ICENTER FOR INTEGRATED FACILITY ENGINEERING

Logic-Based
Conceptual Structural Design
of Steel Office Buildings

Deepak Jain
Helmut Krawinkler
Kincho H. Law

TECHNICAL REPORT
Number 49

May 1991

Stanford University

§L_i Center for Integrated Facility Engineering Stanford University

Copyright © 1991 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

c/o CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

Abstract

This research effort addresses automation of conceptual design of structures and develop-
ment of knowledge-based computer tools that assist an engineer in the preliminary phase of
structural design. The effort is aimed at using symbolic logic to develop a knowledge-based
conceptual structural design application, while employing and extending a formal method-
ology for developing such systems. The methodology and its application to the domain of
structural design of steel office buildings is presented in the dissertation. Issues in the use
of symbolic logic for building design systems are discussed and some observations based on
our experience are offered.

A computer system named Galileo, capable of (i) generating floor framing plans for
transfer of gravity loads and (ii) designing perimeter moment resisting frames for transfer
~of lateral loads, has been developed as part of this investigation. Given the architectural plan
of a building, Galileo can generate geometric configurations for locating structural elements
and can design individual members while satisfying structural and exogenous constraints.
Costs of different solutions can also be estimated. Epikit—a tool that uses a first-order .
predicate calculus based language, KIF, for representing knowledge—has been employed for
developing the system.

Knowledge and reasoning behind Galileo are elucidated in the dissertation and imple-
mentation details are discussed. Representative examples are used to illustrate the working

of the system

ii

Acknowledgments

This report is reproduced from a doctoral dissertation submitted by Deepak Jain to Stanford
University. The doctoral committee comprised of Professors Helmut Krawinkler, Kincho
H. Law, Michael R. Genesereth, and Raymond E. Levitt. Financial support of the Center for
Integrated Facility Engineering (CIFE) at Stanford University for this research is gratefully
acknowledged. Computing facilities for the work were provided by the Civil Engineering
Department.

We wish to thank Gregory P. Luth for providing much of the domain expertise for this
study. In addition, we are also grateful to Mr. Roger E. Ferch of Herrick Corporation for
providing input in the cost estimation process, and to Dr. Narinder Singh for assisting
with Epikit and xir. The library of standard core configurations contained in Galileo is
adapted from the CF 21/ Ezpert Systems in Civil Engineering, Spring 1988, course project
of Charles Fell, Cristina Garcia, and Gregory Luth.

iii

Contents

Abstract ii
Acknowledgments iii
List of Tables viil
List of Figures ix
1 Introduction 1
1.1 Objectives . . v v v v v i e e e e e e e e e e e e e e e e e e 1
1.2 Scope . . o i e e e e 2
1.3 Organization of the Dissertation 3

2 Prologue 5
2.1 Research in Knowledge-Based Systems for Structural Design. 5
2.1.1 Prior Research 5

2.1.2 Arguments for Improved Approach 8

2.2 Design in Other Engineering Disciplines 9
2.3 Logic. . . o o e e 10
23.1 Logic-Based Design. L 11

2.4 Gravity and Lateral Systems for Steel Buildings 13
2.5 A Note about Knowledge Acquisition 13

3 Methodology : 17
3.1 Overview of the Methodology 18
3.2 Functional Elements and Systems Knowledge 20

iv

3.3 Behavior and Performance Knowledge 23
3.4 Product Knowledge. oo 24
3.5 Conecepts i e e e e e e e e e 25
3.6 Strategy oo e e e 25
3.7 Reasoning with Constraints 0. 27
3.7.1 Structural Constraints oL 29
3.72 Exogenous Constraints 30
3.8 Evaluation and Feedback o 32
3.9 Summary and Concluding Remarks, 33
Gravity Load Resisting System 35
4.1 Introduction oL e 35
4.2 Background . . FP 36
4.3 Functional Elements and Systems Knowledge 38
4.4 Product Knowledge. e 40
4.5 Behavior and Performance Knowledge 41
4.6 Constraiits« v i e e e 42
4.6.1 Structural Constraints 43
4.6.2 FExogenous Constraints 43
4.7 Concepts . . v i i e e e e e e e e e e e e e e e 45
4.8 Strategy v i e e e e e e 46
4.8.1 Generation of Column Locations47
4.8.2 Configuration of the Floor System 51
4.8.3 Design of Members o oo 52
4.9 Evaluation e 53
410 SUMIMATY « « v v v v v o e e e e e e e e e e e e e e e 55
Lateral Load Resisting System 57
~ 5.1 Functional Elements and Systems Knowledge 58
5.2 Product Knowledge. o oo 59
5.3 Behavior and Performance Knowledge 59
5.4 Constraints L e e e e 60
5.5 COMCEPES « v v v o e 61
5.6 Strategy . . . o . o i e e e e e e e e e e e e e e 61
5.6.1 Analysis e e e e e e 61

5.6.2 Member Sizingo e
5.7 Evaluation e

6 Implementation Issues

6.1 Epikit B
6.2 User Interface Issues o o it
6.2.1 Error Detection and Handling
6.2.2 Knowledge Structure and Content
6.2.3 Additional Considerations 0oL
6.3 Closing Remarks B Ce
7 Examples
71 ExampleI e e e e e e e e e e e e
7.2 Example I o 0o e

8 Observations on Logic

8.1 Expressive Power and Inferential Capabilities
8.2 Knowledge Transparency v v v v v v v v v v v e e e
8.3 Observationson KIF e
8.4 Efficiency
8.5 Shortcomings and Solutions oL
8.6 Concluding Remarks

9 Closure

0.1 Conclusions . . - v v v v v e e e e e e e e e e e e e e e e e

9.2 Directions for Future Work o e

921 Enhancements to Galileo

9.3 Summary ASSeSSMENt v s e e e e e e e e e e e e e e
Appendices

A A Propositional and Predicate Calculus Primer
A.1 Propositional Calculus I
ALL Syntax . . . o v v it e e e e e
A12 Semantics v i it e e e e e e e e e e
A13 Example.
A.2 Predicate Calculus« i e e e

vi

64
64
66
66
68
70
71

73
73
78

84
84
86
86
89
89
91

93
93
94
94
95

A2.1 Syntaxo o 105

A2.2 SemantiCs . . . v v v i i e e e e e e e 107

A2.3 TInference o o i v i i i e e 110

A.3 Application to Structural Analysis 112
A.4 Application to Standards Processingo 116
A.4.1 Representation of Design Standards 117

A.4.2 Checking Properties of Design Standards 119

Ad3 DISCUSSION « « v v v v v e e e e 120

A5 Closing Remarks o 121
A.5.1 Further Readingo 122

B Knowledge Interchange Format 124
C System Details 128
C.1 Data Organization 128
C.1.1 Problem-Independent Data - 128

C.1.2 Problem-Dependent Data 130

C.2 Parameters v v v v it e e e e e e 132,
C.3 OPLONS -« v v v v e e e e e e e e e e e e 133
C.4 Cost Estimation e 139
Bibliography 141

vii

List of Tables

A.1 A Sample Decision Table 117
C.1 Default Values of Some Parameters 133
C.2 Default Values of Planning Module-Dependent Parameters. 133
C.3 Floor Design Options i 134
C.4 LHE Design Options o v v v i i ittt e e e 135
C.5 Column Design Options oo 136
C.6 Gravity Loading Options. 136
C.7 Seismic Loading Options i 137
C.8 Wind Loading Options 137
C.9 Price Options o o v i i it e e e 138
C.10 Stress Options v v v it it e e e e e e 138
C.11 Erection Options« o o o o i i i i it e 139

viii

List of Figures

2.1 Gravity System Alternatives P 14
2.2 Lateral System Alternatives 15
3.1 Constraint Classification oo 28
4.1 Generation of Floor Framing Plans 37
4.2 Specifying Exogenous Constraints L. 39
4.3 Influence Zone for Two Different Cases 47
4.4 Decomposition of Floor Plan 49
4.5 Modification of Column Lines 51
4.6 PriceOptions O 54
5.1 Seismic Loading Options o i v ittt 60
6.1 Menusof Galileo o o v i 67
6.2 Working with Parameters 69
6.3 Options for Beam and Girder Design 71
7.1 Graphical Output of Framing Plans Generated by FFG 74
7.2 Member Sizes for Framing Plan 1 75
7.3 Textual Notes for Framing Plan 1. 75
7.4 Expalanation for Framing Plan 1 76
7.5 Evaluation and Comparison of Alternatives 77
7.6 Floor Planfor Example IT 79
7.7 Two Generated Framing Plans for Example IT. 30
7.8 Gravity System Sizes for Solution 1. 81
7.9 Total System Sizes for Solution 1 81
7.10 Costs for Example IT Alternatives 82
8.1 Computing Factorial of a Nonnegative Integern 87

ix

A.1 Sample Rules of Inference

A.2 Sample Laws of Propositional Algebra

A.3 A Sample Floor Layout

.....................

1

Introduction

1.1 Objectives

The field of structural engineering has come a long way since Galileo first systematically
studied the strength of materials and behavior of cantilever beams. Since the publication
of Galileo’s Two New Sciences over 350 years ago, major advancements have been made
in the areas of structural analysis and design. With the advent of computers, significant
research effort has been directed towards automating analysis and design of structures.
Computer-aided structural design, in particular, has received considerable attention in the
last decade.

The conceptual design of structures, wherein the designer investigates many potential
alternatives and makes fundamental choices that have major impact on the downstream de-
cisions, is one of the important areas for investigation from the standpoint of automation.
Several works in this direction have been undertaken recently or are currently underway
(e.g., [2,21,29,37,45,49,57,60,80,81]). It is generally recognized that heuristics play an im-
portant role in the creative process of conceptual structural design. Another characteristic
of conceptual design, arising from economic considerations, is that typically several feasible
design solutions are developed and evaluated.

The two primary forms of representation of knowledge in conceptual design systems
are procedural and declarative. Because of its virtues of extensibility and versatility, there
seems to have evolved a consensus amongst researchers in favor of declarative representation
for developing computer aids for structural design, particularly since many structural design
tasks are not easily amenable to algorithmic solutions. However, no consensus on a global
framework for these systems has emerged. Luth [57] has recently proposed a global frame-

work for developing conceptual design systems in structural engineering. The framework,

1

CHAPTER 1. INTRODUCTION 2

however, needs to be tested and extended (wherever necessary) through building specific
applications with well-defined foci.

There are several approaches towards representation and reasoning in a declarative fash-
ion, including semantic nets, frames, rule-based reasoning, inference nets, etc. There have
been many previous efforts in the domain of civil engineering where thiese representation
schemes have been employed (e.g., [9,39,54,60,76]). Another promising scheme for repre-
senting and reasoning about knowledge, though not as extensively employed for building
civil engineering systems as some of the other schemes, is symbolic logic. Implementation
of a prototype conceptual design application in a logical language like first-order predicate
calculus can give us insights into the strengths and weaknesses of a logical environment for
the purposes of developing substantial applications in structural éngineering in the future.

The twin objectives of this study, then, are:

1. to employ and extend a formal methodology for automating conceptual structural
design, by developing a prototypical application to perform conceptual structural
design of steel office buildings, and

2. to investigate issues in the use of symbolic logic for building conceptual structural

design systems.
Accordingly, this dissertation presents:

e a formal methodology for automating conceptual structural design, based on and

extended from the work in Ref. [57];

e application of the methodology to the domain of conceptual structural design of steel

office buildings; and

o description of and observations on the use of logic for implementing the said applica-

tion.

1.2 Scope

A structural design project is conceived when there is a perceived need for a constructed
facility. In the case of commercial buildings, typically the owner is interested in a facility
that can yield tangible monetary benefits. The stages that the project goes through from

the perspective of the structural engineer usually involve program development, conceptual

CHAPTER 1. INTRODUCTION 3

design, detailed design, construction planning, construction execution, and facility manage-
ment [57]. For the purpose of this research, we have concentrated on the conceptual design
stage of the process. The implementation, in particular, is concerned with the conceptual
structural design of multistory steel office buildings. There are additional restrictions on
the geometry of buildings that can be handled by the prototype as described elsewhere in
this dissertation.

Several factors influenced the selection of the domain for the prototype. Ready access
to an expert with a substantial field experience in designing multistory office buildings was
one. In addition, structural design of multistory commercial office buildings is a complex,
but well-constrained problem, and thus quite manageable from the viewpoint of automation.
Exogenous constraints are quite conspicuous in these types of structures and their use can
be easily illustrated. The domain of steel design, as opposed to concrete design, is discrete
since there are standardized sections available for use. This is advantageous while generating

design solutions.

1.3 Organization of the Dissertation

Eight chapters following this one present the main substance of this dissertation. The next
chapter elaborates on some background information and provides a context for discussion in
the remainder of this dissertation. Prior research in the area of knowledge-based systems for
structural design is examined and avenues of improvements in the prior work are suggested.
These avenues serve as part of the motivation for this investigation. Chapter 2 also points
out some similarities and differences between design in structural engineering and design
in other engineering disciplines. The logic-based approach to artificial intelligence (AI)
is introduced, followed by a summary of the results of a literature review. of gravity and
lateral load resisting systems (hereinafter referred to as gravity system and lateral system,
respectively) for steel office buildings. A brief note about the sources of information used
in this study concludes the chapter.

Chapter 3 presents the details of the methodology employed in this investigation. The
methodology is intended to be general and applicable to other types of structures besides
buildings. The reasoning in a conceptual structural design system, and the various kinds of
knowledge needed to support such reasoning, are identified.

Chapters 4 and 5 describe application of the methodology to the design of gravity and

lateral load resisting systems, respectively, for steel office buildings. This is done through

CHAPTER 1. INTRODUCTION 4

elucidation of knowledge and reasoning behind a computer system, Galileo, the conceptual
design system developed as a part of this investigation,.

A discussion of implementation issues follows in Chapter 6. The chapter discusses the
implementation environment for Galileo, along with some user interface issues. Two exam-
ples in Chapter 7 illustrate the working of Galileo. A few observations in the penultimate
chapter summarize our experience with logic for developing a prototypical structural design
application. The final chapter offers some concluding remarks and directions for future
work.

Three appendices supplement the subject matter of the chapters. Appendix A describes
the syntax and semantics of propositional and predicate calculus, and exemplifies their
usage with some engineering applications. Appendix B presents details of the K1F (Knowl-
edge Interchange Format) language that is employed in the implementation. Appendix C

provides a detailed description of the working of Galileo.

The fact is that civilization requires slaves. The Greeks were quite right there. Unless there are slaves to
do ugly, horrible, uninteresting work, culture and contemplation become impossible. Human slavery is wrong,
insecure, and demoralizing. On mechanical slavery, on the slavery of the machine, the future of the world
depends.

— Oscar Wilde, The Soul of Man under Socialism (1895)

Machines—uwith their irrefutable logic, their cold preciseness of figures, their tireless, utterly exact observations,
their absolute Knowledge of mathematics—they could elaborate any ideq, however simple its beginning, and
reach the conclusion. Machines had the imagination of the ideal sort—tfie ability to construct a necessary
future from a present fact. But Man had imagination of a different Kind; the illogical, brilliant imagination
that sees the future result vaguely, without Knowing the why, nor the fow; an imagination that outstrips the
mackine in its preciseness. Man might reach the conclusion more swiftly, but the machine always reacked it
eventually, and always the right conclusion. By leaps and bounds man advanced. By steady irvesistible steps
the machine marched forward.

