|/ CENTER FOR INTEGRATED FACILITY ENGINEERING

NEWWATCH: Learning
Interrupted Strategies by
Observing Actions

Andrew Gans and Barbara Hayes-Roth

TECHNICALREPORT
Number 25

April 1990

Stanford University

Center for Integrated Facility Engineering » Stanford University

Copyright © 1990 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

Knowledge Systems Laboratory March 1990
Report No. KSL 89-44

NEWWATCH: Learning Interrupted
Strategies by Observing Actions

by

Andrew Gans, and Barbara Hayes-Roth

KNOWLEDGE SYSTEMS LABORATORY
Department of Computer Science
Stanford University
- Stanford, California 94305

Abstract

An expert can normally demonstrate a strategy by solving individual
problems. However, it is more difficult to articulate the set of general rules used
to select actions. The WATCH project was designed to "watch over the
shoulder” of an expert, to automatically learn strategic knowledge by observing
the sequence of actions that were performed.

The original WATCH program was limited by the assumption that the
entire sequence of problem-solving actions could be induced into a single
hierarchical strategy tree. Any interruptions in this single strategy, whether a
simple opportunistic sequence or a second parallel strategy, were simply treated
as noise that confused the system. The NEWWATCH extension has been-
implemented to recognize various kinds of interruptions, thereby greatly
increasing the range of strategies that the WATCH system can learn.

Acknowledgements

The NEWWATCH project was supervised by Barbara Hayes-Roth, and
was done in conjunction with Tony Confrey's work on the META-WATCH
system. The original WATCH program, which inspired and provided the
platform for this project, was written by Jeff Harvey. A number of members of
the BB1 group at the Knowledge Systems Lab, most notably Mike Hewett,
provided assistance with implementing parts of the WATCH system as a BBl
application. Tom Gruber gave helpful advice about related work on learning.

Craig Cornelius implemented a revised version of the PROTEAN
application, to obtain the initial data for WATCH. Iris Tommelein designed the
SIGHTPLAN system, and provided the problems on which the WATCH system
was tested.

The research was supported by CIFE, the Center for Integrated Facility
Engineering at Stanford. Ray Leavitt motivated the WATCH project's goal of
learning strategies for such Civil Engineering tasks as SIGHTPLAN.

Contents

1. Introduction
1.1 Overview
1.2 Outline
2. Background
2.1 The BB1 blackboard environment
2.2 The ACCORD language
3. WATCH
3.1 Introduction
3.2 Assumptions and bias
3.3 The WATCH program
3.3.1 Inductive generalization
3.3.2 Heuristic search
3.3.3 Incremental learning
3.3.4 Modifiers
4. NEWWATCH
4.1 Introduction
4.2 Interruptions
4.3 A sample interrupted action sequence
4.4 The NEWWATCH program
4.4.1 Hypothesizing an interruption
4.4.2 Integrating the interruption
4.4.3 Categorizing the interruption
4.5 Limitations
4.5.1 Dependence on inductive generalization
4.5.2 Use of look-ahead
4.5.3 Lack of special heuristics
4.5.4 Learning of alternate strategies
5. Evaluation
5.1 Introduction
5.2 Test cases
5.2.1 Test casel: PROTEAN LAC
5.2.2 Test case 2: SIGHTPLAN AM1-SIMPLE
5.2.3 Test case 3: SIGHTPLAN AMI1-AGGR
6. Conclusions

Appendix 1 ACCORD action templates
Appendix 2 ACCORD action hierarchy
Appendix 3 WATCH generalization heuristics

1. Introduction

1.1 Overview

An expert's strategies are one of the most difficult to elicit types of
information in an expert system knowledge base. Strategies can often be
demonstrated for individual cases, yet they may not be as easily articulated as
general rules. Therefore, a tool that could automatically learn the intended
strategy by "watching over the expert's shoulder" would be a great aid in building
expert systems. The WATCH system derives its name from the fact that it uses
this style of apprenticeship learning.

WATCH learns expert strategies for application problems solved within
the BB1 blackboard framework. It incrementally examines sequences of problem:
solving actions, to induce the strategy used by the expert to select both the actions
and their order. The strategies learned are saved in the format of BB1 control
knowledge, so that they can be used to solve other problems.

The original WATCH program was limited by the assumption that the
entire sequence of problem-solving actions could be induced into a single
hierarchical strategy tree. Any interruptions in this single strategy, whether a
simple opportunistic sequence or a second parallel strategy, were simply treated
as noise that confused the system. The NEWWATCH extension has been
implemented to recognize various kinds of interruptions, thereby greatly
increasing the range of strategies that the WATCH system can learn.

1.2 Outline

This paper explains the NEWWATCH extension to the WATCH
inductive learning program. The first part introduces the BB1 blackboard expert
system framework and the ACCORD language, to show the context in which
WATCH can learn. Then an explanation of the WATCH program clarifies the
goals of the learning project and the power of the original system. Finally a
discussion of NEWWATCH shows the usefulness of a system to automatically
learn interrupted hierarchical strategies.

2. Background

2.1 The BB1 blackboard environment

BB1 is a framework for building expert systems based on the "blackboard"
model. A blackboard allows a number of individuals to collectively solve a
problem by each writing contributions in their area of expertise. In BB1, multiple
independent knowledge sources cooperate by recording information on a global
blackboard data structure. Each knowledge source (KS) is similar to an expert in a
particular field. BB1's scheduler acts as the moderator to select one of the
available KSes to work at each step of the problem-solving.

All information in the blackboard is globally accessible to the knowledge
sources as they are performed. The variety of information from the application
domain, the specific problem, and the language framework can all be easil}:’
examined by the KSes due to a consistent representation within the entire
blackboard. The blackboard contains only objects, all of which may have both
attributes with values and links to other objects. Domain objects and KSes are
just two examples of information stored as objects within the blackboard.

Control of the problem-solving process is flexible in the BBI
environment. Therefore, building an application involves writing "control"
type knowledge sources in addition to KSes relevant to the application
"domain". Domain knowledge sources are executed to solve some part of the
current problem, while control KSes create strategic decisions to help select later
actions. The lack of a single fixed control strategy allows a large variety of
problem-solving methods to be used within BB1. The cost of this flexibility is the
need to write twice the knowledge sources, since the expert must explicitly
specify both domain and control information.

BB1 dynamically selects a single knowledge source to execute at each cycle
of its operation, based on the current strategy and state of the system. KSes may
be executed if they have been triggered by some prior event, creating Knowledge
Source Activation Records (KSARs), and also had their preconditions satisfied.
The BB1 Agenda keeps track of the four kinds of KSARs: triggered by some
event, executable since their preconditions have been satisfied, executed at an

earlier BB1 cycle, and obviated by satisfying conditions that demonstrate that the
KSAR is no longer relevant.

Selection of a sirigle executable KSAR at each BB1 cycle is done by rating
the alternatives against the currently active strategic decisions. These decisions,
in the Control Plan part of the blackboard, are created by the control knowledge
sources that have already been executed. Since the control knowledge sources
are selected dynamically and each posts its individual preferences, the active
Control Plan decisions may reflect a number of interacting strategies created by
different control KSes. An expert may write a variety of strategy types in the
different control knowledge sources including hierarchical strategies, goal-
directed strategies, and simple opportunistic decisions.

BB1 provides generic knowledge sources to aid in creating certain typical
types of strategies. For example, in hierarchical strategies the expert defines a set
of knowledge sources and their relationships within a tree-like hierarchy. BB1's
generic KSes achieve the top-level abstract super-strategy by unfolding the tree.
Each KS is accomplished by performing the sequential parts of its plan, its
children, one at a time. The current KS remains an active decision on the
Control Plan until its goals are met by the state of the BB1 system. The leaves of
this hierarchical tree are the most specific strategic decisions, and whichever is
active controls the problem-solving process by selecting which actions to perform
next.

2.2 The ACCORD language

The BB1 framework includes languages that ease the task of writing
certain types of applications. One such language is ACCORD, which is used to
express arrangement-assembly type problems. ACCORD has been applied to such
sample problem domains as PROTEAN, for the problem of protein structure
identification, and SIGHTPLAN, for construction site layout.

ACCORD and other BB1 languages provide templates for expressing the
actions of knowledge sources. This aids in the creation of KSes since the expert
does not need to give all the details of their operation; instantiating an action
based on a standard language verb specifies what its behavior will be. The

language also allows easier reasoning about actions, by allowing control
knowledge sources to express strategic decisions in the same standard form.

The ACCORD.language can be used by applications that solve
arrangeinent problems. It defines standard actions that are based on the assembly
method, the iterative application of constraints to find possible locations for the
objects being arranged. ACCORD contains general background concepts that can
be linked to specific objects from the problem domain. For example, a "partial
arrangement” is a subset of the objects with their currently hypothesized
locations. An "anchor" is a fixed object that provides a partial arrangement with
a coordinate system.

ACCORD also provides templates for a set of standard action verbs. A
problem-solving session will normally begin with a Create action, which will
instantiate a partial-arrangement for the arrangement task. The template for the
Include action allows the expert to specify an object and a partial arrangement
into which it is placed. |

Include object in partial-arrangement.
When an individual domain object is placed into a partial-arrangement, a special
instance of the object is created. The instance is a dynamic entity used during the
problem-solving, while the object it is based on is statically defined within the
application's knowledge base. For example, if the SIGHTPLAN object power-
plant is included in partial-arrangement-1, the instance power-plant-1 is used to
represent it while the arrangement is being done.

ACCORD also defines the action Position, which locates an instantiated
object within the arrangement by applying constraints between it and other
objects. A list of templates for other frequently used ACCORD actions is
contained in Appendix 1. The action verbs in a BB1 language such as ACCORD
are related by a class hierarchy (Appendix 2). The Position action has a number
of children which express more specific types of positioning, depending on the
relationships of the constrained objects to the fixed anchor of our arrangement.
Two frequently used Position verbs are the Anchor and Yoke actions. Anchor
applies constraints between an object and the anchor; its template provides the
standard syntax in which these parameters can be specified.

