CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

PMAPM:
An Object Oriented Project Model
for A/E/C Process with Multiple Views

by
Kenji Ito, Kincho H. Law and Raymond E. Levitt

TECHNICAL REPORT
Number 34

Tuly, 1990

Stanford University

P Center for Integrated Facility Engineering < Stanford University

PMAPM:
An Object Oriented Project Model
for A/E/C Process with Multiple Views

Copyright © 1990 by
Kenji Ito, Kincho H. Law and Raymond E. Levitt

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

PMAPM: An Object-Oriented Project Model for AIEIC Process with Multiple Views

PMAPM: An Object Oriented Project Model for A/E/C Process with Multiple Views

Kenji Ito !, Kincho H. Law ? and Raymond E. Levitt 3

Abstract

Generating, sharing and maintaining project data among multiple disciplines and throughout a
project life cycle is a difficult task in the highly fragmented Architecture/Engineering/Construction
(A/E/C) industry. Presently, the A/E/C industry lacks a common standard for exchanging project
data to allow applications to share graphical and non-graphical information produced and
consumed at the various stages of a project cycle. The object-oriented paradigm provides a useful
mechanism to organize and structure complex information and offers a powerful approach for
sharing information and knowledge. This paper describes an attempt to develop an object-oriented
project model to facilitate information sharing among multiple disciplines and across project stages
from planning, design, construction to management of a facility. The feasibility of employing this
model for information transfer from CAD to various knowledge-based expert systems will be
discussed. '

Key word

Object-Oriented Programming, Project Model, AI, Knowledge-based Expert System,
Relational Database, Multiple View, Frame, A/E/C Process, CAD.

Senior Research Engineer, Shimizu Corporation and Visiting Research Fellow, Center for
Integrated Facility Engineering, Stanford University

Assistant Professor of Civil Engineering, Stanford University

Professor of Civil Engineering and Associate Director, Center for Integrated Fac:1hty
Engineering, Stanford University

Page 1

1. Introduction

Large amounts of information are generated and consumed during the various phases of a project
life cycle from planning to design, construction and management of the facility. Sharing and
maintaining these project data among multiple disciplines and throughout a project life cycle is a
complex and difficult task. The project data needs to be stored, retrieved, manipulated, and updated
by many participants, each has his/her own view of the information.

A number of computer-based systems such as CAD, analysis and simulation software have been
developed for the A/E/C industry. However many of these systems can only be utilized within
narrow application domains. Efforts have been attempted to integrate these application software by
linking systems and providing data transfer interfaces so that a richer communication among
applications of different domains can be realized. Efforts to establish data exchange standards for
CAD applications have also been initiated [Howard 89, Warthen 88]. Most of these efforts are still
in the early stages of development. We believe that a project model that can properly describe a
facility and is accessible by multiple participants of different disciplines is a very important
ingredient for integration.

Object-oriented programming paradigm offers many useful features to facilitate the description of a
constructed facility. Some of the benefits include:

. To define data, programs, or data and programs in a unified manner as objects;

° To store an atom, symbol, list, character strings, method or function in the object as
the value of each slot;

. To inherit information from the abstract level to the detail level;

. To define a relationship, such as supported_by, consists_of or others, using the slots of a
related object.

With these features, we can define several kinds of objects. In our model, we define four kinds of
objects -- data-object, scope-view-object, eval-view-object and create-view-object. These four
kinds of objects are collectively termed multiple purpose objects. In addition, the relationships
among the objects are defined not only for inheritance, demons or methods of an object but also to
facilitate the search for information.

Page 2

PMAPM: An Object-Oriented Project Model for A/IE/C Process with Multiple Views

The scope of our research is to establish an object-oriented project model supporting multiple
views that are shared by the various participants of an A/E/C project. The objective is an eventual
development of an integrated system which includes activities from project planning through
design, estimation , construction and‘facility management. The object-oriented project model is
intended to link CAD systems, relational databases, knowledge-based systems and other
conventional application software; these applications can easily be treated as a view-function
embedded in a view-object.

2. Related Research

In building design, we can benefit from using databases for storing a large amount of independent
* but interrelated data about design elements and their relationships. The objects observed in a
building project are best modeled by an object-oriented model. Elements (such as columns and
beams) can be defined as individual object types, and their properties (such as length and weight)
are defined as attributes. Operations on the objects can be defined using methods. Many
researchers have attempted to develop product models or project models using the object-oriented
methodology. In this section, we briefly review some of the relevant work related to product and
process modeling of a constructed facility.

To manage the vast volume of data inherent in building design, a formal representation is needed to
organize the data. The concepts of aggregation and generalization are useful tools for describing
design information [Eastman 78, Law86, Garrett89].. The database integrity issue of this
abstraction concept for engineering modeling has been studied and an implementation using the
object oriented programming paradigm has been proposed [Law 87]. Recently, a formal approach
based on a semantic structural data model to manage engineering design objects using a relational
framework has been intraduced [Law90]. The benefit of this data modeling approach is that
information can be shared among different applications through multiple views while maintaining
data integrity in the database.

Recently, product models for building design have attracted considerable interest. An object-
oriented data model for steel frame structures using a top-down approach according to the concept
~of PDES (Product Data Exchange Specification) has been proposed by Howard and Lavakare
[Lavakare 89]. A significant effort is currently underway at the Technical Research Centre of
Finland to develop a building product model (RATAS) using relational databases and hypermedia
[Pentilla 89]. Their main target is to describe the architectural elements as the product model and to
store this model into a relational database with relationships among elements.

Page 3

PMAPM: An Object-Oriented Project Model for A/IE/C Process with Multiple Views

Recently, a formal approach for product modeling of building design information has been
proposed by Eastman et.al. [Eastman 90].

Despite all the attention that has been devoted to modeling product design information, additional
research is needed to establish a product model that not only represents the physical elements but
also the processes involved in an A/E/C project. In structural engineering, Sause and Powell
proposed a design process model based on a problem decomposition approach [Sause 90]. A top-
down approach for the integration of the building process has been suggested by Sanvido et. al.
[Sanvido 89]. In this paper, we describe an object-oriented concept for modeling the product
design information as well as the processes, using a multiple view approach. We believe that this
object-oriented multiple-view approach is sufficiently flexible to support the development of a
project model for an integrated environment for planning, design, construction and management of
a constructed facility. '

Fenves and his colleagues [Fenves 88] are developing an integrated environment for building
~ design and construction (IBDE) using a number of Al techniques to model the process and
information flow from architecture design to construction planning. Presently, IBDE consists of
seven knowledge-based modules: ARCHIPLAN (Architectural Planning), CORE (Spatial Layout),
STRYPES (Structural System), STANLAY (Preliminary Analysis), SPEX (Structure Component
Design), FOOTER (Preliminary Design of Foundation), and PLANEX (Construction Planning
System). They have successfully developed a partial integration of the facility engineering process,
combining knowledge-based expert systems and conventional systems used from conceptual
design through construction planning. However, presently this integration is a batch serial process
and does not use the concept of a product model.

Another related effort on object-oriented CAD is the BUILDER system which generates a symbolic
model as a graphic drawing is created on a LISP machine [Chemneff 88, Logcher 89]. The data
generated through the manipulation of the KEE-Pictures interface becomes an object-oriented
model within the KEE environment. The object model then serves as the input to a prototype
system for knowledge-based planning and scheduling implemented in KEE. Moreover, the
concept of this object-oriented model has been incorporated in an integrated engineering
environment (DICE) és part of its global model [Sriram89]. In DICE, an architect and a structural
engineer each has his/her own object hierarchy to access the global data model, installed in the
GEMSTONE database system. Using multiple object hierarchies and a blackboard architecture as
the control mechanism, DICE provides a constraint management environment to resolve potential
conflicts among several participants. This concept is very similar to ours in deﬁnihg multiple

Page 4

PMAPM: An Object-Oriented Project Model for AIEIC Process with Multiple Views

views for project participants. However, we primarily focus on the development of a project
model that supports an integrated system environment.

3. An Object-Oriented Project Model Supporting Multiple Views (PMAPM)

The object-oriented project model (PMAPM) described herein is an extension of a project model
(PMAP) initially developed as a vehicle to share project information for a mid-rise building project
between a CAD system and two knowledge-based construction planning systems [Ito 89, Ito 90].
While PMAP was implemented using Framekit [Nyberg 88], PMAPM has been implemented
using Allegro Common Lisp, Parmenides and FRulekit [Shell 88, Shell 89] on a Macintosh II
computer. The system supports not only graphic information but also the non- graphic or attribute
information including the relationships among the building elements. In this section, we first
review the basic capability of PMAP. We then describe the extension of the model to support
multiple views and the implementation of multiple purpose objects.

3.1 PMAP - An Object-Oriented Project Model

In the PMAP model, an object represents a building element or a non-building element. Each
building element consists of eight basic attributes: material, finish, size, position, rotation angle,
offset and relation. The attributes of a non-building element include: project code, project name,
user id, client name and site location. Included in each building element is its relationship with
other elements. Some examples of the relationships between the building elements are:

. Girder is supported by Columns.

