C IFECENTER FOR INTEGRATED FACILITY ENGINEERING

How WATCH Works:
Documentation for the WATCH,
NEWWATCH, and MetaWATCH
Programs

Andrew Gans, Tony Confrey
and
Barbara Hayes-Roth

TECHNICALREPORT
Number 27

April 1990

_ Center for Integrated Facility Engineering ¢ Stanford University

Copyright © 1990 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

Contents

1. Introduction
1.1 Overview
1.2 The programs
1.3 Uses of the WATCH system
2. WATCH
2.1 Running WATCH
2.1.1 Running and saving the application
2.1.2 Running WATCH on the application
2.2 The WATCH program
2.2.1 The six phases
2.2.2 The LEARN blackboard
2.2.3 The generalization phase
2.2.4 The output
3. NEWWATCH
3.1 Introduction
3.2 Running NEWWATCH
3.3 The NEWWATCH program
3.3.1 Hypothesizing an interruption
3.3.2 Rating the interruption
4. MetaWATCH
4.1 Introduction
4.2 Running MetaWATCH
4.3 The MetaWATCH program
4.3.1 Knowledge sources
4.3.2 Comparing strategies
References
Appendices
An Action Sequence
The WATCH KSes
KS GENERALIZE-STMT-SEQUENCE
KS POSTULATE-STMT-SEQUENCE
MetaWATCH Algorithm

ponnd

N OO e WW

12
12
12
12
14

15
15
17
17
17
20

21
23
24
25
26

1. Introduction

1.1 Overview

The WATCH system derives its name from the way it "watches over the
shoulder of an expert" who is trying to solve a problem. WATCH observes a
sequence of actions performed by the expert, to inductively learn the intended
control strategy. The actions, which solve a problem for some BB1 application,
must be expressed in ACCORD or a similar BB1 language framework.

1.2 The programs

The WATCH system consists of three programs. The original WATCH
program was designed by Jeff Harvey. It tries to generalize the action sequence
into a single hierarchical explanation, based on the assumption that the expert
had only a single strategy in mind in selecting all of the actions. The
NEWWATCH extension was written by Andrew Gans to learn from action
sequences with interruptions. In other words, parallel or opportunistic strategies
that concurrently selected some of the actions can also be discovered.
MetaWATCH, the practicum of Tony Confrey, is designed to learn from multiple
problem-solving sessions. A number of different action sequences are examined,
to discover the strategy they all have in common.

WATCH, which learns strategies for BB1 applications, is itself written
within the BB1 framework. NEWWATCH is a revised version of this original
BB1 application, with the added ability to discover interruptions. MetaWATCH
is a separate application program, which takes the strategies learned by WATCH
and NEWWATCH as its input.

1.3 Uses of the WATCH system

The WATCH system was designed to be a knowledge acquisition tool. It
allows an expert to define all of the background domain knowledge for a BBl
application, and then automatically learn control information by observing the
expert's problem-solving process. The expert merely takes the place of the

control strategy by selecting the actions to perform one at a time. While it may
have been difficult to articulate a set of general rules about the control strategy,
demonstrating this control by selecting actions can be an easier task. The expert
is saved the need to explicitly define control knowledge for any problems solved
in the same way as the learned cases.

WATCH can also learn if the actions were chosen by an existing control
strategy. This may be the case if WATCH is being tested, to determine how much
of the original strategy can be rediscovered merely by observing the actions
performed. In this case, the strategies learned by the WATCH system can be
compared to the real existing control; this gold standard is the best strategy that
WATCH could possibly learn.

2. WATCH

2.1 Running WATCH

Although WATCH is conceptualized as a system that "watches" actions as
they are chosen by the expert, for practical reasons it is normally run in batch
mode. In other words, the expert's problem-solving behavior, in the form of a
run of the application system, is first stored. WATCH is then executed using this
saved information.

Therefore, the WATCH program consists of two sub-systems:

1. The first part of WATCH is an extension to BB1 Version 2. It

allows the user to save a trace of the problem-solving at the
completion of a run of BB1 on an application.

2. The main part of WATCH is itself is a BB1 application. It learns

control strategies using the stored trace.

2.1.1 Running and saving the application

WATCH learns a strategy by observing a sequence of actions that solve a
problem for some application. Therefore, the first step of WATCH's learning is
obtaining a trace of this action sequence. This is done by running the application
program within a modified version of BB1 2.1. This special BB1 system will
allow all the necessary information for WATCH to be stored on two files, when
the application run has completed.

