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FOREWORD

The work presented in the following report has been performed in the context of two
projects aimed at controlling the actions of multiple agents in the same environment.

e Indoor Automation With Many Mobile Robots. The goal of this project is to
control the operations of many mobile robots (several dozens) in an indoor environment
(an office environment, a shop-floor, an airport, an hotel) in order to automate a
variety of tasks. Typical tasks include transportation of objects (beverages, books,
mail), operation of machines (copiers, vending machines), cleaning and maintenance.
Different tasks may require different physical capabilities. Nevertheless, most of the
tasks essentially involve mobility and transportation of relatively small objects.

¢ Planning, Scheduling and Monitoring Actions of Multiple Agents on a Con-
struction Site. This project concerns the integration of various short-term planning,
scheduling and execution monitoring techniques for multiple agents (robots and hu-
mans) working on a construction site. The case of a construction site introduces
additional difficulties. For example, the geometry of a construction site continually
changes. More sophisticated planning techniques (integrating temporal and geometri-
cal reasoning) are consequently needed.

The current planning, scheduling and execution system integrates a collection of software
components: a task planning system to derive plans made of “high-level” actions (such as
“go to position P” or “get object O”) from a description of the tasks to be performed; a task
allocation system to order and allocate tasks or actions to agents; a motion planning
system to convert high-level actions into motion commands; and an execution system to
monitor execution and react to unexpected events. These components are implemented in
COMMON-LISP on a DEC 3100 workstation. The overall system is tested with the help of

a simulation system designed to simulate actions of autonomous agents.

This report presents the simulation system. A second report (in preparation) will discuss
the use of constraint-based planning and scheduling techniques in the context of these two
projects.
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Abstract: We present a simulation system specially designed to simulate actions of
autonomous agents in partially unpredictable environments. This system results from con-
sidering the problem of developing a simulation system for multiple agents without making
any restrictive assumptions about the nature of the environment and about the cognitive
behavior of agents. The use of the system allows to make experiments with various robot
softwares (e.g. with combinations of task and motion planning algorithms), to determine to
what extent an agent architecture allows a robot to efficiently react to unexpected events, to
compare multi-agent cooperation frameworks and to test the transient and asymptotic be-
haviors of agents having imperfect knowledge about their environment. Currently, the most
advanced application concerns the use of centralized and distributed multi-robot planning
and scheduling techniques in an office environment [36].
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1 Motivation

The work presented in this paper has been performed in the context of two CIFE projects
aimed at controlling the operations of many autonomous robots (several dozens) in partially
unpredictable environments. By autonomous, we mean that robots are able to convert a
high-level description of the tasks to be performed into robot actions (typically, motions and
sensing) with no human assistance. Thus, autonomous robots allow their users to specify
what has to be done rather than how to do it. By unpredictable, we mean that robots
cannot completely determine in advance which events are going to occur and when. Robots
must be able to react on-line to a variety of incidents: unexpected obstacles, broken tools,
unexpected delays, uncoming answers, discharged robot batteries and robot breakdowns.

Many difficult problems must be solved to operate dozens of autonomous robots in the
same environment: implementation of non-conflicting sensor systems, man-robot and robot-
robot communication systems and protocols, contingency-tolerant motion control, multi-
robot motion planning, multi-robot task planning and scheduling. In the meantime, using
dozens of robots to make extensive experiments with research softwares is simply not cost-
effective: it implies both buying and maintaining many robots and dedicating space to
experiments for a long period of time. On the other hand, the usual solution which consists
in running only a few experiments (designed to be particularly interesting) is very tedious
given the desired number of robots. Indeed, it implies the explicit generation of interesting
scenarios. A scenario is a sequence of incidents associated with a sequence of robot actions
(see [21] for a good example). Its design consists in deciding which robot actions go right and
which go wrong, e.g. how a robot deviates from its planned trajectory, which breakdowns
occur, which pieces of information are not obtained from sensors. When many robots act in
parallel, a realistic scenario contains many incidents. Both its design and execution take a
lot of time.

Things are even more complex when one wants to compare softwares. For example,
researchers designing a new reactive planner generally want to test the new planner against
other planners. To do this, one may just consider running the same scenario for each planner.
But, in most cases, this happens to be either scientifically incorrect or practically impossible.
Indeed, since different planners do not provide the same plans in the same situation, incidents
disturbing plan execution cannot be designed to have equivalent effects from one planner to
the other. Therefore, many experiments must be made to allow experimental comparisons
between planners. Since the definition and the monitoring of n execution scenarios is not a
very interesting task, we prefer to have such scenarios randomly generated with the help of
a simulation system.



Consequently, we developed a simulation system to simulate the actions of many agents
in unpredictable environments.! The use of the system allows to make experiments with
various robot softwares (e.g. with combinations of task and motion planning algorithms),
to determine to what extent an agent architecture allows a robot to efficiently react to
unexpected events, to compare multi-agent cooperation frameworks and to test the behavior
of agents having imperfect knowledge about their environment. More generally, it allows to
test reactive system designs in a great variety of situations, and not only (as is often the
case) in a few well-defined situations. It complements the actual operation of a few robots
in a controllable laboratory setup.

In section 2, we discuss the desired properties of a simulation system designed to simulate
actions of autonomous agents. In section 3, we provide an overview of our system. In sections
4, 5 and 6, we discuss the representation of the environment, the description of actions
occurring in this environment and the simulation of these actions. Current and expected
applications are presented in section 7.

!Throughout the paper, we will use the expression “simulation system” rather than “simulator” to stress
the fact that the system is not designed for a unique application.
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2 Desired Properties

An obvious requirement of a simulation system is that it must be general. We want
the system to be applicable in many cases and (applicability is not enough?) appropriate
for many applications. This means the system must be easy to use and allow the user to
describe actions with the precision that is needed for each application. In addition, the
simulation system must provide unbiased results and remain efficient, even though there are
unavoidable tradeoffs between efficiency, naturalness and precision. We exhibit four impor-
tant issues to consider in order to meet these requirements in a simulation system designed
to simulate actions of autonomous agents: simulation of cognitive actions (section 2.1), de-
scription and simulation of actions at various levels of abstraction (section 2.2), simulation
of events occurring without involving agents (section 2.3) and simulation of deviations and
unexpected events (section 2.4).

2.1 Simulation of Cognitive Actions

One of the most important difficulties identified by researchers in the domain of reactive
planning and scheduling is that the environment in which a planning agent evolves changes
as the agent evolves. For example, the environment may change while the planning agent
constructs a plan, thereby making the plan inapplicable. For small applications, this phe-
nomenon is negligible. However, a short analysis shows that its rate of occurrence grows
much quicker than the rate of relevant events in the environment. In [10], Collinot and
Le Pape report that the average number of events occurring in a factory while the SONIA
scheduling system modifies factory schedules multiplies by ten when the total rate of events
doubles (figure 1). Considering the design of a reactive agent, this means that the planning
and plan execution activities must not prevent the agent from integrating (and reacting to)
information about the occurrence of unscheduled, asynchronous events (see [23] [32] [34] [43]
[45]). From the practical viewpoint of simulating the actions of dozens of agents, this means
that the design of the simulation system must not preclude cases in which the performance
of a cognitive action overlaps the occurrence of an event relevant to this cognitive action.

If we are concerned with the operations of n computing processors, an obvious approach
to correctly simulate such cases consists in using a total of (n + ) computing units, n
to effectively accomplish the computing operations and 1 to simulate the evolution of the
environment. Such a solution is simple for small values of n. But it requires the use of (n + 1)
computers and the management of communications among them. It becomes impracticable
when n increases.

2See Chandrasekaran’s comments on general architectures in [27]: “It does not take much for an architec-
ture to be Turing universal, but Turing universality does not guarantee that the architecture is appropriate
in the sense that it supports in a natural way what we want to say and how we want to say it ... The danger
of the pure task-specific view is a proliferation of architectures that are difficult to integrate, while the pitfall
of the general architecture proposals is to mistake mere Turing power for the kind of generality needed.”
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Figure 1: Overlaps Between Events and Cognitive Actions in SONIA

Another approach consists in coordinating the execution of (n + ) dependent processes
on the same computer (or on a limited number of computers). In most cases, knowledge
about the interactions between an agent and its environment allows to make the coordi-
nation simple. For example, the coordination technique described in [10] for the SONIA
scheduling system rests upon a simple fact: an event does not need to be simulated before
any agent is ready to take it into account. Nevertheless, the use of such a technique requires
a prior analysis of the interactions between each agent and its environment (including other
agents). The generalization of such a technique into a general simulation system requires
the automation of this analysis, which is a very complex task.

The approach we advocate consists in simulating cognitive actions. This means there
is a single simulation process. Both the computations performed by the n agents
and the evolution of the environment are simulated. The interest of this approach
resides in the absence of distinction between cognitive and physical actions. However, this
absence of distinction implies that one must bridge the gap between the execution of a
computer program and the simulation of this execution. Then, the difficulty is to implement
a simulation system (a) without making too restrictive assumptions about the cognitive
behavior of agents, (b) without making it too difficult for the system user to transform
an algorithm into a description enabling the simulation of the algorithm execution and
(c) without making the simulation of an algorithm execution too costly compared to the
execution itself. We will see in this paper how our implementation satisfies these requirements
for a variety of cognitive processes.