. Beam is supported by Columns or Girders.

. Exterior Wall is connected with Columns or Exterior Walls.

. Interior Wall is connected with Columns, Exterior or Interior Walls.
. Slab is supported by Girders or Beams.

. Door and Window is attached on Exterior or Interior Walls.

L 3

Space (Room) is consisted by Exterior or Interior Walls.

*

Floor is consisted by Spaces.

Four basic access mechanisms are available for the user to extract object data:

Page 5

PMAPM: An Object-Oriented Project Model for AIEIC Process with Multiple Views

[

Using the frame or slot access functions in FRulekit and Parmenides with methods
embedded in the object. For example, the size of an object can be determined with the
following (Lisp) function:

(defun get-size (frame-name)
(get-value frame-name 'size)

)

Figure-3.1.1 shows a function to access the size of a specific column by providing the
column’s name as the value of the “frame-name” argument.

Using the relationship among the building elements. Figure-3.1.2 illustrates the extraction
of information about an object via the relationship definitions. In this example, a room is
said to be enclosed (consisted) by a series of walls (see Figure-3.1.2a). In Figure-3.1.2b,
an opening (such as a window or a door) is defined as attached to a wall. The composition
of these relationships then yields the information about the openings of a room (see Figure-
3.1.2c). In fact, we can issue a query to request the information about the size of a room's
opening.

Generating a file as an interface to an external application program. For exémple, ifa
construction planning systém needs information about a specific relationship between the

building elements, the planner can issue the relationship such as supported-by and specify
an output file:

(get-relationship-inf 'supported_by 'list-form "temp.txt")

The system will look for the "supported-by" relationship from all object instances in a
product model and return the values in terms of a series of list-expressions like the
following "

(Supported_by Girder-1 Column-1 Column-2)

These lists will be put it into the file "temp.txt". As will be seen in the next section this is
the mechanism that has been used in integrating PMAP with AutoCAD via a CIFECAD
interface program. If the user does not specify the file name, the system will show the
value on the screen window.

Using the graphic interface of PMAP as shown in Figure-3.1.3.

PMAP has been used as an interface to various knowledge-based systems, a CAD system, and a

relational database system (ORACLE). The basic configuration of PMAP as an interface to multiple
application programs is schematically depicted as shown in Figure-3.1.4.

Page 6

PMAPM: An Object-Oriented Project Model for AIEIC Process with Multiple Views

3.2 PMAPM: An Object-Oriented Project Model with Multiple Views

Each participant of an A/E/C project has his/her own view of the information about a constructed
facility. In general, for each project, there is one facility and the object representing the facility has
only one physical value but many functional values depending on the various views of the
information by the participants of different disciplines.

In the PMAP model, we define an object hierarchy describing the physical elements used in the
design and construction of a facility. Only three views -- architect's view, structural engineer's
view and construction engineer's view -- about the physical objects are currently defined. As
shown in Figure-3.2.1, in PMAPM, a project can be viewed in terms of a global view (concerned
with the social and labor types of information), a project view (defining the perspective of various
phases of a project) and an object view (defining the physical building elements of the facility).
While the object view representing the physical elements is similar to the object hierarchy in
PMAP, we introduce a global view and a project view in PMAPM to represent the functional views
corresponding to the processes of an A/E/C project. In an object oriented programming
environment, we can treat the views as objects defined with data and methods.

In order to fully realize the model description of an A/E/C project, we need to consider not only a
product-based description but also a process-based description. From the process point of view, a
project consists of the following stages corresponding to the view definitions in our PMAPM
model: |

. Project Management View
. General View

. Project Planning View

. Sales View

. Design View

. Estimation View
. Construction View

. Facility Management View

Page 7

PMAPM: An Object-Oriented Project Model for AIE/C Process with Multinle Views

° Maintenance View

The project management view (for the project manager) and the general view (to store the general
information about the project) provide the high level control and support of project information.
The other views about a project follow the various phases of an A/E/C process. For each view
object, we can further define object subclasses. For example, the design view can be divided into
six sub-views:

° Conceptual View

o Architecture View
° Structural View

. Mechanical View

° Electrical View

. Coordination View

The coordination view is intended to support negotiation when conflicts occur among the various
design views. Figure-3.2.2 shows the decomposition of views into subviews and the definition of
slots for each view. Details of the PMAPM hierarchy that have been implemented are summarized
in Appendix-A.

PMAPM includes all the access mechanisms of PMAP as described in the earlier section. The
major difference between PMAPM and PMAP is the inclusion of the view definition for each
participant in the A/E/C process. A view consists of not only the data but also many kinds of
methods, functions and rules in order to extract or update the information according to each
participant's needs. For each view, PMAPM needs to assign to the user the mode of access (i.e.
update or read only) as illustrated in Figure-3.2.3. Most users (except for the project manager and
PMAPM designer) have only limited access to the various views. For example, a sales person can
access the global-view, management-view, general-view, planning-view and sales-view with the
read-only mode but is allowed to access sales-view and general-view with the previlege of
updating the information. Similarly, a client can access to the global-view, management-view,
general-view and facility-management-view with the read only mode but is allowed to access the
facility-management-view with the update mode. This view facility can facilitate the management
and presentation of information to the users.

3.3 An.Illustrative Scenario for Multiple View Definition

Page 8

PMAPM: An Object-Oriented Project Model for AIE/C Process with Multinle Views

The multiple view definition and the data access mechanisms described in the previous section may
best be illustrated using a scenario for a simple project. At the beginning of the project, the project
manager was assigned and the project code and the project name are entered into the PMAPM
model. The sales person obtains information about the clients (number of clients and their names)
and the site location and stores this information into PMAPM through the general-view using the
update mode as shown in Figure-3.3.1.

From the project site information, the project manager can now evaluate the applicability of various
structural and construction methods, extract information from the “Structural and Construction
Methods Database™ and store this information into the structural-technology-view and construction-
technology-view under the technical-strategic-view of the management-view (See Figure-3.3.2).
The state-of-the-art information about the material and facility (such as smart building or automated
factory) are stored in the new-material-view and the new-facility-view. Some of these evaluation
functions are implemented in terms of production rules which are defined as methods imbedded in
an object and can be accessed from the multiple views through messages. For example, a
construction method selection expert systems may be used by the project manager, the structural
engineer, the construction manager or construction engineer; this expert system may use the
information created at every stage of the AEC process. As the project proceeds, the system will
provide increasingly reliable and appropriate selection as the amount of unknown and missing
information decreases and as the quality of the information improves (see Figure-3.3.3). This
illustrates the importance of the process-based view description of a project model.

With the information about the available technology, the sales person can extract the information
(such as the name of the technology, applicable domain and the characteristics of the technology)
from the sales-technology-view of the sales-view so that they can explain the technology to the
client. After the decision on the technologies to be used in the project has been made, the sales
person stores this information as the sales-design-construction-constraints in the project-
construction-views under the general-view. These constraint information will then propagate to the
other views as depicted in Figure-3.3.4.

At the structural design stage, when the structural engineer recalls the structural-constraint-view, a
method would be initiated to check upper-level constraints that would affect the structural design
process. The structural engineer can further re-evaluate the structure and construction methods
from the structural-technology-view via the structural-building-view. It is worth noting that the
sales person and the structural engineer both have access to the same object but obtain different
information according to their own view. ‘

Page 9

PMAPM: An Object-Oriented Project Model for AIE/C Process with Multiple Views

3.4 Multiple Purpose Objects (MPO)

In order to realize the multiple views that are needed to capture or update the model iriformation,
we use the notion of multiple purpose object (MPO) in our project model. A multiple purpose
object can be one of the following four basic object types (see Figure-3.4.1) :

1. Data-Object: This object contains the basic data, such as numeric, symbol, character
strings or list expression (data list). The following objects are defined as data object:

1.1 Class or subclass object which dose not have any functions or rules defined as
its slot value. For example, “project” is a data object and has 5 slots for
project code, project name, start date, end date and instance of, each slot carries
a data item as its value.

1.2 Most of the object instances defined under object view are data objects. For
example, the object instance "Columns-1" has many slot entries including size,
position, material, etc..; each slot carries a single datum as its value.

2. Scope-View-Object: This object type contains both data and functions written in Lisp or
some other language. With the functions, the object can extract data from other objects or
update the slot value of its own or other objects. In addition, some of these functions can
create or remove a data object. For example, the column-object has not only the default
value to be inherited by its instances but also a method to create, upon request, an instance
automatically.

