C IF ECENTER FORINTEGRATED FACILITY ENGINEERING

Knowledge Based
Strategy Generalization

Tony Confrey and Barbara Hayes-Roth

TECHNICALREPORT
Number 26

April 1990

Stanford University

R IFE Center for Integrated Facility Engineering « Stanford University

Copyright © 1990 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

c/o CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

Abstract

WATCH is a system that performs knowledge level learning within
the BB1 blackboard system environment. WATCH learns strategic
knowledge by observing or "watching” the actions an expert uses to
solve a problem. By its very nature however, the strategies WATCH
finds are very problem specific and cannot be used to solve a very
large class of problems. This paper describes MetaWATCH, an
enhancement to the WATCH system that compares multiple WATCH
output strategies in the context of the problem they solve and finds
the common abstraction. This allows it to learn strategies applicable
to a wider range of problems.

] IDIET OGO . c.ooeeeeeeeeeeeeeeessssesasassssessssaesesssnsessssssssssssnsssnsnsessesssesssssnesnssssessrnssnonsess 1

2 Strategic KNOWIEAZE.cceieiirmnrmrmminineissseiin e enssaeneseseesasnsssssans 1
3 The Learning EnVIrONMENt.. o iiiseciccssses e sssssassens 2
31 BB Lot eres st e et st eas e et st et aas e b s e e b en s seeanan s neaentenns 2
3.2 Action description 1anguage........c.oovvevuiviiiiicniiniecennninee e 3
3.3 APPUCAONS ..ttt sessese s sesseasasasastsssssrasasans 4
3.4 Strategies within BBI......cccovioiiiniiniiiiiiinccinieeecic s 4
3.5 Hierarchical StTateZiCS...iiiiinceneeeieerneerereensssesessessoseseseenessseenes 6
G WATCH ettt sttt crsassessas s e st s s ssss s s s sesasa s st st esestssossssssessaensasens 7
4.1 Overview Of WATCH...... e ssnenesessiese s seeseene 7
4.2 ASSUMPLIONS .ouriiecccccnenintrienneseserinn s esessssss st s sesesssssssassssantaessassans 8
4.3 HOW WATCH WOTKS...cocoiiciriecereeeeeeeceevsasassesse e sessnsssncssaeasenens 8
4.3.1 Inductive generalization.............ceeecennninisesecsnnenns 9
4.3.2 Generalization heuriSticS........ceevureriirereeeeecessnnneinnineeenieen. 10
3.3.3 RanKing Strategiescccerermmeerrrrrrrrsssecrsserssssssenesseasasssesnes 11
4.3.4 Identifying the appropriate modifiers.........uuu.. 11
4.4 Biases and Limitations of WATCHevvevernenrcniscscnsensenannnns 11
S MELAWATCH.....c.coiiiieeeicnriesst ettt ees e se e sa s s sas s asasasnsene 12
ST INETOUCHION ..ttt ee s s e essesesenessasasessassene 12
5.2 MOUVALOM....c.uiuiviiereeeeeentreenteassetasietsiesesesessesessesessssassessesessssstosssssasasens 12
5.3 OPCIAtiON.u sttt iessacss s s s ssssssaesene s ssssasasasanas 12
ST INPULciii ettt sa e st e aesr et 12
5.3.2 Incremental Convergence on a Super-
SITAIEZY ..vreenrriirueiineiisttreisesiiutennrnsessresneessesssuesssnessassnessesesssssesssssesoseessnns 13
5.3.3 Comparing Two Strategies.......ccoueerurreeeieeeereeinnrareneennnes 15
5.3.4 Dealing with modifiers.........cceccvvveriieieirereenereenec e 21
5.3.5 ChooSing @ SITALEZY ..ccoevveererrrnrreeerresesssereressssersensssesensenes 23
6 Testing and validation............covccuieiiieiniiiiiceieiceecrree et cree e e s ebae s s saesareens 24
6.1 INtrodUCHION....oiiiveecrcreisec ettt nen s snsnss e e sase 24
6.2 The Test CaASES..ccovverrrrrecrrrinriersrsisssssesssessssssasessessessessssssssssssssssssasssess 25
6.2.1 The SightPlan Strategyccooovvevmnecirreeeeeeneene 25
6.2.2 WATCH Skeletalplan]ccooonneivneecrrerneseeene 26
6.2.3 WATCH Skeletalplan 2.......cccovevmrrrnnenvcnnerereriesssensens 26
6.2.4 The first MetaWATCH Superstrategycoeeeueeecverunce 27
6.2.5 WATCH Skeletalplan3.......cooovnrvcneneneneseeseeneene 27
6.2.6 The MetaWATCH output SITategy......covcuvereerreeecuneerene 28
6.3 ODSEIVALIONS ...cocverererstieseistsrssrissstsns s ssesstse s sasassaseseresss s sssssnseses 28
T CONCIUSIONS ...ttt sttt sens e s e ssssssssstss s sass st st enen s s snsnesasassanas 29
8 Extensions to the work on MetaWATCH......cocoovvrrmerimensenenirereeieneseeneees 29
REFETENCES ettt st r e aes s s s nenes 31
Appendix 1 - The SightPlan object hierarchy........ccccceoveerciiiiiiiivinensieneeens 32

ADPPENAIX 2 - TESL CASES c.ovvruireerreeeererrerereereerrsssasssssessssssssessssssesesassrassssosssssssssssans 33

1 Imtroduction

WATCH [2] is a system which performs knowledge level
learning within the BB1 [1] blackboard system environment. WATCH
learns strategic knowledge by observing or "watching” the actions an
expert uses to solve a problem. By its very nature however, the
strategies WATCH finds are very problem specific and cannot be
used to solve a very large class of problems. This paper describes
MetaWATCH, an enhancement to the WATCH system that compares
multiple WATCH output strategies in the context of the problem they
solve and finds the common abstraction. This allows it to learn
strategies applicable to a wider range of problems.

The motivation behind this work is to develop a tool that can be used
to acquire the strategic knowledge required to control the operation
of BB1 applications. It can thus be characterized as an experiment in
both machine learning and knowledge acquisition.

This paper first describes strategic knowledge, what it is and how it
is used. The environment in which MetaWATCH learns is then
detailed. The WATCH system is then examined after which the
operation of MetaWATCH is fully described. Finally a set of validating
experiments performed on the system are listed as are the
observations they give rise to. The paper ends with conclusions and
some suggestions for future developments of the MetaWATCH
system.

2 Strategic Knowledge

Strategic knowledge is the knowledge an expert uses to direct
the course of problem solving. It is the ability to decide what actions
need to be executed to accomplish a task and the order in which they
should be performed to achieve an optimal solution.

Within an application strategic knowledge is used to control the flow
of program execution and as such is often hard coded and treated as
an implementation detail. For many knowledge based systems this
hard coding takes the form of rule clustering, clause ordering within
rules, conflict resolution strategies and other such techniques. Hard
coding restricts these systems to using a single control strategy for
all problems. However, often the problem solving strategy required
depends on the problem being solved. For this reason making control

knowledge explicit can be of great benefit. BB1, described later,
allows for dynamic control and makes the control knowledge explicit.

In many knowledge based systems, strategic knowledge dictates the
best path to a solution. While the systems could perform without this
knowledge the problem may become intractable or result in a less
than optimal solution. Within BB1 knowledge about problem solving
strategies is implemented as control and thus I will use the terms
strategic and control knowledge interchangeably.

Strategic knowledge is one of the more difficult types of knowledge
to acquire. It is often a lot easier for an expert to describe his domain
knowledge, i.e. the objects he works with, their attributes, the
relationships between them, the actions that can be performed on
them and the effects of those actions, than to formalize how he
actually solves problems within this domain. For this reason it is best
to acquire strategic knowledge in the context of a problem solving
session. WATCH attempts to learn the strategies used by an expert
by examining the set of actions used to solve a problem within the
context of the applicable domain knowledge.

3 The Learning Environment

This section describes the environment in which the WATCH
systems operate (i.e. WATCH and MetaWATCH) and the ways in
which this environment supports the learning task.

3.1 BB1

BB1 is a domain independent architecture based on the
blackboard model. In this model, multiple, independent knowledge
sources operate on objects stored in globally-accessible data
structures called blackboards.

The objects on these blackboards are frames whose attribute slots
can describe any property, behavior. These objects can be linked
with user definable links along which inheritance paths can be
defined.

Within the BB1 framework knowledge sources are also stored as
objects on a blackboard. There are two types of knowledge
source(KS). Domain knowledge sources perform problem solving
actions. Control knowledge sources form a control plan which dictates

2

the order of firing of the domain KS's and can be used to implement
arbitrarily complex problem solving strategies. Since these KS's can
be operated upon in the same manner as any other blackboard
object, control can be changed dynamically.

Every KS has preconditions that describe the context in which it
should be considered and trigger conditions that describe the actual
conditions under which it can be applied. On each execution cycle
KS's whose trigger conditions are satisfied, in the context of its
preconditions, become executable. The BB1 scheduler ranks the
executable KS's in accordance with the control plan and the top
ranked KS is executed (also called as "fired"). The actions associated
with that KS, which may be domain or control actions, are then
performed. These actions may alter domain objects or the control
plan. The cycle of triggering, ranking and executing KS's then repeats.

3.2 Action description language

BB1 supports the use of languages that specialize BB1 for a
particular class of problems. These languages formalize a set of
primitive operators that facilitate solving the particular type of
problem. There are a number of advantages to the use of these
languages. They provide an underlying .conceptual representation of
the concepts involved in the domain and they facilitate reasoning by
providing an unambiguous language for describing strategies and
actions. However, from the point of view of WATCH, the most
important properties of these languages are 1) to limit the experts
actions to a finite set with which we can reason and 2) to provide us
with a hierarchy showing the relations between these actions.

ACCORD is a domain-independent language that specializes BB1 for a
class of arrangement problems that use constraints to position
objects in a metric space. ACCORD supports a method for incremental
assembly of objects to solve these arrangement/assembly problems.
ACCORD provides a type hierarchy describing actions, events, objects,
object modifiers and states and a linguistic framework for describing
instantiations of these types.

To solve a problem within ACCORD the problem solver defines one or
more partial arrangeoments each comprising a subset of the objects
and constraints in the problem specification. One object is chosen as
the ‘anchor, and the other objects, the anchorees, are positioned
relative to it. There are a number of actions which can be performed

on these objects to position them (see figurel). These actions apply
constraints between objects to reduce their sets of legal locations. For
example anchorees can be anchored to the anchor or yoked to
another anchoree. Constraints are applied to reduce the legal
locations for objects until a single set of feasible positions are found
or objects locations have been reduced as much as possible. The
results from different partial arrangements can then be integrated to
form a complete solution.

3.3 Applications

At the time of writing there are two significant applications
that run within BB1 and make use of the ACCORD language: SightPlan
[5] and PROTEAN [6]. WATCH and MetaWATCH have been applied to
learn strategies within both these domains as described later.