2.2 Alternatives in Action Descriptions

A general simulation system must allow the description of very different types of actions,
events and processes. For example, there are important differences between experimentations
concerning task and motion planning algorithms.

o Task planning consists of deriving programs of high-level actions (such as “go to po-
sition P” or “take object O”) from a description of goals to be achieved. Simulating
discrete changes occurring as the result of robot actions is often sufficient to test multi-
robot task planning systems.

e The motion planning and control problem consists of (a) converting high-level actions
into motion commands and (b) monitoring the execution of the motion commands.
Simulating continuous robot motions is necessary to test reactive motion planning
systems. In some cases, one may “discretize” the simulation of motions, computing at
each step the motion of each robot from time ¢; to time ¢;4; = ¢; + A. The problem
with such an approach is to choose A small enough for the simulation to be correct and
large enough for the simulation to run quickly. In some cases, the user of the simulation
system will rather provide functions to determine the exact points in time at which
interesting events (such as the crossing of two robots) occur, thereby representing the
real nature of continuous processes.

More generally, simulating the details of a process is either necessary or superfluous depend-
ing on the system user’s needs. Therefore, the system must allow the user to choose an
appropriate level of abstraction for each physical and cognitive action.

Relating to this choice, one of the most difficult issue is to represent the effects of concur-
rent actions. Indeed, these effects may, at some levels of abstraction, bear little resemblance
with the effects of any one action in isolation. For instance, a robot carrying an object in
a corridor while another robot is painting the walls of the corridor will not arrive to its
destination. It will change color and stop functioning (in addition, the walls will not be
correctly painted). To take such an interaction into account, one may either describe pro-
cesses in details or provide the simulation system with knowledge enabling the detection of
interactions and the computation of effects of interactions. We believe that in many cases
this knowledge can be expressed easily and in a general fashion. For example, a collision
between two objects is an interaction which occurs only when at least one object moves
until it makes contact with another object. Therefore, it is not necessary to simulate the
motions of n objects millisecond by millisecond when we can compute the exact dates at
which objects collide as well as the consequences of the collisions. Furthermore, when exact
computations are too complex, one can still provide functions to compute intervals of time
during which interactions occur and detail simulations over these intervals.



In many cases, interruptions of actions can also be simulated without detailing the sim-
ulation of interruptible actions. For instance, the position of a robot which moves in a
corridor and interrupts its motion at time ¢ can be computed without making a millisecond
by millisecond simulation of the robot motion. Knowing the new position of the robot, a
subsequent resumption of the motion can also be simulated without decomposing the motion
into minuscule chunks of motions. Consequently, we must allow the user of the simulation
system to provide an efficient representation of the effects of interrupted actions.®

2.3 Simulation of Processes Without Agents

In the previous sections, the discussion was focused on the representation of actions
explicitly designed and performed by agents operating in the simulated environment. In
reality, we often consider that many events and processes occur without actually involving
agents. For instance, when a bucket is under an open tap, it fills up without having any
agent performing the action of filling it up. Similarly, we consider that robots break down
without determining any agent breaking them down. Such events are either predictable
or unpredictable. In this section, we will discuss the simulation of predictable events. By
predictable, we mean events which we can expect to occur given a set of rules governing the
normal evolution of the environment. We will discuss the simulation of unpredictable events
— the occurrence of which is not governed by a known deterministic set of rules — as part
of section 2.4.

The simulation system must provide a way of defining rules governing the occurrence of
predictable events. From the point of view of designing the simulation system, the main
problem is to realize some conceptual consistency between the simulation of actions and
the simulation of predictable events. Not only do we agree with Brooks [5] that conceptual
consistency is “the most important consideration in system design”, we also notice that in
this particular case the importance of conceptual consistency is reinforced by two noticeable
facts:

o The representation of rules governing predictable events raises issues similar to those
discussed in section 2.2. For instance, the user of the simulation system may either want
to detail the simulation of the bucket filling process or provide functions to determine
when water begins to overflow the bucket.

e Interactions exist between actions and processes not driven by agents. A simple ex-
ample (already chosen in [24]) is when an agent takes some amount of time ¢ to pro-
gressively open (or shut) a valve. In this case, the content of the bucket at the end
of the opening (or shutting) action may be computed with the help of the equation
(final-content = initial-content + initial-flow-rate*t + turn-rate*£/2).

3Since the interruption and the resumption of an action are also actions, we could consider interruptions
as a particular case of interactions. However, the significance of this particular case incites to provide more
practical structures to deal with it.



This suggests to design the simulation system so that the user provides similar descriptions
for actions (involving agents) and for processes occurring without involving agents. An
obvious solution is to get rid of the action concept and consider agents as mere moving
and computing devices. However, the simulation system is intended to make experiments
with cognitive architectures and components of computing devices explicitly considered as
agents. Consequently, a better solution is to conserve the action concept and require action-
like descriptions for processes occurring without involving agents. What we will do is create
fictive agents and do as if they were executing those processes not executed by actual agents.

2.4 Simulation of Deviations and Unexpected Events

As mentioned in section 1, we want to simulate actions of agents able to react to a
variety of incidents. With respect to simulation difficulties, we distinguish three categories
of incidents.

Unexpected Facts/Events/Actions

This is the easiest case in which an agent plans its own actions without considering (or
without knowing) the current state of the environment and the current plans of other agents.
Typical examples are the discovery of an unexpected obstacle and the unforeseen competition
of two agents for the same resource. There is nothing special to do to simulate the occurrence
of such incidents. They are direct consequences of the ways agents are designed to operate.

Deviations

This category gathers differences between the prediction of an agent with respect to some
actions and the actual execution of these actions: the performance of an action does not take
the exact amount of time the agent was expecting to devote to it; intended effects do not
follow from an action; etc. One needs to provide information about the possible occurrence
of these incidents in action descriptions. For example, instead of providing a deterministic
function to compute the duration of an action, the user of the system may describe the
statistical distribution of this duration.

Unpredictable Events

Unpredictable events are not governed by known deterministic sets of rules and not as-
sociated with the performance of particular actions. A typical example is when a robot
component starts malfunctioning or not functioning at all. In most cases, the user of the
simulation system will want to simulate a few most likely sensing, motion and cognitive
problems — and the combined effects of these problems — without developing deep models
of the overall process going on within a disturbed agent. Following previous arguments (in
section 2.3 and above), the simulation system must allow action-like descriptions of unpre-
dictable events, the occurrence and the characteristics of which are controlled by statistical



distributions. Instead of providing deterministic rules governing the occurrence of predictable
events, the task of the user will be (for example) to specify the frequency of some machine
breakdowns with respect to machine utilization, as well as the distribution of breakdown

durations.
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3 An Overview of the Simulation System

Basically, the simulation system must provide ways to (a) represent possible states of
an environment (including agents), (b) describe actions and processes occurring in this en-
vironment and (c) simulate the occurrence of these actions and processes. More precisely,
the essential expectation of system users is a simulation function allowing to simulate the
evolution of an environment from a description of this environment, e.g. a function of the
following type:

e Function Name: simulation

e Arguments: (environment)

Optional Arguments: (duration stop-test-function)

Default Values: ((duration = o0) (stop-test-function = false))

Action: simulate the evolution of the environment either for the given duration or until
(stop-test-function environment) returns true.

Remark: when duration and stop-test-function take default values, the simulation can-
not end unless the environment gets petrified in a particular state.

On the other hand, although the user expects to have to describe the environment in a
particular formalism (so that the simulation function can be applied), the system should
in this matter provide the greatest flexibility. Concerning the representation of possible
states of the environment, we will see that, in fact, very few pieces of information need to
be expressed in the simulation formalism. We consider it quite important that the system
allows the user to use any representation scheme to represent other pieces of information.
The main goal of a simulation system is not to provide a rigid universal model to represent
the world. It is to provide a convenient simulation function.

The representation of the environment is discussed in section 4. The user of the system
provides the initial date, the initial set of agents and the set of actions being performed by
each agent in the initial state. The execution of the simulation function results in updating
this information. In section 5, we discuss the representation of actions and interactions in
terms of change functions. These functions determine dates of interest for each action
(and interaction) and describe how each action (and interaction) affects the environment
between two dates of interest. The simulation function is described in section 6. It consists
of a three-step simulation loop. For each cycle, the system (1) computes a list of ongoing
actions and forthcoming interactions, (2) determines actions (or interactions) for which the
next date of interest is minimal and (3) alters the representation of the environment in
accordance with the change functions.

11



4 Representation of a State of the World

Very few pieces of information about the state of the world have to be expressed in
the simulation formalism. Basically, the system needs to know (a) the date, (b) the set of
existing agents and (c) the set of actions being performed by each agent in the considered
state. This includes the set of natural and unexpectable processes executed by fictive agents
(cf. sections 2.3 and 2.4).

