ACENTER FORINTEGRATED FACILITY ENGINEERING

Constraint Propagation
in Planning and Scheduling

Claude Le Pape
CIFE TECHNICAL REPORT

Number 29

January, 1991

Stanford University

I Center for Integrated Facility Engineering ° Stanford University

Copyright © 1991 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

FOREWORD

Most of the work presented in the following report has been performed in the context of
two projects aimed at controlling the actions of multiple agents in the same environment.

e Indoor Automation With Many Mobile Robots. The goal of this project is to
control the operations of many mobile robots (several dozens) in an indoor environment
(an office environment, a shop-floor, an airport, an hotel) in order to automate a
variety of tasks. Typical tasks include transportation of objects (beverages, books,
mail), operation of machines (copiers, vending machines), cleaning and maintenance.
Different tasks may require different physical capabilities. Nevertheless, most of the
tasks essentially involve mobility and transportation of relatively small objects.

o Planning, Scheduling and Monitoring Actions of Multiple Agents on a Con-
struction Site. This project concerns the integration of various short-term planning,
scheduling and execution monitoring techniques for multiple agents (robots and hu-
mans) working on a construction site. The case of a construction site introduces
additional difficulties. For example, the geometry of a construction site continually
changes. More sophisticated planning techniques (integrating temporal and geometri-
cal reasoning) are consequently needed.

The current planning, scheduling and execution system integrates a collection of software
components: a task planning system to derive plans made of “high-level” actions from a
description of the tasks to be performed; a task allocation system to order and allocate
tasks or actions to agents; a motion planning system to convert high-level actions into
motion commands; and an execution system to monitor execution and react to unexpected
events. These components are implemented in COMMON-LISP on a DEC 3100 workstation.
The overall system is tested with the help of a simulation system designed to simulate actions
of autonomous agents.

A preceding report presents the simulation system. Here, we show how we have used the
simulation system to test and compare constraint-based planning and scheduling methods.
The report starts with an introduction to constraint propagation, planning and scheduling
and with theoretical considerations on constraint propagation (sections 1 and 2). Two ap-
plications of constraint propagation in the context of the projects above follow. Section
3 investigates situation-independent planning and section 4 discusses different task alloca-
tion methods involving constraint propagation. Then we present manufacturing applica-
tions involving similar issues. Section 5 presents previous experiments in the manufacturing
scheduling domain and section 6 presents an architecture allowing a predictive scheduler and
a reactive dispatcher to run in parallel and deal with environmental uncertainty in a consis-
tent fashion. We close the report with prospective considerations on (a) software verification
in the planning and scheduling domain and (b) the expression of control knowledge allowing
to make the best use of constraint propagation (sections 7 and 8).

Constraint Propagation in Planning and Scheduling

Claude Le Pape

Robotics Laboratory
Department of Computer Science
Stanford University
Palo Alto CA 94305 USA

Abstract: Constraint propagation is a deductive activity performed by a constraint
propagation system for a problem-solver. It enables the problem-solver to decompose a prob-
lem without neglecting interactions between subproblems, determine which subproblems are
the most constrained and focus attention accordingly. Constraint propagation techniques
are often used to solve planning and scheduling problems. Experiments reported in the past
have shown the interest of these techniques in the planning and scheduling domain. In this
report, we review various constraint propagation techniques and provide experimental results
allowing to compare them on a variety of problems. We conclude that current constraint
propagation systems do not enable a human problem-solver to make his (or her) own ap-
plications as efficient as possible without the help of a specialist. An interesting avenue of
research is to make the adaptation of a generic constraint propagation system manageable
by its users. Another is to provide the system with the ability to learn from its experience
and adapt itself to the type of planning and scheduling problems it encounters.

Keywords: Constraint propagation, planning, scheduling, predictive problem-solving, reactive
problem-solving, incremental problem-solving.

Acknowledgements: Most of this research has been funded by the Center for Integrated
Facility Engineering (CIFE), the Center for Integrated Systems (CIS) and Digital Equipment Cor-
poration (DEC). The development of the task planning and task allocation systems presented in
sections 3 and 4 started in 1989 while the author was supported by ELF-Aquitaine. The scheduling
system discussed in section 5 was developed in 1987 and 1988 by Anne Collinot, Gérard Pinoteau
and the author at Laboratoires de Marcoussis. The first version of the execution monitoring sys-
tem discussed in section 6 was designed by Karl Kempf, Naiping Keng and Stephen Smith at Intel
Corporation. Section 6 reflects intensive discussions with them and with Malcolm Acock, Mark
Drummond and Srinivas Narayanan. I would like to thank Jean-Claude Latombe for the chance
I had to work in the Robotics Laboratory, and the members of the Robot Reasoning Group for
interesting discussions on constraint propagation, planning and scheduling.

Contents

1 Introduction 3
1.1 Constraint Propagation o oo 4

1.2 Planning and Scheduling oo 8
1.2.1 Planning and Scheduling Problems 8

1.2.2 Predictive and Reactive Planning and Scheduling 12

1.2.3 Planning and Scheduling with Uncertainty 14

1.2.4 Distributed and Centralized Planning and Scheduling 17

2 Theoretical Foundations for Constraint Propagation Systems 19
2.1 Usual Definitions of Validity / Completeness / Decidability 20
2.2 Revised Definitions (for Solution Maintenance Components) 21
2.3 Examples of Complete Theories 23
2.4 Conclusion L e s 25

3 Type and Domain Constraints in Task Planning 27
3.1 A Task Planner Based on Constraint Propagation 27
3.2 Constraint Propagation L o e 31
3.2.1 Constraint Propagation Steps 31

3.2.2 Constraint Propagation Scenarios 36

3.3 Description of the Experiments 37
3.4 Discussionof the Results 40

4 Experiments With an Incremental Task Allocation System 43
4.1 A Framework for Incremental Task Allocation 43
4.2 Description of the Experiments 44
4.3 Discussion of the Results L oo 46

5 Experiments With a Flexible Job-Shop Scheduling System 48
5.1 A Flexible Job-Shop Scheduling System 48
5.2 Description of the Experiments 49
5.3 Discussion of the Results 0 0. 51

6 Relating Scheduling and Execution Monitoring 53
7 Software Verification in the Planning / Scheduling Domain 65
7.1 Knowledge Base Verification 0. 66
7.2 Sequencing Constraints o o o 70
7.3 Constraints on Continuous Evolutions 70

8 Conclusion 71

1 Introduction

“The divide-and-conquer strategy breaks large problems into smaller, more tractable
subproblems. Ideally, the solution of a complete problem simply requires combining the so-
lutions of independently-solved subproblems. In practice, subproblems often interact. When
subproblems are only nearly independent, solving a complete problem involves coordinating
the solutions of its subproblems ... This thesis demonstrates an approach to problem-solving,
termed constraint posting, which combines the traditional constraint satisfaction ideas with
hierarchical problem-solving. Constraint posting has three main operations: (1) formulating
constraints, (2) propagating constraints, and (3) satisfying constraints. While these oper-
ations could be classified simply as inferences, they perform distinct and important roles
in problem-solving — specialization, communication, and coordination respectively. Using
constraint posting, a planning program (named MOLGEN) can combine under-constrained
subproblems to form well-constrained larger problems. As constraints are propagated be-
tween subproblems, MOLGEN eliminates interfering solutions without backtracking.”

Mark Stefik [137]

Since the publication of Stefik’s thesis and related articles [137] [138], many researchers
have applied constraint posting to planning and scheduling problems. Constraint posting
allows to anticipate subproblem interactions and therefore to reduce search. In addition,
the explicit statement and satisfaction of constraints enables the generation of more realistic
plans and schedules. While rigid algorithms designed to solve particular problems cannot
accommodate constraints ignored at design time, a constraint system allows the formulation
of a great variety of constraints (in a system-dependent formal language). This happens to
be very important in the case of factory scheduling since important features of scheduling
problems vary from one shop to another [92]. It is even more important in the domain of civil
engineering automation — domain in which distinct planning problems are often radically
different.

Constraint posting techniques have allowed to solve difficult problems. Nevertheless, re-
search is still needed to solve a lot of manufacturing and engineering problems. For example,
the most successful constraint-based reactive scheduling systems (e.g. [13] [31] [131]) are able
to correct disrupted factory schedules in a few seconds or less. This is almost satisfactory
for small shop-floors with small event rates (typically producing mechanical parts). But this
is much too slow for complex environments such as integrated circuit factories.

In this report, we discuss recent applications of constraint propagation techniques to
various planning and scheduling problems. The goal is not to demonstrate the interest of
these techniques. We already believe in this interest (and refer the skeptical reader to [149]
which contains many impressive results). Instead we review various constraint propagation

techniques and provide experimental results allowing to compare them on various planning
and scheduling problems.

This section introduces the concepts of constraint propagation, planning and schedul-
ing to the unfamiliar reader.! Section 2 presents theoretical foundations underlying the
constraint propagation systems discussed in this report. Sections 3 to 6 present constraint-
based planning and scheduling applications together with experimental results. Section 7
discusses envisioned applications of constraint propagation to software verification in the
planning and scheduling domain. Section 8 summarizes the most important results and
proposes directions for further research.

1.1 Constraint Propagation

Constraint propagation is a deductive activity performed by a constraint propaga-
tion system for a problem-solver or for several problem-solvers operating in parallel. It
enables the problem-solver to decompose a problem without neglecting interactions between
subproblems, determine which subproblems are the most constrained and focus attention
accordingly. The constraint propagation system derives new constraints from existing ones.
It also detects inconsistencies between several types of constraints, e.g. (in the planning and
scheduling domain) goals, decisions, preferences, occurring and predicted events (figure 1).

Mathematically speaking, the main concept in constraint propagation is the concept of
a variable “held constant” “with a conditional interpretation” [77] [87].

e “Held constant” means that a variable z stands for the same object throughout all the
constraint statements (and throughout constraint propagation).

e “With a conditional interpretation” means that every statement containing a free vari-
able z expresses a condition on z or — more precisely — on the object = stands for.

In other terms, a constraint set C= {P(z) P(y) Q(z y)}, where P and @ are predicates and
r and y variables, is used when one wants to determine (or prove the existence of) two values

v and w, such that P(v), P(w) and Q(v w) hold.

Tt does not constitute a review of the huge amount of research performed in the planning and scheduling
domain. Recent reviews in planning include [143] [144] [64] and the first chapter of Rit’s PhD thesis [114].
[8], [17] and [23] are the most significant books about scheduling. Each of them provides a good survey
of traditional (operations research) scheduling models and techniques. Steffen [136] reviews the scheduling
systems developed before 1986 with artificial intelligence techniques (including constraint propagation).
Kempf [73] provides a more recent bibliography as well as an interesting viewpoint on the evolution of
research in the “artificial intelligence and scheduling” domain. Burke [14] presents and criticizes the most
well-known scheduling systems using artificial intelligence techniques. Collinot [28] presents both operations
research techniques and artificial intelligence systems for scheduling — and establishes an interesting link
between the two scheduling research fields. All of this background is not necessary to understand the present
report. On the other hand, a little background in operations research [71], automated deduction [77] [115],
graph theory [10] [59] [60] and complexity theory [51] is necessary.

4

PROBLEM-SOLVER

FORWARDING INFORMATION ADDING CONSTRAINTS
DESCRIBING INCONSISTENCIES RETRACTING CONSTRAINTS
BINDING VARIABLES REQUESTING INFORMATION
CONSTRAINT
PROPAGATION
SYSTEM

Figure 1: Constraint Propagation

(A-start + 3 = A-end)

A-end

A-start

(A-start < B-start) (C-end < A-end)

B-end C-start C-end

¢ ¢
(B-start + 2 = B-end) (B-end < C-start) (C-start + 2 = C-end)

B-start

Figure 2: A Binary Constraint Network

Constraints provide a specification of admissible assignments of values to variables. Do-
main constraints such as z € {2 / 8§ 16} and y € {2 4 8 16 32 64} describe domains over
which variables can vary. Variable relations such as (z + 1) > (2 * y * y) define a subset
of the cartesian product of these domains. Variables and constraints are often represented
in an hypergraph whose vertices are the variables (with the associated domains) and whose
hyperedges correspond to the variable relations. In particular, constraints involving two
variables are often organized in a graph as in figure 2. When such a graph (hypergraph) is
used as a representation for a constraint satisfaction problem, it is worth using its structure
to choose constraint propagation steps. The determination of connected components and
the detection of tree-like (hypertree-like) shapes within the graph are of particular interest.
In particular, Shenoy and Shafer have designed a powerful constraint propagation algorithm
for variables with finite domains and relations forming an hypertree [126]. This algorithm
detects inconsistencies and determines values satisfying the constraints (when constraints are
compatible) in O(n * M*¢), where M denotes the size of the largest domain, ¢ the size of the
largest hyperedge and n the number of constraints. It uses propagation operators similar
to the operators of relational database management systems [37] and allows (with minor
changes) to perform discrete optimization, compute marginals of probability distributions
and find a most probable configuration of causes to explain a set of symptoms [125] [127].2

Different types of constraint propagation steps are useful depending on the domains
and relations. For boolean variables, each constraint propagation step consists of deducing
a formula in propositional logic. When domains are euclidean spaces and relations refer
to euclidean properties, theorems of euclidean geometry are put into use. More generally,
combinatorial and algebraic approaches to constraint propagation are distinguished (see [34]).

e A combinatorial approach consists of performing operations concerning the possible
values of variables. For example, if z equals I and if yis constrained to be greater than
z, only values greater than 1 are candidates for .

e An algebraic approach consists of performing operations concerning relations between
the unknown values of variables. For example, if z is constrained to be greater than y
and if y is constrained to be greater than z, then z is constrained to be greater than =

Combinatorial approaches are often applied in finite domains [126] [149] while algebraic
approaches are often applied in infinite but homogeneous structured domains. In particular,
algebraic approaches are often used to reason about time [4] [56] [79] [87] [88] [119] [150].

2Seidel [124] presents another (less general) algorithm which suits graphs with particular structural prop-
erties. It runs in O(n *+ M/+1) where f < n is an integer which depends on the graph and (f + 1) equals
¢ (the size of the largest hyperedge) for some linear hypertree cover of the graph. Arnborg, Corneil and
Proskurowski [6] propose an algorithm in O(v**?) to determine whether a graph with v vertices is a partial
k-tree and compute the embedding k-tree. Given the k-tree, one can construct an hypertree cover for the
original graph with hyperedges of size (k + 1) (in O(v**')) and then use Shenoy and Shafer’s algorithm to
(1) compute the corresponding variable relations (in O(n * M**!)) and (2) solve the resulting problem (in
O(n* M**t1)). Hence the combination of the two algorithms in [6] and [126] runs in O(v¥*+2 4+ n* M**1) for
a partial k-tree.

When constraints are not compatible, it is useful to provide the user of the constraint
propagation system (human or computer system) with a description of the detected conflicts.
For example, such a description allows to perform “relevant” backtracking and to avoid recre-
ating the conditions of a failure [12] [81] [82] [120] [134].2 To provide such a description, the
constraint propagation system must remember which constraints have been derived from
other constraints. This leads to defining techniques similar to those used in truth mainte-
nance systems [35] [36]. Conversely, truth maintenance problems have been mentioned as
particular constraint satisfaction problems [34]. The two research domains (truth mainte-
nance and constraint propagation) are consequently very close one to the other. In particular,
the same complexity problem arises from the use of disjunctions in the two domains.

When disjunctive constraints (or constraints with an intrinsic disjunctive nature) are
considered, the problem of determining whether a given set of constraints is consistent is
NP-hard. Therefore, polynomial systems are (unless P = NP) unable to detect all possible
contradictions between disjunctive constraints. Most constraint propagation systems per-
form a fixed amount of propagation: the trade-off between the anticipation of interactions
and the amount of computational effort spent in constraint propagation is set once for all.
More flexible systems allow to reduce or extend propagation with respect to a predetermined
set of particular parameters (e.g. reference intervals in [4], levels of precision in [86]) or in-
clude a small programming language to control constraint propagation [28] [87] [149]. Results
of recent experiments with such systems [30] [149] show that one should carefully consider
the control of constraint propagation to improve the efficiency of the resolution of constraint
satisfaction problems: the amount of constraint propagation that enables a problem-solver
to be the most efficient varies with the problem-solver, with the application (e.g. in job-shop
scheduling, the appropriate amount of propagation varies from one shop to the other) and
with the problem-solving context (e.g. in case of urgency, propagation can be restricted to
constraints relating to imminent manufacturing operations). This gives particular impor-

3There are a few terminological problems in the literature on “relevant” backtracking. In particular,
the distinction between chronological and dependency-directed backtracking varies from an author to the
other: removing decisions in reverse chronological order until one responsible for the failure is removed
is chronological for some authors and dependency-direcied for others (it is in fact both chronological and
dependency-directed). In this report, we use the following terms:

o naive chronological for removing the most recent decision and restarting the search from there (this
is “naive” since the most recent decision is not always responsible for the failure);

o intelligent chronological for removing decisions in reverse chronological order until one responsible for
the failure is removed;

o selective for removing the most recent decision among those responsible for the failure;
o chronological for naive chronological or intelligent chronological (when the distinction is useless);
o dependency-directed for intelligent chronological or selective (when the distinction is useless).

As mentioned in [99], selective backtracking has the effect of “jumping” in the search tree from one branch to
another. Because it does not remove decisions made after the decisions responsible for the failure, selective
backtracking does not always backirack to a point in the search space that has been visited before.

tance to two research areas mentioned in [66]: (1) the development and characterization of
intrinsically flexible inference strategies and (2) the mastery of techniques and computational
architectures for efficient control.

1.2 Planning and Scheduling

This section presents the planning and scheduling research areas to the unfamiliar reader.
It introduces concepts needed to understand the following sections. We present planning and
scheduling problems in section 1.2.1 and then discuss more complex issues: predictive and
reactive planning and scheduling (section 1.2.2), planning and scheduling with uncertainty
(section 1.2.3), distributed and centralized planning and scheduling (section 1.2.4).

1.2.1 Planning and Scheduling Problems

A plan is a program of actions that can be carried out to achieve goals. Planning means
to create plans [139]. In this report, we are principally interested in task planning, i.e. in
deriving programs of high-level actions (e.g. “go to position P”) from a description of the
goals to be achieved, as opposed to motion planning, which consists of converting these
high-level actions into motion commands. Scheduling consists of ordering and distributing
plans or single actions among agents. The distinction between planning and scheduling is
fuzzy: a plan and a schedule are both programs of actions enabling the achievement of goals.
Formal definitions of “planning” (e.g. [102]) tend to accept “scheduling” as a particular
case. In this report, we will use the term “planning” to emphasize the design of a set of
actions which will achieve the goals. We will use the term “scheduling” when the problem
is to determine who will execute which actions and when. This does not mean there is no
temporal concern in planning. In most cases, the actions of a plan must be executed in
some order for the plan to succeed. However, ordering decisions are not always necessary at
planning time. Following Fox and Kempf [48], we differentiate planning and scheduling as
follows:

e Planning: given an initial world, a goal world, and a set of operators (a task and a
set of facility capabilities), select a set of operators which will achieve the goal, and
generate a minimal set of ordering constraints on operator application.

o Scheduling: given a set of operators and minimal ordering constraints (a plan) and
detailed knowledge of the execution environment (a set of facility availabilities), enforce
further ordering constraints on operator application to achieve robust and time-eflicient
execution of the task.

Task planning and scheduling activities are in most cases triggered by the communica-
tion of orders. Each order is submitted to an agent by another agent referred to as the
client. The original description of an order consists of a set of goals and a set of tem-
poral constraints concerning the goals. Goals are statements the client wants to be true

8

at some points in time. Constraints indicate how these points in time are (ideally) related.
Three broad classes of constraints are distinguished. Restrictions delineate the space of
admissible solutions to the considered problem while preferences are constraints whose sat-
isfaction may be compromised if necessary. The third class, referred to as decisions (or as
“conflict-avoidance preferences” [86]), is composed of constraints induced as a result of previ-
ous planning and scheduling decisions. Penalties are associated with preferences to measure
the importance of each preference violation. For example, figure 3 presents a constraint to
achieve a goal G before a given due-date and a description of the penalty as a function of
the delay. Penalties are often combined with respect to weighted indexing schemes. The
basic approach is to attach a relative weight to each preference. For each problem solution,
this weighting allows to construct a weighted average of the penalties (index). This enables
the comparison and the choice of alternative solutions.*?

Planning and scheduling problems are — except in a few cases in which simple decision
rules apply (e.g. see [70] [68]) — extremely complex.® Chapman [21] even mentions that any
Turing machine with its input can be encoded as a planning problem: the problem of proving
the existence of a plan to achieve a set of goals given an initial situation and a set of operators
in Chapman’s language is not decidable. In section 3, we will nevertheless see that constraint

4One can also construct several indexes and compare them to thresholds in order to decide whether a
solution is acceptable or not. See [5] for a good example in the domain of organization monitoring.

5The relative value of the index for a set of alternatives changes depending upon the set of constants
employed to normalize the values of the penalties applied. In [46], Field, De Neufville and Clark provide
a striking example in the domain of material selection and criticize weighted indexing techniques on this
account. Their approach is to interview experts and construct global penalty functions which are not always
linear combinations of individual penalties.

