IFE ENTER FORINTEGRATED FACILITY ENGINEERING

User Interfaces for Structural Engineering
Relational Databases

by H. Craig Howard and Cynthia Stotts Howard

TECHNICAL REPORT
Number 4

June, 1988

Stanford University

Engineering with Computers 4, 239-249 (1988)

Engineering
C&n“gpmgs

@ Springer-Verlag New York Inc. 1988

User Interfaces for Structural Engineering Relational Data Base

H. Craig Howard and Cynthia Stotts Howard

Department of Civil Engineering, Stanford University, Stanford, California

Abstract: The needs of engineers in their interaction with engi-
neering data bases are very different from those of their counter-
parts in the business world. Business data base management
system interfaces typically provide only a single mode of textual
communication, usually a structured query langnage. However,
in an ideal engineering data base interface, an engineer would be
able to define constraints, give examples, point at parts of pic-
tures, and (sometimes) use several modes of communication si-
multaneously. The paper presents an example from an engineer-
ing design application to show how a traditional query language
can be enhanced to accommodate the engineering needs. The
paper further describes a conceptual approach for multimodal
engineering data base interface combining multipurpose graph-
ics, an engineering query language, and other interface method-
ologies in an engineering workstation environment.

1 Introduction

Data management is important in engineering com-
puter applications where the volume of data is very
large and where the same data must be shared by
several users and programs. Engineering applica-
tions are making increasing use of data base man-
agement systems (DBMSs) to provide these capa-
bilities. However, the needs of engineering systems
are somewhat different from those of the business
systems that stimulated the initial development of
the DBMS technology [1,2]. The needs of engineer-
ing data bases with respect to data representation,
consistency, integrity, and so on have been ex-
plored in a number of research efforts (e.g., see
Refs. [3,4]). One result of this research has been the
widespread adoption of relational data base! tech-
nology for management of engineering data.

! The relational data base model represents objects with a sin-
gle level of relations. A relation defines the collection of attrib-
utes that describe a set of objects. An individual object is repre-
sented within the relation as a tuple (a set of attribute values
describing the object). A relation may be pictured as a table in
which the columns are the attributes and the rows are the tuples.

Reprint requests: H. Craig Howard, Department of Civil Engi-
neering, Stanford University, Stanford, CA 94305-4020, USA.

Similarly, the interaction between engineers and
engineering DBMSs can be very different from their
business counterparts. In business data bases, there
tends to be a small number of different types of
requests that are well known in advance and are
repeated over and over again (e.g., the query ‘“‘get
account balance for x”’ in a banking data base).
However, in engineering data bases, the requests
tend to be much more varied because engineers (es-
pecially structural engineers) frequently deal with
one-of-a-kind objects (e.g., a design for a particular
building). The data base requests involved in the
design process for those unique elements are neces-
sarily different. Therefore, an engineering data base
interface must possess a maximum flexibility for the
composition of many types of requests.

One possible approach to increasing flexibility in
DBMSs is found in current research into natural
languages interfaces. However, this research is ap-
plicable to engineering data bases only to the extent
that engineers use natural language. Engineers also
like to define constraints, give examples, point at
parts of pictures, and (sometimes) use several
modes of query specification simultaneously. In an
ideal data base interface, an engineer would be able
to formulate requests using the most natural means
of expression, be it text, formulas, graphics, or
combinations thereof.

Most existing DBMSs front-ends are unimodal;
typically, the user interface is driven by a struc-
tured query language. Some DBMSs have multiple,
independent user interfaces; that is, the same physi-
cal data base can be accessed by different query
language interfaces. However, to achieve the level
of flexibility described earlier, we need a DBMS
interface with multiple, interdependent interface
modes. In such a system a single request could be
formed by pointing at an object on a graphics dis-
play, entering a set of applicable design constraints,
and selecting required attributes from a graphical
display of the standard object labeled with its attrib-
utes. Thus the engineer can formulate a request us-
ing the mode or combination of modes that best
suits that request.

