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It is desirable to make the system to generate those left outer joins and filters as needed rather
than requiring that a programmer specifies it manually as part of the query for every view definition.
We develop such a mechanism in this paper.

Since left outer joins are not symmetric, they inhibit a query optimizer from attempting to
reorder joins for more efficient query processing. Besides, application of non-null filters is not free.
It incurs the cost of evaluating the corresponding selection predicates on a base relation. We show
that these two operators can be avoided without affecting the query result for the cases we will
define in this paper.

We made the following contributions in the context of instantiating objects from relational
databases through views.

e To introduce the two key operators — a left outer join a non-null filter — for preventing
information loss and the retrieval of unwanted information.

e To develop a simple mechanism of specifying those two operators in a relational view query,
given a system model we define; The system model is easily implementable in existing systems.

e To address the efficiency issue of reducing the number of the two operators without affecting
query results.

2 Background Framework

2.1 Integration of Object-oriented Programs and Databases

The desire for integrating object-oriented programs with databases has been increasing recently.
This integration enables applications working in object-oriented environment to have shared, con-
current access to persistent storage. Examples are the engineering applications such as computer-
aided design and computer-aided software engineering. These are not well supported by conven-
tional databases such as relational databases.

We distinguish two alternative approaches to the integration of objects and databases: the
direct object storage approach and the indirect base relation storage approach. In the object storage
approach, an object-oriented model is used uniformly for applications and persistent storage [2, 3,
1,4, 5, 6]; Objects are retrieved and stored as objects. In the relation storage approach, an object-
oriented model is used for the applications while a relational storage model is used for persistent
storage [7, 8, 9, 10, 11, 12], and objects are retrieved by evaluating queries to databases.

The relation storage approach incurs the overhead of mapping between different models [10, 13].
This additional cost is motivated for large databases since the relation storage approach supports
sharing of different user views better than the object storage approach. Direct storage of objects
is simple, but inhibits sharability [10]. For example, let us assume two users define Employee
objects differently as Employee(name, salary) and Employee(name, department) respectively. In
the object storage approach, the two Employee objects are stored separately. To provide sharing
requires a separate mechanism for identifying the owners. In the relation storage approach however,
this problem does not occur because the information to support the two Employee objects are stored
in a single relation Employee(name, salary, department), and their owners are distinguished by

the database view mechanism. 9
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Abstract

One of the approaches for integrating an object-oriented programs with databases is to instan-
tiate objects from relational databases by evaluating view queries. In that approach, it is often
necessary to evaluate some joins of the query by left outer joins to prevent information loss
caused by the tuples discarded by inner joins. It is also necessary to filter some relations with
selection conditions to prevent the retrieval of unwanted nulls.

The system should automatically prescribe joins as inner or left outer joins and generate the
filters, rather than letting it be specified manually for every view definition. We develop such
a mechanism in this paper. To overcome the heterogeneity of an object-oriented model and
the relational model, we first develop a rigorous system model. The system model provides a
well-defined context for developing a simple mechanism.

The mechanism requires only one piece of information from users: null options on an object
attribute. The semantics of these options are mapped to referential integrity constraints on the
query result. Then the system prescribes joins and generates filters accordingly. We also address
reducing the number of left outer joins and the filters so that the query can be processed more
efficiently.

1 Introduction

One of the approaches for integrating object-oriented programs with relational databases is to
generate objects from relational databases through views [10, 11, 12, 7, 8, 9]. A view is defined by
a relational query and a function for mapping between object attributes and relation attributes.
The query is used to materialize the necessary data into a relation from database, and the function
is used to restructure the materialized relation into objects. This approach provides an effective
mechanism for building ob ject-oriented applications on top of relational databases.

In generating objects, some particular conditions arise that are not so common in traditional
relational database operations. First of all, as will be shown in Section 3.2.1, it is often necessary to
evaluate some joins of the query by left outer joins to prevent information loss caused by the missing
tuples discarded by inner joins. It is also necessary to filter some relations with selection conditions
which eliminate some tuples containing null attributes to prevent the retrieval of unwanted nulls.
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Type Employee Type Employee
Tis-a Tis-a
Type Project-manager Type Project-manager
llgenerates ftdefined-from
Relation Employee(ssn, . . .) Relation Employee(ssn, .. .)
Relation Project-manager(ssn, .. .) Relation Project(..., managed-by, ...)
(a) Object-centered perspective - (b) Relation-centered perspective

Figure 1: Two perspectives of relation storage approach

2.2 Two Perspectives of the Relational Storage Approach

We observed two different perspectives within the relation storage approach: object-centered [7, 8, 9]
and relation-centered [10, 11, 12]. In object-centered perspective, relation schemas are generated
from given object schemas, i.e., types and their hierarchy. Relations are the destination for storing
objects, and objects are decomposed into relations using the concept of normalization. On the other
hand, in relation-centered perspective, object schemas are defined from given relation schemas.
Relations are the source for generating objects, and objects are composed from relations. The
composition of objects is useful for building object-oriented applications on top of ezisting relational
databases'. The two perspectives may look like the two sides of the same coin, but they differ
operationally. Figure 1 shows the two perspectives. In Figure la, the Project-manager type is
mapped to the Project-manager relation. There exists a separate relation for each corresponding
object type. In Figure 1b, there does not exist a separate Project-manager relation in the given
database. Rather, the Project-manager type is defined as an abstraction through views, such
as defining a join between the Employee relation and Project relation along the managed-by
foreign key. The join retrieves only the employees who are managing one or more projects. Let
us consider the Project-manager as an abstract relation of the Employee and Project relations.
Note the abstract relation is analogous to the intensional database (IDB) relation [15, 16] used in
the integration of the logic-based model and relational model [16, 17, 18]. For example, the IDB
relation of the Project-manager is written as follows using the notion of Datalog [15].

