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Agent-Oriented Programming

Yoav Shoham
Robotics Laboratory
Computer Science Department
Stanford University

A new computational framework is presented, called agent-oriented programmaing,
which can be viewed as an specialization of object-oriented programming.*The
state of an agent consists of components called beliefs, choices, capabilities, com-
mitments, and possibly others; for this reason the state of an agent is called its
mental state. The mental state of agents is captured formally in an extension of
standard epistemic logics: beside temporalizing the knowledge and belief opera-
tors, AOP introduces operators for commitment, choice and capability. Agents
are controlled by agent programs, which include primitives for communicating
with other agents. In the spirit of speech-act theory, each communication primi-
tives is of a certain type: informing, requesting, offering, and so on. This docu-

ment presents the concept of AOP, and describes progress made to date towards

realizing it.



ERRATA in
Agent-Oriented Programming

The report contains several typographical errors. Most of them are innocuous, but a
couple are not. Here are the more misleading ones that have been discovered to date (thanks

to Fangzhen Lin).

On page 27, please replace the pattern (B,employee(smith,acme)) by the pattern
(B, [t,employee(smith,acme)]).

Later in that same page, replace the line
IF (B,employee(smith,acme)) THEN INFORM(t,a,employee(smith,acme))
by
IF (B,[t’,employee(smith,acme)]) THEN INFORM(t,a,[t’,employee(smith,acme)])

On page 38, the first macro contains two occurrences of the term issue_bp; please replace

the second occurrence by physical_issue_bp.
At the bottom of the same page, replace < by >.

Finally, in the first commitment rule on page 39, replace the second argument ((B,7p))

by the argument true.
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1 Introduction

This manuscript proposes a new programming paradigm, based on a societal view of com-
putation. I will describe the concept as well as the progress I, together with others in the
Agents group within the Robotics Laboratory, have made to date towards realizing this
concept. The discussion touches on issues that are the subject of much current research in
Al issues that include the notion of agenthood and the relation between a machine and its
environment. Many of the ideas here intersect and interact with the ideas of others. For the
sake of continuity, however, I will not place this work in the context of other work until the

end.

1.1 What is an agent?

The term ‘agents’ is used frequently these days. This is true in Al, but also outside it, for
example in connection with data bases and manufacturing automation. Although increas-
ingly popular, the term has been used in such diverse ways that it has become meaningless
without reference to a particular notion of agenthood. Some notions are primarily intuitive,
others quite formal. Some are very austere, defining an agent in automata-theoretic terms,
and others use a more lavish vocabulary. Below are three overlapping senses of agenthood

that I have discerned in the Al literature.

o Agents are subservient. This is perhaps the original sense of the word, someone acting
on behalf of someone else. This is the sense of ‘agency theory’ in economics, where
considerations include calculations of incentives and so on (of courses, agency theory
in economics encompasses much more than just this sense). Early on this was the
sense in Al too, but few of the people in Al today who use the word intend this
meaning. (One exception that comes to mind is the use of the word by people in the
intelligent-interfaces community, when they talk of ‘software agents’ carrying out the

user’s wishes.)

e Agents function continuously and ‘autonomously’ in an environment in which processes
take place and other agents exist. This is perhaps the only property that is assumed

uniformly by those in Al who use the term. The sense of ‘autonomy’ is not precise,
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but the term is taken to mean that the agents’ activities do not require constant
human guidance or intervention. Often certain further assumptions are made about
the environment, for example that it is physical and partially unpredictable. In fact,
agents are sometimes taken to be robotic agents, in which case other issues such as

sensory input, motor control and time pressure are mentioned.

e Agents are “high-level.” Although this sense is quite vague, many take some version
of it to distinguish agents from other software or hardware components. The “high
level” is manifested in symbolic representation and/or some cognitive-like function:
agents may be ‘informable’ (Genesereth [20]), may contain symbolic plans in addition
to stimulus-reponse rules (Dean [11], Hayes-Roth et al. [25], Drummond [14], Mitchell
[38], and many others), may even possess natural-language capabilities, and so on. This
sense is not assumed uniformly in Al and in fact a certain counter-ideology deliberately
denies any representation in agents. This camp tends be included in the camp most
inclined to view agents as real-time robotic agents (some representatives: Brooks [6],
Schoppers [47], and Agre and Chapman’s celebrated [1], roughly in decreasing order of

fanaticism).

I take it that agents may, but need not, be subservient, and that, alongside other agents,
they function in an environment that may, but need not, be partially unknown. I will not
assume anything further about the environment; in particular I will not assume that the
environment is physical nor that agents are under time pressure (although as a special case
I am interested in real-time robotic agents). Most crucially, I will use the term ‘(artificial)
agents’ to denote entities possessing formal versions of of mental state, and in particular
formal versions of knowledge, beliefs, capabilities, choices, commitments, and possibly a few
other mentalistic-sounding qualities. What will make any hardware or software component
an agent is precisely the fact that one has chosen to analyze and control it in these mental

terms; in this respect “my” agents too are high level.

The question of what an agent is now becomes the question of what can be described in
terms of knowledge, belief, commitment, etcetera. The answer is that anything can be so
described, although it is not always advantageous to do so. In [12] and other publications D.
Dennett proposes the “intentional stance,” from which systems are ascribed mental qualities

such as intentions and free will. The issue, according to Dennett, is not whether a system
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really is intentional, but whether we can coherently view it as such. Similar sentiments are
expressed by J. McCarthy in [35], who also distinguishes between the ‘legitimacy’ of ascribing

mental qualities to machines and its ‘usefulness’:

To ascribe certain beliefs, free will, intentions, consciousness, abilities or wants
to a machine or computer program is legitimate when such an ascription expresses
the same information about the machine that it expresses about a person. It is
useful when the ascription helps us understand the structure of the machine,
its past or future behavior, or how to repair or improve it. It is perhaps never

logically required even for humans, but expressing reasonably briefly what is

actually known about the state of the machine in a particular situation may
require menta | qualities or qualities isomorphic to them. Theories of belief,
knowledge and wanting can be constructed for machines in a simpler setting
than for humans, an d later applied to humans. Ascription of mental qualities is

most straightforward for machines of known structure such as thermostats and

computer operating systems, but is most useful when applied to entities whose

structure is very incompletely known.

In [49] I illustrate the point through the light-switch example. It is perfectly coherent to
treat a light switch as a (very cooperative) agent with the capability of transmitting current
at will, who invariably transmits current when it believes that we want it transmitted and
not otherwise; flicking the switch is simply our way of communicating our desires. However,
while this is a coherent view, it does not buy us anything, since we essentially understand
the mechanism sufficiently to have a simpler, mechanistic description of its behavior. In
contrast, we do not have equally good knowledge of the operation of complex systems such
robots, people, and, arguably, operating systems. In these cases it often most convenient
to employ mental terminology; the application of the concept of ‘knowledge’ to distributed

computation, discussed below, is an example of this convenience.?

2[p [49] I discuss how the gradual elimination of animistic explanations with the increase in knowledge
is correlated very nicely with both developmental and evolutionary phenomena. In the evolution of science,
theological notions were replaced over the centuries with mathematical ones. Similarly, in Piaget’s stages
of child development, there is a clear transition from animistic stages around the ages of 4-6 (when, for
example, children claim that clouds move because they follow us around), and the more mature later stages.



| Framework: | ooP l AOP |

Basic unit: object agent

Parameters defining unconstrained knowledge, beliefs, commitments,
state of basic unit: capabilities, choices, ...

Process of message passing and | message passing and
computation: response methods response methods

Types of unconstrained inform, request, offer,

message: promise, decline, ...

Constraints on methods: || none honesty, consistency, ...

Figure 1: OOP versus AOP
1.2 Agent- versus Object-Oriented Programming

Adopting the sense of agenthood just described, I will propose a computational framework
called agent-oriented programming (AOP). The name is not accidental, since from the engi-
neering point of view AOP can be viewed as an specialization of the object-oriented program-
ming (OOP) paradigm. I mean the latter in the spirit of Hewitt’s original Actors formalism
[26], rather than in the more specific sense in which it used today. Intuitively, whereas OOP
proposes viewing a computational system as made up of modules that are able to communi-
cate with one another and that have individual ways of handling in-coming messages, AOP
specializes the framework by allowing the modules, now called agents, to possess knowledge
and beliefs about themselves and about one another, to have certain capabilities and make
choices, and possibly other similar notions. A computation consists of these agents inform-
ing, requesting, offering, accepting, rejecting, competing with and assisting one another.

