C IFECENTER FOR INTEGRATED FACILITY ENGINEERING

OARPLAN:
Generating Project Plans in a Blackboard
System by Reasoning about Objects,
Actions and Resources

by
Adnan Darwiche, Raymond E. Levitt
and Barbara Hayes-Roth

TECHNICALREPORT
Number 2

Revised Feb. 14, 1989

Stanford University

I center for Integrated Facility Engineering « Stanford University

Copyright © 1990 by

- Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

OARPLAN:
Generating Project Plans by Reasoning about

Objects, Actions and Resources!

Adnan Darwiche?, Raymond E. Levitt3 and Barbara Hayes-Roth?

Abstract

This paper describes OARPLAN, a prototype planning system that generates construction project
plans from a description of the objects that comprise the completed facility. OARPLAN is based
upon the notion that activities in a project plan can be viewed as intersections of their constituents:
objects, actions and resources. Planning knowledge in OARPLAN is represented as constraints
based on activity constituents and their interrelationships; the planner functions as a constraint
satisfaction engine that attempts to satisfy these constraints. The goal of the OARPLAN project is
to develop a planning shell for construction projects that (i) provides a natural and powerful
constraint language for expressing knowledge about construction planning, and (ii) generates a
facility construction plan by satisfying constraints expressed in this language.

To generate its construction plans, OARPLAN must be supplied with extensive knowledge about
construction objects, actions and resources, and about spatial, topological, temporal and other
relations that may exist between them. We suggest that much of the knowledge required to plan
the construction of a given facility can be drawn directly from a 3-dimensional CAD model of the
facility, and from a variety of databases currently used in design and project management software.
In the prototype OARPLAN system, facility data must be input directly as frames. However, we
are collaborating with database researchers to develop intelligent interfaces to such sources of
planning data, so that OARPLAN will eventually be able to send high level queries to an intelligent

1 To appear in ‘Artificial Intelligence in Engineering Design, Analysis and Manufacturing, Vol. 3, No. 2,

Spring 1989
2 Research Assistant, Depts. of Computer Science and Civil Engineering, Stanford University
3 Professor, Department of Civil Engineering, Stanford University

4 Senior Research Associate, Center for Integrated Facility Engineering, Departments of Civil Engineering and

Computer Science, Stanford University

2/14/89 1

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

database access system without regard for the particular CAD system in which the project was
designed.

We begin by explaining why classical Al planners and domain specific expert system approaches
are both inadequate for the task of generating construction project plans. We describe the activity
representation developed in OARPLAN and demonstrate its use in producing a plan of about 50
activities for a steel-frame building, based on spatial and topological constraints that express
structural support, weather protection and safety concerns in construction planning. We conclude
with a discussion of the research issues raised by our experiments with OARPLAN to date.

1. Introduction

Previous attempts to generate plans with artificial intelligence (AI) techniques have
tended towards one of two approaches:

o General-purpose planning systems in the tradition of STRIPS [Fikes71]
represent actions in terms of their preconditions and effects, and contain a
generic planning engine which conducts a search, typically aided by
heuristics, to include and order correctly a set of actions that will change the
initial state of the world of interest into the goal state. These planners
assume a state-based representation of the world and has been referred to as
"classical" within the literature. An important alternative to this approach is
the event-based one of [Lansky88], which represents planning knowledge as
first-order linear-temporal-logic constraints among domain events, and the
planner tries to generate a plan that satisfies these constraints.

. Domain-specific planning systems such as LIFT [Bremdal87] and
PLANEX[Hendrickson87] use the techniques of rules, frames and
inheritance (commonly used in expert systems) to encode large amounts of
knowledge that is specific to a particular domain for identifying and
ordering tasks or activities in that planning domain.

In comparing the results of these two lines of research on planning, it is evident that
domain-specific planning systems developed to date typically achieve higher levels of
performance in generating plans for their intended domains. However, expert
system planners lack the generality of the general-purpose planners; they require

2/14/89 2

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

significant amounts of reprogramming before they can be applied to even a slightly
different planning domain from the one for which the heuristics were developed.

OARPLAN, the Object-Action-Resource Planning system described in this paper, is
an attempt to combine the generality and high performance of both kinds of planning
systems to generate project plans based on facility descriptions. This paper
discusses the theoretical bases of OARPLAN; it describes a prototype system which
incorporates and validates our claims for some of these theoretical ideas; and it
presents our future development plans for the system.

2. The Problem

An OARPLAN planning problem is presented to the system as a facility description.
A facility is defined as a set of physical components. Each component has its
individual specifications such as material type, surface finishing and paint.
Components of a facility are related through different kinds of relationships, the most
important being spatial ones. Since an OARPLAN planning problem is defined by a
set of physical components with their specifications and interrelationships; we
believe that it should be possible to extract such a description from a 3-D CAD model
of the facility. The task of the planner is to produce a plan for constructing the
facility described by its CAD model.

By a plan we mean a list of activities and their sequential relationships, which when
executed achieve the overall project objective — constructing the facility. It is
important to note that there is a continuum of plans that meet the above objective. At
the most abstract level we may generate an executive level plan — the type of plan
that is needed by a high level manager for project estimation and control. At the
other extreme, we may generate a motion plan that is to be used by a robot for
automatic construction. [Levitt87] defines executive, work package and task levels,
as three levels of plan abstraction used by managers of construction facilities.
OARPLAN tries to generate plans at these levels.

The difference in the way that a plan is used by a manager vs. a robot, implies
different measures of plan correctness and abstraction; these, in turn, generate
different requirements for the planning process. Hence, we will make a clear
distinction between the two. We elaborate on this in the next section.

2/14/89 3

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

3. General-Purpose Planning

One approach to generating project plans is to use a classical Al planner [Fikes71,
Sacerdoti75, Tate76, Wilkins83, Chapman87]. SIPE [Wilkins88], is the most
advanced classical planner known to the authors!. The input to a classical planner
consists of: (1) the initial world state described as a set of sentences, (2) a set of
actions or operators, represented by their preconditions and postconditions, and (3) a
set of sentences which describe the goal state to be achieved. The output is a
sequence of primitive? actions that transform the initial state to the goal state.