Project-manager(ssn,---) :— Employee(ssn,---)& Project(:--,managed-by, --) &

ssn = managed-by.

We use the relation-centered perspective throughout the discussion in this paper but the result is
applicable to the object-centered perspective as well.

2.3 Instantiating Objects from Relations through Views

Views provide a user-defined subset of a large database. Thus, as mentioned in Section 2.1 and
Section 2.2, views are used as a tool for providing sharing and abstraction in interfacing between
an object-oriented model and the relational model. We also want to use the views for instantiating

'We cannot throw away the relational data model in a decade. Remember that the IMS hierarchical data model
implementation is still prevalent while we call the relational model ‘conventional’.
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Database schema: /* Underlined attributes are keys. */
Employee(ssn, e_name, salary, dept#)
Deparment(dept#, d_-name, manager_ssn)

Child(ssn, c_name, sex, birth_date)

Type Employee /* [ ] denotes a tuple. */
[name: string, dept: Department,
children: [name: string, birthDate: string]]

View:

e Query expressed in relational algebra:
H{ssn,dept#,c_:name,birthDate} Employee ten Child

e Mapping between object attributes and relation attributes:

—> :is-part-of

Emgployee
<> : maps-to

id name dept chijdren

EEs

ssn e name dept# <ssn,c_name> c_name birth_date

Figure 2: An example of instantiating an object type through views

objects from relations. To achieve this, views should provide mapping between heterogeneous
structures of the two models. The mapping is done by linking object attributes to corresponding
relation attributes. Objects have more complex structure than relations. For instance, objects
support aggregation hierarchies [24] through an is-part-of relationship.? Hence objects have a
nested structure, which is different from nested tuples because the type of an attribute can be a
reference to another object. Therefore, given relation attributes, it is difficult to map the relation
attributes to object attributes without explicitly specified mapping information. We thus need to
extend the views by adding additional component for the mapping, that is, an atiribute mapping
function.

Figure 2 shows an example of instantiating objects through such an extended view. The object
type defines the structure of objects to be retrieved from the database. The query part of the
view specifies how to materialize the objects from the relational database. The join between the
Employee relation and the Child relation has the semantics of nesting such as ‘For each Employee
tuple, retrieve its name, dept#, and the c.name of the matching tuple in the Child relation.” The
outer relation is called a source relation and the inner relation is called a destination relation in our

20Objects also support a generalization hierarchy through is-a relationship, inheriting part of the attributes from
parent objects. We regarded the inherited attributes as well as the local attributes uniformly as belonging to the
objects.
4



work. The attribute mapping part of the view shows the aggregation hierarchy of object attributes
and their mapping to relation attributes. The mapping is one-to-one as long as there is no derived
attribute among the object attributes. We use the key attribute of one of the relations as the source
of object identifier (id). In Figure 2, the key ssn of the Employee relation is retrieved to become the
id of the Employee object. Object id’s are not explicitly defined in the type definition but assumed
to exist implicitly. The dept attribute of an Employee object has type Department. We call an
attribute whose type is another object type as a reference attribute. In object-oriented paradigm,
a reference is implemented with the id of the referenced object. In our framework, the value of
a reference attribute is retrieved from the key of a database relation which is mapped to the id
of the referenced object. Thus, in Figure 2, the dept attribute of an Employee object is retrieved
from the dept# of the Department relation®. The children attribute defines a ‘subobject’ of the
Employee object, and has its own attributes — name and birthDate. Like the Employee object,
a children subobject is assumed to have its object id, but the object id is not actually retrieved
from a database relation®.

3 Problem Formulation

3.1 The Two Operators

In the introduction, we mentioned the need of two operators: a left outer join and a non-null filter
for instantiating objects from relational databases through views. A left outer join is different from
an inner join in that it retrieves null tuples when there is no matching tuple in the destination
relation for a given source relation. A non-null filter is a selection condition for eliminating any
nulls of an attribute from a base relation®. Formal definitions of the left outer join and the non-null
filter are as follows.

Definition 3.1 (Left Outer Join) Given two relations R; and Rs, a left outer join from R; to
Rs, denoted by R; <4 R, is defined as follows.

RiIDA Ry = (R1[><]R2) U (Rl — HRI(R1[><R2) X A) (1)

where >< denotes an inner join, 7g, (R; ><\R;) denotes the projection of R ><I R; on the attributes
of Ri, and A denotes a null tuple consisting of nulls for all attributes of Ry. In other words,
Ry ﬁ>6<1 R, produces the following set of tuples.

{<ti,ta > |t € Ry A ((t2 € Ry At10ts) Viy = A)} (2)
where 6 denotes the join condition.

For the rest of this paper, we use a small size join symbol (X) to denote a join which can be (has
not yet been determined to be) either an inner join (<) or a left outer join (> ).

3Let us assume there is a type Department whose object id is retrieved from the dept# of the Department relation.
#The id’s of the children subobjects are needed for a different purpose, which will be discussed in Section 6.3.
5A base relation is the relation defined by the relation schema of a database, neither a view nor an intermediate

relation.



Definition 3.2 (Non-null filter) A non-null filter is a conjunction of predicates applicable to a
base relation R, defined as follows.

R.A; #nullA R Ay ZnullA--- A R.A; # null (3)

where 43, Ag, - -+, A; are the attributes of R that are not allowed to have nulls.