— Jokn W, Campbell, Jr.

2

Prologue

This chapter introduces some preliminary concepts and the background behind this re-
search. In particular, the next section presents a review and some observations on prior
work in knowledge-based systems for structural design. A comparison with design in other
engineering disciplines follows in Section 2.2. Section 2.3 provides a brief overview of the
logical approach to Al and some logic-based design systems. Summary of a literature review
of lateral and gravity load resisting systems for steel office buildings follows in Section 2.4.

A brief note about knowledge acquisition concludes the chapter.

2.1 Research in Knowledge-Based Systems

for Structural Design

There have been many applications of knowledge-based systems in the domain of structural
engineering. Several efforts have been undertaken since the early days of SACON [8], in-
cluding those cited in Chapter 1. In Section 2.1.1, a few such relevant prior design systems
are discussed and their limitations are mentioned. (Chapter 4 and Appendix A contain ad-
ditional comments on previous works vis-a-vis pertinent subproblems.) Observations that
are applicable in general to most of the earlier systems are summarized in Section 2.1.2

along with arguments for an improved approach for developing structural design systems.

2.1.1 Prior Research

One frequently cited structural design system is HI-RISE [60], a system that generates and
evaluates preliminary structural designs for high-rise buildings. From a given input of

structural topology, geometry, locations of service shaft and mechanical floor, occupancy,

CHAPTER 2. PROLOGUE 6

wind load, and live loads, HI-RISE generates a context tree where each path through the
tree represents a complete, feasible structural design alternative. The design process is
divided into two major tasks that are carried out in the following order: (i) design of lateral
load resisting system, and (i) design of gravity load resisting system. Hi-RISE draws all
its knowledge from the literature, whereas in Galileo, the computer system developed in
this work, human experts have also contributed to knowledge. Galileo is also more focussed
(with respect to building occupancy, material, and possible lateral systems), which results
in generation of more realistic solutions for a particular subclass of problems. Such tasks
as geometric configuration to determine the location of gravity load resisting systems are
performed by Galileo; in contrast, information about structural topology is required as
input for HI-RISE. The criterion used for evaluation of alternatives is also different and
more practical in Galileo. On the other hand, the top-level decomposition of the structural
design process (into lateral and gravity systems) used by HI-RISE has been retained in this
work.

Sriram [80] proposed a conceptual model for integrated structural design in DESTINY by
describing several knowledge modules, and an abstraction hierarchy of objects to facilitate
communication amongst them through a blackboard. One knowledge module of DESTINY
that was implemented was ALL-RISE, an extension of HI-RISE to include the capability of
preliminary synthesis of low- and medium-rise buildings. Some of the observations made in
the context of HI-RISE are applicable to ALL-RISE as well. Furthermore, Galileo employs a
logical framework instead of a blackboard architecture for implementation. The constraint
classification used in our study is based on Ref. [57], which is richer and more comprehensive.

Gero and colleagues [29,28] have suggested prototypes as a conceptual schema for rep-
resentation of generalized design knowledge. A prototype provides a vocabulary of design
elements, the intended interpretations (goals and requirements), knowledge about the vo-
cabulary and interpretations, and parameterized design descriptions or parameterized de-
sign description generator. However, the knowledge that is proposed to be included in such
prototypes is shallow heuristic knowledge (e.g., for a rigid frame, “IF lateral-node-load <
50 kips AND no-of-stories > 50 THEN material is steel ELSE concrete”). The selection of ap-
propriate prototypes to be examined (in a given design context) in such a manner adversely
affects extensibility of the system and results in brittleness.

Kumar and Topping [49] have discussed issues involved in the development of knowledge-
based systems for detailed design of structures. They argue for representation of (i) theo-

retical knowledge about material properties and (ii) behavior of different types of structures

CHAPTER 2. PROLOGUE 7

under different types of loading conditions, so that when heuristic knowledge fails, the sys-
tem can fall back on to fundamental principles. A system, pESDEX, part of a larger system
(INDEX) for design of industrial buildings, is used to illustrate the feasibility of such an ap-
proach. The authors observe that reasoning from fundamental principles, though feasible, is
time consuming, and suggest “intelligent” problem-solving strategies to achieve speed-ups
in run time.

An integrated building design environment (IBDE) is being developed by Fenves et al. [21]
at Carnegie-Mellon University. The major thrust of the work is in building an environment
of processes and information flows to automate communication of design decisions in elec-
tronic form. The issue of the nature and contents of a global database needed for computer-
integrated construction is also being investigated. The approach to vertical integration in
IBDE involves sequential operation of several knowledge-based systems to perform architec-
tural design, structural design, construction planning, and other such tasks involved in the
design and construction of office buildings. Output of an upstream system serves as input
to the following system in the sequence, which operates and performs the specified task,
feeding the resulting information to the next system (if there is one). Of course, integra-
tion of various tasks is very important, but, in addition, integration through incorporating
downstream considerations and accounting for effects of any decision on subsequent tasks
is also desirable. IBDE plans to address this issue through process critics.

In a recent work, Sause and Powell [77] propose an organizational model, termed mul-
tilevel selection-development model, of the structural design process. A design problem is
decomposed into selection and development subproblems at alternate levels of an hierar-
chy in this model. One of the limitations of the model is that the behavior of the overall
system gets lost in the decomposition process. Also, the model sets up subproblems for
the design of each individual component, irrespective of the fact that in a typical structure
several identical instantiations of any component exist. Hence, even when several beams in
a building are identical in every respect (e.g., span, loading and support conditions), design
of every single one of them will be a subproblem in the model. Unless there is a method of
aggregation of subproblems for identical components, design of large-scale structures will
be unnecessarily repetitive and time consuming.

A system to decide on certain design variables (e.g., the construction material and
the bay sizes), given a qualitative descriptions of labor costs, schedule requirements, and
regularity of the floor shape, in addition to other input such as soil bearing capacity, cost of
land, etc., has been developed by Haber and Karshenas[33]. The system works by searching

CHAPTER 2. PROLOGUE 8

from sets of values for different parameters so that the overall solution is optimized. Thus
bay size is chosen from a predefined set that includes values like 15" x 15', 20 x 20', 30 x 30,
and 40’ x 40’. To extend the system one will need to generalize the decision process so that
values of design variables are not restricted to be members of predefined sets.

In a work closely related with the work described in this dissertation, Luth [57] has pro-
posed a global framework for reasoning and representation for integrated structural design.
He argues for explicit representation of form, function, and behavior in structural design
systems and describes structural and exogenous constraints (organized in a formal con-
straint classification system) applicable to design of commercial office buildings. We utilize
the same constraint classification system in this study and extend the work by applying the
concepts to a specific problem. Ref. [57] is thus frequently cited in this dissertation.

In addition to the systems described in this section, analogical reasoning to develop
designs based on previous cases is also being examined. Zhao and Maher [89] and Howard
et al.[37] have reported successful applications of case-based reasoning in structural engi-
neering. Recently, application of logic to structural engineering has emerged as an active
research area and applications to some subproblems have been reported in the literature.
Such applications are discussed later in this chapter in Section 2.3.1, along with application

of logic to design in other engineering disciplines.

2.1.2 Arguments for Improved Approach

Heuristics have received considerable attention in previous works for automating structural
design. Undoubtedly, they are indispensable in several specific instances, more so in the
conceptual phase of structural design. However, first principles can often be used equally
well while generating design solutions, and they have the added benefit of resting on a firmer
basis. Though employing rules of thumb may be efficient for human experts whose time
is precious, in an automated environment there is little to be gained by applying shallow
heuristic knowledge when a slightly more detailed investigation based on laws of nature will
yield better results. An example supporting this argument is presented later in Section 3.3.
Even when heuristic knowledge is required, its place has to be properly identified in the
overall framework. Also, for the system to have a practical outlook, the heuristics should
preferably be obtained from human experts also in addition to text books.

Before embarking on implementation of a system meant for conceptual design, it is
useful to develop a formal model of the domain as well as the design process itself. Lack

of a formal model can contribute to brittleness and lack of extensibility of the system. A

CHAPTER 2. PROLOGUE 9

related issue here is that of representation of function. As pointed out by Luth[57], the
reason for the existence of structure—to carry loads—is usually not represented explicitly
in previous systems. Knowledge of the form “If the building is less than 20 stories then use
a moment resisting frame” implicitly incorporates several facts, including that the lateral
loads will exist on the structure and they need to be transferred to the ground through some
elements and systems. As is demonstrated in Section 3.2, reasoning based on an explicit
representation of function is much more general and can lead to systems that are easier to
extend beyoﬁd their original application.

The most important criteria governing structural design are safety and economic effi-
ciency. To that end, the designer strives for strength, physical integrity, and serviceability
of the structure (to some extent, by following the provisions of codes of practice). How-
ever, issues like architectural requirements, MEP (mechanical, electrical, and plumbing)
constraints, constructibility considerations, etc., that can impose substantial restrictions
on the structural system and significantly affect its cost, also need to be addressed during
the structural design process. Some of the earlier systems have primarily been concerned
with structural considerations alone at the expense of exogenous ones. Integrated structural
design aims to develop more practical design solutions by devoting the attention merited
by such exogenous considerations, in addition to the structural ones, during the process of

structural design.

2.2 Design in Other Engineering Disciplines

There are several interesting similarities as well as differences between the design process in
structural engineering and design processes in other engineering disciplines like mechanical
and electrical engineering. Design in other disciplines also involves more than one phase
and there is usually a preliminary design phase (where some high-level decisions are made)
followed by a detailed design phase (where finer-level details are sorted out). The idea of
“cooperative design” is applicable to all design disciplines where many interacting—and
possibly conflicting—entities are involved in design. Structural design is no exception since,
in addition to the structural engineer, the owner, the architect, the mechanical engineer,
etc., influence the structural design. Also, the design is usually meant for artifacts that are
ultimately to be built, and incorporating downstream considerations at the design stage can
can have ‘signiﬁcant favorable consequences for the production stage. Thus, we have the

concept of design for constructibility in the case of structures and analogous concepts of

CHAPTER 2. PROLOGUE 10

design for assembly and design for manufacturability in the case of electrical and mechanical
systems [85,22]. Moreover, design usually is an open-ended problem and multiple solutions
are possible. Thus, some evaluation criterion is needed to judge the overall merit of the
different alternatives.

One important aspect in which structural design differs from design in other disciplines
is that structures are usually ‘one-of-a-kind’ systems[57]. Full-scale physical modeling of
the artifact, which is economically viable in other disciplines because of the large production
volumes, is usually impractical in the case of structural systems. The design of structures,
thus, is most commonly based entirely on non-physical models.

In Ref. [16] Dym and Levitt have discussed application of knowledge-based systems to
engineering design in general. A few engineering design systems that use logic are discussed

later in this chapter.

2.3 Logic

Logic is a formalized treatment of knowledge and thought. To use logic as a knowledge
representational formalism, one starts by asserting some axioms, which embody known facts
or self-evident truths in a particular field of interest, in a chosen language. The fundamental
unit of representation in the chosen language is a sentence. New, useful sentences are inferred
from such axioms through syntactic manipulations, without any reference to the meaning
of the symbols involved. This is important because a computer can be programmed to
carry out syntactic manipulations, and depending upon the range of these manipulations
and their correspondence to the spectrum of inferences made by human beings, one may
enable a computer to emulate some part of the human thought process.

For reasons of ambiguity and imprecision, natural languages, such as English, are not ap-
propriate for expressing the knowledge contained in the aforementioned axioms and drawing
inferences from them. Over centuries, logicians have tried to devise languages that possess
sufficient expressive power and are more precise than natural languages. Propositional cal-
culus is one such language of abstract sentences that consist of propositions (truth symbols "
like true and false and propositional symbols) and connectives (for instance, and, or, if-
and-only-if, etc.). However, this language is too coarse and primitive to express the concept
of an object, pfoperties of an object, or a relationship between several objects [61]. A more
powerful logical language is predicate calculus. Appendix A describes both the languages

and provides some examples of their possible uses in structural engineering problems.

CHAPTER 2. PROLOGUE 11

The logical approach to Al is often mistakenly equated with pledging allegiance to the
use of first-order predicate calculus as the representation formalism. That is a rather narrow
interpretation of the logicists’ position. Logic is not a particular syntax or a technique of
coding; instead, it is a collection of ideas and rigorous mathematical tools for expressing
knowledge about the world and analyzing the representational languages capable of doing
so[35]. A more accurate characterization of the logicists’ stance will involve (i) commit-
ment to declarative representation of knowledge in general, (ii) with the use of any language
that is at least as expressive as first-order predicate calculus[69]. Many researchers have
defended both these tenets in the past, and there is considerable agreement even among
“non-logicists” vis-a-vis the supremacy of declarative representation for building intelligent
machines. Logicists furthermore believe that parts of the theoretical apparatus already
developed in mathematical logic (e.g., proof theory and model theory) are necessary ingre-
dients for the foundation of intelligent systems (see, for example, Refs. [35] and [67]).

Logic is not in contradiction with the knowledge is power[53] principle. Of course,
one must have adequate domain-dependent knowledge in order to solve a problem. Logic
provides only the form and not the content[69]. Adoption of the logical approach by no
means rules out the use of heuristics in the design process. Heuristics can be expressed
using predicate calculus as well as any other declaration.

In this investigation we have employed the KIF representation language (which is an
extension of first-order predicate calculus) for formalizing the knowledge in the domain
of structural design. (An overview of KIF is presented in Appendix B.) Based on our
experience, some observations on the logical approach in the context of structural design

applications are presented in Chapter 8.

2.3.1 Logic-Based Design

Use of logic for developing structural design systems has not been as extensive as use of
some other representation formalisms. Logic-based design, both in the domain of structural
engineering as well as other engineering disciplines, is reviewed in this section.

The application of symbolic logic to design axioms has been discussed by Kim and
Suh[47]. Modeling the design process as a mapping from a set of functional requirements
into a set of design parameters, this work illustrates how generalized design principles can
be represented through symbolic logic axiomatizations. As a result, some design rules are
shown to be direct implications of basic design axioms coupled with certain assumptions.

In one of the early uses of logic for structural design, Chan and Paulson [10] showed

CHAPTER 2. PROLOGUE 12

how constraint formulation, propagation, and satisfaction (using logic programming) can
be applied for design of determinate planar truss structures. Constraints are represented
as procedural attachments in this work, with a different procedure representing each pos-
sible use (e.g., conformance checking or variable instantiation) of the constraint, a practice
not in strict conformance with the ideals of declarative programming. One of the primary
limitations of the work is that constraints have to be manually formulated by the user and
provided as input, which is cumbersome and unnecessary since a system with knowledge
about structural behavior and performance can formulate some of the constraints automat-
ically at run-time.

An application of formal logic to architectural design is reported by Coyne [14]. The work
described can perform spatial layout of functional spaces in a building, and illustrates the
use of deductive reasoning for complex design tasks. The system has been implemented in
Prolog, a language that only partially exploits the expressibility and inference capabilities
of predicate logic. Hence the knowledge representation scheme is essentially production
systems modeled in logic. The work shows that important aspects of design can be modeled
as logical processes; judgments often considered intuitive and instinctive can be simulated
mechanically through axioms of a logical system.