The special version of BB1 2.1 for WATCH can be created by first normally
loading BB1. All of the necessary modifications are stored in the file
MYWATCHFNS, in the WATCH directory. This file, along with the auxiliary
translation functions in IL-TO-CL, should be loaded before the completion of the
application run in BB1. The revised BBl will provide a new "LEARN" option
will appear in the BB1 Run menu.

The "LEARN" option contains the menu items "Turn WATCH on" and
"Turn WATCH off". These can be selected to toggle whether or not the
application problem-solving session should be saved at the end of the BB1 run.

To prepare an application problem-solving session for use by WATCH, the
application should be run normally; the user need only set the toggle on before
the run is completed. To insure that WATCH obtains a complete trace of the
actions, BB1's global variable *BB1-INFO-RETENTION-TIME* should be set to
NIL, so that none of the necessary information is deleted.

If the "Turn WATCH on" option has been chosen, a trace of the problem-
solving will be saved at the end of the application's run in BB1. Saving a session
involves creating two files, one for the sequence of actions and another for the
domain-specific background knowledge. The user will be prompted to choose
names for the files. The data file, with a name like WATCHSESSION7.DATA,
contains the sequence of actions that the expert or control strategy chose to be
executed. The knowledge base file, such as WATCH-PROTEANSAVE-KB.LISP,
contains all of the KBs in the application system, except for the CONTROL-
DATA and CONTROL-PLAN blackboards. This saved knowledge is the
necessary background information for the learning process.

2.1.2 Running WATCH on the application

WATCH runs like any other application in BB1. All of the necessary files
are stored in a standard directory, currently KSL-Exp-25:WATCH and also a
backup in SAFE:/gans/cl-watch/new. Loading into BB1 the WATCH-SETUP file
from either of these directories will load into BB1 all the other necessary files.
The files which make up the WATCH system are:
WATCH-CONTROLEFNS
WATCH-DOMAINENS
MYWATCHFNS
functions that save the trace of the application's action sequence
WATCH-WRITEOUT
functions that save the new control strategy learned by WATCH
WATCH-GANS
functions belonging to the NEWWATCH extension
IL-TO-CL
macros that translate parts of the WATCH code, written
originally in INTERLISP, into the current COMMONLISP
WATCH-KS-KB

knowledge sources of WATCH

WATCH-LEARN-KB
blackboard on which WATCH stores its work

WATCH-NEWGENERIC-KB
versions of the GENERIC-CONTROL KSes modified specially
for WATCH

[WATCH-EXTRACODE
functions written for the original WATCH by Jeff Harvey
that are no longer used]

When loading WATCH, BB1 will display a message saying that it is unable
to find a file named WATCH-WATCHSAVE-KB. There is no such file in the
system; this is merely a dummy placeholder name. The user should substitute
the name of the KB file saved at the conclusion of the application run (WATCH-
PROTEANSAVE-KB in the above example). Once WATCH is loaded into BB1;
running it will cause a prompt for the name of the other saved file, the data file
containing the list of actions (in this case WATCHSESSION?7). The only files that
need to be loaded manually when running WATCH, if they are not already in
memory, are the CONTROLEFNS and DOMAINENS files belonging to the
application system.

It is important to note that the most recent version of the WATCH
program is actually the newer NEWWATCH application. Therefore, instead of
loading WATCH itself, the user instead should obtain the latest version of
NEWWATCH and make the following modifications. After the NEWWATCH
program has been loaded, manually remove the two Knowledge Sources (KSes)
that are specific to NEWWATCH. These are called POSTULATE-SEQUENCE-
WITHOUT-INTERRUPTION and HYPOTHESIZE-INTERRUPTION. These can
be removed simply by changing their TRIGGER-CONDITION slots to NIL, either
by editing in BBEDIT after NEWWATCH is loaded into BB1 or by manually
editing the WATCH-KS-KB before it is loaded. ‘

2.2 The WATCH program

2.2.1 The six phases

WATCH begins by placing a copy of the observed action sequence on the
blackboard, to provide the input for the learning task. The knowledge source
POST-THE-PROBLEM creates the appropriate object.

Once the action sequence is available, WATCH can perform the six phases
of learning a control strategy. These are unfolded one at a time by LEARN-
CONTROL-STRATEGY, the knowledge source that causes these tasks to be
performed in the appropriate order.

1. Generalize the action sequence.
Incrementally examine the sequence of actions, and build a tree of
possible generalizations of various sub-sequences.
2. Choose possible strategies.
Identify all possible strategies by finding the sets of sub-sequence
generalizations in the tree that explain the whole action sequence.
3. Refine the strategies.
Simplify strategies by removing unnecessary levels of abstraction.
4. Choose the best strategies.
Rank the possible strategies using a set of heuristic preferences.