3.2 Motivation
3.2.1 Why do we need left outer joins and non-null filters?

Objects are identified by their identifiers (id’s) only. In other words, an object exists even if all its
attributes are nulls as long as it has an object id. Let us consider the objects of type Employee
shown in Figure 2. An Employee object exists only if it has its id retrieved from the ssn of the
Employee relation. Assuming that the Employee object allows null for its children attribute, what
will happen if the join between Employee relation and Child relation is evaluated by an inner
join? Any employee tuple that has no matching tuple in the Child relation will be discarded. In
other words, any employee without children will not be retrieved. Therefore, it is certain we must
evaluate the join by an outer join to prevent the loss of employees without children. What we need
is not a bilateral outer join but a unilateral outer join because we are not interested in retrieving a
Child tuple that has no matching tuple in the Employee relation, that is, a child without parent.
Therefore, a left outer join is adequate assuming that the source, here the Employee, relation is the
left hand side operand of the join. We assume the source relation is always on the left hand side of
a join and thus use only left outer joins for the rest of this paper.

Now let us assume the Employee objects prohibit nulls for the dept attribute since a department
affiliation is required of every employee. As mentioned in Section 2.3, the dept attribute is retrieved
from the dept# of the Employee relation. The join between the Employee relation and Child
relation is immaterial to the retrieval of dept# attribute. Rather, nulls of the dept# attribute
stored in the tuples of the relation Employee should not be retrieved. Therefore, we must filter the
Employee relation with a selection condition ‘dept# # null’. We call this selection condition a
non-null filter.

As explained with the above examples, we frequently need left outer joins [19] to prevent the
loss of wanted objects, and non-null filters to prevent the retrieval of unwanted nulls.

3.2.2 Why do we want the system to do it?

Null-related semantics of object types are hard to understand and hence likely to induce errors.
For example, the Employee type definition shown in Figure 2 does not distinguish between the
semantics of ‘employees and their zero or more children’ and the semantics of ‘employees with at
least one child’. A left outer join is needed for the former while an inner join is needed for the
latter. The distinction is entirely the programmer’s responsibility. Even if the semantics is clear,
it is an effort for the programmer to determine the left outer joins and non-null filters given a type
and the corresponding view, especially if the view defines many joins. Therefore mechanization of
the process will be useful.



3.2.3 Why do we want to reduce the number of left outer joins and non-null filters?

The query is processed more efficiently if we can eliminate a non-null filter ‘R.A # null’ without
affecting the query result, and thus avoid evaluating unnecessary selection conditions. Sometimes
it is known at the semantic level that the column A of a relation R contains no null. An example
is when A is the key of R and the entity integrity [20] is preseved.

The query also becomes more efficient if we reduce the number of left outer joins and still
retrieve the same result. Sometimes left outer joins produce the same tuples as inner joins. For
example in Figure 2, if every employee has one or more children, then the same tuples are produced
by either join method. We know this fact at the semantic level, provided that the system enforces
the referential integrity [20] from Employee.ssn to Child.ssn. As another example, let us consider
the following directed join graph.

Ry — Ry 2% Ry — R,

where the join from R, to Rz is a left outer join and the others are inner joins. If it is known
there always exists a matching tuple of Rz for every tuple of Ry, then the result of Ry >R, [ R
is the same as R{ DI RyD<AR3. Now, if we evaluate the join as an inner join, then the optimizer
considers the three joins and will choose the most efficient order of joins. Let us assume the join
order becomes Rz — Rs — R; in the optimal plan. On the other hand, if we evaluate the join as a
left outer join, the query optimizer can not consider reversing the order of R, (>4 R3 and thus can
not achieve the same optimal plan. In general, converting a left outer join to an inner join allows
the query optimizer to deal with a larger number of joins. This increases the number of alternative
plans but will certainly never generate less optimal plan than when left outer joins are evalauted
as such and, therefore, cannot be reordered.

3.3 Problem Statement

Our problem is thus to develop a mechanism for the system to decide whether the joins of a query
should be evaluated by inner joins or left outer joins when objects are instantiated from relational
databases through views. In addition, the system decides which relations should be filtered through
non-null filters. For efficiency reason, the number of left outer joins and non-null filters should be
reduced whenever posssible.

4 Owur Approach

The heterogeneity of the object-oriented model and the relational model causes several difficulties
in mapping between the two models [21]. Hence we cannot expect a simple solution without a
well-defined system model. The system model should satisfy the following criteria.

o It provides the context in which we can develop a simple solution to the problem.

¢ It is based on a standard model and can be easily implemented in many existing systems.

Given the system model, we develop a mechanism for solving the problem. We use only one
criterion that users should provide to the syster;}. It is a non-null option on the object attribute



as will be explained in Section 5.1. Users do not even have to know what a left outer joins is.
To prevent losing nonmatching tuples when nulls are allowed (by default), all joins of a query are
initialized to left outer joins. The semantics of the non-null options are interpreted as non-null
constraints® on object attributes, and mapped to corresponding referential integrity constraints
on the query result. Then we replace some joins by inner joins and add non-null filters to some
relations accordingly. Finally, the number of left outer joins and non-null filters are reduced using
the integrity constraints of the data model.

In the rest of the paper, we first develop the rigorous system model to facilitate the mapping
between objects and relations in Section 5. The mechanism is developed in Section 6, and conclusion
follows in Section 7.