For several reasons, classical Al planners are ill-suited for solving the problem we
have defined. We discuss these reasons next.

3.1. Actions

In the blocks world? and similar planning problems, it is always assumed that a
complete set of primitive actions is available and that the preconditions and effects of
each action are known. This assumption works with robot planning because detailed
knowledge about actions is part of the robot's specifications. In construction, and
other problems involving more flexible human agents, however, one usually does
not have a complete enumeration of possible primitive actions, nor a precise
definition of their preconditions and postconditions.

For a robot, a primitive action is one that the robot can execute. For a manager,
however, a primitive action is an action appropriately sized for accurate estimation
and control; this size varies with the size, cost or risk associated with the objects
involved in the plan. This measure for primitiveness and, therefore, granularity of
actions excludes the existence of a predefined set of primitive actions.

To develop a plan, one must have knowledge about needed actions and their
preconditions and effects; however, the problem with classical planners is that action

1 SIPE is being used by Nabil Qartam to generate construction project plans. Mr. Qartam is a PhD candidate in the

Civil Engineering department at Stanford University. For a description of this work, see [Levitt88]
2 A primitive action is a one that the planner has not been given any knowledge about the means of execution.

3 The blocks world is the traditional domain problem that is used to test different planners.

2/14/89 4

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

definition is the only way to represent such domain knowledge. Minor errors or
omissions in defining actions thus have major effects on the correctness of the final
plan. We argue that domain knowledge for planning construction projects is not
naturally or commonly expressed in the form of action preconditions and effects, but
rather as a set of more detailed constraints representing underlying causes of
precedence. We will elaborate on our approach to implementing this richer
representation of actions in section 5.

3.2. State Abstraction

Classical planners are state-based; they assume a state representation of the world,
and insist on defining a problem as an initial and a final state. For a robot's plan,
defining the initial state of the world is relevant; for a manager's plan it may be less
useful. The kind of plan needed by a project manager is not affected by the exact
location of a particular beam at the beginning of construction; a precise definition of
initial state at this level of detail is therefore not needed.

By state abstraction we mean the minimum information that we must represent about
a state to enable a classical planner to function. In many problems it is possible to
define large amounts of knowledge about any state of the project — e.g., the initial
state. But since it is not feasible to represent infinite amounts knowledge, we have to
be selective about how to abstract things. Unfortunately, classical planners lack a
theory of state abstraction; when encoding a problem. The literature provides no
guidance for determining the level of detail at which to abstract real world states.

We need to represent those facts about the world that allow us to determine whether a
given set of action preconditions are satisfied. We also need an abstraction that
captures action effects. In the case of robot planning, the set of primitive actions is
very well defined; this simplifies the process of finding a good state abstraction.
Most construction actions, however, are not clearly defined in terms of their
preconditions and postconditions. This makes it difficult to develop appropriate state
abstractions for construction problems.

3.3. Hierarchical Planning

When hierarchical planning was first introduced, it was intended to reduce the
amount of search that a planner needs to do. A hierarchical planner can discover
dead ends in a high level (abstract) plan, before generating a more detailed expansion

2/14/89 5

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

of the plan for which search and backtracking will be more time-consuming.
However, it turns out that there is no way of producing a "correct” — in the classical
sense — plan at one level of abstraction, without knowing some information about
lower levels of detail.

This is a very important weakness of Al planning systems. It undermines the notion
of hierarchical planning — at least in the way classical planners define it —since we
have to do depth-first search to ensure soundness. The author of SIPE has
acknowledged and documented this problem!.

Abstraction in classical planners, especially SIPE, refers to action abstraction as
opposed to state abstraction. When defining a problem for SIPE, the user can
specify some action to be a sub-action of another. Action abstraction is measured
along the sub-action relation. This can cause some confusion because a sub-action is
not always less abstract than its super-action, since there is no restriction on using
the sub-action relation?. The effectiveness of hierarchical planning is thus
determined by the way in which action hierarchies are formed This is completely left
to the user, without any guidance imposed by the planning formalism.

3.4. Plan Correctness

The notion of plan correctness in classical planners makes more sense in the case of
robot plans than in managerial plans. For a managerial plan, correctness is a
different notion. A manager will measure a plan's correctness against its ability to
represent and predict time and cost for the project. It is not clear how the classical
planning notion of correctness can ensure that a plan will meet this requirement.
Failure to satisfy some action's precondition can prevent a robot from achieving the
goal of its task, but may have no major effect on the correctness of a manager's plan.

A different approach to the one used by classical planners is embodied in
GEMPLAN [Lansky88]. In GEMPLAN, planning knowledge is represented as

1 See [Wilkins88], page 48, for a detailed definition of this problem and some proposed solutions.

2 In [Wilkins88], David Wilkins, the author of SIPE, refers to this as confusing planning levels with abstraction
levels (page 47).

2/14/89 6

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

first-order linear-temporal-logic constraints among domain events (actions), and the
planner tries to generate a plan that satisfies these constraints. We find this type of
constraint-based approach to be more appropriate to the requirements of construction
project planning.

4. Domain-Specific Planning

General purpose planners require no a priori assumptions about the domain to which
they will be applied. In contrast, special purpose planners are built with a specific,
narrow planning domain in mind. Among the special purpose planners that have
been developed to date are some developed for specific tasks in the construction
domain. Because these systems employ specific knowledge, they have generally
proven to be more powerful at generating plans in their area of applicability than
‘domain-independent planners. Moreover, several have also attempted to automate
parts of the scheduling task — i.e., assigning resources and durations to activities in
a plan.

The kinds of planning and scheduling tasks attempted by such expert system
planners include:

* defining project activity list and dependency relations;
» selecting construction methods;
» estimating activity durations and costs; and

* producing and maintaining schedules that meet different project constraints.

We describe the most closely related of these systems below:

MOLGEN is a knowledge-based planner that assists molecular geneticists in
planning experiments. It uses, extensively, the notions of constraint
propagation[Stefik81a] and meta-planning[Stefik81b]. Constraints in MOLGEN
were used to deal with interacting subproblems; our notion of a constraint is more
limited to interactions between activities that introduce ordering between them.