SightPlan is an application that performs the two-dimensional spatial
layout of large civil engineering sites. PROTEAN models the three-
dimensional conformations of proteins in accordance with
biochemical constraints. In spite of the apparent differences in the
domains, both programs operate in a very similar manner. They both
position the objects of interest in accordance with various constraints
to arrive at a solution in which the locations of all objects have been
determined. For clarity only examples from the SightPlan domain
will be used to illustrate the various points.

3.4 Strategies within BBI1

Strategies within the BB1 framework are implemented using
what is called the control plan. The control plan is composed of a set
of control KS's which assign ratings to domain KS's and thus control
the flow of problem solving actions. The typical form for a strategy to
take is that of a skeletalplan. Skeletalplans implement hierarchical
strategies. Hierarchical strategies have a tree-like form that unfolds
as the strategy is executed (see figure 2). The actions that are
actually executed are represented as leaf nodes of the tree. There is a
one to one correspondence between the objects in a skeletal-plan and
the nodes in a hierarchical strategy.

Create

Include
Define

Orient

Anchor
Append
Positio Yoke
Restrict
Assemble

Consolidate

Refine
Coordinate<——< ‘
Adjust
Merge
ncorporate
Integrat
g Dock

o Assemble <partial-arrangement>
* Define <partial-arrangement>
e Create <partial-arrangement>
¢ Include <object> in <partial-arrangement>
* Orient <partial-arrangement>about <object>
* Position <objects> in <partial-arrangement> with <constraints>
* Anchor <object> to<object> in <partial-arrangement> with <constraints>
* Yoke <object> and <object> in <partial-arrangement> with <constraints>

Figure 1: The ACCORD action hierarchy. These are all the actions defined by the
ACCORD framework. Each action has a template defining the objects it operates on.
Some sample templates are shown.

Given the dynamic nature of control within BB1 other types of
strategy can also be implemented. These include goal-directed
reasoning and opportunistic focusing. Goal-directed reasoning entails
identifying and performing actions in order to achieve a state in
which other, desirable actions, can be performed. These other actions
may be desirable in themselves or because of their effect, e.g. in
leading to a goal state. Opportunistic focusing allows an application to
notice unusual or anomalous conditions and to temporarily focus its

attention on the anomaly to some end, returning later to complete its
original goal. All of these reasoning methods can be integrated within
the BB1 architecture. [4]

Hierarchical strategies will now be described in more detail since, for
reasons described later, WATCH is limited to recognizing only this
type of strategy. Throughout the following description, strategies are
expressed using the ACCORD language and take examples from the
SightPlan domain.

Hisrarchical strategy

Position Longterm-laydown

\

Anchor Longterm-laydown Yoke Large Longterm-laydown

Anchor Large Steel-laydown Anchor Coal-laydown

Figure 2: An example hierarchical strategy to position long-term laydown areas

3.5 Hierarchical strategies

As mentioned previously, hierarchical plans have a tree-like
structure. Moving down .the tree, at each level the problem is
decomposed into smaller and smaller subproblems until the leaf
nodes are reached. The leaf nodes describe individual actions. The
strategy is only as detailed as the actions specified by the leaf nodes.
If more than one action matches that prescribed by a leaf node then
these actions cannot be distinguished and their execution order is
essentially random. In BB1 this means the actions rate equally
against the criteria specified by the control plan and will be executed
in the order they became executable. If none of the possible actions
correspond to a particular leaf node then the node perscribes no
actions and is passed over.

One useful feature provided by ACCORD to distinguish between
actions prescribed by one node of a strategy is the use of modifiers.
A modifier assigns a value to a feature of an object or action. The
value can be used to order actions. For example the ACCORD action
sentence: "Position LARGE laydown areas" uses the modifier "LARGE"
to order the set of possible positioning actions in order of size, the

largest first. Laydowns are areas on a building site used to store
materials.

Given this background the hierarchical strategy in figure 2 will be
used to provide an illustration. The strategy will be applied to a
problem in which the objects to be positioned are: Steel-laydown-1,
Steel-laydown-2, Coal-laydown-1. '

The following sequence of steps will be prescribed by the strategy to
solve the problem:

1) Execution starts at the top node: "Position Long-term Laydown”,
this is subdivided into Anchoring the laydowns and Yoking the
laydowns.

2) Since the Anchor action is first, the laydowns are first anchored.
Anchoring is subdivided into anchoring the steel laydown and
anchoring the coal laydown.

3) "Anchor Large Steel-laydown" is a leaf node (or "focus") so any
possible actions matching its description will be executed. If in the
example Steel-laydown-1 is the larger, it will be anchored first. Then
Steel-laydown-2 will be anchored. If there are no more possible
actions that match this focus the next one is executed.

4) The Coal-laydown will be anchored in accordance with the action
of the next focus.

5) Finally the action "Yoke the long-term" laydowns is reached. Note
that this again is a focus so its actions will be performed. All possible
Yoke laydowns actions will be executed, in order of the size of the
object they yoke.

4 WATCH

This section describes the WATCH application, how it operates
and what its limitations and biases are. It also gives an example of
inductive generalization with the ACCORD framework.

4.1 Overview of WATCH

WATCH is a BB1 application that learns strategic knowledge for
use within other BB1 applications. When using WATCH, the BBI
application under consideration is run with all the domain knowledge
available but with no control knowledge i.e. no control KS's. A domain
expert provides the applicatior ' control knowledge by choosing
which of the domain KS's shoulu be executed on each BB1 cycle. By

doing this the expert is choosing the order in which actions should be
performed to solve the problem. WATCH performs inductive
generalization on the resulting action sequence to infer the strategy
used.

To perform inductive generalization WATCH has available to it the
ACCORD language hierarchy, the domain knowledge and some
problem specific knowledge. The domain knowledge includes such
information as the objects under consideration in this domain, their
attributes and the relationships between them. These will take the
form of object hierarchies on a BB1 blackboard. The problem specific
knowledge includes the actual set of objects within the problem
being solved, the values of their attributes and the constraints they
have with respect to each other.

4.2 Assumptions

WATCH makes a number of assumptions about the problem
solving strategy being used. These assumptions are:

1) The expert is consistent in using a single strategy to solve
the problem. This strategy may not be well formed in the experts
mind, but if he/she switches between two or more strategies WATCH
will become confused and make no sense of the control structure.

2) The strategy being used is hierarchical. As described later in
this section, WATCH acts by inductively generalizing the action
sequence up the ACCORD hierarchy (This hierarichy is illustrated in
appendix 1). This generalization method will only describe strategies
that are hierarchical in nature. See [7] for a technique that allows
WATCH to recognize opportunistic interruptions in a hierarchical
strategy.

3) The experts strategy can be implemented using the actions
provided by the ACCORD framework. The basic assumption about the
use of languages in BB1 is that the application will be able to solve
problems using the actions provided it by the language, this
assumption must hold for the strategies sought by WATCH.

4.3 How WATCH works

WATCH sequentially examines the sequence of problem solving
actions and builds a tree of possible generalizations of various
subsequences. A set of heuristics select the subsequences of actions
to be generalized. When all actions have been examined the possible
hierarchical strategies are identified and ranked according to a

second set of heuristics. The best set are chosen and the modifiers
that explain the ordering of actions in each sub-sequence are
inserted. The strategies are finally written out as a set of BBI

skeletalplans.

Each of these operations will now be examined in greater detail.

4 n iv neralization

As mentioned previously ACCORD serves as a generalization
language. WATCH steps through the action sequence trying to find
similarities between sets of adjacent actions. Some types of
similarities looked for are: sets of actions that all involve a particular
object, or sets of actions that all apply the same constraints, or all use
the same ACCORD verb. Figure 3 shows an example of inductive
generalization up the ACCORD hierarchy. :

Anchor fabrication-yard-1 fto power-plant-1 in partial-
arrangement-1 with constraint-set-fabyard-power-plant.

Yoke fabrication-yard-1 and construction-offices-1 in partial-
arrangement-1 with constraint-set-fabyard-offices.

Generalizing up the ACCORD class hierarchy could give:

Securely Position fabrication-yard-1 in partial-arrangement-1
with_strong constraint-set

Figure 3: Generalizing two ACCORD sentences up the ACCORD hierarchy. Bold words
are actions, Underlined are modifiers, italics are ACCORD template words and normal
font are domain objects.

Every ACCORD object or action can be generalized up one or more
levels of the ACCORD hierarchy and can have one or more modifiers
applied to it. Since every sentence in ACCORD has an action and many
objects there are many possible generalizations for any two
sentences. The fact that WATCH also has to choose which of the
possible subsequences in the action sequence should be generalized
together means that WATCH faces a combinatorial problem of
extreme proportions. Figure 4 gives an example of two possible
generalizations of three sequential actions.

Securely Position Large
objects in PA-1 with
strong Constraint-set

Generalization 2

Securel Pion
Fab-yard in PA-1 with
strong Constraint-set

Anchor Coction—oﬂieea
to PP-1 in PA-1 with
Constraint-set-offices-PP

nt » ion-offices
to Power-Plant-1 in Partial-
Arrangement-1 with Constraint

Anchor

to PP-1in PA-1 with Construction-acess-road-1

C-set-Fab-yard-PP in PA-1 with
C-set-Fabyard-road

Fab-yard and

to PP-1in PA-1 with Stong 2 Construction-acess-road-

Constraint-sets S in PA-1 with
Fab-yard-road
Generalization 1 2
‘ % Objects (}2 PA-1 with
% strong Constraint-set
_ e e sl .

Figure 4. Two possible generalizations for the same action sequence. The action
sequence is the center set of actions from left to right, upward arrows lead to one
generalization tree, downward arrows lead to another.

432 neralization heuristi

In an attempt to cope with this combinatorial explosion of
alternative generalizations WATCH uses a number of heuristics to
prune the generalization tree. Most of these heuristics relate to the
general goal of creating a well formed hierarchical strategy. Some
examples of this kind of heuristic are "Prefer longer sequences of
statements” (because the fewer generalizations you have to make the
better) and "Prefer generalizing over fewer variables” (because if
everything is generalized together detail is lost).

Some of the heuristics are specific to the ACCORD language such as:
"Avoid generalizing actions". This is true for ACCORD because the
actions do the work and so should be kept as close to the original
sequence as possible. This may not be true of other languages.

10

i

When all the actions have been considered, the generalization
trees that account for all the actions performed are identified and
ranked according to a second set of heuristics. These heuristics,
similar to the first set, are a measure of the "well-formedness” of the
hierarchical plan specified by the generalization tree. Two examples
are: "Avoid poorly grouped strategies” and “Prefer less
generalization". The best two or three strategies are chosen for

output.

43,4 ifyi ropri ifier

For each of the strategies selected, WATCH inserts any
modifiers that explain the ordering of generalized objects or actions.
These modifiers model the heuristics the expert uses to order a set of
similar actions.

4.4 Biases and Limitations of WATCH

The major limitation imposed on WATCH is its lack of
knowledge about BB1 state information. BBI1 applications are
normally very state dependant - the KS to be fired is chosen on each
BB1 cycle according to the state of the system at that time. The only
state information available to WATCH is the actual action sequence
performed and information about alternative actions on each cycle.
The lack of state information makes it impossible for WATCH to find
goal-directed plans.