Anchor object to anchor in partial-arrangement
with constraints.

An expert can instantiate an action template with appropriate objects from
the problem domain, such as SIGHTPLAN, to easily write an action sentence.

Anchor fabrication-yard to power-plant in
- partial-arrangement-1 with constraint-closer-than-1mile.

The template may also be instantiated more generally, to create a strategic
decision. This decision would express the type of action that would be preferred
at a specific point in the problem-solving process. Whichever executable action
matched the decision most closely would be the best alternative. For example,
the strategy might wish to anchor any temporary object that was constrained to
be close to the plant.

Anchor temporary-object to power-plant in

partial-arrangement with closer-than-constraint.
The sample instantiated action

Anchor fabrication-yard to power-plant in

partial-arrangement-1 with constraint-closer-than-lmile
would most likely be performed before other executable actions, because it
matches the strategic decision perfectly. It is simply a more specific instantiation
of this decision. A Yoke action, or an Anchor that specified different objects,
would be inferior matches. An Include action would rate still lower, since its
ACCORD verb is not a type of Position but rather is farther removed within the
class hierarchy.

The task of matching pairs of actions requires a method of comparing
actions that have different verbs and templates. It is here that languages such as
ACCORD become particularly useful. Various ACCORD action verbs have
different parameters in different orders, so background knowledge of how to
appropriately compare these actions is needed. Each language framework within
BB1 has an associated partial match table which defines the correspondence
between parameters of different types of actions. For example, the ACCORD
Anchor and Yoke actions have templates such as
Anchor object to anchor in partial-arrangement
with constraints

and
Yoke object and object in partial-arrangement
with constraints.

When comparing an Anchor action with a Yoke, the partial match table indicates
that the object of the Anchor is matched against both objects of the Yoke action,
the two partial arrangements are compared, and the two constraints are

examined for similarity.

The partial match table and class hierarchy of standard verbs also define a
method for generalizing two dissimilar actions together. An Anchor and a Yoke
can be abstracted into a more general Position action, because both verbs are
specifications of positioning within the action verb hierarchy. | '

Position generalized-object in generalized-partial-arrangement

with generalized-constraint-set. _
The generalized terms are abstracted from the more specific parameters
mentioned in the Anchor and Yoke sentences. The partial match table tells
which parameters of the two actions to combine, and the appropriate class
hierarchies provide a place to search for the maximally specific generalization.

3. WATCH

3.1 Introduction

WATCH learns control strategies by "watching over the shoulder” of an
expert. The expert has some problem-solving strategy in mind, which he may
not be able to articulate as BB1 control knowledge. Instead, he takes the place of
the control strategy for some problem, by dynamically selecting a sequence of
actions to perform. WATCH then tries to discover the intended strategy by
incrementally examining the action sequence.

3.2 Assumptions and bias

WATCH assumes that the expert is behaving consistently according ta
some strategy as the actions are chosen one at a time. If the expert is acting
randomly or changing the strategy as he goes, WATCH's attempt to learn the
strategy will yield only spurious results.

WATCH was originally written with the assumption that a single
hierarchical strategy was used by the expert to select the entire action sequence.
Therefore, WATCH attempts to explain all the actions with only one hierarchy.
This limitation on the kinds of strategies that can be learned motivated the
NEWWATCH project. The NEWWATCH extension relaxes this limiting
assumption by allowing the hierarchy to be interrupted, thereby increasing the
range of strategies that can be learned.

The most important requirement for WATCH's learning is that the
actions in the problem-solving sequence be expressed in ACCORD or a similar
language. This language defines a method for generalizing among actions when
doing inductive learning. ACCORD's action templates and partial match table
provide a means for comparing dissimilar actions, while also defining a limited
space in which to search for the maximally specific generalization. Without the
bias on the search provided by ACCORD, WATCH could not induce abstractions
of sub-sequences; there would be no way' of making intelligent guesses about
which features the actions had in common. Although WATCH does not have

potentially useful information about ACCORD, such as knowledge about the
results or dependencies of the standard actions, the lack of a deeper
understanding does not seriously limit the ability to learn. The bias provided by
the ACCORD language is enough to allow WATCH to do useful inductive
generalization.

WATCH gains power to learn strategies for BB1 application systems from
the fact that it is also written as a BB1 application. WATCH is able to take
advantage of the rich knowledge available in the BB1 environment. It can
examine information in the BB1 agenda, such as the sequence of actions
performed to solve the application problem. It also has access to general
information on the blackboards, such as the objects and class hierarchies within
the application domain, the problem, and the ACCORD language. This
background knowledge, combined with the abilities of ACCORD, allows
WATCH to inductively generalize domain-specific actions. :

WATCH uses only the incomplete information of the action sequence and
background knowledge, because it cannot know the complete state of the BBI
system at every instant of the problem-solving. Although WATCH learns by
observing the action sequence incrementally; over the shoulder of the working
expert, it cannot examine the state at intermediate points in the non-
interruptible BB1 cycle. It would also be impractical to store the entire system
state for all previous actions in the sequence, to have this information available
when doing induction on later actions. However, the BB1 agenda contains a
trace of the problem-solving, such as which actions were executed, and this
limited knowledge is a good substitute for the impractically large amount of state
information.

3.3 The WATCH program

WATCH divides the problem of learning a strategy into six phases. Much
of the work of learning falls into the first task, inductively generalizing the
action sequence. It is here that WATCH needs the most heuristic guidance.
Once the generalization has been done, strategies can be collected to find the best
few. Finally, WATCH concludes by providing the results of its learning as BB1
strategies.

3.3.1

Generalize the action sequence.
Incrementally examine the sequence of actions, and build a tree of

possible generalizations of various sub-sequences.

Choose possible strategies.

Identify all possible strategies by finding the sets of sub-sequence
generalizations in the tree that explain the whole action sequence.
Refine the strategies.

Simplify strategies by removing unnecessary levels of abstraction.
Choose the best strategies.

Rank the possible strategies using a set of heuristic preferences.
Hypothesize modifiers.

Add appropriate modifiers that explain the order of actions within
each sub-sequence of the strategy.

Write out control strategies.

Output the strategies in two formats useable by BB1, as a set of
control knowledge sources and as a skeletal plan.

Inductive generalization

WATCH's most difficult task is inductively generalizing the action
sequence to find a reasonable hierarchical explanation. The sequence can be
broken down into an exponential number of sub-sequences. WATCH could
conceivably try to learn any combination from treating the whole sequence as
one very general strategic decision to treating each individual action as a specific
strategic focus. The ideal strategy is the one which the expert had in mind when
choosing the actions, but there may be a number of reasonable strategies that the

expert might have intended.

The combinatorial problem of generalizing over the action sequence can
be shown even in a simple example of a three-action sequence. The expert may
have specified a sequence of actions to perform that included the following three

actions in the order specified.

(1) Anchor fabrication-yard to power-plant
(2) Anchor construction-offices to power-plant
(3) Yoke construction-offices and fabrication-yard

10

The expert may not care about the order of these positioning actions, and so may
have merely intended a very general control strategy which could have chosen

these three actions in any order.

STRATEGY 1:
POSITION any-object
ANCHOR ANCHOR YOKE
fabrication-yard to construction-offices to construction-offices
power-plant power-plant and fabrication-yard

However, there may be some important reason for the order. If it were
important that Anchor actions precede Yokes, the strategy would have to be
structured to explicitly cause this ordering.

STRATEGY 2:
ANCHOR any-object YOKE any-anchored-object
to power-plant : and any-anchored-object
ANCHOR ANCHOR YOKE
fabrication-yard to construction-offices to construction-offices
power-plant power-plant and fabrication-yard

The expert could also have intended an alternative strategy in which the
ordering of actions was based on the objects involved, rather than the action
verbs. For example, this particular sequence may have been selected because a
fabrication yard requires more space than offices, and so should be positioned
earlier. In this case, the hierarchy must specify positioning one type of object
first, and then acting on the other.

11

STRATEGY 3:
POSITION fabrication-yard POSITION construction-offices

v /\

ANCHOR fabrication-yard ANCHOR YOKE
construction-offices construction-offices

ANCHOR M ANCHOR YOKE
fabrication-yard to construction-offices to construction-offices
power-plant power-plant and fabrication-yard

3.3.2 Heuristic search

Even with a simple sequence of three actions, there are a number of
different strategies that can be inductively generalized. Therefore, WATCH must
use heuristic guidance to intelligently search through the possible strategies.

Strategy 2 may appear to be the one that the expert most likely intended,
based on a preference that actions should be grouped by their ACCORD action
verbs. Such a heuristic would be logical, since each language verb has a unique
operation and therefore is likely to be contained in a distinct phase of the
problem-solving. However, the third strategy also could have been what the
expert had in mind when selecting the three actions, since domain-specific
knowledge and heuristics make that strategy seem natural. Both strategies are
reasonable, since different experts use their own personal problem-solving
methods. For this reason, the heuristics must merely be flexible guides for the
generalization process, rather than fixed rules.

WATCH uses five heuristics to guide the generalization process. Some,
like the "avoid generalizing different actions together" heuristic that would
prefer Strategy 2 above, are based on knowledge of the ACCORD language and its
use. Others, such as "prefer longer sequences of actions" and "prefer generalizing
over fewer levels of abstraction” are general to induction over any sequence. It is
interesting to note that these latter two are actually contradictory, and so they

12

compete in selecting which generalization to perform. If more actions are added
to a sequence, generalization over more levels of abstraction will usually be
necessary to find one common representation.

Because WATCH is written as a BB1 application, all control knowledge,
including the five generalization heuristics, is flexible and can be changed to
reflect different learning preferences. The complete list of WATCH's current
learning heuristics is contained in Appendix 3.