Figure 1 summarizes the relation between AOP and OOP.2

1.3 AOP and logics of knowledge

The previous discussion offered a programming-paradigm perspective on AOP. An alternative
view of AOP is as an application of a formal language. The formal language being applied is a
generalization of epistemic logics, which have been used extensively in AI (cf. [39, 29, 32, 50])

SThere is one more dimension to the comparison, which I omitted from the table, and it regards in-
heritance. Inheritance among objects is today one of the main features of OOP, constituting an attractive
abstraction mechanism. I have not discussed it since it is not essential to the idea of OOP, and even less so
to the idea of AOP. Nevertheless a parallel can be drawn here too, and I discuss it briefly in the final section.



and distributed computation (cf. [23, 24]). These logics, which were imported directly from
analytic philosophy first to Al and then to other areas of computer science, describe the
behavior of machines in terms of notions such as knowledge and belief. In computer science
these mentalistic-sounding notions are actually given precise computational meanings, and
are used not only to prove properties of distributed systems, but to program them as well.
A typical rule in such as ‘knowledge based’ systems is “if processor A does not know that
processor B has received its message, then processor A will not send the next message.”
AOP augments these logics with formal notions of choices, capabilities, commitments, and
possibly others. A typical rule in the resulting systems will be “if agent A knows that agent
B has chosen to do something harmful to agent A, then A will request that B change its
choice.” In addition, temporal information is included to anchor knowledge, choices and so

on in particular points in time.

Here again we benefit from some ideas in philosophy and linguistics. As in the case of
knowledge, there exists work in exact philosophy on logics for choice and ability (cf. [15]).
More centrally, however, we borrow ideas from the speech act literature [4, 48, 22]. Speech-
act theory categorizes speech, distinguishing between informing, requesting, offering and so
on; each such type of communicative act involves different presuppositions and has different
effects. Speech-act theory has been applied in Al, in natural language research as well as in
plan recognition [43, 28]. In a sense, AOP too can be viewed as a rigorous implementation

of a fragment of direct-speech-act theory.

Intentional terms such as knowledge and belief are used in a curious sense in the formal
Al community. On the one hand, the definitions come nowhere close to capturing the full
linguistic meanings. On the other hand, the intuitions about these formal notions do indeed
derive from the everyday, common sense meaning of the words. What is curious is that,
despite the disparity, the everyday intuition has proven a good guide to employing the
formal notions in some circumscribed applications. AOP aims to strike a similar balance

between computational utility and common sense.

It should be understood that this document describes a concept rather than a finished
product. I believe that the concept is sound and that it can it can form a basis for future
computer environments. 1 am also aware that some of the issues involved in implementing

it are nontrivial and must be settled before a practical system is built. I will describe work



we are carrying out that addresses these issues.

Organization of the document

The rest of the document is organized as follows. In Section 2 I provide further motivation
for the AOP paradigm by looking at three futuristic applications. In Section 3 I outline the
main ingredients of the AOP framework. The bulk of the paper then describes progress
we have made to date towards realizing the concept. In Section 4 I discuss the formal
definition of mental state. In Section 5 I present a simple language called AGENTO in which
to program agents. In Section 6 I discuss the compilation of agent programs into a neutral
process language. In Section 7 I briefly discuss related work by others in Al Finally, in
the last section I discuss some of the directions in which the work described here can be

extended.

2 Three scenarios

Below are three semi-futuristic scenarios. Although they are couched in different settings, the
three all illustrate similar points. They each involve communicative acts such as informing,
requesting, committing, permitting and commanding, and require agents to reason about

the beliefs, capabilities and commitments other agents.

2.1 Manufacturing automation

Alfred and Brenda work at a car-manufacturing plant. Alfred handles regular-order cars,
and Brends handles special-order ones. The plant has a welding robot, Calvin. The overly
busy plant foreman has written a coordinating program, Dashiel. The following scenario

develops, involving communication between Alfred, Brenda, Calvin and Dashiel.

8:00: Alfred requests that Calvin promise to weld ten bodies for him that day; Calvin agrees

to do so.

8:30: Alfred requests that Calvin accept the first body, Calvin agrees, and the first body
arrives. Calvin starts welding it and promises Alfred to notify him when it is ready for

the next body.



8:45: Brenda requests that Calvin work on a special-order car which is needed urgently.
Calvin reponds that it cannot right then, but that it will when it finishes the current
job, at approximately 9:00.

9:05: Calvin completes welding the Alfred’s first car, ships it out, and offers to weld Brenda'’s

car. Brenda ships it the car, and Calvin starts welding.

9:15: Alfred enquires why Calvin is not yet ready for his (Alfred’s) next car. Calvin explains
why, and also that it (Calvin) expects to be ready by about 10:00.

9:55: Calvin completes welding Brenda’s car, and ships it out. Brenda requests that it
reaccept it and do some painting, but Calvin refuses, explaining that it does not know
how to paint. Calvin then offers to weld another car for Alfred, and proceeds to weld

Alfred’s cars for a while.

12:15: Brenda requests that Calvin commit to welding four more special-order cars that
day. Calvin replies that it cannot, since that conflicts with its commitment to Alfred,
who still has six unwelded cars. Brenda requests Alfred to release Calvin from its com-
mitment to Alfred. Alfred refuses. Brenda requests that Dashiel (remember Dashiel?)
order Calvin to accept her important request and revoke its commitment to Alfred.
Dashiel orders Calvin to weld two of Brenda’s cars, and then as many of Alfred’s as

time allows.

2.2 Robot coordination

It is 1999, and the new Information Sciences building at Stanford has been completed. In
addition to its human inhabitants, the building is populated by about 100 gofer robots. The
role of the gofers is to carry documents to and from the copying machine, fetch coffee and

sodas, and generally make themselves useful.*

At the junction of two corridors two gofers, Gofer and Gofer,, engage in the following

exchange.

Gofery: I intend to turn into the north corridor.

4«Gofer” is an actual ongoing project in the robotics laboratory, under the direction of J. C. Latombe.
The completion of the building by the said date, however, is pure speculation.
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Gofery: So do I; you may go first. Where are you headed?
Gofer,: The copying machine.
Gofery: Will you xerox this document for me and drop it off at John’s office?

Gofery: Okay.

Gofer, proceeds down the north corridor, and Gofer; scuttles back down the west corridor.

Halfway down the corridor it runs into Gofers.

Gofers: Where are you headed?
Gofery: To John's office.

Gofers: Watch out for a traffic jam in corridor 25.

2.3 Airline reservation

This example is a minor modification of one due to John McCarthy [36], who uses it to
illustrate his Elephant programming language (see discussion of Elephant in Section 7). The
example involves three agents: a passanger P, an airline clerk C, and C’s supervisor S. P
and S are human, and C is a program. Or is it the other way around. Or perhaps all three
are programs.

March

P to C: Please inform me what flights you have from San Francisco to New York on April
18.

C to P: Flight #354 departs at 08:30, flight #293 departs at 10:00, flight #441 departs at

noon, ...
P to C: Please book me on #354.
C to P: That is sold out.
P to C: Please book me on #293.
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C to P: That is confirmed; your reservation number is 112358.

P to C: Please book me also on #441.

C to P: That conflicts with #293; I am not allowed to double book a passanger.
P to C: Please get permission to do so.

C to S: I request permission for the following double booking: ...

S to C: Permission denied.

C to P: Sorry, I cannot get approval.

April 18, at the airport

P to C: My name is John Smith; I have a reservation for flight #293.

C to P: Here is your boarding pass.

3 Overview of the AOP framework

The preceding scenarios made reference to mentalistic notions such as knowledge, beliefs and
commitments. Our goal now is to make engineering sense out of these abstract concepts.
The result will be the agent-oriented programming paradigm. The AOP framework will

include three primary components:

o A restricted formal language with clear syntax and semantics for describing mental

state. The mental state will be defined uniquely by several modalities, such as belief

and commitment.

o An interpreted programming language in which to program agents, with primitive
commands such as REQUEST and INFORM. The semantics of the programming language

will derive from the semantics of mental state.

e A compiler from the agent-level language to an abstract model of processes.

In the remainder of the document I expand on these components, and describe progress

made to date towards realizing them.
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4 The definition of mental state®

The first step in the enterprise is to define agents, that is, to define the various components of
mental state and the interactions between them. There is not a unique ‘correct’ definition,
and different applications can be expected to call for specific mental properties. In this
section I will discuss what could be viewed as a bare-bones theory of mental state, a kernel
that will in the future be modified and augmented. The work summarized here has been
carried out jointly among several members of our research group, and reported initially in

[51].

In related past research by others (see Section 7), three modalities were explored: belief,
desire and intention (giving rise to the pun on BDI agent architectures). Although we started
out by exploring similar notions, with time we lowered our sights. In this document I will
concentrate on two primitive modalities — belief and commitment — and two derived ones -
choice and capability - which we have found more basic (strictly speaking, capability is a

relation between the mental state and the environment; more on that later).

By restricting the components of mental state to these modalities I have in some informal
sense excluded representation of motivation. Indeed, I will not assume that agents are
‘rational’ beyond assuming that their beliefs, commitments and choices are internally and
mutually consistent. This stands in contrast to other work on agents’ mental state (see
Section 7), which makes further assumptions about agents acting in their own best interests,
and so on. Such stronger notions of rationality are obviously important, and in the future
we may wish to add them. However, neither the concept of agenthood nor the utility of

agent-oriented programming depend on them.