WATCH is also biased by its use of a language, in this case ACCORD. It
cannot find strategies that cannot be expressed in ACCORD. Without
the language framework, however, WATCH would have no basis for
generalizing action sequences.

WATCH has no knowledge of the use of a language. For example
WATCH does not know the general sequence of problem solving
actions in ACCORD i.e. define partial-arrangements each with an
anchor etc. Such knowledge could be used within its generalization
phase to help choose the subsequences of actions to be generalized.

Finally WATCH is very much biased by the problem solving session
on which it is run. This is because the same strategy can result in
very different action-sequences when applied to different problems.
Thus the strategy WATCH produces is tailored to solving one
particular problem and may not work with problems containing

11

different objects or constraints. This arises from the fact that WATCH
can only observe the experts strategy in action on one problem and if
the problem does not fully exercise all branches of the strategy it is
impossible for WATCH to correctly deduce those branches. This
severely limits WATCH's utility as a knowledge acquisition tool. It is
toward this limitation that the MetaWATCH system is addressed.

5 MetaWATCH

This section describes MetaWATCH. The motivation behind the
system is given and its operation is detailed.

5.1 Introduction

MetaWATCH is a BB1 application that examines multiple sets of
WATCH output in the context of the problems they solve to
incrementally converge on a common "super-strategy”. This super-
strategy is closer to the experts intended strategy and can be used to
solve a wider range of problems. It is output as a BB1 skeletalplan.

5.2 Motivation

As described previously the strategies produced by WATCH are
very problem specific. The basic premise of MetaWATCH is that
given multiple problem solving sessions we are more likely to :ece all
branches of the experts strategy fully exercised and that this can
make the learning process more accurate.

5.3 Operation

2.3.1 Input
The input to MetaWATCH is the ACCORD language blackboards

and all the domain knowledge used by WATCH. Also for each
problem solving session examined by WATCH, MetaWATCH is given:

» The problem specific knowledge used by WATCH.

» The state information tsed by WATCH. This consists of
some BB1 agenda information recorded during this session detailing
the action sequence and information about alternative actions at each
cycle.

» The best two or three strategies found by WATCH
during this session.

12

vergen T-Sir

MetaWATCH operates as follows:
o All strategies found by WATCH from the first problem

solving session are compared to all strategies found by WATCH from

the second session.
o For each pair that have a common super-strategy that

super-strategy is generated. Any such super-strategy will solve a set
of problems of which the two test cases are elements.

e Correspondences are then sought between all such
super-strategies and the WATCH output strategies for the next
problem.

 Again all common super-strategies are found. These
super-strategies can be used to solve a set of problems of which the
three problems examined thus far are elements.

The above sequence iterates over all the sets of WATCH input,
of which there are an arbitrary number. In each case the super-
strategy generated will be the most common generalization of its
component strategies. In the worst case MetaWATCH incrementally
converges on a strategy that only solves the problems seen so far in
the same manner as the expert did. In the best case we find the
actual strategy the expert has been using which can then be used to
solve any problems to which he would apply the same problem
solving strategy.

There are a number of points to be made about this procedure. First,
all WATCH strategies explain the action sequence observed for the
given problem. If a strategy cannot be generalized to a more general
strategy that will explain the other problems examined then it will
be termed an incorrect strategy for this set of problems. This means
it cannot be an instantiation of the more general strategy the expert
is using to solve all the problems. Figure 5 gives examples of correct
and incorrect strategies. An important point to be mentioned here is
that MetaWATCH can only work with the strategies found by
WATCH. If WATCH does not list an instatiation of the correct one
among its output it is impossible for MetaWATCH to find it. It is true
that WATCH can find all possible strategies explaining the action-
sequence however given the huge number of such strategies it is
possible that the correct one will have been rejected during pruning.

13

["Anchor objz, obj1 | [Anchor Obj3. Obj1 | | Yoke Obj3, Obj2
ACTION SEQUENCE |
— / ~N
(-rAnchor Obj2, Obj1 Position Obj3
Position Objs
\ Incorrect strategy which could be inferred by WATCH y
["anchor obj2, obj1 | [Anchor obj3, 0bj1 | | Yoke 0Obj3. Obj2 |
ACTION SEQUENCE
4 N
Anchor Objs Yoke Objs
Expert's Strategy Position Objs
\. ; _/
["Anchor Obj2, Obj1 | [Anchor Obj3. Obj1 | | Yoke Obj3, Obs2 |
L ACTION SEQUENCE
a)
Anchor Objs, Objl Yoke Obj3, Obj2

Correct strategy to be \ /

inferred by WATCH. Note
this can be generalized Postition Objs

\ to the experts strategy)

Figure 5: This figure shows an action sequence and the experts intended strategy. It
can be seen that WATCH can come up with numerous strategies that explain the action
sequence, however of the 2 shown only the lower one is an instantiation of the experts
strategy. The other one is termed incorrect.

It may seem that this approach will lead to a combinatorial explosion
of the number of strategy comparisons required. For example given 4
problem solving sessions for which WATCH finds 4 possible

14

strategies each, the worst case number of strategy comparisons is 44,
However we are assuming the expert is using the same basic strategy
to solve all the problems, there is only one instantiation of this
strategy when applied to each problem, therefore only one of the
WATCH outputs can be correct. Experience has shown that WATCH
comes up with many spurious strategies very specific to the problem
solved. These strategies do not match with others and so early on in
the comparison process the true strategy is found. Subsequent
comparisons then explore this strategies branches in greater detail.

The convergence described is expected to occur after only a few
iterations thus the number of problem solving sessions used will be
low. So while in the worst case the problem is combinatoric, in
practice it is manageable.

Another approach to comparing strategies is a version space
approach, in which the most general and most specific versions of the
strategy are stored [8]. Correct strategies are merged with the most
specific version, to generalize it. Incorrect strategies are merged with
the most general version, to specialize it. As more strategies are
examined the true strategy is converged upon. There is one difficulty
with this approach: Our version space has many dimensions, the
strategy trees can have any branching factor and each node of the
tree is composed of a sentence whose components can all be
generalized up one of more levels of a generalization hierarchy. A
version space approach could work if the task was to narrow in on
the specific action for an individual node. However it is difficult to
see how two instances could be said to bound the space of possible
structures for a strategy tree.

2.3.3 Comparing Two Strategies

This section describes in detail the process of comparing two
strategies to determine whether or not they have a common
generalization. The technique is essentially a walk through the
strategy trees in conjunction with a stepping through the
corresponding actions in each action sequence. See figure 10 for an
algorithm that describes the matching process.

The question to be asked when comparing two strategies is whether
or not they could both be instantiations of the same super-strategy
as applied to different problems. The test of this is to determine
whether the same set of actions are generated when the first
strategy is applied to the second problem. Similarly for the second

15

strategy applied to the first problem. The difficulty with this
approach is that the two strategies have been generated from
different WATCH runs so they will not necessarily have the same
branches in common. This is because, as mentioned previously,
different problems exercise different branches of the experts
strategy. The best that can be done is to compare across the strategy
branches which they have in common or in which one strategy is
more general than the other.

This is best illustrated with examples. The strategies shown in figure
6 were generated by WATCH from the action sequences listed, they
give a positive comparison. Figure 8 shows a third strategy and
action sequence which will be compared to strategy 2 to give an
example of a negative comparison.

First the comparison of the strategies in figure 6. Starting at the top
- node, MetaWATCH steps through the two trees comparing nodes and
noting the actions indicated by the leaf nodes, building up the
corresponding super-strategy as it goes. In this comparison the top
two nodes are the same, so that node is copied straight across to the
new strategy. The next nodes compared are "Anchor Steel-laydown”
verses "Anchor Constrained Lt-laydown". From the ACCORD hierarchy
it is known that Steel-laydown is a type of Lt (Long-term) laydown,
so the second node is more general than the first. This means they
may match, one being a generalization of the other.

MetaWATCH has to determine if the two subtrees rooted by these
nodes could be derived from one, more general, subtree. To do this
all the actions from the first action sequence specified by the more
specific node - " Anchor Steel-laydown"- are stepped through. Using
the BB1 saved state information MetaWATCH then checks to see
whether any actions specified by the more general subtree were
possible at this point in this problem i.e. were there any actions of
the form " Anchor Lt-laydown" possible? This state information is
not shown in the figure but for this example it is assumed that no
such anchor actions were possible. This means that if at this point the
expert strategy was to "Anchor Lt-laydown", in the context of the
first problem it would appear as just an "Anchor Steel-laydown"
action, so the subtrees match. The more general subtree is then taken
from the second strategy and copied onto the new super-strategy. It
is assumed that the children nodes in the more general subtree
contain necessary detail. All the "Anchor Lt-laydown" actions in the

16

second action sequence are then stepped through and the comparison
proceeds to the next node.

Strategy1 Position Long-term laydown
Anchor Steel-laydown Yoke Large Lt-laydown
/ \
Yoke Coal-laydown Yoke Steel-laydown
and Railroad and Access-road
Strategy2

Position Long-term laydown__
Anchor Constrained Lt-laydown Yoke Coal-laydown

\ and Railroad

Anchor Steel-laydown Anchor Coal-laydown

to Power-plant to Power-plant
Action-sequence1 Action-sequence2
Anchor Steel-laydown1

to Power-plant Anchor Steel-laydownl
Anchor Steel-laydown2 to Power-plant

to Power-plant Anchor Coal-laydownl
Yoke Coal-laydown1 to Power-plant

and Rail-road2 Yoke Coal-}aydownl
Yoke Coal-laydown2 and Rail-roadl

and Rail-road2
Yoke Steel-laydown1
and Access-roadl

Figure 6: Two strategy trees and the action sequences from which WATCH derived them. See
text for an explanation.

17

The next nodes to be compared are the "Yoke Large Lt-laydown" and
"Yoke Coal-laydown and Railroad" nodes. Again these may match but
one - the "Yoke Large Lt-laydown" - is more general. In a manner
similar to the previous check the actions proscribed by the more
specific node in its action sequence are stepped through. Whether or
not any actions prescribed by the more general node were possible
at this point is then checked, if not the nodes match. Again for the
purposes of this example it is assumed that they match. The more
general subtree is then copied across, completing the comparison.
The resulting super-strategy is shown in figure 7. Note that while
neither of the WATCH strategies could explain both the action
sequences, this new super-strategy can.

Super-strategy
Position Longterm-laydown
Anchor Constrained Longterm-laydown }:Longterm-laydown
Anchor Steel-laydown Anchor Coal-laydown Yoke Coal-laydown Yoke Steel-laydown

Figure 7: The super-strategy resulting from a comparison of the two strategies illustrated above.

Strategy3 Position Long-term laydown Action-sequence3
/ Anchor Steel-laydownl
Anchor Steel-laydown Position Coal-laydown to Power-plant
Anchor Steel-laydown2
Yoke Coal-laydown Anchor Coal-laydown to Power-plant
and Railroad to Access-road Yoke Coal-laydownl
and Rail-road2
Yoke Coal-laydown2
and Rail-road2
Anchor Coal-laydownl
to Access-roadl

Figure 8 : The strategy 3 has been derived by WATCH from action-sequence 3.