240
Table 1. Wide-flange-shape relation.
Designation Nominal Weight Depth Section
depth modulus
W4 x 13 4 13 4.16 5.46
W14 x 233 14 233 16.04 375
W30 x 116 30 116 30.01 329

Our research in this area has already led to a first
version of an engineering data base query language
for relational data bases. Section 2 describes that
language and its rationale along with a brief over-
view of relational data base query languages. Sec-
tion 3 provides some background on alternative
query methodologies drawn from data base re-
search and practice. Finally, Section 4 presents a
conceptual overview of a multimodal engineering
data base interface to be implemented in an engi-
neering workstation environment.

2 An Engineering Query Language

Our interest in the area of engineering data base
interfaces arose from previous research on inter-
faces between expert systems and DBMSs. From
that work it became apparent that traditional DBMS
query languages can be awkward to use in the speci-
fication of complex engineering design queries. The
first part of this section briefly discusses the charac-
teristics of those traditional structured query lan-
guage interfaces for relational data bases. The sec-
ond part describes how a traditional query language
was extended to facilitate a class of engineering
queries.

The sample queries in this section address the
‘‘wide-flange-shape’’ relation shown in Table 1. The
sample relation is an abbreviated version of the ta-
ble of wide-flange structural steel shapes drawn
from the AISC Manual of Steel Construction [5].

2.1 Structured Query Languages

With a structured query language,? the user formu-
lates queries using special commands according to a
rigidly defined syntax. The user is responsible for
expressing requests within the limitations of the

% In formal terms, the query language is called a data manipula-
tion language (DML), as distinguished from a data definition
language (DDL), which is used to define the logical and physical
data structures in the data base.

H.C. Howard and C.S. Howard

ENGLISH

Get the designation of the wide-flange shape having a depth greater than 12 inches.
saoL

select designation

from wide-flangs-shape

where depth > 12

QUEL

range of wi is widse-flange-shape

retrieve (wi.designation)
where widepth > 12

Fig. 1. Structured query language example queries

query language. Structured query languages come
in many different forms. Two of the best known are
the SQL (originally SEQUEL) language [6] and the
QUEL language of INGRES [7]. Full definitions of
these languages are beyond the scope of this sec-
tion. The typical use of these query languages is
llustrated in the following examples involving que-
ries for values from the sample relation of wide-
flange shapes (Fig. 1).

The two sample queries are fundamentally mathe-
matical expressions, building on the formal defini-
tion of relational data bases. In those terms, the
SQL and QUEL languages are based on tuple-ori-
ented relational calculus. A few languages are
based on relational algebra, but they tend to be less
widely used because relational algebra expressions
specify how the data is to be retrieved, whereas
relational calculus expressions describe what is to
be retrieved without specifying how.

2.2 Engineering Query Language Example

The example discussed in this section arose during
research into interfacing engineering expert sys-
tems with DBMS [8]. That research yielded some
basic observations about the characteristics of engi-
neering queries. In particular, for a single-object
query formulated during the design process, it is
very useful to be able to separate the elements of
the query that address constraints on the object be-
ing designed from the elements of the query that
specify the method for selecting the optimum ob-
ject. This section presents some examples to illus-
trate the complications of representing such queries
in conventional structured query languages and the
ease of representation in the engineering query lan-
guage.

Queries to a data base for information about a sin-
gle object take the general form

Find (attributes of object) where (set of qualifiers)
is satisfied.

User Interfaces for Structural Engineering Relational Data Bases

ENGLISH

Get the designation of the lightest wide-flange shape
having a section-modulus greater than 300 cubic inches.

QUEL
range of wif Is wide-flange-shape
retrieve (wf.designation)

where wi.section-modulus > 300

and wi.weight = MIN(wf.weight

where wf.section-modulus > 300)
saL
SELECT wi.designation
FROM wide-flange-shape
WHERE wf section-moduius > 300
AND wiweight =
(SELECT MIN(wt.weight)

FROM wide-fiange-shape
WHERE wif.section-moduius > 300)

Fig. 2. Sample engineering queries

Frequently, that set of qualifiers can be partitioned
into two subsets that reveal more about the sub-
stance of the query. This partition can be illustrated
with a simple structural engineering example. In re-
lational query languages like QUEL and SQL, a
query to select a suitable cross section from a data
base of standard steel wide-flange shapes would
take on the forms shown in Fig. 2: These queries
contain two qualifiers: (1) the section modulus must
be greater than the required section modulus and (2)
the weight must be the minimum weight for the set
of sections that satisfy the first qualifier. The two
qualifiers are excellent paradigms of two basic qual-
ifier types:

» Constraints—those qualifiers that test the entity
against an absolute standard; for example, sec-
tion-modulus is greater than 300. Constraints de-
termine a satisficing set of entities, that is, those
entities that satisfy the constraints without neces-
sarily being optimum solutions.