5. Hypothesize modifiers.
Add appropriate modifiers that explain the order of actions within
each sub-sequence of the strategy.

6. Write out control strategies.
Output the strategies in two formats useable by BB1, as a set of
control knowledge sources and as a skeletal plan.

2.2.2 The LEARN blackboard

The LEARN blackboard stores the partial solution while WATCH tries to
learn the expert's control strategy. Included in this blackboard are a number of
objects.

1. LEARN.PROBLEM.PROBLEM]1

This blackboard object is created by the first KS to run,

POST-THE-PROBLEM. It contains a copy of the action
sequence from the saved data file.

2. generalization, objects at the LEV0-S level
Each action in the sequence is posted to the blackboard,
by KS.DOMAIN.POST-INITTIAL-STATEMENTS, after all
possible generalization is done for the preceding action.
The nth action in the sequence is stored in the object
LEARN.LEVO0-S.LEV0-Sn.

3. generalization objects at higher levels
Domain KSes GENERALIZE-STMT-SEQUENCE and
POSTULATE-STMT-SEQUENCE do inductive generalization
and store their results in objects on higher levels, such as
LEARN.LEV3S.LEV3S-13 or LEARN.LEV4-S.LEV4-S3. In this
way, a tree of abstractions is built up in the LEARN blackboard.

Generalization objects on the learn blackboard each contain certain
standard attributes and links, which show how they were inductively abstracted
from object on lower levels. Some of the more important attributes are the
ACTION-STMT and PARSED-VAL, which contain, respectively, readable and
parsed expressions of the generalized action. GENERALIZED-VARS contains a
list of parameter positions, in the parsed version of the action, that had to be
abstracted to obtain this generalized action.

Each object has a links to generalizations at lower and higher levels of
abstraction that it is GENERALIZED-FROM and GENERALIZED-TO. The
generalizations at the same level which explain the immediate preceding and
succeeding actions in the sequence are connected by POSSIBLE-LAST-STMT and
POSSIBLE-NEXT-STMT links. If WATCH postulates a sequence containing a
pattern, which requires a set of generalizations for a full explanation, these are
connected by LAST-IN-SEQUENCE and NEXT-IN-SEQUENCE links.

2.2.3 The generalization phase

The WATCH control knowledge source GENERALIZE-THE-
STATEMENTS invokes the generalization phase of WATCH's learning. Since
generalization among the set of problem-solving actions can quickly explode

exponentially into an impossible task, two attributes of the KS limit the work
that WATCH will do. The NUMBER-OF-GENERALIZATIONS attribute
determines that only the n best generalizations will be made for any
generalization object an the LEARN blackboard. The value of n is normally
rather small, such as 1 or 2, to limit the combinatorial explosion. The
GENERALIZATION-PARAMETERS attribute, described below, determines over
which parameters the search for generalizations will be performed.

Since WATCH only does a small subset of the possible generalizations, it
needs to rank the possibilities to choose which ones to perform. There are seven
heuristics used to select this order. Some are based on knowledge about the
ACCORD language, such as "avoid generalizing actions". Others, such as "prefer
more statements” which prefers longer sequences of actions and "prefer
generalizing over fewer levels of abstraction”, are general to induction over any
sequence. It is important to note that these latter two are contradictory, and act to,
balance out opposing concerns; if we add more actions to a sequence, we will
have to generalize more to find one common abstraction. Two of the heuristics
only influence the order of generalization, but do not cause any of the
possibilities to be ignored due to a lower rating; these are "prefer rewrites" and
"prefer lower level generalizations first". "

The work of the generalization phase is done by three kriowledge sources.
POST-INITIAL-STATEMENTS adds each action to the LEARN blackboard.
GENERALIZE-STMT-SEQUENCE generalizes actions with higher levels of
abstraction, and moves them to higher levels of the generalization tree.
POSTULATE-STMT-SEQUENCE hypothesizes that a set of generalizations might
be a distinct phase of the strategy.

¢ POST-INITIAL-STATEMENTS adds a generalization object to the
LEARN.LEVO0-S blackboard level for each action in the problem-solving
sequence. KSARs are triggered for each action as soon as the problem is
selected at WATCH's first BB1 step, but they only become executable
one at a time. As a result, the new action is only added to the
blackboard, and the generalization process, after all the generalization
has been done for the previous actions.

* GENERALIZE-STMT-SEQUENCE serves different purposes in the

generalization phase. It does solo generalization, moving objects to
higher levels of abstraction so that they can be used in various levels of
the hierarchical strategy. In addition, it does generalizations that will
form BB1's REFINE-PARAMETERS type strategies (where a single
strategic decision object is refined over a set of parameters in sequence
to form an entire sub-tree of the control plan).