The PIPPA planning system [Marshall87] has been used to develop plans for
manufacturing flight simulators and for planning the tasks involved in submitting

2/14/89 7

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

tenders for furnace installation. PIPPA employs an extended formalism for activities
in its plan generation, one which we have adapted to the construction planning
domain in OARPLAN.

ISIS [Fox84], offers a knowledge representation language (SRL) for modelling
activities and their constraints, and applies a constraint-directed search to solve job-
shop scheduling problems. In OARPLAN, the goal is also to define a language for
modeling activity constituents and their constraints; but the principal concern for
OARPLAN is determining the set of activities that meet the objective; as opposed to
ISIS emphasis is on scheduling

GHOST [Navinchandra88] reasons about attributes of and relationships among
objects in the construction planning domain to define project activities and
precedence relations, and is thus an interesting forerunner of OARPLAN.

CONSTRUCTION PLANEX [Hendrickson87], [Zozoya89] is a knowledge-based
system that has been designed to carry out both planning and scheduling in the
construction domain. PLANEX starts at a very detailed level of abstraction and
aggregates elemental activities into project activities for planning and scheduling
purposes. We attack the problem in the opposite way, by expanding the scale of a
high level activity into more detail as needed. The broad application scope of the
PLANEX system is helpful in suggesting future extensions of the OARPLAN
system.

5. The OARPLAN System

OARPLAN is a construction planner that takes as its input a description of the facility
to be constructed and generates a hierarchical project plan for construction of the
facility. The ultimate goal of the OARPLAN research is to produce a planning
system that can interpret descriptions of a facility at several stages of refinement in
CAD format and render immediate feedback on construction planning and scheduling
implications of the evolving design to a designer. A prototype of the OARPLAN
system has been developed and successfully tested on a significant building
construction example.

- The OARPLAN system is intended to be embedded in a networked workstation
design environment, where it can be accessible to all of the participants in a facility

2/14/89 8

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

design team — human or computer. The development of the overall integrated
design environment is the mission of the Stanford Center for Integrated Facility
Engineering (CIFE), a center established in 1988 involving computer science and
civil engineering faculty, along with construction buyers, designers and contractors,
and hardware and software vendors to the construction industry [Howard88b].

The following sections describe the representation and reasoning capabilities of the
prototype system as it exists in the summer of 1988.

5.1. Representation used in the OARPLAN System

In this section we describe how OARPLAN represents the product (or facility, in our
application), the plan, and the activities in the plan.

5.1.1. DESCRIPTION OF THE FACILITY IN OARPLAN

In the prototype implementation of the OARPLAN system, the user describes the
building for which it will develop a plan as follows:

- Component classes such as floors, beams, columns and walls, along with
further classification of these components, e.g., external and internal walls.

- Relationships of components with one another. Examples of inter-component
relationships used to derive precedence logic in the prototype system are
supported-by, enclosed-by and adjacent-to relationships, derived from the
geometry and topology of the components in the building design.

Figure 1 shows the frame hierarchy for some of the objects in an OARPLAN project
description for a low rise building.

" FIGURE 1 GOES ABOUT HERE "

The prototype OARPLAN system currently requires that the building components
and their relationships be entered as frames by the user. A separate project is being
initiated to create a knowledge-based database interface system along the lines of
KADBASE [Howard88a] between OARPLAN and a CAD system containing a
description of the project for which a plan is to be generated. There are two
advantages to doing this. First, a knowledge-based interface will allow OARPLAN
to format high level queries to the CAD system (e.g., "return a list of the members
that support memberx in projecty"). KADBASE will receive this query and generate

2/14/89 9

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

the needed low level queries in the correct syntax of the CAD database containing the
needed information about projecty, A second advantage of using a knowledge-based

database interface for OARPLAN is that KADBASE can retrieve information from
any CAD database whose semantics and syntax have been incorporated into its
global data structure and communicate the results of its search to OARPLAN. This
will allow OARPLAN to operate across multiple CAD systems.

5.1.2. REPRESENTATION OF THE PLAN IN OARPLAN

In OARPLAN, the concept of a plan is modeled around that of an activity. A plan is
defined as a collection of activities related together by a number of different types of
relations [Sathi85] . One kind of relation is sequential dependency, i.e., before and
after, to reflect the ordering among activities. Other useful relationships exist among
activities include sub-activity and super-activity, to reflect the different levels of
abstraction or elaboration of a project plan.

These two kinds of activity relationships serve different purposes. At the same level
of detail of a plan, dependency relations are needed to perform network time
calculations. Aggregation of activities through super-activity relationships is needed
to infer responsibility for completion of the activity, among other things. Activity
elaboration is needed to reduce the scale of activities and allow better estimation and
control of project time and cost.

It is important to clarify an important issue about hierarchies of a plan. As mentioned
above, hierarchical planning was first introduced to reduce the search space and,
therefore, increase the performance of a planner. There was no predefined notion of
action abstraction, which introduced many ambiguities{Wilkins88]. On the contrary,
in construction planning, the reason for having a hierarchical plan is to incorporate
action abstraction; rather than to reduce the time complexity of the planner. A plan
with different levels of abstraction is needed because its levels correspond to discrete
organizational and management responsibility levels — typically, about three levels.
Moreover, in construction, we have several intuitively useful measures of
abstraction, e.g., the size of objects constituting the activity, their cost, or the
geographical scope of the activity.

Figure 2 shows the graph of some sub-activity and super-activity relationships in the
OARPLAN plan for the low rise building project depicted in Figure 1.

2/14/89 10

OARPILAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

FIGURE 2 GOES ABOUT HERE

5.1.3. REPRESENTATION OF ACTIVITIES IN OARPLAN

An activity is a core concept of project planning. Examples of activities are: pouring
concrete, erecting a wall frame or constructing a column. The means of representing
an activity that we have adopted in OARPLAN is adapted from PIPPA [Marshall87].
Marshall defined an activity as an action that applies to a product component and that
needs resources. Our representation is essentially the same, we define an activity as
the following tuple:

<action> <object> <resources>

Each element of the <action> <object> <resources> tuple is called an activity
constituent. For example, painting a wall can be defined as the action <paint> being
applied to the object <wall> using the resources <paint, ladder, painter>. Other
examples are: <weld> <mechanical pipe> <welder>, <level> <ground> <dozer,
dozer operator> and <construct> <building> <ABC Company resources>. We
find this representation very effective since it allows us to reason about activities in
both aggregate and detailed ways by reasoning about their constituents.