18

The comparison of Strategy 3 in figure 8 and Strategy 2 in figure 6
will now be performed. Firstly, as before, the top nodes are matched.

The next nodes to be matched are the "Anchor Steel-laydown" node
of strategy 3 and the "Anchor Constrained Lt-laydown" node of
strategy 2. As before the former is a more specific version of the
latter, so we cannot rule out the possibility of the nodes matching.
Since "Anchor Steel-laydown" is the more specific node the actions it
dictates in Action-sequence3 are stepped through. We then check to
see if there are any actions that match the more general node that
could have been executed in problem 3 at this time. In this example
the action "Anchor Coal-laydownl to Access-roadl” matches the
more general node. This means that strategy 2 would perscribe a
different ordering on the problem solving actions than strategy 3
does. Thus the strategies don't match, i.e. could not both be
instantiations of a more general strategy.

This method while resulting in a more widely applicable super-
strategy does not loose any of the detail of either component
strategy. Thus while this paper mentions converging on the required
strategy and generalizing a pair of strategies, the actual term used
should be a combination of the two. The strategies become more
widely applicable while at the same time becoming more detailed.
The only time MetaWATCH loses detail from the originals is when
two matching strategies have the order of some subtrees swapped,
but either order is possible. MetaWATCH would decide the expert did
these actions in an arbitrary order and would generalize up the
language hierarchy to their common ancestor. For example if the
strategy of figure 7 above was compared with one the same in every
way except that the "Anchor steel-laydown” and "Anchor coal-
laydown" foci were swapped, the new super-strategy generated
would use "Anchor Constrained Longterm-laydown" as the focus. If
the order of foci is superfluous to insist upon any one ordering would
be wrong.

There are many other circumstances that can arise in comparing two
strategies, two such circumstances are outlined below and the
methods MetaWATCH uses to deal with them discussed.

One problem arises when two nodes being compared are different,
yet neither of the nodes can be said to be more general. This arises
when one node has a more general action and the other deals with
more general objects, or both deal with one type of object more

19

generally. In this case MetaWATCH generates an action sentence that
contains the common superset of the two and compares both against
this supersentence in the manner detailed previously (checking for
possibly executable actions etc). If both match, the supersentence is
used in the correspon‘ding strategy node. See figure 8 for an example.

Sentence 1
Anchor Large Longterm-Laydowns to Power-plant in Pal with strong Constraint-set*

Sentence2
Pogition Coal-laydoums in Pal with Constraint-sets

Supersentence
Position Large Longterm-laydowns in Pal with strong Constraint-sets

Figure 8: Position, in sentence 1, is the more general action but Longterm-laydown, in sentence 2,
is the more general object, thus neither sentence can be said to be more general. For comparison
purposes MetaW ATCH generates the common supersentence.

Strategy 1
Assemble Pal
Define Pal Position Longterm-laydowns
Stratagy 2
Assemble Pal
Dcﬂne?al/‘l"os.lt}h‘orttcrm—laydowns
Super-strategy
(N
Assemble Pal
Define Pal Position Longterm-laydowns Position Shortterm-laydowns
J/
Figure 9: Strategy 1 comes from a problem in which there are no shortterm laydowns,

strategy 2 from a problem with no longterm laydowns. The super-strategy will deal with
both laydown types. but has no information about which the expert would do first so
the order is arbitrary.

20

Another such problem occurs when the two strategies being
compared have distinct subtrees neither of which would make sense
when applied to the other problem. This arises when both strategies
explore totally different branches of the experts strategy. See for
example figure 9. In this case MetaWATCH inserts both subtrees into
the super-strategy being generated. There is, however, the problem
of ordering the subtrees. MetaWATCH looks for other information to
determine the ordering. In the absence of any other information an
arbitrary order is assumed in lieu of more information from
subsequent problems.

4 Dealing with modifier _

As mentioned previously modifiers model the heuristics used
by the expert to order a set of similar actions. In a skeletalplan type
strategy this means the heuristics used to order the set of actions
prescribed by the action sentence of a strategy node. So if, in BB1, an
action sentence prescribes a set of anchoring actions and the expert
likes to anchor large things first, the modifier- "LARGE" - will be
applied to the anchored objects.

WATCH, as one of the final steps in its operation, inserts modifiers
into the action sentences of the nodes in the strategies it has
developed. WATCH seeks modifiers that explain the observed
ordering of any objects or actions that have been generalized. All
such modifiers are inserted into the sentence.

The problem with this approach is that often the generalized
elements of the action sentence have been derived from only two or
three lower level (on the language hierarchy) elements. Thus many
of the modifiers WATCH finds to order the set of actions are spurious
and do not accurately model the experts heuristics. For example if
the expert prefers "operating on large objects first" it may just
happen that the ordering of the objects by size corresponds with the
ordering of the objects by most constrained and by most time-costly.
WATCH will insert all three modifiers into the action sentence.
MetaWATCH can identify some of these spurious modifiers by
comparing the sets of modifiers across multiple problems. Thus it can
more accurately model the experts heuristics.

21

Copy the super action|
sentence to the
superstrategy.

No

Get next nodes in a

depth first walk through
the strategy trees

Fig 10: The algorithm used to compare two strategies. See text for an explanation of how some
of the steps are implemented.

The modifiers are one of the last things dealt with by MetaWATCH.
When a common super-strategy has been found for two strategies
each of the matching nodes of these strategies are examined and the
common modifiers extracted. Since WATCH includes all modifiers
that correctly order the actions specified by the nodes, the correct
modifiers - if any - must be included in the sets listed by the nodes
on both strategies. So any modifiers that are not common to both
nodes must be spurious and are removed by MetaWATCH. Figure 11

22

shows an example of MetaWATCH converging on the correct modifi'er
by comparing successive sets of modifiers inserted by WATCH in
different problem solving sessions.

Position Large Constrained Position Constrained Large object
Constraining object

Position Large Constrained Position Large Time-costly
object object

Position Large object

igure 11: MetaWAICH converges on a correct model for the experts heuristics by
comparing the modifiers proposed by WATCH for the action sentence of one node
across three problems.

hoosin trate

Given that MetaWATCH has compared a set of WATCH outputs
taken from a number of problem solving sessions and added the
appropriate modifiers to each action sentence, the one problem that
can remain is that there may be more than one possible super-
strategy that will explain the observed actions in all the training
sessions.

There are a number of approaches to be taken here. Adding more
training instances may discriminate between the remaining
alternatives. Since MetaWATCH is a knowledge acquisition tool it
may suffice to simply ask the expert to indicate which he/she
considers closer to the correct strategy. It will certainly be a lot
easier to pick one refined strategy from a number of alternatives
than describe the strategy from scratch. Finally a set of heuristics,
such as those used by WATCH, could be used to choose the best
among the remaining possibilities. These heuristics should choose a
compromise between an overly general and an overly specific
strategy. See figure 12. :

23

The present MetaWATCH assumes the appropriate number of
training instances are available to converge on one strategy and if
this is not true it will output all alternative super-strategies found.

Overly specific strategy

Position Objects

Anchor objl Anchor obj2 Anchor obj3 Anchor obj4.......

Vs
Overly general strategy

Position Objects

Figure 12: An overly general strategy will not discriminate between possible actions
and is little better than no strategy at all. An overly specific strategy cannot handle
problems which contain objects not previously seen.

6 Testing and validation

This section describes a set of test cases which have been used
to validate MetaWATCH, the results of that validation and some
observations.

6.1 Introduction

This paper presents a lot of ideas that will work on the
idealized examples described. However for MetaWATCH to be of any
use as a Knowledge Acquisition tool it has to learn strategies under
more realistic conditions.

Throughout the design and implementation of MetaWATCH it was
tested and refined using a set of WATCH outputs from examples in
the Protean domain. The examples used for validation were taken
from the SightPlan domain. This tested the assumption that
MetaWATCH can learn strategies from multiple domains.

24

To obtain the test cases WATCH was run on a set of SightPlan outputs
for which the control strategy was known. In this way the
assumption that a single consistent strategy was being used across
problems was known to be true. The known control strategy
provides a gold standard against which the effectiveness of
MetaWATCH's learning can be measured.

To obtain the test cases a single realistic strategy from SightPlan was
used to solve three distinct problems. The appropriate action
sequences and domain knowledge were then passed to WATCH which
learned a set of possible strategies for each problem. The three sets
of WATCH output were then input to MetaWATCH with the goal of
finding the correct strategy.

6.2 The Test Cases

This section describes in detail the strategies used to test
MetaWATCH. The strategies are listed in appendix 2. WATCH output
a set of possible strategies for each SP problem solving session run
through it. For the sake of brevity only the strategies used to
generate the final superstrategy are shown. The failed comparisons
gave rise to some of the observations noted in a subsequent section
and are described where appropriate.

The strategy trees shown in the appendix are taken from screen
dumps of the BB1 display. For each strategy a listing of the strategy
nodes along with the action they perform is included. The nodes and
links in each display are listed by BB1 in the order created and may
not reflect the actual ordering or execution. In cases where this may
cause confusion, the correct order of execution will be outlined in the
description of each strategy - see next subsection. It is intended that
the reader refer to the appendix while reading the following
descriptions.

6.2.1 The SightPlan Strategy

This is a strategy that has actually been implemented and used
within the SightPlan application. It will be termed the AMI1 strategy
since it has been used to layout the Americanl power plant. It has
two main parts: the AE-Lavout and the CM-Layout.

25

The AE-Layout is the Architect-Engineer Layout. This section of the
strategy defines the partial-arrangement (pa) and positions all the
physical site objects within this pa. Note the order of execution of the
Define actions is to Create the pa, do all the Includes and then Orient
the pa. The Position branch needs some more explanation. The first
action is to Yoke all the physical site objects to subareas. The next
two foci: POSITION-CONSTR-FACILITIES and UPDATE-OCC-SPACE are done in
parallel i.e. actions from both may be interspersed.

The CM-Layout is the Construction-Manager Layout. This section of
the strategy includes laydown areas in the pa and positions them. In
a similar manner to the AE-Layout the laydowns are first Yoked with
subareas and then Positioned in parallel with Updating occupied
space. The UPDATE-OCC-SPACE foci is used by both parts of the
strategy.

622 WATCH Skeletalplanl
The first problem solved by SightPlan using the AMI strategy

did not have any laydown areas to position, thus the second part of
the SP strategy, the CM-layout, was not exercised. The output from
WATCH therefore does not include this part of the strategy at all.

Observations on this strategy:

e WATCH found the wrong overall structure for the strategy
but the one found is functionally equivalent to the one sought. The
YOKE-FAC& AREA actions were grouped with the DEFINE-AE-PA instead
of with POSITION-CONSTR-FACILITIES.