6Let us show that the planning problem for a conjunctive goal in propositional logic and with one pre-
condition and one effect per operator is NP-hard ([51] and [84] provide NP-hardness results in scheduling).
Let us consider a set of clauses {C] ... Cn} where each clause C; equals {L;1 ... Lin;}. Let P, (C;) denote
the set of positive propositions which appear in C; and P_(C;) denote the set of positive propositions the
negation of which appear in C; (e.g. if C; equals {A (NOT B)}, P+(C;) = {A} and P_(C;) = {B}). Let P
denote the union of all the Py (C;) and P_(C;). P is a finite set {Py ... P,}. We define a planning problem
as follows:

e (2p+n) boolean variables describe a planning situation: TRU Ey, (1 < k < p); FALSE, (1 <k <p);
and C; (1 <4< n).

e TRUE) (1 < k < p) is false in the initial situation. FALSE) (1 < k < p) is false in the initial
situation. C; (1 < ¢ < n) is false in the initial situation.

e The goal is (Cy AND ... AND Cy).

o There are four kinds of operators: Ty (1 < k < p); Fi, (1 < k <p); Ctix (1 i< nand P € Py(Cy));
C_i (1 £ i< nand P, € P_(C;)). The precondition of T} is (NOT FALSE}Y) and the effect of
Ty is TRUEY. The precondition of Fy is (NOT TRUE}) and the effect of Fy, is FALSE). The
precondition of Cy;x is TRU Ey, and the effect of Cyyy is C;. The precondition of C_;; is FALSE),
and the effect of C.;x is C;.

The planning problem derives from the set of clauses in polynomial time and admits a solution if and only
if the clauses are satisfiable. Hence planning is NP-hard since the satisfiability problem is NP-complete [51].

CONSTRAINT: (completion-time G) < due-date

penalty
4

penalty = flcompletion time)

&
(due-date 0) completion time

Figure 3: A Due-Date Constraint

propagation techniques allow to solve practical planning problems. In addition, a planning
agent can often generalize plan structures and store them for subsequent use [47]: only parts
of the optimization process must run for each goal instance. The situation is more difficult
with respect to scheduling. The number of alternative solutions to a scheduling problem
is huge and optimal solutions to similar scheduling problems are often radically different.
Therefore, a number of researchers are devising techniques allowing the construction of
satisfactory schedules (whatever that means) rather than optimal ones. The problem of
proving the existence of a schedule which satisfies a set of temporal constraints is NP-hard
[84] and the problem of proving whether a scheduling decision is consistent with a set of
compatible constraints is NP-hard [87]. Complete constraint propagation for scheduling
problems is therefore not practicable for complexity reasons.

Planning and scheduling problems are often solved one after the other. Given a set of
goals, plans are created to achieve these goals. Complete specifications of actions are not
needed at that time. For example, a plan for the task “provide John with a photocopy of
this book” does not need to specify which photocopier to use. Then the scheduling problem
includes distributing actions to agents and ordering actions that agents cannot execute in
parallel. This separation between planning and scheduling simplifies coordination in complex
environments (e.g. construction sites, factory floors, office environments). However, there
are cases in which planning and scheduling problems must be solved altogether to insure the
most efficient execution. Let us consider the following example:

Mary orders a copy of David’s thesis. There is one photocopier automatically
operated by a fixed robot. Mary knows that John has a copy of David’s thesis

10

David's Thesis

Unsatisfactory Schedule

David's Thesis

Postponement of the Longest Action

TIME
Figure 4: Postponing Actions

and provides the office automation system with this information. John does not
need his copy right now. But he will need it in the far future.

The best plan is to choose a mobile robot to (1) go to John’s office, (2) get the thesis
from John, (3) go to the photocopier, (4) get a copy of the thesis from the robot operating
the photocopier, (5) bring the new copy to Mary and (6) bring the original back to John.
However, if another mobile robot is waiting for copies of huge books, action (4) cannot be
scheduled within a reasonable delay. In such a case, the best solution is to (1) go to John’s
office, (2) get the thesis from John and (3) bring it to Mary (in addition, we would like to
warn Mary that John will need his copy in the future). To handle such cases, one can either
alternate planning and scheduling steps or keep options open during planning.

The example presented above illustrates an important feature of planning and scheduling
problems: plans interact. The best plan to provide Mary with a copy of David’s thesis cannot
be satisfactorily scheduled because a plan to provide X with copies of huge books is executed.
A good way of dealing with interactions consists in combining plans, either prior to or during
their execution. In many cases, scheduling actually consists in combining plans. If the fixed
robot operating the photocopier knows in advance that a mobile robot will soon arrive with
David’s thesis, it may decide to postpone the reproduction of the huge books (figure 4).
Postponing a long action is a very common scheduling decision, even though there is a
risk of indefinitely postponing the longest actions. If the reproduction of the huge books is
already started when the fixed robot receives information about David’s thesis, it may accept
to interrupt its actions to make a copy of David’s thesis (figure 5). Such an interruption
is referred to as “preemption”. Depending on the environment, preemption is more or less
time-consuming. In some cases, it is infeasible.

11

David's Thesis

Unsatisfactory Schedule

David's Thesis

Preemption

Figure 5: Preemption

Combining plans also means building a global plan from individual plans (each of which
corresponds to the achievement of a task). Many interactions can be considered this way.
However, planning decisions are not easy to make. For example, proposals have been made to
detect situations in which an action contributes to the satisfaction of several goals [152] and to
group actions requiring the use of the same resource [145]: to make two sets of transparencies
for office-mates, a good plan is to (1) carry the two sets of originals to the same copier (one
action), (2) make the two sets of transparencies one after the other (grouped actions) and
(3) carry all the originals and transparencies back (one action). However, assigning different
resources to unordered actions (e.g. one copier for each set of transparencies) enables a
parallel execution of these actions and is in some cases the most time-effective way to achieve
the goals [153].

1.2.2 Predictive and Reactive Planning and Scheduling

Unexpected events often occur during plan execution and prevent the completion of
plans. Consequently, predictive and reactive planning and scheduling are distinguished:

¢ Predictive planning and scheduling consists in building and combining plans to be
executed in the future.

o Reactive planning and scheduling consists in making decisions in real-time with respect
to the actual state of the world. This does not mean every decision is made on-line,
but previous decisions are confronted with unexpected events in order to detect (and
react to) arising conflicts and opportunities.

This distinction is sometimes confused with the distinction between goal-directed and
data-directed reasoning. Predictive systems are emphasized as determining how to achieve
a set of goals and reactive systems as staying alert to incoming events. But in fact both

12

predictive and reactive systems can make use of both goal-directed and data-directed ratio-
nalities:

e In a reactive system, unexpected events trigger a reaction. But the reaction often
consists in creating a program of actions to achieve goals from the unforeseen current
situation.

e Conversely, predictive systems often consider characteristics of initial situations as
opportunities. For example, the SOJA predictive scheduling system [85] considers the
fact that some tool 7 is set on some machine M as an opportunity: it allows to perform
manufacturing operations requiring the use of both 7" and M without performing the
setup of T'on M.

In this report, a system is considered “reactive” if it is sensitive to the evolution (and not
only to a given snapshot) of its environment. It is important to notice that the pertinence of
a reaction is difficult to evaluate without engaging in complex discussions. When you show
an average-size book B after a small book A to a human being, he (she) is more likely to bet
that B is more than 300 pages long. When you show the same book B after a large book C,
he (she) is more likely to bet that B contains less than 300 pages. One can consider such a
fact as a sign of irrational behavior (especially if the human subject manipulates books all
the time) or argue that similar reactions are apropos in most real-life cases.

The distinction between predictive and reactive problem-solving is often discussed, espe-
cially in the scheduling domain. There are several reasons for this:

e Predictive and reactive problem-solving can often make use of the same techniques.
For example, the cognitive model of planning proposed in [63] is applicable to both
predictive and reactive planning problems.

¢ Predictive and reactive problem-solving can often make use of common pieces of knowl-
edge (e.g. preferences, indexing schemes, heuristics) and it is important that they do so.
Otherwise a reactive scheduling system would make a lot of modifications to a schedule
just because it would not consider it as a good schedule with respect to performance
criteria.

¢ Reactive methods are used in predictive contexts. Indeed, the availability of reactive
methods allows to build a schedule without worrying about all the constraints each
time a decision is made. If some decisions happen to be inconsistent one with the
other or if some scheduling preferences are violated to a too important extent, reactive
methods can be used to repair the schedule.

e Predictive methods are used in reactive contexts. When a severe accumulation of
unexpected events has forced important changes to an original schedule, it is worth
generating a whole new schedule. Even if it is not suitable to emphasize optimization at
the expense of responsiveness, predictive methods allow to perform this re-scheduling.

13

These points suggest the integration of predictive and reactive components in the same
system and the use of the same “solution maintenance component” [89] to maintain plan
or schedule descriptions as decisions are made and as unexpected events occur. Burke and
Prosser [13] make a stronger statement. They argue that if we consider scheduling as search
for one and only one solution satisfying some goals, then scheduling systems can be built
without making any distinction between predictive and reactive scheduling. Such a schedul-
ing system is presented in [13]. It consists of a society of agents, each agent being responsible
to schedule one resource. Constraint propagation and truth maintenance techniques are used
to maintain a consistent global hypothesis. When a conflict occurs, the agent with the small-
est priority among the agents involved in the conflict uses dependency-directed backtracking
to modify the schedule of the associated resource (if it cannot do it, it creates a new conflict
in which it is not involved). There is no need to distinguish predictive and reactive contexts:
the same dependency-directed backtracking algorithm can be applied in both cases.” An-
other method which applies in both cases is Liu’s “scheduling via reinforcement” [95], which
allows both the construction of a detailed predictive schedule from a rough capacity plan
and the reactive revision of a disrupted schedule.

Still there is an important difference between predictive and reactive activities. Predictive
activities are usually performed under no significant time stress while reactive activities are
subjected to real-time constraints. Reactive systems cannot spend as much computational
time as predictive systems to ensure the global quality of the solution. In some domains,
hard real-time constraints indicate that reactive decisions must be made within strict
delays. Rather than being fast, the most important property of reactive systems in such
domains is the guarantee that they will produce responses on time [135]. In other domains,
soft real-time constraints indicate that the utility of a given decision varies not only with
the quality of the decision per se, but also with the time at which the decision is made. In
some cases, optimizing a schedule may take a lot of time. Executing a sub-optimal schedule
early is better than twiddling thumbs until an optimal solution is found.

1.2.3 Planning and Scheduling with Uncertainty

The need for reactive planning and scheduling arises from the existence of uncertainty
in the considered environment. In this section, we discuss the use of knowledge about the
existing uncertainty to better organize predictive and reactive activities: (1) to make better
predictive and reactive decisions and (2) to balance predictive and reactive reasoning,.

"This is often theoretically possible with dependency-directed backtracking algorithms, but not practica-
ble for complexity reasons. For example, the predictive ordering component of the SONIA scheduling system
[31] could be used to react when an unexpected event occurs, but it would be difficult to prevent subsequent
explosions of search. Similarly, Descotte and Latombe’s algorithm to make compromises among antagonist
constraints [39] [40] [41] allows to add new constraints at any time. It backtracks when necessary, in an
uncontrollable fashion.

14

Knowledge about the existing uncertainty allows to make better decisions. For example,
one can use heuristics referring to the amount of uncertainty in each action to prioritize
actions in time. However, the design of appropriate heuristics is a task to perform with care.
Consider n independent actions and m identical robots (1 < m < n) able to execute each
action: if the performance criterion is the average action completion time, a good heuristic
is to postpone actions with unknown maximal durations in order to reduce the potential
effects of a long execution; if the performance criterion is the maximal action completion
time, a good heuristic is to execute the actions with unknown maximal durations first.

Another way of using knowledge about the existing uncertainty consists in applying more
theoretical (and more time-consuming) methods based on decision theory [151] [67] and/or
fuzzy logic and arithmetic [76]. Probabilistic or pseudo-probabilistic constraint propagation
techniques (e.g. [11] [121]) are of high practical interest for this purpose.® Generally speaking,
decision theory provides a framework to make planning and scheduling decisions with respect
to knowledge characterizing the environmental uncertainty. The theoretical idea is very
simple: the optimization of a function f (which combines various planning and scheduling
preferences) is replaced with the optimization of the ezpected value of f given probabilistic
knowledge on the possible consequences of contemplated actions and unpredictable events.
However, the practical application of this simple idea poses complex problems:

e One is the acquisition of probabilistic knowledge. In most cases, the user of a planning
and scheduling system does not know the exact probabilistic laws that the problem
variables follow. Experimentation on a medium scale allows to approximate these laws,
but the appropriateness of the approximation depends on a collection of hypotheses
(e.g. representativeness) the satisfaction of which is not obvious. In addition, ex-
perimentation results often suggest changes which (once made) invalidate the results.
For example, results showing that a particular machine often breaks down suggest the
identification and the elimination of the most important breakdown causes. Then new
experiments must be made to update the statistics. The “subjectivist” theory of de-
cision analysis (see [83]) allows to do without experimentation when experimentation
is too expensive (or when the problem is to decide whether a program of experiments
is too expensive for the information it could provide). Once again the idea is simple:
replace statistics with “subjective probabilities” reflecting the beliefs of an expert. The
determination of the subjective probabilities requires some interaction with the expert.
This interaction can be made less expensive than experimentation involving the actual
environment. However, the precision of the results depends on the interaction process.
Chu, Moskowitz and Wong [22] suggest that manipulating bounds on subjective prob-

8Curiously enough, most of these techniques have not been designed for uncertain reasoning. For example,
the goal of Sadeh and Fox [121] is to use probabilistic distributions reflecting scheduling preferences to focus
the attention of an incremental scheduler (see [122]) or of several schedulers operating in parallel (see [142]).
As mentioned in [11], the Project Evaluation & Review Technique (PERT) for project scheduling uses
probabilistic time estimates in order to cope with the existing uncertainty. But to our knowledge no exact
probabilistic computation is made: PERT provides conservative results when required to do so.

15

abilities is more adequate than striving to get precise values. The system proposed in
[22] requires the user to express strong preferences between a few problem solutions.
From these preferences, it deduces constraints on subjective probabilities and elimi-
nates solutions which (according to these constraints) cannot be optimal. Fagin and
Halpern [45] also suggest the manipulation of bounds and define a semantic for them
in perfect concordance with probability theory. This does not eliminate the acquisition
problem, but enables the design of more reliable acquisition processes.

e Another complex problem is the combination of probabilistic pieces of information.
Halpern [62] provides a collection of results showing that — under the two most com-
mon approaches to giving semantics to first-order logic with probabilities (i.e. proba-
bilities on a domain or probabilities on a set of possible worlds) — there is no complete
axiomatization and a fortiori no procedure to determine whether a first-order formula
involving probabilities follows from a set of premises. There are three “solutions”
to this theoretical problem: the first is to consider incomplete but sufficiently rich
axiomatizations allowing to carry out “a great deal” [62] of interesting probabilistic
reasoning; the second is to define complete axiomatizations for sub-languages of first-
order probabilistic logic; the third is to define axiomatizations which do not allow the
usual interpretations of probabilistic statements, but enable the resolution of practical
problems. The choice among these three solutions is in most cases context-dependent
and subjective. The first solution requires the acceptance of incompleteness. The
second solution requires the definition of an appropriate sub-language for a definite
class of applications. The third solution requires the rejection of probabilistic rea-
soning as a basis for decision-making (and its replacement with other models such
as fuzzy logic and arithmetic — see [76] for a motivating example). The resulting
“quasi-probabilistic” reasoning systems are in general not well-founded on analytical
grounds and need a scrupulous validation on empirical grounds [123]: one must gather
experimental results to make sure that the system “performs well”.

Another (distinct) problem that arises in the planning and scheduling domain (and in
the presence of uncertainty) is to balance predictive and reactive reasoning [74]. In some
environments, detailed predictive decisions are not useful. For example, the use of the KAN-
BAN system to replace parts as they are being used in a factory [49] makes the generation
of a detailed factory schedule useless. The only schedule required is an assembly schedule
which implies a consistent flow of parts through the work centers of the factory. When such
an assembly schedule exists, no schedule for the production of parts is needed (and parts are
nevertheless almost always available on time). In other environments (for example, when
a work center involved in the production of parts is the bottleneck of the factory and its
capacity cannot be increased at an acceptable cost), the generation of a detailed schedule
allows to use available resources more efficiently:

e to prepare tools, make transportations and perform setups in advance;

16

e toreduce the idle time of the bottlenecks and hence augment the global factory through-

put [58].

However, the uncertainty in the environment suggests the maintenance of many ordering pos-
sibilities allowing a reactive system to cope easily with unexpected events during execution.
An extreme solution is to predictively assess all possible execution-time contingencies and
plan responses to them. Thus, agents executing plans are provided with conditional plans
prescribing actions in all possible situations. This solution is difficult to implement in real
domains because there are too many non-similar possible situations to determine in advance
how to react to all of them. Another extreme solution is to construct plans and schedules
allowing the achievement of goals in the absence of surprises and re-plan from scratch when
unexpected events occur. This works well in environments where unexpected events seldom
occur. But in most cases the best solution is to get a plan which covers various (the most
likely) possible situations and revise it (but not completely re-construct it) in response to
conflicting contingencies.

1.2.4 Distributed and Centralized Planning and Scheduling

Another important issue dealt with in this report is the distinction between centralized
and distributed planning and scheduling.

e A centralized resolution of planning and scheduling problems consists of making all
the decisions in one place. All the orders are collected by a central task planner and
scheduler (CTPS). The CTPS is a computer dedicated to the resolution of planning
and scheduling problems. It creates a plan for each order, decides which resources to
use, orders actions when necessary, and assigns them to agents with respect to their
work load, capabilities and location.

e In a distributed framework, the decision-making of a group of agents is a product of
the expectations and expertise of the individual agents, “resolved through a process of
conflict resolution, cooperation, bargaining, or negotiation” [1]. In the planning and
scheduling domain, an extreme possibility is to make agents accept orders from clients
and exchange tasks or sub-tasks by one-to-one negotiation. No CTPS is needed. A par-
ticular initial decomposition of the global planning and scheduling problem is imposed
and agents negotiate one with the other to make the best of potential interactions and
solve conflicts.

A centralized architecture is theoretically attractive. It enables the anticipation of inter-
actions and allows any decomposition of the overall planning and scheduling problem. The
ability to choose a decomposition with respect to the characteristics of the problem at hand
is significant. Indeed, there is no best pre-determined decomposition of the overall planning
and scheduling problem. Results of experiments in the domain of job-shop scheduling [106]
provide evidence that considering multiple problem decompositions allows to enhance both

17

the efficiency of the scheduling process and the quality of executed schedules. On the other
hand, a centralized approach is (for example) not appropriate for coordinating the actions of
mobile agents in dynamic environments where unforeseeable events occur. Mobile agents are
not always in contact with the CTPS, while the CTPS needs information about the actual
course of events to be effectively reactive. Solutions of this problem (e.g. placing sensors all
over a building) are difficult and costly enough to implement for us to consider distributed
approaches.

Unfortunately, scheduling problems are tightly coupled. They can be decomposed into
subproblems but a lot of interactions exist between subproblems. A completely distributed
architecture makes the anticipation of these interactions difficult and entails the emergence
of many conflicts in real-time.

This leads to the examination of intermediate architectures. An appealing approach is
to distribute planning and scheduling decisions, but to ask agents to refer to a common
“deductive database” [50]. Each agent is a problem-solving component which chooses the
tasks it wants to perform and explains how it will perform them (provided that time is
available for this explanation). The deductive database is a solution maintenance component
which fulfills two objectives.

e It provides a characterization of the set of alternatives that exist with respect to plan-
ning and scheduling decisions that remain to be made. This allows an agent to examine
planning and scheduling alternatives and determine which are the most appropriate
given the plans of other agents.

¢ It detects conflicts between goals, decisions, preferences, reported events and predicted
events. This allows to warn an agent of previously unforeseen interactions when com-
munication with the agent is possible.

Another solution is to centralize predictive activities and distribute reactive activities. In
this case, an agent which reacts to a perturbation needs to determine which actions can
be executed without disrupting the global schedule. In a similar fashion, a CTPS can make
global decisions (e.g. choose which orders to execute first) while individual agents handle the
details in a distributed fashion. Such a decomposition of the overall planning and scheduling
effort is particularly appropriate when the most frequent and significant interactions are
detectable (and avoidable) at a high level of abstraction.

18

2 Theoretical Foundations for Constraint Propaga-
tion Systems

Following [61], we distinguish three lines of research in constraint-based reasoning. Con-
straint languages can be emphasized as (1) adequate knowledge representation formalisms,
(2) means to solve combinatorial problems and (3) convenient computational models. These
three views suggest different criteria to compare constraint-based systems:

e A good knowledge representation formalism allows a simple and precise representation
of constraints for the widest collection of problems. Describing problems in a constraint
language allows to determine how good it is as a knowledge representation formalism.

e The second view suggests that a constraint system is all the more useful as it speeds up
problem-solving and enables the generation of better problem solutions for the widest
collection of problems. Both theoretical and experimental comparisons are of interest.
However, one must consider the results with caution. High (e.g. O(n®)) worse-case or
average-case algorithmic complexities do not mean that the corresponding algorithms
are slow when applied to particular classes of real problems (see section 5). Similarly,
experimental results showing that a simple heuristic method is the most efficient to
solve small problems do not prove that its performance remains acceptable as the
problem size increases (see [75]).

e The previous criteria allow to compare computational models. A computational model
is convenient for a collection of problems when it enables a simple description and
an efficient resolution of the considered problems. However, one expects more from a
constraint language considered as an implementation of a computational model: (a) a
precise assessment of the language semantics and (b) a theoretical completeness result.
In this respect, it is interesting to compare the two most well-known constraint logic
programming frameworks. The CLP framework [69] requires that the constraint-solver
itself is complete while in CHIP [149] completeness is achieved through search (and
the programmer is allowed to specify how to propagate a constraint). The behavior
of a CLP program is easier to understand and anticipate, but the CLP complete-
ness requirement prevents the realization of effective applications in the planning and
scheduling domain.