Although I discuss formal definitions, in the presentation here I leave out many details,
inclusion of which would defeat the purpose of this document. In particular, I have omitted
almost all discussion of formal semantics (I have left in only terse outlines, for the benefit of
the readers who particularly care about such matters; others may skip those few and short

segments).

5The material in this section summarizes work carried out jointly with Becky Thomas, Anton Schwartz
and Fangzhen Lin
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4.1 Time

The basis for our language is a simple temporal language. The particular temporal logic we
adopt here is an explicit-time point-based logic; the construction would be similar for other
choices. We take time to be a linear order. In fact, here we will assume the integers as a
model for time; this too is a convenience one might decide to do without later. A ‘time line’

associates with each time point a set of propositions, those that are true at that time.

Syntax

Assume a set TC of time point constants, a set P of predicate symbols (each with a
fixed arity > 0), a set F of function symbols (each with a fixed arity > 0), and set V of
variables. The set of terms is defined as follows: a variable is a term, and if f is an n-ary
function symbol and trm;,...,trm, are terms then £(trm;,...,trm,) is also a term. The
set of well-formed formulas is then defined as follows. If t;,¢; € TC then t; < 1; is a wif. If
t is a time point symbol, r is an n-ary predicate symbol, and trmy,...,trn, are terms, then
£(trm,...,trm,)  is a wif. If p and ¢ are wifs and visa variable, then ¢ A9, ~p and Yoy
are all wifs. We will use the standard abbreviations V and D. (In this simple construction

we do not even allow quantification over time points.)

Semantics (outline)

The models for sentences are conventional: time point constants are interpreted as
integers®, variables and 0-ary function symbols as objects, other function symbols as func-
tions from time and objects to objects, and predicate symbols as functions from to time
to tuples of objects. If M is such an interpretation, then P(trm;.. .trm,)* is true in it iff
(M(t,trmy),..., M(t,trm,)) € M(t,P).

4.2 Belief

We now augment the language with a modal operator B, denoting belief. The standard logic
of belief (see [23]) simply adds to the language the sentence By, for any sentence  in the

6In this document we assume the integers as the temporal structure, but one could assume otherwise.

14



language. The most common logic of belief is the KD45 system (see [7]), which in addition
to the axioms of propositional calculus and two inference rules satisfies the following axioms:

Bp1 A B(p1 Dw2) D Bys

By = BBy
=By = B-Byp

We will complicate the logic in only a minor way by adding to the operator two more
arguments: the agent who is doing the believing, and the time of belief. Furthermore,

possible worlds will also have a temporal dimension, and will in fact each be a time line.

Syntax

Given a temporal logic as before, we assume another set of constants AG, the agent
constants. We now add one wff-formation rule: if t is a time-point constant, a is an agent
constant, and ¢ is a sentence in the language, then B* (a,¢) is also a sentence in the language.
For example, B3(a,B1° (b,like(a,b)”)) will mean that at time 3 agent a believes that at
time 10 agent b will believe that at time 7 a liked b.

We assume B to be an KD45 operator; among other properties this includes:

B*(a,¢1) A B*(a,p1D92) D B'(a,¢2)
B*(a,¢) D B'(a,B*(a,p))
-B*(a,p) D B*(a,—-B(a,y))

-Bt(a,p A )

Semantics (outline)

A B-structure is a tuple (L,m) where L is a set of time lines, and m is a function
that specifies for every time point and agent an accessibility relation Rp,, on L. Each such
accessibility relation is transitive and Euclidean, and B is defined to be the necessity operator

for this modality.
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4.3 Belief versus knowledge

In this document I will not assume that agents possess knowledge that is distinct from
their beliefs. The distinction usually made between the two is that while known facts must in
fact be true, believed facts need not be. It is possible to add another modality K to represent
knowledge, with the extra property K*(a,¢) D ¢. In fact, together with Y. Moses I have
made a proposal to view belief as a defeasible form of knowledge, and actually defined the
B operator in terms of K; see details in [50]. However, since on the one hand the proposal
is sufficiently novel to attract controversy, and on the other hand one can define a coherent
and useful notion of mental state without distinguishing between knowledge and belief, 1

will not pursue this issue here.

4.4 Commitment

So far I have used largely well-known constructions: the temporal logic is standard, the
logic of belief is standard, and their combination, although somewhat novel, is nonetheless
straightforward. We now depart more radically from past constructions and introduce new

modal operator, CMT.

Unlike B, CMT is a ternary operator: CMT(a,b,y) will mean that agent a is committed
to agent b about ¢ (of course, we will add a temporal component to represent the time
of commitment). This inter-agent flavor of commitment contrasts with past accounts of
the same concept, which viewed it as an intra-agent phenomenon. Notice that the agent is
committed about the truth of a sentence, not about his taking action. In fact, I will not
introduce in the logic a seperate category of entities called “action.” For example, strictly
speaking, rather than say that the robot is committed to taking the action “raise arm” at
time t, we will say that the robot is committed to the proposition “the robot raises its arm
at time t.” However, since actions are such a natural concept and in fact are dealt with in a
special way, in the actual programming language we will introduce them as syntactic sugar.
Both in the logical treatment here and in the programming language later, since actions are
facts, they are also instantaneous (we have adopted for now a point-based logic). In order to

represent durational actions, we must currently break them into consecutive instantaneous
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one; it will be important, and not too hard, to avoid this in future extensions.

Syntax

We augment the syntax of the language as follows: If a and b are agent terms, t is a

temporal term and ¢ is a sentence, then CMT*(a,b, ) is also a sentence.
We take CMT to be a KD4-operator (see [7]); among other properties, this gives us the
following:
CMT*(a,b,1) A CMT*(a,b,1D¢2) D CMT*(a,b,s)

CMT*(a,b,p) D CMT*(a,b,CMT*(a,b,¢))

-CMT*(a,b, pA=p)

Semantics (outline)

A B-CMT-structure is the result of adding to a B-structure a second function, which
specifies for each time point ¢ and each ordered pair of agents a, b a second accessibility
relation on time lines, Romr, ,,- Each such accessibility relation is transitive and serial, and

CMT is defined to be the necessity operator of this modality.

4.5 Belief and commitment

Beliefs and commitment must not only be internally consistent, they must also be mutually

consistent. First, we assume that an agent is completely aware of his commitments:

CMT*(a,b,p) = B*(a,CMT*(a,b,¢))

-CMT*(a,b,p) = B*(a,~CMT*(a,b,))

Note that an agent is not neccesarily aware of which coomitment are made to him, only
of commitment he has towards others. Second, we assume that agents only commit in good
faith:

CMT®*(a,b,) D B*(a,)

Note that as a corollary we have that commitments must be consistent:

Fact: CMT*(a,b,p) D —CMT*(a,c,p)
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4.6 Choice

The freedom to choose among several possible actions is central to the notion of agenthood,’
and earlier on in the research we indeed took choice to be a primitive notion. The current
definition of commitment provides an alternative, however: choice is defined to be simply

commitment to oneself:
CHt (at‘P) =def cmt(aaayso)

It should be added that, as is the case in general in language, the word ‘choice’ is multi-
facetted, and it is not our aim to capture all senses of the word. The sense of choice here
is akin to that of ‘decision’; an agent has chosen something if he has decided that that
something be true. In particular, no connection is assumed here to any notion of motivation,

such as desire or intention. See related discussion in subsection 4.9.

4.7 Capability

Also intimately bound to the notion of agenthood is that of capability. I may choose to
move my arm, but if I am not capable of it then it will not move. I will not ask a three-
year-old, nor a mobile robot, to climb a ladder, since I do not believe they are capable of
it.

Unlike the notions discussed so far, capability is not a purely internal property of the
agent. In fact, there are philosophical views which completely dissociate capability from
mental state (e.g., [15]. We, however, choose to view the notion as a certain relation between
the agent’s mental state and the world. One could introduce an independent operator to
denote capability, but we have decided to define it away. The intuition behind the following
definition is that “to be able to X’ means to have the power to make X true by merely

choosing that it be so:

CAN®*(a,p) =45 CH*(a,p) D ¢

7To quote Isaac Bashevis-Singer, “We must believe in free will; you see, we have no choice.”
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To be sure, this definition departs from common sense quite sharply on certain points, but
so far we have not found ourselves hurt by this gap. For example, although we get that
—~CH!(a,p) D CANt(a,¢), (i.e., one is capable of anything by merely not choosing it), that
turns out to be quite innocuous; what count are the choices that are not ruled out. And
while ¢ O CAN®(a,¢) (i.e., one is capable of anything that happens to be true), the typical
statements refer to beliefs about capabilities, such as B (a,CAN* (b, ¢)), which is not entailed
by . Of course, we do get B*(b,p) D B*(b,CAN*(a,)), but we see no harm in assuming

that anyone can bring about something that we believe will happen anyway.®

The definition does have some very intuitive properties, such as the following

Fact: CMT*(a,b,p) D B*(a,CAN®*(a,¢))

As with the previous notions we are open to other definitions, but until we encounter
difficulties we intend to adopt the simplest systems. Again, the game we are playing is not
to determine whether a particular definition can be shown to contradict commeon sense or

linguistic convention, but whether restricted definitions will support significant applications.