5 System Model

. The system model has three elements: an object type model, a view model, and a data model.
The object type model defines the structure of objects. No object type model has gained universal
acceptance [22, 23]. Therefore we define a model which is common to many existing ob ject-oriented
models [1, 6, 7, 4, 5]. The data model is the relational model proposed by Codd [14, 15]. The view
model contains a relational query’ and defines a mapping between objects and relations. We restrict
the query to an acyclic seleci-project-join query.

5.1 Object Type Model

Many existing object-oriented models [1, 6, 7, 4, 5] support aggregation through nested structure
and references. For example, the Employee object of Figure 2 is an aggregation of name, dept, and
children where dept is a reference to a Department object, and children is an aggregation of
name and birthDate. The children attribute defines an embedded substructure of the Employee
object. Thus our object type has a similar structure as the complex object [25, 26, 27].

We use value-oriented object id’s [30, 31] and retrieve them from the keys of relations®. Those
relations providing object id’s are called pivots [11]. Sometimes an object is mapped semantically
to an abstract relation rather than a base relation. Figure 3 illustrates these concepts. In Figure 3a,
the Employee relation is the pivot for the Employee object and provides its key ssn as the object
id. Figure 3b shows the abstract relation Project-manager of Figure 1, which becomes the pivot
for the Project~manager object. It is defined by Employee > Project, and the key ssn

. . ssn—managed-by
of Employee in the join result is retrieved as the object id.

We do not consider derived attributes for our object type. Derived attributes have no direct
mapping to relation attributes and, therefore, are computed separately from relation attributes.

An object type is defined formally as a tuple of attributes, [A;, As,- - -, X1, X3, - - ] where each

SThese constraints require the existence of an object attribute given the id of an object. We would call this
constraint as an ezistence constraint if this term were not already used in [15] to mean the same concept as the
referential integrity.

"We do not assume the usage of any specific query language for our work.

8Tuple identifiers are usable as well. Otherwise we assume the system maintains a2 mapping between system-
generated object id’s and the keys of the corresponding relations.
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‘ Relation Employee } (ssn) &5 (id) Object Employee

(a) Pivot as a base relation

Relation Employee
I ssnikmanaged-by | (sgn) LN (id) Object Project-manager

Relation Project

(b) Pivot as an abstract relation

Figure 3: The concept of a pivot

A; is a simple attribute, and each X; is a complex attribute®. An attribute is described in Backus-
Naur Form as follows.

attribute ::= simple attribute | complex attribute
simple attribute ::= internal attribute | external attribute
complex attribute ::= [ attribute, attribute, - - - |

A simple attribute has an atomic value. It is either internal or external to the object. An
internal attribute has a primitive data type such as string, integer, etc., while an ezternal (or
reference) attribute has another object type as its data type. The value of an external attribute
is the id of the referenced object. A complez attribute defines a subobject by embedding its type
definition within the object type. In the same way as an object id is mapped from the key of a pivot
relation, a subobject also has an associated id which is mapped from the key of a base relation.
However, the id of a subobject is not retrieved while the id of its (super)object is retrieved from
the pivot key!C.

We need a way of telling the system whether the value of an object attribute is allowed to
be null or not. This is done by attaching a non-null option to an object attribute. This option
deliberately declares that a null value is not allowed for the attribute. It is equivalent to specifying
the constraint of ‘minimum cardinality > 0’ on the attribute!!. Attributes without non-null options
are allowed to have null values by default.

An example is shown in Figure 4. The Project attribute defines its own attributes and becomes
a subobject of the Programmer object. It has its object id mapped from a pivot key in the same
way the Programmer object does. However, only the id’s of the Programmer objects are actually
retrieved. This Programmer object example will be used throughout the rest of this paper.

Here we introduce two components derivable from the object type: object set (Oset) and object
chain (Ochain). These will be used to facilitate mapping between objects and relations.

Definition 5.1 (Oset) Given an object O, Oset(0) is defined as the set whose elements are the
object O and all of its subobjects. The subobjects are recursively defined by nested complex
attributes.

®Bach attribute is either local to the object or inherited from its parent

1% A subobject of an object is not a stand-alone object because it has no object id.

' Many commercial tools for building object-oriented system applications, KEE[28, 29] for example, support this
option. 9



Type Programmer
[ name: string non-null, dept: Department non-null, salary: integer,
manager: Employee, task: string,
Project: [ title: string non-null, sponsor: string, leader: string,
depart: Department non-null | |

Figure 4: An example object type

For example, since the Programmer object contains one subobject Project, Oset(Programmer) =
{Programmer, Project}. Note each element of an Oset has its object id mapped to a pivot key.

Definition 5.2 (Ochain) Given an object O of type [41, 43, -+, X1, X2, -], Ochain(O, s¢) is de-
fined as the chain of object-subobject relationships from O to an attribute sg,i.e., Og.01. - -.0n.30.
"Here Op = 0, O; is a subobject of O;_1 for i = 1,2,---,n, and s an attribute of O,,. '

For example, Ochain(Programmer, title) = Programmer.Project.title and Ochain(Programmer,
Project) = Programmer.Project.

5.2 Data Model

Integrity constraints are a part of the data model. Two kinds of integrity constratins are used in
our work: referential integrity constraints and entity integrity constraints [20]. As mentioned in
Section 3.2.1, these integrity constraints are useful to reduce the number of left outer joins and
non-null filters.

The referential integrity constraint is defined as follows.

Definition 5.3 (Referential integrity) A referential integrity constraint from R.A to S.B re-
quires that either R.A be null or there exist a matching value of S.B for every non-null R.A. That
is:

Va € R.A(a=nullVv 3b € S.B(a = b)) (4)

Let us denote the referential integrity constraint by an arrow as in R.A — S.B. Figure 5 shows the
schema and referential integrity constraints of a sample database.