In this report, we compare various constraint propagation methods considered as tools
to solve combinatorial problems. In most cases, the methods that we compare are equivalent
with respect to the two other views: the same syntax is adopted for the same constraints
(with the same semantics) and we never suppose that the constraint propagation system
is complete. Constraint propagation is in all cases defined as a deductive activity per-
formed by a “solution maintenance component” for one or several “problem-solving compo-
nents”. Problem-solving components may be called modules, subsystems, knowledge sources

19

or agents, depending on the overall system architecture. With respect to [132] and [29], we
refer to them as “system components” producing “solution components” to be integrated.

The solution maintenance component derives new constraints from existing ones and de-
tects conflicts (inconsistencies) between constraints. It provides a characterization of choices
that remain to be made and a description of detected inconsistencies. Problem-solving com-
ponents make and retract decisions accordingly.

In this section, we (a) present the theoretical foundations underlying the constraint prop-
agation methods discussed in this report and (b) provide an overview of the constraint
language. First, we discuss the most usual definitions of “validity”, “completeness” and “de-
cidability” of inference systems and show that these definitions are inadequate for solution
maintenance components (section 2.1). This leads us to propose new definitions which make
sense because they refer to the needs of problem-solving components (section 2.2). Then we
provide examples of complete theories for solution maintenance components (section 2.3) and
shortly discuss the utilization of these theories (section 2.4). [87] provides more details about

the overall constraint propagation system. [31] and [38] present its principal applications.

2.1 Usual Definitions of Validity / Completeness / Decidability

Constraint propagation is a deductive activity performed by a solution maintenance
component for problem-solving components. To discuss the validity, completeness and de-
cidability properties of solution maintenance components, we first refer to the most usual
definitions of validity, completeness and decidability [98]:

e An inference system [is valid if whenever there is a derivation of a sentence s from a
set of sentences Sy by means of inference rules and/or axioms in I, s is true in every
model of (I U Sp).

e An inference system I is deduction-complete for a set of sentences S (usually the
set of all sentences constructible in the language of I) if whenever a set of sentences .Sy
logically implies a sentence s € S (i.e. whenever s is true in every model of (I U S)),
there is a derivation of s from Sy by means of inference rules and/or axioms in I.

e An inference system I is refutation-complete if whenever a set of sentences Sp log-
ically implies a contradiction (i.e. whenever there is no model of (I U Sp)), there is a
derivation of an effectively recognizable contradiction from Sy by means of inference
rules and/or axioms in /.

o An inference system I is deduction-decidable for a set of sentences S if there exists a
finite proof procedure which, whenever a set of sentences Sg logically implies a sentence
s € S, eventually generates a derivation of s from Sy by means of inference rules and/or
axioms in 1.

20

e An inference system I is refutation-decidable if there exists a finite proof procedure
which, whenever a set of sentences Sy logically implies a contradiction, eventually
generates a recognizable contradiction from Sy by means of inference rules and/or
axioms in [.

But the goal of constraint propagation is not to prove sentences from a set of initial sen-
tences, but to determine constraints the satisfaction of which is necessary to satisfy a set
of initial constraints incrementally provided by a problem-solver. When a solution main-
tenance component deduces (z < 3) from a set of initial constraints C, it indicates that
the value of must be less or equal to 3 to enable the satisfaction of constraints in C. If
this information is not exploited by some problem-solving component (or by the solution
maintenance component itself), it should not be deduced. A new intuitive definition of
deduction-completeness follows: a solution maintenance component is deduction-complete
with respect to a problem-solving component if and only if it provides all the information
the problem-solving component may use. Two problems arise:

e A problem-solving component able to use (z < 3) does not need the solution mainte-
nance component to deduce (¢ < 4), (z < 5), (z < 6) and so on from (z < 3). The
new constraint (z < 3) implicitly contains all the constraints (z < n) for (n > 3). If a
formal definition of “implicitly contains” can be provided (i.e. if the solution mainte-
nance component and the problem-solving components can agree on “what is implicitly
contained in what”), then a new formal definition of deduction-completeness, which
corresponds to the needs of problem-solving components, can be used.

e We must discuss the validity and the completeness of a solution maintenance compo-
nent with respect to the set of interpretations in which problem-solving components are
interested. If a problem-solving component deals with inequalities between variables
and integers and assumes variables will eventually “pick” integers, the solution main-
tenance component can and must use a rewriting rule as “(z < y) = (z+1 <y)” (or
equivalent rules) to be complete. But such a rule will not be valid with respect to an-
other problem-solving component allowing a continuous range of values for its variables.
Similar problems are often encountered during the design and the implementation of
expert systems [116]: the set of rules which constitute the knowledge base of an expert
system is valid and complete if and only if the expert and the knowledge base allow
the same interpretations. In some sense, the underlying problem is simpler in the case
of constraint propagation since a formal definition of allowed interpretations can often
be provided to enable a new definition of validity and completeness.

2.2 Revised Definitions (for Solution Maintenance Components)

Consequently, we define a theory of constraint propagation as a tuple (P R D). Pis a
set of constraint construction rules defining well-formed constraints. For example, “if n
is an integer and if e; ... e, are well-formed constraints, then (or e; ... e,) is a well-formed

21

constraint” is a construction rule. R is a set of interpretation rules defining the set of
allowed interpretations. For example, “(or e; ... e,) is satisfied if and only if e; is satisfied
for some ¢ in {1 ... n}” is an interpretation rule. D is a set of deduction rules (or axioms)
explicitly associated with propagation activities and constraint construction rules. Three
principal constraint propagation activities are distinguished:

e Combination consists in building a new constraint from a set of existing constraints.

For example, the generalized resolution rule “if ¢ can be derived from e; and f, then
(or e1 ... €i—1 g €i41 ... €,) can be derived from (or e; ... €; ... e,) and f” is associated
with the constraint combination activity and the or constraint construction rule.

Subsumption allows to hide a constraint the satisfaction of which results from the
satisfaction of another constraint. For example, the subsumption rule “if e subsumes
e; for some ¢ in {1 ... n}, then e subsumes (or e; ... e,)” is associated with the
subsumption activity and the or constraint construction rule. A particular case of
subsumption consists in hiding tautologies as rules conclude “T' subsumes c¢”.?

Rewriting allows to write constraints in normal forms and to translate constraints
from a representation to another. For example, “(not (z <g y)) = (y <g z)” is
associated with the rewriting activity and the constraint construction rules not, <g
and <g as soon as (E <) is defined as a totally ordered set.

Given a set of constraints C, a model of C'in (P R D) is an interpretation which satisfies
every constraint in C' and every interpretation rule in R. M{(C) denotes the set of all
the models of C' and D(C) denotes the set of constraints derivable from C' by means of
propagation rules and/or axioms in D. New definitions follow:

(P R D) is valid if VC, M(D(C)) = M(C).
(P R D) is subsumption-valid if whenever ¢ subsumes ¢, M(c) contains M ().

(P R D) is refutation-complete if whenever M(C) is empty, there is a derivation of
NIL (an “effectively recognizable contradiction”) from C by means of inference rules
and/or axioms in D.

(P R D) is refutation-decidable if there exists a finite propagation procedure which,
whenever M(C) is empty, generates a derivation of NIL from C by means of inference
rules and/or axioms in D.

A constraint ¢ implicitly belongs to a set of constraints C' if C U {T'} contains a
constraint ¢ which subsumes c.

9Kelly, Steinberg and Weinrich discuss constraint subsumption (and the need to perform tautology tests)
in the context of VEXED, a design aid for NMOS digital circuits [140] [141] [72]: “It is not clear whether
the existing subsumption test code actually speeds up EVEXED at all”. In job-shop scheduling, the sub-
sumption of inequalities is necessary. On the other hand, experimental results concerning the subsumption
of disjunctive constraints (see section 5) do not allow us to draw very specific conclusions.

22

e (P R D) is deduction-complete for a set of constraints S (usually the set of all con-
structible constraints) if whenever a constraint ¢ € S is satisfied in every interpretation
in M(C), ¢ implicitly belongs to D(C).

e (P R D) is deduction-decidable for a set of constraints S if there exists a finite
propagation procedure which, whenever a constraint ¢ € S is satisfied in every inter-
pretation in M(C), eventually generates a derivation of a constraint ¢ (maybe T') which
subsumes c.

Compared to standard definitions, these definitions refer to the implicit belonging of a con-
straint ¢ to a set C' and to interpretation rules. However, the formal definition of “implicitly
belongs” does not seem, at the first glance, to match the intuitive definition proposed in
section 2.1. The intuitive definition refers to the capabilities of the current user of the solu-
tion maintenance component, i.e. to the capabilities of a problem-solver. (2 < 3) implicitly
contains (z < 4) if the problem-solver does not need (z < 4) when it knows (z < 3). For
an idiotic problem-solver, we are reduced to the explicit belonging of ¢ to C' and to a more
usual definition of deduction-completeness and decidability.

The formal definition corresponds to the use of problem-solvers in which the contents
of subsumption rules are somehow “integrated”. This makes sense because the solution
maintenance component may be allowed to hide (z < 4) in the presence of (z < 3) only if
the problem-solver does not need (z < 4) in the presence of (z < 3). In other terms, if ¢
implicitly belongs to C with regards to the formal definition, then ¢ implicitly belongs to C
with regards to the intuitive definition. On the other hand, if “c implicitly belongs to C with
regards to the intuitive definition” does not imply “c implicitly belongs to C with regards
to the formal definition”, new subsumption rules may be written to fill the gap between the
two definitions.

2.3 Examples of Complete Theories

The implementation of a theory equivalent to first-order logic (refutation-complete but
not decidable as a consequence of Church’s theorem [77]) is possible, but we did not im-
plement such a theory. The expressive power of first-order logic is generally not needed as
far as constraint propagation is concerned. Introducing convenient sets of propagation rules
(“operators” [128]) through more specific axiomatizations and using them when necessary is
much more efficient. In our system [87], many complete theories of constraint propagation
are available:

o A refutation-complete and decidable theory for propositional logic. The theory is also
deduction-complete and decidable for atomic formulas and for formulas built from
atomic formulas by the means of the not constraint construction rule as (not (not P)).

23

e A refutation-complete and decidable theory for point ordering relations in infinite to-
tally ordered sets [150].1° The theory is easily extended to allow disjunctive, conjunctive
and negative constraints as (or (z < y) (not (z < y))) and stay refutation-complete
and decidable. Furthermore, a problem-solving component can commit to a particular
totally ordered set without endpoints (£ <) and manipulate constants from this set as
soon as it provides a definition of the ordering relation and indicates which elements
of I/ are immediate predecessors or successors of other elements of F.

e A refutation-complete and decidable theory for James Allen’s interval relations [4] and
disjunctions of interval relations. The theory is easily extended to allow any disjunctive,
conjunctive and negative formula of interval relations and stay refutation-complete and
decidable.

o A refutation and deduction-complete and decidable theory for duration constraints
(minimal, maximal and known distances between time points). Our only assumption
about durations is that they belong to the positive part of a totally ordered Abelian
group (e.g. the set of integers Z or Z % {0 ... 23} * {0 ... 59}) defined by the user of
the system. The theory is easily extended to allow any disjunctive, conjunctive and
negative formula of duration constraints and stay refutation-complete and decidable.

o A refutation and deduction-complete and decidable theory for reservation constraints.
Basically, each reservation constraint (reserve G ¢; t2 n motives) states that n in-
dividual resources from the group G are unavailable throughout the interval of time
(t1 t2). The list of motives explains why they are unavailable: operations or mainte-
nance periods are scheduled during the interval (¢; ¢5), resources are down, or there is
no work shift planned over the interval (¢; t5).!' Constraint propagation enables the
maintenance of accurate time-tables and the detection of capacity conflicts (e.g. over-

10This theory (based on [150]) is not deduction-complete. In [150], Vilain and Kautz erroneously
state the (deduction-)completeness of the proposed algorithm. Le Pape [87] reproduces the error. Van Beek
presents a counter-example in [146] and proposes real deduction-complete algorithms in [146] and [147].
Ghallab and Mounir Alaoui use “complete” for “refutation-complete” in [55] and discuss counter-examples
in [566]. Their approach requires that the network of relations is kept consistent. Refutation-completeness
1s needed to detect a conflict and discard a constraint as soon as it is inconsistent with the others. But
deduction-completeness is not needed for this purpose.

1Here ¢, and t, are constants. This means that given two (or more) activities requiring resources from the
same group, one must assign start and end times to these activities in order to use reservation constraints.
When a group consists of a unique resource, an alternative technique consists in generating a disjunctive
constraint (or ((end A) < (start B)) ((end B) < (start A))) for each pair of activities {A B} that require the
resource. This allows the start and end times to fluctuate. In practice, the generalization of this technique
is not possible: the size of each disjunction grows to (n + 1)! for a group of n resources. [87] proposes a
simple but incomplete set of propagation rules to deal with reservations and inequalities at the same time.
In a similar spirit, [43] proposes the notion of energy consumption to extend the constraint propagation
techniques presented in [42] and [44]. The basic idea is simple: the energetic consumption over a time
interval cannot exceed the amount that is available over this interval. This allows the deduction of temporal
inequalities from energetic considerations.

24

Problem Solver

'
(Control Rules)
y

Constraint Propagation System

Theory

Figure 6: Controlling Constraint Propagation

loads). The theory is easily extended to allow any disjunctive and conjunctive formula
of reservation constraints and stay refutation-complete and decidable.

A refutation-complete and decidable theory (not discussed in [87]) for several families
of domain constraints as (z € {a; ... a,}), together with equalities as (z = y) and
(z = 2), and inequalities as (z < y), (z < y) and (2 < z) as soon as the overall
domain (defined by the user of the system) is totally ordered. Disequality constraints
as (z # y) and (z # 2) can also be confronted to domain constraints. However, the
general constraint consistency problem is NP-hard when disequality constraints are
allowed in finite domains. In such cases, the best way to proceed (if a refutation-
complete constraint propagation procedure is definitely desired) is either to rewrite
domain constraints (z € {a; ... a,}) into disjunctions of equalities (or (z = aq) ...
(z = ay)), or to rewrite disequality constraints (z # y) into disjunctions of inequalities
(or (z < y) (y < z)) if the overall domain is totally ordered. The resulting theory
extends a set of propagation rules discussed in [148]. We are currently interested in
various families of 2D domain constraints for which no efficient and complete system
is known yet.!?

For each of the developed theories, a refutation-complete constraint propagation procedure
is available (often deducible from constructive demonstrations in [87]). The overall system
described in [87] is refutation-complete and decidable.

2.4 Conclusion

Section 2.2 provides new definitions for the validity, completeness and decidability of

solution maintenance components. Given a problem (or a problem-solver), these definitions,
together with validity, completeness and decidability results, facilitate the selection of a set

12Rit’s constrained occurrences problem [113] is a good example. Indeed, rewriting interval relations and
generalized window domain constraints into conjunctions and disjunctions of duration constraints enables
the achievement of refutation-completeness, but significantly affects efficiency in simple cases.

25

of propagation rules which determine what inferences may be drawn. The next step in
adapting constraint propagation to a particular problem is discussed in [24]. It consists in
writing control rules which collectively determine what inferences must be drawn and in
what order they must be drawn (figure 6). Control rules define a proof procedure called
“constraint propagation scenario”. Of course, the completeness of a theory (P R D) does
not force us to use a complete constraint propagation scenario. As in logic and theorem-
proving, it means any logically implied constraint and any contradiction can be recognized
as such if we actually want to. But there is a trade-off with respect to the amount of
computational effort spent in constraint propagation. The general problem of determining
whether some planning and scheduling decisions are compatible is NP-hard. This highly
suggests the adoption of an incomplete constraint propagation scenario.

26

3 Type and Domain Constraints in Task Planning

Generally speaking, “situation-independent” and “situation-dependent” task planning
steps can be distinguished. Given a goal, we can construct plan structures with no informa-
tion about the current situation of agents and objects in the considered environment. If the
goal is to provide John with a cup of coffee, a plan structure specifies that some agent could
go to some vending machine, get a cup of coffee from the vending machine and bring it to
John. On the other hand, deciding which particular agent will execute which actions with
which resources requires an assessment of the specific situation at hand.

This section discusses a task planning system allowing the performance of situation-
independent planning steps. The advantage of such a system is that plan structures for a
goal are derived once and for all using no situation-specific information. Agents willing to
contribute to the achievement of a goal instantiate the plan structures with respect to their
knowledge of the current situation. If execution fails, there is no need to re-derive plan
structures. Depending on the reason for the failure, agents can execute the same instance
again or instantiate the plan structure with respect to the new situation.

An attractive idea to generate and represent situation-independent plan structures is
to use type specifications (e.g. (type TR) = (or robot workstation)) in place of domain
constraints (e.g. 7R € {robot; ... robot,, workstation; ... workstation,}). However, domain
constraints are easier to propagate than type specifications. In practice, this means there is
a trade-off between the generality of the constructed plan structures and the speed of the
planning process. On one extreme, all the theoretical possibilities are accounted for and plan
structures never need to be revised. On the other extreme, plan structures are built with
respect to situations from which execution could practically start.

In this section, we describe experiments allowing to assess (for a particular domain)
the computational behavior of a few variations of the same task planning system, able to
propagate both type specifications and domain constraints. Section 3.1 explains in which
context this work has been performed and presents the task planning system. Section 3.2
discusses constraint propagation and defines constraint propagation scenarios to compare in
this context. Section 3.3 presents the considered task planning problems and section 3.4
discusses the experimental results.

3.1 A Task Planner Based on Constraint Propagation

The work presented here and in section 4 has been performed in the context of two
projects aimed at controlling the actions of multiple interacting agents:

e The goal of the first project is to control the operations of many mobile robots (several
dozens) in an indoor environment (an office environment, a shop-floor, an airport, an

27

hotel) in order to automate a variety of tasks. Typical tasks include transportation of
objects (beverages, books, mail), operation of machines (copiers, vending machines),
cleaning and maintenance. Most of the tasks essentially involve mobility and trans-
portation of relatively small objects. Nevertheless, some classes of tasks may require
other physical capabilities. For example, tasks related to the operation of a photo-
copier may be performed with the help of a fixed manipulator robot standing near the
copier. In addition to operating the copier (loading documents to be copied, selecting
the appropriate options, adding toner when needed, etc), the fixed robot may also load
and unload mobile robots transporting the documents.

e The second project concerns the integration of various short-term planning and exe-
cution monitoring techniques for multiple agents (robots and humans) working on a
construction site. The case of a construction site introduces additional difficulties. For
example, the geometry of a construction site continually changes. More sophisticated
planning techniques (integrating temporal and geometrical reasoning) are consequently

needed.
The task planning problems considered in this section concern mostly the first — more
advanced — project. The current planning and execution system integrates a collection

of software components: a task planning system to derive plans made of “high-level”
actions (such as “go to position P” or “get object O”) from a description of the tasks
to be performed; a task allocation system to order and allocate tasks and actions to
robots (see [90] and section 4); a motion planning system to convert “high-level” actions
into motion commands [15]; and an execution system to monitor execution and react to
unexpected events [16]. These components are implemented in COMMON-LISP on a DEC
3100 workstation. The overall system is tested with the help of a simulator specially designed
to simulate actions of autonomous agents [91].

Task planning consists of determining programs of actions that can be carried out to
achieve goals. An agent can acquire goals in two ways. The first is to offer or to be asked to
achieve goals of other agents. The second is to autonomously generate goals with respect to
the current situation. For example, idle mobile robots should contact other agents through
the communication network to determine what they could do for them. A mobile robot
generates a goal ((on-line myself) = T) as soon as it is free of other goals.

We distinguish plan structures, which contain variables, and plan instances, which are
instantiated plan structures. A plan structure is defined as an action hierarchy and a set of
constraints.

e Action Hierarchy. The top-level action represents the entire process to carry out.
Fach action can be refined into either a sequence of more detailed actions, a set of
un-sequenced actions (to be performed either in parallel or in any order), or a set of
exclusive alternatives. The actions at the bottom of the hierarchy are atomic formulas

28

containing variables. For example, (connect TR 7P) corresponds to the connection of
any robot 7R with any communication network port ?P.

e Constraints provide a specification of admissible assignments of values to variables.
Type specifications (e.g. (type TR) = (or robot workstation)) or domain constraints
(e.g. 7R € {robot; ... robot,, workstation; ... workstation,}) describe domains over
which variables can vary. Variable relations (e.g. (location TR) = 7L) define a subset
of the cartesian product of these domains.

A plan instance is an action hierarchy in which variables have been replaced by values
satisfying the constraints. For example, [((type 7P) = port) (sequence (move myself 1P)
(connect myself ?P))] is a plan structure for the goal ((on-line myself) = T). If portss
is a particular port, then (sequence (move myself ports;) (connect myself portys)) is an
instance of this plan structure.