In a recent application, Lakmazaheri [51] shows how a constraint logic approach can be
used for design of two-dimensional trusses. One of the tasks in the processis partial synthe-
sis, wherein locations of various components (such as members and supports) are determined
to synthesize trusses, given loading information and fixed locations of other components.
Effectively, the user defines the complete search space by identifying all possible locations of
the nodes and the precise numbers and types of various structural components that should
be used in the final structure; the synthesis is then a search for all possible configurations
that result in stable structures while satisfying other applied constraints. Application of
theorem proving to analysis and sizing of truss structures is also described in this work.

Another work, currently in progress, is Designworld [25], which envisions development
of a computer-robotic system to assist in the production of small-scale electromechanical
devices, such as disk drives, compact disc players, and robots. For reasoning, Designworld
will work from a declarative representation of fundamental knowledge in the relevant design
disciplines to achieve high-level performance while avoiding the brittleness often encoun-
tered in traditional expert systems. One key concept in the project is contemplation of

a central database that will include product-specific information (such as manufacturing

CHAPTER 2. PROLOGUE 13

records, specifications, assembly plans, etc.) and product-general information (such as ba-
sic scientific and technological principles in electrical and mechanical engineering, details of
the machinery available for manufacture and maintenance, etc.). As the reader will notice
later, the methodology discussed in Chapter 3 has components that correspond well with

these kinds of knowledge.

2.4 Gravity and Lateral Systems for Steel Buildings

Disregarding the foundation issue, the problem of conceptual structural design of an office
building involves (i) design of the gravity system and (ii) design of the lateral system. The
gravity and lateral systems are not independent of each other and can mutually constrain
each other’s options. Thus, if the load resisting systems are designed sequentially in an
automated environment, a reconciliation step should evaluate the influence of a gravity sys-
tem’s decisions on lateral system’s ones (and vice versa), and arrive at an efficient combined
system, conceivably by modifying one or both the subsystems.

Though lateral loads often govern the sizes of members in the case of high-rise buildings,
in this investigation we proceeded to design the gravity system independently so that the
“premium” for the resistance to lateral loads can be assessed. Accordingly, a review was
made of the options available for steel structural systems for resisting both the types of loads
and the results are presented in Figs. 2.1 and 2.2. The figures are based on the information
contained in several sources, including Refs. [3,13,41,84,88].

Not all of the alternatives shown in Figs. 2.1 and 2.2 have been implemented in the
prototype. For instance, only composite metal deck and wide-flange hot-rolled beams are
available for floor slab and support element, respectively, in Galileo. Similarly, only perime-
ter moment resisting frames are used for the lateral system. The figures are based on
literature survey and do not represent the model of gravity and lateral systems in Galileo.
They are shown here for illustration because they served as a starting point for some of
the reasoning employed in Galileo. Thus, the heuristics shown in the figures are the ones

contained in the literature; Galileo does not reason from any of these heuristics.

2.5 A Note about Knowledge Acquisition

In addition to literature, knowledge for Galileo was also acquired through interviews with
human experts. Though it is often difficult to pin down experts for extended periods of

time, the author was fortunate to have nearly unrestricted access to a structural engineer

14

CHAPTER 2. PROLOGUE

POUIBI]O SB “DIAJOAUL $3II0YD PUE SIUSUILIOD SZLIBWILINS $9XOQ 3Y} MO[Aq STUSWAILIG

ansodwo)y

ANsodwod-uoN

{[PUEd [29PURIBIA 4
sjonp Jo
98essed 10] sqom euoSerp ueamiaq aoeds 4,

"p"7 UOTI09G UL PAUOTIUAW $IOUDIOJOI THOI]
"SIARILII)Y WIRISAQ AJIARIY) :]'7 oIS

Areroudond 4 ;snonunuod 10 payoddns Ajdur
adofoata ¢ ‘ P LS« s1e0yg $1004S [991§ 3181 199YS
Surp[mng seonpay 4 MOIqUIBH PRIEOLIqR,] peuoping pajednio) pepIOq
p,bax 19918 $S97 4
QAISUIU] J0GRT 4 L _ | _ |
pno $I0109UU0D TB3YS JO 1800 BOXY 4
poyouneyy SOSSNIL repndod QIO 4 AR
T I TURIOIIR Ajremionns , 4648 8L 9 %
1y3rom Surwey yidop J00[y poonpay « Suroedg
I00[] paonpay « peseduy SI012QUU0D) qry
$1509 AnA TeoyS YIM
JIOMIONP PASLIIOU] . l] ¢ i
SOLIOIS | <] o215 10001 4 WER LTS
10y pexnnbor Sunoys , $o[qe peor |ansoduos-uoN ansoduio)) Aiqerreae (8007 a31ey oq Aew ydeg
001<"3PIq JO YIPIM « 1rS uSisaq ySromysry $1500 [RLINBJA 4
patedionue SOLIOIS JO _ I | 10 JYSOMBULION] 4 duryood omy _
jou SutuoyiSuons oqunu [fews 10§ ;paeoLIqe] 10 PI[OY paou Aeur 2pISIOpU() 4 {peloysun
ImIng JI pOOL) 4 poogd Aqreroadsy 4 £SnONUIU0) IO S1215U0)]I UOTIORID JOISBY 10 (UOWWOD
9918 JO 98N JUIIOHIH panoddns Ajdung 4 osn IOge] J9MO0'T 4 QIOW) PAIOYS 4
TopIH wasAg 1s10f S J00(199§ 1S 399 1IN
quig qoM uedo d ansodwoouoN ansoduioyy
SIUQWIDLE qe[s
110ddng JOO[

TR
Aj1avID

15

CHAPTER 2. PROLOGUE

POUTRIO SB ‘PIAJOAUIL SIIIOYD PUB SIUSWIOD SZLIBWWNS SIXO] 9} MO[O] SIUSUIDIRIG

(ssn PopusIar A Lopdurd

"$'7 UOTIO9S UI POUOTIUIU SIOUQIQJOX WIOIJ

*SOAIJBULID)Y WIDISAS [BId)R| 77 2InSL]

(21gedaooe sejowinred
uo ssnx Jeuoger(.
UOHEI0[{o1qerdaooe
rewndo AJeImonng . 93ejueApRSID
SI0O]J [BOTUBYIOIA 4 JRINIOAIYOIY
Amnuvmme.“r 0Am < E@a%mv
70 UONEIOT Burp[nq Iopuays
._ SUWIeL] U] 29 1xH | PUield 1Xg % 304 | PWeL] 101oWiing
SOSSTLL 1og 910D pedelg WIMPIM TN || %9 9100 padelyg
{oeds Jo rqunN
951JJO U UOISNIN] |
, o R {91qe1deode s100[] JO
{30 ATennoANMYIIY » ST 01 “S « wondmsip S33InG 5
5 Mﬁozmws Teuoser(1,ug Suroedg 09-Ot ~ SOLIOIS 4
3O IequunnN 10 pasodxyg uwno) S T ATER ST TR
pue 1033mnO pue paserg
{SOLI0TS JO [] ZUONEMOIIO IO pbar
roquunu o51e ,, ¢p.box suonemsyuoo AU TeMXOL] % sFutuodo [Tep «
{P81e uOISUSUIIP uerd Suikrea Julp By {pbox ssouyyng
uefd aI[0SqY 4 103 Ayiqerdepy ureog yury Suroeig
(RS §i~> JO suoIsuwig Jood<y,
onei dse) ;odeys orer13edse ueld 4 [I
weld poreSUO[g 5 (G < SOLIOIG 4 SOMIOIS JO JoquIn {PUOZ JIWSIAG 4 0€ >SSUOIS 5 1:01-1:3>UIPIMAH
oanL sqnL °qnL SWelL] paoerg oweL] ouwrel] paoelg
TEIRD padelg powrely oLIuRISy Sunsisoy WO OLRUSOU0Y)
SWAISAS SUIMISAS
ac ac
QWAYDS
eIseT

*

CHAPTER 2. PROLOGUE 16

having considerable expertise and 14 years of experience in designing multistory office build-
ings. Knowledge acquisition is often the bottleneck of projects involving development of
knowledge-based systems, and from personal experience the author can state that several
conditions need to be met for successful knowledge acquisition. One of the most important
is availability. It is not always possible to foresee all the aspects of a problem during an
interview session, and incompleteness and conflicts in the acquired knowledge become ap-
parent later on during implementation. If the expert can be contacted readily in such cases,
the process of knowledge acquisition becomes much smoother.

In the case of this investigation, a confluence of factors presented an almost ideal oppor-
tunity for knowledge acquisition. The primary expert, Mr. Gregory P. Luth, was pursuing
doctoral work alongside the author. It was possible to discuss the subject matter in de-
tail with the expert in an informal setting fairly regularly and frequently. The meetings
were usually not time-constrained. The expert could see the acquired (and implemented)
knowledge being applied to problems and comment on its efficacy. In addition to having
a wealth of practical experience, the expert was familiar with Al and knowledge-based
systems concepts and terminology. The benefits of such familiarity cannot be overstated.

Another expert, Mr. Roger E. Ferch, provided much valuable expertise for the evaluation
phase. Mr. Ferch furnished the basic data used for cost estimation and gave useful feedback

regarding the presentation of results.

It makes no difference to a chess problem whether the pieces are white and black, or red and green, or whether
there are physical pieces at all; it is the same problem which an expert carries easily in his head and which
we Rave to reconstruct laboriously with the aid of the board. The board and the pieces are mere devices to
stimulate our sluggish imaginations, and are no more essential to the problem than the blackboard and the
chalk are to the theorems in a mathematical lecture.

— G. H. Hardy, A Mathematician’s Apology (1940)

The fact that all laws and general propositions fiave their exceptions does not destroy the value of laws and
generalizations as guides to human conduct—any more than the doctrine of justifiable fomicide destroys the
[aw against murder.

— I % Stone, The Trial of Socrates (1988)

3
Methodology

Musen [68] states that developing a knowledge system for performing an engineering task is,
in many respects, analogous to developing a scientific theory: one must identify the underly-
ing knowledge that defines the characteristics of the physical system being reasoned about,
and one must also theorize the problem-solving approach of a given class of professionals in
the domain of interest. Model-based reasoning has recently emerged as a useful paradigm
for solving problems in diverse application areas [50,78]. In order to reason about a system
in this approach, one explicitly represents the form, function, and behavior of the system
being modeled, imparting flexibility and depth to the computer system.

The following definitions, adapted from Ref. [57], define the terms form, function, and

behavior as seen from the perspective of structural engineering.

e Form: The form in the context of structures refers to the description of spatial ar-
rangement of functional objects (such as beams, columns, etc.) and the physical

attributes of such objects.

e Function: This refers to a qualitative description of the purpose of a structural system
or an element. The primary purpose of the structure is to transfer the incident loads,

as well as its self-weight, from their respective points of origin to the ground.

o Behavior: Behavior refers to the response of a structure to applied loads. Thus behav-
ior is essentially the manifestation of the structural system performing its function—as

a result of carrying loads the structure deflects and develops internal stresses.

Engineering design involves determining the form of a physical system, given its function
and desired behavior, such that the system satisfies the constraints imposed on it. Analysis

on the other hand involves determining a system’s behavior given its form and function [57].

17

CHAPTER 3. METHODOLOGY 18

As has been mentioned earlier, structures are usually unique systems. As a result, test-
ing of physical models to determine the suitability of the design solution is generally not
feasible (although it can be applied, for instance, in the case of wind-tunnel model testing
of high-rise buildings). However, because of human safety and serviceability considerations,
it is necessary to develop reliable means to predict the behavior of the structure. Imprac-
ticality of the physical models, coupled with the need for behavior prediction, necessitates
mathematical modeling (numeric as well as symbolic) of the structural response in terms
of known quantities. In the case of design problems, to determine the form efliciently one
also needs to model the problem-solving approach of experts in the domain.

Different types of models—ranging from diagrammatic to physical—can be used to
represent an engineering system. The representation of the form, function, and behavior
of the engineering system can be used in conjunction with the representation of meta-
level problem-solving knowledge, forming a layered reasoning system modeling two distinct
conceptual entities: (i) the physical system, and (ii) the human being reasoning about the
physical system [57]. To define the architecture of a computer implementation of these
models, one should clearly identify the various components involved and establish the roles
of the components in the overall scheme. This chapter is intended to fulfil that goal. A
methodology for developing knowledge systems to assist in conceptual design of structures
is proposed in this chapter. The methodology builds on Ref. [57] and draws significantly
from the reference. The next section presents an overview of the methodology while the
subsequent sections consider the individual components of the methodology in detail. The

final section summarizes the contents of the chapter.

3.1 Overview of the Methodology

In the methodology for performing conceptual structural design in an automated environ-
ment presented here, we first identify different items of knowledge that are relevant to the
design process, organize this knowledge into distinct categories (described subsequently),
reason from such knowledge to develop alternative solutions for a design problem, and fi-
nally, evaluate and critique the generated alternatives. An overview of the different facets

of the methodology is presented in the remainder of this section.

1. Functional Elements and Systems Knowledge: This is one of the basic categories of

knowledge, containing information about attributes like function, qualitative behavior

CHAPTER 3. METHODOLOGY 19

modes, and form of generic structural elements and the systems that can be synthe-
sized from them. The attributes will usually have a value (or a set of values) that will
always be true. Some examples of structural elements are Beam, Wall, and Cable.
The synthesized systems can be Truss, Grid, Moment Resisting Frame, etc. To illus-
trate, the function of an Arch is to carry the loads across horizontal spans through the
primary behavior mode of compression and secondary behavior modes of bending and

shear. The form can vary; some possible forms are, parabolic, radial, and funicular.

2. Behavior and Performance Knowledge: The behavior knowledge refers to the funda-
mental principles of structural engineering which quantitatively describe the forces,
stresses, deflections, etc., for structural elements and systems mentioned earlier. An
illustrative example of knowledge in this category is the set of equations expressing
the distribution of shear and bending stresses across the cross-section of flexural mem-
bers. The general cable theorem, which relates the horizontal component of the cable
tension with the geometry and external vertical loading on the cable, is another such

example.

Performance knowledge, on the other hand, refers to the knowledge about performance
criteria imposed on the structure. Much of the knowledge contained in design stan-
dards and specifications is of this type. Design specifications are a source of statutory
constraints that must be met by the final solution. Note that performance knowledge
also encompasses knowledge about material properties. One sample usage of perfor-
mance knowledge is the determination of the amount of individual loads and the load
combinations for which a structure must be designed. Another example pertains to

the control of wind-induced vibrations in long-span bridges.

3. Product Knowledge: Knowledge about specific products that can be used for con-
struction is classified under this category. Such knowledge may range from geometri-
cal properties of commercially available hot-rolled steel sections to market knowledge
about the availability of certain products in a particular region and the associated

cost data.

4. Concepts: Various abstractions, e.g., architectural and structural patterns in the floor
“plan of a building, Cost/V alue ratio, etc., play a supporting function in formulating
strategy and defining evaluation criteria. Such abstractions are collectively denoted

by the term Concepts.

CHAPTER 3. METHODOLOGY 20

5. Strategy: While a large fraction of the generic domain knowledge is contained in the
modules Functional Elements and Systems Knowledge, Behavior and Performance
Knowledge, and Product Knowledge, such base-level knowledge alone is not sufficient
for solving a design problem. To generate design solutions efficiently, one must also
capture meta-level knowledge, or problem-solving knowledge, that operates on the
base-level statements and specifies how to utilize them. This aspect of the methodol-
ogy models the approach of a set of professionals to the application task, as mentioned
earlier. Thus, Strategy is meant to emulate the human thought process and to perform

decision making based on experts’ technique(s) of approaching the problem.

