 as estimated by Imrohoroglu (2013) (note that Christian

finds a much higher autocorrelation coefficient in German data - about 0.95 at the annual

frequency).

Parameters pertaining to the labor market include the vacancy posting cost κ, match

efficiency m, matching elasticity µ, the bargaining power of workers η, the outside option

b, an exogenous separation rate ρ, the size of the labor force L and the mean and standard

deviation of the idiosyncratic productivity shocks µH and σH .

The matching elasticity and the bargaining power are both set to 0.5 following much

of the literature and adhering to the Hosios condition. The standard deviation of the

idiosyncratic productivity shocks is such that the relative volatility of separations (w.r.t.

output volatility) matches the data. The outside option is set such that the replacement

rate is 40% as in ?. The exogenous separation rate is set such that total separations are

equal to 4.3 percent on a quarterly basis as is the case in the CPS. Finally, the vacancy

posting cost κ is then implied by the vacancy posting condition.

3.6 Solution method

To be written.
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4 Model results

4.1 Model performance

To be written.

• calibration targets and model predictions

• business cycle properties of model

4.2 Endogenous fluctuations in measured uncertainty

The focus of this paper is on the cross-sectional dispersion of firm-level TFP shocks as

measured in Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012). It is possible

to replicate the estimations done in the afore-mentioned paper within the model. In

particular, using the policy functions obtained from the solution, one can simulate a cross-

section of firms to obtain a panel dataset of firm-level productivity observations. Using

this panel dataset, I run the following regression

ln zi,t = zi + λt + α ln zi,t−1 + εi,t, (10)

where zi,t is firm-level productivity, zi is a firm-specific fixed effect, λt is a year fixed

effect, and εi,t are firm specific innovations to productivity. Regression (10) is identical

to equation (4) in Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012). The

measure of dispersion is then the cross-sectional variation in εi,t.

Before moving on to the results, let us first discuss the intuition as to why the model

delivers counter-cyclical variation in the above measure of uncertainty. From the model

we know that firm-level productivity either remains constant at zi,t−1 if the firm does

not innovate, or it changes to the latest value of the leading technology zt if the firm

innovates. Therefore, the “mistake” made by the regression model in (10) relates to firms

which innovate and move to the frontier. This makes clear that in the period of a positive

technology shock (i.e. when unemployment increases) the dispersion of the εi,t shocks

increases because the distance to the frontier increases for all firms.

Quantitatively, the estimated dispersion in firm-level productivity innovations moves

closely with the business cycle. In particular, the correlation coefficient between the dis-

persion measure and output growth is −0.37 in the model and −0.45 in the data. The

size of the fluctuations in the dispersion of firm-level shocks is, however, almost twice as
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Figure 1: Impulse response functions - productivity dispersion
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Notes: Impulse response functions (in percent) of firm-level productivity to a positive one-standard-

deviation shock to neutral technology.

large in the model compared to the data. While in the data the relative volatility of the

dispersion measure with respect to output fluctuations is about 6.5, in the model this

statistic is about 4.9. However, this is also accompanied by a much lower level of the

interquartile range in the model.

An alternative measure of uncertainty is the dispersion of firm-level productivity. Fig-

ure 1 depicts the impulse response function of the dispersion of productivity to a positive

one-standard-deviation creative destruction shock. Clearly, the uncertainty measure in-

creases in a hump-shaped fashion, but only after a few periods of a decline. The decline

comes from the fact that initially, the destruction of existing firms which are close to being

obsolete is faster than the subsequent building of new productive businesses. This means

that initially productivity dispersion decreases because the lower tail of the distribution
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disappears quickly.

5 Empirical evidence

This section provides empirical evidence on the response of several uncertainty measures

to neutral technology shocks identified with long-run restrictions within a structural VAR.

5.1 Structural VAR with long-run restrictions

Let Yt be a vector of variables with a moving average representation Yt = C(L)εt, where

C(L) is a matrix of lag polynomials and εt is a vector of (reduced-form) innovations with a

variance-covariance matrix Σ. Furthermore, assume that the vector of variables also has a

moving average representation linked to “structural” innovations υt given by Yt = A(L)υt,

where the variance-covariance matrix of the structural innovations is normalized to the

identity matrix. The structural and reduced form innovations are then related according

to the following relation

υt = A−10 εt, (11)

where A0 is the coefficient matrix on the current values of υt. The variance-covariance

matrix of the reduced-form innovations can then be expressed as

A0A
′
0 = Σ (12)

Finally, let the first element of Yt be the growth rate of productivity and assume, with-

out loss of generality, that the first element of υt is a neutral technology shock. Following

Gali (1999) the neutral technology shock can be identified using a long-run restriction. In

particular, it is assumed that only a neutral technology shock can impact labor productiv-

ity in the long-run. This implies that only the first element in the first row of the matrix

A =
∑∞

i=0Ai is non-zero and the rest are restricted to zero.2

5.2 Data

Let Yt = (∆at, ut, qt)
′, where at is (the log off) labor productivity, ∆ is the first-difference

operator, ut is the log of the unemployment rate and qt is the log of a measure of economic

uncertainty. Labor productivity is taken as the non-farm business output per hour, the

2A detailed description of the identification procedure is provided in the Appendix.
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unemployment rate is taken from the Bureau of Labor Statistics and I consider several

uncertainty measures.