» Optimizing criteria—those qualifiers that test the
entities against a relative standard by-comparing
the entity to other entities of its class; for exam-
ple, weight = min(weight). In relational data
bases, min and max are called aggregate operators
because they return a single aggregate value based
on attribute values for a set of objects. Optimizing
criteria are normally used to select a single object
from the satisficing set determined by the con-
straints.

This division of qualifiers is not represented
clearly in either of the earlier sample queries be-
cause both formulations require that the constraint
be repeated in the aggregate operation, since the
scoping of the variables in the aggregate expression
is independent of the variables in the rest of the
query. When an aggregate expression is encoun-

241

retrieve (designation}

from wide-flange-shape
where section-medulus >= 300
subject to (min{weight))

Fig. 3. Engineering query language example query

tered, the query processor usually suspends its
translation of the query to evaluate the aggregate.
The value returned by the aggregate is substituted
for the aggregate function expression, and the query
processor continues with the remainder of the
query.

The queries can become very complicated as the
optimizing criteria are applied sequentially; that is,
the satisficing set is pared by the application of a
first criterion, and the resulting set is subjected to a
second criterion.

Therefore, our engineering query language ex-
tends the basic query form to be

Find (attributes of object) where (set of constraints) is
satisfied, subject to (ordered set of optimizing criteria)

The constraints are applied first to determine the
satisficing set, and the optimizing criteria are ap-
plied in sequential order to narrow the set to the
desired entity. Adopting the QUEL syntax shown
previously, the result for the first example would
look something like the query shown in Fig. 3.

To illustrate further the power of this method of
expression for engineering design queries, we
present an example taken from the HI-RISE expert
system for the preliminary design of high-rise build-
ings [9]. The example concerns the selection of a
steel wide-flange section for a floor beam in a high-
rise structure. The constraint is the same as in the
previous example—the section modulus must be
greater than the required section modulus (300), but
the criteria are different. Since ceiling-to-floor
depth is critical in high-rise construction, the pri-
mary optimizing criterion is to find the minimum
nominal depth. The criterion for minimum weight
remains, but it is secondary. The query formula-
tions in QUEL, SQL, and the engineering query
language are shown in Fig. 4. The intent of the
query is much clearer in the engineering formula-
tion than either the QUEL or SQL. forms. The engi-
neering form is also more amenable to query optimi-
zation because the structure of the query is not
procedurally restrictive. When confronted by this
kind of query, SQL and QUEL users may opt to use
three separate queries with temporary relations to
cache intermediate results, but once again the basic
intent of query is lost. Similarly, languages based on

QUEL
range of wi Is wide-flange-shape
retrieve (wf.designation)
where wi.section-moduius > 300
angd wi.nominal-depth
= MIN{w{.nominal-depth
where wi.section-moduius > 300}
and wiweight
= MIN(wi.weight
where wi.nominal-depth = MIN(wf.nominal-depth
where wi.section-moduius > 300))
saL
SELECT designation
FROM wide-flange-shape
WHERE section-modulus > 300
AND nominal-depth =
(SELECT MIN(nominal-depth)
FROM wide-flange-shape
. WHERE section-modulus > 300)
AND weight =
(SELECT MiIN(weight)
FROM wide-flange-shape
WHERE section-modulus > 300
AND nominal-depth =
(SELECT MIN(nominai-depth)
FROM wide-flange-shape
WHERE section-modulus > 300))
Engineering Query Language
retrleve {designation)
from wide-flange-shape
where seclion-modulus > 300
subject to (min{nominal-depth),min(weight))

Fig. 4. Complex engineering queries

relational algebra can represent this query as a set
of nested “‘select”” commands. However, as noted
previously, the relational algebra formulations re-
quire the user to describe a query in terms of how it
is to be processed instead of whar is to be found.
The optimization criteria feature has been imple-
mented in the KADBASE query language (KQL)
[10] and used successfully in data base interfaces
for the HI-RISE expert system [9] and the SPEX
structural component design expert system [11]. In
the implementation, KADBASE translates the
KQL constraints and criteria into a sequence of
QUEL queries to an INGRES data base using tem-
porary relations. KADBASE takes care of the ad-
ministrative details required to chain the queries to-
gether through the correct temporary relations and
to delete the temporary relations when the query
processing has been completed. The translation
process and attendant administrative details are
completely hidden from the querying component.