Given a new goal, we consider three planning steps. In the first step, the robot determines
plan structures to achieve the goal. Plan structures are either retrieved from a library
(as in [53] and [54]) or constructed with the help of the task planning system. The plan
construction process consists in rewriting a formula describing the plan under development.
In the connection example, the original formula is set to (achieve ((on-line myself) = T)).
There are two ways to rewrite an achieve formula. The first is to post a constraint stating
that the goal statement (i.e. (on-line myself) = T) is true in the initial situation. The achieve
formula is then reduced to the empty string. The second is to assume the goal statement
is false in the initial situation (i.e. (on-line myself) # T) and use an operator to make
it true. Each operator corresponds to an executable action and is defined as a statement
containing variables, together with a set of constraints, preconditions, and effects. For each
operator and each effect, the unification of the effect and the goal statement determines
constraints under which the operator allows to achieve the statement. These constraints are
posted and (if no contradiction is detected) the achieve formula is rewritten as a sequence
(sequence (achieve preconditions) operator-statement). Two contexts referring to the state
of the world before and after the action are associated with the operator statement. The
preconditions and the constraints from the operator are posted in the context preceding the
action and the effects are posted in the context following the action. The variables of the
operator are renamed to avoid confusions (in case the same operator appears twice in the
same plan structure) and the rewriting process continues unless the set of posted constraints
is determined inconsistent. In the connection example, the connect operator defined as
follows provides a possible unification.

o Statement: (connect 7R 7P)

e Constraints: {((type ?P) = port) ((type 7R) = robot)}
o Preconditions: {((location 7R) = 7P)}

o Effects: {((on-line 7R) = T)}

29

The formula becomes (sequence (achieve ((location myself) = 7P;)) (connect mysel f 7Py)).
Five constraints are posted and two of them disappear: (7R = myself) results in the re-
placement of the variable 7R with the constant myself everywhere in the formula and in
the constraint base; then ((type myself) = robot) is evaluated (rewritten) into the empty
constraint T'. The distinction between the constraint set and the preconditions determines
which statements the task planner tries to achieve with other operators (preconditions).
There is a unique precondition in the connect operator. In most cases, there are several
preconditions related with three possible connectives: sequence, alternative and parallel (the
default case).

e In the first case, the task planner tries to achieve the first precondition from the initial
situation, then the second precondition from the resulting situation, and so on. In
other terms, (achieve (sequence p; ... p,)) is rewritten as (sequence (achieve pp) ...
(achieve p,)) and the different achieve formulas are considered in chronological order.

o In the second case, the task planner needs to achieve one precondition out of the
disjunction. It determines whether one precondition is true in the initial situation.
Otherwise it considers the addition of a new constraint and the use of operators for
each alternative.

o In the third case, the task planner considers the different preconditions in all possible
orders. This means it assumes that solving one precondition (out of the conjunction)
and then following this solution with the solution to the other preconditions will be
successful. This assumption (called “linearity assumption” [64]) is valid in the planning
domains we consider. But it is not valid in other domains such as the famous “blocks

world” [105].

In several cases, there are different possibilities to rewrite an achieve formula: post a con-
straint or use an operator (several operators could work); try alternative preconditions; order
parallel preconditions. A depth-first search algorithm is used to explore the different possi-
bilities. It stops when all the possible plan structures have been determined (it could also
stop as soon as one possible plan structure has been found). Finally, the task planning sys-
tem allows to determine the unsuitable effects of a plan and post goals to undo these effects.
For example, when a mobile robot borrows a book (to make a copy of it), a goal to return
the book to its original location is generated and treated as a post-condition to achieve.

In the second step, the robot instantiates plan structures. It uses a constraint satisfaction
algorithm which allows to determine one, all, the best or the n best substitutions of variables,
with respect to some user-provided evaluation function. For example, it allows to determine
the substitution which minimizes an estimate of the total duration of the plan. The algorithm
is a simple depth-first search algorithm. Given a plan structure, it selects a variable 7V to
instantiate and a possible value value at each step. It posts the constraint (7V = value)
and waits for the constraint propagation algorithm to determine the consequences of this
instantiation. Then it proceeds with the remaining variables. Domain-dependent heuristics

30

can be used to select variables and values and to prune the search space. In the absence
of such heuristics, the system (a) avoids the selection of a variable whose value is derivable
from the value of another variable (for example, if ((location ?7R) = 7P) is a constraint, the
value of 7P is derivable from the value of 7R), (b) selects among the remaining variables the
variable with the smallest domain and (c) selects a random value from this domain.

In the third step, the robot makes final decisions. Depending on its planning policies, the
robot may have developed several goals, several plan structures for the same goal and several
plan instances for the same plan structure. The general problem is very complex since plans
developed to achieve individual goals are likely to interact. We ignore this problem here
and concentrate on the first two steps. In practice, robots can use a simple user-provided
evaluation function to choose one plan to execute prior to the others.

3.2 Constraint Propagation

Various types of constraints are posted during the task planning process: type or domain
constraints; equalities and disequalities, either between constants and variables, or in an
“object-attribute-value” form ((attribute object) = value); and any other type of constraint
appearing in operator descriptions. In this section, we consider constraint propagation in the
simplest case in which constraints other than type constraints, domain constraints, equalities
and disequalities are not worth propagating. For each constraint type, we discuss possible
constraint propagation steps (section 3.2.1). Then we determine constraint propagation
scenarios to compare (section 3.2.2).

3.2.1 Constraint Propagation Steps

Object-Attribute-Value Relations

An important problem to consider is that “object-attribute-value” relations refer to dy-
namic properties of the considered objects. For example, the action (connect myself 7P)
changes the value of (on-line myself). Constraints in the “object-attribute-value” form are
posted with respect to some context: they refer to the state of the world either before or after
the execution of an action. We use the syntax (in-contezt C ((atiribute object) = value)) to
precise in which context the relation is required to hold. The context I refers to the initial
context at the beginning of the plan and the context F refers to the final context at the end
of the plan. The following rule allows to combine relations holding in the same context:

o The disjunction (or (object; # objects) (value; = valuey)) follows from (in-context C
((attribute object:) = valuey)) and (in-context C ((attribute object;) = valuey)).'®

13Let us note that ((attribute object) # walue) is equivalent to the conjunction of two constraints
((attribute object) = value) and (value # value). We do not need to consider “object-attribute-value”
disequalities.

31

In addition, the system propagates a relation from a context to another as soon as a
context C preceding an action is identified with another context, either I (when the action
is the first action of the plan), or another context D ending the preceding action.

Let us first consider the case of the initial context. The planning agent usually has some
partial knowledge about the possible initial situations. Given the constraint (in-context I
((attribute object) = value)), we can consider various constraint propagation steps:

e The previous rule can be applied with (in-contezt I ((atiribute object) = value)) and
any piece of knowledge ((attribute object;) = value;) about the initial situation. This
is the easiest propagation rule to implement. However, we can expect its use to be
very costly since it generates a lot of disjunctive constraints to satisfy.

e An alternative is to restrict constraint propagation to cases in which either object or
value is a constant. If object is a constant, (in-context I ((attribute object) = value))
and ((attribute object) = value;) provide (value = value;). If object is a variable and
value a constant, we can determine whether there are instances object; in the domain of
object such that the initial state does not contradict ((attribute object;) = value). We
can also eliminate from the domain the instances object; such that (atiribute object;)
differs from value.!*

e Another possibility is to (a) make the propagation steps mentioned above when either
object or value is a constant and (b) achieve “arc-consistency” when both object and
value are variables to which domain constraints are associated. “Arc-consistency” is
achieved when the domains of object and value are reduced to the maximal domains
dom(object) and dom(value) included in the original domains and such that (1) for each
instance object; in dom(object), there is an instance value; in dom(value) such that
((attribute object;) = value;) is possible and (2) for each instance value; in dom(value),
there is an instance object; in dom(object) such that ((attribute object;) = value;) is
possible.

The case in which a context C preceding an action A is identified with a context D ending
the preceding action B is much simpler. Let (in-contest C ((atiribute object) = value)) be
the relation of interest to us. For each effect of B referring to the same attribute attribute,
(in-context D ((attribute object;) = value;)), with (1 < ¢ < n), the disjunctive constraint
(or (object # object;) (value = value;)) is generated. In addition, the disjunctive constraint
(or (object = objecty) ... (object = object,) (in-context E ((atiribute object) = value))),
where E denotes the context preceding B, is also generated to express the fact that a relation

4The planning agent does not remove object; from the domain when (attribute object;) is unknown. It
could be the case that the unknown — but existing — value of the attribute meets the constraint. Another
particular situation is when the attribute aftribute is not applicable to object;: the value does not exist.
Then object; cannot meet the constraint. It is discarded from the domain. The reader interested in the
distinction between non-applicable nulls and unknown values — and their manipulation — in relational
databases and knowledge-based systems can refer to [32] [93] [94].

32

untouched by an operator application — and true after the operator application — was true
before the operator application. The generation of all these constraints is necessary for the
planner to correctly assess the effects of each operator application.

Equalities and Disequalities

Equalities and disequalities are the easiest constraints to propagate. Four cases can occur
for an equality:

An equality (z = z), where z is a variable, or (¢ = a), where a is a constant, is a
tautology (rewritten into T'). It is not propagated any further.

An equality (z = y), where z and y are two distinct variables, results in the replacement,
of one variable (e.g. y) with the other variable everywhere in the constraint base.
Propagation continues with the modified constraints.

An equality (z = a) or (a = z), where z is a variable and a a constant, results in the
replacement of ¢ with a everywhere in the constraint base. Propagation continues with
the modified constraints.

An equality (a = b), where a and b are two distinct constants, is a contradiction
(rewritten into NIL). Propagation stops and the contradiction is returned to the task
planner.

Similarly, four cases can occur with disequalities:

A disequality (z # z), where z is a variable, or (a # a), where a is a constant, is
a contradiction (rewritten into NIL). Propagation stops and the contradiction is
returned to the task planner.

A disequality (z # y), where z and y are two distinct variables, can combine with or
subsume disjunctions: when a disjunction contains a disjunct (z # y) or (y # z), the
disequality subsumes the disjunction; when a disjunction contains a disjunct (z = y)
or (y = z), a simpler disjunction (obtained by removing the disjunct) is obtained.

A disequality (z # a) or (a # z), where z is a variable and a a constant, can combine
with or subsume disjunctions (exactly as above). If a domain constraint is associated
with z, we can also combine the disequality and the domain constraint, i.e. eliminate
a from the domain of z.

A disequality (a # b), where a and b are two distinct constants, is a tautology (rewritten
into T'). It is not propagated any further.

33

"thingll

T

object agent location

T T~ T

clock document brick mobile-agent reasoning-agent workstation port corridor room

T |

book microfilm copy human robot library

client mobile-robot copier-manipulator

Figure 7: A Hierarchy of Types

Type and Domain Constraints

When two type or domain constraints concern the same variable z (e.g. this happens when
an equality constraint between two variables results in the replacement of one variable), their
combination provides a new — more precise — type or domain constraint which subsumes
the two original constraints.

In the case of type constraints, we suppose that the constraint propagation system has
been provided with a hierarchy of types (e.g. figure 7). A type specification is a disjunction
of pairwise incomparable types (e.g. (or robot workstation)).'® As explained in [2] [3] [118],
the type hierarchy induces a partial order C on types (¢, C t; if and only if ¢, is a subtype
of ¢;) which can be extended to a partial order C on type specifications: Ty C T if and
only if for each disjunct ¢, in T4, there is a disjunct ¢, in T such that ¢, is a subtype of .
The set of type specifications provided with this partial order is a lower semilattice and the
combination of two type constraints (type 2) = T4 and (type =) = Tp provides a new type
constraint (type x) = T4 N T where T4y N T denotes the greatest lower bound of T4 and
T in the semilattice. The new constraint subsumes both (type z) = T4 and (type z) = T5.
It is rewritten into NIL when T4 N Ty equals (.

The case of domain constraints is much simpler since the intersection of the domains can
be directly computed. The combination of (z € A) and (z € B) provides a new constraint
(z € AN B). The new constraint subsumes both (z € A) and (z € B). It is rewritten into
NIL when AN B equals 0.

In both cases, the instantiation of a variable z with a constant a results in the evaluation
of the constraint: both ((type a) = T4) and (a € A) can be rewritten into either T (if «
satisfies the constraint) or NIL (if a does not satisfy the constraint).

15In practice, a disjunction reduced to a single type (e.g. (or robot)) is rewritten into the type (e.g. robot)
and an empty disjunction (or) is rewritten into §. A disjunction which includes comparable types is rewritten
into a smaller disjunction as one type subsumes the other. For example, {(or robot mobile-robot) becomes
robot and (or robot mobile-robot workstation) becomes (or robot workstation).

34

Disjunctions of Equalities and Disequalities

The propagation of “object-attribute-value” relations result in the creation of disjunctive
constraints. The constraint propagation system can in turn propagate these constraints.

e When a disjunct (e.g. * = z) is a tautology, the disjunction is also a tautology and is
rewritten into T'.

e When a disjunct (e.g. z # y) follows from another constraint of the constraint base
(e.g. y # z), the constraint subsumes the disjunction.

When a disjunct (e.g. = # z) is a contradiction, the disjunct is removed from the
disjunction.

A disjunct (e.g. z = y) in contradiction with another constraint of the constraint base
(e.g. y #) is removed from the disjunction.

A disjunction reduced to a single disjunct (or D) is rewritten into D.

A disjunction with no disjunct is a contradiction and is rewritten into NIL.

An additional possibility of interest (but a priori costly) with respect to these subsumptions
and simplifications is to use type or domain constraints to prove that two objects (constants
or variables) are necessarily different: when two variables z and y have inconsistent types
or disjoint domains, the constraint (z # y) allows the subsumption and the simplification of
disjunctions; when a constant a does not belong to the type or domain of a variable z, the
constraint (z # a) allows the subsumption and the simplification of disjunctions.

Note that disjunctive constraints can remain in the constraint base when a plan is com-
plete. This raises the problem of determining whether the set of disjunctive constraints is
consistent with the other constraints of the constraint base. As long as disjunctive con-
straints are not combined one with the other, constraint propagation tells us (at most) that
each disjunct is consistent with the non-disjunctive constraints. This does not mean that for
each disjunction we can choose a disjunct so that the chosen disjuncts are altogether consis-
tent with the non-disjunctive constraints. In other terms, the constraint propagation steps
discussed above do not allow to prove that a constraint base containing several disjunctions
is consistent. In theory, the generalized resolution rule mentioned in section 2.2 could be
used to propagate disjunctions further and prove the global consistency (or inconsistency).
In practice, this would be extremely time-consuming. Instead we let the task planner explore
the different possibilities in a depth-first fashion. At each step, a disjunct is selected and
added as a new constraint. A solution is found when a disjunct of each disjunction has been
selected and added to the constraint base with no contradiction. The number of disjunctive
constraints to solve in this manner is usually small. Therefore, the exploration is not too
time-consuming.

35

3.2.2 Constraint Propagation Scenarios

Most of the constraint propagation steps discussed above are necessary for the task
planner to work correctly, and/or relatively inexpensive in comparison with the resulting
savings in search. On the other hand, a few constraint propagation steps are difficult to
evaluate in this respect. This leads to the definition of different constraint propagation
scenarios among which a choice is difficult.

The first problem is to decide whether to use type specifications or domain constraints.
On the one hand, type specifications allow the construction of situation-independent plan
structures. Only drastic changes in the environment can make a set of plan structures
incomplete. On the other hand, domain constraints refer to specific agents and objects in
the environment. The choice of specific agents and objects to accomplish a given goal is still
performed at instantiation time, but situation-specific information about available agents
and objects is used to prune the search space at plan construction time. Therefore, the use
of domain constraints can prove much more efficient, especially if the environment consists
of very dissimilar agents and objects.

The second problem concerns the combination of information about the initial situation
with “object-attribute-value” constraints (in-context I ((attribute object) = value)). As
explained above, three possibilities are worth considering.

e (Glenerate disjunctive constraints. This is the simplest thing to do, but entails the
potentially costly propagation and satisfaction of disjunctive constraints.

e Restrict constraint propagation to cases in which either object or value is a constant.
This generates and propagates less constraints. But important deductions (replacement
of variables with constants) are still enabled.

e Achieve arc-consistency. This is possible only if domain constraints are associated to
object and value (when object and value are variables). This makes more constraint
propagation than above. But the achievement of arc-consistency is probably less costly
than the generation of disjunctive constraints.

The third problem concerns the use of type and domain constraints to subsume and
simplify disjunctions. Although this is a priori costly, the subsumption and simplification of
disjunctions greatly simplifies the overall constraint satisfaction problem. Without experi-
mentation, it is difficult to determine whether using type and domain constraints to subsume
and simplify disjunctions is beneficial or not.

36

Ten constraint propagation scenarios are consequently considered with respect to these
three issues.

A: use type specifications, generate initial-context disjunctions, use type specifications
to subsume and simplify disjunctions.

B: use type specifications, generate initial-context disjunctions, do not use type speci-
fications to subsume and simplify disjunctions.

C: use type specifications, limit initial-context propagation to constants, use type spec-
ifications to subsume and simplify disjunctions.

D: use type specifications, limit initial-context propagation to constants, do not use
type specifications to subsume and simplify disjunctions.

E: use domain constraints, generate initial-context disjunctions, use domain constraints
to subsume and simplify disjunctions.

F: use domain constraints, generate initial-context disjunctions, do not use domain
constraints to subsume and simplify disjunctions.

G: use domain constraints, limit initial-context propagation to constants, use domain
constraints to subsume and simplify disjunctions.

H: use domain constraints, limit initial-context propagation to constants, do not use
domain constraints to subsume and simplify disjunctions.

I: use domain constraints, achieve arc-consistency, use domain constraints to subsume
and simplify disjunctions.

J: use domain constraints, achieve arc-consistency, do not use domain constraints to
subsume and simplify disjunctions.

Section 3.3 presents experiments made to compare these scenarios. Section 3.4 discusses the
results.

3.3

Description of the Experiments

The ten constraint propagation scenarios above have been used to solve four types of
planning problems: motion, connection, object transportation and document reproduction.

Mobile robots submit motion and connection goals to themselves: after the completion
of a task, a mobile robot plans either to go back to a dedicated room (motion) or to connect
onto the computer communication network to determine what to do next (connection). The
corresponding planning problems are very simple. A plan to achieve ((location myself) = R)
consists of a unique move action. It contains no variable. A plan to achieve the connection

37

goal ((on-line myself) = T) consists of two actions: move and connect. It contains one
variable: the communication port with which the robot will connect.

On the other hand, transportation and reproduction goals are submitted to a central task
planner and scheduler (CTPS). The CTPS constructs plan structures for these goals. Then
all the available robots instantiate the plan structures — with respect to their situation and
knowledge — and the CTPS chooses the best allocation (see section 4). Plan structures
for the transportation of a given object involve two variables: a mobile robot and its initial
location. If the mobile robot and the object are not in the same room in the initial situation,
the robot must move prior to get the object, then move again and manage to leave the object
in the required location.

A reproduction goal specifies that a new copy of a document is required in some location.
Five different plan structures (with 8 actions and 5 variables on average) are built when
constraint propagation is reduced to a minimum. The planner must consider facts such as
“there is no mobile copier” to reduce the number of possible plans. More complex facts like
“no library contains a copier” allow to prune the search space when domain constraints are
in use. Finally, there is a side effect to undo: the exemplar used to make the new copy
must be brought back to its original location (see the discussion of unsuitable side effects in
section 3.1).

The ten constraint propagation scenarios have been applied to each planning problem
ten times (with different initial conditions) in a small environment. The environment is
similar to the Robotics Laboratory. It consists of 22 rooms (with 1 corridor) and contains
4 objects of each “most specific” class (4 books, 4 copies, 4 clients, 4 mobile robots, etc)
except for copiers (1 copier) and libraries (2 libraries). The two best constraint propagation
scenarios (C and I) were selected to run more and more complex connection and reproduction
examples. These examples involve 8, 16, 32 and 64 objects of each class, except for rooms,
corridors, copiers and libraries, which were kept unchanged.

Table 1 presents the results for the small environment. Table 2 presents the results
for connection goals in the more complex environments. Table 3 presents the results for
reproduction goals in the more complex environments. For each scenario and each problem,
the appropriate table provides (a) the time needed to compute all the possible plan structures,
(b) the time needed for a given robot to compute all the possible plan instances and choose
the best given the possible plan structures and (c) the total (planning + instantiation) time.
Each figure in table 1 is the average of ten values. Each figure in table 2 is the average of n
values where n is the number of mobile robots. Each figure in table 3 is the average of three
values corresponding to the following cases: the new copy is expected in the room where the
copier is; the new copy is expected in a library containing an exemplar of the document; the
new copy is expected in another room. Time is given in seconds CPU excluding garbage
collection.

33

Scenario / Problem | Motion | Connection | Transportation | Reproduction
A: Planning 0.08 0.43 0.48 8.52
A: Instantiation 0.00 0.25 0.08 7.20
A: Total 0.08 0.68 0.56 15.72
B: Planning 0.08 0.57 0.73 16.65
B: Instantiation 0.00 0.26 0.08 7.90
B: Total 0.08 0.83 0.81 24.55
C: Planning 0.08 0.20 0.51 4.69
C: Instantiation 0.00 0.17 0.24 1.14
C: Total 0.08 0.37 0.75 5.83
D: Planning 0.08 0.19 0.54 6.28
D: Instantiation 0.00 0.17 0.18 1.84
D: Total 0.08 0.36 0.72 8.12
E: Planning 0.11 0.48 0.66 6.53
E: Instantiation 0.00 0.03 0.09 0.25
E: Total 0.11 0.51 0.75 6.78
F: Planning 0.10 0.63 0.57 13.28
F: Instantiation 0.00 0.03 0.10 0.28
F: Total 0.10 0.66 0.67 13.56
G: Planning 0.08 0.23 0.61 6.25
G: Instantiation 0.00 0.15 0.25 0.58
G: Total 0.08 0.38 0.86 6.83
H: Planning 0.08 0.24 0.57 8.76
H: Instantiation 0.00 0.20 0.26 0.62
H: Total 0.08 0.44 0.83 9.38
I: Planning 0.08 0.24 0.63 3.38
I: Instantiation 0.00 0.17 0.13 0.39
I: Total 0.08 0.41 0.76 3.77
J: Planning 0.08 0.27 0.66 6.97
J: Instantiation 0.00 0.18 0.14 041
J: Total 0.08 0.45 0.80 7.38

Table 1: Experiments With Ten Propagation Scenarios

4 objects | 8 objects | 16 objects | 32 objects | 64 objects
per class | per class | per class per class per class
C: Planning 0.20 0.22 0.23 0.25 0.30
C: Instantiation 0.17 0.33 0.66 1.31 2.52
C: Total 0.37 0.55 0.89 1.56 2.82
I: Planning 0.24 0.27 0.30 0.38 0.58
I: Instantiation 0.17 0.35 0.73 1.56 3.17
I: Total 0.41 0.62 1.03 1.94 3.75

Table 2: Planning Connections in More Complex Environments

39

4 objects | 8 objects | 16 objects | 32 objects | 64 objects
per class | per class | per class | per class | per class
C: Planning 4.69 4.87 4.91 4.96 5.02
C: Instantiation 1.14 1.99 3.73 7.07 12.59
C: Total 5.83 6.86 8.64 12.03 17.61
I: Planning 3.38 3.91 4.53 6.28 9.70
I: Instantiation 0.39 0.65 1.17 2.20 4.30
I: Total 3.77 4.56 5.70 8.48 14.00

Table 3: Planning Reproductions in More Complex Environments

3.4 Discussion of the Results

In most cases, the use of type and domain constraints to subsume and simplify disjunc-
tions is beneficial. The most complex reproduction example is the most interesting in this
respect. In some cases, the planner saves 50% of the time needed to construct the plan
structures. Instantiation time is more stable because in general instantiation does not result
in the generation of new disjunctive constraints.