5.3 View Model

Figure 6 shows the components of the view model. A view consists of two parts: a query part and
a mapping part. The mapping part in turn consists of an attribute mapping function (AMF) and a
pivot description (PD). The AMF defines the mapping between object attributes (S,) and relation
attributes (S,). The PD consists of a set of pivots (PS) and a pivot mapping function (PMF). The
PMF defines the mapping between the pivots and the (sub)objects!2.

20r equivalently, between the pivot keys and the id’s ﬁ)the (sub)objects.



/* Underlined attributes are keys. */
Division(name, manager, super-division, location)
Dept(name, budget, phone#)

Emp(ssn, name, salary, dept)

Engineer(ssn, degree, specialty)

Proj-Assign(emp, proj, task)

Project(proj#, dept, leader, sponsor)
Sponsor(name, phone#, address)
Proj-Title(proj#, title)

(a) Database schema

/* Arrows denote referential integrity constraints. */

Division.manager — Emp.name Proj-Assign.emp — Engineer.ssn
Division.super-division — Division.name  Proj-Assign.proj — Project.proj#
Dept.name — Division.name Project.dept — Dept.name
Emp.dept — Dept.name Project.leader — Emp.ssn
Engineer.ssn — Emp.ssn Project.sponsor — Spomnsor.name

Project-title.proj# — Project.proj#
(b) Referential integrity constraints

The keys of all relations shown in the database schema are disallowed from having nulls. In addition,
Emp.dept and Emp.name are prohibited from having nulls as well.

(c) Entity integrity constraints
Figure 5: A sample database

There can be designed a high level language for defining a view. The view should be preprocessed
to generate the mapping components as well as the query.

5.3.1 Query Part

Figure 7 shows the query graph for the Programmer object. A query graph (QG) is a directed
connected graph. FEach vertex is represented by the node of a relation R labeled with a filter
f and with the set of attributes = projected from R. Two occurrences of the same relation are
distinguished by a tuple variable denoted as a subscript. Each edge represents a join specified in
the query. A join is either an inner join or a left outer join. Since left outer joins are not symmetric,
the edges are directed.

11



V%ew

Mapping part Queyy part

Pivot description Attribute mapping function

Pivot mapping function

ps<1tl——=0get {Ochpin}See—L1—= g;

: consists of
—= .generates
Object =—= :defines

. PS: the set of pivots = Oset: object set .~ Ochain: object chain

So: the set of Ochains of object attributes appearing in the object type

Sr: the set of relation attributes appearing in the query

Figure 6: Mapping between objects and relations

5.3.2 Mapping Part

Now we give a more rigorous description of the mapping part. The set of object attributes S, is

represented as the set of Ochains as follows.

So = {Ochain(0, s0)|s0 € Attr(O)}

Ochain(0, sp) was defined in Definition 5.2. The set of relation attributes S, is defined as follows.

S, = {R;.A|A C Attr(R;)}

R; denotes the i-th occurrence of the relation R.

Since we assume no derived attribute, there exists a one-to-one mapping between S, and S,.
This mapping information is contained in the attribute mapping function. The following example

shows the mapping between the S, and S, of the Programmer object.

Example 5.1 (AMF)

Programmer .name < Emp,;.name,

Programmer.dept < Emp,;.dept,
Programmer.salary «> Emp;.salary,
Programmer.manager < Division;.manager,
Programmer.task < Proj-Assign;.task,
Programmer.Project.title < Proj~Title;.title,
Programmer.Project.sponsor > Sponsor;.name,
Programmer.Project.leader « Emp,.name,

Programmer.Project.depart <> Project;.dept
12



Programmerl

{ssn} {name,salary,dept} {} manager}

{name}

(The keys of Engineerl and Projectl are mapped to the id’s of the Programmer
object and the Project subobject respectively. Dotted lines denote pivots.)

Figure 7: The query graph for the Programmer object

As shown in Figure 3, a pivot is either a base relation or an abstract relation. If it is a base
relation, its key is mapped to the object id. If it is an abstract relation, the key of one of its
base relations is mapped to the object id. For example, the query for the Programmer object
has two pivots, Programmer; and Project;. Here Project; is a base relation and Programmer;
is an abstract relation defined by ( Engineer;, {Engineer; D< Ojob = ‘‘programming’’

. SSI1—=8snN
Proj-Assign;}). A formal definition of an abstract relation is as follows.

Definition 5.4 An abstract relation of an object type O is an ordered pair (Rjp, E) where R is a
base relation whose key is mapped to the id of the object type O, and E is a select-join'® expression
such that, for arbitrary instances of the relations in E:

° HKGY(Rb)E < HKeY(Rb)Rb
® "'\HEI(E, ?é E A HKey(Rb)E, = HKey(Rb)E)

That is, the result of evaluating E produces a subset of the keys available from R; and there is no
other select-join expression E’ which, when evaluated, produces the same set of keys.

For every object and its subobject, there always exists one and only one relation occurrence
whose key is mapped to the id. In other words, there is a one-to-one mapping between the object
set defined in Definition 5.1 and the set of pivots (PS). This mapping information is contained in the
pivot mapping function. For example, the mapping between the Oset and PS of the Programmer
object is as follows.

Example 5.2 (PMF) Programmer « Programmer;, Project <« Project;

As mentioned in Section 5.1, we associate value-oriented object id’s with an object and its
subobjects. These id’s are invisible in the type definition and their mappings to relation attributes
are not explicitly specified in the attribute mapping function. These mappings are derived from
the information stored in the pivot description using the following algorithm.