 The DEFINE-AE-PA subtree was found correctly albeit without
the correct amount of detail within the Include actions. (Node 81006
in the strategy)

« The YOKE-FAC& AREA was noted but the problem didn't
exercise the action fully and so a more specific version of the action
was found. (Node 81007 in the strategy)

* WATCH didn't at all notice the interleaved UPDATE-OCC-SPACE
but found the POSITION-CONSTR-FACILITIES NODE. (Node 81003 in the
strategy). Lots of spurious detail was included to try and order the
actions within this subtree.

6.2.3 WATCH Skeletalplan 2

The second problem solved by SP using the AMI1 strategy was
much smaller than the first and consequently has less spurious
detail. It also did not position any laydown areas and so ignored the
CM-layout.

26

Observations on this strategy:
o This strategy contains the same structural mistake as the

previous one.

o It has the same DEFINE-AE-PA branch. (Node 48256)

» This problem exercised the YOKE-FAC& AREA focus differently
than the previous problem. As a result in this strategy the node
describes an action whose first object is more specific but whose
second object is more general.(Node 48255)

o The POSITION-CONSTR-FACILITIES node found is more specific
than that found in the previous problem. (Node 482510)

5,2.4 The fir WATCH Istr

The strategy found by MetaWATCH by comparing the two
WATCH strategies described comes closer than either of them to the
original AMI1 strategy. However since both of the strategies
compared have the same structural mistake the MetaWATCH
strategy has it also.

Some observations:

e MetaWATCH knows nothing of the CM-LAYOUT so it is not
mentioned in the strategy.

e The MetaWATCH strategy, by ‘combining the two previous
strategies gets the YOKE-FAC&AREA node completely correct. (Node 10)

¢ One of the POSITION-CONSTR-FACILITIES nodes compared is more
general than the other so the subtree below it is used in the
MetaWATCH strategy. However all the spurious detail is copied along
with it. (Node 13).

625 WATCH Skeletalplan3

The problem this strategy is derived from did not contain any
construction facilities and so doesn't exercise the POSITION-CONSTR-
FACILITIES node. It does however contain laydown areas and so
exercises the CM-LAYOUT part of the AMI strategy.

Observations:

* In the same way as for all previous strategies the structure
of the strategy tree for the first part of the strategy is incorrect.

 In this strategy WATCH misses out completely on the
POSITION-AE-OBJECTS subtree.

« The CM-LAYOUT subtree is found with reasonable precision.
~Again the parallel foci are ignored and some spurious detail is
inserted.

27

6.2.6 The MetaWATCH output strategy

Since the third WATCH output was the final one, MetaWATCH
outputs the result of its comparison of this strategy and the
previously described intermediate MetaWATCH superstrategy.

Observations:

o Since the first subtree was correct previously, apart from the
problem with structure, it is the same in this strategy.

e In constructing this output MetaWATCH tries to compare the
POSITION-AE-OBJECTS subtree of its previous strategy with the CM-
LAYOUT subtree of the new strategy. These are found to be
incompatible with each other. However, as described previously - in
section 3.4.3.3, it is found that both subtrees should be in the final
strategy. Without any extra information MetaWATCH has no idea in
which order the subtrees should be inserted and puts them in in the
order compared. This by chance is the correct ordering.

e All the spurious foci from the first strategy are included in
this output strategy because we have found nothing to contradict
them. Recall that MetaWATCH never loses detail from a strategy
unless it has explicit knowledge that the ordering of actions was
arbitrary.

6.3 Observations

The major assumption made in developing the MetaWATCH
system was that an instantiation of the correct strategy will be
contained within each set of WATCH output. It was found that this
was not the case for all the examples tested.

The WATCH strategies tend to be grouped around a common theme
with only minor variations. The reason for this is that WATCH makes
early assumptions about the groupings of subsequences of the action
sequence. If these assumptions are wrong all the output strategies
will be wrong.

Even given the correct initial assumptions about subsequences of

actions the output strategies invariably have associated spurious
detail. This can be seen in all three of the WATCH strategies detailed.

28

It was also noted that there were some errors in the way

MetaWATCH operates
o The assumption that when comparing two subtrees the more

general one should be used was found to be false. Often it is found
that the less general subtree has detail that should also be taken into
consideration. For example in comparing nodes 81003 and 482510
from skeletalplans 1&2 the latter is the less general node but
contains foci that have detail not covered by the former.

e MetaWATCH only ever compares pairs of subtrees, there was
a need in some of the strategies tested, but not considered here, to
compare one subtree in one strategy against two or more in another
strategy.

It can be seen however from the test cases reviewed that
MetaWATCH works well within its assumptions and can produce
strategies that closely model the one used to solve a set of problems.

7 Conclusions

Strategies can be learned accurately by using multiple problem
solving sessions to more fully exercise all branches of the strategy
tree. MetaWATCH takes a first step toward the goal of performing
knowledge-based strategy comparisord. It works well if its
assumptions about the initially inferred strategies, i.e. the WATCH
output strategies, hold.

However it was seen that in many cases these assumptions -
specifically that WATCH always outputs an instantiation of the
correct strategy - don't hold.

At present MetaWATCH is extremely sensitive to any small
differences between strategies. For example if one of the spurious
foci in Skeletalplanl had conflicted with the details of one of the
other skeletalplans they would not have matched. WATCH cannot be
expected to discover the correct instantiation of the experts strategy
with complete accuracy. To be practical MetaWATCH needs to use a
more heuristic strategy comparison.

8 Extensions to the work on MetaWATCH
The type of heuristic strategy comparison referred to in the

previous section could be achieved using a set of heuristics in
conjunction with MetaWATCH. The present MetaWATCH system

29

could be used to match and discover the inconsistences in a pair of
strategies. If inconsistences exist MetaWATCH could point out exactly
where they are and the form they take. The heuristics could then be
used to decide if the strategies were indeed closely related and if so
how they could be combined. This would allow the system to ignore
spurious detail of the type seen in the previous section but still find
the general features in common between strategies.

For it to be of use as a knowledge acquisition tool the strategies
learned by MetaWATCH should be applicable to a wider set of
problems than those examined by WATCH. However it is obvious that
one strategy will not work for all possible problems within a domain.
Thus MetaWATCH requires knowledge of the class of problems to
which the strategy learned can be applied. At present MetaWATCH
has no such knowledge. Deriving this knowledge is a non trivial task
and would require much experience using the system.

Given more knowledge about types of strategies, classes of problems
and the differences between them MetaWATCH could be expanded to
perform an interactive style of learning more in line with the needs
of a knowledge acquisition system. It could do this by posing
problems for the expert to solve. These problems could be designed
to explore more fully various branches ‘of the strategy trees under
consideration and distinguish between various plausible alternative
structures for these branches. Such problems could also be used to
explore the limits on the range of applicability of a particular
strategy.

30

References

[1] Hayes-Roth, B.: BB1: An Architecture for Blackboard systems that
Control, Explain and Learn about their own Behavior, Tech.
Report HPP-84-16, Stanford University, 1984.

[2] Harvey, J.: WATCH - Inductive Learning of Control Abstractions,
Unpublished report 1987.

[3] Hayes-Roth, B., Hewett, M., Johnson, M.V., Garvey, A.: ACCORD:
A Framewrok for a Class of Design Tasks, Tech. Report KSL 88-
19 1988.

[4] Johnson, M.V., Hayes-Roth, B.: Integrating Diverse Reasoning
Methods in the BB1 Blackboard Control Architecture, Tech.
Report KSL 86-76 1986.

[5] Levitt, RE., Tommelein, I., Hayes-Roth, B., Confrey, T:
SIGHTPLAN: A Blackboard Expert System for Constraint-Based
Spatial Reasoning About Construction Site Layout, ASCE 1989?

[6] Hayes-Roth, B., Buchanan, B., Lichtarge, O., Hewett, M., Altman,
- Brinkley, J., Cornelius, C., Duncan, B., Jardetzky, O:
PROTEAN: Deriving protein structure from constraints,
Proceedings of the Fifth National Conference on Artificial
Intelligence, 1986. .,

[71 Gans, A: NEWWATCH: Learning Interrupted Strategies by
Observing Actions, M.S.A.L. Practicum paper, Stanford 1989.

[8] Mitchell, T., Utgoff, P., Banerji, R: Learning by Experimentation:
Acquiring and Refining Problem-Solving Heuristics, Machine
Learning, Volume II, Chapter 6.

31

Appendix 1 - The SightPlan object hierarchy

This appendix shows the SightPlan object hierarchy. This hierarchy is
used by both WATCH and MetaWATCH to generalize objects to a

common superobject:

32

HELP info File Eait Naow Hename Datote Print Link Attribute Inheritance Data Dieplay

Displaying short object nares on a horizontally-orientad graph.

Isorry, can’t do (BEND-EDBE (CRN-BE-R (CONCEPT .NATURRL-TYPE.CONSTRAINT CONCEPT.CONSTRRINT.STRTE-CONSTRRINT))) yet.
{13:58 Finigshad printing User-specif ied Rsctangle on printer inagen-1 of [magen-1])

BBEdie

s» FAB-CIVIL — —3 FAB-CIVIL-t

~>» MBY-QFFICE-TRAILER — —> MBT-OFFICE~TRAILER-1
SANITARY
WRREHOUSE - - - - = > FAB-BLDG —— > FAB~BLDG-1
PERSONNEL-BUILDING

BUILDING SERVICE-BUILDING

POHER-UNIT = ww > PORER-PLANT —— —3 POWER-PLANT -1

POWER-BUILBING =« -~ - > GRS~TURBINE — —>» GRS-TURBINE-1

COOLING-TOWER

TRAILER -2 77

HYSICRL~OBJECT

0BJECT 1TE-PHYSICAL-0BJECT PREKING

RGGREGATE-LAYOUT
SWITCHYARRD
CHINNEY-ARER
SLUDBE ORS~-TURBINE-INLET
WATER-TRERTHENT r

FUEL-STORRGE

REGION

4 BRS~TURBINE-INLET
NATURAL-TYPE /

’
Y BOWN —— R - ~
LAYDO COMTRACTOR-LAYDOWN < ~~<» CABLE-TRAY — —> CABLE-TRAY~1

SPRCE-AND-TIHE ROAD -~ —- - > PLANT -ENTRANCE-ROAD — ——> PLANT -ENTRANCE-ROAD-1
TIME RAILROAD
SITE ~= = = > KING-CITY-SITE — 3 KING-CITY-SITE~1
CONTERT SPRCE SUB-ARER < -~ > FENCED-ARER — —> FENCED-AREA-1
~~>» LAYDOWN~ARER — —3 LAYDOWN-ARER~1
OCCUPIED-SPACE =~ ==~ > AM! -OCCUP1EB-SPACE — —> AM1 ~0CCUPIED-SPACE-1

TIME-RAND-PEQPLE

CAN-BE-A 11inks solid 1ines
EXEMPLIFIED-BY 1inks short dashes
INSTANTIRTED-BY 1inks long dashes