3. Eval-View-Object: This object type contains not only data or functions but also rules
written in Lisp or another language. Production rules are embedded in an object as slot
values. The difference between the functions in the scope-view-object and the rules in the
eval-view-object is their purpose and use. The purpose of a function is to extract or to
update the slot value with some calculation, while the purpose of a rule is to evaluate not
only the slot value but also the object, group of objects or relationships of objects. For
example, the progress-view is a eval-view-object consisting of six-slots:

. Start Date (Datel Date2)

. Required Duration (Duration1 : pre-if-set '(ask-duration1)
. Temporal Durationl (Duration?2 : pre-if-set '(ask-duration2)
. Temporal Duration2 (Duration3 : pre—if—éet '(ask-duration2)

Page 10

PMAPM: An Object-Oriented Project Model for AIEIC Process with Multiple Views

o Fixed Duration (Duration4 : pre-if-set '(ask-duration3))

° Instance-of (Management-View)

In the above definition, “Datel” is a start date of the project and its value is stored by the
project manager using the Start_Date value of the project-view. “Date2” is a start date of the
project after contract agreement with the client and its value is stored by the sales person or
the project manager. “Durationl” is a required duration by the client; when the user asks
for the Required_Duration, the method named “ask-duration1” sends a message to the
required-duration slot of the sales-view, extracts the data from the other object and stores
the data into its own slot.This procedure is a common way of using a method or demon in
an object-oriented environment. For “Duration2”, “Duration3” and “Duration4”, however,
we define the functions in terms of rules. These functions evaluate the preliminary duration
which in turn depends on the total area of the building, the ground condition of the site,
number of the stories and usages of the building etc.. Such information may at times not
available depending on the current phase of the A/E/C process. This function must be able
to respond to unknown and missing information using heuristic knowledge acquired from
a human expert, in this case, to estimate the duration based on the information available.

4. Create-View-Object: The main purpose of this object type is to create a new object or slot
according to the user's requirements. Although PMAPM has its own object hierarchy
which is designed to support a wide variety of building projects, this hierarchy cannot
exhaustively include all the possible views required by each project participant. Therefore,
PMAPM provides a method to define a new Scope-View-Object. By turning on a trace
mode, PMAPM will make a trace of the user’s operations to extract the data from other
objects and will store the set of operations as a function in the new object.

This concept of a “multiple purpose object” provides the flexibility to accommodate unforeseen

situations and to expand PMAPM's applications in the future.

‘4. Automatic Model Generation with CAD Application

PMAPM, as an extended version of PMAP, includes a high level user interface, CIFECAD, for
deﬁhing building elements and their attributes. CIFECAD is a customized AutoCAD system
written in AutoLisp [Ito 89, Ito 90]. AutoCAD is basically a computer-aided drafting system rather
than a computer-aided design system. Although several third party vendors have deizeloped
interfaces to facilitate drafting in specific domains, there is no high level way to input building
elements, such as "Column", "Exterior Wall", "Beam"t etc.., even in graphical form via the
original AutoCAD interface. In order to define non-graphics or attribute information to the object

Page 11

PMAPM: An Object-Oriented Project Model for AIE/C Process with Multiple Views

model, we need an interface to input these building elements. In our approach, we first define the
building elements using the BLOCK data storagé facility of AutoCAD with attributes. CIFECAD
has its own object hierarchy definitions (See Figure-4.1.1) and its own high level interface to carry
out the A/E/C design (See Figure-4.1.2). AutoCAD data are stored in a binary file termed a
.DWG file. To extract data out from the DWG file, a set of AutoLisp functions have been
implemented to read the .DWG files and write the information in ASCII format onto an external
file. With CIFECAD, a user can input the building elements with non-graphic information and
obtain the drawing information not only in the DXF format for AutoCAD but also in customized
ASCII formatted list-expression for other application programs.

Currently, CIFECAD supports the definition of the following elements and their attributes:

. Columnline Number of x-Columnline, Span size of x-Columnline, Number of
y-Columnline, Span size of y-Columnline, Coordination.

o Foundation Center position, Size, Material, Intersection of Columnline.

e Foundation Beam Size (W x D), Material, Start and End position, Connection
Information, Offset, Rotation Angle and so on.

. Column Size X x Y), Mateh'al, Center position, Finish code, Offset,
Connection Information, Rotation Angle, Floor name and so on.

J Round Column Same as Column.

° Exterior Wall Thickness, Material, Start and End position, Finish code, Offset,
Connection Information, Rotation Angle, Floor name and so on.

. Interior Wall Same as Exterior Wall.

. Girder Size (W x D), Material, Start and End position, Finish code, Offset,
Connection Information, Rotation Angle, Floor name and so on.

. Beam | Same as Girder.

. Slab Thickness, Material, Finish code, Floor level, Connection

Information, Area, Floor name and so on.
. Roof : Same as Slab.

. Window Width, Height, Floor Level, Type, Connection Information, Floor
name, Center position and so on.

. Door Same as Window.

Page 12

PMAPM_: An Object-Oriented Project Model for A/EIC Process with Multinle Views

° Space Name, Finish Code, Uses, Connection Information, Floor name,
Area, Floor Level, Ceiling Height and so on.

° Floor Connection Information, Area, Floor Height, Floor Level and so
on.
e Desk Size (X x Y), Center position, Connection Information, Material,

Type, Floor name and so on.

° Table Same as Desk.

Although CIFECAD has many limitations, it does have sufficient functions and capabilities to be
used as a computer aided design system with object data structure and high level user interface
suitable for a prototyping environment.

PMAPM obtains most of the physical object information about a building from CIFECAD. The
major building elements of the architectural and structural design can be defined using CIFECAD
and the information about these objects is stored under the object-view in PMAPM (see Figure-
4.1.3). The procedure for model generation from the CIFECAD to PMAPM can be summarized as
follows:

1. Create the drawing using the CIFECAD and its high level user interface.(See Figure-
4.1.4)
2. Create a temporary file to store list-expressions derived from the drawing data using

AutoLisp functions.

3. PMAPM reads the list-expressions and stores the information into the object model.
' 3.1 Read the general description and check if the value exists in the target slot.
If there is no value in the model, the system stores the data into model.
However, if there is already a value in the target slot, the system would
request whether the previous information should be replaced.

3.2 Read the default value of each element. The process of checking existing value
is the same as above.

3.3 Read the number of each building element,and create an instance for each
element.

3.4 Store the relationship information into the instances.

Hence, the user does not need to worry about transfering design data from CIFECAD to the
PMAPM. This process is automatically done by a file interface between CIFECAD and PMAPM

Page 13

PMAPM: An Object-Oriented Project Model for A/IEIC Process with Multiple Views

(see Figure-4.1.5). In future efforts, we will try to obtain design data from other CAD systems
into the PMAPM qgbject model.

5. Overview of the Data Storage Mechanism in PMAPM

Including the interface with CIFECAD, there are altogether five different ways that one can store
the data into PMAPM:

° Enter data using the textual interface of PMAPM. (see Figure-5.1.1)
° Create and store data using the graphical interface of PMAPM.

° Transfer data from the relational database system; presently, we are using ORACLE for
storing cost, actual result, personnel and client information in the PMAPM environment.

o Transfer data from a CAD system , such as CIFECAD.

. Create and store data using a method or rule.

These interface facilities allow PMAPM to capture project information from the participants of
different disciplines who are involved in an A/E/C project. PMAPM can be used in the planning
and design phases in the following manner:

At the beginning of a project: v
° The project manager defines the project using textual interface of PMAPM,;
. The sales person inputs the client and site information using textual interface of PMAPM as

well as the relational database interface;

. The project evaluates and stores the duration information uéing rules and methods of
PMAPM;

. The sales person stores the client's requirements for usages of the building using the textual
interface of PMAPM;

. The sales person evaluates and stores the information about the building usages and the

building cost using rules, methods or other application programs.
During the preliminary design phase:
. The architect evaluates the site and stores the information using a CAD system or other

application programs.

. The architect considers the layout and the grade of the building using CAD or application
programs. ‘

Page 14

PMAPM : An Object-Oriented Project Model for A/IE/C Process with Mulriple Views

° The structural engineer evaluates and stores the above-ground as well as under-ground
information using the relational database interface, application program and the textual
interface of PMAPM.

. The mechanical engineer evaluates the concept of the heating system using the relational

database interface, rules and other application program, etc...
During the conceptual design and design development phase:

.. The architect and engineers store the graphic information using the CAD interface.

o . Engineers evaluate and store data using the rule facility of PMAPM, its relational database
interface and other application programs.

° The project manager evaluates the duration information using PMAPM's rule facility.

In this process, there will be information conflicts among the project participants. These conflicts
are stored as constraints in views and propagated and resolved by the constraint management
system in PMAPM.

6. An Example of Using PMAPM

In this section, we describe the use of PMAPM using a small room in an office building as an
example. The process from the planning phase to the construction phase will be described to
demonstrate the various views of the project model. Furthermore, the information sharing among
the multiple participants and the mechanism for information retrieval using views will be
illustrated. In this example, the participants are an architect and a structural engineer, and the
shared object is a room of an office building. The shape of the room is shown in Figure-6.1.1 and
the basic data information are stored in PMAPM as shown in Figure-6.1.2.