13Selection is not required while join is required.
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Algorithm 5.1
For each pivot p € PS begin
If p is a base relation
then append ‘Ochain(O, PMF(p)).id « p.Key(p)’ to AMF.
else /* pis an abstract relation */ begin
Find the base pivot Ry of p.
Append ‘Ochain(0, PMF(p)).id« Ry.Key(Rp)’ to AMF.
end.
end.

For example, given the set of pivots and the pivot mapping function of the Programmer view,
Algorithm 5.1 derives the following mappings between the id’s of the Programmer object and its
Project subobject and their corresponding pivot keys. These are appended to the AMF.

{ Programmer.id « Engineer;.ssn, Programmer.Project.id <> Project;.proj# }.

The attribute mapping function is essential for making it simple to map between objects and
relations, as will be demonstrated in the following section.

6 Development of the Mechanism

Now we describe the mechanism for prescribing joins in a query as inner joins or left outer joins,
and also for generating non-null filters for some relations in the query. We first present an overview
of our mechanism, and then discuss each step in detail.

6.1 Overview

There are two source of nulls retrieved from databases. One is from the nulls stored in the tuples,
the other is from any outer join failure. Inner joins create nulls from the first source only, while
outer joins create nulls from both sources. Objects allow nulls by default, and need only one kind
of outer join, left outer join, as explained in Section 3.2.1. Therefore our strategy is to initialize all
joins of a query as left outer joins and then replace part of them by inner joins at each step of our
mechanism.

The steps of our mechanism is as follows.

1. Compile the object type O and generate the object set (Oset) and the set of Ochain(O, sg)’s
for all the attributes defined in O.

2. Preprocess the view and generate the query and the mapping part: AMF, PMF, and PS.

3. Derive the mapppings between object id’s and pivot keys using Algorithm 5.1, and add the
result to the attribute mapping function.

4. Initialize all joins of the query as left outer joins.

5. Replace all joins within abstract relations by inner joins. (See Section 6.2.)

14



6. Map non-null options on object attributes to non-null constraints on the query result. Re-
place some joins by inner joins and add non-null filters to some relations accordingly. (See
Section 6.3 and Section 6.4.)

7. Find the left outer joins which produce the same tuples as inner joins due to referential
integrity constraints, and replace those left outer joins by inner joins. Find also the relations
whose non-nul! filtered attributes cannot have nulls due to entity integrity constraints, and
remove the non-null filters from those relations. (See Section 6.5.)

6.2 Joins within an Abstract Relation

As mentioned in Section 2.2, an abstract relation is a conceptual relation derived from base relations
via a select-join expression, and provides an abstraction of base relations so that the semantics of
the abstract relation directly matches the semantics of the instantiated objects.

All joins specified within an abstract relation must be inner joins, as shown by the following
theorem.

Theorem 6.1 Let us consider an object type O and an abstract relation (Rq, E) defined according
to Definition 5.4. If E = Ry X Ry X --- X R, then all the joins from R, through R, are inner

joins.

Proof: If we assume a join from R; to R;y; is a left outer join for an arbitrary ¢ € [1, n] while the
others are inner joins, then the following is true.

Mg ey(py) (B PR DL - DAR; > Ry 1 D -+ DA R,) = Moy y(RD< Ry D -+ DRy (5)

That is, there exists another select-join expression which, when evaluated, produces the same set
of keys available from R;. This violates the second condition required of F in Definition 5.4.
Therefore, all the joins in £ must be inner joins. Q.E.D.

For example, given an abstract relation ( Engineer;, { Engineer; DP<  Ojob = ¢‘programming’’

Proj-Assign; } ) defined to provide the semantics of the Programmer object, the join between
Engineer; and Proj-Assign; must be an inner join. If the join is evaluated as a left outer join, it
retrieves all tuples of Engineery, not just those corresponding to programmers, who are defined as
the engineers working on a programming job in the assigned projects.

Thus, given the set of pivots (PS):
Algorithm 6.1

1. For each abstract relation (R, E) in the set of pivots (PS),
replace all joins in E by inner joins.

6.3 Mapping Non-null options to Non-null Constraints on the Query Result

Let us consider an object O whose attribute sq has a non-null option. It requires there should exist
a non-null sg given the id of the object. Let uslgenote this non-null constraint as 0.id = so. If



s is a simple attribute, it is non-null if its value is not null. On the other hand if sy is a complex
attribute, it defines a subobject. An object is non-null only if its id is non-null. We thus interpret
the semantics of non-null s¢ according to the following rule of non-null constraint.

Rule 6.1 (Non-null constraint) Let us denote Ochain(0,0,) = 04.0;.---.0, by o, where
O, is the (sub)object containing sq as its attribute or subobject. If sy has a non-null option then,
given O,.id, ‘

e If 55 is a simple attribute, i.e., 0,.id = sg, then sy cannot be null.

o If 59 is a complex attribute, i.e., O0,.id = s4.id, then s¢.id cannot be null.

For example, given the Programmer object of Figure 4, the non-null options on name and dept
attributes are interpreted as Programmer.id => name and Programmer.id => dept, respectively,
because name and dept are simple attributes. Besides, the non-null options on title and depart
are interpreted as Project.id = title and Project.id = depart, respectively. Beware they
are not interpreted as Programmer.id = title and Programmer.id = depart because title and
depart are the (direct) attributes of Project subobject instead of the Programmer object. On the
other hand, if there were a non-null option on Project, it would be interpreted as Programmer.id
= Project.id because Project is a complex attribute.