On the other hand, the propagation of “initial-context disjunctions” takes an important
amount of time. When type constraints are in use (scenarios A and B), the time spent
during the construction of plan structures does not even result in a prompter instantiation.
The disjunctive constraints generated at plan construction time are not used at that time
to rule out impossible instances. The situation is different when domain constraints are in
use (scenarios E and F): constraint propagation allows to remove impossible values from the
domains and a smaller number of constraints remain at instantiation time. The achievement
of arc-consistency (scenarios I and J) appears as a good intermediate solution. Instantiation
time is smaller than when “initial-context propagation” is reduced to relations involving
constants (scenarios G and H), and planning time remains quite small in comparison to the
planning time of scenarios E and F. Interestingly enough, scenarios I and J perform better
than scenarios G and H both at planning and at instantiation time. The achievement of
arc-consistency allows to prune the search space at planning time without sustaining the
cost of propagating “initial-context disjunctions”.

The most difficult problem is to decide whether to use type specifications or domain
constraints. The planning time of scenario C does not grow much with the size of the
environment. This is normal since the propagation and planning processes are in this case
(as well as for scenario D) situation-independent. Tests regarding constants (e.g. “myself”)
can become more time-consuming but most of the propagation steps performed during
plan construction do not change with the size of the overall domain. Instantiation
time increases in a much more regular fashion. In particular, the evolution of instantiation
time on the connection example is simple to interpret: when the number of values for a
unique variable doubles, the time needed to compare all the possible instantiations doubles.

40

The evolution is different when scenario I is in use. Both planning and instantiation time
increase with the size of the environment. On the reproduction example, the planning time
with scenario I becomes bigger than the planning time with scenario C. But scenario I
remains the most rapid because the instantiation time remains much smaller for scenario I
than for scenario C. On the connection example, scenario C is the best even in the simplest
environment. It remains the best as the environment grows.

An important remark is that the total (planning + instantiation) time provided in the
tables corresponds to one instantiation. In practice, the plan structures obtained with sce-
nario I remain usable as long as no new object (e.g. no new robot) is introduced in the
environment. The same plan structures are consequently used a number of times. The plan
structures obtained with scenario C remain usable as long as no new type of object (e.g. no
mobile copier) is introduced in the environment. The same plan structures are consequently
used an even higher number of times. The choice between type specifications and domain
constraints is difficult to make without discussing what is stable and what is not stable in
the considered environment.

One must always consider experimental results with caution. The results discussed in
this section correspond to a particular planner, a particular implementation and a particular
set of instantiation heuristics:

e As mentioned in section 3.1, the current task planner operates under the “linearity
assumption”. It is difficult to know whether the most efficient constraint propaga-
tion scenarios will remain the most efficient for extensions enabling the resolution of
non-linear problems (e.g. consider contexts as variables and generate more complex
disjunctive constraints to account for their possible relations).

e Given an application and a constraint propagation scenario, one can spend more pro-
gramming time to make the constraint propagation process more efficient. For example,
one can consider the use of bit vectors to accelerate either (a) the intersection of do-
mains if domain constraints are chosen and the overall domain is stable or (b) the
computation of greatest lower bounds in the semilattice if type specifications are cho-
sen and the hierarchy of types is stable (see [3]). Depending on the application, the
effects of these improvements could be more important for a scenario than for another.

o The results are also relative to the heuristics used during plan instantiation. Constraint
propagation does not only allow to prune the search space. It also provides information
(e.g. number of possible values for a variable) allowing to heuristically organize the
exploration of the search space. “Graceful retreat” (most critical task first) and “least
impact” (least critical resource first) [65] [75] are examples of heuristics which are
better applied when an appropriate amount of constraint propagation is performed.
In some cases, a minimal amount of constraint propagation is even necessary to use
specific heuristics. The dilemma is not “more constraint propagation” versus “less

41

constraint propagation”. It is “more constraint propagation and the opportunity to
use the heuristics” versus “less constraint propagation and no (or reduced) opportunity
to use the heuristics”. The default domain-independent instantiation heuristics of
the task planner (see section 3.1) have been applied for all the constraint propagation
scenarios. In some domains, the existence of efficient domain-specific heuristics could
eventually make a constraint propagation scenario more interesting than another.

42

4 Experiments With an Incremental Task Allocation
System

The distinction between the generation and the instantiation of plan structures allows
several robots to instantiate the same plan structures in parallel. Each robot can therefore
determine the best instantiation in which it could appear given its own knowledge and its
current situation. This is much more efficient than communicating all this information to
a central system which would perform the different computations in a sequential fashion.
This does not mean a central system is useless. When several tasks are pending and several
robots are available, a central system (provided with a more global view of the environment)
can be helpful in deciding which robot performs which task.

This section presents a framework allowing to compare task allocation methods using
constraint propagation. Section 4.1 presents the task allocation framework. Section 4.2
presents experiments made to compare a few task allocation methods. Section 4.3 discusses
the results.

4.1 A Framework for Incremental Task Allocation

When several robots are available to contribute to achieve goals of other agents, a partially
centralized method can be used to determine an appropriate task allocation. Each available
robot communicates with a central task planner and scheduler (CTPS). The CTPS cannot
communicate with un-connected robots. However, most of these robots picked tasks in
accordance with the CTPS. The CTPS approximately knows what these robots are doing.
Generally speaking, the CTPS has a global view of (a) the tasks to be performed in the
environment and (b) the availability of robots to perform these tasks.

The task allocation framework is reminiscent of the contract net problem-solving formal-
ism (see for example [129] and [109]). When the CTPS receives orders (goals) from clients,
it generates plan structures enabling the achievement of these goals and provides available
robots with a description of pending goals and plan structures.'® Robots determine which
roles they can play in the execution of the plan structures. This means each robot substi-
tutes itself to variables the type of which is consistent with its own type and propagates
the substitutions to check the satisfiability of the other constraints. Then each robot uses
the constraint satisfaction algorithm presented in section 3.1 to extend the substitutions and
propose complete substitutions to the CTPS. Each proposal includes (a) a reference to the
considered goal, (b) a reference to the considered plan structure, (c) a description of the

16The CTPS can do this because plan structures do not depend on the particular agents contributing to
the satisfaction of goals. Conversely, the CTPS cannot instantiate plan structures since it does not know
which agent is going to be available to do what.

43

substitution and (d) values returned by evaluation functions considered during constraint
satisfaction (e.g. an estimate of the total execution time).

The CTPS serves as an intermediate between robots. It ensures that two different robots
will not start executing the same task. Two possibilities are distinguished: the CTPS can
either make task allocation decisions or organize negotiations among robots. The result
(given a set of proposals and a set of goals) is for each goal either to wait or to allocate the
goal to a given robot. The process is incremental. Decisions are revised each time a new
proposal arrives or when an abnormal situation such as the unexpected absence of a robot is
detected. For example, when the CTPS makes task allocation decisions and a new proposal
arrives, the CTPS explores solutions including the new proposal to determine whether the
current allocation can be enhanced. When there is no more proposal to review, the CTPS
asks robots to execute plans with respect to the chosen allocation. Robots to which tasks
are assigned respond with an acknowledgement and execute the corresponding actions in
a distributed fashion.}” Allocation decisions corresponding to plans being executed can no
longer be revised.

4.2 Description of the Experiments

Different task allocation methods are usable in the framework above. Two questions are
important:

e Does the CTPS make decisions or does it serve merely as a communication medium ?
e How detailed is the analysis of task interactions ?

From a theoretical point of view, the best allocation is found when the CTPS performs a
perfect analysis of task interactions and makes the allocation decisions with respect to the
results of this analysis. From a practical point of view, the global optimization problem is
NP-complete and the amount of knowledge required to make a perfect analysis is such that
the CTPS will never have this knowledge. The design of an appropriate allocation method
is consequently a difficult task.

Preliminary experiments have been made to compare a few task allocation methods in
an abstract environment with two types of tasks: (a) transportation tasks and (b) tasks
requiring both transportation and the use of a fixed manipulator robot. Three parameters
are used to change the characteristics of the environment: the importance of manipulation
m (i.e. the portion of execution time spent in manipulation given the repartition of tasks
and assuming a uniform repartition of initial situations); the number of mobile robots n;
and the global load [defined as the product of the task rate and the average time needed to
execute each task. The manipulator is unique and the relation | < min(n 1/m) is required

17There is no synchronization technique similar to the one presented in [52). Heuristic rules similar to Ow
and Morton’s early/tardy heuristics [108] are used to order actions requiring the use of the same resources.

44

to hold (otherwise the number of pending tasks and the average response time between the
arrival and the accomplishment of a task might grow toward infinity). Six values of (m n ()
are considered: (0.25 4 2), (0.25 4 3), (0.25 10 2), (0.25 10 3), (0.10 4 2) and (0.10 4 3).

The simplest task allocation methods must at least guarantee that at most one proposal
is accepted for each task and for each robot.'® When the CTPS makes allocation decisions,
its search for an optimal set of proposals includes constraint propagation steps allowing to
eliminate a proposal as soon as another proposal for the same task or the same robot is in
the set of chosen proposals. When robots make allocation decisions, constraint propagation
allows the CTPS to determine whether a new proposal is compatible with the proposals
robots have chosen during previous negotiations. If there is no conflict, the new proposal
is added to the set of chosen proposals. Otherwise, detected conflicts are sent to involved
robots and robots decide either to maintain or to change the current allocation.

More complex methods consist in considering task interactions when evaluating admis-
sible sets of proposals. Admissible sets of proposals remain the same, but the criterion to
choose among them is more accurate. Let us for example suppose that we want to minimize
the average response time between the arrival and the accomplishment of a task. Temporal
constraint propagation allows to determine the total time spent waiting for the manipulator
when several tasks require its use. As a result, the average response time resulting from the
choice of a set of proposals is computed with more precision.

Four task allocation methods have been implemented for the environment described
above:

e A: centralized allocation decisions without temporal constraint propagation.
e B: centralized allocation decisions with temporal constraint propagation.
o C: one-to-one negotiation without temporal constraint propagation.
e D: one-to-one negotiation with temporal constraint propagation.
For each task allocation method and each value of (m n), table 4 provides:

o the average response time between the arrival and the accomplishment of a task, ex-
cluding computational time (to make the result independent of the computing speed);

o the average time per task spent making computations (task planning + plan instanti-
ation + motion planning + task allocation);

¢ the average time per task spent in task allocation.

18The situation of a robot changes when it executes a task. Therefore, it does not make sense to accept
two proposals from the same robot. After the completion of a task, a robot must submit new proposals for
the remaining tasks.

45

Method / (mn 1) | (0.2542) | (0.254 3) | (0.25 10 2) | (0.2510 3) | (0.104 2) | (0.10 4 3)
A: Response Time 1.46 1.61 1.33 1.36 0.87 1.11
A: Computation 15.17 14.82 15.09 17.33 15.65 15.55
A: Allocation 0.009 0.002 0.011 0.015 0.007 0.004
B: Response Time 1.27 1.57 1.26 1.33 0.87 1.08
B: Computation 15.90 13.98 16.06 17.29 16.69 15.16
B: Allocation 0.033 0.088 0.097 0.362 0.041 0.025
C: Response Time 1.54 1.74 1.40 1.49 0.97 1.11
C: Computation 15.13 16.38 18.52 16.05 15.44 15.73
C: Allocation 0.006 0.006 0.013 0.011 0.006 0.004
D: Response Time 1.27 1.58 1.26 1.33 0.87 1.11
D: Computation 15.55 14.50 15.38 16.57 15.32 15.44
D: Allocation 0.029 0.043 0.109 0.140 0.044 0.026

Table 4: Experiments With Four Task Allocation Methods

The unit chosen for the average response time is the average execution time needed to
accomplish a unique task (assuming a uniform repartition of initial situations). This is
consistent with the definition of the parameter m. Three important factors influence the
average response time: the exploitation of “better-than-average” initial situations (e.g. when
a robot is close to an object to transport); the waiting time between the reception of a task
and the beginning of execution; the time spent waiting for the manipulator (when there
is a queue at the manipulator). Computational times are in seconds CPU. When several
robots are making computations in parallel (e.g. building proposals for the same tasks),
the time taken into account is the time between the beginning of the first computation and
the end of the last computation. The time spent “in task allocation” is the time spent in
making allocation decisions. It does not include the time spent constructing proposals (plan
instantiation).

4.3 Discussion of the Results

The most surprising fact about these results is that the average response time obtained
with method D is always identical (or almost identical) to the average response time ohtained
with method B. This is not the case for methods A and C. In other terms, the step-by-step
resolution of temporal constraints through one-to-one negotiation provides results as good as
the global resolution of temporal constraints: the negotiation process leads “almost always”
to the global optimum. But when the use of the manipulator in time is not taken into
account, global optimization performs better than one-to-one negotiation: negotiation often
leads to a local optimum different from the global optimum.

Another important remark is that the CPU time spent in the allocation process remains

negligible when compared to the total time spent making computations. The consideration of
temporal constraints makes it an order of magnitude larger (25 to 362 microseconds against

46

2 to 15 microseconds) but this is still small compared to the 15 seconds spent in the other
planning activities.

Additional experiments are needed to determine how these results would evolve with the
size of the problem, i.e. with the number of mobile robots, with the number of manipula-
tors, and with additional types of tasks. The current centralized allocation methods have an
exponential computational complexity: at some point, the time spent searching the optimal
allocation will start growing fast. On the other hand, one-to-one negotiation could result
more and more in sub-optimal allocations when the number of robots grows. An additional
concern is whether the allocation time remains negligible when compared to the total compu-
tation and/or plan execution time. Optimization is no longer profitable when the time spent
in the optimization process is bigger than the savings that result from the optimization.

Let us note that the task allocation framework a priori allows to test other task allocation
methods:

e Heuristic methods that provide “acceptable” solutions without requiring optimality in
any sense constitute a group of interesting examples.

e Methods considering the spatial aspects of task execution constitute another group.
Answering questions like “are two robots going to operate in the same room at the
same time ?” and “how much time will be lost in this spatial interaction ?” could lead
to a better evaluation of possible allocations.

e I'inally, allocation methods respecting a hierarchical organization of the overall robotic
system — similar to organizations proposed in the domain of distributed computing
systems (not performing physical actions) (see [97]) — are also of interest.

47

5 Experiments With a Flexible Job-Shop Scheduling
System

The previous sections (3 and 4) gave examples of controlling constraint propagation in
the context of two projects concerning the activities of multiple agents either in a building
or on a construction site. Sections § and 6 discuss similar examples in the manufacturing
domain. Section 5 discusses joint work with Anne Collinot and Gérard Pinoteau on a flexible
scheduling system integrating predictive and reactive capabilities. Section 6 discusses joint
work with Karl Kempf, Naiping Keng and Stephen Smith on an architecture allowing a
predictive scheduler and a reactive dispatcher to run in parallel and deal with environmental
uncertainty in a consistent fashion.

5.1 A Flexible Job-Shop Scheduling System

Important features of job-shop scheduling problems vary from one shop to another. In
the same shop, they also vary from one situation to another. For example, the variation of
the duration of operations depends on the manufactured products, and the importance of
bottleneck resources varies with the global load of the shop. Consequently, it is necessary
to choose relevant scheduling strategies with respect to the problem-solving context. In this
section, we show how we have used a knowledge-based scheduling system to test and compare
various scheduling strategies in various circumstances.

SONIA [26] [31] is a knowledge-based job-shop scheduling system designed to detect and
react to inconsistencies between a schedule and the actual events on a shop floor. The
system is built on a variant of the BB1 blackboard architecture [27]. It is provided with
both predictive and reactive scheduling knowledge sources which are used to build and mod-
ify schedules. Analysing knowledge sources can be employed to evaluate both predictive
and reactive problem-solving contexts. Control knowledge sources use analysis results to
choose the most appropriate knowledge sources to execute and determine which “behavior”
the scheduling knowledge sources should adopt (e.g. which heuristics they should use). 2
solution maintenance component (built to allow tuning of the trade-off between the antici-
pation of inconsistencies and the cost of constraint propagation) is used to update schedule
descriptions and detect inconsistencies as scheduling knowledge sources make decisions and

unexpected events happen on the shop floor.

Two additional knowledge sources are used as interfaces between SONIA and either a
shop floor or a simulator. One of them provides the shop floor manager or the simulator with
a schedule generated or corrected by SONIA. It is called each time a new (updated) schedule
is considered acceptable. The other one informs the solution maintenance component about
the actual or simulated course of events.

48

Workshor | Workhop | amac | Woranor
l\ll\zgcl:giezf 23 6 12
Number of 15 100 100
Nugaber of 3.5 2.5 2.5
gggggf) of 100 to 150 30 0

Figure 8: Experiments with Three Workshops

SONIA can be used with a simulation system to investigate various reactive scheduling
strategies.

e Given a description of a shop floor, we can measure the utility of reactive scheduling,
compared to the use of classical dispatching rules.

e We can investigate the relevance and the efficiency of each knowledge source in various
contexts (e.g. over-loaded shop, highly disrupted shop).

e The behavior of scheduling and analysing knowledge sources can be adjusted with
respect to several control issues [29]. For example, when a knowledge source fails
(some decisions lead to an inconsistency), various strategies from naive chronological
backtracking to sophisticated analyses of the failure (enabling the system to avoid
further failures and to cancel, not the most recent decision, but the relevant decision)
can be considered. The flexibility of the constraint propagation system also enables the
adjustment of the amount of propagation performed in evaluating the consequences of
both scheduling decisions and actual (or simulated) events.

Section 5.2 describes experiments regarding the use of various backtracking strategies and
the control of constraint propagation. Section 5.3 summarizes the results. [25] provides a
detailed description of the results and discusses both the global utility of reactive scheduling
and the efficiency of reactive methods implemented in the SONIA system.!®

5.2 Description of the Experiments

Experiments regarding backtracking strategies and constraint propagation have been
made for three shop floors: an actual sheet-iron shop (23 machines, 100 to 150 operations
per shift), a bottleneck area of this shop (6 machines, about 30 operations per shift) and a

19The global utility of reactive scheduling has also been studied by other researchers (e.g. [100] [154]). In
addition, an important amount of work regarding the relevance and the efficiency of various predictive and
reactive scheduling methods, based on multiple decompositions of scheduling problems, has been done at
Carnegie-Mellon University [130] [107].

49

hypothetical shop obtained by doubling the capacity of this bottleneck area (12 machines,
about 60 operations per shift).

Figure 8 shows for each workshop the number of tests made, the number of shifts per test
and the number of operations per shift. Shifts are 7 to 12 hours long. The demand/capacity
ratio in the sheet-iron shop varies from 30% for under-loaded machines to 90% for bottleneck
machines. In the two other shops, machines are equally loaded. The duration of operations
varies from a few minutes to a few hours in the sheet-iron shop and from 45 minutes to 3
hours in the two other shops. Tool setups are costly (10 to 40 minutes). Unexpected events
are delays, operation interruptions and mainly machine breakdowns. For each machine,
breakdowns are generated with respect to a Poisson law the parameter of which is 2000
minutes. In most cases, the machine is unavailable for 90 minutes or less.

Two backtracking issues are considered: (a) intelligent chronological (see section 1.1)
or selective backtracking; (b) recording or not recording incompatibilities detected by the
solution maintenance component (recording incompatibilities prevents the re-making of the
same “mistakes”). Consequently, four backtracking strategies are available.

Similarly, a series of constraint propagation “scenarios” is defined with respect to the
following issues:

e Constraint propagation can be restricted to the determination of critical paths in a
PERT-like graph [25]. This means disjunctive (resource sharing) constraints are not
considered by the constraint propagation system. On the contrary, the constraint
propagation system can use the generalized resolution rule (see section 2.2) to confront
temporal inequalities with disjunctions (in addition to the determination of critical
paths). For example, if a machine is planned to be unavailable throughout the interval
of time (6 8), and if an operation op must be performed on this machine without
interruption, we can deduce start(op) > 8 from (or (start(op) > 8) (end(op) < 6)) and
end(op) > 1.

o The solution maintenance component can either ignore or detect re-scheduling oppor-
tunities. For example, end(op) > 7 may disappear in the course of the simulation
(because an operation preceding op ends earlier than expected, thereby enabling op
to start earlier than expected). If no other constraint prevents op from ending before
date 6, the solution maintenance component can then delete start(op) > 8 and signal
an opportunity for re-scheduling op.

o We considered two well-known methods for updating critical paths as scheduling deci-
sions are made. One of them consists in exploring the PERT-like graph. Its complexity
is O(n®) in the worst case (where n denotes the number of manufacturing operations
considered within a shift). The other one consists in maintaining a matrix M such that
M(z j) denotes the longest path from node ¢ to node j in the graph. Its complexity is
O(n?) in all cases.