Various disciplines require different types of information about a room. For architectural design,
an architect may be interested in attribute information about the room (such as area, uses, grade,
color, ceiling height and other spatial information), its elements (such as the enclosing walls,
openings, size, finish, color , etc.) and cost information (about the materials and finishes). On the
other hand, a structural engineer may be interested in the overall system of the room (including the
basic structure of the room, span size, live loads, etc..), its structural elements (including size of
each element, material, bearing wall if any, opening information, etc..). The architect and the
structural engineer can access these data directly from PMAPM through each view, (such as
architectural-space-view, structural-element-view and so on).

Page 15

PMAPM: An Object-Oriented Project Model for AIEIC Process with Multiple Views

As an example, Figure-6.1.3 shows how each participant can extract or update the PMAPM
information through his or her own view. From the architectural-space-view, the user can access
information as follows:

° area of the room “38400 square inches” via path-A.
o uses of the room “OFFICE” via path-A.
° basic color of the room obtained from the material of finish via path-A,

path-C and others

. ceiling height of the room “120 inches” via path-A.
From the architectural-element-view, the following information can be accessed as follows:
e the walls enclosing the room “E_Walls-11, E_Walls-12, I_Walls-6, I_Walls-7”
via path-A.
. openings on the enclosing walls “Windows-10, Windows-11, Doors-20” via

path-A, path-C and path-E.

° size of each element via path-A, path-C, path-D, path-E and others.
. finish of each element via path-A, path-C, path-D, path-E and others.
From the architecture-cost-view, the architect can obtain the cost information in the following
manner:
° cost of material obtain the cost of each material via path-A,
path-C, path-D, path-E and others.
° cost of finish obtain the material of finish and cost of finish

via path-A, path-C, path-D, path-E and others.
Through the structural-space-view, the structural engineer can acquire the following information:
. basic structure of the room “Reinforced-concrete” via path-B, path-C, path-D,
path-E and others.
* basic span size obtain the columnline information by via path-B
path-C, path-D and others.

From the structural-element-view, the following information can be obtained:

. size of each structure element “30.0x30.0” via path-B, path-C, path-D and others.
. material of each structure element “Reinforced-concrete” via path-B, path-C, path-D
S and others.

Page 16

PMAPM: An Object-Oriented Project Model for AIEIC Process with Multinle Views

That is, multiple participants of a project are sharing the same information of the design and they
can extract or update the information of PMAPM according to his/her own view.

7. Other Application Programs Interfacing with PMAPM
OARPLAN: A Knowledge-Based construction planning system.[Darwiche 89]

OARPLAN is a prototype knowledge-based construction planning system based on the notion that
activities in a construction project plan can be viewed as intersections of objects, actions and
resources at several different levels of abstraction. OARPLAN generates the needed activities in a
project plan by elaborating a high level activity such as <build> <building> into a set of project
activities at one or more finer levels of detail, guided by activity scale reduction and activity sub-
plans. Therefore, OARPLAN needs design data to generate the activities in a project, and to
generate the needed sequencing constraints among the activities. In general, OARPLAN is used
mainly at the end of a design stage or at the construction planning phase. That is, OARPLAN has
its construction-planning-view for extracting information from PMAPM. In fact, a user can use
OARPLAN from the construction-planning-view of PMAPM through the system menu. The result
of an activity network generated by OARPLAN is illustrated in Figure-7.1.1.

SIPEC: Knowledge-Based construction planning system.[Kartam 89, Kartam 90]

SIPEC is a prototype knowledge-based construction planning system using SIPE (System for
Interactive Planning and Execution) which developed by SRI International. SIPE is a domain-
independent Al planner, to hierarchically planning projects involving multiple agent tasks.
Although SIPEC has the same construction-planning-view as OARPLAN, the needs of
information format is different from OARPLAN. PMAPM can support these different needs from
different applications because of its multiple views function and object hierarchy.

FCOST: Finish cost Estimation and Counseling expert system.

FCOST consists of two basic modules, FINISHES and FINISHCST. FINISHES is a
knowledge-based counseling system which evaluates the finishing material based on the usage of
the room and the grade of the building. This information can be directly accessed through the
architectural-view of PMAPM (See Figure-7.1.2). FINISHCST is a cost estimation system
which calculates the preliminary finish cost using the information from the detail-cost-view. The
information required by FINISHCST can be obtained via the architectural-view and the estimation-

Page 17

PMAPM_: An Object-Oriented Project Model for AIEIC Process with Multinle Views

view. Both FINISHES and FINISHCST can be directly accessed from the system menu of
PMAPM.

DURATION: Knowledge-Based Construction Duration Evaluation system.

DURATION consists of a set of rules to evaluate the construction duration from the total area,
floor area, building structure, ground condition, etc.. After the evaluation, the following duration
information is given to the user:

e Under Ground Construction Duration.
. Super Structure Construction Duration.
. Finish Work Duration

° Total Duration.

A user can run this system from many views or directly from the PMAPM's system menu.

8. Conclusion and Discussion

In this paper, we have described an object-oriented project model that supports multiple views for
building projects. We have implemented the basic model hierarchy of PMAPM as described in
Appendix-A, and integrated it with various applications as described in Sections 4 through 7.
Various interfaces to store and access information from PMAPM have also been developed and
illustrated. The overall integrated system is schematically depicted in Figure-8.1.1.

During the course of déveloping PMAPM, we have found many benefits of usihg an object-
oriented paradigm to describe project model and to provide multiple views of the project model.
Particularly, with the definition of multiple views, we can analyze and recognize the various
requirements throughout the A/E/C process. Furthermore, this process-based approach is very
useful to discover the information flow among the participants from different disciplines. In
summary, we have demonstrated two important concepts:

. ~ The usefulness of an object-oriented project model for system integration in an A/E/C
project -- we need not only a product model but also a project model.

. The usefulness of the multiple view concept for the project model -- we need not only
a product-based model description but also a process-based description of a constructed
facility.

Page 18

PMAPM_: An Object-Oriented Project Model for AIEIC Process with Multiple Views

Finally, our purpose in this work is to realize the plausibility of a project model that can be
referenced by multiple disciplines throughout the A/E/C process. In order to achieve this purpose,
continuing effort is needed to evaluate the requirements of each discipline and their needs from
PMAPM so that the high level project model with multiple views can be established. Furthermore,
investigation of the most appropriate view for each domain and a detailed description of the objects
are needed to complete the model. Nevertheless, we believe that we have shown the usefulness of
our new concept of an object-oriented project model supporting multiple views for an integrated
system. We plan to extend the building element types, the information about each element and the
views. Furthermore, we plan to continue to examine the feasibility of using PMAPM as an
integration tool for other projects, including IPCM (an Intelligent Project and Construction
Manager), a Knowledge-based Constructibility Evaluation System [Fischer 89] and PENGUIN
(an object interface with relational database system) [Law 90].

Acknowledgment

This work has been supported in part by the Center for Integrated Facility Engineering of Stanford
University. At CIFE, we continue to investigate and develop new theory and system for the
integration of facility engineering and management.

References

[Barsalou 88] T. Barsalou, "An Object-Based Architecture for Biomedical Expert Database
Systems," The Twelfth Symposium on Computer Applications in Medical Care,
IEEE Computer Society, PP. 572-578, 1988.

[Cherneff 88] J. Cherneff, "Automatic Generation of Construction Schedules from Architectural
Drawing," unpublished S.M. Dissertation, Department of Civil Engineering,
M.LT., 1988.

[Darwiche 88] A. Darwiche, R. Levitt and B. Hayes-Roth, "OARPLAN: Generating Project Plans
by Reasoning about Objects, Actions and Resources," The Journal of Artificial
Intelligence in Engineering Design, Analysis and Manufacturing, 2(3), pp. 169-
181, 1988.

[Eastman 78] C.M. Eastman, “The Representation of Design Problems and Maintenance of Their
: Structure,” in Artificial Intelligence and Pattern Recognition in CAD, Latombe, ed.
North-Holland Publishing Company, 1978.

[Eastman 90] C. Eastman, A. Bond and S. Chase, “A Formal Approach for Product Model

Information,” Technical Report, University of California, Los Angeles,
October, 1989.

Page 19

PMAPM: An Object-Oriented Project Model for AIE/C Process with Multinle Views

[Fenves 89] S.Fenves, U Flemming, C Hendrickson, M Maher and G. Schmitt, "A Prototype
Environment for Integrated Design and Construction Planning of Building," CIFE
Symposium Proceedings, Stanford University, March 1989. :

[Fischer 89] M. Fischer and B. Tatum, "Partially Automating the Design-Construction Interface:
Constructibility Design Rules for Reinforced Concrete Structures," 6th International
Symposium on Automation and Robotics in Construction, pp.127-132, San
Francisco, California, June 1989.

Howard 89] C. Howard, R. Levitt, B. Paulson, J. Pohl and B. Tatum, "Computer Integration:
Reducing Fragmentation in the AEC Industry," ASCE Journal of Computing in
Civil Engineering, Vol. 3, No. 1, pp. 18-32, January 1989.