A KSAR is triggered for the generalization starting points found
when SVB-GENERALIZATION-STARTING-POINTS calls CHECK-
UPPER-LEVEL-STMT, CHECK-SAME-LEVEL-STMT, CHECK-LOWER-
LEVEL-STMT, CHECK-SOLO-GENERALIZATION, and MODIFY-
REQUIRING-REGENERALIZATION.

POSTULATE-STMT-SEQUENCE generalizes over a sub-sequence

of the problem-solving actions that have one or more parameters in
common. It is triggered by the addition of a new generalization object to
the blackboard, and it attempts to find all sequences that include that
object. '

The function FIND-PARAMETER-SEQUENCE calls GET-
PARAMETER-SEQUENCE for each parameter of the parsed action in
which we wish to look for sequences. Which parameters are examined
to find a match depends on the value of the attribute
GENERALIZATION-PARAMETERS.

For example, the new blackboard item could contain a parsed
ACCORD ANCHOR action such as

((ANCHOR) (RANDOMCOIL2) (HELIX1)

(PARTIAL-ARRANGEMENT1) (CONSTRAINT-SET-R2H1))
based on the action template of ANCHOR

((ACCORD.ACTION.ANCHOR) (OBJECT) TO (ANCHOR)

IN (PA) WITH (CONSTRAINT)).

The various clauses of the GENERALIZATION-PARAMETERS
attribute tell us which of the parameters in the parse to examine for a
match. The clause (OBJECT TT) would tell WATCH always to attempt
to postulate sequences that have OBJECTS in common. In other words,
WATCH would look for a sequence of items that matched the second
parameter, the OBJECT RANDOMCOIL2, of the ANCHOR action.

10

The clauses of the GENERALIZATION-PARAMETERS attribute
can take on other values, such as (PA IF-NONE) or (ACTION TT).
WATCH looks for matches within the parameters in the order that
these clauses appear. The second item in each clause gives additional

instructions about when to attempt this match:
e TT: always attempt to match this parameter
e NIL: don't do any matching on this parameter (this is
equivalent to not including a clause for this parameter)
o [F-NONE: match on this parameter only if there are no matches

for any other parameter
¢ HALT-IF-PRESENT: match on this parameter, and stop looking
for matches of other parameters if this one is successful

GET-PARAMETER-SEQUENCE determines the position of the
parameter in the parse, by examining ACCORD's action templates in
GET-PARAMETER-NUM-FROM-ACTION. This position number is
then passed to FIND-THE-SEQUENCES, which attempts to match a

sequence containing the object. FIND-THE-SEQUENCES:

® collects all the possible sequences of objects at this level of
abstraction (COLLECT-SEQUENCE-OF-STMTS)

° examines in reverse order all of these sequences that contain
the current object

* finds those objects in the sequences that match the current
object by having a matching parameter (PARAMETERS-
MATCH?)

* checks whether all the statements in between the matching
pair also have the corresponding match with the next
objects in the sequence (INTERVENING-STMTS-MATCH)

* extends the sequence by looking back in the sequence for
other sub-sequences that match the sub-sequence made up
of the matching pair and intervening statements

For example, FIND-THE-SEQUENCES might be trying to find
sequences of objects which match some parameter of object x. Object x is
at a level of abstraction which is fully covered by sequences of objects (a
b c¢dex) and (a f g x), meaning that these sequences explain the whole
action sequence. The first of these is examined in reverse to find that x
and e do not match over the given parameter. Therefore, the match
moves through the list in reverse, finding that x and d do succeed the
test in PARAMETERS-MATCH?. The intervening object e is matched

11

with the next item back in the list ¢, to attempt to find a correspondence
between the pairs (e x) and (c d). After the success of this test, the
sequence is extended if (a b) also matches (e x), indicating that both ((a b)
(c.d) (e x)) and ((c d) (e x)) are possible sequences to postulate. FIND-
THE-SEQUENCES returns all the possibilities found by fully checking
both this sequence and the alternate one (a f g x). All of the resulting
possible sequences are used to trigger new KSARs for POSTULATE-
STMT-SEQUENCE.

2.2.4 The output

Once WATCH finds one or more acceptable strategies, its final task is to
save them in a format that can be useful for other problems. The knowledge
source CONSTRUCT-AND-WRITE-KSES outputs each strategy in two different
formats, as a set of hierarchically linked KSes and as a skeletal plan.