HELP Info File Edit New Haename Delete Print Link ,Attribute Inheritance Data Dlsplay
>
>
>
>
>
>
>
>
> [Resume]
BBEdit
ORIENTAT [ON-CONSTRAINT ——> SITE-ORIENTAT ION-CONSTRAINT]
IN-BETHEEN ag
ALIGNED-HITH 180
NON-OVERLAP-SET 278
ALONGS! DE PARALLEL
S1TE-OTHER-CONSTRRINT ASHORTSIDE CERPENDICULAR
BETW-GHORT -S1DES
AT-LONG-S1DE
DISCRETE~SAMPLE
CONSTRAINT —> DBJECT ~BASED-CONSTRAINT PICK-ONE AS-CLOSE-AS-POSSIBLE
FURTHER-THAN
DISTANCE-CONSTRAINT ————> SITE-DISTANCE-CONSTRAINT
CLOSER-THAN
NON-OVERLAP ™ ppJAcENT-TO
0NINB~CONSTRRINT—~—-—>SlTE—ZONING—CONSYRRINT<5EEE£§ZONED—XN
AFACILITY ZONED-OUTSIDE-OF
!
/ 4STRONG
,
NATURAL-TYPE [/ 4 CONSTRAINED
/174 CONSTRRINING
s, FIRED SHMRLL--MODIFIER
bt SIZE-MODIFIER
se7),”-y UNPOSITIONED MEDIUM--MODIFIER
5747, ~ PERMANENT ARG
v, . .. -=-»LARGE
%~ I3 FIRST-CONSTRUCTED LARGE--MODIFIER ~22_ | | ARoE-2
" UBJECT-MODIFIER &€= NOUN-MODIFIER
OBIFIER < &5..~> UNDIMENSIONED
~ W\~ 3 PRESENT -FIXED
D [MPORTANT \\:‘RELHTIUELY—F!HED
3 AGGREGATE
SIUNIT
CAN-BE-A 1inks solid lines
EXEMPLIFIED-BY 1inks short dashes
INSTANTIRTED-8Y 1inks long dashes

Appendix 2 - Test cases

Each of these sets of output consists of a screen dump of the
hierarchy of a skeletalplan and a description of the actions of each of

its nodes.
Contents:

The SightPlan skeletalplan. This is the goal strategy which we
are trying to learn.

The first skeletalplan learned by WATCH by examining set of
actions used to solve a problem with the SightPlan skeletalplan.

A second skeletalplan learned by WATCH from the actions used
to solve a second problem with the same skeletalplan.

The intermediate strategy MetaWATCH found by comparing
the above two WATCH skeletalplans.

A third WATCH output skeletalplan.

The final MetaWATCH output - the result of comparing all
three WATCH output strategies.

33

-+- Mode: Texi; Fonts:(HL8 HLBB HL78) -°-

o‘an-oeactoc-o-c-oao...o..cac'c“o--oct-'-..ot---cvoo---------ocoooc‘.-c-c--.--o-o-o

SKELETALPLAN1 OBJECT DESCRIPTIONS

oon-to-.---.c--a.o..-...o.‘-ooco---a.------c..oc----.;o-.c-’-o.ou.o------oc

(STRATIEYS1002
(RSSEMBLE PA1))

(STRATEGYS 1083
(SECURELY POSITIOR .UNIT AGGREGATE LARGE‘RELATWELY-FIXED
PRESENT-FIXED UNDIMENSIONED PERMANENT UNPOSITIONED FIXED
CONSTRAINING FACIITY SITE-PHYSICAL-OBJECT iN PA1 WITH
OBJECT-BASED-CONSTRAINT))

(STRATEGYB 1004
(RSSENBLE PAY))

(STRATEIC V1089
{YOKE TRALER AND SITE-PHYSICAL-OBJECT IN PA1 WITH
SITE-DISTANCE-CONSTRAINT))

(STRATEGYB 1806
(DEFINE PA1))

(STRATEGYS 1807
(YORE SITE-PHYSICAL-OBJECT AND FENCED-AREA-1 IN PA1 WITH
IMPORTANT ZONED-IN))

(STRATICYE 1008
(YOKE NATURAL-TYPE AND FAB-BLDG-1 IN PA1 WITH
OBJECT-BASED-CONSTRAINT))

(STRATECYS 1009
(SECURELY POSITION UNIT AGGREGATE LARGE RELATIVELY-FIXED
PRESENT-FIXED UNDIMENSIONED PERMANENT UNPOSITIONED FIXED
CONSTRAINING CONSTRAINED FACILITY FAB-BLDG-1 IN PAT WITH
SITE-DISTANCE-CCNSTRAINT))

(STRATEGYS 10010
(YOKE MGT-OFFICE-TRAILER-1 AND NATURAL-TYPE IN PA1 WITH
OBJECT-BASED-CONSTRAINT))

(STRATEGYB 18011
(SECURELY POSITION UNIT AGGREGATE LARGE RELATIVELY-FIXED
PRESENT-FIXED UNDIMENSIONED PERMANENT UNPOSITIONED FIXED
CONSTRAINING CONSTRAINED FACILITY MGT-OFFICE-TRAILER-1 IN
PA1 WITH OBJECT-BASED-CONSTRAINT))

(STRATICYS 10012
(CREATE PA1 FOR KING-CITY-SITE))

(STRATEGYB 16013
(MICLUDE NATURAL-TYPE IN PA1))

(STRATECYS 10014
(ORIENT PA1 ABOUT POWER-PLANT-1))

(STRATIGYS 10013
(YOKE FENCED-AREA-1 AND FAB-BLDG-1 IN PA1 WITH
ZONED-IN-103-FENCED))

osavscescse

000000 EesasEE0e00GRG.

(STRATEEYS 18016
(YORE FENCED-AREA-1 AND MGT-OFFICE-TRAILER-1 IN

PA1 WITH ZONED-IN-1 05-FENCED))

(STRATEGYE16017
(YOKE FAB-BLDG-1 AND AM1-OCCUPIED-SPACE-1 IN PA?Y

WITH NON-OVERLAP-SET-1 03-OCCUPED))

(STRATEGYS10818
(YORE MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1 IN PAY

WITH CLOSER-THAN-103-108))

(STRATECYS16919
(YOKE GAS-TURBINE-1 AND FAB-BLDG-1 IN PA1 WITH

CLOSER-THAN-103-GT))

(STRATECYS 16020)
(AHCHOR FAB-BLDG-1 TO POWER-PLANT-1 IN PA1 WITH

AS-CLOSE-AS-103-PLANT))

(STRATEGYS18821
(YORE MGT-OFFICE-TRAILER-1 AND AM1-QOCCUPED-SPACE-1

IN PA1 WITH NON-OVERLAP-SET-105'OCCUPED))

(STRATEGYS10622
(YOKE MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1 IN PA1 WITH

’ CLOSER-THAN-103-105))

(STRATECYS10623
(YORE PLANT-ENTRANCE-ROAD-1 ANO MGT-OFFICE-TRALER-!

IN PA1 WITH ADJACENT-TO-105-ROAD))

(STRATEGYB10024
(YOKE MGT-CFFICE-TRAILER-1 AND FAB-BLDG-1 IN PA1 WITH

CLOSER-THAN-103-105))

(STRATECY3 10625
(ANCHOR MGT-OFFICE-TRAILER-1 TO POWER-PLANT-1 IN PA1

WITH PARALLEL-1-105))

(STRATEGYS10026
(YOKE MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1 IN PA1 WITH

CLOSER-THAN-103-105))

(STRATECYS16027
(YOKE GAS-TURBINE-1 AND MGT-OFFICE-TRAILER-1 IN PA1
WITH AS-CLOSE-AS-105-GT))

(STRATECYB10023
(YOKE MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1
N PA1 WITH CLOSER-THAN-103-105))

T HELP Info File Edlt Mew Hename Delate Print Link Atcribute inheritance Data Digplay

Displaying short object nares on & hori1z2ontal ly~-crignted grapn,
Sorry, can‘t do (BEND~EDGE (RCCOMPL [SHED-BY (PLAN~KS . STRATEGY . ARCHI TECT ~ENGINEER-PLAN PLAN-KS.STRATEQY . DEVELOP-SITE-LAYQUT))) Y
et.
ll'*'ﬂ'w***‘ﬂ'&tﬁ'ﬁﬁ*ﬂﬁ"&w***ﬁ'***‘t**ﬁ"ﬂ’*ﬁ*ﬁ#*‘k?*ﬂﬂﬂ**ﬂ**#ﬂ***ﬂ?
SsightPlan skeletalplan

) \"ﬁ*ﬂ'*‘k***ﬁ'****ﬁ******ﬁ‘*******t**#t**ww**t*ﬁ*ﬁ't****tﬁ**
BBEdit

CRERTE-THE-SPRCE

[NCLUDE-THE-CONTEXT
INCLUDE-RRERS

INCLUDE-F I XED-0BJECTS

DEFINE-RE-PA INCLUDE~CONSTR-FACILITIES
DETERMINE-OCCUP1ED-SPACE
RE-LAYOUT
ORIENT-THE-PA
YOKE-FACLARER
DEVELQP-S1 TE-LAYOUT
POSITION-RE-OBJECTS

DEF I NE~CM-PR ——2> [NCLUBE-LRY DOWNS

POSITION-CONSTR-FACILITIES
UPDRTE-OCC-SPRCE

CH-LAYOUT POSITION-LG-LRYDOWN
YOKE-LAY JOKNEARER

POSITION-CN-QBJECTS

ACCOMPL | SHED-BY 1inks soliid lines
[S-ROOTED-BY Vinks dashed lines

(BEVELOP - S1TE -LAYOVT (YORE -TRCAARIR

(RSTLNBLE PARTIAL-ARRANGEMENT)) (YORE LARGE FACLITY SITE-PHYSICAL-OBJECT AND LARGE-2

SUB-AREA 'SOLUTION.PAF 1L-ARRANGEMENT WITH BMMPORTANT

(CH -LAYSUT " CONSTRAINT))

(LAYSUT DONE BY CONSTRUCTION MANAGER))

(YORE -LAYDOMBGARIA

(AL -LAYOVY (YO&Z LARGE CONTRACTOR-LAYDOWN AND LARGE-2

(LAYOUT DONE BY ARCHITECT ENGINEER)) : SUB-AREA 'SOLUTION.PARTIAL -ARRANGEMENT WITH

MPORTANT CONSTRAINT))
(POSITION -CH -08JICTS

(POSITION LAYDOWN AREAS)) (POSITION -LE -LAYDONN
(POSITION LARGE CONTRACTOR-LAYDOWN N PA1
(DEFIML -RE-PA WITH IMPORTANT CONSTRANNT))

(DEFML PARTIAL -ARRANGEMENT))
(SETERMINE -QCCUPIED -SPACE

(DEFIE -CH-PA "Determine the space that :3 occupied by the fixed odjects on
(SLFML PARTIAL -ARRANGEMENT)) the site; that is, roads, rairoads and permanent facilities.”)
{POSITION -AL -08JCTS (UPOATE -0CC -SPACL
(POSITION CONSTRUCTION FACLMES)) “Keep track in a separate object of which spaces on the site

are occupied”)
(WCLUBE -THE -CONTENY

(MMCLUBE CONTEXT 'SOLUTION.PARTIAL-ARRANGEMENT))
(1MCLUDE -LAYDOMNS

(MCLUDL -ARIAS (INCLUDE LAYDOWNS IN SOLUTION PARTIAL -ARRANGEMENT)

(IMCLUBE SUB-AREA 'SOLUTION.PARTIAL -ARRANGEMENT))
(INCLUDL -CONSTR -FRCILITILS

(INCLUDE FACILITY SITE-PHYSICAL-OBJECT IN

{CRERTE -THE -SPACE
SOLUTION.PARTIAL-ARRANGEMENT))

(CRIATE PARTIAL -ARRANGEMENT FOR CONCEPT))

(POSITION -CONSTR -FACILITUIES
(POSITION LARGE FACILITY SITE-PHYSICAL-OBJECT IN
PA1 WITH IMPORTANT CONSTRAINT))

{ORIENT -THE -PR
(ORMRT PA1 ABOUT FIRST-CONSTRUCTED POWER-UNIT})

{(IICLUNE -1 INID -8B NCTS
(MCLWBE FIXED OBJECT "SOLUTION.PARTIAL-ARRANGEMENT))

.