Date

The simulation system allows the user to choose any totally ordered set S as a model of
time. Dates are members of S and the user provides a definition of the ordering relation in
the form of two functions time= and ¢ime>. To manipulate the concept of duration (which
is not compulsory), the user provides an additional function time+ allowing to add dates
and durations. This is similar in spirit to the kind of modelling flexibility discussed in [35]
and allows us to disregard many irrelevant debates such as those surrounding the distinction
between discrete and continuous models of time. To present examples, we will in this paper
choose the set of rationals (with its usual ordering relation) as a date space (neither discrete,
nor continuous) and the set of positive rationals (with the usual addition) as a duration
space. Furthermore, we will assign the date 0 to the initial state.

Agents

The system must be provided with a description of existing agents. This includes actual
agents (performing actions) and fictive agents governing the occurrence of processes which
do not involve actual agents. Each agent is assigned a name and a set of ongoing actions.
During the course of simulation, agents will complete actions, generate and initiate new
actions, cancel actions, suspend actions, and resume actions. The performance of some
actions can result in the destruction of agents. It can also result in the creation of new
agents to which new names must be given. Except name and actions, all the characteristics
of agents will not be directly accessed by the simulation function. They are application-
dependent and the user of the system can use any formalism to represent them. Similarly,
the user can use any formalism to represent every thing which is in the environment without
being an agent.

12



Actions

Within the description of an agent, the description of an action consists of five attributes.
e Name: the name of the action.
e Agent: the corresponding agent.

e Status: the status of the action. The major values of this attribute are pending, can-
celled, inprocess, completed and suspended. Figure 2 presents the sensible transitions
between two of these values. In addition, it is convenient to introduce two transitory
values starting and restarting. These transitory values correspond to the transition
from pending to inprocess and to the transition from suspended to inprocess. The
introduction of these values allows to distinguish the decision (transmitted to the cor-
responding effector) of an agent to start or restart an action and the simulation of the
actual beginning or resumption of this action (figure 3).

e Type: the type of the action.
o Parameters: the values of parameters associated with the action.

To each action type, the user of the system must associate a change function allowing to
determine the dates of interest of each action and the changes occurring between two dates
of interest. Completed and cancelled actions will not have any date of interest in the future.
They can be discarded and gathered in the history of the environment. Starting actions are
about to start, restarting actions are about to restart and inprocess actions are executing.
The first date of interest of these actions, in process or scheduled to start in the initial state,
is the date assigned to the initial state. Pending and suspended actions have no initial date
of interest. They will get a first date of interest when the agent decides to start or restart
them and consequently updates their status (respectively to starting and restarting). Except
name, agent, type, parameters and status, all the characteristics of actions will not be directly
accessed by the simulation function. They are application-dependent and the user of the
system can use any formalism to represent them.

Figures 4 and 5 provide examples of initial state descriptions. Figure 4 is an example in
which the user extends the object-oriented representation of the simulation system. Figure 5
is an example in which the user prefers to use propositional formulas. Only necessary infor-
mation is provided in the object-oriented representation of the simulation system. In both
cases, the execution of the simulation function will result in updating the state description
with respect to change functions.

13
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[World State

Date =0
Agents = @)]
—— p [Agent
Name = robot-1
Location =
[Location
Name = Al12
X =200
Y =50
Z = 100]
Speed = 20
Actions = ( )]
[Action [Action
Name = action-1 Name = action-2
Status = suspended Status = starting
Type =reasoning Type = motion
Parameters = () Parameters = ($goal =@)
Agent=@] Agent=@ ]

[Location
Name =B16
X =200
Y =400
Z =100]

Figure 4: An Object-Oriented State Description
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[World State
Date =0
Agents = (@)]

—& [Agent
Name = robot-1
Actions = (@)]

[Action
Name = action-1
Status = starting
Type =release
Parameters = ($object = object-1)
Agent=g@]

(has-location robot-1 (200 50 100))
(has-location object-1 (200 60 110))
(holds robot-1 object-1)
(has-weight object-1 2)

Figure 5: A State Description With Propositional Formulas
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5 Change Functions for Actions and Interactions

5.1 General Framework

Since actions interact, a correct simulation of both physical and cognitive actions requires
an answer to a variety of questions, such as:

e Are physical and cognitive actions performed in parallel ?
o Which are the smallest non-interruptible physical and cognitive actions of an agent ?
e When does an agent incorporate sensory information into its line of reasoning ?

As a matter of fact, reasoning about simulating the actions of autonomous agents in unpre-
dictable environments gives rise to many questions concerning the types of behaviors these
agents may have. A discussion of these questions is outside the scope of this paper. We
suppose that the user of the simulation system can provide an answer to these questions. In
this section, we discuss the subsequent description of actions and interactions.

When the simulation begins, the system associates a first date of interest (the current
date) to each starting, restarting or inprocess action. The application of the corresponding
change functions will determine subsequent dates of interest.

e The simulation system must always know what is the next date of interest of a starting,
restarting or inprocess action. This date is always greater than (or equal to) the current
date.

e Lor actions resulting in gradual changes, the previous date of interest is also useful.
This date is always smaller than (or equal to) the current date.

In some sense, one can consider that the simulation system always needs to know an inter-
val of interest, which is reduced to one date for actions resulting in instantaneous changes
and which consists of two dates for actions resulting in gradual changes. If change functions
allow to correctly update this information, the simulation system will at each step determine
the smallest “next date of interest” and use the change function of the corresponding action
to alter the representation of the world state and compute the next “next date of interest” of
the action. This approach is close to that one of Hendrix [24] which consists of solving “sets
of simultaneous equations to determine critical times in the set of ongoing processes”. The
main difference is that we explicitly decompose the resolution into (a) a domain-independent
determination of the smallest “next date of interest” and (b) a domain-dependent compu-
tation of the next “next date of interest” of the corresponding action. In addition, the time
variables associated with a process in [24] are “the time at which the process was initiated”
and “the age of the process”. We do not know the exact motivation for this choice and prefer
the direct manipulation of “dates of interest”.
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[Action Description
Action Type = release
Parameters = ($object)
Change Function = T]

Preconditions
‘ Deletions

. Additions
IF ($status = starting)
THEN IF (test (holds $agent $object))
THEN (delete (holds $agent $object))

(add (handempty $agent) (free Sobject))
(set $status completed)
ELSE (warning "action preconditions are not satisfied")
(set $status completed)
ELSE (error "there is a bug in the simulation system")

Figure 6: A Change Function for Release Actions

Section 5.2 deals with the use of change functions to describe physical actions, section
5.3 with the use of change functions to describe cognitive actions, and section 5.4 with the
description of interactions. These sections essentially consist of examples. They illustrate
the application of the general approach outlined above.

5.2 Physical Actions

5.2.1 Instantaneous Actions

Figure 6 provides a change function for instantaneous release actions. Variables such
as $agent and $status denote the values of the attributes (agent and status) of a particular
action which is simulated (for example, the action action-1 of figure 5).* The description is
analogous to the description of an “operator” in a STRIPS-like planner [17]. If preconditions
are satisfied (the agent holds the object), the operator is effectively applied. Some facts cease
to be true (they are deleted) and some facts become true (they are added). If preconditions
are not satisfied (the agent does not hold the object), a warning is issued and nothing changes.
In both cases, the status of the action changes to completed. The action is considered
inprocess for a period of time reduced to a single date. There is no future date of interest for
a release action once the agent releases the object. Figure 7 shows the result of simulating
the release action of figure 5. The set of propositions changes and the environment gets
petrified since no agent performs other physical or cognitive actions.

5.2.2 Continuous Actions

Figure 8 provides a change function for motion actions. We suppose (a) that the distance
function computes the distance between two locations and (b) that the agent moves at
a constant speed. When the motion starts (or restarts), the location of the agent is set to

4We will also use $neat-date-of-interest and $previous-date-of-interest in other examples.
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[World State [History

Date =0 (@ completed at 0)]
Agents = @)]
[Action
— [Agent Name = action-1
Name = robot-1 Status = completed
Actions = ()] Type = release
Parameters = ($object = object-1)
Agent=@]

(has-location robot-1 (200 50 100))
(has-location object-1 (200 60 110))
(handempty robot-1)

(free object-1)

(has-weight object-12)

Figure 7: Simulating a Release Action

unknown and the next date of interest is incremented by the motion duration. Consequently,
the second date of interest is when the agent reaches the goal. Then, the action ends. Note
that an error will be detected if another change function attempts to determine the location
of an agent while the agent moves. In this case, the simulation system will have detected
an interaction unforeseen by the user. Figures 9 and 10 show the results of simulating the
beginning and the end of the motion of figure 4. As previously, the environment gets petrified
(even though the reasoning action is not completed).

If simulating the details of the motion is of some use, the user of the system can decompose
the motion and allow the system to compute the motion from time ¢; to time t;4; = ¢; + A.
One way to do this is to (a) define a function motion-progress which returns the new location
of the agent after A units of time and (b) use the change function shown in figure 11. If the
agent does not reach the goal, the next date of interest is incremented by A. Otherwise, the
motion is completed. Let us note that the user can use any information in the motion-progress
function, such as a path previously designed by the agent, variations of forces and velocities
planned by the agent [2] or an “action vector” (left-wheel-velocity right-wheel-velocity) that
the agent applies [28]. Similarly, the change function of figure 8 can be modified to compute
the duration of the motion from such information.