4.8 The persistence of mental states

So far all the restrictions on mental attitudes referred to attitudes at a single instant of time.
We conclude the discussion of mental state by discussing restrictions on how mental states

change over time.

Consider, for example, belief. Our axioms so far allow models in which at one time an
agent believes no propositional sentences but tautologies, at the next time he has a belief
about every sentence, and at the time following that he is again very agnostic . We have the
intuition that beliefs tend to be more stable than that. We will now place a strong condition
on belief; we will assume that agents have perfect memory of and faith in their beliefs, and
only let go of a belief if they learn a contradictory fact. Beliefs therefore persist by default.

Furthermore, we will assume that the absence of belief also persists by default, although in

8]t is possible to add a necessity operator in the definition, as in CANY (a,9) =des O(CE*(a,p) D ¢,
where O is interpreted as truth in all worlds. However, while there is a better match with intuition under
this definition, we have so far found no other advantage to it, and so for now we have decided against this
more complex definition.
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a slightly different sense: if an agent does not believe a fact at-a certain time (as opposed
to believing the negation of the fact), then the only reason he will come to believe it is if he
learns it. (In a forthcoming publication, where we consider also the persistence of knowledge
and ignorance, we assume that the persistence of knowledge is absolute: what you know now

you always will. The persistence of ignorance is, again, only by default.)

How to formally capture these two kinds of default persistence is another story, and
touches on issues that are painfully familiar to researchers in nonmonotonic temporal rea-
soning and belief revision. In fact, a close look at the logical details of belief (or knowledge)
persistence reveals several very subtle phenomena, which have so far not been addressed in

the literature. I will use the following seemingly-formal sentences:
Bt(a,p) A —LEARN*(a,—~yp) D B**!(a,¢)
-B*(a,p) A -LEARN*(a,p) D -B**l(a,y)

However much more needs to be added in order for the right persistence to take place; a

more detailed treatment will appear elsewhere.

Commitments too should persist; they wouldn’t be commitments otherwise. As in the
case of belief, however, the persistence is not absolute. Although by default commitments
persist, there are conditions under which commitments are revoked. These conditions pre-
sumably include explicit release of the committer by the committee, or alternatively a real-
ization on the part of the committer of the impossibility of the commitment. (Cohen and
Levesque [8] actually propose a more elaborate second condition, one that requires common
knowledge by the committer and committee of the impossibility; however further discussion
of their position and arguments against it would be too long a detour; see a brief discussion

of their work in subsection 4.9.)
I will use the sentence
CMTt(a,b,p) A -REVOKE!(a,b,p) D CMT**!(a,b,y)

but again I caution that more needs to be done in order to preclude unwarranted revoking

of a commitment.

Since choice is defined in terms of commitment, it inherits the default persistence. Notice,

however, an interesting point about the persistence of choice: while an agent cannot revoke
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commitments he made to others, he can cancel commitments that were made to him -
including commitments he made to himself, namely choices. An agent can therefore freely

modify his choices.

Finally, capabilities too tend to not fluctuate wildly. In fact, in this document I assume
that capabilities are fixed: what an agent can do at one time it can do at any other time.
However, I will allow to condition a capability of an action on certain conditions that hold

at the time of action.

4.9 A short detour: Comparison with Cohen and Levesque

In several publications (e.g., [9, 8]) Cohen, Levesque and several associates have investigated
the logical relationships between several modalities such as the above-mentioned ones. As
mentioned earlier I have deferred discussion of related work to a later section. However, since
there is room for confusion between Cohen and Levesque’s definitions of mental categories
and our own, I will make an exception in this case. The reader may skip this subsection,
although I believe the discussion may provide further intuition about our definition as well

as Cohen and Levesque’s.

Cohen and Levesque employ two basic modalities, BEL (belief) and G (goal, or choice).
Although these bear a resemblance to our belief and choice modalities, important differences
exist. Their belief modality is really the same as ours, except that they are not as explicit
about its temporal aspect. If I understand their construction correctly, one may use the ©
tense operator to specify that “sometime in the future an agent will believe a fact, either
about that time or about a time yet further into the future,” but one is not able to talk
about (e.g.) the agent believing in the future something about the past. This capability

could be achieved by adding other tense operators, if the authors insisted on a tense logic.?

The primary intuition offered about the G modality is that it denotes choice (“Consider
the desire that the agent has chosen to pursue as put into a new category. Call this chosen
desire, loosely, a goal”). However, I have already noted that term ‘choice’ is multi-facetted,
and indeed G is quite different from our CH. To start with a technical distinction, whereas CH

is a KD4 system, G does not have the “positive iteration” property; that is,
y

9However, the authors do find it necessary to mention explicit dates, which they represent by propositions
such as ‘1/1/90/12:00°. That being the case, I do not see the the utility of retaining the tense operators.
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(G a (Gap)) = (Gap)is not an axiom. The reason for this is that for Cohen and
Levesque ‘choice’ contains an element of desire. The choices of an agent, for Cohen and
Levesque, constitute a consistent subset of the agent’s desires, those that the agent has
adopted as goals. In contrast, our CMT modality (and hence the derived CH modality) reflects
absolutely no motivation of the agent, and merely describes the actions to which the agent

is committed.

The difference in senses is the difference between a decision to act and a decision to pursue
a goal. This difference is reflected in the different interactions between choice and belief. In
our construction, commitment (and therefore also choice) implies belief: CH(a,p) DB(a,p)
(if an agent decides on an action he believes it will take place). The converse implication
does not hold in our construction (the agent may believe that the sun will rise tomorrow
without making a choice in this regard). For Cohen and Levesque, on the other hand, belief
does imply choice: (BEL a p) D (G a p) (see, e.g., their Proposition 17). The intuition
here is that the G modality specifies possible worlds chosen by the agent, and these worlds
are selected among the ones the agent believes are possible; therefore if a fact is true in
all worlds believed possible by the agent, it must be true in the subset he selects. Note
that both senses of choice guarantee that an agent does not choose something he believes
impossible: both CH(a,p)>-B(a,—p) and (G a p) D —(BEL a —p) are theorems in the

respective systems.

Both senses of choice are worthwhile, although one can imagine other ways of capturing
a decision to pursue a goal. In particular, I am not sure Cohen and Levesque made the
best decision when they decided to use a single operator to capture both ‘having a goal’
and ‘deciding to adopt a goal.”*® For example, it may prove advantageous to start with a
G modality denoting ‘having a goal,” and define ‘goal adoption’ by CH(a,G(a,p) (with the
appropriate temporal arguments added). However, I have deliberately avoided such more
complex notions in this document as they are not needed for the fundamentals of AOP, and

will not pursue the issue further.

Finally, Cohen and Levesque define the notion of persistent goals, which intuitively are

10Notice that the issue does not arise in the cases of belief and (our sense of) commitment. With regard
to belief, it makes no sense to commit to believing something, at least not in the sense of knowledge-like
belief that we have been discussing. With regard to commitment, it does make sense to commit to be being
committed, but, by our definition, that is identical to committing.
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goals that are retained over time until the agent believe that either they were achieved or
are impossible.]? This treatment is closer in spirit to our treatment of the persistence of
mental attitudes. However, Cohen and Levesque only state that either the goal persists or
else the particular beliefs occur, and do not provide a mechanism by which goals indeed
persist by default, and spurious beliefs do not occur. As mentioned in our treatment, this is

a nontrivial task.

It should be added that, although I have been critical of a few of their choices, our
treatment of mental state has benefitted much from their work. Furthermore, they have

tackled complex notions such as goals, desires and intentions, which I have not yet dared.

5 The programming of agents!?

In the previous section I discussed the first component of the AOP framework, namely the

definition of agents. I will now discuss the second component, the programming of agents.

The behavior agents is governed by programs; each agent is controlled by his own, private
program. Agent programs are in many respects similar to standard programs, containing
primitive operations, control structures and input-output instructions. What makes them
unique is that the control structures refer to the mental-state constructs defined previously,
and that the I0 commands include methods for communicating with other agents. We do
not yet have a running agent interpreter.’® I will instead describe here a hypothetical agent
language, called AGENT0. AGENTO0 embodies many simplifying assumptions, but still it

illustrates many issues in agent-oriented programming.

In a conventional programming language the syntax defines the primitive operations
available, and the programmer specifies which of those are to be carried out and in which
order. This much is true of AGENTO as well. In regular languages, however, there is a simple

mapping between the structure of the program and the order of execution; typically, a linear

1 Cohen and Levesque use the clause (BEL x p) V (BEL x O-p). It would seem that their intuition
would support the weaker condition (BEL x (p V O-p)).