3 Interface Methodologies

In addition to the structured query languages de-
scribed earlier, other paradigms for data base ac-
cess have been proposed. In the following section
we discuss various interface methodologies and
their uses in accessing engineering data bases.
While these methodologies vary in ease of use and,

H.C. Howard and C.S. Howard

wide-flange-shape designation nominal-depth weight depth section-modulus
P.

> 12

Fig. 5. Query-by-example sample query

in some cases, incorporate graphics, no single para-
digm is adequate for an engineering data base inter-
face.

3.1 Formal Structured Query Interfaces

The query-by-example (QBE) [12] language is a dif-
ferent approach to a structured query language.
Queries in QBE are represented as entries in tables.
QBE utilizes the tabular nature of relational data
bases and the natural desire of human users to dem-
onstrate what they want rather than express a query
according to some arbitrary syntax. In QBE, the
sample query used in the structured query language
section would be represented as shown in Fig. 5.
The table represents the sample relation wide-flange
shape and its attributes as described in the last sec-
tion. The notation ‘‘> 12" in the depth column rep-
resents the qualifier ‘‘depth > 12,”” and the notation
“P.”” in the designation column indicates that the
values for the corresponding designations are to be
printed.

Like SQL and QUEL, QBE has a mathematical
basis in relational data base theory. Formally speak-
ing, QBE is a domain-oriented relational calculus
language.

3.2 Natural Language Data Base Interfaces

In a natural language (NL) data base interface, the
user expresses the request in the same terms that
would be used in communicating with a human data
base manager. The user does not need to learn any
special language syntax or command structure.
Natural language data base interfaces are useful
when requests are easily expressed in English, but
engineers tend to talk about data in mathematical
terms, so a natural language interface is not a com-
plete answer.

A variety of systems have been implemented to
provide restricted natural language (NL) access to
software systems including data bases. Among
these are:

* CO-OP [13]—a portable NL interface for data
base systems.

* XCALIBUR [14]—a domain-independent NL. in-
terface for an expert system.

» MDX [15]—a medical expert system with a NL

User Interfaces for Structural Enginecring Relational Data Bases

front-end that has also been implemented for an-
other expert system and a relational data base.

» RESADA [16]—a deductive NL data base system
for querying about biographical data.

None of these systems is capable of a full range of
discourse, even within the domain of the applica-
tion or data base. However, each has the power to
parse simple queries expressed in conversational
English into data base access requests and to ask
for clarifications where ambiguities exist. The CO-
OP system provides several good examples of the
types of queries that can be processed using the
current technology. For example (taken from Ref.

(13D

+ “Who advises projects in area 367"

s “Which programmers from the ASD group are in
superdivision 50007’

* “Which users work on every project in area 557°°

3.3 Graphical Extensions to Formal Structured
Query Interfaces

Several graphical query languages have been devel-
oped by extending structured query languages. For
example, the pictorial structured query language
(PSQL) [17] is based on SQL, with the extension of
two extra clauses: ‘‘on {picture-list)’’ and ‘‘at (area-
specification).”” The area specification can include
spatial operators such as ‘‘covering,”’ is-covered-
by,” and so on. PSQL accommodates direct (or
explicitly specified) spatial search, and indirect spa-
tial search, in which the location is determined by
the constraints listed in the ‘‘where’” clause. Query
by pictorial example (QPE) [18] provides similar ca-
pabilities and also allows users to enter areas or
shapes to be matched using graphical input devices.

While these languages do combine pictorial and
textual data, they still require that the user apply a
formal (and sometimes awkward) structure for
specifying queries. Furthermore, these languages
focus on the characteristics of two-dimensional im-
ages rather than the spatial relationships inherent to
structural engineering data.