The case of deviations to be expressed within the description of actions (cf. section 2.4)
is quite important. In figure 12, we provide an example in which actual motion durations
are randomly generated so that relative duration deviations satisfy a uniform distribution.
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[Action Description
Action Type = motion
Parameters = ($goal)
Change Function = T]

v

IF ($status = starting) or ($status = restarting)
THEN (inc $next-date-of-interest
(/ (distance (location $agent) $goal) (speed $agent)))
(set (location $agent) unknown)
(set $status inprocess)

ELSE IF ($status = inprocess)

THEN (set (location $agent) $goal)

(set $status completed)
ELSE (error "there is a bug in the simulation system")

I'igure 8: A Change Function for Motions

5.2.3 Interruptions

An action ends either when it is naturally completed or when another action provokes
its interruption. In the second case, the action is suspended and a decision to resume the
action is needed to restart it. In other terms, the resumption is part of another action
which may occur sometime or never. To simulate the interruption of an action A, the user
needs in some cases to provide, within the change function of the interrupting action, a way
to characterize the state of the world in which the action A4 is interrupted. For example,
if a motion corresponding to figure 8 is interrupted at time ¢, the change function of the
interrupting action must include the computation of the location of the robot at time ¢ On
the other hand, one can allow the interruption of a motion corresponding to figure 11 without
worrying about anything provided that A is small enough (so that the error is negligible).
Of course, an instantaneous action (e.g. figure 6) can never be suspended since it ends as
soon as it starts.

5.2.4 Natural Processes and Unpredictable Events

The examples presented in the previous sections concern actions performed by agents
operating in the simulated environment. Natural processes and unpredictable events are
simulated the same way except that they are associated with fictive agents. Figure 13
provides a change function for the filling of a bucket. It is similar to the change function of
figure 11. The function content-progress computes the new volume of water in the bucket
with respect to any information about the tap and the bucket. The process ends either when
the bucket is full or when water stops flowing from the tap.
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[World State

Date =0
Agents = (@)]
—& [Agent
Name = robot-1
Location = unknown
Speed = 20
Actions = ( )]
[Action [Action
Name = action-1 Name = action-2
Status = suspended Status = inprocess
Type =reasoning Type = motion
Parameters = () Parameters = ($goal =@)
A gent = ] Agent = ]

[Location
Name =B16
X =200
Y =400
Z =100]

Figure 9: Simulating the Beginning of a Motion
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[World State [History

Date=35/2 ( @ completed at 35/ 2)]
Agents= @®)]
[Action
—> [Agent Name = action-2
Name = robot-1 Status = completed
Location = Type = motion
Parameters = ($goal =@®)
Agent = T]
[Location
Name = B16
X =200
Y =400
Z =100]
Speed =20

Actions = @)]

[Action
Name = action-1
Status = suspended
Type = reasoning
Parameters = ()
Agent=@]

IFigure 10: Simulating the End of a Motion
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[Action Description
Action Type = motion
Parameters = ($goal)
Change Function =T]

v

IF ($status = starting) or ($status = restarting)
THEN (inc $next-date-of-interest A)
(set $status inprocess)
ELSE IF ($status = inprocess)
THEN (set (location $agent) (motion-progress $agent $goal A))
IF ((location $agent) # $goal)
THEN (inc $next-date-of-interest A)
ELSE (set $status completed)
ELSE (error "there is a bug in the simulation system")

Figure 11: A Change Function for Motions

[Action Description
Action Type = motion
Parameters = ($goal)
Change Function = T]

v

IF ($status = starting) or ($status = restarting)
THEN (inc $next-date-of-interest
(* (random-number (uniform-distribution 0.8 1.2))
(/ (distance (location $agent) $goal) (speed $agent))))
(set (location $agent) unknown)
(set $status inprocess)
ELSE IF ($status = inprocess)
THEN (set (location $agent) $goal)
(set $status completed)
ELSE (error "there is a bug in the simulation system")

Figure 12: A Change Function for Motions with Duration Deviations
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[Action Description
Action Type = fill-bucket
Parameters = ($bucket $tap)
Change Function =%]

v

IF ($status = starting)
THEN (inc $next-date-of-interest A)
(set $status inprocess)
ELSE IF ($status = inprocess)
THEN (set (content $bucket) (content-progress $bucket $tap A))
IF ((content $bucket) # (capacity $bucket)) AND ((flow-rate $tap) = 0)
THEN (inc $next-date-of-interest A)
ELSE (set $status completed)
ELSE (error "there is a bug in the simulation system")

Figure 13: A Change Function for Filling Processes

Let us note that the change function does not tell when a filling process begins. This
can appear as a problem, but in practice this problem allows many solutions. The solution
we prefer consists of (a) associating preconditions with natural processes and (b) defining
pattern-matching processes which initiate processes the preconditions of which become true.
For example, “the bucket is under the tap”, “the bucket is not full” and “water flows from
the tap” are preconditions associated with a filling process. If one precondition becomes true,
and the others are already true, then the fictive agent initiates a filling process. In some
sense, the fictive agent executes pattern-matching processes which result in the initiation
of other processes exactly as an actual agent performs cognitive actions which result in the
initiation of other actions.®

5.3 Cognitive Actions

In this section, we will consider the description of cognitive actions in terms of change
functions. Cognitive actions do not result in wide varieties of changes. Each of them affects
the memory of the agent performing the action and, in some cases, provokes the initiation
of other actions. The user of the system may use any formalism to represent the contents of
the memory of an agent (e.g. logics of belief [25] [8] [38]) and distinguish between what is
true in the environment and what each agent believes true. Let us note that this distinction
does not necessarily result in duplications of information. For example, context mechanisms

% Another solution consists in defining change functions so that natural processes are always inprocess.
For example, we can remove the instruction that sets the status to completed in figure 13 and declare filling
processes inprocess in the initial state. When preconditions are not satisfied {(“the bucket is not under the
tap” or “the bucket is full” or “water does not flow”), the content of the bucket does not change, but the
process continues. Let us note that this solution is not the most satisfactory: a great amount of computation
is wasted when nothing changes. On the contrary, the amount of computation spent in pattern-matching
increases with the amount of change. It is null when the environment is petrified.
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(although the use of such mechanisms is costly [9]) and multiple-world knowledge repre-
sentation systems [29] allow to represent the information available to each agent without
enumerating all the epistemic propositions “agent believes proposition” which happen to be
true. The user of the simulation system will often suppose that knowledge about unalterable
well-known objects is inherited by some agents from the description of the environment.

The most important difficulties in simulating cognitive actions concern the relations be-
tween the cognitive actions of the same agent. It is very frequent for an agent to deal
with several problems in parallel or to follow several lines of reasoning in parallel. The
achievement of this macro-parallelism requires either to use several processors or to inter-
leave different activities on the same processor. In both cases, control actions are necessary
to manage dependencies between cognitive actions. Two cognitive actions are independent
when they involve separate processors, access separate memory zones, and cannot interrupt
each other. This is the easiest case to simulate. It is discussed in section 5.3.1. In the
following sections, we consider the possible dependencies one after the other. We discuss
the case in which several cognitive actions share memory zones in section 5.3.2, consider
interruptions in section 5.3.3, and discuss the organization of various cognitive actions on
the same processor in section 5.3.4.

5.3.1 Independent Cognitive Actions

In most cases, the cognitive actions of an agent are not independent. However, we will,
in this section, present a change function for the simple case in which cognitive actions are
independent. In the next sections, we will use this change function as a basis to investigate
more interesting cases.

An independent cognitive action accesses either unalterable or “reserved” memory zones.
By “reserved memory zones”, we mean memory zones which are not accessed by other
ongoing cognitive actions. An independent cognitive action may result in the alteration of
the contents of reserved memory zones and in the initiation (or resumption) of other physical
and cognitive actions. Its dates of interest are (a) its start time, (b) the dates at which it
results in the initiation (or resumption) of other actions and (c) its end time. The goal of this
section is to show how to define a change function which determines these dates of interest
and simulates the corresponding initiation and resumption decisions.

We first derive a computation function from the procedure which embodies the cogni-
tive action. The execution of the computation function consists of executing the procedure
without actually initiating or resuming other actions. Instead, the computation function
records in chronological order the initiations and resumptions that will occur. An additional
attribute of the cognitive action is used for this purpose. We call this attribute results and
use the notation $resulls to denote its value. Each element of $results is a triple (date action
status) where date is the date at which the status of the action action is set to status (either
starting or restarting). Another additional attribute is used to record the date at which the
cognitive action ends. We call it end-time and use the notation $end-time to denote its value.
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The main difficulty is to determine the dates to associate to each triple as well as the
end time of the cognitive action. This requires the user to state assumptions about the
speed of the computing system the agent uses to perform the action. This difficulty is
unavoidable. When an extraordinary precision is required, its resolution can become very
complex. However, requiring a great precision does not make sense if the time required for
an agent to evaluate an instruction is allowed to fluctuate. Therefore, we distinguish two
types of sensible cases:

o In most cases which do not require a great precision, the user is able to relate the
speed of the computing system the agent uses to perform the action to the speed of
the computing system the simulation system uses to simulate the action. This means
the user knows a function which satisfies the following property: when applied to the
duration between («) the beginning of the execution of the computation function and
(8) the moment at which a triple is to be recorded in $results, the function returns an
acceptable estimate of the duration between (a) the beginning of the cognitive action
and (b) the corresponding action initiation or resumption; when applied to the duration
between (a) the beginning of the execution of the computation function and (vy) the
moment at which the execution ends, the function returns an acceptable estimate of
the duration between (a) the beginning of the cognitive action and (c) the end of the
cognitive action. I'or example, if the computing system the simulation system uses is
identical to the computing system the agent uses, the identity function satisfies these
requirements.®

e If the time required for an agent to evaluate an instruction is known and not allowed
to fluctuate, the duration between two instructions I and J is computable as the sum
of the durations of the instructions executed between I and J. This solves the problem
and provides the entire precision needed to simulate the actions of perfect real-time
systems, the timing behavior of which is deterministic.”

