CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

Merging Artificial Intelligence with CAD:
Intelligent, Model-Based Engineering

By
Dr. Raymond E. Levitt

TECHNICALREPORT
Number 28

October, 1990

Stanford University

D IFE Center for Integrated Facility Engineering ¢ Stanford University

Copyright © 1990 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

c/o CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

Henry M. Shaw Lecture for 1989

Department of Civil Engineering
North Carolina State University

Merging Artificial Intelligence with CAD:
Intelligent, Model-Based Engineering

by

Dr. Raymond E. Levitt

Professor of Civil Engineering and
Associate Director, Center for Integrated Facility Engineering
Stanford University
Stanford, California

1. INTRODUCTION

Many physical phenomena of interest to engineers can be described and predicted
using the language of continuous mathematics. Until about 1960 engineers relied
heavily on their ability to manipulate differential equations in order to comprehend
and predict the behavior of all but the most simple engineering systems. Computers
began to play an increasingly important part in engineering practice during the
1960s, as computer algorithms that implemented numerical techniques for solving
differential equations rapidly displaced closed form mathematical analysis by
engineers. Computer-based numerical techniques have now almost completely
replaced direct mathematical manipulation for analysis tasks in many fields of
engineering.

A second major thrust of computers in engineering has been to provide support for
the production of engineering drawings. Early computer-aided drafting (CAD)
systems were expensive to buy and difficult to learn, requiring three-shift use and
extensive training efforts in many engineering firms. Hence, widespread adoption
of the technology was relatively limited before 1980. Computer-aided drafting
became ubiquitous during the 1980s as personal computers and their software co-

Merging Al with CAD: Intelligent Model-Based Engineering

evolved in capability and drastically reduced the hardware, software and training
cost per drafting seat.

The early CAD systems were two dimensional drafting systems and merely replaced
mechanical drawing boards as tools for drawing production, much as the early
computer algorithms had replaced mechanical calculators for numerical problem
solving. Once CAD systems evolved into three-dimensional modeling tools where
design features and components were explicitly recognized, and were provided with
links to descriptive textual or numerical data, engineers could use them to record
decisions about component selection and layout.

Analysis, drafting and layout are important and challenging engineering tasks and
computers have provided powerful productivity gains in all of these areas.
However, engineers also spend a great deal of time solving synthesis, diagnosis,
planning and other problems which are not readily modeled using numerical
algorithms. Humans engaged in synthesis, diagnosis and similar tasks employ
pattern matching, deduction, and related cognitive processes which involve
manipulating non-numerical symbols and concepts, and which are not easily
modeled using the procedural computer languages such as FORTRAN that were
developed to automate numerical computations.

Tools like the abacus, the slide-rule, and the mechanical calculator have long been
used as aids in solving numerical problems, and early computers were perceived by
many as merely electronic extensions of such tools. However, neither the abacus
nor the first generation of computers was able to duplicate human problem solving
capabilities for non-numerical tasks—the latter were widely believed to require
human intelligence. As a result, the field of computing which aimed to model and
replicate human problem solving for such tasks became known—to the chagrin of
some of its proponents—as the field of Artificial Intelligence (AI). Symbolic
processing “fifth generation” computer software languages and tools were
specifically developed by AI scientists to facilitate modeling the non-numerical
cognitive processes of pattern matching, search and deduction used in tasks such as
synthesis, diagnosis, planning, and interpretation.

In about the mid 1980s, AI techniques—in particular knowledge-based expert
systems (KBES)—began to be used by engineers to support diagnosis, selection and
monitoring tasks on a routine basis. Digital Equipment Corporation’s R-I system
for configuring VAX minicomputers is probably the best known KBES application of
this era [Barker 1989] and is claimed to have saved DEC millions of dollars
annually [Feigenbaum 1988]. Literally thousands of other small, focused Al
applications, many running on personal computers, were introduced by engineers in

both private and public engineering organizations of all sizes in the second half of
the 1980s.