3.3.3 Incremental learning

WATCH incrementally examines the sequence of problem-solving actions
to build a plausible tree of generalizations. As each new action is seen, BB1 stores
it on the LEARN blackboard, at the lowest level of the generalization hierarchy-
KSARs are triggered for all of the possible generalizations of the new action with
the existing action sequence and generalization tree. BB1 rates these possibilities
based on WATCH's set of five generalization heuristics; only the heuristically
best few generalizations are performed, to limit the combinatorial explosion.

WATCH performs two different types of generalization. The knowledge
source GENERALIZE-STATEMENT-SEQUENCE can generalize the new action
with some existing object in the generalization tree, and it can abstract
generalizations in the tree to higher levels of the hierarchy. The WATCH KS
called POSTULATE-STATEMENT-SEQUENCE creates new generalizations in
the tree by postulating that a sub-sequence that includes the new action is a
discreet strategic decision.

Generalizing a new action with either an existing generalization tree
object or other actions in the sequence involves the task of comparing multiple
actions to find similarities. It is here that ACCORD provides WATCH with its
bias for learning. The standard action templates and partial match tables allow
WATCH to compare dissimilar actions. This matching process can then use the
domain-specific class hierarchies to find the maximally specific generalization of
two or more actions.

13

3.3.4 Modifiers

Once WATCH has generalized a sequence of actions together, it must give
an explanation for the ordering within the sequence. WATCH's fifth learning

phase does this, by hypothesizing the appropriate modifiers.

Modifiers are domain or language specific concepts that are used to rank
objects. For example, the SIGHTPLAN application might define a modifier
called Large which would rate a fabrication-yard higher than construction-offices.
An expert could then express the strategy that larger objects should be positioned
on a construction site first, with a control strategy decision explicitly mentioning
this modifier.

Position Large object in partial-arrangement with constraints.

If the BB1 scheduler were trying to choose between a Position action mentioning
a fabrication-yard and an equivalent Position for the construction-offices, this
strategy would cause it to select the former first.

WATCH hypothesizes modifiers for a sequence by adding to the strategic
decision all of the modifiers that individually would explain the ordering of
actions. In other words, any modifier that would rank the actions in
monotonically decreasing order is assumed to be present. While this method
risks much spurious learning, it will certainly discover any modifiers that could
have been specified by the expert. The resulting strategy learned by WATCH may
cause actions to conform to some rational ordering scheme, when a more
random sequence was in fact intended; however, such over-specification does
not limit the usefulness of the learned strategy.

14

4. NEWWATCH

4.1 Introduction

The original WATCH program was designed to learn only purely
hierarchical strategies. It assumed that the entire action sequence could be
generalized into a single hierarchical explanation. However, the flexibility of
control reasoning in BB1 allows actions to be chosen by a number of other
strategy types as well as multiple concurrent strategies. If an expert selects actions
with some more complex strategy in mind than a single hierarchy, WATCH's
limiting assumption hinders its ability to correctly learn the intended strategy.

The NEWWATCH extension increases the range of strategies that
WATCH can learn. NEWWATCH still assumes that the expert is behaving
primarily according to a hierarchical strategy, yet the possibility of other strategies
working concurrently is allowed. NEWWATCH's task is to recognize actions in
the sequence that might not have been caused by the main hierarchy. Since
these interruptions are no longer treated as noise when doing the inductive
generalization, NEWWATCH can do a bettér job of learning the hierarchical
strategy. In addition, the secondary strategies that the expert used to select actions
in the interruptions can also be discovered at the same time.

4.2 Interruptions

NEWWATCH attempts to discover interruptions in the action sequence.
An interruption is defined as any sub-sequence of actions within the observed
action sequence that is not explained by the primary hierarchical strategy.
Interruptions may reflect different types of strategies intended by the expert. The
action sequence may have been selected by multiple parallel strategies working
concurrently. In this case, NEWWATCH could recognize one as the main
hierarchical strategy and treat the others as interruptions to it. The expert may
also have intended one primary hierarchy, with a special set of opportunistic
actions to perform in certain situations. Regardless of the strategy type,
recognizing the appropriate actions as interruptions eases the task of learning the
main hierarchical strategy.

15

NEWWATCH modifies the original WATCH program so that it searches
for possible interruptions in the action sequence while doing the inductive
generalization. Since interruptions are defined as anomalies in the primary
hierarchical strategy, the hypothesized interruptions must be consistent with the
hierarchical strategies induced at any point of the incremental learning. For this
reason, a sub-sequence is not hypothesized as an interruption until the inductive
generalization has been completed for its predecessors in the action sequence.
The possible strategies generalized from the predecessors are the basis. for
hypothesizing that the interruption is not explained by the current strategy.

The number of possible interruptions in an action sequence is
exponential, since any sub-sequence of one or more actions might be an
interruption. Every action could be hypothesized to be an interruption by itself,
yet this would leave no hierarchical strategy to learn. One the other hand, if
NEWWATCH does not notice that the expert chose certain actions using a
secondary strategy, the hierarchy learned would be adversely affected by the
"noise" actions. Just as WATCH's process of inductive generalization needs
heuristic guidance to control its search for a plausible strategy, so does
NEWWATCH's task. NEWWATCH must heuristically guess when an
interruption has occurred, to find a reasonable strategy intended by the expert.

4.3 A sample interrupted action sequence

Any observed sequence of actions can be explained in two different ways.
All of the actions may have been chosen by a single decision in the hierarchical
strategy; this would allow the uninterrupted sequence to be generalized into a
single explanation. Alternatively, some sub-sequence of the actions may have
been caused by a secondary strategy. In this case, the primary strategy can only be
properly learned if this interruption is omitted from the observed sequence.

For example, consider a simple sequence of four actions.
(1) Anchor fabrication-yard to power-plant
(2) Anchor parking-lot to power-plant
(3) Yoke parking-lot and fabrication-yard
(4) Anchor construction-offices to power-plant

16

This sequence could be generalized into a single abstraction, without
hypothesizing the existence of any interruptions. The non-interrupted strategy
specifying
Position Large object

would choose the actions in the observed order, assuming that the modifier
Large ranked the objects fabrication-yard, parking-lot, and construction-offices in
decreasing order. No distinction would be made between the Anchor and Yoke
type actions, since they are both specifications of Position.

There is also an alternate strategy that could have been intended by the
expert in selecting this action sequence. The Yoke ser °nce may be an anomaly
in an otnerwise coherent set of actions. Omitting this interruption would allow
the remaining three Anchor actions to be generalized into a more specific
decision specifying

Anchor Large object to power-plant.
In other words, the observed sequence of four actions would be explained by two
strategies working concurrently. The primary decision would select Anchor
operations, while some alternate strategy would cause Yoke interruption to be
suddenly performed.

44 The NEWWATCH program

NEWWATCH is written as a modification to the WATCH application
within BB1. It is intended to have all the functionality of the original WATCH
program, with the additional ability to recognize and classify interruptions in the
action sequence.

NEWWATCH discovers interruptions using a three step process. It first
uses a set of fixed rules to hypothesize when an action or sequence of actions
might be an interruption. Secondly it integrates these hypotheses into
WATCH's normal inductive generalization, by rating them against the regular
uninterrupted sequences. Finally it classifies the type of strategy that might have
caused the interruption to occur. In other words, NEWWATCH's first phase
generates the set of possible interruptions, its second phase uses heuristics to
guide the search through the feasible interrupted strategies, and the final phase
classifies the strategies that might have caused the reasonable interruptions.

17
4.4.1 Hypothesizing an interruption

A sequence of one or more actions is hypothesized to be an interruption if
it satisfies a set of three necessary conditions.

1. There is some current strategy generalized from the sequence's
predecessors which does not explain the actions in the sequence.

2. This current strategy does explain the sequence’s immediate
Successors.

3. The first successor action was already executable when the
interruption sequence occurred.

The criteria are based on the definition of an interruption as a sub-
sequence of actions within the observed action sequence that is not explained by
the primary hierarchical strategy. Since the hierarchical strategy is the goal of
WATCH's learning rather than a known fact, the hypothesis of an interruption
must be based on the strategies learned by the inductive generalization.'
NEWWATCH must wait for the incremental learning to be completed for the
sequence's immediate predecessors, before it uses these results to hypothesize the
interruption. NEWWATCH can then collect all the generalizations of the
predecessor actions found by the inductive geheralization up to this point. These
generalizations are effectively just the last phases of all the possible strategies at
this stage of the incremental learning.

Any generalization of the predecessor actions which does not explain the
sequence might be an interrupted strategy, since it satisfies the first condition for
interruptions. However, this strategic decision is only interrupted if it is still
active after the interruption has occurred. The second and third criteria together
guarantee that some later actions could have been selected by this strategy, had
the interruption not been performed instead. The second condition insures that
the successor action could have been specified by the interrupted strategy, since
the strategy is one possible explanation of it. In addition, the third criterion
checks that the first successor was executable when the interruption occurred,
and so was a valid alternative that could have been executed had the
interruption not interfered.

- The interruption sequence is the set of actions that falls between
predecessor and successors which are explained by a current strategy.

18

NEWWATCH begins the process of finding such a sequence by finding the first
action not explained by a possibly interrupted strategy. The interruption
sequence is completed by the longest continuous sequence of actions
immediately following the first that are also not explained by the strategy. The
second criteria insures that there is some successor action that is explained by the
strategic decision; this action provides the end boundary for the interruption
sequence. If there were no such successor action, the second criteria would fail.
This would be logical, since there would be no way to discriminate whether these
actions are an interruption or simply a new phase of the hierarchical strategy.

The three criteria are necessary conditions for the existence of an
interruption. However, they limit NEWWATCH to discover only those
interruptions which break up a distinct phase of the strategy. An interruption
can only be discovered if it comes between predecessor and successor actions that
were both caused by a single strategic decision. An interruption that occurs-
between two different strategic decisions can be recognized only if it interrupts a
single abstract parent of these decisions in the hierarchical strategy tree.