HELP Info File Edit New Aenams Delete Print Link Attribute Inheritance

Data

Display

=

Displaying short object names on a horizontally-oriented graph.
{13:47 Finished printing Bbedit Frame 2 on printer [magen-1 of Imagen-1]
(13:48 Finished printing User-specified Rectangle on printer Imagen-i1 of Imagen-i}

*- Mode Text: Fonis (ML HLEB HLIB) -°-

BBEdit eeerereetseesestsreaararensasasteasasanan
SKELETALPLANI
STRATEGY818@12
STRATEGYS1086 <STRHTEGYBIBBIS
STRATEGYB1@@14
STRATEGYS1004

STRATEGY 15

STRRTEGYBIGB?«:::::; EGYS1008
STRATEGY818816

PLAN =~ =~ > STRATEGY81882

STRATEGYS18826
STRHTEGYS!BGS<EEEE£§STRHTEGYSIBBZ7

STRATEGYB1 0628

STRATEGYS1001 7
STRATEGYS1008 <
STRATEGYS18018

STRATEGYS18619
STRATEGYS10863 STRATEGYS1009
STRATEGYB18820
STRATEGYS18821
STRHTEGYB!BG]G<5EEE£;STRHTEGY819822
STRATEGY818023
STRATEGYB108824
STRATEGYS1081 1 ‘=:::::
STRATEGY818025

ACCOMPLISHED-8Y links solid lines
[S-ROOTED-BY links dashed lines

ssacse
6008590200000 A0Ee000008908000000dea0cE0000UCG0000000000040000000aVsCRE000000
©80onoeccouvescocssansaa

SKELETALPLAN2 OBJECT DESCRIPTIONS

©04008000000000008400E0D0CA00000
59$0060004#00000000009900000UCETUEENNGD0000000003000¢00
9008c0s00000e00d

HETP Info File EdIt New HAename Deloate Print

Link Attribute

Inheritance Data Display

Displaying short object names on a horizontally-griented graph.

BBEdit

PLAN -« - - > STRATEGY482511

ACCOMPLISHED-BY links solid l:ires
[S-ROOTED-BY links dashed lines

STRATEGY48256 < STRATEGY 48253
STRATEGY 48259 < STRATEGY 48254

STRATEGY48255

STRATEGY48257
srnnreevqazsxe<<:::::
STRATEGY48258

STRATEGY48252

(STRATEGY48252
(CRERTE PA1 FOR KING-CITY-SITE))

(STRATEG 48253
(MCLUDE NATURAL-TYPE IN PA1))

(STRATIGY48254
(ORIENT PA1 ABOUT POWER-PLANT-1))

(STRATEGY48255
(YOKE PARKING-1 AND SUB-AREA IN PA1 WITH IMPORTANT
SITE-ZONING-CONSTRAINT))

(STRATECY48257
(YOKE NATURAL-TYPE AND FAB-SHOPS-1 IN PA1 WITH
IMPORTANT OBJECT-BASED-CONSTRAINT))

(SIRATEG V48258
(AMCHOR FAB-SHOPS-1 TO POWER-PLANT-1 IN PA1 WITH
AS-CLOSE-AS-1 03-PLANT))

(STRATEG V48256
(DEFINE PAY))

(STRATECY48259
(RSSEMBLE PA1))

(STRATEC Y4325 10
(SECURELY PosITION UNIT AGGREGATE LARGE RELATIVELY-FIXED
PRESENT-FIXED UNDIMENSIONED PERMANENT UNPOSITIONED FIXED
CONSTRAINING CONSTRAINED FACILITY SITE-PHYSICAL-OBJECT
IN PA1 WITH OBJECT-BASED-CONSTRAINT))

(STRATECY482511
(ASSEMBLE PA1))

es000n0vesccessccssacoae

SKELETALPLANZ OBJECT DESCRIPTIONS

L Ry P Y L L]
498¢00000000000000000000000000600030
4088999000 80009000d0000000

esseco0vo0
040999000000 850300000 0008000000 PAUcECe000000PS0000058000000¢000080000040
2000006009000 e0000000

s
STRATEGY48259 <

HELP Info File Edit New Hename Delete Print Link Attribute Inheritance Data Display]
Displaying short object names on a horizontally-oriented graph.
BBEdit
STRATEBY482S2

TRATEGY 48256 <

STRATEGY 48255

STRATEGY48253
STRATEGY482S4

PLAN =~ =~ = > STRATEGY 482511
STRATEGY48257
STRHTEGY482518< .
STRATEGY48258
RCCOMPLISHED-BY 1links solid lires
1S-ROOTED-BY 1inks dashed lines
(SIR“'EGY“ZSZ (STRRTEGWSZSG
(CREATE PA1 FOR KING-CITY-SITE)) (DEFINE PA1))
(STRATES V48253 (STRATEGY48259
{MCLUDE NATURAL-TYPE IN PA1)) (ASSEMBLE PA1))
(STRATESYe8254 (STRATEG V482510
(ORIENT PA1 ABOUT POWER-PLANT-1)) (SECURELY POSITION UNIT AGGREGATE LARGE RELATIVELY-FIXED
PRESENT-FIXED UNDIMENSIONED PERMANENT UNPOSITIONED FIXED
(STRATEG V48255 CONSTRAINING CONSTRAINED FACILITY SITE-PHYSICAL-OBJECT
(YOKE PARKING-1 AND SUB-AREA IN PA1 WITH IMPORTANT IN PA1 WITH OBJECT-BASED-CONSTRAINT))
SITE-ZONING-CONSTRAINT))
(STRATEG V482511
(STRATEG V48257 (RSSEMBLE PA1))
(YOKE NATURAL-TYPE AND FAB-SHOPS-1 IN PA1 WITH
IMPORTANT OBJECT-BASED-CONSTRAINT))
(STRATECYe8258

(RNCNOR FAB-SHOPS-1 TO POWER-PLANT-1 IN PA1 WITH
AS-CLOSE-AS-103-PLANT))

Print Link Attribute Inheritance Data Dlaplay

HELP Info File Edit New Hename Delste

Displaying short object names on & norizontally-oriented grapn.

.!Q'ﬂ"'ﬂlv""t'tl""t"ﬂt't""'w'eattt""""'ﬁ"'t"'ﬁ!.!.t'n

First MetaWATCH Strategy - combining skeletalplans 1&2

-'t'tg-""'t--'-c.tﬁa'ttt-'.gw-nv.-q'-nn-t-w'-'-'tt--e-w---"a"-.'

BBEdit
FIRST-LEVELE
FIRST- T-LEVEL?
FIRST-LEVELS IRS LEUELS‘szzzng‘RS
FIRST-LEVELS
FIRST-LEVEL18
FIRST-LEVEL14 FIRST-LEVELLL
<=::i:F!RST—LEUEL12
RST-LEVELLS FIRST-LEVEL1S
FIRST -LEVEL2 - = = - - > FIRST-LEVEL3 - FIRST-LEVELI?

FIRST~LEVELIS
FIRST-LEVELZ2G
FIRST-LEVEL2]

FIRST-L
FIRST-LEVELIS s EVELIS

FIRST-LEVEL23

FIRST~LEVEL22
FIRST-LEVEL24

FIRST-LEVEL26
FIRST-LEVEL27Y
FIRST-LEVEL28

\NFIRST-LEVELZS

AN A AN

ACCOMPLISHED-8Y links solid tines
{S-ROOTED-BY)inks dashed l1ines

9000 AREsIa0e0EeNEBITOOeEeesasetieesua0s000esUEoe0Ee0E000Cedn000R0000000008490000000000000806003008080803

FIRST METAWATCH STRATEGY OBJECT DESCRIPTIONS

99D ORGP 00000R0000DIRI00scERRRREausnIUnNo0aRIn00Pe0000Aee0000sN0000000es0090RsIraArN0080000000009000000d

(FIRSTV-LEVELS
(RESERBLE PA1))

(FIRST-LEVELS
(ASSEMBLE PA1))

(FIRST-LEVELS
(DEFINE PA1))

(FIRST -LEVELG
(CRERTE PA1 FOR SiTE.CONTEXTS.SITE)})

(FIRST-LEVEL?
(INCLUDE NATURAL-TYPE IN PA1))

(FIRST -LEVELS
(ORIENT PA1 ABOUT POWER-PLANT-1))

(FIRST-LEVEL1®
(YOKE SITE-PHYSICAL-OBJECT AND SUB-AREA
IN PA1 WITH IMPORTANT ZONED-IN-CONSTRAINT))

(FIRST-LEVELTY
(YOKE FENCED-AREA-1 AND FAB-BLDG-1 IN PA1 WITH
ZONED-IN-103-FENCED))

(FIRSY-LEVELIZ
(YOKE FENCED-AREA-1 AND MGT-OFFICE-TRAILER-1
IN PA1 WITH ZONED-IN-105-FENCED))

(FIRST-LEVELTS
(POSITION UNIT AGGREGATE LARGE RELATIVELY-FIXED
PRESENT-FIXED UNDIMENSIONED PERMANENT
UNPOSITICH:"D FIXED CONSTRAINING FACILITY
SITE-PHYSICAL-OBJECT IN PA1 WITH
OBJECT-BASED-CONSTRAINT))

(FIRST -LEVEL1S
(YOKE NATURAL-TYPE IN PA1 WITH
OBJECT-BASED-CONSTRAINT))

(FIRST -LEVELYS
(POSATION FAB-BLDG-1 IN PA1 WITH
SITE-DISTANCE-CONSTRAINT))

(FIRST-LEVEL16
(YOXE GAS-TURBINE-1 AND FAB-BLDG-1
IN PA1 WITH CLOSER-THAN-103-GT))

(FIRST-LEVELT?
(ANCHOR FAB-BLDG-1 TO POWER-PLANT-1 |

N PA1 WITH AS-CLOSE-AS-103-PLANT))

(FIRSY-lEUEL‘!a
(YOKE MGT-QFFICE-TRAILER-1 AND NATURAL-TYPE
IN PA1 WITH OBJECT-BASED-CONSTRAINT))