{Ito 89] K. Ito, Y. Ueno, R. Levitt and A. Darwiche, "Linking Knowledge-Based Systems
to CAD Design Data with an Object-Oriented Building Product Model," CIFE
Technical Report, No. 17, Stanford University, August 1989,

[Ito 90] K. Tto and Y. Ueno, "An Object-Oriented Building Model for A/E/C Process," 6th
Symposium on Organization and Management of Building Construction, AlJ,
Tokyo Japan, July 1990 (written in Japanese). ‘

[Garrett 891 J.H. Garrett, Jr., J. Baster, J. Breslin and T. Anderson, “An Object-Oriented
Model for Building Design and Construction,” in Computer Utilization in
Structural Engineering, ASCE Structures Congress, 1989.

[Kartam 89] N. Kartam and R. Levitt, "Intelligent Planning of Construction Projects with
Repeated Cycles of Operation," ASCE Journal of Computing in Civil Engineering,
Special Issue: Knowledge-Based Approaches to Planning and Design, Fall 1989.

[Kartam 90] N. Kartam, R. Levitt and D. Wilkins, "A Centralized Approach for Representing
and Resolving Interactions Among Multi-Agent Tasks While Planning
Hierarchically," The Sixth Conference on Artificial Intelligence Applications, IEEE,
pp. 250-256, Santa Barbara, California, March 1990.

[Lavakare 89] A. Lavakare and C. Howard, "Structural Steel Framing Data Model," CIFE
Technical Report, No. 12, Stanford University, June 1989.

[Law 86] K. Law and M. Jouaneh, "Data Modeling for Building Design," Fourth
Conference on Computing in Civil Engineering, ASCE, pp. 21-36, 1986.

[Law 87] K.H. Law, M. Jouaneh and D.L. Spooner, “Abstraction Database Concept for
Engineering Modeling,” Engineering with Computers, 2:79-94, 1987.

[Law 90] K. Law, T. Barsalou and G. Wiederhold, "Managing of Complex Structural
: Engineering Objects in a Relational Framework," Engineering with
Computers (to appear).

[Logcher 891 R. Logcher, "Better AEC Products: Directions Research at M.IT.,” CIFE
. Symposium Proceedings, Stanford University, March 1989

[Nyberg 88] E. Nyberg, "The FrameKit User's Guide Version 2.0," CMU-CMT. -MEMO,
Carnegie-Mellon University, March 1988.

Page 20

PMAPM : An Object-Qriented Project Model for AIE/C Process with Multiple Views

[Penttila 89] H. Penttila, "A Scenario for The Development and Implementation of A Building
: Produce Model Standard," CIFE Symposium Proceedings, Stanford University,
March 1989.

[Sanvido 89] V.E. Sanvido, S. Kumara and I. Ham, “A Top-Down Approach to Integrating
the Building Process,” Engineering with Computers, 5:91-103, 1989.

[Sause 90] R. Sause and G.H. Powell, “A Design Process Model for Computer Integrated
Structural Engineering,” Engineering with Computers, 1990.

[Shell 88] P. Shell and J. Carbonell, "FRULEKIT: A FRAME-BASED PRODUCTION
SYSTEM," User's Manual, Carnegie Mellon University, December 1988.

[Shell 89] P. Shell and J. Carbonell, "PARMENIDES: A CLASS-BASED FRAME
SYSTEM," User's Manual Version 1.4, Carnegie Mellon University, March 1989.

~ [Sriram 89] D. Sriram, D. Logcher, N. Groleau and J. Cherneff, "DICE: An Object Oriented
Programming Environment for Cooperative Engineering Design," IESL Technical
Report No. IESL-89-03, Department of Civil Engineering, Massachusetts Institute
of Technology, April 1989.

[Warthen 88] B. Warthen, "PDES: A CAD Standard For Data Exchange," Unix World,
December 1988. :

Page 21

Listener

? (get-size 'Columns-1) <---- Input by user

? (35 35) | <---- Answer from system

User can define the menu which call this function

Figure-3.1.1 Example of the Slot Access Function

Rooml Ewalls-1

In this network . means "contains'

Ewalls-2

Iwalls-1
Iwalls-2

Figure-3.1.2a Relationship between Space and wall

Ewalls-1 5 Windows-1

Figure-3.1.2b Relationship between Wall and Opening

Rooml Ewalls-1 ___,. Windows-1
Ewalls-2 ___5. Doors-1

Iwalls-1
Iwalls-2___,. Doors-2

Figure-3.1.2c Relationship among Space, Wall and Opening

Figure-3.1.2 Example of the relationship.

FS

= File Edit Eval

Tools Windows PMAP

UTILITY MODEL MANRGEMENT INTERFACE APPLICATION
[NEW FILE | [INIT MODEL | [RERD CAD DATA || | {{ FINISH COUNSEL |
SHOID MODEL FINISH COST
(SRUE MODEL])
(COMPILE FILE) | (LOAD MODEL) (READ COST DATA)

(DELETE MODEL)
LOAD FUNCTION] (o0 STRUCTORE)

[FRAMEKIT] [ECJ=—————— FRAME STRUCTURE
(PMAP
(APPLICATION)

BUILDING FUNCTIONF : ABLE

OUTLINE

Listene

COLUMNSO 1
SUPPORTED.BY ' NiL
FLOOR_GROUP 1
ANGLE Q.0
POSITION (€240.0 264.0%»
SIZE (<30 30>
FINISH 11
MATERIAL C(RCO

USER| New size ®%@(496 149)

Figure-3.1.3 Example of the Graphic Interface

4 2
("CIFECAD Ver.1.0) ("symbolics)
. , 4 . . ™
...................... R SR b]]
!FECADUser Interfaces Symbolics Lisp
" C SIPE)
I_nterfaceorOARPLAN ‘
[—
' O
(___0aRDI AN)
Parmenides+RuleKit)
\
RES——— ~
FramekKit
\
Allegro Common Lis
. g P
ORACLE(Relational Database) under HyperCard
Macintosh 1]
. Y,

Figure-3.1.4 System Integration using PMAP

Project Global View: Social View
E E Cost View
Labor View

Project View Management View
General View
Planning View

Sales View
Design View: Conceptual View
Architecture View
Structual View
Mechanical View
Electrical View
» Special View

Estimation View
Construction V jeW<Construction Planning View
Construction Management View

Facility Management View
Maintenance View

Object View Building._1 Columns
R Walls
\ Girders
\ Beams
o\ Slabs
Foundations
Openings
Ceilings
Spaces
' Floors
Roof's
Mechanical
‘ Electrical
Furnish
Building_2

Columnline

Figure-3.2.1 High Level View Hierarchy in PMAPM

SM3LAQNG JOo a(dwex] Z'Z'c-aJnbL4
AITA S1UTRIISUOD UOI1IN.JISUO

AITA JA
ASTA T0J1U0) £19JES UOIIINIISUOY
ASTA [031U0) A11TeNn) UOIdNJ1SUo)) .
ASTA TOJIU0D 1507 UOTONIISUO)
AT A [031U0) 1UawdInbg UOI1ONJIISUOY
MBI A [OTNUO) [eTlale
MITA [0J1U0) JOIOBITUO)-ANG
AJTA TOJ1U0) Joqe

ABTA [OJ1UO) S[NPSYDS JJO A UOIONIISUOY ADTA 1TUsWaSeURA UOIONJIISUOY)

MOTA ur[d L19]e

MBI\ ue[d uoreliodsuel]
MITA UOI199]8S JO10BIIUO)-gN

MTA 1uswasdeur A1rend

MDIIA UR[d 1UdWOBeUR 180D

MITA Ur[d UOTIRZIUEBSI() UOTIONJIISUOY
AITA ur]d 1uswdinbg uoronIisuoy
AITA UR[d 1USWaIN201d [ellale
MOTA ueld Auroe AJeJodwa]

MITA 3[NPaYDS JIO M UOTIONIISUOY

ASTA SPOYISA UOT1ONIISUO) MDA SUTUR[d UONONJIISUOY) M3TA UOTIONIISUO)

WdVId ut uotytutjaqg uoliednaop £'g'g¢-a4nbi4

Aopok
sook (UOlI3bdoduo) nziuwlyg)y oy} | fuay

ook
Aotk Hdbld 0} 3uwod|apn
sook

stk
ook
ook
sokok

dau3)siy

"dao]3 nz

HOLUHI 1S3
HIINIONT I 1410373
YN ONT U INBHO3U
HIIN I ONTIUHNLONYLS

12311044

HINOIS3T 43IHD
NOSH3ad—S3US

H39UNUW™103rodd

*uorjednaag INoA }2919§ 8seald

agryd

435870901

WY 11:20:6

smopuim sjool |enjy- p3 ail

-_—
->

-

M3|A |BJBUS9 8Y] 03U| paJols eje((Bl}ju]l |’ g-aunbi4

IIN BaJy paJinbay :

Z $21101§ padinbay :

N pung:

ol vonein(pasinbay:

J91U3) YoJIeasay sasn padinbay :
MITA Suipying 1090l01d

MDBTA 90UBUIPIQD [0 A11s39ATUN 211§ Jo sasn ¢
1IN Baly 23S -
CEOb6VvD sweN aels:
MATA Joqusrs
FA JoqusiaN pJojurig sweN A1) :
N sweN 199§ :
MDA PUNOIYH ANIS AMBTA BUIS P2aloid
N dnoag yuegq :
IIN dnoin Auedwo):
1 [9A9T:
A11sJoATUN urewWo(ssauisng :
N pung: .
piojuels ‘J91Ud) ‘8ug UrWIL], $$21ppV :
(FJ1D)ASIDATUN pIOJURIS aweN : 1 U3l Jo JaqunN ©
1-s1Ua3I) AITA U 108f0dd MITA JBIaUSY

1IN a1eq pug:

061010 - 91equIRIS:

131U9) Yoleasay 41D sweN 109foid :
1004413 9po) 108f03qd :

109foad

SPOY1aLd UOI1ONJISUOT PUR [BINIONILS JOJ MILA Z'C E-a4nb|4 ASTA SITENSTO
ASTY JoU10
ATy Teotuyda], :
ST UOIONIISUO) :
ysTy [erouRUL :

ADTA YSTY 190(04d

wea] UorodNIISuo) :
wes] JolewNsy :
wes] uldrsa(q :
Jo8euey 1d9f0id :
MITA uorieziuesdag 109{0Jd

{JSTY JOo)180) J9YI0 -
150D [eldaleA -
1500 UOIIdONIISUO) :
1800 u8rsaQ :
180) 8urpqing :
180D pue:
198png [v10], :
MITA 150D 199034

uorieIng paxIy :
uonein([eJodwsj :
uonean(padinbay :
a1 LIRS !

AMITA s$s23803d

MITA Aend
MITA sTo0] 1uawasleue AITA 018912116 1UsWaBeUR
MdTA ABot0ouyds] J9indwo)
MaTA ASojouyds] $9110q0
Ad1A ANII0R] AD
MITA TRIIDIBIN e
MITA A80J0UYDS] UOTIdNIISTOY)

M1 ASofouyoa], [einiona; ‘ M1 A D1831811G [LOTUYDS I ASTA d189180) AITA TUSWASRUBN

(AEC Process Flow)

Planning | 5] Sales] g} Design| o | Estimation |_g| Construction

(Specialists in the procesg

Project Manager Architect Structural Estimator Construction
Engineer ‘ Manager
A
Y

Rule-Based Construction Methods
Selection System

) A \

Quality and Quantity of Information for Project

Figure-3.3.3 Example of Sharing the Function

General \/1’ew

Project Constraints View
: Sales-Design-Constraints
: Sales-Design-Estimation-Constraints
: Sales-Design-Construction-Constraints

: Sales-Design-Maintenance-Constraints

: Sales-Estimation-Construction-Constraints

Design View

b

Structural View Structure Constraints View

: constraints-from-plan

: constraints-from-sales

. constraints-from-concept
» constraints-from-arch

; constraints-to-mech
:constraints-to-arch

: constraints-to-construct

\
Design Constraints View

Figure-3.3.4 Example of the constraints propagation.

Each slot of Structural-Constraints-View has method which

access to the upper level constraints-view.

Multiple Purpose Object(MPO)

Data-Object

Class Data-Object

(Project, Total-Cost-View and so on)

Instance Data-Object

(Columns-1, E_Walls-1 and so on)

Scope-View-Object

(Columns, E_Walls and so on)

Eval-View-Object

(Progress View and so on)

Create-View-Object

Figure-3.4.1 MPO Hierarchy and Example of Object. |

CIFECAD has the following information :

Project Project Description

Project Code
Project Name
Site Location
Client Name
Uses
Designer Name

Floor Information
Each Floor Information as the layer
Number of Floor
Floor Level
Floor Height
Celling Height
From To Floor Name

Graphic Information
Size of Element
Position of Element
Material
Finish Code
Floor Name
Rotation Angle
Other

Connection Information

Relation betweenlElements

Figure-4.1.1 CIFECAD Data Hierarchy

File Edit Tools Draw Modify Display Settings CIFE Help

020202 ‘ 33'-0 3/8", 66'-0 1/4”

DRALWNG.SETUP
PROJECT DATA

FLOOR GROUP

E-DEF.UALUE

N E-DRAWING

| - | || E-DELETE*
b | E-COPY* -
E-MOUE*

PMAP FILE
CONSTRUCTIBILITY
/ 2-D LAYOUT*
| FACILITY MNG*

exit

Figure-4.1.2 CIFECAD Interface

Object-View ________ Building-1 Columnﬁnes,=:::::::iine-1
. ine-2
v Columns Columns-1
Columns-2
Girders Girders-1
Girders-2
Beams
walls —_F_Walls
I_walls
| Siabs
i oundations
\l‘ Openings windows
2 Doors
! Slab-Opening
eam-0Open
Other
Ceilings
Roof's
Spaces
loors
echanical ir-con
Pilumbing
levator
lectrical
\Furnish Desk
\Chair

Building-2
Figure-4.1.3 Object Hierarchy under Object-View

ol
-

File Edit Tools Draw Modify Display Settings E-DRAWING Help

, 623
ar 010101

--| COLUMN
:|f:: | E-WALL
{:: | I-IWALL
‘Ii|:: | DOOR
42 | WWINDOLY

17| GIRDER
1 | BEAM

... | SLAB

12| FOUNDTN.*
2 PILE*

1! | SPACE
.| FLOOR
.11 | ROOF*

DESK*
TABLE™*
COMPUTER*

ELEDVETER*

e

4 eyit
| |

Figure-4.1.4 Drawing Example using CIFECAD

-ejeq ayo buisn uotieadd 12990 ' -94nbl4

CIEY POEIBe PZIS mAN [HIASN
F=SHATETY 55819 DuTuTIsy]
£-543a419 sso|d> buiutiaQ
Z-sH3ad19 ssp|d bBuiuiaq

1 -SH3aH19 ssp|d> Buiulisq ,Yi¥a aN3..

-S| sspid bujuiyag
9-STUIM| Sspid buiuiysg
S-S sso|d butuiyasg
$-STIT| ssp|d Buiulyag
€-STHI | ssp|d butulyag
Z-STWI| ssp|d buiulyaq
I-STTHM™| Ssp|d buiuliag ,.Ui¥a GN3.

0Z-STW™3 ssb|d buluiyag
6} -STM™3 ssp|d buluiyag
81 -ST1UM™3 ssp|d Buiuyiag
LI-STUM™3 ssp|d Buiuiyag
91 -STUM™3 ssp|d Butuiyag
SI-S1UM™3 ssp|d buiuiyag
¥1-S1UM™3 sspb|d Butuiyag
€1-S7M™3 ssp|d buluyyag
ZI-STM3 ssp|d Buiuyyaq
11-STM3 ssp|d Buluiyag
01 -STUM™3 ssp|d bujuyiag
6~STM™3 ssp(d buluiyeg
8-STWMIM3 sspid buiuiag
L~STMr3 ssp(d buiuiyag
9-STUM™3 ssp|d bujuyjeq
S-STM™3 ssp|d> buiulyag
$=-8TWM™3 ssp|d> buiulyag
€-STWr3 ssp|d butuiyag
Z-STuM™3 ssp|d butuiyag
I-STWM™3 sspid Buiuijag ,0ULlbd ON3.

"d10) nziunys ‘gLl fuay

IWdHind

435°0901 |

$Z-SNHNTI0D sspb|> Buiuijag
€Z-SNUNT0D sspb|d buiuljeg
ZZ-SNUNT0J Sspid bululyaq
} Z~SNHNTI0D Ssp D Buiuiyeg

E CE|
Wd £5:9b:6 dUWd smopuim sjooL [ea3l Mp3 o4 2

1]

13u3d}si]

mumtﬁc_ len1xa3 ayj Jo ajdwex3 || 'g-adnb4

*otok
sHofok
Hokok
Hokok
Hopok

(uolybdoduoy nziwjysy o3| | fusy

Udblld 03} dwod|ap

siokok
sokok
ok
Hokok
ook

H0668186L

o]

apoj 129lo14 }ndu| aseald

“d103 nziunys ‘glL] lua)y

WdHiNd

43870901

Wd Zt:L2:6

ddiNd smopuif - sjool [ea3 1p3 84 $

E_Walls~11

. Columns-17
Columns-16 Windows—-10 windows-11
& E
Girders-18
Space—l
- Doors-20
Girders-17 Girders-19
I_walls~-7
Girders-16
Columpg-15 - Columns-18
|_walls-6

Figure-6.1.1 Shape of the Example Room

Usage of Building

Location
Client
Structure

Number of Floor

Ground Condition

General Description of Building

Under Ground
Super Structure
Penthouse
Under Ground
Super Structure
Penthouse

General DeSc'ription of Floor

Floor Name
Usage of Floor
Area of Floor
Structure

Consists_of

General Description of Room

2 Exterior walls
2 Interior walls
4 Columns

4 Girders

1 Slab

2 Windows

1 Door

Office Buillding

Palo Alto, California
American Research Inc.
SRC

RC

RC

Office
1400 square ft,
RC '