3.4 Graphical Data Base Interfaces

In a graphical query interface, the user expresses
requests by pointing at objects on a graphics display
in conjunction with commands entered via the key-
board or selected from a displayed menu. A graphi-
cal interface permits a user to express the concept
of “‘that beam’’ (by pointing at it) without having to

243

know some unique beam identifier (e.g., beam num-
ber *“123""). However, if the user wants to ask some
complex, multifaceted question about that beam,
then the capabilities of a query language (structured
or natural) are required.

Most existing computer-aided design and drafting
(CADD) systems support their own ad hoc data
bases of graphical information. The CADD com-
mands for displaying, drawings, deleting, and so on
act as a specialized data base language; for exam-
ple, the ‘““display’’ and ‘‘draw’’ commands roughly
correspond to the data base commands ‘‘retrieve”
and ““insert.”” This level of data base interaction is
sufficient when the engineer is only interested in
graphical objects, but it is inadequate when the en-
gineer wants to address nongraphical information
related to the graphical objects. Complicating the
problem, the graphical data base for the CADD sys-
tem is frequently kept separate from the data base
of nongraphical attributes used by the rest of the
engineering software.

3.5 Navigational Data Base Interfaces

Structured query languages require that the user
know the exact structure of the data base being que-
ried [19]. Navigational data base interfaces relieve
the user of this burden by providing a ‘‘map’’ of the
database. The user formulates a query by indicating
the area of interest on the map.

An example of a navigational data base interface
is the spatial data management system (SDMS)
[20,21]. In the SDMS, users are presented with a
“world view’’ of the data base. Using a joy stick,
the user selects an area of the world view and
““zooms in’’ for more detail. By repeating these
steps, the user can obtain data on specific items in
the data base. The data base administrator deter-
mines how the data base will be protrayed; the por-
trayal of the data does not necessarily reflect the
underlying structure of the data base.

Other navigational data base interfaces are based
more closely on the structure of the data base. The
data base interface aid described by Burgess [19]
provides the user with a tree diagram of the data
base. Only the current and next lowest levels of the
data base are portrayed. The user navigates through
the data base by specifying which leaf to visit next.

Navigational data base interfaces provide the user
with a clear picture (literally) of the structure and
contents of the data base. They are very easy to
learn and encourage browsing. However, they do
not lend themselves to the complex types of queries
possible in engineering tasks.

3.6 Nonsimultaneous Multimode
Data Base Interfaces

Many current DBMSs provide multiple, separate
user interfaces. Frequently, the separate interfaces
consist of a formal query language interface on the
one hand and a specialized report writer on the
other. IBM’s Query Management Facility (QMF)
[22] provides two formal query language interfaces:
SQL and QBE. Relational Technologies has devel-
oped a version of INGRES that accepts requests in
either QUEL or SQL. The principal drawback of
these systems is that the two modes cannot be used
simultaneously in the formulation of a single re-
quest.

3.7 Conclusions on Existing Methodologies

Each of the query representation techniques dis-
cussed earlier has its own advantages and disadvan-
tages. No one form is ideally suited to all query
formulation requirements. In every language there
are queries that are awkward or impossible to ex-
press. The basic question is, How can we combine
these query languages in such a way as to accumu-
late their advantages while omitting the necessity of
dealing with their disadvantages? The following
section draws upon the various query representa-
tion paradigms presented here to paint a broad pic-
ture of a multimodal query interface for engineering
data base.

4 Conceptual Overview of a Multimodal
Engineering Data Base Interface

The three basic characteristics of our data base in-
terface model are:

* The engineering user should have multiple modes
of query formulation simultaneously available;
for example, an engineering query language, a
QBE template, a graphical display, and so on.

e The various query formulation modes will interact
by contributing to the formulation of a single
query; for example, selecting several components
in a graphical display and requesting attribute val-
ues in a QBE template will result in a single query
for the values of the specified attributes for the
specified components.

* Each mode will update its query formulation in-
formation to correspond to query components en-
tered in through other modes; for example, if the
engineer has selected the component type beam in

H.C. Howard and C.S. Howard

one mode, all other modes can specialize their
responses based on the definition of the object
beam and its attributes.