50

Computation Time

(seconds / reaction)
Critical Paths (exploration)

Resolution and Subsumption
Critical Paths (matrix)
Resolution and Subsumption

Critical Paths

Critical Paths Only (exploration)
Only (matrix)

! t $ Number of operations

Figure 9: Reaction Time

e When disjunctions of temporal inequalities are considered, we can use subsumption
rules to “hide” disjunctions the satisfaction of which results from the satisfaction of
other constraints. For example, (or (start(op) > 8) (end(op) < 6)) can be subsumed
by start(op) > 10.

e For two knowledge sources of the SONIA system, we were able to design appropriate
scenarios which were more efficient than others.

5.3 Discussion of the Results

As expected, selective backtracking strategies are in most cases more efficient than chrono-
logical backtracking strategies. However, an extended constraint propagation often leads to
a significant decrease in the number of backtracks. Consequently, the utility of selective
backtracking is reduced (and sometimes reversed) when constraint propagation is extended.
Similarly, the recording of incompatibilities is all the more useful as constraint propagation
is reduced.

The system reacted more quickly to unexpected events when constraint propagation
was restricted to the determination of critical paths (figure 9). Globally, the quality of
the schedule finally executed was not significantly altered by the absence (due to reduced
propagation) of both early detection of conflicts and detection of scheduling opportunities.
On the other hand, for predictive scheduling, the cost of an extended constraint propagation
was balanced by a reduction of search in nearly 50% of the cases. In 90% of the cases,
the exploration of the PERT-like graph was much more efficient than the matrix-based
method (although it is in O(n®) against O(n?) in the worst case). The cost of subsuming

51

Computation Time
(seconds / analysis)

A Critical Paths (exploration)
Resolution and Subsumption

Dedicated Scenario
Critical Paths
Only (matrix)

Critical Paths Only
(exploration)

! &
! T 1
0 30 60 120 Number of operations

Figure 10: Capacity Analysis

disjunctive constraints was hardly balanced by the resulting reduction of search: in 80%
of the cases, subsumption did not enable to save more than 10% of the total (search +
constraint propagation) time.

Providing propagation scenarios dedicated to two knowledge sources of the SONIA system
turned out to be very worthwhile. By performing reduced propagation, one of them was able
to save 18% to 78% of its computational time while producing equivalent results (figure 10).
By performing extended propagation, the other one was able to immediately detect cases
in which several operations of the same order could not be performed during the same shift
without re-scheduling operations of other orders, thereby enabling the whole system to prune
the search space.

Results of experiments also show that the suitable amount of constraint propagation
varies (in some cases) from predictive to reactive scheduling contexts. This means one must
be very careful when one wants to integrate predictive and reactive scheduling components
in the same system without reducing the efficiency of predictive and/or reactive scheduling.

52

6 Relating Scheduling and Execution Monitoring

This section presents an architecture allowing a predictive scheduler and a reactive dis-
patcher to run in parallel and deal with environmental uncertainty in a consistent fashion.
The overall system is a constraint-propagation-based implementation of ideas presented in
[133]. It consists of three agents operating in parallel and exchanging messages in an asyn-
chronous fashion:

e The scheduling agent generates a predictive schedule and updates it occasionally in
response to arising problems and opportunities.

e The execution monitoring or dispatching agent decides in real-time which operations
to start on the shop floor given the actual course of events. It relies on the schedule to
make its decisions, but overrides it in response to arising problems and opportunities.

e The interface agent serves as a mediator between the scheduling agent and the dis-
patching agent. It determines which agent is allowed to make which changes in which
part of the schedule.

Central to this approach is a “distributable” representation of the schedule [133]. We repre-
sent the schedule as a set of schedule objects. The most common type of schedule object is
a production step.?® A production step has the basic form (step job machine st et), where,
for any given production step s, step(s) is the process step to be performed, job(s) is the
job being operated on, machine(s) is the machine allocated for the purpose of performing
this production step, st(s) is the scheduled start time of the production step, and et(s) is
the scheduled end time of the production step. The first two attributes of a production step
uniquely identify a particular production activity to be performed. The final three represent
the decisions of the scheduling agent. These decisions are made with respect to a number
of constraints (e.g. precedence and duration constraints) imported or derived from generic
product/process models and made accessible to both the scheduling agent and the dispatch-
ing agent. An admissible schedule is a schedule which satisfies all the constraints associated
with its schedule objects. It is represented as a graph (X U), where X is the set of schedule
objects and U = (Uy U Upy) is defined as follows:

o (81 82) € Uy <= s; and sz concern the same job and s, is the immediate successor of
s1 for this job.

o (s1 82) € Upr < 31 and s concern the same machine and s, is the immediate successor
of s; for this machine.

Figure 11 presents an admissible schedule and the corresponding graph. We use the J and
M marks to distinguish arcs in Uy and Uys. The JM mark is used when the same arc (s1 s2)
belongs to both Uy and Uyy.

20Preventive maintenance and repair operations constitute other types of schedule objects. See [133] for
details.

53

Machine-1

Machine-2

Machine-3

Job A -Step 1

Job B - Step 1

Job A - Step 2

Job A - Step 3

Job B - Step 2

Job A - Step 4

!

Figure 11: An Admissible Schedule and the Corresponding Graph

ORDER
RELEASE

B C
A
— SCHEDULED < SCHEDULED
INPROCESS
(DISPATCHER SET) (FRONTIER)
| I
(failure)
\ 4
X
Z Y
> SCHEDULED
COMPLETED PENDING
(SCHEDULER SET)

Figure 12: Sets of Scheduled Objects

o4

"% 8%

EON

R Q&

Figure 13: An Initial Situation

Q

1T

Q @
"B R/

Figure 14: An Execution Decision

55

To mediate interaction between the scheduler and the dispatcher, the set of all schedule
objects is divided into six subsets (as shown in figure 12). Schedule objects are created in
response to production and maintenance requests and loaded initially into subset Y. The
main task of the scheduler is to move schedule objects from subset Y to subset X where
schedule objects have all scheduling decision variables assigned. Within the jurisdiction of
the dispatcher, there are three subsets of interest. Subset A contains all the schedule objects
that are currently executing. Subsets B and C contain the “close to execute” (a notion to
discuss below) according to the schedule: the principal task of the dispatcher is to move
schedule objects from subsets B and C to subset A. The schedule objects in C constitute
the frontier between the jurisdiction of the scheduler and the jurisdiction of the dispatcher.
The scheduler cannot touch them and the dispatcher must start them on time. The schedule
objects in B are the focus of attention of the dispatcher. The dispatcher is allowed to override
the scheduling decision variables in all possible ways provided that it respects the scheduling
constraints and the decisions made for the schedule objects in C. When the dispatcher is
not able to respect these decisions (or when a schedule object fails to successfully execute),
it determines which schedule objects are causing problems. These schedule objects are then
returned to Y indicating the necessity of a global schedule repair.

When a schedule object finishes executing, it moves to the last subset, Z, providing a
record of the actual behavior of the manufacturing system (as a schedule object s moves from
scheduled to inprocess to completed, st(s) and et(s) are updated to reflect the actual times).
The dispatcher moves schedule objects from subsets B and C to subset A and requests new
schedule objects in replacement. Figures 13 to 15 illustrate this process in a simple case.
In this example, we assume that the dispatcher is set to control (a) the executing schedule
objects, (b) their immediate successors in the graph and (c) the immediate successors of the
immediate successors of the executing schedule objects. Figure 13 shows the initial situation.
C1 (the first production step of job (), B2 (the second production step of job B) and A3
(the third production step of job A) are inprocess. When C1 completes, D1 starts, as shown
on figure 14. D2 and F1 become the immediate successors of an executing schedule object,
so the dispatcher requires successors for them and obtains D3, F2 and FI (figure 15). This
is the simplest case. In actual fact, three problems can occur:

e The structure of the graph is not that simple. The dispatcher must therefore determine
the jobs and the machines for which to require schedule objects. When the dispatcher is
set to control n levels of schedule objects (including the inprocess level), the number of
requests following an execution decision can fluctuate between 0 and 27!, In addition,
the interface agent must manage to transmit the corresponding schedule objects in an
order compatible with the schedule. Figure 16 exemplifies this problem. Iven though
C5 is now inprocess, transmitting D5 before its predecessors D2 to D/ does not make
sense. The interface agent must choose to transmit either D5 with its predecessors
or nothing.

56

Figure 15: The Transmission of New Schedule Objects

e When the scheduling agent is making changes to the schedule, the interface agent must
make sure that it will not transmit a production step under modification. This means
the interface agent must know what the scheduler is doing.

e When the dispatching agent is returning schedule objects after a failure, the interface
agent must make sure that it will not provide successors of these schedule objects to
the dispatching agent. This means the interface agent must know when the dispatcher
is about to return schedule objects.

In the current implementation, three precise protocols allow to solve these problems.
The scheduler-interface protocol applies when the scheduler wants to update the schedule.
It consists of four phases:

e The scheduler sends a request to protect a portion P of the schedule (P C X) that it
wants to update.

e The interface processes the request. It decides to protect a subset S of P. A message
describing S is sent to the scheduler. Then the scheduler knows that the interface will
not provide members of S to the dispatcher before the schedule revision is done.

e The scheduler revises the schedule. It sends messages to the interface when it can
release schedule objects in S.

57

G5

(X

R_R

Figure 16: An Ill-Structured Graph

58

e When it receives release messages, the interface agent notes that the corresponding
schedule objects are no longer under protection and determines whether pending re-
quests from the dispatcher are now processible.

In its principles, the protocol allows all kinds of subset descriptions for P and S. But in
practice there is a tradeoff between the generality of the subset description language and
the speed of the subset protection mechanisms. The current implementation assumes that
the scheduler is able to update the schedule in a reasonable amount of time. When this is
the case, the interface agent can afford to protect the complete schedule while the scheduler
updates it. There is in fact no subset description to manipulate: the scheduler requires the
complete schedule X and gets it.%!

The dispatcher-interface protocol applies when the dispatcher needs a schedule object for
a machine or a job. It consists of four phases:

e The dispatcher searches its part of the graph to determine how its decisions to start
schedule objects on the shop-floor call for new schedule objects. A simple breadth-first
search algorithm is sufficient for this purpose. Then the dispatcher sends its requests
to the interface. Each request specifies either a job or a machine for which a schedule
object is needed.

e In the second phase, the interface agent processes requests and sends schedule objects
to the dispatcher. This is the most complex phase as several cases can occur. Let us
consider the different cases for a machine request:

— (a) If the interface agent has sent a schedule object for this machine in the past
(the schedule object can have been sent in response to a job request) and did
not receive acknowledgement of receipt (see the next phase), it knows that the
dispatcher is going to receive (or has received in the meantime) a schedule object
for this machine. The interface can then ignore the new request.

— (b) If the machine is down or (c) the next schedule object on the machine accord-
ing to X concerns a broken job or (d) the next schedule object on the machine
according to X is protected or (e) there is no next schedule object on the machine
according to X, then the request is not processible. It will become processible
when the scheduler updates the schedule.

— (f) If none of the previous conditions applies, the interface must determine whether
the next schedule object on the machine has predecessors in X and decide (using a
heuristic) either to send the schedule object with all its predecessors or to keep the
request pending. If the decision is to keep the request pending, the interface must
record the reason for the failure in order to reconsider the request when some
predecessors are sent to the dispatcher. If the decision is to send the schedule

2INote that X can change between the time of the request and the response of the interface (because the
interface can provide schedule objects to the dispatcher in the meantime). However, “X” always denotes X.

59

object with its predecessors, the interface must record the decision (to allow the
consideration of case (a) for future requests) and determine whether it enables
the reconsideration of pending requests.

The different cases for a job request are symmetric to the above, except for case (e):
if there is no next schedule object for a job according to X, but there is one according
to Y, then the job request can become processible when the scheduler updates the
schedule; if there is no next schedule object for a job according to X and Y, then the
job is done and the interface can ignore the request.

When the dispatcher receives new schedule objects, it incorporates them into its sched-
ule and sends an acknowledgement to the interface. In some cases, the incorporation
can call for new requests, sent right after the acknowledgement.

When the interface receives the acknowledgement, it takes note that the dispatcher has
received the schedule objects. The fact that the dispatcher has integrated the schedule
objects in its schedule modifies the conditions in which case (a) applies.

An important remark is that this protocol supposes that the interface receives and processes
the messages of the dispatcher in the order in which the dispatcher sends them. Depending
on the overall system architecture, this can cause problems or not.

The cleaning protocol applies when the dispatcher is not able to respect the decisions

made for the schedule objects in C or when a schedule object fails to successfully execute.
It consists of six phases:

e The dispatcher sends a message to the interface agent mentioning the need for cleaning
its schedule. From this point, the dispatcher stops requesting new schedule objects. It
will resume requesting schedule objects at the end of the third phase.

The interface agent receives the message and sends an acknowledgement of receipt to
the dispatcher. From this point, the interface agent stops processing requests from
the dispatcher. Assuming the interface processes the messages of the dispatcher in the
order in which these messages are sent, all the requests have been considered at least
once. The interface agent will resume processing these requests at the end of the sixth
phase.

The dispatcher decides which schedule objects to remove from its schedule (possibly
using a heuristic) and sends them to the interface agent, together with new requests
reflecting the changes made in the B and C sets. From this point, the dispatcher
resumes its normal activities: it will request new schedule objects when needed.

o The interface agent forwards the schedule objects to the scheduler.

60

e The scheduler removes these schedule objects — and their successors with respect to
the job links — from its schedule (these schedule objects go back to subset Y) and
sends an acknowledgement to the interface agent.

e When the interface agent receives the acknowledgement, it knows that the schedule is
correct again and resumes processing the requests emanating from the dispatcher. It
also has to process requests emanating from the scheduler as the scheduler wants to
re-schedule the schedule objects in Y. Being back to a normal situation, the interface
agent is responsible for the arbitration between the two other agents.

It is important to notice that the three protocols above do not refer or depend upon
the scheduling techniques in use in the scheduler and the dispatcher. This means one can
replace the scheduling agent with another scheduling agent and the dispatching agent with
another dispatching agent without revising the protocols. The current version integrates
a reduced version of the SONIA scheduling system (see section 5) with the simplest possible
dispatcher. Using the solution maintenance component of the SONTA system — with an
appropriate constraint propagation scenario — the dispatcher updates the earliest and the
latest start time of each schedule object under its jurisdiction each time (a) it receives new
information from the shop floor or (b) it receives new schedule objects from the interface. It
detects a conflict when a schedule object has its earliest start time greater than its latest start
time. The solution maintenance component provides the dispatcher with a description of the
conflict which allows the dispatcher to return schedule objects that are causing problems.

The simulation system presented in [91] allows to simulate the cognitive actions of the
three agents. It also allows to simulate expected and unexpected events occurring on the
shop floor, as well as the actions of a client posting new orders with respect to given statistical
laws. From an experimental point of view, the overall system allows to evaluate to what
extent the scheduler provides fragile (or robust) schedules: the use of the cleaning mechanism
is an indication that the dispatcher is not able to use the schedule to make execution decisions
consistent enough with the predictions of the scheduler.

Providing a formal definition for plan or schedule “robustness” is a difficult task. Our
intuition is that a plan is “robust” when the violation of the assumptions upon which it is
built is of no or little consequence. One can however measure consequences of assumption
violations along two dimensions: (a) in terms of the negative effect on performance metrics
or (b) in terms of the effort required on the part of the prediction/execution system to
recover. Robustness is “the ability to satisfy performance requirements predictably in an
uncertain environment” and/or “the degree to which a plan or a schedule provides valid
guidance over the range of situations that may be encountered at execution time”. Despite
their perspectival difference, these two definitions (due to Srinivas Narayanan and to Stephen
Smith) provide similar properties to the robustness concept:

e Robustness is an issue when (1) there are response time constraints at execution time
and (2) there is unpredictability in the environment.

61

e A “universal” plan mapping each possible situation onto the best possible course of
action in this situation is the most robust since it always provides optimal guidance.
But in most domains, such a plan is not constructible: there are too many non-similar
possible situations to determine in advance how to react to all of them.

e Even though robustness relates to the coverage of different execution states and/or
combinations of events, coverage alone does not constitute a practical measure of ro-
bustness. There are two reasons for this: (1) different events have different probabilities
of occurrence and (2) there are cases in which the negative effect on performance met-
rics and/or the revision effort required to recover is small even though it is not zero.
From a decision-theoretic point of view, this remark suggests that the consideration
of robustness is a compensation to the approximate nature of the performance metrics
chosen to evaluate plans and schedules. In most cases, no one knows how to compute
the expected value of the actual utility function u, so the planning system is set to
optimize an explicit or an implicit function f which approximates the value of u for
some probable or non-extreme scenario. Then the notion of robustness appears to
denote the degree to which we can expect the execution of a similar scenario and/or
the obtainment of a similar outcome.

In the following, we consider the average number of times a schedule object returns from the
jurisdiction of the dispatcher to the jurisdiction of the scheduler as a measure of schedule
robustness with respect to guidance. To evaluate the robustness of a schedule with respect
to performance, we use two classical metrics, average tardiness, and average work-in-process
time (WIP time). Let us note that, given a schedule, execution results can vary, not only
with the environmental uncertainty, but also with the possibilities made available to the
dispatcher. In particular, the criterion determining which schedule objects fall under the
jurisdiction of the dispatcher (what is “close to execution”) has considerable influence on its
ability to move schedule objects in time without “breaking” the schedule.

Up to now, only a small series of experiments has been carried out. In this series, each
experimental condition is determined by two parameters N and R. N is the number of levels
of schedule objects that the dispatcher is set to control. R is a rule allowing to distribute job
slack and machine idle time in the schedule. The slack time between two schedule objects
s1 and sy is defined whenever (s; s2) € Uy as the difference between the start time of s, and
the end time of s;. The idle time between two schedule objects s; and s, is defined whenever
(s1 s2) € Up as the difference between the start time of s; and the end time of s;. Two
values (3 and 5) are considered for N. Four values (EB LB EA LA) are considered for R.

o The EARLIEST-BLIND (EB) rule is the one that SONIA uses as a default. SONIA
schedules several time periods one after the other. The number and the duration (a few
hours to a few days) of these periods are parameters set prior to run the system. The
scheduling mechanism assigns a number of production steps to each resource over each
period and orders the production steps which cannot execute in parallel. The earliest
possible start and end times compatible with this order (and with the assignment of

62

0 i ! i | 1 I |

0.ed 0.7d 0.84 0.94 1d 1.1d 1.2d 1.3d 1.4d

Figure 17: Truncated Normal Distribution for a Schedule Object Duration (d is the average
duration)

time periods to production steps) are provided to the dispatcher. This implies that
the dispatcher has the smallest conceivable set of possibilities to update the schedule
when a problem occurs on the shop-floor.

The LATEST-BLIND (LB) rule gives more responsabilities to the dispatcher. SONIA
provides the dispatcher with the latest possible start and end times compatible with
the chosen order and the assignment of production steps to time periods.

The EARLIEST-AWARE (EA) rule is similar to EB except that the scheduler main-
tains a “realistic” amount of idle time for each resource over each period. This amount
is chosen with respect to statistics gathered on the shop-floor. The scheduler provides
the earliest start and end times to the dispatcher: the dispatcher cannot use the addi-
tional idle time made available for the ongoing period but it can use the idle time made
available at the end of the preceding periods (when this idle time is still available).

The LATEST-AWARE (LA) rule is similar to LB and EA. The scheduler (a) maintains
a “realistic” amount of idle time for each resource over each period and (b) provides the
dispatcher with the latest possible start and end times. As a result, the dispatcher can
use the additional idle time made available for a period as soon as the first production
steps of the period reach the C subset.

Both LB and LA result in a pure propagation of time bound constraints from the scheduler
to the dispatcher. The dispatcher can execute each schedule object at any time consistent
with the current scheduling decisions. When the dispatcher fails, the scheduler also fails

63

(N R) | Tardiness (in X) | WIP (in X) | Tardiness (in Z) | WIP (in Z) | Return Rate
(3 EB) 0 415 40 484 1.99
(3 LB) 5 456 2 413 0.54
(3 EA) 6 446 32 a71 3.79
(3 LA) 12 484 0 405 0.14
(5 EB) 0 415 17 441 2.95
(5 LB) 5 456 13 430 0.70
(5 EA) 6 446 20 450 3.16
(5 LA) 12 484 14 441 1.71

Table 5: Experiments With Four Slack/Idle Distribution Rules

(and needs to revise its allocation and ordering decisions). In comparison, EB and EA result
in the definition of stronger constraints in the jurisdiction of the dispatcher than in the
jurisdiction of the scheduler.

Environmental uncertainty concerns the duration of schedule objects. The duration of
each schedule object follows a “truncated” normal distribution as shown in figure 17. Given
this distribution, a few simulations allow to determine what is a realistic proportion of
resource idle time in the schedule. When R belongs to {EA LA}, the scheduler is set to
maintain this proportion of idle time in each period. The resulting job slack and resource
idle time is then distributed according to the chosen rule R. Table 5 summarizes the results.
For each experimental condition, the table provides five figures:

e The average tardiness in the original predictive schedule (interpreted with respect to
the chosen rule R).

e The average WIP time in the original predictive schedule (interpreted with respect to
the chosen rule R). '

The average tardiness resulting from the schedule execution.