Material RC, Thickness 10.0
Material RC, Thickness 8.0
Material RC, Size 30.0x30.0
Matertal RC, Size 20.0x30.0
Material RC, Thickness 12.0
width 40.0, Height 40.0
width 120.0, Height 80.0

(Unit inch)

Figure-6.1.2 Description of the Example

Architect

Arcitectural-Space-View
Architectural-Element-View

Architectural-Cost-View

Structure Engineer

Structure-Space-View
Structure~Element-View

Path-A Path-B
Space-1
Code 101
Area 38400.0
Name OFFICE-1
Floor-Level 0.0
CL_Height 120
Floor 2
FL_Finish
CL.Finish
WL_Finish
Live_Load
Grade
Color
Uses.Zone OFFICE
Fire.Protection_Zone
Consisted.By (E_.walls-11 E.walls-12
I_Wwalls-6 [..walls-7)
Path-C
E.walls-11 Columns-16
Path-D
Size 10.0 —_—_— Size (30 30)
Offset 0.0 Offset 0.0
Matertal RC Material RC
Finish 11 Fintsh
Position ((720.0 2300.0) (860.0 2300.0)) Position (720.0 2300.0)
Angle 0.0 Angle 0.0
Floor 2 Floor 2
Connected_with (Columns~16 Columns-17) Supported_by (Columns-6)
Path-E l Path-F
Y
windows-10 Girders-18
Type-1d : 110 Size (20.0 30.0)
ye Offset (5.0)
width 40.0
Material RC
Hight 40.0
Finish
Position
Position
Floor 2
Angle 0.0
Floor-level 40.0
Floor 2
Attached_on (E_walis-11)
Supported.by (Columns-16)

Figure-6.1.3 Example of the Data Search Path for every View

TEENETS uoj3eJdado NV 1ddvo |'1"2-94nbi4

(e

4YAY
r(x

I (2)ceneenen -
Dl ALIAILOY AWWNG Y :

Z1-Wy3g LONALSNOD

{ 2|2y —

wusvoga ou

t£E-ALIALLOY
I @900 -
1z 6 919 —-
) Snpoud ou
(o]
LI-W¥38 LINYULSNOD : 8Z-ALIAILOY ¥onpoJd of
g8 ®|9f) —-
. : L 3] —
SN TSP URTUOPIN (2)--t-ee
T : s maN | Y3sn
D ALINLLOY AWKING Y urjealn
(12 1)z STuL™
Y 9IS P an, S () XA
\LIAILOY ALIALLIY AWKING ¥ SZ-NWN102 . 3uruneq
: 19nA1SNOD
wesbelp yiomyaN OE3ururjeq

JJU41 NU1d440.

"~ SOTIANOY BUIYSHqeIST POYSTUL]™

LIE

INdHINd T_n_.__n:”_::

43570901

NU1dHU0.

Wd 6£:9¢€:11 : NUTd4U0 dUINd smopuim sjoo]

a3 up3 Ny =

SIHSINIH Jo djdwex3 g'|",-94nbi 4

(88€ £9P)@s DZIS M3N |H3ISN

‘nuay wayshs

‘308 foud Sy} Ul Ysiulj} pawdijuod ou S| aJddyj

"3|gpyinsun s1 ['|g

HSINIA

[

| (40014] {€-331 440]
IN3W3T3 JUUN HooY
NUTd HSINIA HNOA 40 NoilunTuna]

Wd £b:12:01

Z <=== J3qQUN{ BY} }DD|9g BSLD|d
9-391440 L-S30WdS L
HOOHLS3Y 9-S3JWdS 9
35U WLS S-S30HdS S
«W11SH4 Hoa171102 $-$304dS b
JONUHLINI €-S30WdS €
*NUTd11US g8-321440 Z-$3J4dS ra
«$3 1004 Y-321440 1 -S3J4dS !
SINIBHLSNO)
3
-4 NUTJHHO Z <=== J3QUNN Nud}| BY} }DV|3S BSDI|d
NU1d1sSH4 ‘woyshg pul ‘b
+1S02 1SH4 (038 WadI ON3 e o il
1S0J HSINI4 |4 13IHSHH0OM 'swooy |4 34} WYy |
$3 TISNNOD HSINIA 4« SNOI11YJ11ddY sl weash

4 JIYAHIINI WILSAS W AR¥hS

¢ INIWIFUNUW L33r04d buno) Ysiul4 pasbg-abpa|mouy 8y} 0} awWod
- 4 NOILINN4 ayo1 et = . 22 1o
43§°0901 |} =
4 s1iLn [Feuerst CE|

LlaL smopuym sjool jeaj p3l 94

(CIFECAD Ver.2.0 for Macintosh)

\\\\\\\\\\\\\\\

\‘, Constructibility KB
. / \\\\\\\\\\\\\\
(AUtoCAD Ver.10.0) KAPDA

! e N

\—

Symbolics
N

CIFECAD File Interface

terface for SIPE

(Knowledge~based System;

OARPLAN

\\\\\\\\

Other KB System

Parmenides + FRulekit

Allegro Common Lisp

J

Y
Micro Planner)

Actual Result Databas

lient Database

Macintosh 11

J

Our Research \\\\\\\ Other CIFE Research D Commercial

Figure-8.1.1 Current System Image

PMAPM: An Object-Qriented Project Model for A/E/C Process with Multiple Views

Appendix-A: PMAPM Object Hierarchy:

In PMAPM, we define many kinds of object, collectively termed multiple purpose objects (MPO).
We cannot exhaustively define all the view objects shared by all the participants in an A/E/C project.
Some view-objects described in this Appendix only have object-name, and some have objects and
slot names (but no values). However, we believe that these examples of object information will
provide some useful ideas to other researchers who are interested in object oriented project or
product models, or object-oriented databases for CAD systems. The basic hierarchies of PMAPM
are summarized in the following figures and the examples of various descriptions of views and
objects are given in Appendix B.

A-1 Global Hierarchy of PMAPM

A-2 Hierarchy of Social-View

A-3 Hierarchy of Cost View

A-4 Hierarchy of Labor View

A-5 Hierarchy of Management View

A-6 Hierarchy of General View

A-7 Hierarchy of Planning View and Sales View
A-8 Hierarchy of Design View

A-9 Hierarchy of Estimation View

A-10 Hierarchy of Construction View

A-11 Hierarchy of Facility Management View
A-12 Hierarchy of Maintenance View

A-13 Hierarchy of Building_1

© WdVYId 40 AYyodeJafH (eqo(9 |-V

Z~buipting .
ystuJan4
juawdinb3g [B21410913
juawdinb3 [eojuRYIaLY
$J00| 4
saoedg .
 sj00Yy :
sbuliie)
sbujuado _
suoj1epunod :
saels 4
sweag -
SJ49pJ19 \
SlIEM N
. SUWIN[0) \ .

. duuwINnlo) L —Buipting MmalA 129[ao
M3 A doURUIIULRLY
- M3JA 1uawabeuel 111084

M3l A Juawabeuely uol1onNJISUO) H
M3 A Buluueid uojondisuo) M3LA U0j3IoNJISU0)

M3LA uojlRWilST
MBI A UOlIReUIPJOO)

M3LA 18021410911
M3IA [edlueydald
MIIA |BINIONIIS

MIIA |BIN1DBTIYIIY
MalA len1dasuo)

MalA ubisaq
M3 A Soleg
malA Bujuueld
. M3|A [BJBUAY

M3l A Juswabeuely MalA 108foud

MBI A Jogen
M3IA 180D W

MILA [B]D0G MILA [BqQO19 100(04d

Soclal View Society View

Community View

Client View

A-2 Hierarchy of Social View

Thees views describe the trends of social needs
to the Facility and General Contracter

M3LA 1509 JO AUIJBJdIH £-V

M3LA 1S0] [991S

MALA 1507 JUSWADI0JULD

M3LA 150D Burwuo

N;pmooamc.so,_ucouww

| =3502-6ut1840U0) M3LA 150D Bulyadouo)

¢-1500-ysiut W

| -1500-ysiui M3ILA 1507 USULS M3LA 180D [iel8Q

N

MILA 1S0) [B1O0] M3LA 180D

Labor View Sub_Contractor View

Technical Trade View

Craftworker View

A-4 Hierarchy of Labor View

M3LA JUaWwabeuely Jo ESE&I G-V

M3LA SUlRJISUOD
MaLA sty 108(0dd
M3 A uoljeziuebao 108loud
3®_>. 1503 308[oud

M3 A ssadboud

MalA Aljlend

M3IA S100] juswabeuely MalA o1bajedis juawsabeue

™~
MalA ABolouyoa | Jajndwo)
malA ABojouyoa] so110q0y
MalA A3j[1oed MaN
| MBLA |BlJdIRL] MBN
MatA Abolouyosa] uoj3onJIsuo)