On an engineering workstation each mode is im-
plemented in an individual window on the screen
display. The query formulation windows are linked
through a central query processor that communi-
cates with a DBMS. Figure 6 shows the conceptual
architecture of such a system, illustrating the fol-
lowing query formulation modes:

» The data base map shows the organization of the
data in a graphical format, allowing the engineer
to navigate through the data base by following the
natural interrelationships of the data base objects.
This interface would be similar to the world view
of the SDMS.

* The engineering query language (EQL) provides
a powerful, structured, relationally complete
query formulation capability. The language in-
cludes the extensions for optimizing criteria
described previously. Additional engineering-
oriented language features may be desirable, espe-
cially in the area of spatially oriented query opera-
tors (as in PSQL).

» The query-by-example (QBE) interface provides
the engineer with a tabular paradigm for query
formulation.

« The graphical attribute selection adds a pictorial
element to the basic idea of QBE. Engineers indi-
cate the attributes to be returned by selecting
them via a pointer on a graphical representation of
the component. This interface mode is particu-
larly desirable in complex, dimensioned objects.

» The graphical object selection provides graphical,
CADD interface to the data. Through this inter-
face mode the engineer can specify an individual
component, several components, or entire sys-
tems of components by using a graphical cursor to
select components and systems on a screen dis-
play. The level of selection can be controlled by
other interface components; for example, if the
engineer has selected an object type through an-
other mode, that object type governs the response
in the graphical object selection.

« The natural language (NL) interface is included
in this model to emphasize the flexibility envi-
sioned for the multimodal system. While we noted
earlier that engineers need much more than natu-
ral (textual) langauge to express engineering data
requests, an unstructured NL subsystem can be a
useful complement to the more mathematical and
graphical query formulation modes, which can be
used to establish a context for the NL discourse.

User Interfaces for Structural Engineering Relational Data Bases

245

GRAPHICAL ATTRIBUTE
SELECTION

1 tw

tf o

d GRAPHICAL OBJECT
SELECTION

DATABASE MAP

Z

| depth

NATURAL

LANGUAGE

Get the designations of the
second floor members

Fig. 6. Integration of multiple
query modes

These query input windows are complemented by
output windows displaying textual and graphical
results.

The two keys to the integration of the multiple
modes into a single coherent system are the central
query processor and the standardized language for
communicating about partially formed queries. The
central query processor is responsible for combin-
ing the partial queries into a single query suitable
for the associated DBMS. It also communicates
each step of the query formulation process to each
interface mode; therefore, in the subsequent steps
all modes know about object types, attributes, and
constraints already specified and can adjust their
displays and responses accordingly. The two-way
communication of partial queries requires an inter-
nal language that includes a full complement of
query representation features.

(and many more)

CENTRAL
QUERY
PROCESSOR

P. >12

GRAPHICAL)
OUTPUT

TEXTUAL OUTPUT
designation| depth
W14x109 }[14.32

W14x193 |15.48
W16x36 |15.86

Figures 7 and 8 demonstrate sample formulations
of engineering queries in a multimodal environ-
ment. The first query (Fig. 7) asks which beams on
the second and third floors of the concrete frame
have depths greater than 20 inches. It is intended to
illustrate the basic ideas of combining query formu-
lation modes to naturally express the elements of
the request. The engineer would formulate this
query using the following steps:

1. In the data base map window, the engineer se-
lects the object beams. In response to the engi-
neer’s selection, the oval representing the beams
object is highlighted, and the graphical attribute
selection window displays a cross-sectional view
of a concrete beam, labeled with the attributes
that describe concrete beams.

2. In the graphical attribute selection window, the

H.C. Howard and C.S. Howard

Graphical Object Selection }

GL0e 002000000050 0020000000000 000 00050,

Fig. 7. Multimodal formulation of
simple query

engineer selects the attributes b, d, As on the
concrete beam diagram. As the engineer points
to each attribute, it is highlighted on the display.
In response to the selections in this window, the
query-by-example (QBE) window is updated to
show which attributes have been selected for
output (represented by the “‘P.”” in the applicable
columns).