12This section describes work that has benefitted from a collaboration with Jun-ichi Akahani

13However, J. Akahani has been experimenting with some prototypes. His approach is interesting in that it
is in the style of logic programming, which is to say that program statements are themselves logical sentences.
I myself will not assume that agent programs are themselves part of a logical language, only that they make
use of the logic for describing mental state.
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sequence of commands translates to the same execution order. In contrast, in AGENTO there
is complete decoupling between the time a command is issued (and in particular the order
between different commands) and the time at which it is executed; at any time a commitment
can be made about any future time. In fact, in AGENTO an agent is continually engaged in
two types of activity: making commitments about the future (and, as a special case, making
choices), and honoring previous commitments whose execution time has come (and which
have not been revoked in the meanwhile). In the following subsections I describe the syntax
of AGENTO and its interpreter.

A word about the relationship between the logical development in the previous section
and the programming language. The logical treatment provided quite general constraints
on the mental states of agents. AGENTO, on the other hand, will represent mental state
very concretely, imposing very strong additional constraints (for example, beliefs will all be
atomic sentences). As one reads about AGENTO one may wonder what role is served by the

general treatment in the previous section.

The answer is that the general constraints allow one to guarantee various properties of
agents, independent of the implementation; the properties are guaranteed as long as the
implementation meets the general constraints, which AGENTO does. Every implementation
will then have additional properties, and indeed in the simple-minded AGENTO0 many special

properties can be shown, but those all lie within the general constraints of agenthood.

5.1 The syntax of AGENTO

In the programming language itself one specifies only conditions for making commitments;
commitments are actually made and, later, actually carried out, automatically at the appro-
priate times (see discussion of the interpreter in Subsection 5.2 below). Before we define the
syntax of commitments we need a few preliminary definitions. I will first develop the syntax
of AGENTO in a bottom-up fashion, and then summarize it in BNF notation. The reader

may wish to refer forward to the formal definition while reading the following description.

Fact statements

Fact statements are fundamental to AGENTO; they are used to specify the content of

actions as well as conditions for their execution. Fact statements are simply sentences in the
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temporal-modal logic developed in the previous section in which the mental states of agents
were defined. They can be simple facts about the world, such as [t,employee(smith,acme)],
or may refer to the mental state of agents, as in

[t’,-B(a, [t,employee(smith,acme)])]. (AGENTO does not boast a friendly syntax; in
later versions a more congenial syntax will be adopted.) When I discuss the interpreter in
Section 5.2 it will become clear that we will want to restrict facts to some subset of the

language for efficiency reasons, but I will not pursue that issue further here.

Unconditional action statements

Agents commit to action, and so we now specify what actions are. We make two orthog-
onal distinctions between types of action: actions may be private or communicative, and,

independently, they may be conditional or unconditional.

The syntax for private actions is
DO(t,p-action)

where t is a time point and p-action is a private action name. Private action names are
idiosyncratic and unconstrained; a data base agent may have retrieval primitives, a statistical
computation agent may run certain mathematical procedures, and a robot may servo itself.
Private actions are analogous to the implementation of specific methods in OOP. Private
actions may be invisible to other agents, as in the data base example, but need not be so,

as in the robot example.

Private actions may or may not involve I0. Communicative actions, on the other hand,
always involve I0. Unlike private actions, communicative actions are uniform, and common
to all agents. While in a general AOP system we can expect many types of communica-
tive action, the restricted version AGENTO has only three types of communicative action:

informing, requesting, and cancelling a request.

The syntax of informing is

INFORM(t,a,fact)
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where t is a time point, a is an agent name and fact is a fact statement. Note that ¢ is
the time at which the informing is to take place, and fact itself contains other temporal

information, as in INFORM(5,b, [1,employee(smith,acme)]).1

The syntax of requesting is
REQUEST(t,a,action)

where t is a time point, a is an agent name and action is an action statement, defined recur-
sively. So, for example, REQUEST(1,a,D0(10,update-database)) constitutes a legitimate
request. Again, one should distinguish between the time at which the requesting is to be
done (1, in this example) and the time of the requested action (10, in the example). Requests

can be embedded further, as in REQUEST (1 ,a,REQUEST(5,b,INFORM(10,c,fact))).

The syntax of cancelling a request is:
UNREQUEST(t,a,action)

where t is a time point, a is an agent name and action is an action statement.

The last unconditional action in AGENTO is really a nonaction. Its syntax is:
REFRAIN action

where action is an action statement which does not itself contain a REFRAIN. The role of

refraining will be to prevent commitment to other actions.

Conditional action statements

In AGENTO we distinguish between commitments for conditional actions, which include
conditions to be tested right before acting, and conditions for making the commitment to
act in the first place. I now discuss only conditional actions, and will discuss conditions
for making commitments later. Conditional actions rely on one form of condition, called a

mental condition, while conditions for making a commitment include both mental conditions

14Ag is again obvious, attractive syntax is not the main advantage of AGENTO.
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and so-called message conditions. The tests for these two kinds of condition constitute

AGENTO’s control structures. I now discuss only mental conditions.

Mental conditions refer to the mental state of the agent, and the intuition behind them
is that when the time comes to execute the action, the mental state at that time will be
examined to see whether the mental condition is satisfied. For this reason the agent- and
time-components of the mental state are implicit and can be omitted in the specification of
mental conditions. A mental condition is thus any combination of modal statements in the

temporal-modal language, with the primary ‘agent’ and ‘time’ arguments omitted.

Specifically, a mental condition is a logical combination of mental patterns. A mental

pattern is one of two pairs:
(B,fact) or ((CMT,a),action)

where fact is a fact statement, a is an agent name and action is an action statement. An

example of a mental pattern is (B,employee(smith,acme)).

Given the syntax of mental conditions, the syntax of a conditional action is
IF mntlcond THEN action

where mntlcond is a mental condition and action is an action statement. An example of a

conditional action is
IF (B,employee(smith,acme)) THEN INFORM(t,a,employee(smith,acme))

The intuitive reading of this action is “if at time t you believe that smith is an employee of

acme, then at that time inform agent a of that fact.”

As was said, mental conditions may contain logical connectives; the following three ac-
tions together constitute a QUERY about whether fact is true (b is the one being queried, a

is the one he is asked to inform):

REQUEST(t,b,IF (B,fact) THEN INFORM(t+1,a,fact) ),
REQUEST(t,b,IF (B,NOT fact) THEN INFORM(t+1,a,NOT fact) ), and
REQUEST(t,b,IF NOT (BW,fact) THEN INFORM(t+1,a,NOT [t+1,BW(a,fact)]) )'°

15By is the “believe whether” operator, defined by [t,BW(a,p)] = [t,B(a,p)] V [t,B(a,-p)].
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Variables

In the style of logic programming and production systems, in AGENTO procedures are
invoked in a pattern-directed fashion. Specifically, we will see that commitment rules are
“activated” based on certain patterns in the incoming messages and current mental state.

Variables play a crucial role in these patterns.

A variable is denoted by the prefix “?’.1® Variables may substitute agent names, fact

statements or action statements. Thus the following is a legitimate conditional action:
IF NOT ((CMT,?x),REFRAIN action) THEN action

In the tradition of logic programming, variables in action statements (including the mental
condition part) are interpreted as existentially quantified. The scope of the quantifier is
upwards until the scope of the first NOT, or it is the entire statement, if the variable does
not lie in the scope of a NOT. Thus the last statement reads informally as “if you are not

currently committed to anyone to refrain from action, then take that action.”

It is advantageous to allow other quantifiers as well. The one quantifier I will introduce
in AGENTO is a limited form of the universal quantifier, but in the future others, such as
the “latest (earliest) time point such that” quantifier, may be introduced. The universally-
quantified variables will be denoted by the prefix ‘?!’. The scope of these variables is always

the entire formula, and thus the conditional action
IF (B,emp(?!x,acme)) THEN INFORM(a,emp(?!x,acme))

results in informing a of all the individuals who the agent believes to be acme employees.

Having discussed action statements, we can now finally discuss the type of statements

that actually appear in the program, namely commitment statements.

16 Although in the actual implementation I intend to use a Prolog-like unification mechanism, since I want
to distinguish between built-in constants such as REQUEST and application-dependent ones such as employee,
I did no want to reserve (e.g.) upper case letters for variables. At the level of the current discussion these
details are, of course, of little significance.
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Commitment statements

Since action statements contain information about what needs to be done, about when
it needs to be done, and even the preconditions for doing it, one might have expected a
collection of action statements to constitute a program. However, there is another crucial
layer of abstraction in AGENTO. Most of the action statements are unknown at programming
time; they are later communicated by other agents (one of which may be the “user,” in
situations where that concept is applicable). The program itself merely contains conditions
under which the agent will be committed to actions. Some of these conditions may be trivial,

resulting in a priori commitments, but most commitments will be in response to messages.