Page 2

Merging Al with CAD: Intelligent Model-Based Engineering

Most of the KBES applications introduced during this time period were
consultation-style expert systems modeled after MYCIN (an early medical diagnosis
system) [Buchanan 1984] or PROSPECTOR (a pioneering mineral prospecting
system) [Campbell 1982]. In such systems, the user provides the data needed by
the program in response to a series of questions posed by the system in a data-
driven order. While this was adequate for small scope, stand-alone problems, KBES
to support design tasks need to be tightly integrated with CAD and analysis
applications to free human users from an overwhelming data entry load.

In particular, as engineers begin to design at CAD workstations rather than on
paper, new opportunities arise for automated data sharing and coordination of
specialists’ decision-making in real time. The integration of KBES techniques with
traditional engineering tools for CAD and analysis is a prerequisite for automating
and integrating the numerical and non-numerical engineering tasks associated with
planning, designing, manufacturing and operating semiconductors, automobiles,
aircraft, buildings, process plants and other engineered systems. This paper lays
out a methodology for using Al techniques to create the next generation of decision
support systems for engineering design synthesis.

2. AVIEW OF THE DESIGN PROCESS FOR CONSTRUCTED FACILITIES

The design process is often viewed as consisting of three tasks, performed
iteratively in increasing detail:

O A designer first synthesizes one or more candidate solutions aimed at
meeting a set of design specifications;

U The designer then analyses each candidate solution to determine its behavior
in terms of important dimensions of the system’s performance; and

U The designer evaluates the performance of each candidate solution to
determine whether, and how well, it meets the design specifications. If a
solution is deemed unsatisfactory, the dimensions of performance needing
improvement are used to guide the next round of synthesis for an improved
solution, and so on.

In the case of constructed facilities, computers have principally been used thus far
to automate the analysis step of design. Here numerical approximations of
differential equations have provided powerful and useful models of the physical
behavior of complex structural, mechanical and other building systems. Synthesis,
however, has been performed by human designers. CAD or other graphical data
entry software tools have supported synthesis primarily by recording and
communicating the designers candidate solutions to analysis programs or to other

Page 3

Merging Al with CAD: Intelligent Model-Based Engineering

engineers. We will show in this paper how evolving Al-based tools can support
design synthesis directly, to the point of automating it completely in many cases.
But first we will look at the synthesis component of design in more detail.

Design synthesis for buildings, process plants and many other kinds of
constructed facilities can be viewed as consisting of three steps: select, connect and
position. We describe each of them briefly here.

O Select. Facilities such as buildings and process plants are increasingly
assembled from standard or almost standard components. A major task in
design synthesis is to select components, at different levels of grain-size, from
libraries of standard components or subsystems. Knowledge about how to
select appropriate components, given the operating requirements of the
facility and choices already made about interdependent subsystems or
components, is one of the skills that experienced designers possess.

O Connect. Components must be connected together correctly to perform their
function. Properly connected structural members create load paths; piping
elements create fluid flow paths; and so on. Development of the topology of
components in a design synthesis is often supported by two- or three-
dimensional schematics such as P&IDs for process plants, circuit diagrams
for electrical systems, and wire-frame models for structural systems.

U Position. For buildings, layout of architectural components drives the entire
design process. For other kinds of constructed facilities such as process
plants, however, layout is performed as a final step, after selecting and
connecting components. In either case, experienced designers use experience
to guide them in positioning components relative to one another.

In the following section, we will show how AI techniques of rules, frames, and
object-oriented programming can be integrated with CAD to support each of these
tasks for the synthesis of products composed of standard components.

3. INTEGRATING AI WITH CAD AND ANALYSIS

A great deal of thinking and experimentation has been devoted to the use of Al
techniques to augment the capabilities of CAD and analysis tools already used by
engineers. The outline of a workable methodology for incorporating Al techniques
in engineering computing environments can be abstracted from experience to date.
The approach described below is proposed as a structured way to integrate non-
numeric reasoning with numeric and graphical modeling tools for diagnosis,
synthesis and planning tasks in engineering. Disciplined experimentation with and
refinement of a methodology for building integrated engineering software tools is

Page 4

Merging Al with CAD: Intelligent Model-Based Engineering

now both possible and desirable. The alternative is to continue with ad-hoc
application development, repeating each other’s mistakes as well as successes.

The methodology builds on existing CAD and analysis tools and practice and derives
data on-line from applications wherever possible. We begin by listing the kinds of
data that can be obtained from CAD databases and schematics, and discuss some
modest enhancements of CAD systems to integrate topological data about the
components of a constructed facility with data describing their geometry, materials
properties and administrative attributes.