In the OBE window, the engineer specifies the
constraint ‘“‘depth > 20"’ by typing “‘> 20’ in the
depth column.

In the graphical object selection window, the en-
gineer selects an area containing the second and
third floors. The window knows that the engi-
neer has already selected beams as the object of

interest, so for the chosen area only the beams
are highlighted in the display.

The beams satisfying the constraint are highlighted
in the graphical output window, and the associated
attribute values are shown in the textual output win-
dow. Now the engineer is free to compose another
query or modify the current one.

Figure 8 represents a multimodal formulation of
the complex engineering design query described
earlier in the paper. The query is composed as fol-
lows:

1. In the data base map window, the engineer se-
lects the object wide-flange. The graphical at-

User Interfaces for Structural Engineering Relational Data Bases 247

ENGINEERING DATABASE ACCESS MODE

Graphical Object Selection E A Database Map |

designation
retrieve (desig, sect-mod, d) w""""“"d""“
from wide-flange weight

where sect-mod > 300
subject to min(nom_depth),
min(weight)

wide-flange | desig I weight lsect-mod ld lbf ' tw | tf

l P. I IP. >300|P.I I

Textual Qutput

desig sect-mod d
W14X193 310 15.48

Fig. 8. Muiltimodal formulation of
engineering design query

tribute selection and query-by-example (QBE) 4. In the EQL window, the engineer describes

windows immediately display the templates as- the two optimizing criteria: min(nom.depth),
sociated with wide-flange sections. min(weight).
2. In the graphical attribute selection window, the
engineer indicates the attribute values to be re- The textual output window shows that the desired
turned, in this case designation, depth, and sec- wide-flange shape is a W14 x 193.
tion modulus. The QBE and engineering query Our intent in these examples has been to demon-
language (EQL) windows are also updated to strate the basic functionality of a multimodal engi-
show which attributes have been selected for neering data base interface, to show how multiple
output, query formulation options can be combined to sim-
3. In the QBE window, the engineer specifies the plify and clarify the engineer’s data access needs.
constraint on the section modulus by typing The engineering data base interface can be easily
“> 300" in the section-modulus column. The expanded to incorporate new query formulation
EQL window also updates its display to include modes and new data bases (even multiple data base

the constraint. systems).

248

5 Conclusions

We have presented an engineering query language
that substantially improves the formulation of a
broad class of engineering design queries. The engi-
neering query language has served as a springboard
for a broader exploration of the requirements for
engineering data base interfaces. Our conclusion is
that an engineering data base interface must support
multiple, simultaneous modes of query formulation,
including both graphical and textual specification of
query information. The implementation of a flexi-
ble, multimodal interface of the type proposed here
has the potential for far-reaching effects on the
structural engineering data management. Among
these are

s Greater reliance on formal DBMSs for the stor-
age of engineering data. Data base management
techniques are extremely valuable in maintaining
the integrity and consistency of design data, but
even the most powerful software systems are of
little use if they are not responsive to the needs of
their users. The engineering data base interface
would encourage the greater use of DBMSs for
design data.
Integration of graphical and nongraphical engi-
neering data. One of the stumbling blocks to ef-
fective integration of graphical and nongraphical
data is the lack of a unified approach to accessing
the two types of data. In general, textual data
bases cannot draw pictures, and CADD data
bases treat nongraphical data as mere attachments
to graphical objects. If the digital representations
of engineering designs are to be truly cohesive,
the designers must have a unified interface to all
of the data.

* Better communication in the design/construction
process. The data is the design, and, with the in-
creasing reliance on computer-aided design, more
and more of the design data communication is
transacted through the computer, specifically via
the design data base. The engineering data base
interface will give design/construction profession-
als better access to the data and, therefore, better
communication about the design.