It is important to notice the difference between this notion of an activity and the
STRIPS notion of an action schema or operator, such as PutOn(x,y). An operator is
defined as an action (PutOn) augmented by a number of arguments that could
represent anything, such as an object or even a resource used by the action. There
are no predefined semantics for these arguments. Associated with an operator are the
action's preconditions and effects. An OARPLAN activity corresponds to a STRIPS
operator with the constituents — action, object and resource — represented
uniformly and having fixed semantics. Also, preconditions and effects of an activity
are not represented explicitly; elaboration and dependency knowledge sources
(discussed later) are used to deduce activity inclusion and dependency in a plan.

Activities can be represented at different levels of abstraction based on the levels of
abstraction of the included actions and objects. An activity like
<construct><building> is considered to be a very abstract one due to the abstraction
levels of its constituents <construct> and <building>. The relative degree of
abstraction of an action or an object is defined by its position in an abstraction
hierarchy. (In the current version of the OARPLAN system, only action and object

2/14/89 11

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

constituents are represented and used in reasoning; resources will be represented in
the next version of the system.)

Actions are either simple or compound. Simple actions are those that can be
performed directly without refinement, like installing a bolt in a steel connection.
Compound actions are those that can be elaborated to lower level ones. Placing
concrete can be elaborated to pouring, curing and then finishing concrete. It is
important to keep in mind that there is no predefined set of primitive activities;
depending on the size of an object concrete-1, we may find <place><concrete-1> a
good primitive activity. On the other hand, if the size of concrete-1 is too large for a
given level of precision in cost or schedule estimating or control, <place><concrete-
I> may need to be elaborated to <pour><concrete-1>, <cure><concrete-1> and
<finish><concrete-1>.

Similarly, object constituents of activities can be of different types and grain size.
There are simple objects and compound ones. Considering the same example of
building construction, we have simple objects such as steel bolts and compound ones
such as concrete beams. Classifying an object as being simple or compound
depends on the level of reasoning we want to perform on it. In the case of installing
a steel bolt we are interested only in the bolt itself and not in its more detailed
physical properties. In the case of a concrete beam we may want to reason about the
components of the beam such as the type of concrete that is used and the number and
diameter of reinforcing steel bars. In the latter case, we classify concrete and
reinforcing steel bars as simple objects that are "part-of" the compound object,
concrete-beam.

To illustrate how this distinction is used, an elaboration of the activity
<comnstruct><concrete-beam> might include the activities <construct><forms,
<place><rebars>, <pour><concrete> and <cure><concrete>. In the case of a
precast concrete beam supplied by a subcontractor, classifying it as a simple object
might be more appropriate.

Compound objects are of many types and are defined as collections of other
compound or simple objects that we call its components. The type of a compound
object depends on the common property that relates the components. The group of
columns located on a given floor can be viewed as a compound object that can be a
constituent of an activity. Usually, a compound object is specified by a predicate that
filters instances of a certain generic type as either being in the group or not. Different

2/14/89 12

OARPLAN: Generating Project Plans by Reasoning
about Objects, Actions and Resources

Different predicates yield different group instances. If the components are contained
within a defined space then the compound object is a zone, e.g., a building floor is a
zone and all the objects within the floor are its components. If the components are
parts of a physical object then it is an assembly. As an example, the reinforcing steel
bars and concrete are parts of a concrete-beam, the assembly in this case. Defining
compound objects is a way of grouping objects, which is a common way for
aggregating activities.

The generic language we are trying to build for OARPLAN is aimed at allowing the
user to speak easily about activity constituents. This concerns both actions and
objects at the current time. To this end, we try to provide the user with various
grouping predicates that are useful in the domain, and different object properties or
relationships that we expect to be able to extract from a CAD system.

5.2. Plan Generation in OARPLAN

OARPLAN starts with a high-level activity such as <construct><building-1> at the
first level of the plan. Different knowledge sources (KS's) contribute to the
development of the plan by either elaborating each activity or posting some sort of a
dependency onto it. Elaborating activities creates multiple levels of a plan, each with
a different level of abstraction. Dependency constraints apply to activities at the same
level of a plan. When KS's are unable to post any further modifications to a plan,
the resulting plan is in its final form.

5.2.1. ACTIVITY ELABORATION

A main activity Am can be elaborated to a group of activities { A1,...,An } which is
called the elaboration set. Each one of these Aj's will be an elaboration-of Am. If
activities Af,...,An are completed then so is activity Am. Each member of the
elaboration set is a sub-activity of the main one, the super-activity.

OARPLAN has elaboration KS's which reduce the level of abstraction of higher
level activities. These KS's vary in their generality. Some apply to a wide range of
activities, while others only apply to specific ones. Whenever an activity is included
in a plan, elaboration KS's of OARPLAN try to elaborate it by introducing other
smaller scale ones. So in some sense, activity elaboration is a kind of scale
reduction.

2/14/89 13

OARPILAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

The scale of an activity can be reduced along several dimensions, each of which
serves a different purpose. We may reduce the scale to enhance the precision of
time/cost estimation and control. In other cases, we may not be satisfied with the
overall project duration; elaborating some activities enables us to exploit potential
parallelism among their sub-activities and thus reduce the overall project time.

In some cases, the included action remains constant and the scale of the included
object is reduced. For example, when elaborating the activity <construct><building-
1>, the following KS applies (stated in English):

If (the activity includes:
action: CONSTRUCT and
object: of class ASSEMBLY)

then (elaborate it to activities including:
action: CONSTRUCT and
object: part-of the ASSEMBLY).

Applying this KS will result in the activities <construct><floor-1>,
<construct><floor-2> and <construct><floor-3> as an elaboration.

Another KS can elaborate an activity <construct> <zone>. It does so by generating
activities that construct the objects included-in a zone. An example of this is
elaborating <construct><floor-1> which will yield the activities that construct all the
objects included in the floor . The previous two elaboration KS's are examples of
generic KS's, because they apply to actions involving abstract objects such as zones
and assemblies.