The conditions under which a commitment is made include both mental conditions,
discussed above, and message conditions, which refer to the current incoming messages. A

message condition is a logical combination of message patterns. A message patternisa triple
(From,Type,Content)

where From is the sender’s name, Type is INFORM or REQUEST, and Content is a fact statement
or an action statement, depending on the type. The other information associated with each
incoming message, its destination and arrival time, are implicit in this context and are thus
omitted from the message pattern (of course, the content will include reference to time,
but that is the time of the fact or action, not the arrival time of the message). An example
of a message pattern is (a,INFORM,fact), meaning that one of the new messages is from a
informing the agent of fact. An example of a more complex message condition is

(a,REQUEST,DO(t,walk)) AND NOT (?x,REQUEST,DO(t,chew-gum)), meaning that there
is a new message from a requesting the agent to walk, and there is no new request from

anyone that the agent chew-gum.

The syntax of a commitment statement is then simply

IF MSGCOND: msgcond AND MNTLCOND: mntlcond
THEN COMMIT TO agent ABOUT action

where msgcond and mntlcond are respectively message and mental conditions, agent is an

agent name, and action is an action statement. Note that the action statement itself may
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be conditional, containing its own mental condition. In fact, we will use a more concise and

less Cobolish syntax for commitment statements, namely:
COMMIT (msgcond ,mntlcond,agent,action)

An example of a commitment statement is

COMMIT( (7a,REQUEST,?action),
(B,myfriend(?a)),!”
?a,
?action )

Finally, a program is simply a sequence of commitment statements, preceded by a defi-

nition of the agent’s capabilities and initial beliefs.

A BNF description of the AGENTO

Before describing the interpreter for AGENTO and providing an example, let me summa-
rize the discussion of the syntax by giving its BNF definition. (In accordance with standard

conventions, in the following * denotes repetition of zero or more times.)

17The reader might have expected other conditions, such as the absence of contradictory prior commit-
ments. However, as is explained below in Subsection 5.2, these conditions are checked for automatically by
the interpreter and therefore need not be mentioned explicitly by the programmer.
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<program> ::= TIMEGRAIN'®:= (a duration in some agreed-upon
units: milliseconds, hours/minutes, etcetera)
CAPABILITIES: (<action>,<mntlcond>)*
INITIAL BELIEFS: <fact>)*
INITIAL COMMON BELIEFS: (<agent>,<fact>)*
COMMITMENT RULES: <commitrule>*
<action> = DO(<time>,<privateaction>) |
INFORM(<time>,<agent>,<fact>) |
REQUEST(<time>,<agent>,<action>) |
UNREQUEST(<time>, <agent>,<action>) |
REFRAIN <action> |
IF <mntlcond> THEN <action>

<time> ::= (some representation of time: the integers, date/hour/minute,
or any other agreed-upon format) |
<variable>
<privateaction> := <actionname>(<parameter>*)| <variable>
<actionname> := (an alphabetic string)
<parameter> := (an alphanumeric string) | <variable>
<fact> := [<time>,<predicate>(<arg>*)] |
[<time>,B(<agent>,<fact>)] |
[<time>,CMT(<agent>,<agent>,<action>)] |
[<time>,CAN(<agent>,<action>)] |
<variable>
<predicate> := (an alphabetic string)
<arg> := (an alphanumeric string) | <variable>!®
<agent> := (an alphanumeric string) | <variable>
<commitrule> := COMMIT(<msgcond>,<mntlcond>,<agent>,<act ion>)
<msgcond> := <msgpattern> | NOT <msgcond> | <msgcond> AND <msgcond>
<msgpattern> := (<agent>,INFORM,<fact>) |
(<agent>,REQUEST, <action>)
<mntlcond> := <mntlpattern> | NOT <mntlcond> | <mntlcond> AND <mntlcond>
<mntlpattern> := (B,<fact>) | ((CMT,<agent>),<action>)
<variable> := 7?(alphanumeric string) |?!(alphanumric string)

18See discussion of ‘time grain’ in the next subsection.

19Note that there is no syntactic difference between a primitive fact and a private action; see related
discussion of ‘choice’ in Section 4. I have kept the distinction here because at some later version we may
want to place different syntactic restrictions on actions and on facts.
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5.2 The AGENTO interpreter

The interpretation of AGENTO programs is, in principle, quite simple. It consists of iterating

the following two steps:

1. Process the incoming messages, updating the beliefs and commitments (recall that we

assume that capabilities of agents are fixed);

2. Carry out the commitments for the current time, possibly resulting in further belief

change.

In the remainder of this section I will discuss the details of the interpreter, I will first describe

the various stages, and then summarize the main features in a diagram.

Assumption about message passing

AGENTO includes, among other things, communication commands. In order that those
be executable I will assume that the platform is a capable of passing message to other

machines addressable by name. AGENTO itself will define the form and content of these

messages.

Assumption about the clock

Central to the operation of the interpreter is the existence of a clock. The main role of the
clock is to initiate iterations of the two-step loop at regular intervals (every 10 milliseconds,
every hour, etcetera); the length of these intervals, called the ‘time grain,’ is determined by
the settable variable TIMEGRAIN. I do not discuss the implementation of such a clock, which
will vary among platforms, and simply assume that it exists. We also assume a variable NOW,
whose value is set by the clock to the current time in the format defined in the programming

language (an integer, date:hour:minute, etcetera).

In the remainder of the description we make the very strong assumption that a single
iteration through the loop lasts less than the time grain; in future versions of the language
we will relax this assumption, and correspondingly will complicate the details of the loop

itself.
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Updating beliefs and commitments

Having specified when each iteration takes place, we now specify what happens in each

of the two steps of the iteration. The first step consists of two substeps:

la. Update the beliefs.

1b. Update the commitments.

To discuss these steps we first need to discuss the representation of beliefs, commitments
and capabilities. In AGENTO they are each represented by a data base. The belief data
base is updated as a result of either as a result of being informed or as a result of taking a
private action; here we discuss only the former update. In AGENTO agents are completely
gullible: they incorporate any fact of which they are informed, retracting previous beliefs
if necessary. (This is of course an extreme form of belief revision, and future versions will
incorporate a more sophisticated model; see discussion in the final section.) As the result
of being informed the agent not only believes the fact, he also believes that the informer
believes it, that the informer believes that it (the agent) believes it, and so on. In fact, as
the result of informing, the informer and agent achieve so-called common belief (the infinite
conjunction of “I believe,” “I believe that you believe,” etcetera). The belief data base
will therefore include private beliefs, represented as simple facts, as well as common beliefs,

represented by pairs (a,fact) (where a is the other party).

Items in the data base of capabilities are pairs (privateaction,mntlcond). The mental
condition part allows one to prevent commitment to incompatible actions, each of which
might on its own be possible. An example of an item in the capability data base is

(['?time,rotate(?!degreel)],
NOT (CMT(?!'time,rotate(?degree2)) AND B(NOT 7!degreel=?degree2 ))).

Items in the data base of commitments are simply pairs (agent,action) (the agent to

which the commitment was made and the content of the commitment).

The algorithm for message-induced belief update consists of repeating the following steps

for each new incoming INFORM message from agent a informing of fact:

- Add (a,fact) to the belief data base;
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- If fact is inconsistent with the previous beliefs then modify the old beliefs so as to restore

consistency.

This last step is of course potentially complicated; both the check for consistency and the
restoring of consistency can in general be quite costly, and in general there will be more
than one way to restore consistency. We will assume here that there exist sufficient syntactic
restrictions on beliefs so as to avoid these problem. An extreme restriction, though one that
still admits many interesting applications, would be to disallow in beliefs any connective
other than negation; in this case both consistency check and consistency restoring require
at most a linear search of the data base, and much less if a clever hashing scheme is used.

Other less extreme restrictions are also possible, but I will not pursue this issue further.

Belief change may lead the agent to revoke previous commitments. One reason is that the
original commitment relied, among other things, on certain mental conditions stated in the
program. These may have included belief conditions that have now changed. Nevertheless,
while it would be a natural addition in future versions, in AGENTO the interpreter is not
assigned the responsibility of keeping track of the motivation behind each commitment;
that would require a data-dependency mechanism that I would rather not incorporate yet.
However, while motivation is not kept track of, capability is. Belief change may remove
capabilities, since the capability of each private action depends on mental preconditions.
And thus whenever a belief update occurs, the AGENTO interpreter examines the current
commitments to private action, removes those whose preconditions in the capability data
base have been violated, and adds a commitment to immediately inform the agents to whom
he was committed of this development. Exhaustive examinations of all current commitments
upon a belief change can be avoided through intelligent indexing, but I will not pursue this

optimization issue.

Note that the belief update is independent of the program. The update of commitments,
however, depends on the program very strongly. The algorithm for updating the commit-

ments consists of two steps:

- For all incoming UNREQUEST messages, remove the corresponding item from the commit-

ment data base; if no such item exists then do nothing.
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- Check all program commitment-statement; for each program statement
COMMIT (msgcond ,mntlcond,a,action), if :
- the message conditions msgcond hold of the new incoming message,
- the mental condition mntlcond holds of the current mental state,
- the agent is currently capable of the action, and
- the agent is not committed to REFRAIN action, or, if action is itself of the form

REFRAIN action’, the agent is not committed to action’.

then commit to a to perform action.