Once the computation function is available, we use the change function of figure 14. When
the cognitive action starts, the computation function is applied. This alters the contents of
reserved memory zones and sets $results and $end-time. If $results is not empty, the next
date of interest is the date of the first triple. Otherwise, the next date of interest corresponds
to the end of the cognitive action. In both cases, the change function is applied again at this
date. If $results is empty, the simulation of the cognitive action is completed. Otherwise,
the first triple is extracted from $results. The corresponding status change is made and the
next date of interest of the cognitive action is set again. Eventually, $results becomes empty
and the status of the cognitive action becomes completed.

SProvided that paging and garbage-collecting activities are not too time-consuming. If this is not the
case, the identity function tends to provide pessimistic estimates.

"When upper bounds are available instead of exact instruction durations, one can use them as pessimistic
estimates. In fact, the resulting worst-case simulations are often the most interesting.

26



[Action Description
Action Type =reasoning
Parameters = (...)
Change Function =%]

v

IF ($status = starting)
THEN (set $status inprocess)
(apply $computation-function $parameters)
IF ($results = &)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE IF ($status = inprocess)
THEN IF ($results = @)
THEN (set $status completed)
ELSE (change-status (pop $results))
IF ($results = @)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE (error "there is a bug in the simulation system")

Figure 14: A Change Function for Independent Cognitive Actions

5.3.2 Cognitive Actions With Shared Memory

The case in which cognitive actions share memory is more complex. The simulation of
these actions must accord with the order in which the corresponding procedures access and
modify shared memory. In the worst case, one must decompose the simulation and simulate
one instruction at a time. This is the only solution for cognitive actions which continually
access and modify shared memory.

More economical solutions are practicable in cases in which shared memory is seldom
accessed and modified (in cases in which the interactions between cognitive actions are few).
We propose one which generalizes the change function presented earlier for independent cog-
nitive actions. The rationale for the generalization consists of the three following statements:

o The additional dates of interest needed to perform a correct simulation correspond to
the accesses and alterations of shared memory.

e The method used to manage status changes in section 5.3.1 is extendable to the man-
agement of alterations of shared memory. This means we modify the computation
function so that it does not make the change. Instead, a triple (date generalized-
variable-to-set new-value) is recorded in the results attribute of the cognitive action.

o A solution to execute an access at the right time ¢ (once previous alterations have been
executed) consists of (a) suspending the execution of the computation function prior
to the access and (b) resuming the execution when the date is #. In other terms, the
execution of the computation function is decomposed in “chunks” which begin with
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shared memory accesses. Depending on the structure of the computation function, the
more efficient manner to decompose its execution is either to insert interruptions within
the function or to enable the system that interprets the function to detect the need to
interrupt the execution. In both cases, the decomposition guarantees the correctness
of the simulation.®

Figure 15 presents the new change function. A new attribute stack is used to know whether
the execution of the computation function is completed ($stack is empty) or suspended
prior to an access to shared memory ($stack describes the state in which the execution is
suspended). In the first case, $end-time denotes the date at which the cognitive action ends.
In the second case, it denotes the date of the memory access which caused the interruption
(the end time of the previous “chunk”). When $results is empty and $stack is not empty,
the execution of the computation function restarts. When $results is empty and $stack is
empty, the cognitive action ends.

Let us note that the use of this change function incidentally allows to access the shared
memory of an agent within the change function of a physical action. This represents the case
in which an agent modifies some parameters of the physical action without considering the
modification as the design of a new action. However, we did not meet any practical situation
in which the management of a memory share between physical and cognitive change functions
is more appropriate than the explicit design of new actions.

5.3.3 Interruptible Cognitive Actions

In this section, we consider the case of a cognitive action which provokes the interruption
of another cognitive action. The simulation of such an interruption requires to reconsider
the change functions of the two actions.

With respect to the change function of the interrupting action, what we did in section
5.3.1 about the initiation and resumption of actions applies equally well to the interruption
of actions. The date of the interruption is a date of interest of the interrupting action and
is recorded as such in the results attribute of the interrupting action.

With respect to the change function of the interruptible action, the most important issue
is the distinction between “shared” and “reserved” memory. The change function provided
in section 5.3.2 is such that a part of the memory is “shared” as soon as two cognitive
actions include — sometime between their initiation and their completion — modifications
or accesses to this part of the memory. A given part of the memory is not “reserved” for a
cognitive action A if another cognitive action accesses or modifies this part of the memory
while A is suspended.

80ne could also interrupt the execution of the computation function prior to status changes and alter-
ations of shared memory. Then, the results attribute would not be needed. However, the management of
interruptions is quite time-consuming at simulation time. We prefer to avoid them as much as possible.
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[Action Description
Acton Type = reasoning
Parameters = (...)
Change Function =%]

v

IF ($status = starting)
THEN (set $status inprocess)
(apply $Scomputation-function $parameters)
IF ($results = &)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE IF ($status = inprocess)
THEN IF ($results = @)
THEN IF ($stack = &)
THEN (set $status completed)
ELSE (resume $computation-function $parameters $stack)
IF ($results = &)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE (make-change (pop $results))
IF ($results = @)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE (error "there is a bug in the simulation system")

Figure 15: A Change Function to Manage Shared Memory
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[Action Description
Action Type = reasoning
Parameters = (...)
Change Function =T]

v

IF ($status = starting)
THEN (set $status inprocess)
(apply $computation-function $parameters)
IF ($results = &)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE IF ($status = inprocess)
THEN IF ($results = &)
THEN IF ($stack = @)
THEN (set $status completed)
ELSE (resume $computation-function $parameters $stack)
IF ($results = @)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE (make-change (pop $results))
IF ($results = @)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE IF ($status = restarting)
THEN (set $elapse-time (— $date $interruption-date))
(inc $end-time $elapse-time)
(for-each result in $results (inc (date result) $elapse-time))
(set $status inprocess)
IF ($results = @)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE (error "there is a bug in the simulation system")

Figure 16: A Change Function for Interruptible Cognitive Actions
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As soon as the distinction between “shared” and “reserved” memory is clearly made, one
just needs to consider the resumption of the interruptible action. Assuming that the time
spent to restart the cognitive action is negligible, we use the date of the interruption (recorded
at the time of the interruption) to compute the elapse duration between the interruption and
the resumption. All the dates of interest that were previously computed (and stored within
$results and $end-time) are increased accordingly. Figure 16 provides a pictural explanation
of this process and presents the new change function. Of course, this change function is not
always appropriate:

e As in section 5.3.2, simulating one instruction at a time is a better way to simulate
cognitive actions which continually access and update shared memory.

e The time spent to restart a cognitive action is not always negligible. When very short
cognitive actions are interruptible, one must take this time into account.

Let us note that the change function responds to all the difficulties discussed so far: ini-
tiation and resumption of other actions, cognitive actions with shared memory, interruption
and resumption of interruptible actions. This is not always necessary. In the remainder of
this section, we will discuss a case in which the interruption of the cognitive action is the sole
concern. We suppose we are provided with (a) a planning algorithm which keeps improving a
solution to a problem until an optimal solution is met and (b) a criterion for interrupting the
execution of the algorithm. The regular evaluation of the criterion allows to make decisions
between immediate action and further search for a better plan: when the evaluation returns
true, the planning algorithm is stopped and the execution of the best available plan begins.
An interesting example discussed in [4] concerns the traveling salesman problem [13] [39].
The problem is to find a tour as short as possible for a salesman (or a robot courier) which
has to visit a specified list of locations and return to the original point of departure. An
initial solution (if the salesman can go from any place to any other) is to visit the locations in
the order in which they appear in the specified list. Then, each time the algorithm exhibits
a tour shorter than the best available tour, the new tour becomes the best available tour and
the algorithm continues, either until it is proven that the best available tour is the shortest
possible, or until the agent decides to interrupt the algorithm execution.®

We suppose that the evaluation of the interruption criterion is performed outside of
the planning algorithm. This allows the agent to interrupt the algorithm as soon as the
criterion evaluates to irue. It also allows the agent to allocate a processor to each of n

SThe difficulty is of course to set the interruption criterion. One solution (proposed in [4] and [46]) is
to use empirical knowledge obtained off-line, using statistical sampling methods. Shekhar and Dutta [42]
prefer to provide a guarantee that the total (planning + execution) time is bounded by a function of the
best obtainable (planning + execution) time (given the planning algorithm). In our understanding, none
of the approaches proposed so far allows the agent to make simple decisions such as pursuing search for a
while when a solution much better than previous solutions has been found. On the contrary, the criterion of
Shekhar and Dutta tends to make an interruption follow the fortunate discovery of a very good solution. It
does not allow to check whether there is an even better solution close to the good solution that was found.
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[Action Description
Action Type = reasoning
Parameters = (...)
Change Function =?]