6. Reasdning with Constraints: Conceptual structural design can be performed by for-
mulating, propagating, and satisfying constraints based on the knowledge contained
in the modules described earlier. By (i) formulating constraints based on the project
context as well as project-independent information, (ii) propagating the effects of a
constraint originating in structural engineering or exogenous domains to the same or
other domains, and (iii) selecting the values of attributes so that the constraints are
satisfied, one can synthesize alternative structural schemes that can serve as candi-

dates for evaluation and feedback.

7. Evaluation and Feedback: For a given design problem, there is usually more than
one feasible candidate solution that meets all the constraints, thus necessitating some
evaluation mechanism. Evaluation may be based on an explicit or implicit consider-
ation of the Cost/Value ratio[12,57]. A well-defined evaluation criterion, or a set of
criteria, is a requisite constituent of a design methodology. Evaluation can also lead to
feedback on the advantageous and disadvantageous aspects of different alternatives,

and suggestions on improving an alternative.

Each of these components is described in detail in the following sections and their usage

is illustrated with suitable examples.

3.2 Functional Elements and Systems Knowledge

As mentioned in Section 3.1, this component contains knowledge about various types of
elements and systems that can be used for structural design. In terms of the type of
knowledge represented, the emphasis is on first principles of structural engineering and not

heuristics. Thus, while knowledge of the form “a post-and-beam frame is unstable” will be

CHAPTER 3. METHODOLOGY 21

included here, a statement similar to “a framed tube system is good only for buildings over

30 stories” will not be.
In the remainder of this section, we give some illustrative examples and show how

reasoning based on function can be used to deduce the requirement for some structural
components. We should reiterate that any declarative formalism can be employed for rep-
resenting this knowledge. For instance, the following knowledge can be represented in terms
of objects such as Hanger, Floor Plate, etc. having attributes Function, Form, and so on.
Alternatively, it can be equivalently stated by means of first-order predicate calculus state-
ments where, for example, Form is a relation that holds true between the objects Floor

Plate and 2D-Horizontal.

Hanger

Function To transfer the applied loading in a vertical direction.
Primary Behavior Axial Tension
Other Behaviors None
Form 1D Vertical
Possible Materials Steel, Wood
Supported By Hanger, Transfer Girder, Wall Bracket

Floor Plate
Function To collect vertical loads distributed in a horizontal plane and to provide
a surface forming element. '
Primary Behavior Flexure
Other Behaviors Shear
Form 2D Horizontal
Possible Materials Reinforced Concrete, Steel Deck, Composite Deck, Plywood

Supported By Beam, Column, Wall

Framed Tube

Function To resist lateral loads.

CHAPTER 3. METHODOLOGY ‘ 22

Primary Behavior Overturning moment resistance through axial forces in columns in the
direction of the loads as well as the ones perpendicular; story shear

resistance through bending in columus.
Other Behaviors Shear Lag
Form 3D Vertical
Possible Materials Steel, Reinforced Concrete

Supported By Foundation

It should be noted that the preceding classification is based on functional objects. In
the representation based on function we form instantiations from these objects to represent
the actual physical entities. Thus, from a functional object like Column, we can form
instantiations to represent Column 1, Column 2, .and so on. Note, however, that there
doesn’t have to be a one-to-one mapping from physical objects to functional objects; the
same physical object may perform more than one function. To illustrate, consider the case
of structural design of a building. The Functional Elements and Systems Knowledge module
will contain descriptions of Floor Plate (a member of the gravity load resisting system)
and Diaphragm (a member of the lateral load resisting system), besides others. If the same
physical entity performs the functions of both the Floor Plate as well as the Diaphragn,
instantiation from both of them will result in the same object when the design solution
is being synthesized. As we argue later, reasoning based on function results in greater
flexibility and is more conducive to innovation.

To show how the previous knowledge can be used, let us again consider the case of
structural design of a building. From the fact that the structure is a building, we can
infer that there will exist vertical loads (in addition to other types of loads) which will
be distributed in a horizontal plane. This reasoning suggests that a structural element
that can perform the function of collecting distributed vertical loads in a plane will be
needed. Looking at our knowledge base, we see that a floor plate can perform such a
function, and thus is a candidate element to be used in the structural system. If no other
element can perform the said function, a floor plate has to be used, thus establishing a
definite requirement of floor plate in case of a building. However, if the structure was a
transmission tower, there is no function of collecting distributed vertical loads, thus making

a floor plate unnecessary.

CHAPTER 3. METHODOLOGY 23

3.3 Behavior and Performance Knowledge

Behavior knowledge embodies the relationships among numerical quantities like loads,
stresses, and deflections. Behavior knowledge is primarily first principle knowledge. For

instance, the equation
Me
= 3.1
i=2 (3.1)

expresses the relationship between the bending moment, M, bending stress, f, moment of
inertia, I, and the distance from the neutral axis, ¢, for a structural element under flexure
within the elastic limit. Some other examples of behavior knowledge in the case of a simply-
supported beam under uniformly distributed load, w, are given below (where the symbols

denote their usual meanings).
wl?

5wl
T 384FE1T (3:3)

A related type of knowledge, namely performance knowledge, specifies the legally re-
quired constraints on the behavior of the structure or its individual components. For in-
stance, in the case of beams, there is commonly a restriction of the following form on the

permissible deflection:
(3.4)

R~

6 <

where [is the span of the beam and « is some numeric constant, such as 240 or 360.
With the help of Eqgs. (3.1)~(3.4), we can illustrate how behavior and performance
knowledge can be combined during the process of conceptual design. Consider, for example,
a steel beam with an I-section. We need to consider only the deflection due to live loads
when satisfying Eq. (3.4). Let r denote the fraction of the total load that is due to live
load. Replacing w by rw in Eq. (3.3) and combining it with Eq. (3.4), we get
5rwlt {
384E] = &
Based on Egs. (3.1), (3.2), and (3.5), and the relation ¢ = d/2 (where d is the depth of the

beam), we can deduce the general relationship for the minimum depth of a beam in terms

(3.5)

of average allowable stress, f, the span, [, and the factor c.

5rfal
d>
T 24E

When designing a specific beam, the values of r, [, F, and « will be known and an estimate

(3.6)

can be made for f. Thus the depth can be selected in such a fashion that deflection

CHAPTER 3. METHODOLOGY 24

requirements are not violated. To illustrate, consider the case of an A36 beam for which
E = 29000 ksi, a = 360 (to achieve a deflection limitation of {/360), r = 0.6 (corresponding
to a 60% contribution of live load to total load) and allowable stress, f = 24 ksi (for A36
steel). Substituting these values, and adjusting the equation to get d in inches while [is in
feet, we get:

d> 0451 (3.7)

If the beam depth is selected in accordance with this criterion, then the code-specified
live load deflection limitation of 1/360 is always satisfied for the illustrated case. This bit
of knowledge is sometimes coded as a heuristic in structural design systems, but, as the
previous example illustrates, it is unnecessary to do so in view of the ability to derive the
relationship between d and ! based on behavior and performance knowledge. Moreover, the
relationship is more general and can be applicable in a wider variety of contexts (e.g., for
different values of a or f) than the corresponding heuristic, which will hold true only for
some combinations of variables. |

Performance knowledge is often based on past observations about the behavior, and
thus the distinction between behavior and performance knowledge is sometimes blurred.
For instance, the stress-strain relationship for common construction materials like steel and
concrete can be determined experimentally, thus providing the behavioral basis; however,
an idealized relationship contained in the specifications can be used when actually designing
the elements, thus using constraints derived from performance knowledge. Because of the
link between them, and because design codes contain both types of knowledge, we have

chosen to put behavior and performance knowledge together in a single component.

3.4 Product Knowledge

The knowledge about the attributes of the products that can be employed for constructing
a facility can be used to formulate constraints regarding the set of possible solutions and
to evaluate those solutions. This component of the methodology contains such knowledge
including, for instance, the AISC table of steel shapes, manufacturers’ catalogs of standard
building components, pricing information relative to material and labor, etc. The specific
knowledge contained in this component will depend upon the type of application being
developed, and even for a given application the knowledge may be dynamic because of
other considerations. As an example of the former, one need not represent properties of steel

sections in an application meant to design concrete bridges. As an example of dynamism,

CHAPTER 3. METHODOLOGY 25

some attributes of the products—cost being a prime example—may vary from region to
region.

Also, some of the knowledge may be vendor-dependent. In the case of cold-formed steel
decks, for one, the properties may vary from vendor to vendor. In other cases the knowledge
will be independent of the vendor. For instance, the cross-sectional area of a #3 rebar will
be the same irrespective of the vendor. Structurally, there is nothing inherently fundamental
about most of product knowledge. For instance, at least in principle, one can use a rebar
having a diameter of 3.5/8”. However, since the final design must be constructible, current
construction practices have to be reflected in the design process, thus necessitating this

component.

3.5 Concepts

While developing a strategy or defining evaluation criteria, one may need to use some aux-
iliary concepts useful for encoding the problem-solving knowledge. To illustrate, architects
and structural engineers often work in terms of geometric patterns during the conceptual
design stage of buildings. The layout of a structural system may be strongly influenced by
the presence of such patterns. Thus pattern becomes a concept that has to be recognized
and accounted for while solving the problem. Another related example is the idea of column
grids. Computer systems for generating floor framing schemes have employed this idea in
the past to arrange columns in a regular fashion in the plan of a building. Such concepts
should be explicitly identified in the knowledge base of the system.

As noted earlier, Cost/Value ratio can be used as an evaluation criterion to compare
alternative solutions. Cost, Value, and the Cost/Value ratio are all supporting concepts

useful for formalizing the evaluation process.

3.6 Strategy

Strategy refers to the approach of solving a problem—the knowledge about how to use other
knowledge. In essence, strategy is a structured form of anticipatory knowledge about the
relationships among form, function, and behavior that allows manipulation of the problem
constraints to effect a desired outcome. The upshot of this component of the methodology
is that one captures the experiential knowledge of the designers in a given problem domain.

Coming up with the form of a design solution, which is a highly creative process that relies

CHAPTER 3. METHODOLOGY 26

more on the ingenuity and experience of the designer than on the foundational knowledge
in the domain, is accomplished largely through strategy.

A simple example will illustrate the usage of strategic knowledge. Recall that in Sec-
tion 3.8 we deduced an expression for the minimum depth of a beam, d, from some behavior
and performance considerations. Although mathematically it is equally valid to derive ex-
pressions for w or E instead, we implicitly recognized that expressions for w and E are not
meaningful because, typically, d is the quantity that can be varied to satisfy the behavior
and performance requirements. Hence, in order to block superfluous inferences from the
represented knowledge, one also has to state explicitly how the represented knqwledge can
be used best.

Such control knowledge can be very important for the sake of efficiency; it may be used
to pare down the search space of the feasible design solutions in the very early stages, based
on some high-level considerations. Strategic knowledge, however, may be hard to acquire
because it may be too implicit or obvious to the expert. The earlier example of w and &
being relatively fixed quantities is a case in point.

Among the examples of knowledge in this category are knowledge about the decomposi-
tion of the problem, knowledge about when to formulate what constraints, and knowledge
about how to utilize some concepts. As hinted earlier, an important aspect of strategy is
anticipation; by anticipating the downstream decisions and the effects of present choices on
them, one can minimize the revisions to the evolving design.

Heuristics are likely to be predominant in the knowledge contained in this component.
Furthermore, problem-solving strategy may vary from designer to designer; hence any par-
ticular encoded strategy represents only a subset of candidate strategies. Since informa-
tion in the Functional Elements and Systems Knowledge module is represented in a pure
declarative—or task-independent——fa,shion, it should be possible to build different strategies
that can operate on the same set of base-level statements. Thus, one can deduce design
descriptions that use different approaches to arrive at the final solution, though all of them
satisfy the applicable constraints. An instructive situation where this may be desirable
occurs in the design of columns for multistory steel buildings. One possible strategy for the
selection of steel sections for usage at different floors is to choose those sections that result
in the least amount of steel used (minimum weight strategy). Another possible strategy,
arising from splicing considerations, is to choose from only those sections that have the same
internal depth. (W14 sections, for instance, fulfill this criterion.) The computer system

may present the options to the user and let him or her make the decision regarding which

CHAPTER 3. METHODOLOGY 27

strategy to use. Alternatively, the system may explore both the options and evaluate the

resulting designs.

3.7 Reasoning with Constraints

Once the various types of knowledge described in the preceding sections are represented
in a suitable format, one can reason from such knowledge to derive design solutions for a
problem. The framework Luth [57] proposes for going about such a task is to formulate,
propagate, and satisfy constraints. Constraints can be formulated based on information
about the project context (e.g., location) as well as project-independent knowledge (e.g.,
general structural engineering principles). Thus, as demonstrated in Section 3.2, given the
fact that the facility to be designed is a building (project-specific information), we can
formulate the constraint that one must collect distributed vertical loads. Provision of a
structural element Floor Plate will satisfy the constraint; however, through the process of
propagation, one can formulate some additional constraints. For example, one now needs
some structural element(s) that can collect the load from the floor plate and transfer it to
the ground.

The constraints that can be formulated may arise from structural considerations or ex-
ogenous (e.g., architectural, mechanical, constructibility, etc.) considerations. Constraints
arising in different domains may interact with each other, thus forming mutual constraints.
As an example, consider the case of a floor system of a high-rise office building. In a typical
floor system, mechanical and architectural elements (ductwork and ceiling, respectively) are
also present in addition to the structural elements like girders and floor slab. Thus struc-
tural depth, mechanical depth, and ceiling height form a mutually constrained grouping
such that, when taken in conjunction with the desired floor-to-ceiling height, they should
not violate the restriction on the acceptable floor-to-floor height. The consequence of such
a relation is that variation in the parameters of some domain may influence the decisions
in other domain(s). Thus, if the depth of the mechanical ducts is increased, one may need
to reduce the depth of the girders, or, alternatively, if the ducts were initially underneath
the girders, they may now have to be passed through the girders.

The two top-level categories of constraints, namely structural constraints and exogenous
constraints, can be further decomposed in accordance with the classification proposed in
Ref. [57]. The subcategories are diagrammatically illustrated in Fig. 3.1 and are described

in the following two subsections.

28

CHAPTER 3. METHODOLOGY

"SUOTIRIOPISUOD snouagoxa

pue [RINIONNS Y10Q WOIy Isue Aewl uSISOp [eINIONIS 9y} UO SIUTRISUO)) “UoIJBdYYISSEL) juIeIIsuo)) 1-¢ 2undig
SJUIRNISUCD) SJUTRHSUO) SJUMRISUOD) SIUIRIISUO)) SJUTeNSUO) SIUIBNSUO) SIUTENSUOD) SIUIENSUOD SIUMRNSUO) SIUIBLSUO))
numO Amqoonnsuo) JON eIy ANmIqeroy 100poIg Anowoon J0UBULIONSJ IOIABYDY uonoun,j

sjurensuo)) snouaoxyg SJUTRIISUO)) [BINONIIS

SJUTEIISUO))

CHAPTER 3. METHODOLOGY 29

3.7.1 Structural Constraints!

Structural constraints include function, behavior, performance, geometry, product, and
reliability constraints. Constraints arising from other subsystems (exogenous constraints)
must be transformed into one of these types of constraints before their impact on the
structure can be considered.