4.4.2 Integrating the interruption

Every sequence of actions that satisfies NEWWATCH's criteria for
interruptions is hypothesized to be a possible interruption. Most were not
chosen by the expert using some alternative strategy to the primary hierarchy,
but rather are just spurious. Therefore, NEWWATCH must intelligently choose
among the hypotheses. Heuristic rules are used to search through the set of
possible interruptions, just as WATCH prunes its space of possible
generalizations of sub-sequences. These rules are applied by NEWWATCH's
second phase of finding an interruption, the task of integrating the interruption
into the inductive generalization process.

NEWWATCHSs first phase creates a set of special action sequences that can
be integrated into the generalization process. After finding a strategy that might
have been interrupted by a sequence of actions, NEWWATCH builds a sequence
that omits the interruption. This sequence is simply the longest contiguous set
of statements preceding and following the interruption that would be explained
by the interrupted strategy. The interrupted strategy and interruption-omitted

19

sequence are found by NEWWATCH's first phase after the incremental learning
has been done for the actions preceding the interruption. However, the
hypothesis is not integrated by NEWWATCH's second phase until the

incremental learning has progressed further.

Once the incremental learning has progressed to the last action in the
sequence that omitted the interruption, NEWWATCH tries to integrate the
hypothesis into WATCH's normal generalization. This is possible because the
special interruption-omitted sequence is similar to a normal sequence postulated
by WATCH,; it simply has a gap where the actions belonging to the interruption
have been removed. Therefore, the interruption-omitted sequence is just treated
as an extra alternative generalization of the new action.

NEWWATCH does not have its own special set of heuristics for rating
sequences that omit possible interruptions. Instead it uses existing preferences in
WATCH that rate generalizations of sub-sequences. For example, a hypothesized
interruption-omitted sequence and a normal uninterrupted sequence both are
ranked by the learning heuristic to "avoid generalizing different actions
together.” Either could be found preferable, depending on the specific actions in
the sequence.

In the sample interrupted sequence, a single Yoke action might have been
an interruption to a strategy specifying Anchor operations. A special sequence
that hypothesized that the Yoke was an interruption and omitted it would be
rated fairly highly by the heuristic to "avoid generalizing different actions
together”; all the remaining actions in the interruption-omitted sequence would
have the same Anchor verb. In contrast, the normal WATCH generalization
would treat all the actions as a single uninterrupted sequence of positioning
actions, and would not appear as favorable since Anchor and Yoke would have
to be abstracted together to the Position verb. Therefore, if this were the only
heuristic active at the time, NEWWATCH would determine that an
interruption had taken place, and would use the interruption-omitted sequence
in the inductive generalization process.

The consistency of having only a single set of learning heuristics has
obvious advantages. NEWWATCH can directly compare uninterrupted
sequences with interruption-omitted sequences, and so it can integrate only

20

those hypothesized interruptions that are judged better than the normal
alternatives. In addition, since NEWWATCH uses a single set of learning
heuristics for sequences with or without interruptions, its preferences are easier
to examine and modify. However, NEWWATCH cannot take advantage of any
extra knowledge about interruptions, since it does not have special preferences

for this unique case.

4.4.3 Categorizing the interruption

NEWWATCH tries to recognize interruptions to improve its ability to
learn the primary hierarchical strategy intended by the expert. At the same time,
it can learn about the alternate strategies that selected the interrupting actions.
Since these secondary strategies are part of the overall plan that the expert had in
mind, NEWWATCH is learning the expert's intentions more closely if it also
identifies these concurrent strategies.

An expert may use two different combinations of strategies to select an
interrupted action sequence. In the first case, the observed action sequence may
have been chosen by two or more parallel strategies, active concurrently during
the problem-solving process. In other words, the action sequence contains a mix
of actions selected by different strategies. NEWWATCH must learn by
considering one strategy the primary hierarchy, and treating actions selected by
other strategies as interruptions, regardless of their strategy type.

The interrupted sequence may also have been chosen in a second fashion.
The expert may have been primarily selecting actions based on a single
hierarchical strategy, but occasionally choosing opportunistic actions to perform.
In other words, the control strategy contains an opportunistic knowledge source,
in addition to the hierarchical plan. Opportunistic KSes operate by causing a
special control decision to become active when the BB1 system state satisfies
certain requirements. This decision on the Control Plan dramatically improves
the ratings for certain preferred actions, perhaps overriding other active
strategies. The actions usually have preconditions similar to those in the control
KS, so that they become executable at the same time. As a result, opportunistic
actions are performed quite suddenly, usually just as they become executable
within the BBI.

21

NEWWATCH classifies its hypothesized interruptions into two categories:
parallel and opportunistic. The interruption sequences are differentiated by
examining when their actions became executable, and when they were selected to
be executed by BBI. 'Opportunistic control decisions usually override other
strategies to immediately select special actions, so interruption sequences that are
performed immediately after becoming executable are likely opportunistic. On
the other hand, if the actions in the interruption sequence were executable for a
while but were only performed after other actions, then they were probably
chosen by a parallel strategy. This concurrent strategy either was not active or did
not rate its preferences high enough at earlier points in the problem-solving to
perform these executable actions sooner.

4.5 Limitations

The NEWWATCH extension to WATCH has a number of limitations.
Most importantly, it still makes strong assumptions about the types of strategies
that might appear. While is not limited like WATCH to only a single
hierarchical explanation, NEWWATCH cannot recognize such strategies as goal-
directed reasoning. However, the range of strategies that can be discovered is
fairly broad.

NEWWATCH often has difficulty finding the correct interruption, since
the range of possibilities is quite large. For an interruption of a strategic decision
to be discovered by NEWWATCH, WATCH must first inductively generalize
some similar strategy. If the needed generalization is not one the the possibilities
chosen heuristically by WATCH, the interruption will not be found. In the case
of multiple interruptions caused by a parallel strategy, NEWWATCH may have
trouble selecting the main hierarchy to exclude the noise actions.

4.5.1 Dependence on inductive generalization

The hypothesis of interruptions is based on possible hierarchical strategies
found during the incremental learning process. Therefore, if WATCH does not
find a certain strategic decision as one of the possible inductive generalizations,
NEWWATCH cannot notice an interruption to this strategy. Such a problem

22 .

usually occurs because the generalizations are at the wrong level of abstraction to
be helpful in discovering interruptions.

NEWWATCH will only discover an interruption when WATCH learns
the needed generalizations of the preceding actions. For example, the following
sequence may represent three Anchor actions chosen by a single strategic
decision, with an interrupting Yoke action.

(1) Anchor fabrication-yard-1 to power-plant-1 in pal

(2) Anchor parking-lot-1 to power-plant-1 in pal

(3) Yoke parking-lot-1 and fabrication-yard-1 in pal

(4) Anchor construction-offices-1 to power-plant-1 in pal. |
The interruption will be correctly hypothesized if the first two actions are
generalized to the intended interrupted strategy,

Anchor object to power-plant-1 in pal. .
This strategy explains the succeeding Anchor action but not the Yoke
interruption. Therefore, if it is one of the generalizations found by WATCH, the
interruption can be found.

WATCH might not learn the necessary generalization of the first two
actions. For example, the two Anchors may each be abstracted to a separate
strategic decision. In this case, the generalization of the single predecessor is

Anchor parking-lot-1 to power-plant-1 in pal.
This decision is too specific to explain the interruption's successor action, so
there is no continuing strategy that the Yoke might have interrupteu. On the
other hand, WATCH may only find generalizations that are not specific enough
for the interruption to be properly discovered. For example, the first two Anchor
actions may have been combined other preceding actions to induce a more
general abstraction such as

Position object in pal.
Since Yoke is a Position type action, the interruption is explained by this strategy,
and therefore cannot be considered an anomaly.

WATCH always does the maximally specific abstraction, to avoid
throwing away potentially useful information by over-generalizing. However,
for the inductive generalizations to be useful in discovering interruptions,
abstracting out of specific individual and instance objects is usually necessary.
The expert could not have intended a strategy that mentions parking-lot-1, since

23

control decisions are normally written in terms of static objects, rather than
dynamic problem-specific instances. In addition, while strategies may
intentionally mention specific individual objects rather than classes of objects,
this is not common since it would limit their applicability. Therefore,
NEWWATCH assumes that it can abstract the strategy generalizations to object
classes. This increases its chance of finding interruptions, since the
generalizations are more likely to explain only the appropriate actions.

4.5.2 Use of look-ahead

WATCH was designed as an apprenticeship style learner that could induce
- a strategy as the expert solved a problem. Therefore, it performs its main task,
the inductive generalization, in an incremental fashion one action at a time.
NEWWATCH breaks with this model by looking ahead in the action sequence
when hypothesizing interruptions.

NEWWATCH's look-ahead is possible because the WATCH system is
currently used in batch mode. First the application problem is solved by the
expert, and the entire action sequence is storéd. Then WATCH is run to learn a
strategy based on the trace of the actions. The batch style operation is done
simply for practical reasons, such as speed of operation. Therefore, WATCH is
written so that it can be easily modified to be an true incremental learner.

NEWWATCH could also be modified to conform to the incremental
model. Instead of hypothesizing an interruption when it first appears by using
look-ahead, it could wait until later in the action sequence to make the
hypothesis retrospectively. NEWWATCH is not currently implemented in this
fashion, because its three step operation is more intuitive. Interruptions are
hypothesized when they first appear, but are not integrated and classified until
the appropriate later time when more of action sequence has been generalized.

4.5.3 Lack of special heuristics

NEWWATCH does not contain a set of heuristic preferences to guide the
discovery of interruptions. Instead it merely uses the standard WATCH
heuristics to integrate interruptions into the inductive generalization process.

24

While this single set of learning preferences is conceptually clean and easy to
modify, it prevents NEWWATCH from using any specialized knowledge about
interruptions.