CONSTRUCT-AND-WRITE-KSES creates a separate new blackboard, with
a name such as NEWWATCHKS3432, to store the set of KSes which make up
each possible hierarchical strategy. The user is immediately prompted for a
name of a file in which to store this new knowledge base. At the same time, a
new level is created on the blackboard SKELETALPLAN, to contain the objects
that make up the skeletal plan representation of the same strategy. This level
contains a PLAN object, as well as strategy and focus decision objects for each part
of the hierarchy. It is important to note that WATCH does not automatically
store the SKELETALPLAN blackboard on a file; the user must manually use
BBEDIT to save this knowledge base after skeletal plans have been created for all
strategies.

12

3. NEWWATCH

3.1 Introduction

The NEWWATCH program attempts to recognize the primary strategy
that explains a sequence of actions by first discovering and removing any
interrupting actions. This is done in two phases, each represented by a separate
Knowledge Source. First, a sequence of actions is hypothesized to be an
interruption if it is not explained by what might be the current strategy.
Secondly, this hypothesized interruption is compared against other available
strategies to determine whether it is likely to be the intended strategy.

3.2 Running NEWWATCH

NEWWATCH is a BB1 application that is an extension of the original
WATCH program. Therefore, NEWWATCH is loaded and executed much the
same way as WATCH. The user first runs the application program in the
modified BB1 to save a trace of the action sequence. Afterwards, NEWWATCH
can be loaded into BB1 and executed on the saved trace.

Loading the NEWWATCH program simply involves loading the latest
version of the system from the WATCH directory. This process is described in
Section 2.1.2. However, the two Knowledge Sources unique to NEWWATCH
are not removed from the system.

3.3 The NEWWATCH program

3.3.1 Hypothesizing an interruption

All possible sequences of actions that may be interruptions are
hypothesized by the NEWWATCH KS HYPOTHESIZE-INTERRUPTION. This
KS is based on the WATCH KS POST-INITIAL-STATEMENTS which adds each
action to the blackboard one at a time. As each new action is ready to be posted
(meaning that all the inductive generalization for previous statements has been

13

completed), HYPOTHESIZE-INTERRUPTION will check to determine whether it
may begin an interruption sequence. An interruption may be the intended
strategy if the following criteria (PRECONDITIONS) are met:
1. Generalization has been completed for prior actions, resulting
in a set of possible generalization strategies for these statements.
2. One of these generalization strategies does not explain the new action.
In other words, the generalization is not a more general version of
the action, and therefore could not have been a control strategy that
prescribed it.
3. This generalization strategy does explain some action that comes later
in the sequence.
4. The later action was already executable at this time, and so therefore
could have been chosen instead.

The first two criteria check that there is some strategy of which the new.
action could not have been a part. However, this alone does not guarantee that
an interruption has taken place, since the action may begin a new phase of the
control strategy. For the action and its immediate successors to be a possible
interrupting action sequence, the strategy must be active later. This is guaranteed
by the latter two criteria, which show that some later action could have been

prescribed by this strategy generalization.

The latter criteria also help to define which actions make up the
interruption sequence. All actions from the first one which begins the
interruption up to the one prior to the later action which is explained, are the
actions considered to be part of the interruption.

This first interruption action may actually be hypothesized to interrupt
more than one of the possible generalization strategies, as long as it fits all the
criteria for each strategy it might be interrupting. For each of these hypotheses,
the KS will build a new object on the INTERRUPTION level of the LEARN
blackboard, with all the information about the possible interruption. This
includes the list of actions preceding and following the interruption sequence
which are explained by the interrupted strategy. The list of actions is crucial,
because it is used to rate the likelihood of the hypothesis of an interruption.

14

3.3.2 Rating the interruption

Each interruption is rated when NEWWATCH is ready to do
generalization for the last explained action following the interruption. The
NEWWATCH KS POSTULATE-SEQUENCE-WITHOUT-INTERRUPTION
basically acts the same with the sequence of preceding and following actions,
minus the interruption, as the original WATCH KS POSTULATE-STMT-
SEQUENCE behaves with a non-interrupted sequence. It is triggered by, and gets
its information from, the object on the LEARN.INTERRUPTION level of the
blackboard. The preceding and following statements are merged into one action
sequence, and are rated with WATCH's same heuristic criteria to determine
whether they are explained by a probable strategy. If this sequence minus the
interruption rates highly enough, the sequence becomes one of the strategies we
are considering. If not, the hypothesis was not a success, because the possibly
interrupted strategy was not a reasonable one.

15

4. MetaWATCH

4.1 Introduction

MetaWATCH is a BB1 application that examines multiple sets of WATCH
output in the context of the problems they solve to incrementally converge on a
common “"super-strategy". This super-strategy is closer to the experts intended
strategy and can be used to solve a wider range of problems. It is output as a BB1
skeletalplan. The basic premise of MetaWATCH is that given multiple problem
solving sessions we are more likely to see all branches of the experts strategy fully
exercised. This can make the learning process more accurate.