Corresponding to the primary function of the structure as mentioned earlier, function
constraints refer to the loads and their locations relative to the ground. The loads can be
described in terms of forces that have a magnitude, a direction, and a location in space.
Some elements of the structure may also perform an architectural function; for example, a
slab, besides performing the structural function of carrying loads, may also be a functional
object Floor from the architect’s point of view. In such instances there may be constraints
on the physical object arising from its function in another domain.

Behavior constraints are derived from the behavioral part of knowledge in the Behavior
and Performance Knowledge component. They are useful in determining the response of
the structure while it is performing its function of carrying load. The behavior is dictated
by such fundamental principles as Hooke’s law and principle of superposition. Behavior
constraints are absolutely “hard” constraints—they cannot be relaxed under any circum-
stances.

Performance constraints are based on the knowledge related to specifications and other
performance criteria in the Behavior and Performance Knowledge component. They place
limits on the values of the behavior the structure exhibits when subjected to loads, and thus
enhance safety and serviceability of the facility. If performance constraints are violated,
one may have to vary one or more of (i) the structure topology, (ii) member material, and
(iil) geometric properties, to alter behavior in such a way that the applicable performance
constraints are satisfied. Performance constraints can be further divided into serviceabil-
ity and safety constraints. Serviceability constraints limit, among others, the deflection,
vibrations, and cracking of a member or structure. Safety constraints, on the other hand,
limit the internal stresses (in the case of working stress design) in the member, or specify a
relation between the member force demand and the member capacity for that type of force
(in the case of load and resistance factor design for steel, or strength design for concrete).

Geometry constraints define the location of the structural elements and spatial rela-
tionships amongst them. Product knowledge, in many cases, can also be transformed into

geometry constraints. Constraints arising in other domains are often a source of geometry

!This and the next subsection are drawn from Ref. [57].

CHAPTER 3. METHODOLOGY 30

constraints on the structural system. Concrete beams that must be spaced at a specified
interval to accommodate a particular arrangement of forms, spacing limits on steel beams
that are a function of the cost of fabricating connections, and limits on member sizes based
on crane capability or shipping requirements are all examples of geometry constraints that
result from consideration of constructibility.

Product constraints exemplify the spectrum of choices available concerning specific ma-
terials and members. They are typically a result of transformation of the knowledge con-
tained in the Product Knowledge component. Functional Elements and Systems Knowledge
may also be a source of product constraints; for example, reinforced concrete and steel may
be the only usable materials for a framed tube. In addition, the user may also impose cer-
tain constraints; for example, although both steel and concrete tubes may be possible, the
user may want only the option of steel tubes to be explored. Many constraints in this cat-
egory may originate within the construction domain also. An example of a constructibility
constraint that transforms into a product constraint in the structural design domain would
be the concrete strengths that can be produced in the area where the facility is located.

Reliability constraints allow exercising of engineering knowledge and/or judgment to
account for the probability that the behavior of an alternative will be satisfactory. Re-
dundancy, which is a property of the structure related to its function, is an example of a
qualitative measure of the reliability of a structure. If there is only a single path for the
loads to follow, the structure is “nonredundant;” if there are multiple load paths so that
when an element in one path fails, the load can still be successfully transferred through an
alternate path, the structure is “redundant.” Redundant structures are considered more
reliable. Though reliability aspects are implicitly considered in several instances (e.g., in
the method of determining the seismic design loads, in the load and resistance factors used
for limit state design of steel and concrete structures, etc.), methods of explicitly incorpo-
rating issues of reliability during the design of structures have, for the most part, not been

formalized.

3.7.2 Exogenous Constraints

Exogenous constraints are those constraints that are relevant to the design of the struc-
ture, but which originate in a domain outside structural engineering. The source of these
constraints may be architectural, MEP, constructibility, or owner considerations. Since
buildings have many other important considerations besides the structural system, exoge-

nous constraints have an especially pronounced impact in the case of buildings. Not all

CHAPTER 3. METHODOLOGY 31

types of exogenous constraints described here may be present for all types of structures; for
example, MEP constraints may not be applicable to bridge structures; however, they will
be applicable in the case of power plants.

Architectural constraints arise because of the interconnection between the architectural
design and structural design of a facility. The architectural form often defines the geometric
context for the structural system within the facility. The aesthetic expression may affect
the geometric arrangement of the members within the structure for visual effect. Individ-
ual features of the architecture also result in significant constraints on the structure. For
example, placement of columns may be ruled out in the central arena of an indoor stadium.

MEP constraints are very relevant in the case of high-rise buildings and many other
types of structures. Each of the mechanical, electrical, and plumbing subsystems involve
tasks such as origination, distribution (or collection), and delivery. The subsystems are a
collection of components that have physical attributes like size and weight. Because of their
size, the MEP components compete with the structural and architectural system compo-
nents for a share of the finite space defined by the building envelope. The weight attributes
of the subsystem components become function constraints on the structure. Another type
of interaction occurs as a result of the behavioral characteristics of the subsystems within
the context of the building usage. As an illustration, noise and vibration resulting from the
operation of equipment may have to be isolated from adjacent spaces.

Constructibility constraints result from the consideration of construction activities.
Equipment capabilities, material availability, formwork considerations, etc., are all source
of constructibility constraints. Moreover, because of the differences in the cost of labor, the
available technology, and the available materials, as well as differences in the preferences of
the designer and owner communities, certain structural systems are favored in some regions
of the country. This preference is usually apparent in the prices associated with the systems
and needs to be taken into account at the conceptual design stage. In several instances con-
structibility considerations are also implicit in the problem-solving strategy. For example,
in the case of concrete a new form is required for every difference in the shape and size of a
structural component. In view of this, one may strive for uniformity in the shape and size
of structural members while generating solutions, sacrificing some degree of optimality in
weight.

Owner constraints usually involve factors that affect the perceived value of the facility,
the cost of managing the facility, or the schedule for the construction of the facility. Among

these are constraints on vibration limits for floors, designation of certain areas as high load

CHAPTER 3. METHODOLOGY 32

intensity areas, and the cost of modifying the structure to meet changing requirements. The
owner may also have specific schedule requirements based on the need for the facility. In such
a case an additional constraint on the conceptual design is that it should be constructible

within the permissible amount of time.

3.8 Evaluation and Feedback

Since it is unusual for a desigﬁ problem to have a unique solution, it is necessary to define
some mechanism to determine the relative ranks of the generated alternatives and to critique
them. In the past the typical approach for assessing different solutions has been to define
an evaluation function based on certain parameters (é.g., flexibility for future modifications,
speed of construction, uniformity in the sizes of structural components, unit weight of the
structure, etc.) that will be used to rank the solutions. Weights are associated with each
of these parameters to reflect their relative importance. Actual values of these parameters
are then computed for an alternative based on a system of reward and penalty as compared
with some normalized values. The weighted mean of the actual values of the parameters for
an alternative is then assigned to the evaluation function, whose value is taken as a measure
of the intrinsic merit of an alternative.

We believe that the net result of such an exercise is only to provide an indirect measure
of the Cost/V alue ratio. The quantitative value of the evaluation function is not very useful
for a human designer and the method of indirect measurement cannot be precise. Firstly,
" some degree of arbitrariness is introduced in deciding the weights and “normal” values of
parameters. The problem is further complicated when qualitative responses of the user have
to be accommodated. To illustrate, in response to a question about the availability of a
certain material in a particular region, the user may have options of Excellent, Good, Fair,
and Poor. The conversion of such values for usage in computing the evaluation function
may not be universally acceptable.

One solution to such problems is to measure the effect of all relevant parameters in
terms of either Cost or Value, and compute the Cost/Value ratio to get an indication of
the merit of an alternative [58]. To be precise in the Cost/Value analysis, one should use
the costs and value based on the life-cycle of the facility. However, long term estimates
of cost and value involve variables that are beyond the control of the participants in the
design/construction process. Moreover, the Value part is often highly subjective and not

amenable to measurements by a computer. For instance, the aesthetic value of alternatives

CHAPTER 3. METHODOLOGY 33

may defy precise measurement. As another example, the worth of ‘flexibility for future
modification’ in an alternative may vary from person to person. The compromise that we
have adopted in the face of such difficulty is to associate an estimate of short-term cost
with each alternative and present such data for all alternatives to the owner. The owner
can then select one based on the respective perceived values of the alternatives. The default
choice can be the one with the least cost.

Another aspect of evaluation is to critique the alternatives and provide feedback, if any,
on how the alternatives can be improved. For instance, while determining the cost of erecting
beams in a floor, the system may notice that all but two of the beams are of the same size
and the other two are only slightly smaller. Upon further computation, the system may
find that the extra cost of ordering/erecting the two smaller beams more than offsets the
savings in the material cost. In such a case the evaluation process may result in a feedback
to use the same beams throughout the floor. One may also try to anticipate downstream
constraints while evaluating the alternatives and providing feedback. For instance, if the
width of a concrete floor beam framing into a concrete column is less than the width of
the column, there may be complications in erecting the formwork at the joint. The system
can provide feedback about possible problems of this nature when evaluating an alternative

(see, for instance, Ref. [22].

3.9 Summary and Concluding Remarks

To summarize, we regard the explicit definition and representation of function, form, and
behavior of different structural systems and elements as essential for developing flexible con-
ceptual design systems. Using these aspects one can model the structure, and when coupled
with a model of the design process (i.e., strategy), one can efficiently generate solutions for
diverse design problems. The reasoning can be carried out through the process of constraint
formulation, propagation, and satisfaction. Knowledge of various types, e.g., quantitative
behavioral description of structural elements and systems, design specifications, available
products, etc., can serve as the source of constraints. Once the alternatives are generated,
the Cost/Value ratio can serve as the measuring yardstick for evaluating solutions.

The emphasis on the explicit representation of the qualitative functions of elements
and systems is very important, as can be illustrated through a simple example. When
designing a high-rise building, one can establish that there should be a structural system

to resist the lateral loads. Resisting lateral loading can be further refined into resisting

CHAPTER 3. METHODOLOGY 34

overturning moment and resisting shear. By choosing (i) axial forces in columns in the
line of applied loading as the mode of resisting overturning moment, and (ii) flexure in
columns as the mode of resisting story shear, and reasoning that beams are required for
moment equilibrium of the columns at the joints, we can synthesize a moment resisting
frame as the structural system. Reasoning along the same line, we can include columns
in the direction perpendicular to the line of force for resisting overturning moment, thus
“inventing” the framed tube. Extending the example further, by changing the mode of
resisting story shear from flexure in columns to axial forces in inclined elements, we can
“invent” the braced tube. Thus, through a process of deciding the basic behavior modes
~for satisfying functional needs, it is possible to compose structural systems to perform the
desired function.

The discussion of the methodology in this chapter has deliberately been general and
applicable to several other types of structures besides buildings. Chapters 4 through 7
illustrate the application of the methodology to a specific problem, namely, conceptual
structural design of multisfory steel office buildings. We begin in the next chapter by

discussing design of the gravity system of such structures.

The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is
meant a mathematical construct whick, with the addition of certain verbal interpretations, describes observed
phenomena. The justification for such a mathematical construct is solely and precisely that it is expected to
work,

— John von Neumann

History suggests that the road to a firm research consensus is extraordinarily arduous.
— Thomas S. Kukn, The Structure of Scientific Revolutions (1962)

4
Gravity Load Resisting System

This chapter describes the knowledge and reasoning behind FFG (for Floor Framing Gen-
erator), the part of Galileo that performs design of the gravity load resisting systems for
multistory steel office buildings. Salient aspects of the methodology presented in Chapter 3
are illustrated in the context of design of gravity systems in this chapter. While the de-
scription in this chapter is at a fairly high level, a detailed account of the working of FFG
can be found in Appendix C.

The remainder of this chapter is organized as follows: We first present a brief introduc-
tion to the problem of floor framing generation in the next section. Section 4.2 contains
a review of relevant previous works. An elaboration of the various types of knowledge,
constraints, concepts, strategy, and evaluation follows in the succeeding sections. A brief

summary concludes the chapter.

4.1 Introduction

The primary function of structural system in a building is to transfer the loads from their
points of origin to the ground. Depending on their direction, the loads are classified as
either lateral loads or gravity loads. Schemes to transfer both types of loads need to be
devised during the conceptual phase of structural design of a building. It is in the context
of the transfer of gravity loads that the problem of floor framing generation arises.

Floor framing generation involves providing a path to transfer the gravity loads to the
ground through various structural elements in an architectural plan, while meeting the
requirements imposed by other entities (such as the architect, the mechanical engineer, and

the contractor) involved in the design/construct process. One of the tasks in the process

35

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 36

is to determine the locations of columns, beams, and girders. Determining the locations of
beams and girders, in turn, involves deciding on their respective orientations and spacings.
The process can be illustrated with the aid of Fig. 4.1. Figure 4.1(a) shows part of a sample
input (i.e., the architectural floor plan) to the process whereas Fig. 4.1(b) represents a
corresponding partial output (i.e., the framing plan). (The filled squares in Fig. 4.1(b)
represent columns.)

FFG generates floor framing schemes for steel office buildings that are rectangular in
plan and have a single service core. FFG requires that all architectural spaces (such as
restrooms, hallways, staircases, etc.) within the plan be rectangular. Although the approach
presented here has been developed in the specific context of high-rise steel office buildings
that have rectangular plan shapes, it is extensible through appropriate modification of some
concepts and constraints, and introduction of others, to make it applicable to other types
of buildings as well. In particular, with minor modifications, one should be able to handle
buildings whose plan is not rectangular but can be divided into rectangular components.

Handling arbitrary geometries, however, would require major enhancements.

4.2 Background

There have not been many knowledge-based systems in the past that have concentrated
primarily on the issue of floor framing generation. Some of the well-known knowledge-
based systems for preliminary structural design, such as HI-RISE [60] and ALL-RISE [80], do
not perform floor framing generation; instead, the framing plans are supposed to have
already been generated and provided as input to the system.

One system that did address the problem in detail was FLODER [46]. FLODER generates,
analyzes, and evaluates floor framing plans for floor plans that can be subdivided into
rectangular areas. For the generation part, FLODER works in terms of column lines whose
placement is largely guided by the minimum and maximum economically feasible spans of
the framing material. If the constraint on the maximum economic span of the material is
violated, the situation is rectified by inserting additional column lines and thus subdividing
the original span. The reverse takes place in case the constraint on the lower limit is violated.
Girders are placed along the so generated column lines in both orthogonal' directions. If
the spacing between consecutive girders exceeds the maximum economic span of the slab
material, beams are generated parallel to the longer side of the rectangle. In case the

floor plan is square, beams are generated in the X-direction. Again, the number of beams

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 37

1 N
E\] T
g

"

Restroom > Staircase
50 2
N . 3 .
Staircase Misc.

gl

#
™
Q

56' 28’ 28’ 28’ 84"

, A AL Ca - ¥

(a)

] B B ﬁ T B ﬁ | B
] = N - (:)) = n - N

Figure 4.1: Generation of Floor Framing Plans. (a) Architectural plan. (b) Floor
framing plan.

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 38

generated is such that the criteria of span limits are met.