Can we map the non-null constraint defined by Rule 6.1 to the corresponding non-null con-
straint on the query result? It is possible in our model because the id of each (sub)object always
has a corresponding pivot key. The attribute mapping function in Example 5.1 showed this corre-
spondence for the Programmer object. Using the correspondence, the non-null constraints on the
name and dept attributes of the Programmer object are mapped to Engineer;.ssn => Emp;.name
and Engineer;.ssn = Emp,.dept, respectively. Likewise, if Project had the non-null option, its
constraint would be mapped to Engineer;.ssn = Project;.proj#¥. The non-null option on the
title attribute is mapped not to Engineer;.ssn = Proj-Title;.title but to Project;.proj#
= Proj-Title;.title because title is defined not as an attribute of Programmer object but
as an attribute of Project subobject. For the same reason, the non-null option on the depart
attribute of Project is mapped to Project;.proj# = Project;.dept.

More formally, a non-null option on the attribute sg of an object type O is translated into the
non-null constraint on the query result as follows.

Algorithm 6.2

1. Qon-50 := Ochain(0, s0) = 0¢.01. - -.0p.80.
2. Rp.A:= AMF(Qopn.td). /* A is always the key of R,. */

3. If 59 is a simple attribute
then R,.B := AMF(Q0,-50)
else R,.B := AMF (g ,.50.id). /* If 59 is a complex attribute, B is the key of R,. */

4. Output the constraint ‘R,.4 = R,.B’.
16



6.4 Prescribing Joins and Generating Non-null Filters

With the non-null constraints on the query result, we translate them into the corresponding in-
ner joins and non-null filters of the query. Given the constraint ‘R,.A = R,.B’ obtained from
Algorithm 6.2, it is done as follows.

Algorithm 6.3

1. Replace the filter f, on R, by f; A (B # null). /* Generate a non-null filter. */
2. /* Prescribe a join. */

(a) Find all directed join paths from R, to R,.

(b) For each path found in Step 2a,
replace all joins on the path by inner joins.

For example, given the non-null constraints established in Section 6.3, the following non-null filters
are generated in the query of the Programmer object: Emp;.name # null, Emp;.dept # null,
Projecti.dept # null, Proj-Title;.title # null. Besides, the following left outer joins are
replaced by inner joins: Engineer; [><I Emp;, Project; > Proj-Title;.

Now we prove the correctness of Algorithm 6.3 with the following theorem.

Theorem 6.2 Given a join path Ry X Ry X --- X R, and a non-null constraint R;.4; = R,. 4,
on the join join result, the materialized join result satisfies this non-null constraint if and only if
all the joins are inner joins and R, is filtered by A, # null.

Proof:

If part: If all joins on the join path are inner joins, any nonmatching tuples are discarded. Then,
the attribute A4,, in the join result can have nulls only if 4, is not a join attribute and some tuples
of R, have null 4,,. (If it is a join attribute, any tuple of R, with null 4, is discarded by an inner
join.) However, tuples with null A4,, are removed from R, by the given non-null filter. Therefore
the constraint is satisfied.

Only if part: We prove this part by contradiction. Let us first assume R; X R;1; is a left outer
join for some ¢ although the constraint is satisfied and let R;;; have non-matching tuples. Then a
null R,.A, is retreived from the null tuples appended to the tuples of R; which have no matching
tuples in R;y;. This contradicts the assumed constraint. Therefore all the joins must be inner
joins. Next, let us assume R, is not filtered by A, # null although the constraint is satisfied and
all joins are inner joins. Then null R,.A, is retreived from the nulls stored in R,.A,, if A, is not a
join attribute. This contradicts the assumed constraint. Q.E.D.

6.5 Reducing the Number of Left Outer Joins and Non-null Filters

We can further reduce the number of left outer joins and non-null filters by using integrity con-
straints.

Considering entity integrity constraints, some non-null filters are removed if they are defined
on attributes which cannot have null. A typica%,/gase is when the attribute is a key or any other



non-null attribute designated in the schema definition. For example, we can remove Emp; .name #
null and Emp; .dept # null among the four non-null constraints generated in Section 6.4 because,
as it was shown in Figure bc, those two attributes are key attributes and hence prohibited from
having nulls.

We can also replace some left outer joins by inner joins if we consider referential integrity
constraints. Since a referential integrity R.A — S.B allows R.A to be null, we define a stronger
condition by introducing a variable min as follows.

Definition 6.1 (min) Given a join R; X R;, let min;; denote the minimum number of matching
tuples in R; for each tuple in R;. Note min;; is not necessarily the same as ming.

Using only the semantics of min without considering the instances of relations'*, we define the
following rules for deciding whether min is greater than zero or not.

‘ Rule 6.2

e Given a single join predicate A#B for the join between two relations R; and R;, min;; > 0 if
the join is an equijoin (¢ = '=’) and R;.A is a non-null attribute and R;.A — R;.B and the
filter f; on R; is empty. Otherwise min;; = 0.

e Given a conjunctive join predicate A16;B1 A A28 By A - A A8, By, for the join between R;
and R;, min;; > 0 for the conjunction of join predicates if min;; > 0 for every single join
predicate. Otherwise min;; = 0.

e Given a disjunctive join predicate 410,81V As02BsV - - -V AL8 By, for the join between R; and
R;, min;; > 0 for the disjunction of join predicates if min;; > 0 for at least one join predicate.
Otherwise min;; = 0.

e Given a join path between two relations, such as R; ™M R;4q9 X --- X Rj, ming; > 0 if
mingx41 > 0 for every join on the path. Otherwise min;; = 0.