References

1. Codd, E.F. (1982) Relational databases: A practical founda-
tion for productivity. Commun. ACM 25 (2), 109-117

2. Fenves, S8.J.: Rasdorf, W.J. (1982) Role of Database Man-
agement Systems in Structural Engineering. Technical Re-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

H.C. Howard and C.S. Howard

port DRC-12-13-82, Design Research Center, Carnegie-Mel-
lon University, Pittsburgh, December

. Fenves, S.J., Rasdorf, W.J. (1982) Treatment of Engineering

Design Constraints in a Relational Database. Technical Re-
port DRC-12-14-82, Design Research Center, Carnegie-Mel-
lon University, Pittsburgh, December

. Rasdorf, W.J., Fenves, S.J. (1983) Organization of a struc-

tural design database. In: Proceedings of the Eight Confer-
ence on Electronic Computation, (Ed. J.K. Nelson, Jr.).
Committee on Electronic Computation of the Structural Di-
vision of the American Society of Civil Engineers, pp. 559-
571, February

. Manual of Steel Construction, 8th Ed. (1980) American Insti-

tute of Steel Construction, Chicago, IL

. Chamberlin, D.D., Boyce, R.F. (1974) SEQUEL: A struc-

tured English query language. In: Proceedings, 1974 ACM
SIGMOD Workshop on Data Description, Access and Con-
trol, Ann Arbor, Ml

. Stonebraker, M., Wong, E., Kreps, P. (1976) The design and

implementation of INGRES. ACM Trans. Database Syst.
(3), 189-222

. Howard, H.C., Rehak, D.R. (1988) KADBASE: A proto-

type expert system-database interface for engineering sys-
tems. IEEE Expert [in press]

. Maher, M.L., Fenves, S.J. (1985) HI-RISE: An expert sys-

tem for the preliminary structural design of high rise build-
ings. In Knowledge Engineering in Computer-Aided Design,
(Ed. 1.S. Gero). Amsterdam: North-Holland

Howard, H.C., Rehak, D.R. (1986) Interfacing Databases
and Knowledge Based Systems for Structural Engineering
Applications. Technical Report EDRC-12-06-86, Engineer-
ing Design Research Center, Carnegie-Mellon University,
Pittsburgh, November

Garrett, J.H., Jr., Fenves, S.J. (1987) A knowledge-based
standards processor for structural component design. Eng.
Comput., 2, 219-238

Zloof, M.M. (1974) Query by example. In: Proceedings, Na-
tional Computer Conference, Vol. 44, Anaheim, CA, pp.
431-437

Kaplan, S.J. (1984) Designing a portable natural language
database query system. ACM Trans. Database Syst., Assoc.
Comput. Mach. 9(1), 1-19

Carbonell, 1.G., Boggs, W.M., Mauldin, M.L. (1983) The
XCALIBUR project: A natural language interface to expert
systems. In: Proceedings, International Joint Conference on
Artificial Intelligence, Vol. 2, Karlsruhe, West Germany, pp.
653-656, August

Obermeier, K.K. (1984) Natural language front-ends for ex-
pert systems. In: Proceedings, National Online Meeting,
New York, pp. 265-272, April

Zarri, C. (1984) Expert systems and information retrieval:
An experiment in the domain of biographical data manage-
ment. Int. J. Man-Mach. Studies 20(1), 87-106
Roussopoulos, N., Leifker, D. (1984) An introduction to
PSQL.: A pictorial structured query language. In: Proceed-
ings, 1984 IEEE Computer Society Workshop on Visual
Languages, Hiroshima, Japan, pp. 77-87, December
Chang, N.S., Fu, K.S. (1980) A relational database system
for images. In: Pictorial Information Systems (Eds: S.K.
Chang, K.S. Fu). New York: Springer-Verlag, pp. 288-321
Burgess, C.G. (1984) A database interface aid. In: Proceed-
ings, 1984 IEEE Computer Society Workshop on Visual
Languages, Hiroshima, Japan, pp. 72-76, December
Herot, C.F. (1981) Spatial management of data. In: Data

User Interfaces for Structural Engineering Relational Data Bases

21.

- Base Management in the 1980’s (Eds. J.A. Larson, H.A.

Freeman). New York: Institute of Electrical and Electronics
Engineers, pp. 132-151

Herot, C.F. (1982) Graphical user interfaces. In: Human
Factors and Interactive Computer Systems. (Ed. Y. Vassi-

249

liou). NYU Symposium on User Interfaces, May 26-28,
1982, Ablex Publishing Corporation, Norwood, NJ, pp. 83—
103

22. Query management facility general information (1985) IBM
Form No. GC26-4071 .