In other cases, the scale of the action is reduced while the object remains the same.
An example of a specific elaboration KS that does this is:

2/14/89 14

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

If (the activity includes:
action: PLACE and
object: CONCRETE)

then (elaborate it to the ordered activities:
action: POUR, object: CONCRETE;

action: FINISH, object: CONCRETE;

action: CURE, object: CONCRETE).

Elaboration KS's may or may not introduce orderings among the elaboration set.
The concrete KS imposed some ordering among activities, while the assembly and
zone ones did not. Other examples of elaboration KS are those for a wall and a slab.

Specific elaboration KS's refer to activities that are constant across different projects.
Constructing a slab remains relatively constant across projects in terms of the
activities that elaborate it. Such KS's are more like sub-plans that the system knows
about.

Generic KS's, on the other hand, apply to activities which can vary across projects,
depending upon the specific objects comprising each project and their relationships.
These knowledge sources know how to perform scale reduction, such as breaking
the included object along the enclosed-by or part-of relation.

Thus, OARPLAN deals with activity inclusion in two ways: activity sub-plans and
activity scale reduction (see Figure 3). It is important to note that elaboration KS's
introduce activities that are less abstract than their super-activities. Activities may
also be included in a plan by a special kind of dependency KS — discussed in the
next section.

' FIGURE 3 GOES ABOUT HERE

Currently, activities are elaborated until no more KS's are applicable. In general,
this does not produce optimal results. We are trying to formalize the notion of an
activity's scale, and relate it to the needed grainsize for estimation and control.
Constructs that deal with activity scale are provided as part of the user language. The
user can thus specify declaratively the needed scale for different activities, and these
will be used by the planner to decide when to stop elaborating. This is needed

2/14/89 15

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

because, as we mentioned, elaborating activities based on object scale reduction may
proceed unnecessarily far for some activities. If the user is not satisfied with the
overall project cost, or the level of uncertainty in the current cost estimate, further
elaboration of relevant activities can be requested.

GHOST [Navinchandra88] and PLANEX [Hendrickson87] start with activities at the
component level and aggregate upwards. In contrast, OARPLAN embodies a top-

down approach for elaborating activities. Construction planning is product-oriented
in the sense that the final goal is to produce some product that meets certain
requirements. The product in our case is a facility that consists of components. We
consider it appropriate to start with a plan that includes activities at the level of a
component, such as <construct><component-1>, and then elaborate down — by

reducing action and object scale — until we reach an activity scale that the user has
defined to be appropriate. Then we can start working bottom-up by aggregating

activities based on aggregation KS's — similar to elaboration KS's — until we level
of aggregation that meet some user's organizational criteria.

5.2.2. ACTIVITY DEPENDENCIES

Any dependency between two activities has some underlying reason. We assert that
this reason is related to the nature and properties of the activity in the context of a
given project. We have, therefore, adopted the notion of activity constituents to
capture the nature of the activity and reflect its important properties in its context. In
this way, dependencies and elaborations can be inferred by deep causal reasoning,
rather than being hardwired into the activity description across all projects. In fact,
in our representation, the activity name is just a label for a set of linked activity
constituents.

If we have enough knowledge about constituents, then we should be able to attribute
any dependency between two activities to the relations or interactions among their
constituents. In our current representation of activities we have action and object
constituents. Accordingly, logical or technical dependencies are attributed to action
or object relations.

One of the main sources for activity dependency is the interaction among their
constituent actions. Inspecting something has to happen after installing it, curing
concrete has to come after finishing it and so on. This is a very common type of
activity dependency and is usually not flexible. Both the PIPPA [Marshall88] and

2/14/89 16

“ FIGURE 4 GOES ABOUT HERE

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

PLANEX [Zozoya88] systems use this sort of action dependency to infer activity
dependencies.

One other important source of activity dependency is the presence of relations
between object constituents. OARPLAN has dependency KS's of the general form
(stated in English):

If (activity-1 and activity-2 are in the plan and
aclivity-1 consists of action A-1, object O-1 and
activity-2 consists of action A-2, object O-2 and
object O-1 is related to object O-2 by relation R)
then (introduce relation D between activity-1 and activity-2).

This is a simple form of KS. Others may have as their premise a condition on the
relation between the included actions or their superclasses. The general form of a
premise is some relation among activity constituents or their superclasses. An
important goal of the OARPLAN research is to provide the user with a rich set of
domain constituent relations that replace R in the above rule. Current relations are
supported-by, adjacent -to, enclosed-by and in-same-floor, among others.

Figure 4 illustrates the supported-by relation graphically, in both CAD and logical
terms. Figure 5 shows how an object relationship of this kind is then transformed
into a precedence relationship between two activities — in this case,
<install><column-1> must precede <install><beam-1> — by OARPLAN

FIGURE 5 GOES ABOUT HERE

We also wish to provide the user with a set of useful activity relations to replace D in
the above rule. Currently we have only: before and after relations; other important
ones are: requires, causes, and lags. The first two are similar to after and before,

respectively. The difference is that they force activity-2 in the above rule to be

2/14/89 17

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

included in the plan, if it is not included. The third requires some lag between the
two activities—this subsumes before and after relations.

The requires and causes relations are of special importance. They represent another
way for introducing activities in a plan. Above, we suggested that we start with a
plan that has activities at the facility component level and elaborate the plan from
these activities. The problem with this approach, however, is that a complete plan
often requires supporting activities, e.g., scaffolding, clean-up or excavation
activities, which are not directly related to any of the project's components. These
relations can be used to introduce such activities, and others that are not directly
elaborated from components.

Based upon our work to date with OARPLAN, it is both natural and easy to express
dependency rules in the form of such object or action constraints. Our experience
indicates that it is natural for an expert to provide planning knowledge in this form;
and the knowledge, once captured is easily understood and learned by novice users,
because it relates the activity dependency in a causal way to some meaningful relation
that exists among the activity constituents.

Some specific examples of the dependency rules that the OARPLAN prototype
system utilizes to develop plans for low rise frame buildings are:

* Supports Constraint: If activity-1 is <place> <member-1> and activity-2 is
<place> <member-2> and <member-1> supports <member-2> then constrain
activity-1 to be performed before activity-2. For example, columns are placed
before the beams they support. The relation between the object constituents of
activities shown here is supported-by.