FLODER represents a good start and emphasizes one important aspect of a good floor
framing alternative: the necessity of meeting the economic span criteria. However, there are
additional considerations that a human designer employs when generating solutions. Thus,
FLODER’s methodology needs to be enhanced to make it more useful for practical purposes.
One disadvantage of FLODER is that in order to come up with an efficient framing system,
it takes the liberty to rearrange the location of the mechanical shaft and hallways in the
building plan. This is impractical as the location of the shaft and hallways is governed by
many other (more important) considerations such as architectural constraints, maximum
rentable space, building services, etc. The framing plan usually has to be worked around
fixed locations of these spaces, and only in rare cases (e.g., where there is a significant saving
in cost) are the locations altered.

A more recent work [7] attempts floor framing generation from the perspective of context-
sensitive grammars. The Structural Generators in this work perform the spatial layout,
using 30’ as the preferred bay size, 23’ and 35’ as the minimum and maximum column
spacings, respectively, and a preference for symmetrical layouts. The knowledge contained
in the generators, however, needs to be made more comprehensive and deep. “Hard-wiring”
the values for span ranges also adversely affects the flexibility of the system.

Ideally, a general floor framing generator should be able to take constraints specified By
the exogenous entities as input and incorporate such constraints while generating potential
solutions. For instance, as shown in Fig. 4.2, the architect may desire that there be no
columns within 5’ of the boundaries of the service core. Present systems do not provide
flexibility to handle such exogenous constraints. As described later, FFG can handle some
such considerations that arise outside the structural engineering domain. Also, the problem
of hard-wiring is addressed in FFG by structuring the knowledge in terms of parameters
that have certain default values which can be overridden by the user. With this background,
we proceed to discuss the knowledge and reasoning used by FFG, which follows the concepts

outlined in Chapter 3.

4.3 Functional Elements and Systems Knowledge

In the case of buildings, satisfying the primary function of the structural system trans-
lates to generating schemes consisting of structural elements like floor plates, beams, and

columns to collect the incident and dead loads, and ultimately transferring them to the

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 39

Column Free Zones
A2|5 ft.
B: |5 ft.
C2 (5 ft.
D2 |5 ft.
E> |0 ft.
F2 |0 ft.
G: |0 ft.
H2> 1|0 ft.
Iml Cancel

Figure 4.2: Specifying Exogenous Constraints. The architect may desire certain areas
of the plan to be column-free.)

ground. FFG contains information about the attributes like Function, Form, and Behavior
of generic structural elements and systems, based on which gravity load resisting schemes
can be synthesized. The elements and systems for a scheme are so chosen that the desired .
function is performed effectively. As an example, FFG establishes the need for a structural
element, Column, through reasoning based on function. From the fact that the structureis a
building, it can be inferred that there will exist loads which act at a level above the ground.
Thus, a transfer of load in the vertical direction is needed. Upon searching through the:
Functional Elements and Systems Knowledge module, FFG determines that three elements,
namely, Hanger, Column, and Wall, can perform the desired function. The element Hanger

~ is described in Chapter 3. Description of the other two elements follows.

Column

Function To transfer the applied loading in a vertical direction.

Primary Behavior Axial Compression

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 40

Other Behaviors Flexure, Shear
Form 1D Vertical
Possible Materials Steel, Reinforced Concrete, Wood, Masonry

Supported By Column, Wall, Transfer Girder, Foundation

Wall

Function To transfer the applied loading in a vertical direction.
Primary Behavlior Compression
Other Behaviors Flexure, Shear
Form 2D Vertical
Possible Materials Reinforced Concrete, Masonry, Wood

Supported By Wall, Column, Foundation

Since FFG is presently restricted to steel as the material for vertical support system, the
choice of Wall is eliminated from consideration. This is done by an axiom which states
that there should be at least one common member in the list of PossibleyMaterials for an
element and the list of actual material(s) being considered. That leaves Column and Hanger
as the possible candidates. Since FFG does not currently have expertise for generating floor
framing plans with hangers, these are also eliminated through another axiom which states
that Hanger is unusable. Thus, it is clear that columns are needed. It should be noted,
however, that one will have the option of generating solutions containing hangers also, if the
system has the expertise to handle them. Reasoning based on function is general enough

to handle such situations.

4.4 Product Knowledge

This componént contains knowledge about the commercially available products that can
be used for construction. Properties of steel floor decks and hot-rolled steel sections, along
with their respective cost components, are examples of knowledge belonging to this category
that is contained in FFG. Of the available options for the type of floor systems for steel
buildings, we have restricted ourselves to composite metal decks, with either lightweight or
normalweight concrete on top of a formed steel deck. In such an arrangement the deck acts

as the form as well as positive reinforcement for the concrete. This arrangement is typical

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 41

for floor systems in steel high-rise buildings [56,84] since it offers many benefits, including
a more flexible system for wiring, availability of an instantaneous working platform, and
protection of workers beneath because of the metal deck[13,34]. Composite action offers
advantages such as reduction in the gauge of the metal deck, structural efficiency, larger
load capacity, capability for longer spans, and integral floor diaphragms [41].

As a specific example, for given combinations of (i) the depth of the steel deck, (ii) the
gauge of the deck, (iii) the depth of concrete, and (iv) the type of concrete, FFG knows

about the following quantities:
e spanning capability of the deck,
e the self weight of the composite deck,
e the unit volume of concrete, and
e the recommended wire fabric.

In addition to the properties of composite metal decks, knowledge of attributes of hot-
rolled wide-flange steel sections, like unit weight, cross-sectional area, radius of gyration,
etc., is also included. Values of some other attributes, for instance the shear and moment
resistance capacities, depend upon the grade of the steel and whether the action is composite
or noncomposite. Accordingly, the Product Knowledge module contains the values of such
attributes for different combinations of steel grade and type of action. (Note that the
computation of resistance capacities of sections involves utilizing behavioral knowledge as

well.)

4.5 Behavior and Performance Knowledge

Behavior and performance knowledge is indispensable in designing elements like beams,
girders, columns, and the floor deck. For instance, when designing the floor beams (which
are taken to be simply supported) carrying uniformly distributed load, the following behav-
ioral relation is used to determine the end reaction, R:

R:‘é",

where w denotes the load intensity and ! denotes the beam span. The end reaction, in

turn, acts as a concentrated load on the girder on which the beam rests. The bending

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 42

moment, M, at the center of the girder due to such a concentrated load is given by another

behavioral relation:
Ra

27
where a is the distance from the point at which the load is acting to the nearest support.
(Girders are also assumed to be simply supported.) If several beams are supported by the

girder, the bending moment at the center due to all such concentrated loads is computed

M =

using another piece of behavior knowledge, namely the principle of superposition. In a
similar fashion, behavior knowledge is also applied to compute the deflection of the members
resulting from the loading.

Performance knowledge specifies the limits on the observed behavior. We employ Load
and Resistance Factor Design (LRFD) in FFG, and a majority of the performance criteria
is derived from the applicable design standards[6,40]. Examples of performance knowledge
encoded in FFG follow.

e Specifications pertaining to loads: For instance, magnitudes of various types of loading
(such as live load, partition load, etc.), live load reduction, load factors, and the load

combinations for which the structure must be designed.

e Specifications pertaining to safety: For instance, resistance factors for various stress
modes, effective flange width of a composite beam section, and strength reduction

factors for shear studs.

e Specifications pertaining to serviceability: For instance, permissible live load deflec-

tion and the effect of shoring and cambering on serviceability requirements.

4.6 Constraints

The reasoning for generating the framing plans is carried out in terms of constraints de-
scribed in this section. As elaborated in Chapter 3, the constraints are classified as either
structural or exogenous depending on whether they originate in the structural domain.
Since a large component of the process of floor framing generation involves geometric de-
cisions regarding placement of structural elements, many high-level constraints originating
from structural and exogenous considerations ultimately need to be transformed into their
geometric implications. Therefore, in addition to detailing the constraints in the following
sections, we also mention their influence on the geometry of the framing plan. The list

of constraints described in this section is not comprehensive—the ones described here are

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 43

those implemented in FFG. There are other constraints that are applicable to the problem

but have not been implemented.

4.6.1 Structural Constraints

Several structural constraints result from the knowledge contained in the modules explained
earlier. Loads are one obvious example of constraints in this category. In addition, there
are several others as described here.

Minimum and Maximum Economic Spans: Various horizontal elements that can be used
to bridge parts of a building have an associated economic span range, i.e., a range of spans
for which a particular horizontal system is economically (as opposed to structurally) viable.
The range may vary with such factors as the location of the building and the material. The
minimum and maximum economic span criteria result from the behavior and performance
constraints on structural elements and help to constrain the spacing of column lines.

Minimum and Maximum Economic Spacings: Similar to the economic span ranges,
there are economical ranges for spacings in the case of beams. The range for beam spacing
may be governed by the spanning capabilities of the overlying steel deck and the incident
loading.

Minimum and Maximum Depths of Beams and Girders: Because of the need to pass
mechanical ducts through the structural system, or considerations of overall building height,
there may arise constraints on the minimum and maximum depths of beams and girders in
the framing plan.

Fire Resistance: Corresponding to the design specification, there is a performance con-
straint regarding fire rating. This constraint can influence the thickness of the concrete on
top of the metal deck or can require spray fireproofing to obtain additional fire resistance.

Column Lines: A column line is a straight line defining potential locations for columns.
Placement of columns is mostly constrained to be on the column lines. In essence, column

lines are results of propagation of various other constraints.

4.6.2 Exogenous Constraints

Besides structural considerations, architectural, MEP (mechanical, electrical, and plumb-
ing), constructibility, and owner considerations also influence the process of floor framing
generation. Architectural considerations, in particular, have a pronounced impact since

any improperly placed structural element may seriously interfere with the functionality of

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 44

the building. In addition to those, this section contains MEP, constructibility, and owner

constraints that have been implemented in FFG.

Architectural Constraints

Planning Module: Various elements in an architectural plan are typically aligned with a grid
consisting of uniformly spaced lines in two orthogonal directions. The distance between two
consecutive grid lines is not arbitrary; it is usually chosen to correspond with the standard
dimensions for various building services such as lights and architectural fixtures. This
distance is termed as the planning module and has typical values of 5’ or 4’. The planning
module may be influenced by the geographical location of the building (one particular value
may be predominant in the region). For floor framing generation, the planning module
defines an architectural constraint such that various structural elements should, as far as
possible, coincide with the grid based on such a planning module.

Minimum Office Width: Based on the intended functional usage of the building, there
is a limiting dimension that provides a lower bound on the minimum clear span in the func-
tional areas of the building[79]. In the case of office buildings we denote such a quantity by
the term Minimum Office Width. Minimum office width defines an architectural constraint
on the floor framing that has to be satisfied by the column spacing in the framing plan.

Openings: Staircases, elevators, shafts, etc., are openings in the floor. Openings are im-
portant because no horizontal elements (such as beams and girders) can pass through them
except at the edges. This constraint can result from mechanical considerations (vertically
continuous shaft) or functional considerations (vertical transportation through staircases
and elevators).

No Column Zones: For architectural or other functional reasons, certain areas in the
floor plan may be designated as no column (or column free) zones—columns cannot be
placed within the boundaries of such zones. For instance, all openings are no column zones.

Similarly, lobbies are also no column zones.

MEP Constraints

Ductwork: This constraint has its origin in the MEP domain. The ductwork within the
floor areas can be either restricted to pass through the structural system or below it. In
the former case the overall height of the building will be smaller due to the reduced floor
thickness. This will result in smaller material costs as estimated by FFG. The latter, on

the other hand, will be simpler to erect. FFG’s capabilities with respect to estimating

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 45

costs associated with punching holes (for the passage of ducts) in flexural members are
minimal at present. Through manual computation, one can assess these costs and add
them as penalty to the cost computed by FFG (in the case of ductwork passing through
the structural system) to arrive at the total cost, thereby providing a basis for comparison

of the two alternatives.

Constructibility Constraints

Constraints Pertaining to the Method of Construction: Incorporated in FFG are constraints
that permit one to specify the construction of flexural members as either shored or unshored,
cambered or uncambered, and composite or noncomposite. In the case of columns one can
provide the frequency of splicing in terms of number of stories. Also, FFG provides the
option of choosing a design strategy such that sections of all columns have the same internal
depth. This is useful for certain methods of column splicing in multistory buildings.

Constraints Pertaining to Materials: In FFG the grade of steel, the type (lightweight
or normalweight) and strength of concrete, and the type of shear studs can be constrained
based on the availability of materials to be used in the framing plans. The effects of these
constraints will be reflected in the total cost and the unit steel weight of the structural
system.

Many constructibility considerations are strongly influenced by localized construction
practices and an explicit and comprehensive formulation of these constraints, which is glob-
ally applicable, is not possible. A few such constructibility considerations are incorporated
in FFG through other constraints. Column lines are one such example since the idea of

uniformly spaced columns is beneficial from the constructibility viewpoint also.

Owner Constraints

Minimum Floor to Ceiling Height: The owner may set the minimum floor to ceiling height
based on value considerations. In FFG the height has implications for the loading and the

length of columns.

4.7 Concepts

The concepts described herein are abstractions that perform supporting functions in formu-

lating the strategy or defining the evaluation criterion. Additional concepts can be identified

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 46

and the strategy can be modified accordingly to handle alternate geometries and different
types of buildings.

Patterns: Schodek [79] states that there are often strong and easily identifiable patterns
present in the functional organization of buildings and in the structural systems used. The
patterns formed by the two are usually intimately related. Thus, while generating floor
framing plans in an automated environment, there should be mechanisms for identifying
common functional patterns and incorporating them in the structural schemes. Examples of
common functional patterns found in office buildings include arrangements of office modules
and arrangements of two parallel elevator banks in the core separated by a lobby.

Characteristic Dimension: A common structural pattern in buildings is composed of a
series of uniformly spaced parallel lines defining locations of the vertical support system,
thus forming an aggregation of repetitive bays. We denote the spacing between the parallel
lines by the term Characteristic Dimension (CD). As stated earlier, functional and structural
patterns are usually intimately related. Therefore, the CD’s should ideally correspond to
some architectural patterns in the building.

Influence Zone: The concept of influence zone is used to demarcate a certain region
around the core in which columns cannot be placed. If no hallway is present around the
core, influence zone is a rectangular strip with thickness equal to the minimum beam span.
In case a hallway is present, the influence zone extends from the core boundaries to an
imaginary boundary that is away from the hallway boundaries by a distance equal to the
minimum beam span, with the hallway boundary itself being the exception. The two cases
are illustrated in Fig. 4.3. The concept of influence zone arises from both functional and
structural considerations. Placing columns within the influence zone will either result in
interference with the movement around the core, or violation of the economic span limits,
or both.

Core Partitions: Architectural spaces within the core are separated through partitions.
Partitions provide better potential locations for placing columns as compared to the inside
of architectural spaces, especially since the architectural spaces within the core are small

and placing columns within them would seriously undermine their functionality.

4.8 Strategy

The problem of floor framing generation can be decomposed into the following tasks and

subtasks:

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 47

Minimum Minimum Exception to the
Beam Span Influence Zone

Influence -~
Influence

Zone

Perimeter Zone Perimeter

@ ®

Figure 4.3: Influence Zone for Two Different Cases. (a) No hallway is present.
(b) Hallway is present.

e Generation of column locations

— Generation of column locations through consideration of areas outside the core

— Generation of column locations through consideration of areas inside the core

e Configuration of the floor system

— Decision on the type of floor system
— Generation of beam locations

— Generation of girder locations

e Design of members

~ Selection of steel grade and sizing of beams and girders

— Selection of steel grade and sizing of columns

Elaboration of each of the tasks follows in subsequent sections.