3.1. OBTAINING COMPONENT DESCRIPTIONS FROM CAD DATABASES

As discussed above, selection, refinement and topological mapping of system
components are the principal tasks of design synthesis in many engineering
disciplines. In particular, CAD systems have become extremely useful not just for
drafting but also for the synthesis tasks of component selection and topological
mapping. This transition from Computer-Aided Drafting to Computer-Aided Design
could occur once CAD systems evolved to a point where they could represent
physical features and components as their primitives rather than graphical
elements such as points, lines and arcs. As a result of this advance in CAD system
capability, which occurred in the mid-1980s, engineers can productively design
products ranging from semiconductors and cameras to space shuttles and power
plants by synthesizing engineering designs on workstation screens rather than on

paper.

Furthermore, for all but the most unique products, designers at CAD workstations
can now extract components from a company, vendor or industry database of
standard components stored in an appropriate CAD format, and insert them into a
particular synthesis. A series of components that has been selected, resized or
adapted in some other way, and then appropriately connected to other components
in the model, defines a unique instance of a product.

For products designed in this way the component records or “blocks” in the CAD
database contain—or point to records in an external database which contain—
several kinds of descriptive information that can be used by a KBES to support
design, manufacturing and operation of the product:

0 Component geometry is described in sufficient detail to draw components
at the scale used in the CAD system in which the design is being performed.
Geometry can also be used to compute attributes such as the surface area,
volume, mass, center of mass, radius of gyration or moment of inertia.

Page 5

Merging Al with CAD: Intelligent Model-Based Engineering

U Topological information about the components of a product is provided
only implicitly in purely graphical CAD systems by the user at the time that
components are situated in a model. Because it is difficult to interpret
topology from geometry alone, two-dimensional schematics such as circuit
diagrams or piping and instrumentation diagrams (P&IDs) are widely used
by engineers to represent device topology. However, schematic diagrams like
these have had no computer usable connection with CAD geometric models to
date. For complex 3-dimensional products, scale models or full scale mock-
ups have often been used to help engineers evaluate the manufacturing or
operating concerns associated with geometry and topology. Spatial reasoning
techniques can interpret a purely geometrical model to infer topology for
simple cases like office building structural frames, but tend to bog down when
required to interpret more irregular topologies.

Consequently, high-level designer interfaces have recently been developed for
a number of CAD systems to facilitate the capture of explicit topological data
among product components as they are inserted into a 3-D CAD design
model. The explicit topological information thus stored in the CAD database
can then be used to support several kinds of reasoning using standard KBES
techniques [Ito 1989].

0O Physical properties of the materials of which the component is made for
use by structural, heat flow, chemical or other analysis programs.

O Technical specifications for manufacturing, assembling, testing or
operating the components of the engineered system.

O Administrative information needed in the manufacturing process, e.g.,
vendor name, contract number, payment provisions, etc.

O Analysis information e.g., member or connection forces and moments
computed by a structural analysis application, may be needed for diagnostic
or design reasoning. Translation packages exist to share geometric data and
analysis results between many standard CAD and structural analysis
packages.

Several Al programming tools now run concurrently on the same workstations that
are used for CAD, or can easily access CAD data over networks. Thus, they can
readily extract these types of product information from a CAD database (or an
attached relational database) and can automatically create a frame representation
of the product that incorporates these data.

Page 6

Merging Al with CAD: Intelligent Model-Based Engineering

Typically, each component is represented in a single frame at whatever level of
detail the engineer wishes to reason about the engineered system. A single
component frame can thus be used to represent a component which is really a
subassembly consisting of hundreds of separate parts, or an individual keyway,
hole, or washer in a product. The frames in such a product model can represent
geometrical, physical and administrative attributes of a product’s components
together with the topological structure of the components. All of this information
about the structure of a product and the local values of its component attributes is
then available in a representation easily accessible to KBESs for several kinds of
engineering reasoning.

Up to this point, we have not really enriched the data available in the CAD system;
we have just reorganized it into frames. However, frames are more elaborate data
structures than database records—they can store knowledge about the behavior of a
component along with data about its current state [Fikes 1985]. The following
sections show how we can exploit the power of production rules and inheritance to
enrich the data in the frames, transforming a database of component data into a
knowledge base describing both the state and the behavior of an engineered
product.