NEWWATCH hypothesizes interruptions using a set of fixed criteria.
However, this could be augmented by a set of heuristics to rate the quality of the
interruption sequence. Some of these could be similar to those used in WATCH,
although preferences such as "prefer longer sequences of actions” do not
necessarily apply here. New heuristics based on additional information could
also be added. NEWWATCH could take into account when the interruption's
actions became executable, how many interruptions were hypothesized for the
same actions, and how different the interruptions were from the strategies
during which they occurred. The hypotheses would then have different ratings,
which would determine whether to integrate them into the generalization.

4.5.4 Learning of alternate strategies

NEWWATCH currently categories all interruptions into one of two types,
parallel and opportunistic. However, it does not attempt to learn more about
these alternate strategies. Therefore, even if the primary hierarchical strategy
closely resembles that intended by the expert, the usefulness of the strategies
learned by NEWWATCH is limited. Without a better description of the full set
of concurrent strategies, the performance of the expert cannot be attained.

NEWWATCH could perform a number of tasks to learn more about
secondary strategies. Each interruption could be individually given as input to
WATCH, to discover whether the actions comprise a secondary hierarchical
strategy. If no reasonable explanation was found, the interruptions would have
to be assumed to be chosen randomly or by some new strategy type, such as goal-
directed reasoning.

Additional learning could be based on the classified type of the
interruption. NEWWATCH's recognition of an opportunistic strategy would be
improved if it knew what state of the BB1 system caused it to occur. While this
could not be completely inferred without knowing the BB1 system state at the
moment the strategy began, deeper knowledge about the language actions might

25

provide some possibilities. For example, the Restrict action in ACCORD is
usually chosen by an opportunistic decision because it is used to limit the
possible locations of objects when the alternatives are too numerous. Knowing
this background about the action would indicate that the strategy is triggered by
the part of the system state involving the hypothesized locations of an object.

If a single action sequence has multiple interruptions classified as parallel
strategies, NEWWATCH could attempt to combine their actions to learn the
secondary strategies. Multiple interruptions may occur during a single strategy
generalization, or may have similar actions. By assuming that a single parallel
strategy explained all of these anomalous actions, they could be treated as a
continuous sequence to allow a possible hierarchical explanation to be learned by
WATCH.

26

5. Evaluation

5.1 Introduction

The NEWWATCH extension was motivated by the Lac-repressor
headpiece problem in PROTEAN. The action sequence was selected by a
straightforward hierarchical strategy, except for a single action chosen
opportunistically. This one action seriously limited WATCH's ability to correctly
learn the intended strategy. NEWWATCH was designed to recognize such
interruptions, to improve the range of strategies that could be learned.

Testing of the NEWWATCH program has been done in a second
application domain, the SIGHTPLAN problem. To insure that NEWWATCH
was learning real strategies rather than invented ones, it has been tested on
action sequences chosen by existing control strategies for SIGHTPLAN. The gold-
standard for WATCH's output is to rediscover the actual strategy. However, this
is merely necessary for the validation of NEWWATCH. The system's intended
use is as a knowledge acquisition tool that will automatically learn unknown
strategies by observing an expert at work. ‘

NEWWATCH has also been tested against human experts, to decide what
learning was ideally possible. The subjects were all individuals quite familiar
with using the BB1 architecture. For each problem the experts were provided
with the action sequence, a type hierarchy for the language and application, a list
of ACCORD action templates, and a description of the available modifiers and
their ratings. The goal was to find an explanation for the actions and their
ordering, although no prior prejudice about types of strategies was defined.

5.2 Test cases

Three sample test cases are presented here. The first is the original
problem from PROTEAN, while the latter two are from the SIGHTPLAN,
domain. The interesting features of each are described in a short introduction.
Then the full observed action sequence is listed, followed by the actual control
strategy that selected those actions.

27

The results of the strategy learning by WATCH and NEWWATCH are
shown for each test problem, to demonstrate the advantage of recognizing
interruptions. First, the strategies learned by the original WATCH program for
each action sequence are presented. Then, the new strategies learned with the
NEWWATCH extension are listed. Various intermediate results of
NEWWATCH, such as the interruptions that are hypothesized, are also shown.

The strategies are all represented as hierarchical trees, with the most
abstract parent decisions on the left-hand side. The trees all unfold from the top
down, so the uppermost leaf strategies are the first to control the selection of
actions. Each focus leaf is linked to the actions in the sequence that it selected, to
make it clear which decision caused each of the actions. The strategies in the tree
are represented by ACCORD sentences with the action verbs capitalized, if such
sentences were used. Strategic decisions that were not expressed in ACCORD are
simply shown as abstract descriptions written in small letters.)

28

5.2.1 Sample problem 1

Application domain: PROTEAN

Problem:

Strategies:

LAC
Lac-repressor headpiece protein

Assemble one partial-arrangement:
hierarchical strategy
actions 1-8, 10-15

Restrict locations:
simple opportunistic decision
action 9

Problem features:

Results of

All actions are selected by a single hierarchical strategy, except for a
special Restrict action. This opportunistic Restrict is selected when
BB1 is in a state where one of the objects, in this case Helix2-1, has
too many possible locations. ;

The opportunistic Restrict action is the simplest possible type of
interruption. It consists of only a single action, and this action is
based on the Restrict verb that is unique within the action

sequence.

WATCH:

WATCH's generalization is confused by the presence of the Restrict
action. It incorrectly groups the positioning actions, because it does
not notice the Anchor-Yoke-Anchor-Yoke pattern for the two
different types of objects, helices and randomcoils.

Results of NEWWATCH:

NEWWATCH hypothesizes a number of spurious interruptions
when it examines the Include actions. All including actions are
chosen by a single strategic decision, which does not specify any
particular ordering among them. However, NEWWATCH notices

29

alternate strategies that divide the inclusion steps into those

mentioning helix or randomcoil type objects.
NEWWATCH hypothesizes that the inclusion of randomcoil2 by

action 4 is an interruption to a strategy indicating helices for actions
2, 3, and 5. The same is done in reverse for the spuriously
generalized strategy to include randomcoils (actions 4 and 6) that is
believed to be interrupted by a helix (action 5).

Fortunately, the incorrectly hypothesized sequences are rated lower
than the uninterrupted sequence that includes all the objects. This
is logical, since the longer sequence with all the objects is not much
more abstract that the sub-sequences. Therefore, the spurious
interruptions are not integrated into the generalization.

Because NEWWATCH notices that Restrict (action 9) interrupts
two Anchor actions (actions 8 and 10), it correctly groups the
Anchors together. This phase can then be combined with the Yoke
operation (action 11), to discover the Position helices strategy. As a
result, the learned hierarchical strategy properly distinguishes the
separate phases of positioning for helices and randomcoils.
NEWWATCH also appropriately labels the unique Restrict action
as opportunistic when it integrates the interruption hypothesis
into the generalization.

Results of human subjects:

None of the human subjects was hindered in the task of finding
the main strategy by the existence of the anomalous Restrict action.
One individual was not familiar with ACCORD Restrict verb, but
assumed simply from its name that it was doing something
opportunistic in "restricting the problem-solving". Another
ignored the action simply because it was unfamiliar and confusing,
and went on to learn from the remaining actions; at the end he
merely wondered why only this single Restrict action occurred.
None of the subjects felt that there was enough information to find
out more about this action.

Sample problem 1: Observed action sequence

0O N R

bk ped ed ped el ped
Dok W= o

- Create pal

Include helix3 in pal

Include helix2 in pal

Include randomcoil2 in pal

Include helix1 in pal

Include randomcoill in pal

Orient pal about helix1-1

Anchor helix2-1 to helix1-1 in pal with cseth1h2
Restrict helix2-1 in pal with cseth2

Anchor helix3-1 to helixl-1 in pal with cseth1h3

. Yoke helix2-1 and helix3-1 in pal with cseth1r2
. Anchor randomcoil2-1 to helix1-1 in pal with cseth1r2

Anchor randomcoill-1 to helixl-1 in pal with csetrlhl
Yoke randomcoil2-1 and helix2-1 in pal with csetr2h2

. Yoke randomcoill-1 and helix2-1 in pal with csetrlh2

30

Sample problem 1: Actual control strategy

CREATE -

partial-arrangement

define the INCLUDE -
partial- secondary-structure
arrangement in partial-arrangement

ORIENT fh

partial-arrangement

about long constraining
constrained
structured-secondary-structure

ANCHOR long inflexible s I

assemble constrained constraining
one structured-secondary-structure
partial- to anchor
arrangment in partial-arrangement
with strong constraint-set

position
anchorable
h-or-s

constraining recently-reduced
structured-secondary-structure
in partial-arrangement

with strong constraint-set

ANCHOR constraining s, b

randomcoil to anchor

in partial-arrangement

with strong constraint-set
position
anchorable
coil

constraining recently-reduced
secondary-structure

in partial-arrangement

with strong constraint-set

YOKE several long inflexible . i

YOKE several long inflexible ... In-

31

action 1

actions 2-6

action 7

actions 8,10

action 11

actions 12,13

actions 14,15

Sample problem 1:

DEFINE
pal

securely

POSITION
recently-reduced
secondary-structure
in pal with
bio-constraint-set

32

Strategy learned by WATCH
CREATE fim- action 1
pal
INCLUDE I»- actions 2-6
secondary-structure
in pal
ORIENT i action 7
pal
about
helix1-1
securely i actions 8-10
POSITION
recently-reduced inflexible
constrained long helix
in pal
with bio-constraint-set
" YOKE oeoerevereeresessaressssens I action 11
helix2-1
and helix3-1
securely in pal
POSITION with cseth2h3
recently-reduced
secondary-structure
in pal ANCHOR i i actons 12-13
with strong recently-reduced
bio-constraint-set inflexible constrained
constraining
randomcoil
to helix1-1
in pal
with strong
bio-constraint-set
YOKE i actions 14-15
helix2-1 and
randomcoil
in pal
with strong

bio-constraint-set

Sample problem 1: Strategy learned by NEWWATCH

DEFINE

pal

securely

POSITION
recently-reduced
inflexible constrained
long helix

in pal with
bio-constraint-set

securely

POSITION
recently-reduced
constrained constraining
random-coil

in pal

with bio-constraint-set

CREATE il
pal

INCLUDE -

secondary-structure
in pal

ORIENT i

pal
about
helix1-1

ANCHOR I

helix2-1

to helix1-1

in pal

with cseth1h2

RESTRICT i

helix2-1
in pal
with cseth?2

securely POSITION Jin

recently-reduced
inflexible constrained
long helix3-1

in pal with strong
bio-constraint-set

ANCHOR -

recently-reduced
inflexible constrained
constraining random-coil
to helix1-1

in pal with strong
bio-constraint-set

YOKE

random-coil

and helix2-1

in pal

with bio-constraint-set

33

action 1

actions 2-6

action 7

action 8

action 9

actions 10-11

actions 12-13

actions 14-15

Sample problem 1: Spurious hypothesis of an interruption

Statement 4 i
INCLUDE randomcoil2 in pal

is the first and only action in a parallel-type interruption of strategy
INCLUDE helix in pal

which explains the sequence of actions
2,3,5.