» Safety Constraint: In steel-framed buildings, do not start work on the members
of floor n until the slabs of floor n-1 or floor n-2 are constructed. The relation
here between activity objects is that they belong to floors that are one or two
levels aparst.

e Interior wall - Slab Constraint: do not start constructing a wall until all (one or
both) of the floor slabs adjacent to it are constructed. The relation here is that the
slabs are adjacent-to the wall.

2/14/89 18

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

o Interior wall - Exterior wall Constraint: within a given floor do not construct
interior walls until all external walls have been constructed. The relation here is
that the two walls belong-to the same floor.

The current OARPLAN system utilizes mainly object relations. Dependencies that
result from relations among action constituents are reflections of methodological or
technical dependencies. Those that result from object relations reflect the spatial and
topological description of the building. Both kinds are considered to be hard
dependencies since they must be satisfied by all "legal" plans, and are shown in the
same way on the precedence diagram produced by the OARPLAN prototype. Future
versions of the system will investigate other constituent relations such as resource
relations which — we anticipate — will result in "soft", or preference dependencies
to apply to a plan. The latter will be represented differently in screen and hardcopy
outputs of project plans produced by OARPLAN.

In summary, OARPLAN infers dependencies in two ways. The first is utilizing
predefined dependencies that are inherited from activity sub-plans, such as placing
concrete. These are of the type that are constant across projects and about which
little reasoning is needed. The second is by inferring dependencies through applying
dependency KS's which reason about the constituents of activities. Since these vary
across projects as a function of the objects, actions and resources of a given project,
extensive project-specific data are needed for each of the plans that OARPLAN
produces.

5.3. The Environment of OARPLAN

OARPLAN is implemented using the BB1 blackboard environment running under
Common LISP on a TI Explorer. BB1 was developed in the Knowledge Systems
Laboratory at Stanford University by one of the authors [Hayes-Roth87]. The
system is organized as a set of blackboards each having its own function.

The Facility blackboard contains the description of the facility with all of its
components and their relations. Entities on this blackboard represent object
abstractions which become more specific as we go down until we reach object
instances. The Action blackboard contains a similar hierarchy of actions. The Plan
blackboard contains the activities of the plan with the before, after, sub-activity and
super-activity relations existing among them. Each activity is linked to an object on
the Facility blackboard and an Action on the action blackboard. Finally, the

2/14/89 19

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

Elaboration and Dependency blackboards contain the elaboration and dependency
KS's. In BB1 KS's are represented as objects on a backboard, which make them
subject to dynamic alteration.

The core planner in OARPLAN does not have any domain-specific knowledge. It
only knows about the general structures of activities and KS's and how to apply
KS's. The user supplies OARPLAN with elaboration and dependency KS's for a
class of construction, e.g., high rise commercial building construction, and with the
hierarchies of object, action and resource activity constituents for a given project, as
knowledge bases in BB1. (Much of the project-specific data will be taken directly
from a CAD description of the project, in the future.) OARPLAN is thus designed
as a layered planning shell for construction domain.

In the BB1 environment, all knowledge sources whose trigger conditions are
satisfied post recommendations in the form of knowledge source activation records
(KSAR's) by putting them in a triggered agenda. So one KS may yield many
KSAR's (rules). Those whose preconditions are satisfied are moved to the
executable agenda. All KSAR's on the executable agenda are evaluated
heuristically against the goals of the currently active control strategies and foci by the
BB1 scheduler, and only the KSAR with the highest heuristic score is executed.
This results in changes on one or more of the system blackboards. On the following
cycle, all KS's examine the blackboards again; those with satisfied trigger conditions
and preconditions post KSAR's; the best one is executed, and so on.

The steel frame and concrete slab building for which plans have been developed to
date has a relatively straightforward plan, and OARPLAN produces no conflicting or
looping precedence constraints among activities in generating it. Consequently the
flexibility and power of BB1's dynamic control architecture have not yet been
exercised to any significant degree in the OARPLAN system. As we tackle more
demanding applications, and especially as we begin to address scheduling issues, we
anticipate that the dynamic, heuristic control capabilities of BB1 will prove to be
essential elements of OARPLAN's problem solving approach.

6. Conclusions

In this section we discuss what we believe are the major contributions of the
OARPLAN system. We explain how OARPLAN manages to achieve high levels of

2/14/89 20

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

both generality and power for project planning, and list several ongoing or planned
extensions to the system.

6.1. Contributions of OARPLAN

OARPLAN is a prototype Al planning system based upon the notion that activities in
a project plan can be viewed as intersections of objects, actions and resources at
several different levels of abstraction. OARPLAN generates the needed activities in
a project plan by elaborating a high level activity such as <build> <building> into a
set of project activities at one or more finer levels of detail, guided by activity scale
reduction and activity sub-plans. OARPLAN infers the minimum required set of
precedence relationships among project activities by reasoning about the interactions
among activity constituents. As an ultimate goal, OARPLAN tries to provide a rich
constituent-based constraint language for expressing planning knowledge and a
generic method for satisfying these constraints.

STRIPS-like planning systems represent actions by defining their preconditions and
effects, and use these to determine action inclusion and dependency. This is a
general representation that can be used to model many planning problems, but has
severe limitations, mentioned in section 3. In OARPLAN, elaboration and
dependency KS's that reason about activity constituents replace the need for these
preconditions and effects and give the user a richer and more expressive way for
representing planning knowledge. The main advantages of this richer representation
are: a better sense of activity abstraction, and a more natural way for representing the
underlying causes of activity dependency in real-world problems.

A number of expert systems that have been developed to date for project planning
[Hendrickson87, Bremdal87] rely heavily upon "hardwired" generic precedence
relationships among sub-activities in a plan. In OARPLAN, only a few
dependencies that exist among standard activities are provided to the system as sub-
plans; the system derives most precedence relationships from topological, spatial and
other relationships among the objects associated with separate activities in the plan.

6.2. Future Extensions to OARPLAN

Based upon the encouraging results of our prototype OARPLAN system for plan
generation in this domain, we are extending it in several directions.