(FIRSY -LEVEL1S
(YOKE MGT-OFFICE-TRAILER-1 AND
AM1-OCCUPIED-SPACE-1 IN PA1 WITH
NON-OVERLAP-SET-105-OCCUPIED))

(FIRST-LEVELZO
(YOUE MGT-OFFICE-TRALER-1 AND FAB-BLDG-1

IN PA1 WITH CLOSER-THAN-103-105))

(FIRST-LEVEL21
(YOKE PLANT-ENTRANCE-ROAD-1 ANO
MGT-OFFICE-TRAILER-1 IN PA1 WITH .
ADJACENT-TO-105-ROAD))

(FIRST-LEVEL22
(SECURELY POSITION UNIT AGGREGATE LARGE
RELATIVELY-FIXED PRESENT-FIXED UNDIMENSIONED
PERMANENT UNPOSITIONED FIXED CONSTRAINING
CONSTRAINED FACILITY MGT-QFFICE-TRAILER-1 IN
PA1 WITH OBJECT-BASED-CONSTRAINT))

(FIRST-LEVEL2S
(YOKE MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1
IN PA1 WITH CLOSER-THAN-103-105))

(FIRST-LEVEL24
(ABCHOR MGT-OFFICE-TRAILER-1 TO POWER-PLANT-1
IN PA1 WITH PARALLEL-1-105))

(FIRST-LEVELZS
(YOKE TRAILER AND SITE-PHYSICAL-OBJECT IN PA1
WITH SITE-DISTANCE-CONSTRAINT))

(FIRST-LEVEL2E
(YOKE MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1
IN PA1T WITH CLOSER-THAN-103-105))

(FIRST-LEVEL27
(YORE GAS-TURBINE-1 AND MGT-OFFICE-TRAILER-1
IN PA1 WITH AS-CLOSE-AS-105-GT))

(FIRST-LEVEL2S
(YOKE MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1
IN PA1 WITH CLOSER-THAN-103-105))

~°« Moada:Taxt; Fontg:(HLE HLEB HL78) -*-

SKELETALPLANG OBJECT DESCRIPTIONS

€00600600000600000600000600000
$640000000000000000600800000AAC00U000C0000E0EIINE000e0N0EN00REG00000044a00

HELP Info File Edit New Hename Delete Print Link Attribute inheritance Data Display

Displaying short object names on 4 horizontally-oriented graph.

BBEdit

STRATEGY48255
STRATEGY 48259 < STRATEGY48252
STRATEGY48256 < STRATEGY48253

PLAN ~ =~ « > STRATEGY4B251 | STRATEGY48254 .
STRATEGY 48257
STRATEGY482518@
STRATEGY482S512
' STRRTEGY48258<EEEEE§STRHTEGY482513
STRATEGY4B2S14
ACCOMPLISHED~BY JY1inks solid lines
1S-ROQTED-BY 1inks dashed lines
(STRATEGY48259 (STRATEGY48252
(ASSEMBLE PA1)) ’ (CREATE PA1 FOR KING-CITY-SITE))
(STRATECY482518 (STRATEGY48253
(ASSEMBLE PA1)) (INCLUDE NATURAL-TYPE IN PA1))
(STRATEC V482511 (STRATEGY48254
(ASSEMBLE PA1)) (ORIENT PA1 ABOUT POWER-PLANT-1))
(STRATECY432512 (STRATECYH825S
(YOKE LAYDOWN-AREA AND SPACE WITH (YOKE PARKING-1 AND SUB-AREA IN PA1 WITH
OBJECT-BASED~-CONSTRAINT)) IMPORTANT SITE-ZONING-CONSTRAINT))
(STRATEGY482513 (STRATEGY48257
(YOKE LAYDOWN-AREA AND NATURAL-TYPE WITH (INCLUDE SUB-AREA))
OBJECT-BASED-CONSTRAINT))
(STRATEGY48258
(STRATIGY482514 (POSITION LAYDOWN-AREA})
(ANCHOR CABLE-TRAY-1 TQO POWER-PLANT-1 WITH
AS-CLOSE-AS-102-PLANT)) (STRATIG V43256

(DEFINE PA1))

R R L N

META-WATCH QUTPUT SKELETAL-PLAN OBJECT DESCRIPTIONS

940060800000 0000
PP R0000084000000000000000034000U0A000000080000000006¢084000000500000000002000006060¢ LETTT YT

(FRSY-LEVELS
(RSSEHBLE PA1))

(riReY -LEUTLS
(B2SENMBLE PA1))

(TImST-LEVELS
(DEFINE PA1)) .

(FIRST -LEVELS
(CRERTE PA1 FOR SITE.CONTEXTS.SITE))

(FIRSY-LEVEL?
(IHMCLYDE NATURAL-TYPE IN PA1))

(FIRST-LEVELS
(ORIERT PA1 ABOUT POWER-PLANT-1))

(FIRSY-LEVEL1®
(YOKE SITE-PHYSICAL-OBJECT AND SUB-AREA
IN PAY WITH IMPORTANT ZONED-IN-CONSTRAINT))

(FIRST-LEVEL1
(YORE FENCED-AREA-1 AND FAB-BLDG-1 IN PA1Y

WITH ZONED-IN-103-FENCED))

(FIRST-LEVEL12
(YOKE FENCED-AREA-1 AND MGT-QFFICE-TRAILER-1 IN
PA1 WITH ZONED-IN-105-FENCED))

(FIRST-LEVEL1S
(POSITION UNIT AGGREGATE LARGE RELATIVELY-FIXED
PRESENT-FIXED UNDIMENSIONED PERMANENT UNPOSITIONED
FIXED CONSTRAINING FACILITY SITE-PHYSICAL-QBJECT IN PA1
WITH OBJECT-BASED-CONSTRAINT))

(FIRST-LEVEL14
(YOKE NATURAL-TYPE IN PA1 WITH
CBJECT-BASED-CONSTRAINT))

(FIRST-LEVELTS
(POSITION FAB-BLDG-1 IN PA1 WITH
SITE-DISTANCE-CONSTRAINT))

(FIRST-LEVEL1E
(YOKE GAS-TURBINE-1 AND FAB-BLDG-1 IN PA1
WITH CLOSER-THAN-103-GT}))

(FIRST-LEVELYZ
(ANCHOR FAB-BLDG-1 TO POWER-PLANT-1 IN PA1 WITH
AS-CLOSE-AS-103-PLANT))

(FIRST-LEVILIS
(YOKE MGT-OFFICE-TRAILER-1 AND NATURAL-TYPE IN PA1
WITH OBJECT-BASED-CONSTRAINT))

(FIRST-LEVILS2

(vone LAYDOWN-AREA AND NATURAL-TYPE wiTH
OBJECT-BASED-CONSTRMNT))

(FIRSY-LEVELYS
(YBHE MGT-OFFICE-TRALER-1 AND AM1-0OCCUPED-SPACE-1 |

N PAY WITH NON-OVERLAP-SET-105-QCCUPED))

(FIRST-LEVELZO
(VOKE MGT-OFFICE-TRAILER-1 AND FAB-BLDG~1 IN PA1 WITH

CLOSER-THAN-103-10S5))

(FIRSY-LEVEL2Y
(VOHE PLANT-ENTRANCE-ROAD-1 AND MGT-OFFICE-TRAILER-1

IN PA1 WITH ADJACENT-TO-105-ROAD))

(TIRST-LEVEL22
(SECURELY POSITION UNIT AGGREGATE LARGE RELATIVELY-FIXED
PRESENT-FIXED UNDIMENSIONED PERMANENT UNPOSITIONED FIXED
CONSTRAINING CONSTRAINED FACILITY MGT-OFFICE-TRAILER- 1 IN
PA1 WITH OBJECT-BASED-CONSTRAINT))

(FIRST-LEVEL2S
(YOKE MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1 IN PA1 WITH

CLOSER-THAN-103-105))

(FIRST-LEVEL24 .
(RNCHOR MGT-OFFICE-TRAILER-1 TO POWER-PLANT-1 IN PA1

WITH PARALLEL-1-105))

(FIRST-LEVEL2S
(YONE TRAILER AND SITE-PHYSICAL-OBJECT IN PA1 WITH
SITE-DISTANCE-CONSTRAINT))

(FIRST-LEVEL26
(YOKE MGT-CFFICE-TRAILER-1 AND FAB-BLDG-1 IN PA1 WITH
CLOSER-THAN-103-105))

(FIRST-LEVIL27
(YOKE GAS-TURBINE-1 AND MGT-OFFICE-TRAILER-1 IN PA1 WITH
AS-CLOSE-AS-105-GT))

(FIRSY-LEVELZS
(YOME MGT-OFFICE-TRAILER-1 AND FAB-BLDG-1 IN PA1 WITH
CLOSER-THAN-103-105))

(FIRST-LEVELZS
(IICLUD(SUB~AREA IN PA1))

(FIRST-LEVELSS®
(POSITION LAYDOWN-AREA IN PA1 WITH
OBJECT-BASED-CONSTRAINT))

(FIRST-LEVELSY
(ASSEMBLE PA1))

(FIRST -LEVELSS
(YOKE LAYDOWN-AREA AND NATURAL-TYPE WITH
OBJECT-BASED-CONSTRAINT))

(FIRST-LEVELSS
(RNCHOR CABLE-TRAY-1 TO POWER-PLANT-1
WMTH AS-CLOSE-AS-102-PLANT))

HELP Info File Edit Neow Hename Delete Print

Link Attribute Inheritance

Data

Display

splaying short object names on a horizontally-oriented graph.

.

AR A A DI A AR AR RARNRNARARRRE RN

A AR A ER AR R R AT AR R AT R AR ARRF LA AATR AN

MetaWATCH utput skeletalplan - combining skeletalplans 1,253

XRREARN

ttnttﬂ'ttitttttt!ttulttit'ttt'tta'ttt'ﬁtt't'ttl't't*t:iitgt*

3Edit
FIRST-LEVELG
FIRST-LEVELS FIRST-LEVEL?
FIRST-LEVELA
FIRST-LEVELS
FIRST-LEVEL1®
FIRST-LEVEL!!
FIRST-LEVEL14 <::::::
FIRST-LEVEL!R2
FIRST-LEVEL!6
4 FIRST-LEVELLS
7 FIRST-LEVEL1?
FIRST-LEVELLY
> FIRST-LEVELISB FIRST-LEVEL2O
FIRST-LEVEL13

FIRST~-LEVELZ =~~~ - > FIRST-LEVELS

A FIRST-LEVEL22

FIRST-LEUEL31<(::::

COMPL I SHED-8BY
-RCOTED-BY

1inks solid lines
links dashed lines

FIRST-LEVELZ2I
FIRST-LEVEL23
FIRST~LEVEL24
FIRST-LEVELZ26
FIRST-LEVEL27
FIRST-LEVELZ28

FIRST-LEVEL2S

FIRST-LEVEL2S
FIRST-LEVEL33
FIRST-LEVEL34
FIRST-LEVEL32

FIRST-LEVEL3@

A NAMNA