THTERROPTIORT is at the LeARN.TNTERRUOPTITUN TeveT.

Attributes:
ACTION-STMT: (RCCORD.EVENT.DID-INCLUDE PROBLEM.SOLID.RANDOMCOIL2 IH
SOLUTION.PART [AL-ARRANGEMENT . PAL)
INTERRUPTED-SEQUENCES: (((((LERRN.LEVB-S.LEVB-S2 . 1)) ((LEARN.LEVO~S.LEVO-S3 . 1))
((LEARN,LEVB-S.LEVO-SS . 1))) PARALLEL))
INTERRUPTED-STRATEGIES: (((ACCORD.EVENT.DID-INCLUDE) (BIO.CONCEPT.HELIX)
(SOLUTION.PART IAL~-ARRANGEMENT .PAL1))
LAST-CHANGE-TYPE: HYPOTHESIZE-INTERRUPTION
PARSED-VAL: ((ACCORD.EVENT.DID-INCLUDE) (PROBLEM.SOLID.RANDOMCOILZ)
(SOLUTION.PART IAL~-ARRANGEMENT .PR1))
S MT-NUMBER: 4

Links: <ngne>

$Links: <none>

35

Sample problem 1: Correct hypothesis of an interruption

Statement 9
" RESTRICT helix2-1 in pal with cseth2h3
is the only action in an opportunistic-type interruption of strategy
ANCHOR helix to helix in pal with bio-constraint-set
which explains the sequence of actions
8 and 10.

TRTERRUPTTONS 1s at the LERKN.IRTERRUPTTION TevueT.

Attributes:

ACTION-STMT: (RCCORD.EVENT.DID-RESTRICT SOLUTION.SOLID.HELIX2-1 IN -
SOLUTICON.PARTIAL-ARRANGEMENT .PAL WITH PROBLEM.CONSTRAINT-SET ,CSETH2R3)
INTERRUPTED-SEQUENCES: (((((LERRN.LEVG-S.LEV@-S8 . 1)) ((LEARN.LEV@-S.LEVB-S18 . 1))) OPPORTUNISTIC))

INTERRUPTED~STRATEGIES: (((RACCORD.EVENT.DID-ANCHOR) (BIO.CONCEPT.HELIX) (BIO.CONCEPT.HELIX)
(SOLUTION.PARTIAL-ARRANGEMENT .PAL) (BI0.CONCEPT.BI0-CONSTRARINT-SET)))
LAST-CHANGE-TYPE: HYPOTHESIZE-INTERRUPTION
PARSED-VAL: ((ACCORD.EVENT.DID-RESTRICT) (SOLUTION.SOLID.HELIX2-1)
STHT-NUMBER éSDLUTION.PHRTIHL—RRRHNGEHENT.PRl) (PROBLEM.CONSTRAINT~SET .CSETH2R3))

Links: <none>

$Links: <none>

5.2.2 Sample problem 2

Application domain: SIGHTPLAN

Problem:

Strategies:

AM1-SIMPLE
Americanl power plant, simple version

Architect-engineer layout:
hierarchical plan, with one pair of strategic
decisions operating in parallel

Problem features:

While all of the lowest level strategic foci of the hierarchical plan
are expressed as ACCORD sentences, the more abstract parent
decisions are not. They are simply general goals, which are refined
into the ACCORD decisions that will actually select the actions to
perform. Therefore, any abstract strategies that WATCH learns will
be spurious. While they might be ACCORD equivalents of the
general goals, they are not the actual decisions in the existing
strategy.

SIGHTPLAN uses the ACCORD positioning verbs such as Anchor,
Yoke, and Append in an unusual fashion. Rather than basing the
strategy on the specific features of these different actions, it simply
mixes them up randomly. This is because most of the constraints
do not mention the fixed anchor of the construction site; therefore,
the possible locations of objects are not propagated from the
anchor, through the anchorees, to the appendage objects. Instead,
the order of positioning actions is determined by the objects and
constraints involved. The fact that different ACCORD verbs
appears is not significant. It merely confuses WATCH and the
human subjects.

Most of the positioning actions (actions 15-28) are selected by two
strategic foci operating in parallel. One focus specifies that objects
should be positioned on the site; the other updates the record of

36

which objects have been fixed and now occupy space. The actions
of the two are very hard to differentiate. Both use the same verbs,
such as Yoke; there is also much overlap in the objects mentioned.
In addition, the two foci don't alternate in any recognizable pattern,
such as one action each, since they are performed dynamically
based on the state of the problem.

Results of WATCH:

WATCH incorrectly groups all the Include actions into a single
strategic decision, since its heuristics lead it to generalize actions
with common verbs together. The various sub-sequences of
Include actions that mention specific types of objects are less
preferable since they are shorter sequences, and yet not much less
abstract.

Because the actions selected by the parallel strategies do not fall into
any regular pattern of alternation, WATCH cannot differentiate
them when finding the hierarchical explanation. Any similarity
between the strategy learned by WATCH for those actions and the
intended plan is merely coincidental.

Results of NEWWATCH:

NEWWATCH does not hypothesize any interruptions for this
problem, so it obtains the same results as WATCH. While there
are a number of interrupting actions caused by the parallel foci,
they are not found by NEWWATCH. The interruptions are quite
similar to the main actions, since they use the same Yoke verb and
mention the same objects. Therefore, they are difficult to recognize
as interruptions since they are explained by the strategies learned in
the inductive generalization.

Results of human subjects:

All of the subjects were extremely confused by the sequence of
positioning actions in this problem. All were familiar with
ACCORD, and so had a strong prejudice that actions with the same
verb should be grouped together. Also, there was an expectation

37

38

that Anchors would precede Yokes, rather than just be randomly
intermingled with them.

There was some limited success in recognizing the first part of the
"position construction facilities" strategy which Yoked objects to
the site's sub-areas. One subject noticed that the first few Yokes
contained objects modified by Large-2, the modifier exclusively for
sub-areas. Another assumed an overall positioning strategy that
preferred Yokes that constrained a space with a physical object over
actions that mentioned two physical objects.

None of the subjects had any success in recognizing the parallel
foci. There was no obvious pattern of alternation to be found.
Therefore, since the actions selected by the two foci were quite
similar, each of the subjects tried to group all of the positioning
into a single explanation. Much exasperation was felt since none of
the hypothesized strategies really seemed to fit; the general

solution was simply to choose some seemingly reasonable
possibility and ignore the actions that were not explained by it.

Sample problem 2: Observed action sequence

W X NG W

b e el ped
B W N - o

15.

16.
17.
18.
19.

20.
21.

26.
27.
28.

Create pal for king-city-site
Include king-cit}‘l-site in pal
Include power-plant in pal
Include gas-turbine in pal

Include plant-entrance-road in pal
Include am1-occupied-space in pal
Include laydown-area in pal
Include fenced-area in pal

Include fab-civil in pal

. Include mgt-office-trailer in pal
. Include fab-bldg in pal

Orient pal about power-plant-1

. Yoke fenced-area-1 and fab-bldg-1 in pal with zoned-in-103-fenced
. Yoke fenced-area-1 and mgt-office-trailer-1 in pal with zoned-in-105-

fenced

Yoke fab-bldg-1 and am1l-occupied-space-1 in pal with non-overlap-
set-103-occupied "

Yoke mgt-office-trailer-1 and fab-bldg-1 in pal with closer-than-103-105
Yoke gas-turbine-1 and fab-bldg-1 in pal with closer-than-103-gt
Anchor fab-bldg-1 to power-plant-1 in pal with as-close-as-103-plant
Yoke mgt-office-trailer-1 and aml-occupied-space-1 in pal with non-
overlap-set-105-occupied

Yoke mgt-office-trailer-1 and fab-bldg-1 in pal with closer-than-103-105
Yoke plant-entrance-road-1 and mgt-office-trailer-1 in pal with
adjacent-to-105-road

Yoke mgt-office-trailer-1 and fab-bldg-1 in pal with closer-than-103-105
Anchor mgt-office-trailer-1 to power-plant-1 in pal with parallel-1-105
Yoke mgt-office-trailer-1 and fab-bldg-1 in pal with closer-than-103-105
Yoke gas-turbine-1 and mgt-office-trailer-1 in pal with as-close-as-105-
gt

Yoke mgt-office-trailer-1 and fab-bldg-1 in pal with closer-than-103-105
Yoke gas-turbine-1 and fab-civil-1 in pal with closer-than-121-gt