3.2. HOW COMPONENTS CAN INHERIT BEHAVIOR

The specific components which comprise an engineering system can be viewed as
instances of more general classes of components. Some component attributes and
their values—especially those describing component behavior—can be defined at the
most generic class level to which components belong, e.g., in a class called “building
components.” Additional attributes and their values representing descriptive
properties or behavior of more specific subclasses of components, e.g., “HVAC
system components” or “electrical system components,” can then be added at each
level of specificity and inherited down the abstraction hierarchy to particular
instances of each type of component.

The key to inheriting component behavior is that objects retrieved from the CAD
system must be correctly associated with the component abstraction hierarchy, i.e.,
they must automatically be made instances of the correct subclasses. The
importance of strict naming conventions for components becomes obvious at this
point. For example, with careful enforcement of naming conventions, a rule can be
used to find all components labeled BEAM_xxx in the CAD system database, and
then attach them automatically as instances of the subclass BEAMS in the frame
hierarchy, whence they can inherit beam bending formulae, deflection limits, etc.
(Languages like Lisp handle strings effortlessly, so that simple methods or rules to
identify and attach instances to an abstraction hierarchy are easy to program.)

Page 7

Merging Al with CAD: Intelligent Model-Based Engineering

Once a component has been correctly placed in its primary class, e.g., BEAM_263
has been made an instance of BEAMS, it is easy to generate other links that can
provide more specific behavior using additional rules or procedures which reason
about attributes of the component, e.g., its material type. The following rule shows
how easy this is to do:

((1f (?BEAM is in class BEAMS)
And (the MATERIAL_TYPE of ?BEAM is CONCRETE))
(Then (?BEAM is in class CONCRETE_COMPONENTS)))

This rule would search over all instances of BEAMS and would add the subclass
parent CONCRETE_COMPONENTS to any instances of the class BEAMS whose
material type was concrete, causing them to inherit additional behavior from the
subclass CONCRETE_COMPONENTS. Thus, by firing a set of rules of this type on
the frames generated from a CAD model of a product, we are able automatically to
add knowledge about component behavior to a knowledge base that previously
contained only information about component geometry, topology and material type.

3.3. HOw COMPONENTS CAN DEDUCE THEIR FUNCTION

A KBES can deduce a substantial amount of knowledge about the roles that
individual components such as beams, valves, shafts or switches play in the
functioning of a product by reasoning about the part-of hierarchy for the product
and the topological links among its components. Thus, by noting that a beam is
part-of a liquid nitrogen supply subsystem and is connected-to the liquid nitrogen
pump platform, we might conclude that its role or function in the product is to
provide structural support for the pump platform. This allows the beam to
reference the weight of the pump in computing its size.

Similarly, an electrical conductor that was part-of the liquid Nitrogen supply
system, and was upstream of the pump (in terms of electrical circuit topology) could
reference the pump’s voltage and starting horsepower to determine its own required
current carrying capacity, and so on.

Knowledge of component function provides significant leverage in performing tasks
like design, simulation or diagnosis. However, strict naming conventions are
extremely important here, too, to ensure that components are properly attached to
the part-of and abstraction hierarchies to which they should belong so that
component function can be correctly deduced.

Page 8

Merging Al with CAD: Intelligent Model-Based Engineering

The RATAS building product model developed in Finland was one of the first
systems to exploit this capability in the building domain [Bjork 1988]. We will
illustrate the use of linked abstraction hierarchies and part-of hierarchies to infer
component behavior and function in describing the Intelligent Boiler Design System
[Riitahuhta 1988] later in the paper.

3.4. GENERATING SYSTEM BEHAVIOR VIA MODEL-BASED REASONING

Model-Based Reasoning (MBR) is a style of KBES modeling that can be used to
predict the behavior of the modeled system by qualitative or quantitative simulation
[Kunz 1989]. Inherited methods give components the correct behavior in the
context of local descriptive data. The topological information stored with each
component allows such a model to deal with interactions among its components,
e.g., current flow between connected components of an electronic circuit, fluid flow
through a piping system, load paths through a structure, or the propagation of
vibration through an airframe.