Although I am not explicit about it here, it is clear what it means for the message conditions
and mental conditions to hold, given their definitions. An agent is capable of an action under

the following conditions:

An agent can request and unrequest anything from anyone.
An agent can inform anyone of a fact he (the agent) believes.

An agent is capable of any private action in the capability data base provided the mental

condition associated in the data base with that private action holds at that time,*

An agent can refrain from any action that does not itself include refraining, provided he is

not already committed to that action.

An agent can perform a conditional action IF cond THEN action if he can perform action

under the condition cond.

Carrying out commitments

We have so far discussed the first of the two steps in each iteration of the interpreter,

updating the mental state. We now discuss the second step, which is less complex by far.

20This last mental condition is separate from the mental condition mntlcond mentioned above; the one
mentioned above is a condition for making a commitment regardless of whether the agent is capable of the
action; in contrast the mental condition currently discussed determines whether the agent is capable of it in
the first place.
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Recall that each commitment in the commitment data base has a time associated with
it: INFORM(t,a,fact), IF mntlcond THEN DO(t,privateaction), etcetera. In this second
step the interpreter simply executes all the actions whose time is equal to the value of the
variable NOW, which, as mentioned at the beginning, is maintained by the clock. The meaning

of “execute” depends on the type of action:

INFORM: send the appropriate message, and add to the belief data base common belief with

the informee of the fact.
REQUEST and UNREQUEST: send the appropriate message.

REFRAIN: no effect on execution (REFRAIN commitments only play a role in preventing

commitment to other actions).

DO: Consulting the belief and commitment data bases, check the mental condition associated
in the capability data base with the primitive action; if it holds then perform the

primitive action (possibly resulting in a belief update).

IF-THEN: Consulting the belief and commitment data bases, test the mental condition; if

it holds then (recursively) execute the action.

A flow diagram of the interpreter

The main features of AGENTO’s interpreter are summarized pictorially in Figure 2;

dashed arrows represent flow of data, solid arrows temporal sequencing.

5.3 A sample program and its interpretation

As an example of AGENTO programs, consider the flight-reservation scenario described in
Section 2. We now present an annotated program implementing the airline representative.
Although the scenario was simple to begin with, here we simplify it further by ignoring the
exchange relating to the supervisor as well as other aspects of the communication. The
idea behind the program is that the relevant activity on the part of the airline is issuing a
boarding pass to the passenger, and that confirming a reservation is in fact a commitment

to issue a boarding pass at the appropriate time.
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Since some of the low-level definitions are long, it will be convenient to use abbreviations.
We will therefore assume that AGENTO supports the use of macros. We define the following

macros:

issue.bp(pass,flightnum,date) =
IF (B,present(pass)) AND B([date/?time],flight(?from,?to,flightnum))
THEN DO(date/?time-1hr,issue.bp(pass,flightnum,date))
Explanation: This no-frills airline issues boarding passes precisely one hour prior to

the flight; there are no seat assignments.

querywhich(t,asker,askee,q) =
REQUEST (t,askee, IF (B,q) THEN INFORM(t+1,asker,q))
Explanation: query_which requests only a positive answer; if q contains a universally-
quantified variable then query.which requests to be informed of all instances of the

answer to the query q.

query.whether(t,asker,askee,q) =
REQUEST(t,askee, IF (B,q) THEN INFORM(t+1,asker,q))
REQUEST(t ,askee, IF (B,NOT q) THEN INFORM(t+1,asker,NOT q))
Explanation: query_whether expects either a confirmation or a discomfirmation of a

fact. It is usually a bad idea to include in the fact a universally-quantified variable.

We now define the airline agent. To do so we need to define its initial beliefs, capabilities,

and commitment rules.

Of the initial beliefs, the ones relevant here refer to the flight schedule, and the capacity of
each flight. The former are represented in the form [date/time,flight (from,to,number)]
(ignoring the fact that in practice airlines have a more-or-less fixed weekly schedule), and

the latter in the form [date,capacity(flight,number)].

The capability relevant here is that issuing boarding passes. Thus the capability data

base contains a single item:

issue bp(?a,?flight,?date),
(B, [?date,capacity(?flight,7N)]) AND
(B,7N<|{a: ((CMT,?a),issuebp(?pass,?flight,?date))[})
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Explanation: issue._bp is a private action involving some external events such as print-

ing a boarding pass and presenting it to the passanger. The |...| denotes cardinality.

Finally, the airline agent has two commitment rules:

COMMIT( (?pass,REQUEST,IF (B,?p) THEN INFORM(?t,?pass,?p)),
(8,7p),
?pass,
IF (B,?p) THEN INFORM(?7t,?pass,?p) )

COMMIT( (?pass,REQUEST,issuebp(?pass,?flight,?date)),
NOT((CMT, ?pass) ,issue.bp(?pass,?anyflight,?date)),
?pass,
issue bp(?pass,?flight,?date) )
In a more realistic example one would have other commitment rules, notifying the the
passenger whether his reservation was confirmed, and the reasons for rejecting it in case it

was not accepted. In the current implementation the passenger must query that separately.

This concludes the definition of the simple airline agent. Below is a sample exchange
between a passenger, smith, and the airline agent. The messages from the passenger are
determined by him; the actions of the airline are initiated by the agent interpreter in response.

agent action

smith query.which(imarch/1:00,smith,airline,
[18april/?!time,flight(sf,ny,? !num)]

airline INFORM(imarch/2:00,smith,[18april/8:30,flight(sf,ny,#354)]

airline INFORM(imarch/2:00,smith,[18april/10:00,flight(sf,ny,#293)]

airline INFORM(1march/2:00,smith,[18april/...

smith REQUEST (imarch/3:00,airline,issue bp(smith,#354,18april))

smith query.whether (imarch/4:00,smith,airline,

CMT(airline,smith,issue bp(smith,#354,18april))

airline INFORM(imarch/5:00,smith,

NOT CMT(airline,smith,issue bp(smith,#354,18april))
smith REQUEST (1march/6:00,airline,issue bp(smith,#293,18april))
smith query.vhether(imarch/ 7:00,smith,airline,

CMT(airline,smith,issue bp(smith,#293,18april))
airline INFORM(1imarch/8:00,smith,

CMT(airline,smith,issue bp(smith,#293,18april))

smith INFORM(18april/9:00,airline,present(smith))
airline DO(18april/9:00,issue bp(smith,#293, 18april))
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6 Compiling agent programs?

In the previous section I discussed the second component of the AOP framework, agent
programs and their interpretation. In this section I discuss, briefly, the compilation of such
programs. The reason for the brevity is that we have made only initial progress on this

component so far, and this progress is described in detail elsewhere (see below).

Compilers are usually thought of as optimizations on interpreters. This is not necessarily
the relationship I see between the interpretation and compilation of agent programs. Instead,
I see the agent compiler as a general bridge between the intentional level of agent programs

and the low-level machine process.

Of course, the interpreter itself is one such bridge, but it requires a direct mapping be-
tween the constructs in the agent language and the machine implementing the agent. In
particular it requires explicit representation in the machine of beliefs, commitments and
capabilities. When we are the ones creating the agents we indeed have the luxury of in-
corporating these components into their design, in which case the interpreter is adequate.
However, we intend AOP as a framework for controlling and coordinating arbitrary devices,
and those — cars, cameras, digital watches — do not come equipped with beliefs and commit-

ment rules.

Even if we were in a position to persuade General Motors, Phillips, Finmeccanica and
Matsushita to equip every single product with a mental state, we would be ill-advised to do
so. AOP offers a perspective on computation and communication that has its advantages,
but it is not proposed as a uniform replacement of other process representations. It would be
ridiculous to require that every robot-arm designer augment his differential equations with

beliefs, or that the digital-watch design verifier augment finite automata with commitments.

However, releasing the manufacturers from the requirement to supply a mental state
creates a gap between the intentional level of agent programs on the one hand, and the
mechanistic process representation of a given device on the other hand. The role of the
compiler is to bridge this gap.

We inherit this decoupling of the intentional level from the machine level from situated

automata, introduced by Rosenschein in [45] and further developed by him and Kaelbling

21The material in this section includes work carried out jointly with Jean-Francois Lavignon
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[46, 27]. In situated automata there is a low-level language for describing the device, and
another, high level language for the designer to reason about the device. The compiler takes
a program written in the high-level language and produces a description of a device in the

low-level language.

Like the ‘knowledge based’ camp in distributed computation we adopt the insight that
intentional notions can be viewed as the designer’s way of conceptualizing a device (as was
discussed also in the introductory section, in connection with McCarthy’s and Dennett’s

ideas). We depart from situated automata when it comes to the details.

In order to define a compiler we need to specify three elements:

1. The source language
2. The target language

3. The compilation process

Of these we have so far addressed in our research only the first and second items. This is

clearly a preliminary stage, and for this reason the present section will be short.

Our source language has already been discussed - it is the AGENTO language defined
in the previous section. By way of contrast, situated automata has had several versions;
published versions have included a knowledge operator (K) and a tense operator (<, or

“eventually”).