4.2 Running MetaWATCH

As with other BB1 applications loading the set-up file for MetaWATCH
will load all required files. The MetaWATCH-setup file is contained in the
directory "x25:TONY.WATCH.MetaWATCH", this directory contains all
- MetaWATCH specific code. The set-up file will load files from the BB1 generic
directory and from the WATCH directory as well as from the MetaWATCH
directory.

The MetaWATCH specific files and their contents are as follows:
WATCH-INPUT-FNS
Functions used by MetaWATCH to input saved data and store it
in the appropriate places.
DOMAIN-FNS
METAWATCH-KS-KB
The MetaWATCH knowledge sources
COMPARE-STRATS
This file contains all the functions that perform the strategy
tree comparisons that are the basis of MetaWATCH's
functioning.

A major problem with inputting data to MetaWATCH is the fact that all
the data saved from the application program for use by WATCH, and all the

16

WATCH output is intended to be used once only. Consequently all the saved
KBs from multiple application program and WATCH runs have the same
names. To avoid confusion some conventions have been established and the
input to MetaWATCH ‘must be edited to conform with these conventions.

Contained in the MetaWATCH directory and loaded from the start-up file
is a file called "PROBLEM-CONTEXT-KB". This file should be set up to contain
all the domain knowledge to be input the MetaWATCH. These are the
blackboards that are common to all the data saved from the different application

program runs for WATCH.

On running MetaWATCH the user will be prompted to input the names
of files containing the problem specific data for each problem being examined by
the system. Each such file should be set up as follows. It should consist of one
knowledge base named "Problemx” where x is a unique integer differentiating
this KB from others. The KB should contain all the problem specific data for this
problem and should have at least the following blackboards:

A blackboard "Problemx” which in general will contain the objects specific
to this problem. ,

A blackboard "Solutionx" - the solution blackboard for this problem. A
blackboard "Skeletalplanx" which contains the skeletalplan blackboard saved
from the WATCH run on this problem.

Any other blackboards necessary to define the problem specific knowledge,
each of which should be suffixed with an integer x to differentiate them from
similar blackboards in other problem KB's.

For each problem the user will also be prompted to input the associated
action sequence. This should be the same file as loaded by WATCH for that
particular problem - it will automatically be stored on the problem blackboard in
the KB associated with the problem in question.

The output from MetaWATCH is of the same form as the skeletalplan
output from WATCH. A new blackboard will be created and the MetaWATCH
skeletalplan(s) stored on it. The user is then prompted for the name of a file to
which this plan should be written.

17

4.3 The MetaWATCH Program
4.3.1 Knowledge sources

MetaWATCH consists of the following domain knowledge sources:
Input-data |
This KS is the first KS run. It inputs all the data to be used by
MetaWATCH. The function [nput-problem-bbs is called. This function will
continually input a KB specified by the user and will create a level on the
problem BB called action-sequence on which it stores the action sequence which

is also specified by a prompt to the user.

Compare-strategies
This KS generates one KSAR for each comparison that can be made
between alternate strategies for different problems. It does this continually until
all comparisons have been made, the possible comparisons are generated using a

call to Uncompleted-correspondance-chain.
The work of this KS is performed by Compare-strat-trees, this function

will be described in detail below.

Isolate-best-strategies
Creates a new blackboard for output and writes all super strategies to it

using a different level for each super strategy.

Write-out-plan
Writes the newly created output blackboard to a user specified file.

4.3.2 Comparing strategies
In this section, the functions used to perform strategy comparison are
explained. For further explanation on the high level ideas behind this method,

refer to Section 5 of the MetaWATCH practicum paper.

- Two important points to keep in mind while examining the code are:

18

1) The new superstrategy is built up as the comparison proceeds. So if
the comparison succeeds the new superstrategy is already built, if not the nodes
and links created in building the superstrategy must be deleted.

2) Each node¢ in the superstrategy is linked to a node in one or both of
the WATCH more specific strategies it combines. When a node in the
superstrategy combines nodes from both more specific strategies it is linked via
corresponds-to links to both those nodes. If one node in a specific strategy is more
general or does not correspond to any node in the other specific strategy the
corresponding node in the superstrategy is linked using corresponds-to links to
only the more general node. These corresponds-to links are used to navigate
around the strategy trees, finding the corresponding parent nodes of
superstrategy nodes etc.