v

IF ($status = starting)
THEN (set $status inprocess)
(apply $computation-function $parameters)
(set $next-date-of-interest $new-date)
ELSE IF ($status = inprocess)
THEN IF ($stack = @)
THEN (set $next-date-of-interest oo)
ELSE (set $best-solution $new-solution)
(resume $computation-function $parameters $stack)
(set $next-date-of-interest $new-date)
ELSE IF ($status = restarting)
THEN (set $status inprocess)
(set $elapse-time (— $date $interruption-date))
(inc $new-date $elapse-time)
(set $next-date-of-interest $new-date)
ELSE (error "there is a bug in the simulation system")

Figure 17: A Change Function for Anytime Algorithms

planning algorithms (or to the same algorithm working on different problems) and to keep
one processor to determine when to interrupt each of these algorithms. The computation
function corresponding to each algorithm results from the insertion of interruptions at those
places in which new solutions — better than available solutions — are found. $stack describes
the state in which the execution is suspended, $new-solution denotes the new solution and
$new-date denotes the date at which this solution is available. $nezt-date-of-interest is set
to $new-date. At this date, $new-solution becomes the best available solution (stored into
$best-solution) and the execution of the computation function restarts to determine the next
date of interest and solution. When the execution of the planning algorithm completes
(8best-solution is the best solution according to the planning algorithm), $stack is set to §
and $next-date-of-interest to co.

Figure 17 provides the change function of the planning action. Interrupting this action
consists in setting its status to suspended and getting $best-solution as the result of the inter-
rupted algorithm. Let us note that this way to proceed is not too complex and guarantees
a correct simulation of the agent’s actions.
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5.3.4 Operating Loops

In this section, we consider the situation in which an agent interleaves several cognitive
activities on the same processor. We distinguish two cases:

e Explicit control. The control of the cognitive activities is explicit. This means that
a set of policies provided by the designer of the agent (and maybe modified by the
agent with respect to its current situation and problem-solving experience) determines
which activity the agent pursues at any point in time. A consequence of this is that the
cognitive activities do not need to be considered as separate actions. Rather, there is
an overall cognitive process which consists of performing these activities and deciding
how to interleave them.!®

e No explicit control. The designer of the agent implements the execution of several
cognitive actions as distinct processes without willing to investigate the exact behavior
of the operating system interleaving these processes. A consequence of this is that
there is no way to perform a very precise simulation of the behavior of the agent. But
this does not matter much — at least for agents designed in computer science and
robotics laboratories. Indeed, we cannot imagine situations in which the precision of
the simulation is an issue while the control of the cognitive activities is not. When the
timing behavior of the agent is crucial, the resolution of the control problem is crucial.

Let us first discuss the second case and devote the remainder of the section to an example
in which control is explicit.

When there is no explicit control, the agent’s behavior is approximated. The approxi-
mation depends on the knowledge that is available about the operating system interleaving
processes. The easiest solution consists in using computation functions as in section 5.3.1
together with interactions as in (forthcoming) section 5.4.

® The computation function associated with a process P allows to determine what would
be the next date of interest of P if P was the sole executing process.

o The change function associated with the interaction allows to gradually update such
a date with respect to the context (number and characteristics of executing processes)
and operating policy.

For example, let us suppose that computational time is equally distributed between executing
processes and that computational time spent within the operating system to interleave pro-
cesses is negligible. If $dale denotes the current date (after a date of interest of a process), if
n denotes the number of processes executing at date $date and if min($nezxt-date-of-interest)

0In most cases, the control problem (deciding which activities to perform and when) is not solved on a
dedicated processor. When it is, issues discussed in this section combine with issues discussed in sections
5.3.2 and 5.3.3.

33



denotes the smallest “next date of interest” over the n processes, the change function of the
interaction adds (n — 1) (min($next-date-of-interest) — $date) to each “next date of inter-
est”. If the set of processes does not change prior to the new min($neat-date-of-interest),
the change function of the corresponding process is applied at this date. Then, the change
function of the interaction is applied again. If the set of processes changes prior to the new
min($next-date-of-interest) (e.g. a new process starts), the change function of the interaction
modifies the dates of interest to account for the change.

To discuss the case in which control is explicit, we consider a simple event-driven system
inspired by the BBI control architecture [22]. Each cognitive activity is implemented as a
set of knowledge sources to which both triggering conditions and execution preconditions
are attached. Significant modifications of the robot memory are called events. Each event
can trigger knowledge sources and each triggered knowledge source gives rise to a ksar
(knowledge source activation record) available for execution as soon as its preconditions are
satisfied. The basic control loop that runs the whole system (figure 18 (from [11])) consists
of the following steps:

e Update an agenda of pending reasoning actions (ksars), according to the arrival of new
events.

e Choose a ksar in the agenda with respect to a set of control policies.
e Execute the selected ksar.

The execution of a reasoning action produces new events. These events are considered on the
next cycle. In addition, the system uses a mailbox to receive events from other processors.
This mailbox is read and reset at each cycle — when the first step begins. Consequently,
the dates of interest of the process are the dates at which new cycles begin and the dates
at which the execution of chosen reasoning actions results in the initiation (or interruption
or resumption) of other actions or in the access (or alteration) of memory zones shared with
other processors. The general case is consequently modelled as in section 5.3.2 (with the
same change function). In more specific cases, we can use simpler change functions. For
example, figure 19 presents the change function we use when the mailbox is the unique
shared memory zone. In this case, we (1) derive a computation function which stops at
the end of each cycle and sets the results attribute as in section 5.3.1 and (2) modify the
change function proposed in section 5.3.1 to execute a new cycle when results is empty. The
resulting change function allows to simulate the overall cognitive process in a very efficient
fashion.
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UPDATE-AGENDA

Executed Action Agenda
EXECUTE-KSAR CHOOSE-KSAR
Chosen Action

Iigure 18: The BB1 Basic Control Loop

[Action Description
Action Type = reasoning
Parameters = (...)
Change Function =T]

v

IF ($status = starting)
THEN (set $status inprocess)
ELSE IF ($status = inprocess)
THEN IF ($results = @)
THEN (apply $computation-function $parameters)
ELSE (change-status (pop $results))
IF ($results = @)
THEN (set $next-date-of-interest $end-time)
ELSE (set $next-date-of-interest (date (first-element $results)))
ELSE (error "there is a bug in the simulation system")

Figure 19: A Change Function for Operating Loops (the computation function corresponds
to one cycle)
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5.4 Interactions

At some levels of abstraction, the effects of several concurrent actions often differ from
the effects of these actions considered separately. In such a case, the user of the simulation
system can provide a more detailed description of each action. However, the description of
an explicit interaction is in some cases a more efficient solution. For example, let us consider
a (well-known) footrace between Achilles and a tortoise (which starts some distance ahead)
and imagine that the tortoise gives up and stops as soon as Achilles passes it. To simulate
a race, we need to compute when Achilles catches up with the tortoise. If an approximate
simulation is acceptable, the system user may discretize motions with more or less precision.
However, another possibility is to describe a “pass” interaction between the two motions.

For each type of interaction, the user of the simulation system provides a change function
and a way to determine interaction start times. In our example, a function of the two motions
(characterized by initial locations, start times and agent velocities) is needed to compute the
date of the interaction. Whenever two motions are executed in parallel, this function is
applied to determine whether there will be an interaction and when. The computed start
time is the first date of interest of the interaction. The change function is applied at this
date. The position of the tortoise is computed and the status of the tortoise’s motion is set
to suspended (or completed).

Figure 20 presents a slightly different description of the interaction. The effect of the
interaction is that the two agents “know” that they have reached the same location (in a
1D space). Whether one agent stops or not depends on the cognitive actions that this event
triggers.

The simulation function is designed to ensure that an interaction occurs only if the
corresponding actions continue until the interaction start time. Consequently, the correctness
of the simulation essentially depends on the computation of interaction start times. The
representation of an interaction is not suitable when the system user does not know how to
compute its start time.

For example, some approximations of the “pass” interaction conduct to infinite loops in
accordance with Zeno’s paradox (see [26]). These approximations are not appropriate if the
actual event of interest is when Achilles passes the tortoise.!?