The choice of target language is particularly important. The language must on the one
hand be sufficiently general to cover arbitrary devices, and on the other hand close enough
to the hardware so that any device can be naturally described in it. Many process languages
exist - synchronous Boolean circuits with or without delays (the choice of situated automata
as a target language), finite automata and Turing machines, and various formalisms aimed

at capturing concurrency. Our requirements of the process language included the following:

e Representation of process time, including real-valued durations;
e Equal representation of a machine and of the environment

e Asynchronous processes;
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e Multiple levels of abstraction

We found that no existing process models met all requirements, and have developed an al-
ternative process model, called temporal automata. The model, developed by Jean-Francois
Lavignon and myself, is described in detail elsewhere. In [31] we develop the mathemati-
cal model, relate it to existing ones, and illustrate it through examples. In [30] Lavignon
describes an implemented simulator, which takes as input a definition of a process in the lan-
guage (called a temporal automaton), creates an internal representation of the automaton,

and simulates its behavior graphically.

Although temporal automata are interesting in their own right further discussion of
them in this document would be unmotivated, since at this time we have not yet tackled
the compilation process itself. The interested reader is referred to the above-mentioned

documents for more details.

7 Related work

Except occasionally, I have so far not discussed related past work. This body of related work
is in fact so rich that in this section I will be able to only mention the most closely related
work, and briefly at that. I do not discuss again past work on logics of knowledge and belief
which AOP extends, since I already did that in the introductory chapter. The following
work is ordered in what I see as decreasing relevance to, and overlap with, AOP. The order
(or, for that matter, inclusion in the list) reflects no other ranking, nor is it implied that

researchers high up on the list would necessarily endorse any part of AOP.

e McCarthy’s work on Elephant2000 [36]. This language under development is also
based on speech acts, and the airline-reservation scenario I have discussed is due to
McCarthy. One issue explored in connection with Elephant2000 is the distinction
between illocutionary and perlocutionary specifications, which I have not addressed.
In contrast to AOP, in Elephant2000 there is currently no explicit representation of
state, mental or otherwise. Conditional statements therefore refer to the history of

past communication rather than to the current mental state.
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e The Intelligent Communicating Agents project (1987-1988), carried out jointly at Stan-
ford, SRI and Rockwell International (Nilsson, Rosenschein, Cohen, Moore, Appelt,
Buckley, and many others). This ambitious project had among its goals the represen-
tation of speech acts and connection between the intentional level and the machine

level. See discussion of some of the individual work below.

e Cohen and Levesque’s work on belief, commitment, intention and coordination [9, 8].
This work was discussed in detail in subsection 4.9. To summarize that discussion,
Cohen and Levesque too have investigated the logical relationships between several
modalities such as belief and choice. Although they have not approached the topic
from a programming-language perspective as I have, they too have been interested
in speech acts and mental state as building blocks for coordination and analysis of
behavior. Their work has its roots in earlier work in natural language understanding
by Allen, Cohen and Perrault [2, 10]. The details in the logical treatment of basic

mental categories are different, reflecting slightly different intuitions.

e Rosenschein and Kaelbling’s situated automata [45, 46, 27]. I already discussed this
work in the previous section. To summarize, it is relevant in connection with the
compilation of agent programs; we adopt their idea of decoupling the machine language
from the programmer’s intentional conceptualization of the machine, but differ on the

technical details.

e Winograd and Flores’s work on coordination [16]. As a part of their more global
project, Winograd and Flores have developed a model of communication in a work
environment. They point to the fact that every conversation is governed by some
rules, which constrain the actions of the participants: a request must be followed by an
accept or a decline, a question by an answer, and so on. Their model of communication
is, I believe, that of a finite automaton, with the automaton states corresponding to
different states of the conversation. This work seems to me to be a macro theory, in
contrast to the micro theory of AOP. Winograd is also investigating the relationship

between human and computer communication.

o Nilsson’s action nets. ACTNET [42] is a language for computing goal-achieving actions

that depends dynamically on sensory and stored data. The ACTNET language is based

43



8

on the concept of action networks [41]. An action network is a forest of logical gates
that select actions in response to sensory and stored data. The connection to AOP,
albeit a weak one, is that some of the wires in the network originate from data-base
items marked as ‘beliefs’ and ‘goals’. The maintenance of these data bases is not the

job of the action net.

Genesereth’s work on informable agents [20, 19]. Genesereth’s interest lies primarily in
agents containing declarative knowledge that can be informed of new facts, and that
can act on partial plans. In this connection he has investigated also the compilation
of declarative plans and information into action commands. Genesereth uses the term
‘agents’ so as to include also low-level finite-automaton-like constructs. As in our
temporal automata, mentioned briefly in the previous section, Genesereth treats an

agent and an environment symmetrically.

Recent work on plan representation and recognition by Kautz, Pollack, Konolige, Lit-
man, Allen and others (e.g., [33, 28, 43, 5]). This literature also addresses the inter-
action between mental state and action, but it is usually concerned with finer-grained
analyses, involving the actual representation of plans, reasoning limitations, and more

complex mental notions such as goals, desires and intentions.

Discussion

I have described the philosophy behind agent-oriented programming, and progress made

towards realizing it — both in terms of formal development and in terms of algorithm design.

This is clearly only a beginning. Beside debugging and fine-tuning the logic and program-

ming language I have presented, the framework can be extended dramatically in a number

of directions. Below are some of the directions I intend to explore in the future.

e Mental categories. The language for describing mental state can be augmented to

include more complex notions such as desires and intentions, allowing a richer set of

communicative commands and more structure on the behavior of agents.
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e Groundedness of mental categories. One of the contributions of distributed compu-
tation to the formal theory of knowledge is the concrete grounding of the semantics:
what were formerly purely formal constructs, possible worlds, became the set of possi-
ble ‘runs’ of the system, given a particular protocol. In my logical development I did
not anchor belief and commitment similarly, and it would be satisfying to be able to

do so.

e Probability and utility. As in most recent work on knowledge and belief, we have
adopted very crisp notions of mental attitude; there is no representation of graded belief
or commitment. This stands in contrast to game-theoretic work on rational interaction
among agents in economics (e.g., [3, 18]) and Al (e.g., [44]), where uncertainty and

utility play a key role. This is a natural direction in which to extend our framework.

e Inheritance and groups. In the analogy between OOP and AOP I did not mention
inheritance, a key component of OOP today. In OOP if an object is a specialization of
another object then it inherits its methods. One analogous construct in AOP would be
‘group agents’; that is a group of agent will itself constitute an agent. If we define the
beliefs of this composite agent as the ‘common beliefs’ of the individual agents and the
commitments of the composite agent as the ‘common commitments’ (yet to be defined)
of the individual agents, then mental attitudes of the group are indeed inherited by
the individual.

o Persistence of mental states. At the end of section 4 I mentioned that the persistence
of mental state poses some challenging formal problems: If I believe that you don’t
believe x, do I believe that you will not believe in a little while? Do I believe that I
will believe that you don’t? Will I believe then that you don’t? Will I believe then
that I believed in the past that you didn’t know? Answers to these questions depend

on some subtle assumptions.

o Resource limitations. In the definition of the interpreter I assumed that the belief
and commitment updates all happened fast enough before the next cycle was to start.
While often reasonable, this assumption is violated in many real-time applications. In
these cases the manipulation of data structures (such as beliefs) must be shortened or

supressed in favor of rapid action. There is much interest nowdays in intelligent real-
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time problem solving, including issues such as tradeoff between quality and timeliness.
From the agent interpreter’s standpoint this means that the belief and commitment
update cannot proceed blindly, but must take into account the elapsed time, choosing

wisely among mental operations.

e Belief revision. AGENTO adopts an extreme form of belief revision, accepting all new
information. Obviously there are situations that call for more discriminating agents,
and in fact there is a rich literature on various forms of belief revision (e.g., [17]), and

future versions of the interpreter should explore them.

e Societies. Both the theoretical development of mental categories and the AGENTO
programming language concentrated on a single agent. Indeed, the view promoted
was of agents functioning autonomously. However, if a society of agents is to function
successfully, some global constraints must be imposed. These include societal conven-
tions as well as social structures (such as hierarchies); both reduce the problem solving
required by agents and the communication overhead. There is a rich body of literature
on computer societies, examples of which include Minsky’s informal Society of Mind
metaphor [37], Winograd’s studies of societal roles, both human and machine [52],
Moses and Tennenholtz’s recent discussion of the computational advantages of social
laws [40], and Doyle’s pioneering work on the relationship between rational psychology

and economics [13].

These are some of the directions I intend to explore. I have been conservative so far in the
scope of the work, but, I believe, more ambitious explorations will have to depart from a
clear and rigorous basis of the kind I have defined. First on my agenda is the definition of the
compiler, where, as explained in section 6, only initial progress has been made. Of course,
the real validation of AOP will be achieved through successful applications of the framework.
We are currently engaged in several applications, including ones in civil engineering, user

interfaces and robotics.
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