The Compare-strat-trees function is the top level function for comparing
strategies. It sets up the new super strategy and deals with the results of a positivé
or negative comparison. However all the real work of comparison is achieved by
the Match-children function. It operates as follows: Starting at the top node of
each strategy to be compared (child strategies) it recursively checks each of several
possible situations stepping through the appropriate action-sequences as it goes.
The remaining action sequence and uncompared parts of the strategy trees are
passed along with each function call. If at any stage we need to go back over
information already compared we can easily fetch this information from the
appropriate blackboard. The situations checked by the Match-children function
are illustrated in the flow-chart below. These situations are checked by the
following functions:

Match-node: Are these nodes exactly the same?

Match-sub-to-super: Match a superaction against a subaction or an

action with a super object against the same action but on a subobject.
Both-ok? Check if the nodes at this point are different but both are

ok in context.

Match-children: Match two leaf nodes against each other.
Build-super-obj: This function returns an action that is a superset of

both the subactions passed. This is then matched against each of the
subactions in the context of their problem using Match-sub-to-super. This
deals with the case below where one node has a more general action but

the other has a more general object.

19

The various other functions used to compare objects, actions etc are self

explanatory.

The only other point to note is that the superstrategy developed is then to
be compared to further WATCH strategies. It thus needs an action sequence to
give it a problem context for the purposes of comparison. The function Make-
super-action-sequence performs this task by amalgamating the two action

sequences corresponding to the strategies that were compared to form this

superstra tegy'

20

References

Confrey, Tony, and Hayes-Roth, Barbara, Knowledge Based Strateqgy

Generalization. Knowledge Systems Laboratory Report KSL 89-
45, Stanford University, March 1990.

Gans, Andrew, and Hayes-Roth, Barbara, NEWWATCH: Learning

Interrupted Strateqgies by Observing Actions. Knowledge
Systems Laboratory Report 89-44, Stanford University. March
1990.

Garvey, Alan, Hewett, Michael Johnson Jr., Vaughan M., Schulman,
Robert and Hayes-Roth, Barbara, BB1 r Manual -
LISP Version 2.0. Knowledge Systems Laboratory Report KSL
86-61, Stanford University. August 1987.

Harvey, Jeff, TCH - In ive Learning of Control A
Knowledge Systems Laboratory, Stanford University.
Unpublished 1987.

21

Appendix 1

An Action Sequence

At the end of the application run, WATCH saves a trace of the action sequence in
a data file. For each action, it stores:
(action-number action-sentence parsed-action-sentence
BB1-cycle-that-action-became-executable cycle-that-action-was-executed)

WATCH also saves a list of all the KSARs that were not executed, so that
MetaWATCH will have a complete list of all available actions.
(ksar-number ksar-event-sentence ksar-parsed-event-sentence
final-ksar-status cycle-that-ksar-became-executable
cycle-that-ksar-became-obviated)

This example is from the PROTEAN application system.

(bbl::add-data-to-system 'action-sequence

"((1 (accord.event.did-create solution.partial-arrangement.pal)
((accord.event.did-create) (solution.partial-arrangement.pal))
16)

(2 (accord.event.did-include problem.solid.helix3 in solution.partial-arrangement.pal)
((accord.event.did-include) (problem.solid.helix3) (solution.partial-arrangement.pal))
6 10)

(3 (accord.event.did-include problem.solid.helix1 in solution.partial-arrangement.pal)
((accord.event.did-include) (problem.solid.helix1) (solution.partial-arrangement.pal))
611)

(4 (accord.event.did-include problem.solid.helix2 in solution.partial-arrangement.pal)
((accord.event.did-incluc ») (problem.solid.helix2) (solution.partial-arrangement.pal))
612)

(4 (accord.cvent.did-orient solution.partial-arrangement.pal about problem.solid.helix1-1)
((accord.cvent.did-orient) (solution.partial-arrangement.pal) (problem.solid.helix1-1))

11 20)

22

(5 (accord.event.did-anchor solution.solid.helix2-1 to solution.solid.helix1-1
| in solution.partial-arrangement.pal with problem.constraint-set.cseth1h2)
((accord.event.did-anchor) (solution.solid.helix2-1) (solution.solid.helix1-1)
' (so!ution.partial:arrangement.pal) (problem.constraint-set.cseth1h2))

20 28)))

(bb1l::add-data-to-system 'nonexecuted-ksars
‘((control-data.ksar.ksar26
(accord.event.did-orient solution.partial-arrangement.pal about solution.solid.helix3-1)
((accord.event.did-orient) (solution.partial-arrangement.pal) (solution.solid.helix3-1))
obviated 11 20)))