4.8.1 Generation of Column Locations

The reasoning for generating column locations through consideration of areas outside the
core is quite different from the one employed for generating locations through consideration
of areas inside the core. The following subsection first gives a brief overview of the rea-
soning involved in generating column locations from outside considerations,‘fo]lowed by an
elaboration of the individual phages. Generation of column locations from consideration of

areas inside the core is described in the subsequent subsection.

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 48

‘Column Locations Through Consideration of Areas Outside the Core

The following three phases comprise the generation of column locations through outside

considerations:
1. Controlled Generation,
2. Testing, and
3. Modification.

The process of controlled generation entails pruning down an infinite search space of fram-
ing plans to a manageable size through some of the constraints and concepts discussed
in Sections 4.6 and 4.7. This is accomplished by first generating sets of column lines in
the North-South (NS) and East-West (EW) directions, based on the geometry of the plan.
(The plan is taken to be aligned with the four directions.) Once the sets of column lines
are generated, each set of NS column lines is considered in conjunction with each set of EW
column lines to yield tentative column locations at the intersections of these lines. This
results in multiple alternatives. The testing phase involves checking column locations in
an alternative for constraint violations. If there are no violations, the alternative is ac-
ceptable. Otherwise, an attempt is made to modify the locations of offending columuns in
the modification phase. The modified alternative is retained if such an attempt is success-
ful; otherwise, the alterna,tive is discarded. Each remaining alternative is considered for
generation of column locations within the core boundary.

Two means are employed for generating column lines from outside considerations. One
works in terms of patterns whereas the other depends on decomposition of the plan into dif-
ferent zones. We first describe the former and follow it with the description of decomposition-
based column line generation.

In pattern-based column line generation, column lines in a particular direction are placed
at regular distances based on some characteristic dimension. The CD’s may be extracted
from architectural patterns or from other features within the plan. As an example of the
former, backsides of elevators are excellent locations for lateral bracing systems since there
is no horizontal transportation across them. Thus, the backsides provide us with good
candidates for placement of columns in anticipation of the lateral system. As mentioned
earlier, a common architectural pattern involves two parallel banks of elevators separated
by a lobby. The preference for uniformity, coupled with that for placing columns at the

backs of the elevator banks, would thus imply that the structural grid uses a spacing equal

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 49

&\\\\\

Core

Figure 4.4: Decomposition of Floor Plan for Generating Column Lines in the
North-South Direction. The decomposition defines three zones which are considered
separately for column line generation.

to the one separating the backs of two parallel elevator banks. Thus, the distance between
the backs of the elevator banks yields a candidate CD. Other potential candidates for the
set of CD’s include the width and the length of the core. The set of “raw” CD’s extracted
from these and other considerations is pruned to satisfy the constraints like minimum office
space, planning module, and maximum economic girder span. Of the remaining set of
CD’s, a further subset is computed for each of the two directions (NS and EW) based on
the criterion that the perimeter dimension should be an integral multiple of the member
CD’s.

Another mechanism for generating column lines is decomposition of the plan, facilitated
by the assumptions of rectangular plan and core. When generating column lines in a
particular direction, say, NS, we can project the core boundaries in the NS direction to
divide the areas outside the core into three separate zones as illustrated in Fig. 4.4. Each
such rectangular subarea can now be reasoned about individually. One possibility is to
use a uniform dimension that divides each of the three areas integrally, and also meets
the constraints of minimum office space and maximum girder span. If no such dimension
exists, then for each of the three areas we find the respective largest dimensions that divide

the areas integrally and still meet the constraints mentioned earlier. In the latter case the

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 50

spacing of the structural grid will not be uniform throughout the plan.

Columns can tentatively be placed at the intersections of orthogonal column lines once
sets of column lines are generated. However, some column placements may be found unsat-
isfactory. For instance, if a column is placed such that beams (or girders) will not frame into
the column in two orthogonal directions, the column will be laterally unsupported, unless
the floor slab provides adequate lateral restraint. As another example, a column location
may lie within the influence zone. The aim of the testing phase is to detect all such incon-
sistencies. All potential solutions are checked to see if any constraint is being violated. If a
solution contains one or more column locations within the no column zone, it is earmarked
for modification phase; otherwise the generated column locations are acceptable and define
a feasible vertical support system outside the core.

If the testing phase discovers any column placements that violate some constraints, an
attempt is made to modify the solution in the modification phase. For instance, if a column
is placed at an edge of a lobby, then it may be possible to salvage the solution by replacing
such a column with two columns at the two ends of the edge on which the column lines
intersected. A distributor beam can be placed between the new columns which will also
provide vertical support for linear horizontal elements in the direction perpendicular to the
edge. This is diagrammatically illustrated in Fig. 4.5. Such modifications, however, may
not always be possible. If the modification phase is successful, the modified solution is

retained; otherwise the generated solution is discarded.

Column Locations Through Consideration of Areas Inside the Core

For each solution remaining after the testing and modification phases, appropriate column
locations within the core can be determined. The operative concept when placing columns in
the core is partitions. Partitions between different areas of the core yield ideal locations for
columns—provided that the columns do not interfere with the functionality of some areas.
Note that some columuns at the core boundary or even inside the core may have already
been placed prior to this stage as a result of intersection of column lines as described in the
previous section. These columns have to be considered when deciding on additional column
locations for the core.

Through reasoning about the geometry of the core, one can extract all the partitions
in the core. Such partitions are potential column lines. The criterion of minimum beam
span may be used to eliminate some parallel column lines that are too close to each other.

The generation of column locations from the remaining column lines by intersection of

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 51

8
Distributor
Beam
! 1L v
Lobby Lobby
(a))

Figure 4.5: Modification of Column Lines Based on Interference with Lobby.
(a) Column II is on the edge of a no column zone. (b) The intruding column is replaced by
two other columns and a distributor beam.

orthogonal column lines is a straightforward operation.

4.8.2 Configuration of the Floor System

Upon generation of feasible alternatives for the vertical support system, we can reason
about the floor system for each such alternative individually. The biggest zone of the plan
is considered first since it has the potential of having the maximum impact on cost. A zone
is defined as a contiguous part of the plan where conditions are the same everywhere and
thus can be considered as a single entity for reasoning. Thus, orientations and spacings of
beams and girders in a zone will be the same throughout. [Two alternative orientations
of beams and girders are explored: (i) beams in the NS direction and girders in the EW
direction, and (ii) beams in EW direction and girders in the NS direction.] For the biggest
zone, a beam spacing within the raﬁge of minimum and maximum economic beam spacing
is determined so that there are an integer number of full spané. A corresponding deck
gauge and depth can be selected for such spacing based on spanning capabilities of decks
as contained in the product knowledge data. The thickness and the depth of the deck will
be the same throughout the plan for a particular solution.

The next step in the process is to choose the type of concrete, either lightweight or

normalweight. Lightweight concrete, in general, has higher unit cost. However, since it

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 52

needs less thickness of slab to meet fire resistance requirements, the required volume of
lightweight concrete is less. Lightweight concrete can result in savings on other counts also,
such as savings in material for other structural elements because of the reduced dead load,
and savings in cladding costs because of reduced height of the building. For the lightweight
concrete alternative the cost savings due to reduced concrete volume and reduced column
steel are computed explicitly. Other savings (in flexural members, foundations, cladding,
etc.) are estimated presently as 5% of the unit cost of lightweight concrete. Depending
upon which alternative is less expensive at the end of this estimation process, lightweight
or normalweight concrete is selected.

The orientation of the beams and girders is such that the girders align with the column
lines (and thus rest on the columns) while the beams are in the perpendicular direction,
supported at the end by either the girders or the columns. In any given zone beams are
spaced apart at a uniform distance consistent with the economic range of beam spacings.

(Different zones within the same framing plan, however, may use different beam spacings.)

4.8.3 Design of Members

Two grades of steel are considered for beams and girders as well as columns: A36 and
steel with a yield strength of 50 ksi (referred to as A50 in this dissertation). The user may
restrict the choice of steel grade to one of the two above, or may ask the system to explore
both alternatives and select the least expensive one. For simplicity in sizing of structural
members around the service core, the core is treated as a hole for design of gravity systems;
i.e., the members on the core boundary are assumed not to carry any loading from spaces
inside the core.

Selection of steel grade for beams and girders is based on the controlling criteria for sizing
of beams and girders. If the sizing is governed by stiffness criteria, A36 steel is selected.
If, on the other hand, strength criteria prevail, sizing is done for both A36 as well as A50
steels and the costs are compared before making a decision. For the chosen steel grade,
the members are sized so as to meet both stiffness and strength requirements. Beams and
girders may be designed as composite or noncomposite sections. In the case of composite
design FI'G performs local optimization by opting for partially composite behavior (and
providing fewer shear studs than needed for developing fully composite behavior) if the
resultant section is sufficient to resist the flexural demand.

For selecting the steel grade for colilmns, columns at the top story of the building are

sized for both A36 and A50 steel and the cost of the material is estimated. If A50 steel -

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 53

turns out to be cheaper, it is chosen for all columns without further cost comparison. If A36
columns are cheaper in the top story, an estimate of the total column steel weight (for all
stories) is made for both A36 and A50 steel by designing the columns in the first story and
assuming a linear variation in steel weight from the top story to the first story. The steel
weights multiplied by the unit price of steel for the respective grades can then be compared
to indicate the cheaper alternative. All columns are subsequently sized for the chosen grade

every few stories, depending on the chosen frequency of splicing.

4.9 Evaluation

Once candidate solutions are generated, evaluation of the solutions is carried out to associate
a measure of cost with them. The items comprising the total cost can broadly be categorized

under the following headings.

e Material Costs: These include costs of the metal deck, floor concrete, shear studs,
welded wire fabric, and the structural steel for beams, girders, and columuns. The cost
associated with each of these items is computed by multiplying the unit price of the

item in question with the corresponding units needed in the structure.

e Iabrication Costs: Fabrication cost of an element is based on its type. For instance,
the cost of fabricating a column in a moment frame differs from that of a column in a
braced frame, which, in turn, differs from that of a gravity support column. Estimating
fabrication costs is straightforward once the number of pieces of any given type and
the corresponding fabrication price are known. (Fabrication prices are quoted in terms
of pieces; thus, if columns are spliced every two stories, a piece refers to a two-story

long column.)

e FErection Costs: Erection costs are based on the number of pieces to be erected and
the project size. Depending upon the total steel weight of the building, the number
of erectable pieces per day and the required crew size are determined. Given the data
regarding price of erection per person-day, one can compute the total erection cost for

the project.

o Auxiliary Costs: These are costs associated with shoring, cambering, fire proofing,
and transportation. Some of these costs may be zero; for instance, the shoring cost

will be zero if unshored construction is used. Shoring and fire proofing costs are based

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 54

Material Prices

Steel (including_tases & consumables) - §/ton
R36 225 ASO0 555

Concrete (In-Place) - §/cu. yd.
Normalweight |60 Lightweight 80

Metal Deck (In-Place) - $/sq. ft.
2" Deep 1.30 3" Deep 1.50

Shear Studs (In-Place) - $/ea.
1/2" »g 5" 1.20 3/4" u 5" 1.50

Welded Wire Fabric (In-Place) - $/sq. ft. 0.10

0K]

Figure 4.6: Price Options. Unit Prices of different materials can be set through the above
dialog box. Another dialog box is available for setting other price options (e.g., fabrication,
erection, fire proofing, transportation, etc.).

on the floor area. The cambering cost depends on the number of pieces to be cambered

whereas the transportation cost is based on the total steel weight.

The default unit price for each of these items is provided, but the user has the option
to change any or all of the values (Fig. 4.6). In addition to the cost evaluation of different
alternatives, information regarding (i) steel weight per square foot of the building, and

(ii) steel construction cost per pound of steel is also furnished to the user.

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM 55

4.10 Summary

FFG illustrates that the methodology presented in Chapter 3 can be successfully applied
to specific problems in the domain of conceptual structural design. Reasoning in terms of
function, FFG establishes the need for structural elements based on the match between
the requirements of the facility and the capabilities of structural elements. First principles
behavior knowledge coupled with performance knowledge is used for the design of indi-
vidual components, keeping in consideration what products are available for construction.
FFG makes its decisions so as to satisfy many different types of constraints originating
from diverse sources, including the structural and mechanical engineers, the architect, the
contractor, and the owner.

One feature of FFG is that the need for recognizing architectural patterns is acknowl-
edged. Functional organization of the elements of an architectural plan can form some
patterns. Detection of such patterns and their incorporation in the structural system is a
desirable goal and FFG works towards that goal. Also, FFG operates at a more comprehen-
sive level of knowledge than some of its earlier counterparts. For example, it has knowledge
about openings, planning module, and partitions and can reason about the location of ver-
tical support systems in terms of such concepts. Thus, FF'G recognizes that columns cannot
be placed within an area like a lobby and tries to modify locations of any tentative columns
violating such criteria. Similarly, it avoids passing linear horizontal elements through shafts,
staircases, and elevator banks, which are openings in the floor.

Nevertheless, in many respects FF'G is still incomplete. Allowing different load intensi-
ties in different areas of the floor plan, for instance, will enhance the utility of the program.
Furthermore, the generated framing plans are applicable only to typical floors. Considera-
tions will be quite different for, say, a mechanical floor.

There are several additional concepts that human designers employ that are not incor-
porated in the approach discussed in this chapter. One such concept is symmetry. One can
enhance the strategy to include a mechanism that gives preference to symmetric framing
configurations. Another useful enhancement will involve generating solutions that include
nonorthogonal linear horizontal elements as well. Additional concepts will have to be iden-
tified and incorporated for this purpose. It is important to note that all such enhancements
can be carried out without modifying the pure declarative representation of fundamental
domain knowledge contained in the Functional Elements and Systems Knowledge, Product

Knowledge, and Behavior and Performance Knowledge modules.

CHAPTER 4. GRAVITY LOAD RESISTING SYSTEM

Conceptualizations are our inventions, and their justification is based solely on their utility. This lack of
commitment indicates the essential ontological promiscuity of AI: Any conceptualization of the world is

accommodated, and we seek_those that are useful for our purposes.
— Michael R, Genesereth and Nils 5. Nilsson, Logical Foundations of Artificial Intelligence

(1987)

Computers are good at following instructions, but not at reading your mind.
— Donald E. Knuth, The TpXbook (1984)

56

5
Lateral Load Resisting System

As was discussed in Chapter 2, in our approach the conceptual design process is decomposed
into several phases, starting with design and evaluation of gravity system options, followed
by design and evaluation of lateral system options, and concluded by a third phase in which
the influences of the two subsystems on each other are evaluated and, conceivably, the
subsystems are modified in order to arrive at efficient combined systems. It is anticipated
that in future developments this sequential decomposition of the tasks will be altered and
the two subsystems will be developed in parallel, using more advanced behavior-based
and case-based reasoning techniques to perform simultaneous reasoning on both structural
subsystems.

For several reasons we have decided on sequential design of the two subsystems and to
focus primarily on the design of the gravity system. Firstly, a sequential design approach
can be implemented easier with the present state of knowledge. Secondly, according to the
primary domain expert consulted in this research, this approach emulates more closely the
process employed in present design practice. Thirdly, and perhaps most importantly, the
emphasis of this work is not on the development of a comprehensive computer tool but on
formalizing the reasoning process, studying the feasibility and limitations of a logic-based
representation and reasoning scheme, and developing a simple prototype that demonstrates
the potential of the approach and may be useful as a starting point for further development.
The FFG module of Galileo, which focuses on a comprehensive design of the gravity system,
is intended to fulfill these objectives. Conceptual design of the lateral load resisting system
is only partially implemented in Galileo, and the third phase, reconciliation of gravity and
lateral systems, is not part of this work.