For tasks such as product configuration and diagnosis, qualitative modeling
techniques are often perfectly adequate for simulation while at the same time
offering the advantage of being able to explain their conclusions. However,
qualitative simulation will not always produce definitive results; often, two or more
opposing qualitative effects must be quantified in order to determine which
dominates. Thus, we can might develop KBESs which move through a natural
progression from purely qualitative simulation through simple quantitative
simulation, e.g., a “back-of-the-envelope” approximation, to detailed numerical
modeling. This corresponds closely to the way experienced engineers work. We use
detailed numerical analysis in very focused ways to resolve specific design questions
whose answers may not be clear from qualitative or simple quantitative analysis.

We summarize the four basic points of the model-based reasoning approach to
design synthesis for products consisting of standard components or features as
follows:

1. Components needed for a product are retrieved from a library of standard
components and attached to their primary parents in a component
abstraction hierarchy based upon standard naming conventions. Rules or
procedures that reference additional attributes of named components then
generate multiple abstraction links for components. This provides
components with knowledge about arbitrarily complex behaviors by
inheritance from multiple subclass parents.

2. Product structure is represented by a part-of hierarchy for its components
and by topological links—either explicitly provided by the product designer in

Page 9

Merging Al with CAD: Intelligent Model-Based Engineering

schematic or CAD form as components are added to a design in the synthesis
stage, or automatically deduced by spatial reasoning techniques.

Component function is deduced by reasoning about links in a generic product
part-of hierarchy and/or by reasoning about component topological
relationships.

Product behavior is deduced by simulation—qualitative, quantitative or
both—of the product, using inherited component behaviors and local attribute
values to generate component behavior. Again, topological links capture
interactions among components and subsystems.

This methodology is summarized graphically in Figure 1.

o s sk ok ofeole sk sl sfeole skt sk sk sk sfeske ke skt sl sk ke skl koo sk sk koo

INSERT FIGURE 1 ABOUT HERE

ook ko sk sheskesie st sfe sk sk sfeslok st sle sk st stk sk skokeokofeoskokeoskokok

One of the principal advantages of this approach to design synthesis is the extensive
use of generic component libraries represented as frames, whose attributes and
behavior can be inherited by instances of the components in engineered products or
systems. This provides two important advantages.

Q

3.5.

First, it drastically reduces the number of new rules that need to be employed
in a given MBR engineering application. As a company develops new
products which incorporate generic components, much of the system behavior
is already captured in the inherited behavior of the components. The volume

~ of new rules to be encoded in order to define synthesis knowledge for new

products will thus increase less than linearly—rather than exponentially as
would be the case with a rule-based system—as long as new products share
some of the same components as previously modeled products.

Second, frame-based inheritance is a much easier form of deduction than
rule-based inference to program and maintain. Thus, MBR systems
implemented in this way are far easier for an organization to develop and
maintain than corporate knowledge bases consisting only of production rules
such as are used for the R-1 application by DEC [Riitahuhta 1988].

ENGINEERING APPLICATIONS OF MBR

We have described a methodology whereby model-based reasoning can be
implemented using KBES and CAD systems together to transform a database of
information about a product’s components into a knowledge base of component

Page 10

Merging Al with CAD: Intelligent Model-Based Engineering

properties and behavior, and then perform design synthesis with this rich
knowledge base.

This type of approach has been applied in the LSC Advisor for architectural code
checking [Dym 1988], the SightPlan system for construction site layout
[Levitt 1989] and the IBDS system for automating boiler design [Riitahuhta 1988].
We describe the IBDS system in some detail next.

4. AN EXAMPLE OF AI-CAD INTEGRATION: THE INTELLIGENT
BOILER DESIGN SYSTEM OF TAMPELLA

Al techniques for design synthesis are just now entering into commercial
application. In this section we provide a brief case study to show how one company
is using a knowledge-based design automation system to automate the preliminary
design of power generation boilers. This case study demonstrates the integrated
and operational use of state-of-the-art AI-CAD integration techniques in a real
engineering environment.