Yoke plant-entrance-road-1 and fab-civil-1 in pal with as-close-as-road

39

Sample problem 2: Actual control strategy

DEFINE
partial-
arrangement

position
construction
facilities

architect-
engineer
layout

CREATE e

partial-arrangement

INCLUDE fln

context in
partial-arrangement

INCLUDE {iwe

fixed object in
partial-arrangement

determine i

occupied space

INCLUDE flne

sub-area in
partial-arrangement

INCLUDE {ine

facility
site-physical-object
in partial-arrangement

ORIENT fie

partial-arrangement
about first-constructed
power-unit

YOKE large facﬂity fiwe

site-physical-object

and large-2 sub-area

in partial-arrangement
with important constraint

POSITION large facility
site-physical-object in .
partial-arrangement ",
with important constraint “'Ml
(parallel strategy) A

0
’
o

#
’I

update occupied space
(parallel strategy) '

40

action 1

action 2

actions 3-5 .

action 6

actions 7-8

actions 9-11

action 12

actions 13-14

parallel strategies
together select
actions 15-28

41

Sample problem 2: Strategy learned by WATCH and NEWWATCH

ASSEMBLE
pal
ASSEMBLE
pal
securely
POSITION

unit aggregate large
relatively-fixed...
facility
site-physical-object
in pal with
object-based-
constraint

CREATE pal {1+
for king-city-site

DEFINE

pal
INCLUDE "Il.
natural-type in pal
ORIENT pal fin-
about power-plant-1

YOKE -

site-physical-object

and fenced-area-1

in pal with

important zoned-in-constraint

YOKE natural-type e i

and fab-bldg-1
in pal with
object-based-constraint

securely POSITION cererrmssssssrsssssasssenss i

unit aggregate large...
fab-bldg-1 in pal with
site-distance-constraint

YOKE mgt-office-trailer-1 = (-

and natural-type in pal
with object-based-constraint

securely POSITION crnsnsssssnins i

unit aggregate large...
mgt-office-trailer-1

in pal with
object-based-constraint

YOKE trailer and - {in

site-physical-object in pal
with site-distance-constraint

action 1
actions 2-11

action 12

actions 13-14

actions 15-16

actions 17-18

actions 19-21

actions 22-23

actions 24-28

Sample problem 3:

Application domain:

Problem:

Strategies:

Problem features:

42

‘SIGHTPLAN

AM1-AGGR
Americanl power plant, simple version
with aggregate objects

Architect-engineer layout:
hierarchical plan, with one pair of strategic
decisions operating in parallel
actions 1-10, 19-27

Aggregate-object layout:
secondary hierarchical plan, performed
opportunistically during main
architect-engineer strategy
actions 11-18

* The main strategy used in the AM1-AGGR problem is the same as
that used by AM1-SIMPLE. However, in addition, there is an
opportunistic strategy used to arrange the fabrication-shops
aggregate object. The opportunistic strategy is triggered by the
inclusion of an object (fab-shops) that has important closeness
constraints with other objects; it arranges these collectively and
then places them on the main site as an aggregate. The aggregate-
object arrangement strategy is itself a hierarchical plan, although
somewhat simpler than the main strategy.

Results of WATCH:

¢ The interrupting strategy that builds the aggregate is partly found
by WATCH. The actions that Define the arrangement are correctly
grouped. However, while the two Anchor actions are properly
explained by a single strategy, they are not connected to the Define

43

phase. WATCH does not recognize that all the actions that
mention the second partial-arrangement are related.

' The presence of the secondary strategy seriously hampers

WATCH's learning of the main hierarchy. For example, the three
phases of defining the main partial-arrangement are not connected,
since the Create and Include actions precede the aggregate actions
while the Orient follows it.

Results of NEWWATCH:

NEWWATCH hypothesizes that the actions building the aggregate
object are an interruption. This is noticed since one of the current
possible strategies is defining partial-arrangement-1, which later is
concluded by the Orient operation in action 19. This strategy does
not explain any of the aggregate operations (actions 11-18), so they

are hypothesized to be an interruption. The interruption is

classified as opportunistic, since the aggregate object is built
immediately after the fab-shops is included in the main
arrangement. '

NEWWATCH does not learn the secondary strategy, but merely
recognizes and classifies it. The aggregate strategy is in fact
hierarchical, and could be learned independently by WATCH.

Since NEWWATCH recognizes that the interruption takes place
within the high level Define strategy, it assumes that this is the
correct generalization. Therefore, it does not refine this strategy to
the appropriate Create, Include, and Orient phases for the main
arrangement. In addition, placing this high level abstraction at the
lowest level of the strategy confuses the final grouping of the
hierarchy learned by NEWWATCH. Actions 20-22 (Yoke object to
sub-area) are correctly placed in the first half of the strategy, and
actions 23-27 (the parallel position actions) are separated into a
latter phase. However, most of the higher-level generalizations
and groupings within the hierarchical tree are spurious.

Sample problem 3: Observed action sequence

VO NSU A WN R

NBNNHO—‘HHMHHHD—\H
w.HO\OQO\]m"lﬁzS»NHO

N
Ny

26.
27.

Create pal for king-city-site
Include king-city-site in pal
Include gas-turbine in pal

Include power-plant in pal
Include plant-entrance-road in pal
Include am1-occupied-space in pal
Include laydown-area in pal
Include fenced-area in pal

Include parking in pal

. Include fab-shops in pal
. Create pa2 for fab-shops
. Include fab-electrical in pa2

Include fab-civil in pa2

. Include fab-pipefitters in pa2

*. Include aml-occupied-space in pa2

. Orient pa2 about fab-civil-2

. Anchor fab-pipefitters-2 to fab-civil-2 in pa2 with adjacent-to-120-121

Anchor fab-electrical-2 to fab-civil-2 in pa2 with adjacent-to-121-122

. Orient pal about power-plant-1
. Yoke laydown-area-1 and parking-1 in pal with zoned-in-104-laydown
. Yoke fenced-area-1 and parking-1 in pal with zoned-out-104-fenced

Yoke fenced-area-1 and fab-shops-1 in pal with zoned-in-103-fenced

. Yoke am1l-occupied-space-1 and parking-1 in pal with non-overlap-

set-104-occupied

. Yoke plant-entrance-road-1 and parking-1 in pal with as-close-as-104-

road

Yoke fab-shops-1 and am1-occupied-space-1 in pal with non-overlap-
set-103-occupied

Yoke gas-turbine-1 and fab-shops-1 in pal with closer-than-103-gt
Anchor fab-shops-1 and power-plant-1 in pal with as-close-as-103-
plant

45

Sample problem 3: Actual control strategy

CREATE i action 1
partial-arrangement

INCLUDE i action 2
context in

partial-arrangement

INCLUDE - actions 3-5
fixed object in
partial-arrangement

determine in- action 6
DEFINE occupied space
partial-
arrangement INCLUDE i actions 7-8
sub-area in

partial-arrangement

INCLUDE i actions 9-10
facility
. site-physical-object
architect- in partial-arrangement
engineer
layout

ORIENT - action 19
partial-arrangement

about first-constructed

power-unit

YOKE large facility o I actions 20-22
site-physical-object

and large-2 sub-area
in partial-arrangement
with important constraint
position POSITION large facility
construction site-physical-object in .
facilities partial-arrangement M,
with important constraint 'Nm parallel strategies
(parallel strategy) 'm’ together select
#" actions 23-27
update occupied space ‘,.:"'

(parallel strategy)

Sample problem 3: Secondary control strategy

develop

aggregate
layout

define
partial-arrangement
for

CREATE eeeemmnresasescesssonens i action 11

partial-arrangement
for newest
construction-
facility

INCLUDE "lu actions 12-‘14

object
in
partial-arrangement

aggregate determine s]
occupied
space
(0231211 KE—— |
partial-arrangement
about
constrained
object
ANCHOR |
large object
to anchor

in partial-arrangement
with important
constraint

define
boundaries
of aggregate

I

w- action 15

» action 16

actions 17-18

Sample problem 3: Strategy learned by WATCH

CREATE pal
for king-city-site

-

fi

-

INCLUDE

natural-type

in pal CREATE pa2
for fab-shops
INCLUDE

DEFINE pa2 ® natural-type
in pa2
ORIENT pa2
about fab-civil-2

ANCHOR

unit aggregate large

unpositioned...

facility trailer

to fab-civil-2

in pa2 with
important
adjacent-to-constraint

ORIENT pal

about power-plant-1

YOKE parking-1
and sub-area

in pal with
important site-zoning-constraint

YOKE site-physical-object
and space in pal
with object-based-constraint

securely POSITION

unit aggregate large
relatively-fixed...

facility site-physical-object

in pal with

important object-based-constraint

-

T

action 1

actions 2-10

action 11

actions 12-15

action 16

actions 17-18

action 19

actions 20-21

actions 22-23

actions 24-27

47

48

Sample problem 3: Strategy learned by NEWWATCH

DEFINE pal j- actions 1-10, 19
ASSEMBLE
pal
YOKE laydown-area-1 - e action 20
and parking-1
in pal with
ASSEMBLE as-close-as-104-road
pal
YOKE fn actions 21-22
natural-type
and site-physical-object
in pal with
object-basedconstraint
ASSEMBLE
pal
YOKE i actions 23-25
natural-type
and site-physical-object
in pal with
object-based-constraint
securely
POSITION
unit aggregate
large... facility
site-physical-object
in pal with
object-based-
constraint
POSITION i actions 26-27
fab-shops-1
in pal with

object-based-constraint

49

Sample problem 3: Correct hypothesis of an interruption

Statement 11

CREATE paz2 for fab-shops
is the first action in an opportunistic-type interruption of strategy

DEFINE pal
which explains the sequence of actions
1-10 and 19.