The average WIP time resulting from the schedule execution.

The average number of times a schedule object returns from the jurisdiction of the
dispatcher to the jurisdiction of the scheduler.

The return rate is (as we could expect) much smaller for rules LB and LA than for rules
EB and EA. More interesting is the fact that when N equals 3 this difference in guidance
stability results in an important difference with respect to the performance metrics. The
overall system is such that the pressure that EB and EA put on the dispatcher results in
lots of inefficiencies at execution time.

64

7 Software Verification in the Planning / Scheduling
Domain

In the previous sections (3 to 6), we discussed constraint propagation techniques allowing
the “on-line” combination of constraints and the “on-line” detection of conflicts. Given a set
of decisions already made by one or several agents, constraint propagation allows to determine
whether these decisions are compatible and how they altogether constrain other decisions
to come. When decisions are not compatible, a description of the conflicting situation is
provided to the conflicting agents, so that the conflicting decisions can be revised.

In this section, we discuss the “off-line” determination of multi-agent system properties
and the “off-line” detection of potential conflicts. Given a formal description of the behav-
ior of each agent, we want to determine in which circumstances agents make incompatible
decisions and what happens then. This allows to determine whether the overall system is
correct (e.g. whether mobile robots avoid collisions, whether important events are responded
to on time, whether resource sharing decisions are always made in advance), in which cir-
cumstances incidents occur and why they occur. Various methods have been proposed in
the literature for solving verification problems of this kind (the most well-known consisting
in proving properties of Petri nets [101] which describe the possible behaviors of discrete
event systems [112]). We believe constraint propagation techniques constitute an interesting
alternative to these methods — in particular when the planning and scheduling activities of
the multi-agent system are themselves constraint-driven.??

In comparison with traditional software verification problems, an important difficulty in
planning and scheduling is the consideration of time. We distinguish three levels of difficulty:

o Theoretically, the simplest case (discussed in section 7.1) is when the effects of actions
are not defeasible: any property that becomes true after an action remains true forever
after. In this case, a conflict is a situation in which one or several agents try to establish
contradictory properties. The resolution of the verification problem does not depend on
an explicit consideration of time. This allows the use of techniques developed outside
of the planning and scheduling domain such as knowledge base verification techniques
if the behavior of agents is described in a declarative fashion.

22Here, we will suppose that a mechanism similar to constraint propagation is uniformly used by the agents.
This includes the case of rule-based agents since inference engines are describable in constraint propagation
terms [87]. Other representations, e.g. Petri nets [101], hierarchies of specialists [33], knowledge sources
with declarative bodies [104], may also fit, more or less adequately, in the constraint propagation framework.
Most declarative architectures actually consist of a propagation algorithm to determine instances on which
system components can apply (all or some instances) and a control language to express situation-dependent
preferences among these instances. When the component action parts are also declarative, the overall process
is some form of constraint propagation. The representation may change from an architecture to the other,
but the basic functions remain the same.

65

e The simplest case above almost never occurs as an agent can often undo what another
agent did. Section 7.2 discusses the case in which the relative ordering of action start
and end times influences the evolution of the world and the occurrence of conflicts.
In this case, a conflict is a situation in which one or several agents want to maintain
contradictory properties over unordered intervals of time.

e Finally, section 7.3 discusses the case in which the continuous evolution of properties
(such as the position and orientation of a robot) influences the occurrence of conflicts.
In this case, a conflict can occur at any point in time, during the execution of one or
several actions. It is no longer possible to focus the attention of the verification system
on action start and end times.

Compared to the contents of sections 3 to 6, the discussions below are very prospective. We
do not have any well-defined theory of constraint-based software verification in the planning
and scheduling domain and we did not make any implementation. Nevertheless, we believe
the use of constraint propagation techniques for this task is a possibility to consider.

7.1 Knowledge Base Verification

When the effects of actions are not defeasible, the verification problem consists in de-
termining in which cases a “knowledge base” (corresponding to the overall set of agents)
leads to the performance of incompatible actions. In the simplest case, an instance of the
verification problem is represented as a triplet (KB-IC IF):

e KB is a set of rules (ANTECEDENT = CONSEQUENT).
e IC is a set of integrity constraints (ANTECEDENT = NIL).

o IF is a set of facts or a way to distinguish facts that cannot be introduced in the
working memory of an agent from the outside. For example, a bridge playing system
is not supposed to get direct information about which cards are held by which player
(except for the dummy player and itself).

The problem is then stated as follows: given the knowledge base KB, the set of integrity
constraints IC, and the set of internal facts IF, determine whether the application of rules,
from a set of facts that (a) satisfy IC and (b) do not belong to IF, can lead to a violation
of integrity constraints (and if yes characterize the origins of the constraint violation).?® A
few remarks follow.

23This is only a particular aspect of knowledge base verification (see [103] [96]). The automatic detection
of various anomalies (e.g. redundant rules, potential loops and unreachable conclusions) during or after the
constitution of a knowledge base is another example of useful assistance. The general idea of using diagnostic
meta-expertise to reinforce the quality of a knowledge base is discussed in [111].

66

e The set of integrity constraints is used both to circumscribe the possible inputs to the
multi-agent system and to define the incompatible outputs of the multi-agent system.
A more general definition distinguishing two sets of integrity constraints may be needed
in some cases.

e The definition does not integrate any constraint on the order in which rules apply.
This is adequate if the rules commute. But planning and scheduling agents usually
perform some amount of search prior to make a decision. The consequent part of a rule
can therefore consist in the deletion of facts. In such a case, the control strategy CS
which orders rule applications is important and must be considered as an additional
component of the verification problem instance. For example, if the control strategy
CS selects rule instances at random (there is no control knowledge), the quadruplet
(KB IC IF CS) allows inconsistencies as soon as there is one admissible set of input
facts and one application order leading to the violation of IC.

¢ The complexity of the problem depends on the language available to express rules
and integrity constraints. The general problem is NP-hard as soon as the language
has the expressive power of propositional logic: if S is a set of clauses {C; ... C,}
and if each clause C; equals {L;; ... L}, we can construct the rules (L;; = C;)
1<:¢:<n)(1<j<n and (C; AND ... AND C, = S) in polynomial time.
Then the triplet (KB {((NOT ?P) AND ?P = NIL) (S = NIL)} {C: ... C, S})
allows inconsistencies if and only if S is satisfiable (and the satisfiability problem is
NP-complete [51]). The general problem is undecidable as soon as the language has the
expressive power of first-order logic: given the description of a Turing machine with its
input, we can automatically construct rules that represent the Turing machine, allow
the description of the input as the only possible facts coming from the outside and
replace the instruction that stops the Turing machine with an integrity constraint.
Then there is an inconsistency if and only if the Turing machine can stop (and the
halting problem is undecidable [77]).

Many systems have been built to check the consistency of a knowledge base before its
use. In most cases, the language considered to express rules is a small extension of proposi-
tional logic. For example, Pipard [110] and Rousset [117] accept equalities, disequalities and
inequalities between variables and values in the antecedent part, but only equalities in the
consequent part. Ayel [7] and Lalo [80] accept first-order predicates at the expense of decid-
ability. The rationale for this choice is simple: partial verification with a first-order language
may be more useful than complete verification with a confined propositional language, espe-
cially if knowledge exists to focus on the “most likely” potential conflicts, or if decidability
is recovered under a few structural restrictions (e.g. no “loops” in [80]). From our point
of view, the most definite advantage of the approach advocated in [80] is the possibility of
controlling the logical process that leads to the discovery of potential conflicts.

67

Most systems are also limited to monotonic reasoning, even though an extension to non-
monotonic reasoning is in some cases (as in [7]) practicable. Ginsberg [57] and Rousset [117]
present simple techniques to handle default reasoning. Ginsberg’s system computes when a
default hypothesis holds and uses the result as a formula of facts from which the default is
“deduced”. The drawback of this approach is that the knowledge base must be acyclic in
a strong sense (see [57] for details). Rousset’s system uses a more complex stratagem. It
pretends that the user of the knowledge base can assert the fact “the value of the variable
7V is not deducible” and dynamically generates integrity constraints to ensure that this
fact cannot coexist with facts allowing to deduce the value of 7V.2* This is neat but still
insufficient for our purpose. A viable generalization of these techniques is once again to allow
the systematic control of the process that leads to the discovery of potential conflicts.

Let us start from the simplest possible case (monotonic reasoning in propositional logic)
and examine how a controllable constraint propagation system can generalize to more com-
plex cases. In the monotonic propositional case, one can rewrite rules and integrity con-
straints in clausal form and use the resolution rule to derive new clauses corresponding to
possible sources of conflicts: each clause {L; ... L,} corresponds to a possible conflict in-
volving (NOT' Ly) ... (NOT L,). The resolution process must continue as long as (at least)
one (NOT L;) is an internal fact. Otherwise {(NOT L;) ... (NOT L,)} is an admissible
input which generates a contradiction on the output. Of course the verification system must
not generate all the possible clauses. This is where the control issue becomes important:

e A rule and a clause representing a possible source of conflict must admit the rule
conclusion as the resolvent. For example, the rule ((NOT A) = B) and the constraint
(B AND C = NIL) are allowed to combine and provide the clause {A (NOT C)} to
represent (NOT A) AND C = NIL). But the same rule (NOT A) = B) and the
constraint (A AND C = NIL) are not allowed to combine.

o A big problem in most knowledge base verification systems is the recognition that a set
of facts leading to a contradiction violates an integrity constraint (and is therefore of no
interest). Here the clause which corresponds to the integrity constraint subsumes the
clause which corresponds to the set of incompatible facts. Controlling the constraint
propagation system so that it will attempt subsumption before doing anything else with
a new constraint (including bothering the system user) suffices to solve the problem.

The resulting verification system does not do more than other verification systems. But it
presents important advantages.

24This fits well with the overall approach advocated in [117]: a potential conflict may correspond either to
an error in the knowledge base KB or to some incompleteness of the set of integrity constraints IC. When
the verification system detects a potential conflict, it questions the expert (an oracle) to determine whether
KB or IC must change. Assuming that the oracle may introduce incorrect rules in KB but not in IC (IC
is at worst incomplete) the verification system finally derives a provably consistent knowledge base from its
interactions with the oracle. In the case of default reasoning, the oracle is not needed since “the value of 7V
is not deducible” is a default to remove whenever a set of facts allows to deduce the value of 7V.

68

e Additional control knowledge (heuristic or not) allowing to focus the search for poten-
tial conflicts is expressible in the form of additional control rules.

e Assuming that the system records data dependencies (which constraint derives from
which and which constraint subsumes which), it functions in an incremental fashion.
The addition of a new constraint (from KB or IC) triggers new resolution steps; the
deletion of a constraint (from KB or IC) results (a) in the deletion of its consequences
and (b) in the restoration of the constraints it did subsume (the restoration triggers
new resolution steps). As a result some potential conflicts appear and disappear as the
user adds and deletes rules and integrity constraints.?®

e One does not need to change the constraint propagation framework to accommodate
languages wider than propositional logic. One needs a constraint propagation theory
for the wider language and control knowledge to guide its application. Languages
allowing (object operator value) formulas (with operator in {= < > < > #}) in
antecedent and consequent parts are examples simple to consider. We can expect that
more general languages require more complex control (e.g. necessitate the identification
of infinite loops), and we know that complete verification becomes impossible at some
point.

e One does not need to change the constraint propagation framework to accommodate
non-monotonic reasoning. One has to translate the control rules that control the rule
application process into control rules that comntrol the constraint propagation process.
The goal is to guarantee that the constraint propagation system can detect resolution
steps corresponding to situations that cannot occur when the knowledge base is in use.
Given a resolution step providing a new clause {L; ... L,}, the verification system
must determine (a) whether a rule cancelling the negation of some L; is applicable
when ((NOT L,) AND ... AND (NOT L,)) is true and (b) whether there is a
guarantee that this rule applies before (NOT L;) AND ... AND (NOT L,)) results

in conflicting outputs.

Another way to solve the verification problem with a constraint propagation system is to
generate a constraint for each possible fact that does not belong to IF and allow these facts to
combine with rules and integrity constraints to generate other facts and contradictions. This
corresponds to running the knowledge base on the set of all possible initial facts (see [87] for
an inference engine described in constraint propagation terms). Still control rules are needed
to distinguish the combinations of interest: the combination of two constraints Cy and Cs is
useless as long as C} and C, are not known to derive from compatible facts. The verification
system must use data dependencies to control constraint propagation. The overall process
is then similar to what happens in an assumption-based truth maintenance system [36]. We
can expect this approach to generalize well to non-monotonic cases (e.g. Rousset’s trick is the
easiest to reproduce) but not to non-propositional languages since it requires a constraint for

25 Another incremental approach assuming monotonic propositional logic is presented in [9].

69

each possible input fact. The examination of general resolution strategies allowing to encode
truth maintenance systems (see [18] [19] [20]) suggests solutions to this problem: controlling
a resolution process among rules allows to do without facts. Then the generalization of the
verification system becomes (from a theoretical point of view) possible.

7.2 Sequencing Constraints

When the effects of actions are defeasible, a potential conflict is a situation in which
one or several agents want to establish (or maintain) incompatible properties over unordered
intervals of time. The verification system must therefore (1) associate temporal variables
(points or intervals) with the properties that must precede and/or follow possible actions and
(2) determine whether the multi-agent system allows intervals corresponding to incompatible
properties to overlap. This means that the verification system must couple a temporal
constraint propagation process with a rule combination process similar to those described
above: the rule combination process derives possible paths to incompatible outputs; the
temporal constraint propagation process determines conditions that such paths must meet
for a conflict to occur. The coupling of these two processes is a complex task. But as
soon as a correct coupling framework is made available, it becomes possible to assemble a
collection of verification systems (for a collection of simple languages) from existing constraint
propagation theories.

An important problem occurs when we start considering actions (or natural processes)
occurring at particular times or with particular durations between them. In this case, the
verification system has to determine whether some agents do react to some events in a specific
amount of time. This means the time taken to make decisions enters into consideration. The
verification system must use exact knowledge or given assumptions to compute time bounds
on decision-making.

7.3 Constraints on Continuous Evolutions

The most difficult case is when the continuous evolution of properties (such as the position
and orientation of a robot) influences the occurrence of conflicts. The resolution of the
verification problem then supposes the resolution of complex sets of equations involving
continuous functions and (for discrete control) series. Only the simplest of these problems are
solvable with the current constraint propagation systems. Constraint propagation theories
are in general too weak to handle constraints on continuous evolutions.

70

& Conclusion

Kowalski’s equation “ALGORITHM = LOGIC + CONTROL” [78] is among the most
well-known in computer science (even though most computer scientists do not use the dis-
tinction between “LOGIC” and “CONTROL” as a general principle to system design). The
planning and scheduling applications presented in this report demonstrate how this distinc-
tion allows to consider and compare a variety of constraint propagation algorithms for a
given application. The constraint propagation algorithms are based on the same deductive
activities: constraint combination; rewriting; subsumption; and correction of the effects of
constraint combination, rewriting and subsumption when constraints are removable. What
differs from an algorithm to the other is in some cases the “LOGIC” (which determines
what inferences may be drawn from a set of constraints) and in most cases the “CON-
TROL” (which determines what inferences must be drawn and in what order they must be
drawn).

Some of the experimental results reported in sections 3 to 6 were difficult to predict.
Section 3 suggests that situation-independent task planning is not much more complex than
situation-dependent task planning. Section 4 shows that, for a class of task allocation prob-
lems, one-to-one negotiation performs almost as well as global optimization, provided that
enough temporal details are taken into account. Section 5 mentions (among other results
presented in [25] and summarized here) that in scheduling the exploration of conjunctive
graphs happens to be more efficient than the use of matrix-based methods — even though
the exploration is in O(n?®) against O(n?) in the worst case. Section 6 shows that schedules
constrained to predict good results with respect to usual performance metrics are “frag-
ile” and can bring poor execution results in the presence of uncertainty. Specialists in the
planning and scheduling domain can make wrong guesses on such issues. A framework al-
lowing to test and compare constraint propagation algorithms is therefore of high practical
importance.

In addition, it appears that even for a relatively confined domain (such as job-shop
scheduling for a particular product) there is no “best” constraint propagation scenario.
Knowledge on the problem or on the problem-solving strategy must be exploited to reduce
the computational burden of solution maintenance without sacrificing the deduction of im-
portant information. A controllable constraint propagation system facilitates the utilization
of this knowledge.

However, the identification of control knowledge and its expression in the current con-
straint propagation languages do pose important problems. Customizing a controllable con-
straint propagation system is not an impossible task for a computer science researcher well
wonted to describing complex procedures in abstract mathematical terms. But the current
constraint propagation systems do not enable a human problem-solver (e.g. responsible for
scheduling operations on a construction site) to make his (or her) own applications as ef-

71

ficient as possible without the help of a specialist. An interesting avenue of research is to
make the adaptation of a generic constraint propagation system manageable by its users.

This includes:

e the design of more convenient languages to (a) define constraint propagation theories,
(b) implement constraint generators and retractors in accordance with application
concepts and (c) express control knowledge;

e the constitution of a knowledge base allowing to map task characteristics onto control
strategies.

Another — more remote — prospect is to provide a problem-solving system with the ability
to gain control knowledge from its experience and adapt its own constraint propagation
process to the type of planning and scheduling problems it encounters.

72

References

[1]

Ritu Agarwal and Kislaya Prasad. Fnhancing the Group Decision Making Process: An In-
telligent Systems Architecture. Proceedings of the Twenty-Second Hawaii International Con-
ference on System Sciences, Kailua-Kona, Hawaii, 1989.

Hassan Ait-Kaci and Roger Nasr. LOGIN: A Logic Programming Language With Built-In
Inheritance. Journal of Logic Programming, 3(3):185-215, 1986.

Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln and Roger Nasr. Efficient Implementation of
Lattice Operations. ACM Transactions on Programming Languages and Systems, 11(1):115-
146, 1989.

James F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the
ACM, 26(11):832-843, 1983.

Jean-Michel André, Anne Mouginot and Michel Venet. A Framework for Organization Mon-
itoring. Proceedings of the Ninth European Conference on Artificial Intelligence, Stockholm,
Sweden, 1990.

Stefan Arnborg, Derek G. Corneil and Andrzej Proskurowski. Complexity of Finding Embed-
dings in a k-Tree. SIAM Journal on Algebraic and Discrete Methods, 8(2):277-284, 1987.

Marc Ayel. Détection d’incohérences dans les bases de connaissances : SACCO. These d’état,
Université de Savoie, 1987.

Kenneth R. Baker. Introduction to Sequencing and Scheduling. John Wiley and Sons, 1974.

Alain Beauvieux. Contréler la cohérence d’une base de connaissances. Huitiémes journées
internationales sur les systémes experts et leurs applications, Avignon, France, 1988.

Claude Berge. Graphs and Hypergraphs. North-Holland, 1973.

Pauline M. Berry. Satisfying Conflicting Objectives in Factory Scheduling. Proceedings of
the IEEE International Conference on Artificial Intelligence Applications, Santa Barbara,
California, 1990.

Maurice Bruynooghe. Solving Combinatorial Search Problems by Intelligent Backiracking.
Information Processing Letters, 12(1):36-39, 1981.

Peter Burke and Patrick Prosser. A Distributed Asynchronous System for Predictive and
Reactive Scheduling. Technical Report, University of Strathclyde, 1989.

Peter Burke. Scheduling In Dynamic Environments. PhD Thesis, Department of Computer
Science, University of Strathclyde, 1989.

Philippe Caloud. Distributed Motion Planning and Motion Coordination for Multiple Robots.
Working Paper, Stanford University, 1990.

73

(16]

[17]

[18]

[19]

[20]

(28]

[29]

Philippe Caloud, Wonyun Choi, Jean-Claude Latombe, Claude Le Pape and Mark Yim.
Indoor Automation With Many Mobile Robots. Proceedings of the IEEE International Work-
shop on Intelligent Robots and Systems, Tsuchiura, Japan, 1990.

Jacques Carlier et Philippe Chrétienne. Problémes d’ordonnancement : Modélisation / Com-
plexité / Algorithmes. Masson, 1988.

Michel Cayrol et Pierre Tayrac. Ezploitation de la méthode du consensus dans les ATMS : la
résolution CA H-correcte. Huitiémes journées internationales sur les systémes experts et leurs
applications, Avignon, France, 1988.

Michel Cayrol and Pierre Tayrac. CAT-Correct and CCT-Correct Resolution, CAT-Correct
Resolution in the ATMS. Working Paper, Université Paul Sabatier, 1988.

Michel Cayrol et Pierre Tayrac. ARC : un ATMS basé sur la résolution CAT-correcte. Revue
d’intelligence artificielle, 3(3):19-39, 1989.

David Chapman. Planning for Conjunctive Goals. Artificial Intelligence, 32(3):333-377, 1987.

Po-Young Chu, Herbert Moskowitz and Richard T. Wong. Robust Interactive Decision-
Analysis (RID): Concepts, Methodology and System Principles. Proceedings of the Twenty-
Second Hawaii International Conference on System Sciences, Kailua-Kona, Hawaii, 1989.

Edward G. Coffman Jr. (editor). Computer and Job-Shop Scheduling Theory. John Wiley
and Sons, 1976.

Anne Collinot and Claude Le Pape. Controlling Constraint Propagation. Proceedings of the
Tenth International Joint Conference on Artificial Intelligence, Milan, Italy, 1987.

Anne Collinot et Claude Le Pape. Comparaison de plusieurs modes d’utilisation d’un systéme
d’ordonnancement flexible. Rapport technique, Laboratoires de Marcoussis, 1988.