23

Appendix 2
The WATCH KSes

POST-THE-PROBLEM
LEARN-CONTROL-STRATEGY

& GENERALIZE-THE-STATEMENTS

heuristics: FOCUS-ON-PREFER-REWRITES, FOCUS-ON-PERFORM-LOWER-LEVE L-GENS-FIRST

FOCUS-ON-PREFER-MORE-STATEMENTS, FOCUS-ON-PREFER-GEN-FEWER-LEVELS
FOCUS-ON-PREFER-GEN-FEWER-VARS, AVOID-GENERALIZING-ACTIONS
FOCUS-ON-PREFER-EXISTING-UPPER-LEVEL-STMTS

- POST-INITIAL-STATEMENTS

- GENERALIZE-STMT-SEQUENCE

—-POSTULATE-STMT-SEQUENCE

- CHOOSE-POSSIBLE-STRATEGIES

L}MARK-POSSIBLE-STRATEGI ES

———-REFINE-STRATEGY

L’ELIMINATE-SOLO-GEN ERALIZATIONS

——»-CHOOSE-THE-BEST-STRATEGY

heurstics: AVOID-POORLY-GROUPED-STRATEGIES, AVOID-EQUAL-STRATEGY-ACTIONS
PREFER-LESS-GENERALIZATION, AVOID-EARLY-GENERALIZED-ACTIONS

ARK-BEST-STRATEGY

———-HYPOTHESIZE-THE-HEURISTICS

L->POSTULATE—HEURISTICS

——-WRITE-OUT-CONTROL-KSES

LPCONSTRUCT-AND-WRITE-KSES

24

Appendix 3
KS GENERALIZE-STMT-SEQUENCE

KS.DOMAIN.GENERALIZE-STMT-SEQUENCE

v
TRIGGER-CONDITIONS PRECONDITIONS ACTIONS

CALC-SVB-CONFIDENCE

SVB-GENERALIZATION-STARTING-POINTS

GET-POSSIBLE-NEXT-STMTS g—
GET-POSSIBLE-LAST-STMTS @

MERGE-GENERALIZED-VARS <@

GET-GEN-VARS SVB-GENERALIZE €—
——-CHECK-UPPER-LEVEL-STMT GENERALIZES?
—»-CHECK-SAME-LEVEL-STMT l

GENERALIZE-ACTION-TYPE

—»-CHECK-LOWER-LEVEL-STMT

COMMON-ANCESTOR
——8-CHECK-SOLO-GENERALIZATION

—»-MODIFY-REQUIRING-REGENERALIZATION

!

GET-DIFFERENT-VARS
. |s-GENERALIZABLE?<
COMMON-ANCESTOR

* all functions are in WATCH-DOMAINFNS except IS-GENERALIZABLE? which is in WATCH-WRITEOQUT

fa

25

Appendix 4
KS POSTULATE-STMT-SEQUENCE

KS.DOMAIN.POSTULATE-STMT-SEQUENCE

v

TRIGGER-CONDITIONS PRECONDITIONS ACTIONS

v
FIND-PARAMETER-SEQUENCE CALC-PSS-CONFIDENCE

($value generalize-the-statements
'generalization-parameters)

* GET-POSSIBLE-LAST-STMTS ¢
GET-PARAMETER-SEQUENCE 0SS S

GET-POSSIBLE-NEXT-STMTS¢—|

MERGE-GENERALIZED-VARS €——

GET-GEN-VARS CAN-GENERALIZE 44—
GENERALIZES?
—»GET-PARAMETER-NUM-FROM-ACTION L

GENERALIZE-ACTION-TYPE

—»FIND-THE-SEQUENCES
COMMON-ANCESTOR

COLLECT-SEQUENCE-OF-STMTS EXTEND-SEQUENCE

INTERVENING-STMTS-MATCH ELIMINATE-INVALID-SEQUENCES

Appendix 5

MetaWATCH Algorithm

26

Do present
nodes match?

Copy to
superstrategy

\

Strategies
don't match.

one node a more general ob)
and the other a more general
action {or other type

Construct super action
sentence thats a
combination of both

Copy the subtree
rooted by the more

general node to the
superstrategy.

super action
sentence?

3

one possible in other
problem?

No more

nodes lefl at this
level in one

rategy?

Yes

Try to figure out order.

| 1 we can't, add in

random order to the
super strategy

Copy the super actiony
sentence to the

superstrategy.

the actions of th

remaining nodes
possible in the

other problem?

compared?

Get next nodes ina

depth first walk through
the strategy trees

Strategies Match!!

No

Add remaining nodes
to the super strategy

4

The algorithm used to compare two strategies. See text (Section 4.3.2) for an
explanation of how some of the steps are implemented.