The benchmark measure is the cross-sectional dispersion (inter-quartile range) of es-

tablishment -level total factor productivity (TFP) of estimated in Bloom, Floetotto,

Jaimovich, Saporta-Eksten, and Terry (2012) using the Census of manufacturing estab-

lishments.3 The reason for choosing this variable as our benchmark is that it is closest

to the notion of measured uncertainty considered in the model. However, this measure is

only available on an annual basis from 1972. Therefore, I also consider three other uncer-

tainty measures. These measures include the VXO index of stock market volatility used

in Bloom (2009), firm-level and macro uncertainty estimated by Jurado, Ludvigson, and

Ng (forthcoming). The advantage of the latter three measures is that they are available

at a higher than annual frequency.

The sample period is governed by the availability of the uncertainty measure. For our

benchmark, the sample period is thus annual and runs from 1972 to 2009. In the case of

the VXO index, the sample period runs from 1962Q3-2011Q2, for firm-level uncertainty

it is 1970Q3-2011Q2 and for macro uncertainty it is 1960Q3-2011Q2. Following Fernald

(2007), sub-sample means are removed prior to estimation, where the breaks are set at

1973Q1 and 1997Q1.

5.3 Empirical results

This subsection presents the empirical results of the structural VAR analysis. The bottom

line is that measures of uncertainty respond to technology shocks. In particular, positive

technology shocks lead to increases in measured uncertainty.

Figure 2 shows the impulse responses to a positive one-standard-deviation shock to

technology with shaded areas representing 66% confidence bands. The top panel shows

the response of productivity, which (by assumption) increases and remains at a new,

higher long-run level. The middle panel shows the response of the unemployment rate

which, as confirmed by several previous studies, increases temporarily in response to a

technology shock. The bottom panel presents new evidence on the response of uncertainty

(measures) to technology shocks. There is a statistically significant increase in measured

uncertainty following a technology shock. This by itself already suggests that at least

3In particular, the authors regress log establishment TFP on its lag an establishment-level fixed effect

and a year fixed effect. The uncertainty measure is then the cross-sectional interquartile range of the

residuals resulting from the afore-mentioned regression.
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Figure 2: Impulse response functions - benchmark uncertainty measure

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60
labor productivity

%

1 2 3 4 5 6 7 8 9 10
-10

0

10

20

30

40

50
unemployment rate

%

1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

20

25
uncertainty

%

years after shock

Notes: Impulse response functions (in percent) to a positive one-standard-deviation shock to neutral

technology. Shaded areas are 66% confidence bands.

14



Figure 3: Impulse response functions - other uncertainty measures
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nology scaled such that the impact response is 1. “Stock market” refers to the VXO index, “macro-level”

and “firm-level” refer to the macro and firm-level uncertainty measures estimated by Jurado, Ludvigson,

and Ng (forthcoming). Circles indicate values at which the 66% confidence band is different from zero.

part of measured uncertainty represents an endogenous reaction of the economy to other

structural disturbances.

Figure 3 plots the responses of other uncertainty measures to a positive one-standard-

deviation shock to technology all scaled such that the impact response is equal to 1. All

considered measures of uncertainty increase in response to a positive technology shock

(circles indicate values at which the 66% confidence band is different from zero).4

A fundamental question is whether technology shocks cause changes in uncertainty or

the other way around. Empirically, Granger-causality tests can give an indication of which

way the causation runs. The next section provides a model, in which technology shocks

lead to endogenous changes in measured uncertainty.

4In all specifications the unemployment rate increases significantly following a positive technology shock.
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While a Granger-causality test cannot reject the null hypothesis that uncertainty does

not cause the identified neutral technology shocks, the opposite is not true. In particular,

the test rejects the null hypothesis that neutral technology shocks do not cause uncer-

tainty at the 5 percent level for two of the four measures (the VXO index and firm-level

uncertainty).5 For the cross-sectional dispersion of TFP shocks and for macro uncertainty,

the null hypothesis cannot be rejected in either direction.

6 Conclusion

To be written.

5The lag length is selected using the Bayesian information criterion.
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