2/14/89 21

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

6.2.1. SCHEDULING

Much of the day to day planning effort on construction sites involves replanning, in
response to changes in design, or variances from planned schedules. The current
version of OARPLAN reasons about attributes of, and relationships among, actions
and objects. It generates lists of activities and deduces precedences among them, but
has no knowledge sources to allocate resources to activities, nor to compute their
durations. Standard expert system techniques have been used to do this by several
previous researchers. Future versions of the OARPLAN system will try to
incorporate these capabilities using the approach of constraint posting, based upon
attributes of and relations among activity constituents, with which we now generate
and order activities.

6.2.2. FEEDBACK TO DESIGNERS

As described in Section 4.1.1 above, we are initiating a separate research effort to
link OARPLAN to a CAD system both to derive its initial planning information, and
to develop the necessary links that will permit it to replan efficiently in response to
changes in facility design.

Because OARPLAN derives most of its precedence logic by examining relationships
among elementary objects in the specified design of a facility, it should be able to
replan automatically in response to changes in a facility's design. As design objects
are added or deleted, or as important spatial, topological and other relationships
among existing design objects are changed, OARPLAN will create the needed
modifications to the plan. Our long range goal is to make OARPLAN fully
interactive, perhaps running on a separate display beside the CAD screen (or in a
separate window on the CAD workstation) as a means of providing real-time
feedback to a designer on the construction planning impacts of design changes.

7. Acknowledgements

This research has benefited in important ways from the suggestions and criticism of a
fine group of colleagues in the Knowledge-Based Planning Seminar, held under the
auspices of Stanford's Construction Engineering and Management Program. Several
colleagues at other universities have contributed ideas or suggested refinements to
this paper. In particular, John Boardman and his colleagues in the Information

2/14/89 22

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

Technology Research Institute at Brighton Polytechnic, and Chris Hendrickson at
Carnegie-Mellon University. We are indebted to Gifford Albright of the National
Science Foundation (now back at Penn State University) for his personal
encouragement, and to NSF for its support of this work via grant # NSF-MSM-87-
16608. Additional support for this research was provided by a seed research grant,
derived from industrial contributions to Stanford's Center for Integrated Facility
Engineering.

8. References

[Bremdal87]
Bremdal, B.A., "Control Issues in Knowledge-Based Planning System for
Ocean Engineering Tasks," Proceedings of 3rd International Expert Systems
Conference, pp. 21-36, London, June 1987.

[Chapman87]
Chapman, D., "Planning for Conjunctive Goals," Artificial Intelligence, Vol.
32, pp. 333-377, 1987.

[Fikes71]
Fikes, R.E. and Nilsson,N.J., "STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving," Artificial Intelligence, Vol. 2, pp.
198-208, 1971.

[Fox84]
Fox, M.S. and Smith, S.F., "ISIS— a knowledge-based system for factory
scheduling," Expert Systems, Vol. 1, No. 1, pp. 25-49, 1984.

[Hayes-Roth86]
Hayes-Roth, B., Buchanan, B.G., Lichtarge, O., Hewett, M., Altman, R.,
Brinkley, J., Cornelius, C., Duncan, B. and Jardetzky, O., "PROTEAN:
Deriving Protein Structure from Constraints," Proceedings of the AAAI, 1986.

2/14/89 23

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

[Hayes-Roth87]
Hayes-Roth, B. and Hewett, M., "Building Systems in the BB*
Environment," in R. Engelmore and A. Morgan (editors), Blackboard
Systems, London: Addison-Wesley, 1987.

[Hendrickson87]
Hendrickson, C., et al., "Expert System for Construction Planning", ASCE
Journal of Computing, Vol. 1, No. 4, pp. 253-269, 1987.

[Howard88a]
Howard, H.C. and Rehak, D.R., "KADBASE: A Prototype Expert System-
Database Interface for Engineering Systems,". To appear in IEEE Expert, 1988.

[Howard88b]
Howard, H.C., Levitt, R.E., Paulson, B.C., Pohl, J.G. and Tatum, C.B.,
"Computer-Integrated Design and Construction: Reducing Fragmentation in the
AEC Industry,". Journal of Computing in Civil Engineering, ASCE, Vol. 3,
No. 1, pp. 18-32, January 1989.

[Lansky88]
Lansky, A., "Localized Event-Based Reasoning for Multiagent Domains,"
Computational Intelligence, in press.

[Levitt87]
Levitt, R. E. and Kunz, J. C., "Using Artificial Intelligence Techniques To
Support Project Management," Journal of Artificial Intelligence in Engineering,
Design, and Manufacturing, Vol. 1, No. 1, pp. 3-24, 1987.

[Levitt88]
Levitt, R E., Kartam, N.A., and Kunz, J.C. "Artificial Intelligence Techniques
for Generating Construction Project Plans," ASCE Journal of Construction
Engineering and Management, December, 1988

[Marshall87]
Marshall, G., Barber, T.J. and Boardman, J.T., "Methodology for Modelling
a Project Management Control Environment," IEE Proceedings, Vol. 134, No.
4, pp. 287-300, July 1987.

2/14/89 24

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

[Marshall88]
Marshall, G., PhD thesis in progress, Information Technology Research

Institute, Brighton Polytechnic, Brighton, U.K.

[Navinchandra88]
Navinchandra D., Sriram D. and Logcher R., "GHOST: A PROJECT

NETWORK GENERATOR," Journal of Computing in Civil Engineering,
ASCE, Vol. 2 No. 3, pp 239-254, July, 1988

[Sacerdoti75]
Sacerdoti, E.D., "The Nonlinear Nature of Plans," in: Advance Papers IJCAI-

75, Thilisi, U.S.S.R., pp. 206-214, 1975.

[Sathi85]
Sathi, A., Fox, M., and Greenberg, M., "Representation of Activity
Knowledge for Project Managment," IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-7, No. 5, pp. 531-551, September
198s5.

[Stefik81a]
Stefik, M., "Planning with Constraints (MOLGEN: Part 1)," Artificial

Intelligence, Vol. 16, pp. 111-140, 1981.