4.1. BACKGROUND OFIBDS

Tampella Power Industries of Tampere, Finland, designs and manufactures boilers
and other components of power plants. Since April 1987 the company has been
using Design++, a high-level design automation Al language that follows the model-
based reasoning (MBR) paradigm described above for boiler design. The boiler
design expert system developed using Design++ is integrated with a
ComputerVision CAD system, a VAX-based engineering analysis system, and an
Oracle relational database system [Riitahuhta 1988]. One part of this application
conducted by Tampella addressed the design of upper circulation piping (Figure 2).

s sk ook sk ook sheofe sheskok skt ok sk ook ekl sk ke kol skeskoskskokok

INSERT FIGURE 2 ABOUT HERE

kst st sheskeoke sk st ook ok ok sk sheskeok sk ok sk ke sfe ok ok ks ok ki sk

Here, the upper circulation pipes refer to the water-collecting pipes of the boiler
furnace walls which return the boiler water into the drum.

Modeling for the IBDS pipe layout system was divided into three stages.
* Defining the positions of the drum connections,

* Defining the positions of the connections of the wall collecting headers, and

Page 11

Merging Al with CAD: Intelligent Model-Based Engineering

® Defining the routing of the pipelines from the drum connections to the
corresponding connections of the wall collecting headers.

In principle, the layout of the drum connections is determined by standard
construction, but the number and positions of the connections have to be determined
separately for each project. The positions of the connections for a given boiler are
dictated by the need to avoid interference with the downcomers. There are
construction standards for the layout of the wall connections. Solutions for the
particular project are provided again by the specific obstructions resulting from
different boiler sizes. Tampella has not been able to standardize these structures;
rather, the structure is determined for each project using design rules.

There are several obstructions, including the upper headers, the weld joints, and
the lifting lugs of the header needed for hanging both the header and the furnace
wall it supports from the upper support structures. Boiler downcomers, boiler
suspension rods, parallel circulation pipes, and other piping systems are additional
obstructions. With the aid of design rules implemented in Design++, the positions
of the drum connections and wall collecting header connections are determined and
the boiler pipes are positioned automatically, one at a time, to avoid all of these
obstacles .

4.2. ARCHITECTURE OF IBDS

The Design++ framework is implemented as a knowledge base in IntelliCorp’s KEE,
which runs under Common Lisp. IBDS is made up of a series of linked knowledge
bases implemented on top of Design++. The original version of the IBDS was
implemented on a Symbolics AT workstation and interfaced to other computers. The
current version of Design++ runs in a UNIX environment on Sun workstations.
This allows applications like IBDS to interface and share data with relational
databases, document preparation software, engineering analysis programs, CAD
programs, and other applications in the UNIX environment.

4.3. REPRESENTATION IN IBDS

Tampella first developed a set of generic component libraries stored as frames
within Design++ (as Design++ is built on top of KEE, these libraries are stored as
standard KEE frames but are accessed through an engineering design user
interface). Design++ uses a form of prettyprinted text file to represent product
part-of hierarchies. Tampella therefore made up one of these part-of hierarchies
(which can recursively reference more detailed part-of hierarchies) for each type of
power boiler that it wished to design. Configuration knowledge was represented in
rules defined for classes of assemblies and classes of parts in generic component
libraries.

Page 12

Merging Al with CAD: Intelligent Model-Based Engineering
4.4. REASONING IN IBDS

Attribute values are propagated via demons. Rules fire as components are defined
to propagate constraints from the attributes of one component to the relevant
attributes of others. For instance, as a pump is selected, its power consumption is
propagated to conductors, transformers, circuit breakers, or other electrical
components that need this information to select or size themselves; its weight is
propagated to structural components that provide it support; its output diameter is
propagated to the pipe and flange that connect to its output side; and so on. ‘This is
classic object-oriented programming (OOP) as described in Chapter 6.

Design++’s high-level design rule language facilitates the implementation of spatial
reasoning (e.g., about clearances) and some kinds of electro-mechanical reasoning in
terse rules, but any desired relationship among component attributes can be defined
in Lisp as part of such demons. Substantial Lisp methods are used to carry out
some of the more complex types of geometric reasoning in IBDS (e.g., routing of
pipes).