W They are appropriate if the user is interested by the dates at which Achilles reaches the previous position
of the tortoise. There is no need to disallow infinite loops involving bounded series of dates. From a
phenomenological point of view, we can even observe that the time “sensed” by an observer of the simulation
system corresponds to the time a theoretical observer would sense if he was directly observing Achilles and
the tortoise — and reacting to the simulated events (and only to those events). For such an observer, the
race would actually never end.
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[Interaction Description
Interaction Type = pass

Parameters = ($action-1 $action-2)
Date Function = ?

v

IF ((type $action-1) = motion) and ((type $action-2) = motion)
THEN (set $agent-1 (agent $action-1))

(set $agent-2 (agent $action-2))

(set $date-1 (previous-date-of-interest $action-1))

(set $date-2 (previous-date-of-interest $action-2))
IF (solve-constraints

(1)

(= (+ (location $agent-1) (* (speed $agent-1) (— $t $date-1)))
(+ (location $agent-2) (* (speed $agent-2) (— $t $date-2))))
(< $date $t))
THEN (return $t)
ELSE (return oo)
ELSE (return o)

Change Function =?]

v

IF ($status = starting)
THEN (set $agent-1 (agent $action-1))
(set $agent-2 (agent $action-2))
(write-in-mailbox $agent-1 (same-location $agent-1 $agent-2))

(write-in-mailbox $agent-2 (same-location $agent-1 $agent-2))
ELSE (error "there is a bug in the simulation system")

Figure 20: An Interaction
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6 Event-Driven Simulations

In section 5, we have discussed the representation of actions and interactions in terms of
change functions. Given these change functions, the evolution of an environment is simulated
as a discrete succession of events. Time is not incremented in units. Scheduled events are
gathered in a list and time is, at each simulation cycle, incremented to the date of the next
scheduled event. The simulation function consists of a three-step simulation loop:

e Compute a list of ongoing aclions and forthcoming interactions. For each agent, the
actions attribute provides the set of actions performed by the agent. Interactions are
determined from the overall set of actions as explained in section 5.4.

e Determine actions and inleractions for which the next date of interest is minimal. Only
interactions are retained when actions and interactions share the same “next date of
interest”.

o Alter the representation of the environment in accordance with the change functions of
the selected actions (or interactions). When several actions share the same “next date
of interest”, change functions are applied for all of these actions. The change functions
are supposed to commute. When two change functions do not commute, there is an
interaction between the corresponding actions.

The simulation is pursued either for a given period of time or until a stop-test function
returns true (cf. section 3). In both cases, continuous actions require additional simulation
steps:

o If the evolution of the environment is simulated until the date equals date, date is a
date of interest of the continuous actions which start before date and end after date.
When all the dates of interest computed by change functions are greater than date, the
simulation system sets all the next dates of interest of continuous actions to date and
applies the corresponding change functions prior to stop.

o Similarly, the date at which stop-test becomes true is a date of interest of the continuous
actions which start before this date and end after this date. When stop-test becomes
true, the simulation system sets all the next dates of interest of continuous actions to
the current date and applies the corresponding change functions prior to stop.'?

When the user of the system does not specify a period of time or a stop-test to stop the
simulation, the system runs indefinitely or stops when the environment is petrified, in a
state with no ongoing action.

12The date at which stop-fest becomes true is also a date of interest of the action which makes it true. For
a continuous action, this date cannot be computed “exactly” if the change function (provided by the user)
does not perform this computation.
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7 Conclusion

In this paper, we have described a simulation system specially designed to simulate actions
of autonomous agents. An important characteristic of this system is that it allows its users to
use any formalism to describe the simulated environment and the actions performed in this
environment. Only a minimal amount of information must be encoded within the object-
oriented representation framework of the simulation system. The system needs to know the
date, the set of existing agents and the set of actions performed by each agent in the current
state.

e The simulation system allows the user to choose any totally ordered set S as a model
of time. Dates arc members of S and the user provides a definition of the ordering
relation in the form of two functions time= and time>. To manipulate the concept
of duration (which is not compulsory), the user provides an additional function time+
allowing to add dates and durations. This is similar in spirit to the modelling flexibil-
ity discussed in [35]. This flexibility is particularly important when dealing with time
because the concept of time covers very different representations, which are as many
ways of considering sequences of events [3]. There is no reason to enforce a particu-
lar representation. The most adequate representation varies from one application to
another.

e Two attributes (name and actions) are needed to describe an agent. The other char-
acteristics of an agent are not directly accessed by the simulation function. They are
application-dependent and the user can use any formalism to represent them.

e Similarly, five attributes (name, agent, status, type and parameters) are needed to de-
scribe an action. For each type of action, the user provides a change function which
describes the actions with the precision needed for the considered application. Conse-
quently, compromises between efliciency and precision are made by system users: the
system does not detail the simulation of an action when the user considers the details
are not important.

Many types of actions can be represented precisely enough to perform correct simulations.

e The system allows the simulation of cognitive actions. The representation of cognitive
actions is similar to the representation of physical actions (e.g. motions). Both the
computations and the evolution of the environment are simulated: there is no a priori
distinction between cognitive and physical actions. Section 5.3 provides many examples
of cognitive actions easily simulated by the system. This includes the use of anytime
algorithms [4] [14] and the organization of various cognitive actions within a blackboard
system [22].
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e The system allows the description of instantaneous events, discrete actions and con-
tinuous processes. To deal with continuous processes, the user may (a) either supply
an adequate time increment allowing to discretize the process or (b) provide functions
to solve sets of exact equations representing the process (as in [24]). This representa-
tion alternative allows the user to choose an appropriate level of abstraction for each
physical and cognitive action.

e The system does not only simulate “actions”, each of which is performed by an “agent”.
It also allows the representation and the simulation of interactions between concurrent
actions, predictable and unpredictable events occurring without involving agents (e.g.
natural effects that do not directly follow an action), deviations from the normal course
of an action (e.g. statistical distribution of the action duration) and interruptions.

Some of the issues discussed in this paper have already been considered by other re-
searchers. In particular, the systems presented in [20] and [24] share important characteris-
tics with our simulation system. The MACE environment [20] has been designed to serve as a
testbed for experimenting with a variety of DAI (Distributed Artificial Intelligence) systems.
MACE agents are essentially computational units performing cognitive actions in parallel.
While [20] focuses on DAI, we propose a simulation system allowing to make experiments
with all sorts of agents evolving in all sorts of environments. In our system, all the physical
and cognitive capabilities of an actual agent (sensing, reasoning, moving) are addressed. The
relation with the work of endrix [24] is also interesting. Hendrix notices that the evolution
of the world is not always describable as a succession of discrete operators. Consequently, he
proposes a system to represent and simulate simultaneous actions and continuous processes.
This system is used by a robot to determine which courses of actions permit to meet a given
goal. We believe this system can be extended to represent cognitive actions and serve as a
simulation system per se. Similarly, we could provide a robot with our simulation system and
let the robot perform simulations to test its plans (e.g. in order to detect subtle interactions
unforeseen during planning). In this respect, let us note that the similarity between the
simulation algorithm (cf. section 6) and operating loops defined in section 5.3.4 allows to
implement each change function as an independent “knowledge source”. When this is done,
the performance of a simulation is defined as the performance of a succession of cognitive
actions. We can easily simulate agents performing simulations.

The simulation system is still experimental. Nevertheless, we believe it is the most prac-
tical to test and compare reactive system designs. We are currently considering applications
in various types of environments: office environments, shop-floors, construction sites. The
applications and the types of experiments we plan to perform are detailed below. In addition
to allowing correct experiments, the simulation system also simplifies the implementation of
distributed problem-solvers. For example, we have made a new version of a distributed
planner originally developed at University Paris VI [16]: MASH (Multi-Agent Satisfaction
Handler). The implementation took only fifteen hours (for the MASH system + an applica-
tion + functions to gencrate examples + debugging) and the resulting system runs nearly as
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fast as a COMMON-LISP version of the original MASH system (in the worst case, 36 mil-
liseconds against 25 milliseconds for the construction of a “FRUITCAKE” tower (see [16])
on a DEC station 3100). The rapidity of the implementation is probably due to the clarity
of the concepts in [16]. Nevertheless, the use of the simulation system allows to encode the
behaviors of each agent with no unnecessary worry about the coordination of the overall
society. This definitely saves time.

Office Automation

Currently, the most advanced application concerns the combination of centralized and
distributed multi-robot planning and scheduling techniques in an office environment [6] [36).
Typical tasks include transportation of objects (books, mail), operation of machines (copiers,
vending machines), cleaning and maintenance. Different communication systems (necessary
to coordinate operations and for each robot to acquire information) may be available. Com-
munications may be more or less costly, always possible or possible only at some moments.
This suggests various system organizations which are as many intermediates from a com-
pletely centralized system to a completely distributed system. In this context, the simula-
tion system is used to test and compare various combinations of centralized and distributed
problem-solving components (task and motion planning systems, task allocation systems,
execution control systems) integrated (for each agent) within the blackboard architecture
presented in section 5.3.4. In the near future, we will conduct experiments to determine to
what extent a centralized analysis of task interactions allows to improve the overall behavior
of the robotic system. We could also determine to what extent task allocation is enhanced
when details about the environment geometry are taken into account. Later, we can also
use the simulation system to:

e examine the problems which arise when a robot takes too much time to revise its plans;
e check the utility of different sensors and interpretation algorithms;

e test contingency-tolerant motion execution techniques involving artificial potential

fields (see [31] [7]);

e test and compare methods allowing robots to determine (in a given situation) which
pieces of information are worth getting (or spreading);'?

e compare the blackboard architecture currently in use with other agent architectures
(e.g. action networks [41]) in terms of speed and responsiveness (and possibly other
criteria such as those defined in [15] and [12]).