INTERRUPTTORT 1s at tFRe LEHRN.TNTERRUPTTDN TeveT,

Attributes:
ACTION-STMT ; (RCCDRD.EUENY.DID-CRERTE SoLu N.PRRTIRL—HRRRNGEHENT.PRQ FOR
I
{

0
RHERICHNI.CDNSTRUCTION-FRCIL ES.FAB-SHOPS) N

Tl
TI
INTERRUPTED-SEQUENCES (((((LEARN.LEVB-S.LEY@-5] .)) ((LEARN.LEVB-S.LEVa-S2 . 1))
((LEARN.LEVB-S.LEYB-53 | 1)) ((LEARN.LEV@-5.LEVB-54 D) ((LEARN.LEVB-S.LEVR-S5 .
1)) ((LEARN.LEV@-S.LEVG-S6 . 1)) ((LEARN.LEV@-5.LEVG-S7 . 1))
((LEARN.LEVB-S.LEVE-38 1)) ((LEARN.LEVG-S.LEVE-S9 . t)) ((LEARN.LEVB-S.LEVB-S1g

1)) ((LEARN.LEV@-S,LEVE-S{9 - 1))) OPPORTUNISTIC))
((HCCDRD.EUENT.DID-DEFINE) (SDLUTlON.PHRTIRL-HRRRNGEHENT.PRI)))
YPOTHESIZE‘INTERRUPYION
(HCCURD.EUENT.DID-CREHTE) (SOLUT I O: PRRT!RL-HRRHNGEHENT.PHZ)
HNERICHNI,CONSTRUCTKON-FRCILITIES.FHB*SHOPS))

{

INTERRUPTED-STRATEGIES :
LAST -CHANGE-TYPE;
PARSED-VAL ;

——— L~ -

STMT-NUMBER:
Links: <none> !

$Links: <none>

eVI-5T8 15 at Tthe LERRNTEUT=S TeveT,

Attributes:
ACTION-STMT (RCCORD.EUENT.DIU-DEFINE SOLUTION.PHRT!HL—HRRHNGENENT.PR!)
CONFIDENCE : 2658
FIRST-STMT~NUM. 1
GENERRLIZHTIDN—LEUEL: 1
GENERALIZED-VARS : (1)
GENERRTOR-TYPE . SEQUENCE-0OF-STMTS
INTERRUPTION—STRRTEGY—TYPE: OPPORTUNISTIC
LAST-CHANGE-TYPE ; POSTULHTE—SEOUENCE-HITHOUT—INTERRUPTION
LAST-STMT-NUM: 19
NUMS-0F -SEQUENCE : (1 234s6789 18 19)
PARSED-VAL ; ((HCCORD.EUENT.D!D—DEFINE) (SDLUTION.PHRTIRL—RRRRNGEHENT.Pﬂl))
STMT-NUMBER: g

Links:
GENERAL1ZED-FROM: LEARN.LEV@-5.LEVB-S] LEARN.LEVB-5.LEYB-52 LEARN. LEV@-S.LEYR-53
LEARN.L EVB-S. Eyg-54 LERARN.LEV@-S.LEVR-SS LEARN.LEVB-S, LEVR-SE
LEARN.LEV@~S.LEyg-57 LEARN.LEVB-S.LEVR-5S8 LEHRN.LEVG-S.LEVG—SB
LEHRN.LEUB—S.LEUB-SIB LEARN.LEVB-S.LEVB-519

50

6. Conclusions

The NEWWATCH program can learn hierarchical strategies for BBl
application programs, even when the observed action sequence contains
interruptions. Rather than treating actions chosen by concurrent secondary
strategies as noise, NEWWATCH discovers and classifies these alternate plans.

NEWWATCH's ability to correctly discover interruptions in many ways
parallels the skills of human learners. Both are able to recognize that
opportunistic sequences are anomalies, and therefore can set aside such actions
to learn the main strategy. Like human subjects, NEWWATCH is confused
when it tries to learn from action sequences chosen by parallel strategies,
particularly if there is no obvious pattern of alternation or qualitative difference
in the actions.

The ability to recognize interruptions increases the range of strategies that
can be automatically discovered by the WATCH system. Without the limitation
of assuming that a single hierarchical explanation is adequate, NEWWATCH has
the power to learn real control strategies for such problems as the SIGHTPLAN
application. ’

51

Appendix 1

ACCORD Action Templates

e Assemble partial-arrangement
e Define partial-arrangement
e Create partial-arrangement
¢ Include object in partial-arrangement
e Orient partial-arrangement about anchor
* Position objects in partial-arrangement with constraints
e Anchor object to anchor in paftial-arrangernent
with constraints
® Yoke object and object in partial-arrangement
with constraints
® Append appendage and object in partial-arrangement
with constraints

® Restrict object in partial-arrangement with constraints

52

Appendix 2

ACCORD Action Hierarchy

Assemble

Define Position

Create Include Orient Anchor Yoke Append Restrict

Appendix 3

WATCH generalization heuristics

Avoid generalizing different actions together

o AVOID-GENERALIZING-ACTIONS

e based on BB1 languages with standard action templates

 All actions based on a single standard verb have the same
operation, and so are likely to have a common purpose.
Therefore, group consecutive actions of a common type
into a single phase of the strategy, without any different
actions intervening.

Prefer longer sequences of actions
¢ PREFER-MORE-STATEMENTS:
¢ general to induction over sequences
* A sequence containing more actions with something in
common is more likely significant than a possibly
coincidental shorter series. Also, a coherent sequence is
preferable to any of its smaller sub-sequences.

Prefer generalizing over fewer levels of abstraction
¢ PREFER-GEN-FEWER-LEVELS
* based on access to problem, domain, and language class
hierarchies within BB1
* The actions in the sequence are more closely related, and

53

therefore more likely a common phase of the strategy, if less

abstraction is required to find a common generalization.

Prefer generalizing fewer action parameters
¢ PREFER-GEN-FEWER-VARS
* based on BB1 languages with standard action templates

e The actions in the sequence are more closely related, and
therefore more likely a common phase of the strategy, if
they have more parameters in common.

Prefer existing abstraction
® PREFER-EXISTING-UPPER-LEVEL-STATEMENTS
° based on the incremental style of WATCH's generalization
° Prefer abstracting a new action with an generalization in the
tree, rather than creating a new sub-sequence. It is better to
extend existing hypothesized strategies with new actions
than to create many independent strategies.

54

55
Bibliography

Billman, Dorrit and Evan Heit, "Observational Learning From Internal
Feedback: A Simulation of an Adaptive Learning Method".
Cognitive Science 12: 587-625, 1988.

Carbonell, Jaime G., Ryszard S. Michalski, and Tom M. Mitchell,
"Machine Learning: A Historical and Methodological Analysis".
Al Magazine 4: 69-79, 1983.

Cohen, Paul R. and Edward A. Feigenbaum, The Handbook of Artificial
Intelligence, Volume III. Los Altos, Ca., Morgan Kaufmann
Publishers, 1982. pp. 325-334.

Dietterich, Thomas G. and Ryszard S. Michalski, "Learning to Predict
Sequences". In Machine Learning: An Artificial Intelligence
Approach, Volume II, pp. 63-106.

Gruber, Thomas, "A Method for Acquiring Strategic Knowledge". 1988.

Harvey, Jeffrey M., "WATCH - Inductive Learning of Control
Abstractions”. 1987.

Hayes-Roth, Barbara, Bruce Buchanan, Olivier Lichtarge, Michael
Hewett, Russ Altman, James Brinkley, Craig Cornelius, Bruce
Duncan, and Oleg Jardetzky, "PROTEAN: Deriving Protein
Structure from Constraints". Stanford University Report KSL 86-
51, 1986.

Hayes-Roth, Barbara, Alan Garvey, M. Vaughan Johnson Jr., and
Michael Hewett, "A Layered Environment for Reasoning about
Action". Stanford University Report KSL 86-38, 1986.

' Hayes-Roth, Barbara and Michael Hewett, "Learning Control Heuristics
in BB1". Stanford University Report HPP 85-2, 1985.

Johnson, M. Vaughan and Barbara Hayes-Roth, "Integrating Diverse
Reasoning Methods in the BB1 Blackboard Control Architecture”.

Stanford University Report KSL 86-76, 1986.

Kautz, Henry A., "A Formal Theory of Plan Recognition". Thesis.
University of Rochester, 1987.

Michalski, Ryszard S., Jaime G. Carbonell, and Tom M. Mitchell,
Machine Learning: An Artificial Intelligence Approach. Palo Alto,
Ca., Tioga Publishing Company, 1983.

Michalski, Ryszard S., Jaime G. Carbonell, and Tom M. Mitchell,
Machine Learning: An Artificial Intelligence Approach, Volume II.
Los Altos, Ca., Morgan Kaufmann Publishers, 1986.

Mitchell, Tom M., Richard M. Keller, and Smadar T. Kedar-Cabelli,
"Explanation-Based Generalization: A Unifying View". Machine
Learning 1: 47-80, 1986.

Mitchell, Tom M., Paul E. Utgoff, and Ranan Banerji, "Learning by
Experimentation: Acquiring and Refining Problem-Solving
Heuristics". In Machine Learning: An Artificial Intelligence
Approach, Volume I, pp. 163-190.

Schmidt, Charles F., "Plan Recognition and Revision: Understanding
the Observed Actions of Another Actor". Rutgers University
Report CBM-TR-115, 1980. ‘

Schmidt, C.F., N.S. Sridharan, and J.L. Goodson, "The Plan Recognition
Problem: An Intersection of Psychology and Artificial Intelligence”.
Rutgers University Report CBM-TR-86, 1978.

Simon, Herbert A., "Why Should Machines Learn?". In Machine
Learning: An Artificial Intelligence Approach, Volume I, pp. 25-37.

57

Tommelein, Iris D., M. Vaughan Johnson Jr., Barbara Hayes-Roth, and
Raymond E. Levitt, "SIGHTPLAN: A Blackboard Expert System for
Construction Site Layout". Expert Systems in Computer-Aided
Design, J.S. Gero, ed., Amsterdam, North-Holland Publishers, 1987.

pp. 153-167.