4.5. EXPLANATION IN IBDS

The current version of Design++ uses AutoCad as an internal visualization tool.
This permits the user to see the evolving design in three dimensions, colored by
layers or subsystems, as desired. The design visualization can be rotated, panned,
zoomed, and so on, from within AutoCad, so the user can inspect the results of
design decisions made to date. The user can backtrack to make changes, and all
affected components are automatically redesigned. This permits consideration of
multlple alternatives, each of which is guaranteed to be consistent with all design
rules in the system, in a fraction of the time that would be required to do this
manually or with conventional CAD systems.

Design++ has the ability to represent reports as assemblies of components
(paragraphs, subsections, and so on.). Also, there are interfaces between Design++
and document processing languages such as InterLeaf. These two features allow
the automatic generation of reports, such as bills of quantities, specifications,
warranties, procedure manuals, and so on, based upon the design model. AutoCad
images from the design model can be pasted into such reports. The AutoCad model
can be used to produce preliminary or working drawings or to generate CAD files in
the format of other three dimensional CAD systems via its DXF interchange format.
Finally, the model has been used by Tampella to generate manufacturing
instructions in numerical control (NC) format for robotic pipe benders or other
automated manufacturing equipment.

Page 13

Merging Al with CAD: Intelligent Model-Based Engineering
4.6. CURRENT STATUS OF IBDS

The power of the IBDS system is based on the large amount of knowledge of the
domain that can be captured in the design rule language, project structure model,
and component libraries in Design++. When the amount of knowledge increases,
knowledge management becomes a significant problem. In this system, the
knowledge management problem has been solved by utilizing an object-oriented
approach to component descriptions and by exploiting relational databases.

The benefit obtained through automation in the design of the upper circulation
pipes is summarized by Tampella’s engineering staff [Riitahuhta 1988] as follows
(emphasis added):

* Using manual design, the design work took two months.

° With ComputerVision’s conventional plant design software, design took two
weeks.

* Using the IBDS expert system together with the ComputerVision CADD
system, a design can be completed in two days.

Thus, Al techniques have been exploited to automate many aspects of routine
design for a semi-custom product. The techniques used in this example parallel
very closely the MBR approach. There currently exist a number of off-the-shelf
design automation tools like Design++ (including ICAD and Concept Modeler) that
can facilitate the development of applications like this. The best of these design
automation tools not only provide rules, frames and OOP for representation and
reasoning; they also serve as the “glue” to integrate CAD, analysis, database,
document preparation, and manufacturing automation software tools.

5. CONCLUSIONS

This paper has argued that model-based reasoning provides the beginnings of a
structured methodology for building knowledge-based engineering systems to
support design synthesis. We have explained and demonstrated how the Al
techniques of production rules, frames and OOP can be integrated with traditional
engineering CAD, database and analysis software to perform model-based reasoning
in ways that leverage the advantages of each.

An example application was described to show that AI and CAD can be usefully
merged in the style proposed in this paper to automate design synthesis for semi-
custom products such as industrial boilers. The author is aware of completed or
ongoing work using this style of AI-CAD integration for automating the synthesis of

Page 14

Merging Al with CAD: Intelligent Model-Based Engineering

building air-conditioning systems and elevators, as well as of complete
manufacturing plants for paper and wire cables.

Synthesis of non-routine designs is a far more difficult task in which humans may
use analogy, mutation and other less-well understood mental processes for
generating candidate solutions that might satisfy unusual specifications. Work in
this area is still in the early research stages and commercially interesting results
are probably several years away [Gero 1987]. However, where facilities are
assembled from relatively standard components in product structures that contain
many of the same high-level subsystems, current technology for merging Al with
CAD can provide order of magnitude increases in engineering productivity with
improved preliminary designs and cost estimates, and can be used to integrate
analysis and manufacturing software tools at all stages of the facility engineering
life cycle.

6. ACKNOWLEDGEMENTS

Many of the ideas presented in the paper arose out of seminar discussions with an
unusually talented and articulate group of students, faculty and industry colleagues
in CIFE. At the risk of offending anyone I might forget, I would like to acknowledge
the contributions to my thinking made by a series of discussions and debates on this
subject with Alan Axworthy, Paul Chinowsky, Lai Chua, Tony Confrey, Adnan
Darwiche, Hossam El-Bibany, Cristina Bicharra, Ed Feigenbaum, Martin Fischer,
Thomas Froese, Renate Fruchter, Gabe Gross, Barbara Hayes-Roth, Craig Howard,
Kenji Ito, Deepak Jain, Nabil Kartam, Matti Katajaméki, Tapio Karras, John Kunz,
Kincho Law, Hannu Lehtimiki, Douglas Phan, Asko Riitahuhta, Iris Tommelein,
Yasu Ueno, and Lloyd Waugh.