Anne Collinot, Claude Le Pape and Gérard Pinoteau. SONIA: A Knowledge-Based Schedul-
ing System. International Journal for Artificial Intelligence in Engineering, 3(2):86-94, 1988.

Anne Collinot. Revising the BB1 Basic Conirol Loop to Conirol the Behavior of Knowledge
Sources. Proceedings of the Second AAAI Workshop on Blackboard Systems, AAAI, Saint

Paul, Minnesota, 1988.

Anne Collinot. Le probléme du contrdle dans un systéme flezible d’ordonnancement. These
de PUniversité Paris VI, 1988.

Anne Collinot and Claude Le Pape. Controlling the Behavior of Knowledge Sources within
SONIA. Proceedings of the Twenty-Second Hawaii International Conference on System Sci-
ences, Kailua-Kona, Hawaii, 1989.

Anne Collinot and Claude Le Pape. Testing and Comparing Reactive Scheduling Stralegies.
Proceedings of the AAAI-SIGMAN Workshop on Manufacturing Production Scheduling,
IJCAI, Detroit, Michigan, 1989.

74

[31]

[32]

(33]

Anne Collinot and Claude Le Pape. Adapting the Behavior of a Job-Shop Scheduling System.
International Journal for Decision Support Systems (to appear).
Marie-Odile Cordier. Informations incomplétes et contraintes d’intégrité : le moteur

d’inférences SHERLOCK. These d’état, Université Paris XI, 1986.

Jean-Marc David et Jean-Paul Krivine. Utilisation de prototypes dans un systéme expert de
diagnostic : le projet DIVA. Septiémes journées internationales sur les systemes experts et
leurs applications, Avignon, France, 1987.

Rina Dechter (editor). Proceedings of the AAAI Workshop on Constraint Processing. IJCAI,
Detroit, Michigan, 1989.

Johan De Kleer. Choices without Backtracking. Proceedings of the Fourth National Confer-
ence on Artificial Intelligence, Austin, Texas, 1984.

Johan De Kleer. An Assumption-Based TMS. Eztending the ATMS. Problem Solving with
the ATMS. Artificial Intelligence, 28(2):127-224, 1986.

Claude Delobel et Michel Adiba. Bases de données et systémes relationnels. Dunod, 1982.

Hubert De Ponthaud et Michel Venet. FARFEX : systéme ezpert de planification de missions de
transport. Neuviemes journées internationales sur les systeémes experts et leurs applications,
Avignon, France, 1989.

Yannick Descotte and Jean-Claude Latombe. GARI: A Problem Solver that Plans How to
Machine Mechanical Parts. Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, Vancouver, British Columbia, 1981.

Yannick Descotte. Représentation et exploitation de connaissances “expertes” en généralion
de plans d’actions. Application a la conception automatique de gammes d’usinage. These de
troisieme cycle, Institut National Polytechnique de Grenoble, 1981.

Yannick Descotte and Jean-Claude Latombe. Making Compromises among Antagonist Con-
straints in a Planner. Artificial Intelligence, 27(2):183-217, 1985.

Jacques Erschler. Analyse sous contraintes et aide a la décision pour ceriains problémes
d’ordonnancement. These d’état, Université Paul Sabatier, 1976.

Jacques Erschler, Pierre Lopez et Catherine Thuriot. Raisonnement temporel sous coniraintes
de ressources et problémes d’ordonnancement. Working Paper, Université Paul Sabatier, 1989.

Patrick Esquirol. Régles et processus d’inférence pour l’aide a 'ordonnancement de tdaches en
présence de contraintes. These de ’Université Paul Sabatier, 1987.

Ronald Fagin and Joseph Y. Halpern. Uncertainty, Belief, and Probability. Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, Detroit, Michigan, 1989.

Franck R. Field, Richard de Neufville and Joel P. Clark. Fonction d’utilité : application au
choiz des matériauz. Les cahiers du college des ingénieurs, (1):63-73, 1988.

75

[47]

[48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

Richard E. Fikes, Peter E. Hart and Nils J. Nilsson. Learning and Ezecuting Generalized
Robot Plans. Artificial Intelligence, 3(4):251-288, 1972.

Barry R. Fox and Karl G. Kempf. Opportunistic Scheduling for Robotic Assembly. Proceed-
ings of the IEEE International Conference on Robotics and Automation, Saint Louis, Mis-
souri, 1985.

Robert E. Fox. MRP, KANBAN, or OPT. What’s Best? Inventories and Production Maga-
zine, 2(4), 1982.

Hervé Gallaire, Jack Minker and Jean-Marie Nicolas. Logic and Databases: A Deductive
Approach. Computing Surveys, 16(2):153-185, 1984.

Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

Michael P. Georgeff. Communication and Interaction in Multi-Agent Planning. Proceedings
of the Third National Conference on Artificial Intelligence, Washington, District of Columbia,
1983.

Michael P. Georgeff and Amy L. Lansky. Reactive Reasoning and Planning. Proceedings of
the Sixth National Conference on Artificial Intelligence, Seattle, Washington, 1987.

Michael P. Georgeff and Francois Félix Ingrand. Decision-Making in an Embedded Reasoning
System. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
Detroit, Michigan, 1989.

Malik Ghallab and Amine Mounir Alaoui. Managing Ffficiently Temporal Relations Through
Indexed Spanning Trees. Proceedings of the Eleventh International Joint Conference on Ar-
tificial Intelligence, Detroit, Michigan, 1989.

Malik Ghallab et Amine Mounir Alaoui. Relations temporelles symboligues : représentations
et algorithmes. Revue d’intelligence artificielle, 3(3):67-115, 1989.

Allen Ginsberg. Knowledge Base Reduction: A New Approach to Checking Knowledge Bases
for Inconsistency and Redundancy. Proceedings of the Seventh National Conference on Ar-
tificial Intelligence, Saint Paul, Minnesota, 1988.

Eliyahu M. Goldratt and Jeff Cox. The Goal. A Process of Ongoing Improvement. North
River Press, 1986.

Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

Michel Gondran and Michel Minoux. Graphs and Algorithms. John Wiley and Sons, 1984.
Hans Werner Giisgen. CONSAT: A System for Constraint Satisfaction. Pitman, 1989.

Joseph Y. Halpern. An Analysis of First-Order Logics of Probability. Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, Detroit, Michigan, 1989.

76

[63]

[64]

(65]

[66]

(67]

(68]

[69]

[70]

[71]

[72]

[73]

Barbara Hayes-Roth and Frederick Hayes-Roth. A Cognitive Model of Planning. Cognitive
Science, 3(4):275-310, 1979.

James Hendler, Austin Tate and Mark Drummond. Al Planning: Systems and Techniques.
Al Magazine, 11(2):61-77, 1990.

William P.-C. Ho. A Meta-Planning Model for Diminishing Resource Problems. International
Journal for Artificial Intelligence in Engineering, 3(2):114-120, 1988.

Eric J. Horvitz. Reasoning About Beliefs and Actions Under Computational Resource Con-
straints. KSL Technical Report, Stanford University, 1987.

Eric J. Horvitz, John S. Breese and Max Henrion. Decision Theory in Ezpert Systems and
Artificial Intelligence. International Journal of Approximate Reasoning, 2(3):247-302, 1988.

James R. Jackson. An Extension of Johnson’s Results on Job Lot Scheduling. Naval Research
Logistics Quarterly, 3(3):201-203, 1956.

Joxan Jaffar and Jean-Louis Lassez. Constraint Logic Programming. Proceedings of the Four-
teenth Annual ACM Symposium on Principles of Programming Languages, Munich, West
Germany, 1987.

S. M. Johnson. Optimal Two- and Three-Stage Production Schedules with Setup Times In-
cluded. Naval Research Logistics Quarterly, 1(1):61-68, 1954.

Arnold Kaufmann and Robert Faure. Introduction to Operations Research. Academic Press,
1968.

Kevin M. Kelly, Louis I. Steinberg and Timothy M. Weinrich. Constraint Propagation in
Design: Reducing the Cost. Working Paper, Rutgers University, 1988.

Karl G. Kempf. Manufacturing Planning and Scheduling: Where We Are and Where We
Need To Be. Proceedings of the IEEE International Conference on Artificial Intelligence
Applications, Miami, Florida, 1989.

Karl G. Kempf, Claude Le Pape, Stephen F. Smith and Barry R. Fox. Issues in the Design
of AI-Based Schedulers: A Workshop Report. Al Magazine (to appear).

Naiping Keng and David Y. Y. Yun. A Planning/Scheduling Methodology for the Constrained
Resource Problem. Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, Detroit, Michigan, 1989.

R. M. Kerr and R. N. Walker. A Job-Shop Scheduling System Based on Fuzzy Arithmetic.
Proceedings of the Third International Conference on Expert Systems and the Leading Edge
in Production Planning and Control, Charleston, South Carolina, 1989.

Stephen C. Kleene. Mathematical Logic. John Wiley and Sons, 1967.

Robert Kowalski. Algorithm = Logic + Control. Communications of the ACM, 22(7):424-436,
1979.

7

[79]

(80]

[87]

(88]

(89]

[90]

[91]

[92]

[93]

Peter B. Ladkin and Roger D. Maddux. On Binary Constraint Networks. Technical Report,
Kestrel Institute, 1988.

Anne Lalo. TIBRE : un systéme expert qui teste les incohérences dans les bases de régles.
Huitiemes journées internationales sur les systémes experts et leurs applications, Avignon,
France, 1988.

Jean-Claude Latombe. Une application de l’intelligence artificielle a la conception assistée
par ordinateur (TROPIC). These d’état, Institut National Polytechnique de Grenoble, 1977.

Jean-Claude Latombe. Failure Processing in a System for Designing Complex Assemblies.
Proceedings of the Sixth International Joint Conference on Artificial Intelligence, Tokyo,
Japan, 1979.

Hervé Le Lous et Vidal Cohen. Théorie et pratique de la décision ; débat sur ’analyse du
risque. Les cahiers du college des ingénieurs, (1):21-49, 1988.

J. K. Lenstra and A. H. G. Rinnooy Kan. Computational Complezity of Discrete Optimization
Problems. Annals of Discrete Mathematics, 4(1):121-140, 1979.

Claude Le Pape. SOJA: A Daily Workshop Scheduling System. SOJA’s System and Infer-
ence Engine. Proceedings of the Fifth Technical Conference of the British Computer Society
Specialist Group on Expert Systems, Warwick, United Kingdom, 1985.

Claude Le Pape and Stephen F. Smith. Management of Temporal Constraints for Factory
Scheduling. Proceedings of the Working Conference on Temporal Aspects in Information
Systems, Sophia-Antipolis, France, 1987.

Claude Le Pape. Des systémes d’ordonnancement flezibles et opportunistes. These de
I"Université Paris XI, 1988.

Claude Le Pape. Représentation d’éléments de raisonnement en Géologie Appliquée : points
de vue d’un informaticien. Rapport interne, Elf Aquitaine, 1989.

Claude Le Pape. The Completeness of a Solution Maintenance Component. Working Paper,
Stanford University, 1989.

Claude Le Pape. A Combination of Centralized and Distributed Methods for Multi-Agent
Planning and Scheduling. Proceedings of the IEEE International Conference on Robotics
and Automation, Cincinnati, Ohio, 1990.

Claude Le Pape. Simulating Actions of Autonomous Agents. CIFE Technical Report, Stan-
ford University, 1990.

Claude Le Pape. Intelligence artificielle et ordonnancement : une introduction. Bulletin de
P’association francaise pour intelligence artificielle, (4):11-12, 1990.

Nadine Lerat and Witold Lipski Jr. Nonapplicable Nulls. Theoretical Computer Science,
46(1):67-82, 1986.

78

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

Nadine Lerat. Représentation et traitement des valeurs nulles dans les bases de données.
These de troisieme cycle, Université Paris XI, 1986.

Bing Liu. Scheduling via Reinforcement. International Journal for Artificial Intelligence in
Engineering, 3(2):76-85, 1988.

Beatriz Lopez, Pedro Meseguer and Enric Plaza. Knowledge-Based Systems Validation: A
State of the Art. Al Communications, 3(2):58-72, 1990.

Eric Lumer and Bernardo A. Huberman. Dynamics of Resource Allocation in Distributed
Systems. Technical Report, XEROX Palo Alto Research Center, 1990.

Bernard Meltzer. Prolegomena to a Theory of Efficiency of Proof Procedures. Artificial In-
telligence and Heuristic Programming, American Elsevier, 1971.

David H. Mott, Jon Cunningham, Gerry Kelleher and Julie A. Gadsden. Constraint-Based
Reasoning for Generating Naval Flying Programmes. Expert Systems, 5(3):226-246, 1988.

A. P. Muhlemann, A. G. Lockett and C. K. Farn. Job-Shop Scheduling Heuristics and Ire-
quency of Scheduling. International Journal of Production Research, 20(2):227-241, 1982.

Tadao Murata. Petri Nets: Properties, Analysis and Applications. IEEE Proceedings,
77(4):541-580, 1989.

Nicola Muscettola. Planning the Behavior of Dynamical Systems. Technical Report, Carnegie-
Mellon University, 1990.

Tin A. Nguyen, Walton A. Perkins, Thomas J. Laffey and Deanne Pecora. Knowledge Base
Verification. AI Magazine, 8(2):69-75, 1987.

H. Penny Nii. Blackboard Systems Part Two: Blackboard Application Systems, Blackboard
Systems from a Knowledge Engineering Perspective. A1 Magazine, 7(3):82-106, 1986.

Nils J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1982.

Peng Si Ow and Stephen F. Smith. Two Design Principles for Knowledge-Based Systems.
Decision Sciences, 18(3):430-447, 1987.

Peng Si Ow, Stephen F. Smith and Alfred Thiriez. Reactive Plan Revision. Proceedings of
the Seventh National Conference on Artificial Intelligence, Saint Paul, Minnesota, 1988.

Peng Si Ow and Thomas E. Morton. The Single Machine Early/Tardy Problem. Management
Science, 35(2):177-191, 1989.

H. Van Dyke Parunak. Manufacturing Ezperience With the Contract Net. Proceedings of the
Fifth Workshop on Distributed Artificial Intelligence, Sea Ranch, California, 1985.

Eric Pipard. Détection d’incohérences et d’incomplétudes dans les bases de régles : le systéme
INDE. Huitiémes journées internationales sur les systémes experts et leurs applications, Avi-
gnon, France, 1988.

79

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125)

[126]

Jacques Pitrat. Utilisation des connaissances déclaratives. Publication 56 du Groupe de
Recherche 22, Université Paris VI, 1985.

Peter J. G. Ramadge and W. Murray Wonham. The Control of Discrete Fvent Sysiems.
IEEE Proceedings, 77(1):81-98, 1989.

Jean-Francois Rit. Propagating Temporal Constraints for Scheduling. Proceedings of the I'ifth
National Conference on Artificial Intelligence, Philadelphia, Pennsylvania, 1986.

Jean-Frangois Rit. Modélisation et propagation de contraintes temporelles pour la planifica-
tion. These de 'Institut National Polytechnique de Grenoble, 1988.

J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal of the
ACM, 12(1):23-41, 1965.

Marie-Christine Rousset. Sur la validité des bases de connaissances : le systéme COVADIS.
Septiemes journées internationales sur les systéemes experts et leurs applications, Avignon,
France, 1987.

Marie-Christine Rousset. Sur la cohérence et la validation des bases de connaissances : le
systéeme COVADIS. These d’état, Université Paris XI, 1988.

David M. Russinoff. PROTEUS: A Frame-Based Nonmonotonic Inference System. Technical
Report, Microelectronics and Computer Technology Corporation, 1987.

Eric Rutten and Lionel Marcé. Temporal Logics Meet Telerobotics. Proceedings of the NASA
Conference on Space Telerobotics, Pasadena, California, 1989.

Farl Sacerdoti. Problem Solving Tactics. Proceedings of the Sixth International Joint Con-
ference on Artificial Intelligence, Tokyo, Japan, 1979.

Norman Sadeh and Mark S. Fox. Preference Propagation in Temporal/Capacity Constraint
Graphs. Technical Report, Carnegie-Mellon University, 1989.

Norman Sadeh and Mark S. Fox. Focus of Attention in an Activity-Based Scheduler. Pro-
ceedings of the NASA Conference on Space Telerobotics, Pasadena, California, 1989.

Shimon Schocken. A Framework for Comparative Analysis of Belief Revision Models in Rule-
Based Systems. Proceedings of the Twenty-Second Hawaii International Conference on Sys-
tem Sciences, Kailua-Kona, Hawaii, 1989.

Raimund Seidel. A New Method for Solving Constraint Satisfaction Problems. Proceedings
of the Seventh International Joint Conference on Artificial Intelligence, Vancouver, British
Columbia, 1981.

Prakash P. Shenoy and Glenn R. Shafer. Azioms for Discrete Optimization Using Local
Computation. Working Paper, University of Kansas, 1988.

Prakash P. Shenoy and Glenn R. Shafer. Constraint Propagation. Working Paper, University
of Kansas, 1988.

80

[127]

[128]

[129)

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Prakash P. Shenoy and Glenn R. Shafer. Azioms for Probability and Belief-Function Propa-
gation. Working Paper, University of Kansas, 1988.

Herbert Simon. Search and Reasoning in Problem Solving. Artificial Intelligence, 21(1):7-29,
1983.

Reid G. Smith. The Coniract Net: A Formalism for the Control of Distributed Problem
Solving. Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
Cambridge, Massachusetts, 1977.

Stephen F. Smith, Mark S. Fox and Peng Si Ow. Constructing and Maintaining Detailed Pro-
duction Plans: Investigations into the Development of Knowledge-Based Factory Scheduling
Systems. Al Magazine, 7(4):45-61, 1986.

Stephen F. Smith. A Constraint-Based Framework for Reactive Management of Factory
Schedules. Proceedings of the First International Conference on Expert Systems and the
Leading Edge in Production Planning and Control, Charleston, South Carolina, 1987.

Stephen F. Smith and Juha E. Hynynen. Integrated Decentralization of Production Man-
agement: An Approach for Factory Scheduling. Proceedings of the ASME Annual Winter
Conference, Boston, Massachusetts, 1987.

Stephen F. Smith, Naiping Keng and Karl G. Kempf. Fzploiting Local Flexibility During
FEzecution of Pre-Computed Schedules. Technical Report, Carnegie-Mellon University, 1990.

Richard M. Stallman and Gerald J. Sussman. Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis. Artificial Intelligence,
9(2):135-196, 1977.

John A. Stankovic. Misconceptions About Real-Time Computing. A Serious Problem for Nexl-
Generation Systems. IEEE Computer, 21(10):10-19, 1988.

Mitchell S. Steffen. A Survey of Artificial Intelligence-Based Scheduling Systems. Proceedings
of the Fall Industrial Engineering Conference, Boston, Massachusetts, 1986.

Mark Stefik. Planning with Constraints. PhD Thesis, Department of Computer Science, Stan-
ford University, 1980.

Mark Stefik. Planning with Constraints (MOLGEN: Part 1). Planning and Meta-Planning
(MOLGEN: Part 2). Artificial Intelligence, 16(2):111-169, 1981.

Mark Stefik, Jan Aikins, Robert Balzer, John Benoit, Lawrence Birnbaum, Frederick Hayes-
Roth and Earl Sacerdoti. The Organization of Ezpert Systems, A Tutorial. Artificial Intelli-
gence, 18(2):135-173, 1982.

Louis 1. Steinberg. Design as Refinement Plus Constraint Propagation: The VEXED Ez-
perience. Proceedings of the Sixth National Conference on Artificial Intelligence, Seattle,
Washington, 1987.

81

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148)

[149]

[150]

[151]

[152]

[153]

[154]

Louis I. Steinberg. Design = Top Down Refinement Plus Constraint Propagation Plus What?
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Fairfax,
Virginia, 1987.

Katia Sycara, Stephen Roth, Norman Sadeh and Mark S. Fox. An Investigation into Dis-
tributed Constraint-Directed Factory Scheduling. Proceedings of the IEEE International Con-
ference on Artificial Intelligence Applications, Santa Barbara, California, 1990.

Austin Tate. Planning in Fzpert Systems. Proceedings of the Alvey IKBS Expert Systems
Research Theme Workshop, Abingdon, United Kingdom, 1984.

Austin Tate. A Review of Knowledge-Based Planning Techniques. Proceedings of the I'ifth
Technical Conference of the British Computer Society Specialist Group on Expert Systems,
Warwick, United Kingdom, 1985.

Jean-Patrick Tsang. Planification par combinaison de plans. Application a la génération de
gammes d’usinage. Theése de I'Institut National Polytechnique de Grenoble, 1987.

Peter Van Beek. Approzimation Algorithms for Temporal Reasoning. Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, Detroit, Michigan, 1989.

Peter Van Beek. Reasoning about Qualitative Temporal Information. Proceedings of the
Eighth National Conference on Artificial Intelligence, Boston, Massachusetts, 1990.

Pascal Van Hentenryck and Mehmet Dincbas. Domains in Logic Programming. Proceedings
of the Fifth National Conference on Artificial Intelligence, Philadelphia, Pennsylvania, 1986.

Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

Marc Vilain and Henry Kautz. Constraint Propagation Algorithms for Temporal Reasoning.
Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia, Penn-
sylvania, 1986.

John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1953.

Robert Wilensky. Meta-planning. Proceedings of the First National Conference on Artificial
Intelligence, Stanford, California, 1980.

David E. Wilkins. Domain-independent Planning: Representation and Plan Generation. Ar-
tificial Intelligence, 22(3):269-301, 1984.

M. Yamamoto and S. Y. Nof. Scheduling/Re-Scheduling in the Manufacturing Operating
System Environment. International Journal of Production Research, 23(4):705-722, 1985.

82