[Stefik81b]
Stefik, M., "Planning and Meta-Planning (MOLGEN: Part 2)," Artificial

Intelligence, Vol. 16, pp. 141-170, 1981.

[Tate76]
Tate, A., "Project Planning Using a Hierarchic Nonlinear Planner," Department
of Artificial Intelligence Research Rep. No. 25, University of Edinburgh,
Edinburgh, UK., 1976.

[Tommelein87]
Tommelein, 1., Johnson, M., Hayes-Roth, B., and Levitt, R., "SIGHTPLAN

— a Blackboard Expert System for the Layout of Temporary Facilities on a
Construction Sites," in Computer-Aided Design, edited by J.S.Gero, pp. 153-
167, North Holland, 1987.

2/14/89 25

OARPLAN: Generating Project Plans by Reasoning

about Objects, Actions and Resources

[Wilkins83]
Wilkins, D.E., "Domain-Independent Planning: Representation and Plan
Generation," Artificial Intelligence, Vol. 22, No. 3, pp. 269-301, 1984; also
SRI International Tech. Note No. 266R, Menlo Park, CA, 1983.

[Wilkins88]
Wilkins, D.E., Practical Planning: Extending The Classical Al Planning
Paradigm, Morgan Kaufmann Publishers, California, 1988.

[Zozoya89]

Zozoya-Gorostiza, C., Hendrickson, C., and Rehak, D., Knowledge-based
Process PLanning for Construction and Manufacturing, Academic Press,
London, 1989 (in press).

Mr. Adnan Y. Darwiche received a B.S. degree in Civil Engineering from Kuwait
University, Kuwait, 1987. Currently, he is in the Master of Science in Computer
Science: Artificial Intelligence program at Stanford University. His current research
interests are activity planning for facility construction and reactive planning in a

dynamic environment.

Dr. Raymond E. Levitt is Professor of Civil Engineering at Stanford University
with current teaching and research interests centered around applications of artificial
intelligence to engineering and project management problems. His current research
involves knowledge-based project management, concurrent design, and spatial lay-
out problems.

Dr. Barbara Hayes-Roth is Senior Research Associate in Computer Science at
Stanford University. Her research focuses on software architectures, knowledge
representation, and reasoning methods for artificial intelligence systems. Dr.
Hayes-Roth designed and developed the BB1 architecture.

2/14/89 26

"SYUI] SUI[-PIYSEP JO-IOURISUL, AQ SOSSB[D II3Y) 0] PAJB[I 91 §393[q0 Jo
SoouR}SU] "SYUI] SUI-PI[OS ,B-SI, YIIM PIJR[AI oIk §199[q0 JO $asse[) "sozIjin
NV IIIVO 18y} Aydrerary 109[qo ay) o ued :Aydaesdiy] 393(qQ 1 2.m3iy

T2 A JOTIIXF

T2 JOLISIU]

JI00L]

IeAM

qe[s

\

JuoZ

N/

Alqurassy

L0 ANNOJNOD

u-ureog 7-ureag [-ureag
W< Y 7
~ \ /
S \
~ |
/
~
V4
uwnjo)) weag 3unooyq
LOAI90 H1dINIS

LOHIHO

"KIIATIOR 9} JO UOIIONP2I 9]BIS € IO

ue[d-qns e Ioyjo ST AJIATIOR UB JO UONBIOQR]D Uy "ue[d & UI SONIAIIOR
mau 3uronponur Ioj 9[qrsuodsal axe §,$ 3] UOIRIOQR[H “JOLU0D

pue uorjewnsa 103fod 103 pasn axe ueld € JO S[oA9] JoMO] ‘Suryes
2A1193[q0 [9A9] 2A1NDx3 J10ddns uerd e Jo s[oA9[10YSIY ‘suonIR[al
Ananpy-1adng pue A1A10y-qng ay) Aq parerar axe uefd e Jo S[9AI[
JURIRJJIP :Suonjedy ANANIY-Jddng pue £JIAOY-qng *7 1031

Q.EMMUZOU HOVId v

» v
~ 7
- of N s
7 ~ 7
N,
ﬁ 12-9V'IS %u:ﬁmzow O-UEHOOHHHSDﬁmzow
w ~
~ - /
=~ ~ N
~ ~ N

~ - ~
h U400 xpuzﬁ.mzonw ﬁ 7400 x,ﬁo:ﬁmzow ﬁ 1-900Td x,SDﬁmzcuu
A
®

@EQﬂDm%UDMHmZOw

OBJECT)

OBJECT)

OBJECT)

OBJECT)

(ACTION

(ACTION

(ACTION

Figure 3. Activity Elaboration by Scale Reduction: The scale of an activity is
a function of the scale of its constituents. Thus, to reduce the scale of an
activity, the scale of an action or that of an object is reduced. The scale of an
action is reduced along the 'elaborates-to' relation. The scale of an object is
reduced along several relation such as 'sub-part' and 'containts'.

AN
DR

COLUMN-1

BEAM-1

COLUMN-2

Figure 4. Supported-By Relation: The 'supported-by' relation is one of the main
relations that forces precedence constraints between activities that have facility
components as objects. This relation exemplifies the type of information that

OARPLAN would get by posing a high level query to a database interfaced with
a CAD system.

OBJECTS ACTIONS

N N

Finish_Objects Structural_Objects Excavate_Actions Construct_Actions
Columns Slabs Beams Assemble Install

Col-1 Col-2 Beam-1 Beam2

R
i,

e
. e
A-:..%':'\v-:., N " .-,.~.,;«;«:r:‘“"v~
ACTIVITY-1
Wi
e,

T,

(ACTIVITY-2)

Enclosed-by Supported—-by Damaged-by recedeiby\ Together-with
OBJECT_RELATIONS PRECEDENCE_RELATIONS

Figure 5. Inferring Activity Precedence from Constituent
Relationships: Precedence constraints are posted based on intercations
between activity actions and objects. For example: if Activity-1 is to construct
column-1 and Activity-2 is to construct beam-1, and beam-1 is supported—by
column-1, then Activity-1 should come before Activity-2. Spatial relations
between the components of the facility are the most important ones in
introducing precedence between their activities. Note how natural it seems to
express domain knowledge in this form.