The SightPlan research referenced in this paper was supported by the National
Science Foundation Grant # MSM-86-13126. Additional support for research on
model-based planning and scheduling has been provided by Stanford’s Center for
Integrated Facility Engineering. This support is gratefully acknowledged.

7. REFERENCES

[Barker 1989] V. E. Barker and D. E. O’Connor, “Expert Systems for
Configuration at Digital: XCON and Beyond,” Communications
of the ACM 32 (3), 1989.

[Bjork 1987] B-C. Bjork, RATAS: A Proposed Finnish Building Product

Model, Studies in Environmental Research No. T6, Helsinki
University of Technology, Otaniemi, Finland, 1987.

Page 15

Merging Al with CAD: Intelligent Model-Based Engineering

[Buchanan 1984]

[Dym 1988]

[Feigenbaum 1988]

[Fikes 1985]

[Gero 1987]

[Ito 1989]

[Kunz 1989]

[Levitt 1989]

[Riitahuhta 1988]

B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert
Systems, Addison-Wesley, Reading, MA, 1984.

C. L. Dym, R. P. Henchey, E. A. Delis, and S. Gonick,
“Representation and Control Issues in Automated
Architectural Code Checking,” Computer-Aided Design 20
(3), 1988.

E. A. Feigenbaum, P. McCorduck, and H. P. Nii, The Rise of
the Expert Company, Times Books, New York, 1988.

R. Fikes and T. Kehler, “The Role of Frame-Based
Representation in Reasoning,” Communications of the ACM
28 (9), 1985.

dJ. Gero, “Prototypes: A New Schema for Knowledge-Based
Design,” working paper, Architectural Computing Unit,
University of Sydney, Australia, 1987.

K. Ito, U. Yasumasa, R. E. Levitt, and A. Darwiche, Linking
Knowledge-Based Systems to CAD Design Data with an
Object-Oriented Building Product Model, Working Paper No.
7, Center for Integrated Facility Engineering, Stanford
University, Stanford, CA, 1989.

J. C. Kunz, M. J. Stelzner, and M. D. Williams, “From
Classic Expert Systems to Models: Introduction to a
Methodology for Building Model-Based Systems,” in G.
Guida and C. Tasso (Editors), Topics in Expert System
Design, North-Holland, Amsterdam, 1989.

R. E. Levitt, I. D. Tommelein, B. Hayes-Roth, and T.
Confrey, SightPlan: A Blackboard Expert System for
Constraint Based Spatial Reasoning About Construction Site
Layout, Technical Report No. 020, Center for Integrated
Facility Engineering, Stanford University, Stanford, CA,
1990.

A. Riitahuhta, “Systematic Engineering Design and Use of
an Expert System in Boiler Plant Design,” Proceedings of the
ICED International Conference on Engineering Design,
Budapest, Hungary, 1988.

Page 16

Merging Al with CAD: Intelligent Model-Based Engineering

8. FIGURES

Page 17

Merging Al with CAD: Intelligent Model-Based Engineering

Abstraction Hierarchy: Part-of Hierarchy:
Component Behavior Component Function

Schematic of Topology:
System Structure

Figure 1: The elements of AI-CAD Integration. Components (shaded boxes) are
inserted into a design knowledge base from CAD or database component libraries
and connected to appropriate parent subclasses in a frame hierarchy (white boxes)
from which they inherit appropriate behavior. Component function is derived from
their position in the part-of hierarchy (shaded ovals) and the schematic diagram
(shown at the bottom of the figure).

Page 18

Merging Al with CAD: Intelligent Model-Based Engineering

pproach described in

Design++, a high-level AI design automation language, was used to

Figure 2 The upper circulation pipework for a power plant boiler (after [Riitahuhta

1988]).
generate the component layout for this boiler using the MBR a

this paper.

Page 19