Now assuming min;; > 0 for a join path between R; and R;, can we replace all joins on the
path by inner joins and still get the same query result? The answer is no. The case analysis in
Figure 8 shows us why. Five exhaustive cases are shown for a join path between R; and R3. The
joins from R, through Rj have min;; > 0 for all cases. All cases except Case 1 also show a join
from Rz to R4, whose ming, is either greater than 0 or equal to 0 and which is either an inner join
or a left outer join. We see that, for all cases except Case 5, no tuple of Rz is discarded from the
join between Rz and R4, and hence, the materialized join results are the same whether the joins
from R; through Rs are inner joins or left outer joins.

Now we describe an algorithm for reducing the number of left outer joins using min.

Algorithm 6.4

“In other words, we ignore the fact that min may be accidentally zero at the instance level although it is judged
to be greater than zero at the semantic level.
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in>0 in>0
min> min> R

1. Case 1: Ry == R, 3

in>0 in>0 min>0,LO
2. Case 2: Ry ™25 Ry ™25° R, "N Ry

min>0 min>0 min>0,1
3. Case 3: Ry —% Ry —5 Rz —=" Rs

in>0 in>0 .n=0,L,O0
4. Case 4: R; min Ry, ™23 Ry "V Ry

5. Case 5: R1 mﬁO R2 m_i_n_>_)0 Rg mjf—:—?’l R4
(Each edge represents a join and is labeled with either
min > 0 or min = 0. The edge between Rz and R4 is
additionally labeled with ‘LO’ for the left outer join or ‘T’
for the inner join.)

Figure 8: Case analysis of a join path

1. Find all join paths between pairs of nodes, such as R; and R;, that satisfy the following
conditions.

e min;; > 0.
e There does not exist an inner join from R; to another node Rj not on the same join
path such that minj, = 0. (This is to exclude Case 5 of Figure 8.)

2. For each join path found in Step 1,
replace all joins on the path with inner joins.

For example in the query of Programmer object, we find a join path from Engineer; to
Division; for which all three joins have min > 0 because, as shown in Figure 5, there are
referential integrities Engineer;.ssn — Emp;.ssn, Emp;.dept — Dept;.name, Dept;.name —
Division;.name, and there are integrity constraints prohibiting nulls for Engineer;.ssn, Emp; . dept,
and Dept; .name, and none of the relations on the join path has a non-empty filter. We also find a
join path from Proj-Assign; to Project; for which the min > 0. All these joins are replaced by
inner joins. Note Project; [><I Emp, and Project; [>< Sponsor; can not be replaced with inner
joins because Project.leader and Project.sponsor are not non-null attributes.

6.6 Summary of the Mechanism

Given a query with initial left outer joins, the overall mechanism developed in Section 6 is as follows.

Algorithm 6.5

1. /* Replace all joins within abstract relations with inner joins. */
For each abstract relation (Rj, E) in the set of pivots (PS),
replace all joins in E by inner joins.
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2. For each attribute s¢ of the object O that has a non-null option,

(a) /* Map the non-null option to a non-null constraint on the query result */
i. Qop-80 := Ochain(0, so) = 0¢.01. -+ -.0,,.50.
ii. Rp.A:= AMF(Qq,,.9d). /* A is always the key of R,. */
iii. If s is a simple attribute
then R,.B := AMF(Q,.50)
else R;.B := AMF(Qo,,.50.1d). /* If s¢ is a complex attribute, B is the key of R,.
*
/
iv. Output the non-null constraint ‘R,.4A = R,.B’.
(b) /* Generate a non-null filter and prescribe a join. */
i. Replace the filter f, on R, by fs; A (B # null). /* Generate a non-null filter. */
il. /* Prescribe a join. */
A. Find all directed join paths from R, to R,.

B. For each path found in Step 2(b)iiA,
replace all joins on the path by inner joins.

3. /* Remove all non-null filters which can be shown to be redundant using the entity integrity
constraint. */

Remove ‘R.A # null’ such that A4 is a non-null attribute.
4. /* Replace left outer joins if they prove to be equivalent to equijoins.*/

(a) Find all join paths between pairs of nodes, such as R; and R;, that satisfy the following
conditions.
e min;; > 0.
e There does not exist an inner join from R; to another node Ry not on the same join
path such that minj, = 0.

(b) For each join path found in Step 1,
replace all joins on the path with inner joins.

The graph of the query for the Programmer object, labeled with joins and non-null filters,
is shown in Figure 9. All the joins of the query except those between Project; and Emps and
between Project; and Sponsor; have been prescribed as inner joins. Two non-null filters have
been attached as the selection conditions on the Project; and Proj-Title; nodes.

7 Conclusion

We developed a mechanism for automatically prescribing inner or left outer joins for the joins of
a query used to instantiate objects from a relational database. It also generates non-null filters
for some of the relations in the query. We developed a rigorous system model that facilitates the
mapping between object and relations. The system model consists of an object type model, a
view model, and a relational data model. These models are based on a standard model or well-
known models. We added a few new components to the object type model and view model. These
components are easily implementable in existingzaystems.
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Figure 9: The query graph for the Programmer object with joins and non-null filters

Our result demonstrates how simple the mechanism becomes once the system model is estab-
lished. The only criterion for the mechanism to use is the non-null option on object attributes,
whose semantics is mapped to the non-null constraint on the query result. The number of left outer
Jjoins and non-null filters is reduced whenever possible using the integrity constraints so that the
query is processed more efficiently.
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