MmaLA ABolouyoa] [BJN1ONJIS MaLA o1ba1ed1Qs BOLUYDD | MalA o1bareass MalA JUawabeuel

GCeneral View Project Client View Clients-1

Clients-2

Project Site View Site Ground View

eighbor View

ocal Ordinance View

Project Constraints View

A-6 Hierarchy of General View

Planning View Project Planning View

Planning Constraints View

Sales View Sales Strategy View

Sales Technological View

Sales Constraints View

A-7 Hierarchy of Planning View and Sales View

Design View

Conceptual View

/

Architectural View

A

Structural View

echanical View

Electrical View

Coordination View

NN

Design Constraints View

Conceptual Site View
Conceptual Building View
Conceptual Floor View
Conceptual Constraints View

Architectural Building View
Architectural Floor View
Architectural Space View
Architectural Element View
Architectural Cost View
Architectural Constraints View
Structural Building View
Structural Floor View
Structural Space View
Sturctural Element View
Structural Constraints View
Mechanical Neighbor View
Mechanical Site View
Mechanical Building View
Mechanical Floor View
Mechanical Space View
Mechanical Element View
Mechanical Constraints View
Electrical Neighbor View
Electrical Site View
Electrical Building View
Electrical Floor View
Electrical Space View
Electrical Element View
Electrical Constraints View
A-S Coordination View

A-M Coordination View

A-E Coordination View

S-M Coordination View

S-E Coordination View

M-E Coordination View

A-8 Hierarchy of Design View

Estimation View Preliminary Estimation View

Detail Estimation View

A-9 Hierarchy of Estimation View

MOLA UO[IDNJISUOD JO AUDJRUAIH O -V

M3A SIUIRJISUOD UO[IONIISUOD
MaLA Bujusauibul anep
MILA 1043U0D A}9JBS UDLIONJISUOD
M3LA 10J3U03 AL1BND U0{1ONIISUOD
M3LA [0J3U0D 3507 U0}19NIISUOD
M3|A [0J3U0D JudWdinb3 UOL3ONJIISUO)
M3LA [0JIUOD (B1JDIBL
M3LA [0JIU0D J0JOBJIIUOD-ONG
M3LA 10JIU0D Joge]

M3LA [0JIUOD 3INPBYIS NJOM UO}IINIISUOD M3 A JUdWabeuely UOLIONJIISUOT

M3IA ueld A13jes

MI|A Ueld uollelJodsued |

‘ M3l A U0L]O8[8G Ja3leJIu0D-aNg

MIILA gcoc‘_mmmcmz >u:m30

MIIA UR|d ucmEmmmcmZ 1500

M3lA Uk|d coEmNEmm«_O uoi{lonJdisuod
MOA UBld Juswdinbl UOL10NJISU0Y .

M3|A Ukld JUsWaindodd (elJdaiell

M3LA ueld AYL[10B 4 Adedodwa |
M3LA 8118 HJOM U0LIONJISUODD

MILA SPOUlald U0LIONJISUOD 30‘_> Butuueld Uoi12nJisuod \Sm_..> uoll1anJdisuo)d

MoLA Juswabeuely Aqtitoe4 Jo ?8821 | 1-V

MBI A SIULRJISUOD JuUdWabeuel A3t1oB4

MBI A 1uswabeuel) A31110B84 Yysudng

M3|A Juawabeuel] A1][1oB4 [BD}J4}D9|]

M3l A Juswabeuely A1111084 [BOLUBYDAL MILA JUawabeuely AL(1oe4

Maintenance View Building Maintenance View

Mechanical Maintenance View

Electrical Maintenance View

Maintenance Constraints View

A-12 Hierarchy of Maintenance View

Buildings-1i Columniines Line-1

::::::Line~2

Columns Columns-1
Columns-2
Girders Girders-1
\G1r‘der‘5"2
. Beams Beams-1
1 Beams-2
walls E_walls E_walls-1
\E_Wa”s°2
l_walls _<=:::::::::LJW3115-1
| \\\s1a0s Slabs-1 -Walls=2
. S1abs-2
% Foundations Foundations-1
i ~Foundations-2
0
il lopenings windows windows~-1
i :wmdows-z
Doors Doors-1

:::::Doors-2
Slab-Openings Slab-Openings-1
:::Slab-Openings—z
Beam-Openings Beam-Openings=-1
:::Bean1~0pen1ngs~2
Other-Openings Other-Openings-1
Other-0Openings-2

B e i -

Cellings Ceiflings—-1
Ceilings-2
Roofs Roofs-1
Roofs-2
Spaces Spaces-1
Spaces-2
Floors Floors-1
Floors-2
Mechanical Air-Conditioning- Air-Conditioning-Systems-1
Systems ‘<:A1r—Cond1t1on1ng—Systen1s~2

Plumbing- Plumbing-Systems-1
Systems :::::P]umb1ng-8ystems—2

Elevators Elevators-—1
Elevators-2

Electrical
Furnish Desks ‘ Desks-1
Desks-2
Chairs Chairs-1

A-13 Hierarchy of Building_1 Chatrs-2

PMAPM: An Object-Oriented Project Model for A/E/C Process with Multiple Views

Appendix-B Detail Object Description

In this section, we list some examples of object definition and the description of various
functional and physical objects.

Example of the Functional object definition

Project (Class Object)
Project_name Strings
Project _code Strings
Start_date Strings
End _date Strings

Total Cost View (Class Object)
Concreting Cost List
Forming Cost List
Reinforcement Cost List
Steel Cost List

Progress View (Instance Object)
Start-date List
Required-Duration List

Temporal-Duration
Fixed-Duration
Dummy

Demon (Rule)
Demon (Rule)
List

Project Cost View (Instance Object)
Total-budget List
Land-cost List
Building-cost List
Design-cost List
‘Construction-cost List
Material-cost List
Other-cost List

Project Organization View

Project-Manager
Design-team
Estimator-team
Construction-team

(Class Object)

Strings

Demon(Function)
Demon(Function)
Demon(Function)

Project Risk View (Instance Object)
- Financial-risk List
Construction-risk List
Technical-risk List
Other-risk List

PMAPM: An Object-Oriented Project Model for A/E/C Process with Multinle Views

Constraints View (Class Object)
Requirement-of-usage List
Init-physical-constraints List
Init-functional-constraints List
Init-legal-constraints Demon(Rule)
preset-constraints Demon(Rule)
postset-constraints Demon(Rule)
unconfirmed-constraints Demon(Rule)
constraints-propagate-1 Demon(Rule)

Project Client View (Class Object)
Number-of-client List

Clients-1 (Instance Object)
Client-name Strings
Client-Address Strings
Client-business List
Fund List
Company-group List
Bank-group List
Company-level List
Client-note List

- Project Site View (Class Object)

: Street-name Strings
City-name Strings
State-name Strings
Site-ground List ‘
Soil-condition Demon(Function)
Neighbor-information List
Site-note List

Design View (Class Object)
Project-leader Strings

Architectural Space View (Class Object)
Space-volume Demon(Function)
Finish-check Demon(Rule)
Usage-check Demon(Function)
Color-check Demon(Rule)

Example of the Physical object definition

Columns (Class Object)
Size List
.Offset List
Material List
Finish List

B-2

PMAPM: An Object-Qriented Project Model for A/E/C Process with Multiple Views

Number-of-column
Columns-1

ID

Size

Offset
Material
Finish
Position
Angle

Floor
Support
Supported_by

E_Walls

Size

Offset

Material

Finish
Number-of-ewall

E_Walls-1

ID

Size

Offset

Material

Finish

Position

Angle

Floor
Connected_with

Windows

Width
Height
Floor_level

Number-of-window

Windows-1

ID

Type_id
Width
Height
Position
Floor
Floor_Level

List(Demon)

(Instance Object)

List
List(Inherit)
List(Inherit)
List(Inherit)
List(Inherit)
List
List
List
List
List

(Class Object)

List
List
List
List
List(Demon)

(Instance Object)

List
List(Inherit)
List(Inherit)
List(Inherit)
List(Inherit)
List
List
List
List

(Class Object)

List
List
List
List(Demon)

| (Instance Object)

B-3

List
List
List(Inherit)
List(Inherit)
List
List
List(Inherit)

PMAPM: An Object-QOriented Project Model for A/E/C Process with Multiple Views

Attached on

Spaces

Floor_level
Ceiling_height
Floor_finish
Ceiling_finish
Wall finish
Number-of-space

Spaces-1

ID

Room_code
Area
Room_name
Floor

Floor _Level
Ceiling_height
Floor_finish
Ceiling_finish
Wall_finish
Live_load
Grade

Color
Usage_zone

Fire_protection_zone

Consisted_by

List
(Class Object)
List
List
List(Demon
List(Demon
List(Demon
List(Demon

)
)
)
)

(Instance Object)

List

List

List

List

List
List(Inherit)
List(Inherit)
List(Inherit)
List(Inherit)
List{Inherit)
List(Demon)
List
List(Demon)
List

List

List

B-4