13This includes the comparison of mechanisms allowing error error propagation to stop: unless each robot
carefully verifies critical pieces of information prior to propagate them, we can expect errors concerning
important issues to propagate much quicker than less important errors (as in the case of human rumors [1]).
Error propagation is therefore an important problem in domains in which important errors can be made.
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Manufacturing (In Clean Rooms)

The production of microelectronic circuits in clean rooms raises various organization and
scheduling problems.* First, the cost of a clean room (typically $10M) increases quite rapidly
with the size of the clean room. Hence a need to automate manufacturing operations and part
transportations, in order to allow many parallel actions in the smallest amount of space. The
risk of wafer contamination also suggests the avoidance of manual operations. In particular,
using mobile robots to transport circuits (in protective boxes) from one small clean room
to another is probably safer than manually transporting wafers in a large clean room. This
leads to the exploration of issues similar to those considered in the office automation project.
In addition, unpredictability in factory operation is particularly important: the methodology

14We are going to use a few technical terms. Let us consequently draw a simple picture of circuit fabrication
for people to which this process is not familiar. Circuits are produced in wafers: a few hundreds of identical
circuits are usually grown on the same wafer. When the manufacturing process begins, a wafer is a thin
polished slice of silicon. Circuits are then constructed in layers. Each layer is defined by a pattern on a glass
plate, called a photomask, whose features are transferred to the surface of the wafer. The process consists,
for each layer, of a varying combination of deposition, photolithographic and etching steps.

e Deposition. Material is either grown on the surface of the wafer or implanted within the wafer at a
pre-determined depth. Many types of deposition processes are distinguished. Ozidation consists of
heating the wafer in an atmosphere of oxygen and water vapor so that a film of silicon dioxide forms
on the surface of the wafer. Silicon dioxide subsequently protects the wafer from its environment and
insures electrical insulation between metals. Metallization is a process in which various regions of the
device structure are connected with evaporated aluminium which deposits on the wafer to produce
a circuit. Implantation consists of accelerating a controlled amount of selected particles (e.g. boron
ions), so that they penetrate below thin layers of oxide, but not below thicker layers. Photoresist
application consists of placing a drop of photoresist (a substance sensitive to ultra-violet radiation but
not to yellow light) dissolved in a solvent on the wafer, rapidly spinning the wafer to obtain a thin
film, and baking the wafer to increase adherence.

o Photolithography. Ultra-violet radiation allows to transfer patterns from a photomask to the surface
of the wafer: photoresist is attacked in the areas exposed to the radiation. A new bake (at a very
high temperature) usually follows this exposition to harden the remaining resist. The most impor-
tant difficulty in photolithography is to align the photomask to any previously defined pattern on
the wafer. Aligners arc very precise and consequently expensive pieces of equipment. As a result,
photolithography is often a bottleneck operation.

o FEtching. Acids or magnetic fields are used to attack either the portions of the wafer which are not
protected by the hardened resist or (later, in some cases after an intermediate implantation step) the
resist itself.

In addition, the manufacturing process contains many cleaning and inspection steps, not only at the end of
the process (where tests are made to mark defective circuits prior to section the wafer), but also between
deposition, photolithographic and etching steps. An important characteristic of the overall process is that
the path that a wafer follows varies with the layer and with inspection results. Therefore, the factory cannot
be organized as a production line. It is rather a collection of production sectors among which wafers travel
in a complex fashion. Another important characteristic is the risk of wafer contamination (introduction of
unwanted impurities within the circuits) especially during metallization and implantation steps. To reduce
this risk, manufacturing operations are performed in clean rooms with refreshed air and human operators
provided with special equipment.
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specifies cases in which the path followed by a set of circuits depends on test and inspection
results.’® Consequently, it does not make sense to generate a precise production schedule for
a week or a month. Instead we would rather (a) use probabilistic or fuzzy models to generate
long-term schedules [40] [30], (b) generate more precise schedules for short periods of time
(not more than a day) and (c) use a very reactive scheduling system to update the immediate
part of the schedule as unexpected events occur. More specifically, we are now investigating
the relation between the short-term predictive scheduling system and the reactive scheduling
system.

e The predictive scheduling system schedules operations in advance (typically in the
evening for the next day). A predictive scheduling system is not absolutely necessary,
but its usefulness is usually significant. Because it is not subjected to real-time con-
straints, computational time can be spent to ensure the global quality of the job-shop
schedule. Furthermore, the existence of a predictive schedule allows to prepare tools,
make transportations and perform set-ups in advance. Nevertheless, the uncertainty in
the environment suggests the maintenance of many ordering possibilities allowing the
reactive system to cope with unexpected events during execution: as mentioned in [44],
the precision of schedules must be determined by the uncertainty of the information
used in making decisions (see also [18] [19] [33]).

e The reactive scheduling system makes scheduling decisions in real-time with respect
to the actual statc of the shop. It modifies the predictive schedule in response to
unexpected events which modify the shop conditions. An important issue is therefore
to determine what is a good horizon for the reactive scheduling system: is it allowed
to modify whatever it wants in the schedule or should it restrict its modifications to
a few coming hours ? This is particularly important because the reduction of the
reactive system’s horizon does not only allow a better preservation of the schedule.
It also ensures a prompt reaction. In a typical circuit factory, 1000 lots and 100
agents (human operators, machines, robots) are considered at any instant in time.
This is much more than in the cases discussed in section 2.1 and suggests the use of
more restricted (less complete) reactive strategies. Another possibility of interest is
to distribute the rcactive scheduling effort: for example, we could associate a distinct
reactive scheduling agent to each production sector.

e Although the reactive system must always go on making decisions in real-time, it
may in some cases alert the predictive system that some manufacturing operations
are not executed as scheduled. The predictive system would then re-schedule some
operations (which are not imminent) with a more global view. This requires a criterion
to determine when it is suitable to re-schedule operations with this more global view.

I5If we except this, very few unpredictable events such as machine breakdowns (except simple problems
with aligners) occur. In other terms, unpredictability arises mostly from the existing methodology and not
from the complexity of the environment.
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The simulation system will certainly prove useful to make experiments involving various
versions of predictive and reactive scheduling systems. In particular, we may partly re-use
the model built as part of the office automation project to compare more or less distributed
versions of the reactive scheduling system.

Automation on a Construction Site

The problems we consider in the case of a construction site are similar to the problems
relating to office automation. We are investigating the integration of various short-term plan-
ning and execution monitoring techniques on a construction site. The case of a construction
site introduces particular difficulties. For example, the geometry of a construction site con-
tinually changes while an approximate map of an office environment is generally available.
More sophisticated planning techniques (integrating temporal and geometrical reasoning)
are consequently necessary. TFor the same reason, there are many more real-time interac-
tions between agents. In this context, the definition of an efficient and correct experimental
approach to compare reactive system designs is a critical issue. We believe the simulation
system described in this paper will allow to perform valid experiments in an efficient fashion.
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Annex: Example in an Office Environment

In this annex, we present a simple example in the context of the office automation project.
There are four robots in the environment. These robots communicate with a central com-
puter through infra-red communication ports. Clients order copies of books and reports.
To respond to an order, a robot must get an original from one of the two square bookcases
(most books and reports are available from either bookcase), go to the rectangular copier,
get a copy from the copier, bring the copy to the client and bring the original back to the
right bookcase. Each screen is organized as follows:

e On the left side is shown the location of each robot and object of interest in the
environment.

e In the upper right corner is shown the set of proposals made by each robot for the
pending orders. There is no pending order in the initial situation.

e In the lower right corner is shown the set of starting and inprocess actions performed by
each robot. In the initial situation, each robot is “thinking”: making plans to connect
onto the communication network and see whether something needs to be done.

Fifteen screens are shown. Many things happen between two screens. Most of the thinking
actions are skipped to keep the example small.
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Screen 1
This is the initial sitnation. Bach robot makes plans to connect onto the communication

network.

2588

%282

THIK @ @ & &

50



Screen 2
Each robot moves toward a communication port.
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Screen 3
The second robot connects onto the communication network.
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Screen 4
The second robot sends a mail to the central system to determine whether there are

pending orders. The “move” action of the third robot is completed and the third robot is in
the process of deciding what to do next.
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Screen 5
There is a new order. The second robot and the third robot (which is now connected)

construct proposals for this order.
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Screen 6
The proposal of the third robot is submitted to the central system.
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Screen 7
The proposal of the second robot is submitted to the central system and rejected. The

proposal of the third robot is accepted and the robot is now moving. The fourth robot is
now connected — but too late to make a proposal. The first robot cannot connect because
the second robot is using the port: the first robot will wait.
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Screen 8
The third robot gets an original from the closest bookcase.
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Screen 9
The third robot moves to the copier.
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Screen 10
The second and the fourth robots construct proposals for a new order. The third robot

waits at the copier (the copier is making the requested copy)-
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Screen 11

The proposal of the second robot is rejected. The proposal of the fourth robot is accepted
and the robot is now moving.
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Screen 12
The fourth robot gets an original from the closest bookcase.
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Screen 13
Two robots are now waiting at the copier.
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Screen 14
The second robot made a proposal for a new order. The proposal was accepted and the

robot is now moving. The first robot is finally connected.
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Screen 15
The second robot gets an original, available only in the farthest bookcase. The third

robot got the requested copy and is now moving.
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.. etc.
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