From all the lateral schemes illustrated in Fig. 2.2, only the option of moment resisting

57

CHAPTER 5. LATERAL LOAD RESISTING SYSTEM 58

frames at the perimeter is implemented in Galileo. For each of the generated gravity system
alternatives for a given problem, perimeter frames are designed to resist wind and/or seismic
loads defined in the behavior and performance knowledge module. No changes are made
to the locations of columns generated at the perimeter of the gravity systems. In the
evaluation process, the total costs of the resulting combined systems as well as the cost
premiums associated with resisting lateral loads are estimated.

This partial implementation is intended to demonstrate that the general methodology,
which was implemented comprehensively in the context of gravity systems, can be applied
effectively to the design of lateral systems also. This chapter, organized in a manner similar

to the preceding chapter, presents the salient aspects of lateral system design in Galileo.

5.1 Functional Elements and Systems Knowledge

Existence of lateral loads on a building (due to wind or earthquake) above the ground
implies a need for some structural system capable of carrying the loads to the ground. The
only system Galileo’s Functional Elements and Systems Knowledge library knows about is
a moment resisting frame. (An exhaustive library will include knowledge about the other

alternatives shown in Fig. 2.2.) The description of moment resisting frame follows.
Moment Resisting Frame

Function To transfer the lateral loads and tributary gravity loads.

Primary Behavior Overturning moment resistance through axial forces in columns in the
direction of the applied loading; story shear resistance through bending

in columns and beams.
~ Other Behaviors Shear in members
Form 2D Vertical

Possible Materials Steel, Reinforced Concrete

Supported By Foundation

Since lateral loads can assume any direction, moment resisting frames in at least two
different directions are required. Galileo places the frames in two orthogonal directions
corresponding to the two axes of the building plan. Furthermore, the locations of frames

coincide with the perimeter of the building. The decision to place the frames on the perime-

ter is part of Strategy, which also ensures that, for a given solution, column locations for

CHAPTER 5. LATERAL LOAD RESISTING SYSTEM 59

any such frame are identical with those generated earlier for the gravity system. The ends

of the frames are taken to be rigidly connected to the ground.

5.2 Product Knowledge

Product knowledge required for lateral system design is a subset of the product knowledge
" needed for gravity system design. Recall that, in addition to properties of decks, properties
of hot-rolled wide-flange steel sections were represented in the Product Knowledge module
for the gravity system. Besides sectional attributes like moment of inertia, these properties
included bending, shear, and axial capacities as well. Sizing of individual elements of the
lateral system requires exactly the same quantities. Hence, no additional product knowledge

needs to be represented for the lateral system.

5.3 Behavior and Performance Knowledge

Behavior and performance knowledge is used for determining the magnitude of lateral loads
acting on the structure, the distribution of such loads, individual member forces due to these
loads, and the sizes of members that would meet the demands of safety and serviceability.
For sizing individual members, some provisions are common to both gravity and lateral
systems design. Some pertinent examples of performance and behavior knowledge follow.

(The notation here is consistent with 1988 UBC [40].)
o Design wind pressure: p = CeCyqsI, where ¢; = 0.00256V
o Design base shear (seismic): V = (ZIC/R,)W

o Concentrated force at the top: F; = 0.07TV (but less than 0.25V) if T > 0.7 s,

0 otherwise.

o Accidental seismic torsional moment: Based on a mass displacement of 5% of the

building dimension.
e Sample loading combinations

1.2D 4+ 1.3W 4+ 0.5L
1.2D 4+ 1.5E 4 0.5L
0.9D — 1.3W
0.9D - 1.5F

CHAPTER 5. LATERAL LOAD RESISTING SYSTEM 60

Seismic Loading

Seismic Zone Soil Profile
QO Zone 0 O st
O Zone 1 @ S2
QO Zone 2 Os3
O Z20ne 3 O s4
@® Zone 4

Fundamental Period

X/4
Importance Factor ®T=C;h,

el 1.0] OT=[2.5]s

ok)

Figure 5.1: Seismic Loading Options. Determination of the magnitude of lateral loads
can be controlled by setting options.

e Permissible interstory deflection (wind): § < h/400
¢ Overturning moment: M5y =5 1= Fi(h; — hy)

The user can input parameters governing the lateral loading and thus control the magnitude

of loads. Options for seismic loading, for instance, are shown in Fig. 5.1.

5.4 Constraints

The geometry constraints which affected column locations for the gravity system indirectly
influence the lateral system, since the location of columns on the building perimeter for
the lateral system conforms with the placement for the gravity system. In addition, be-
havior and performance constraints, derived from the knowledge contained in the module

described before, control the design of members. Reliability constraints have partially been

CHAPTER 5. LATERAL LOAD RESISTING SYSTEM 61

incorporated implicitly by the governing agencies in deciding on methods for computing
lateral loads and determining capacities of sections. Amongst the exogenous constraints,
constructibility constraints such as those pertaining to materials, MEP constraints on the
depths of beams and girders due to ductwork, and owner constraint on minimum floor to

ceiling height are accounted for in lateral system design.

5.5 Concepts

The concepts of Cost, Value, and Cost/Value ratio as described earlier in the dissertation
are valid in the context of evaluation of lateral system also. It should be emphasized once
again that in the absence of any formal methods for objectively estimating Value, Galileo
computes only the Cost part and relies on user’s judgment for selecting a solution based on
the perceived Values of different alternatives.

One additional concept introduced by the lateral system is that of premium for resisting
lateral loads. The premium is defined as the difference between the overall system’s cost
(resisting both gravity and lateral loads) and the gravity system’s cost, expressed as a
percentage of the cost of the gravity system. An example in Chapter 7 illustrates the

concept of lateral loads cost premium.

5.6 Strategy

Several simplifying assumptions have been made for the purpose of analyzing and designing
lateral systems. They are noted throughout this section wherever appropriate. One such
assumption is that the columns are so aligned that their webs lie in the respective frame
directions. Corner columns are so aligned that the shorter side of the building plan coincides
with the direction of the web of the column sections. If the plan is a square, the web of

corner columns is aligned with the North-South direction.

5.6.1 Analysis

Modified portal method is used for computing the member forces due to lateral loads. In
ordinary portal method, story shear at any given story is distributed to columns in a 2:1
ratio for interior and exterior columns respectively. The shear distribution in the modified
portal method is based on the relative stiffnesses of beams, which is taken to be in inverse

proportion to their spans. Galileo still takes axial force in interior columns due to lateral

CHAPTER 5. LATERAL LOAD RESISTING SYSTEM 62

loads to be zero, though ideally a free body analysis will give more accurate results. The
results of the modified and unmodified portal methods will be identical if all the bays in a
frame have the same span.

Instead of a detailed and accurate analysis to determine the member forces in the frame
due to gravity loads, the fixed end moments multiplied by a factor of 1.1 are used as the
estimates of vertical load moments at beam and girder ends. Any unbalanced moment at a
joint is divided equally amongst the columns framing into the joint.

For wind load analysis, only wind acting orthogonal to the faces of the building is
considered and effects of non-orthogonal wind are not explored. For gravity load analysis,

unbalanced live loads are not considered when computing the demands on various members.

5.6.2 Member Sizing

Framing members in the second story from the ground and the second story from the top
are designed for the load combinations mentioned earlier in this chapter. Section weights
for other stories are then estimated through linear interpolation.

In addition to satisfying the strength criteria by successfully resisting the factored mo-
ments due to gravity and lateral loads computed in the analysis step, the beams and girders
must also satisfy deflection criteria and meet restrictions on their moments of inertia. For
assessing the required minimum moment of inertia, the contribution of beam and girder
flexural deformations to story drift is assumed to be 75%. Composite action of linear hori-
zontal elements, if opted for by the user, is ignored when comparing the required moment
of inertia with the actual moment of inertia of a section. It is assumed that column sizes
are not controlled by drift considerations.

As per the configuration of perimeter frames, any non-corner exterior column belongs to
only one frame. Thus, the joints between such a column and the beams that are in a direction
perpendicular to the direction of the frame need not be moment-resisting. Coupled with
the fact that the web of the column is aligned with the direction of the frame (a direction in
which joints are moment-resisting), one can infer that weak axis buckling is likely to govern
the design of these columns. The effective length factor corresponding to the weak axis,
K, for these columns is taken to be 1.0 for the hinge connection condition. Strong axis
buckling of non-corner columns is not checked.

The objective of column design in Galileo is not to determine the precise sections, but
to estimate column, weights so that total costs can be approximated during the preliminary

design(stage. Accordingly, Galileo does not carry out a detailed and elaborate sizing of

CHAPTER 5. LATERAL LOAD RESISTING SYSTEM 63

perimeter columns that carry both axial loads as well as moments. Instead, it settles for an
approximate method in which the weights of the sections are conservatively estimated. This
is done by computing the equivalent effective axial load due to moments (as described in
the LRFD Manual) and selecting a W14 section capable of resisting the equivalent effective
axial load. Though it is realized that sections deeper than W14 will be more efficient in
flexure and thus be better candidates for column sections, this approach is deemed to be
adequate because steel material and transportation costs for exterior columns amount to
less than 10% of the overall cost. Hence, even when the estimated weight of the columns is
off by as much as 30% of the true value, the impact on the total cost will be less than 3%.

Corner columns are checked to see if they will develop tension under the loading com-
binations of (0.9D — 1.3W) or (0.9D — 1.5F). If so, the columns are flagged and the user
is notified of the condition. Strong column weak girder check is reserved for the detailed
design phase, since the exact sections chosen for the columns are likely to be different from

the W14 sections designed by Galileo.

5.7 FEvaluation

Many of the costs computed for the gravity system remain unaffected by lateral load con-
siderations. For instance, the costs of metal deck and floor concrete stay the same (unless
diaphragm considerations severely affect the design). On the other hand, steel material cost
(for both columns as well as linear horizontal elements), fabrication cost, and transporta-
tion cost can change significantly because of lateral loads. Part of the reason is that the
sections used for gravity loading alone may not be sufficient to carry the additional lateral
loads, causing upward revision in the sizes of sections. This will increase the amount of
steel required, affecting both the material costs as well as transportation costs (which are
a function of steel tonnage).

Fabrication costs increase because of the need to provide moment resisting connections
for lateral system. (Recall that simply supported connections were used for gravity system
design.) As was stated in the previous chapter, fabrication costs are based on the type of
the piece. Thus, in the case of columns and linear horizontal elements that are part of the
lateral load resisting system, a higher unit price is used for computing fabrication costs for
the lateral system. The impact of these additional costs is illustrated through an example

in Section 7.2.

6

Implementation Issues

Galileo has been implemented in a logic programming environment on a Macintosh II per-
sonal computer. The tool used for knowledge representation and automated reasoning in
Galileo is Epikit [17], a tool that employs the KIF language for representing knowledge and
is written in Common Lisp. The implementation details are the subject of this chapter. As
a preface to this discussion, it is worthwhile to mention that the reasoning part of Ganleb is
hardware-independent and completely portable. The interface part, on the other hand, is
hardware-dependent since the code for menus, windows, graphics, etc., is Macintosh-specific.
The next section begins by providing a brief overview of Epikit. A general discussion of the
user interface concepts and their application in Galileo follows in Section 6.2. We conclude

with some closing remarks in the final section.

6.1 Epikit

Epikit [17] is a tool for knowledge representation and automated reasoning. For representing
knowledge, Epikit employs KIF, a language based on first-order predicate calculus. (For a
brief description of KIF, see Appendix B.) As stated in Ref. [27], the two primary advantages

of KIF are:

1. The representation has pure declarative semantics; i.e, one can understand the mean-
ing of expressions in a knowledge base without recourse to an interpreter that manip-
ulates those expressions. The same cannot be said of representations based on specific

interpreters, such as Emycin and Prolog.

2. The representation is epistemologically comprehensive in that it allows expression of

any sentence expressible in first-order predicate calculus. A feel for the expressive

64

CHAPTER 6. IMPLEMENTATION ISSUES 65

power of KIF can be ascertained from Appendix B. This flexibility distinguishes
KIF from Prolog-like representations, which allow only Horn clauses, and production

systems, which are restricted to expression of implications.

Thus, KIF provides a convenient mechanism for declaratively specifying the domain knowl-
edge, while inference subroutines in Epikit enable one to deduce inferences from such
knowledge. Epikit has a wide spectrum of inference subroutines (based on demodulation,
paramodulation, etc.) and several search strategies (including depth-first, breadth—ﬁrst;
best-first, and iterative deepening) for reasoning. In addition, Epikit provides a library of
subroutines to create, modify, and examine a knowledge base.

A very useful feature of Epikit is the theory mechanism (a theory in Epikit is simply a
collection of facts). One of the uses of the theory mechanism in Galileo is to explore multiple
solutions. Alternative solutions generated by Galileo are always mutually inconsistent (if
any two solutions agreed on everything and there were no contradictions, they will not be
two solutions). Since any statement can be inferred from an inconsistent set of facts, some
" mechanism is needed to separate the alternative solutions. Thus, separate theories are used
to contain different solutions so that consistency is maintained between all the facts in a
single theory.

The organizational structure of the knowledge base can also be made clearer by using
theories. For instance, in Galileo there is a theory product, which is supposed to include all
the product knowledge (see Section 3.4). In the implementation, product actually includes
several different theories such as decks (containing information about the properties of steel
decks) and steel-sections (containing information about the properties of hot-rolled steel -
sections). Moreover, the theory mechanism also helps in improving efficiency by permitting
one to partition the knowledge base into a theory structure, such that only pertinent facts
are searched at any given time. Epikit’s inference subroutines can take name of a theory
as an optional argument; only facts within the specified theory and its included theories
are then searched by the subroutine. Hence Galileo does not search through the properties
of composite steel sections when the behavior of beams and girders has been chosen as
noncomposite by the user. _

One of the strengths of KIF is its forced declarative semantics. In contrast, Prolog
constructs like cut, fail, asserta, etc., that lack any declarative semantics and are only
intended to control the actions of the interpreter, result in a loss of separation between
knowledge and control. The same is true of Common Lisp, which includes constructs

like setf, loop, progn, and rplaca. Diversions from pure declarative representation also

CHAPTER 6. IMPLEMENTATION ISSUES 66

occur in more subtle forms in other languages. Examples include arrangement of rules in
a particular order within the knowledge base by the programmer, or ordering of clauses
within a rule to exploit the peculiarities of the interpreter. As the examples from Galileo’s
knowledge base given in Appendix B illustrate, the emphasis on pure declarative semantics
in the case of KIF does not restrict the expressive capabilities of the language by any means,

but, on the other hand, enhances the transparency and cleanliness of the knowledge base.

6.2 User Interface Issues

In addition to the reasoning aspects, one also has to address the user interface issues when
developing a computer system for automating conceptual structural design. This is neces-
sary to ensure the acceptance of the design system by practicing professionals. Besides the
obvious benefit of making the experience of using the system a pleasant one, a well-designed
interface can also result in improved efficiency through savings in learning and usage times.

The user interface of Galileo has been developed using Allegro Common Lisp for the
Macintosh. The interface is interactive and menu-driven; the menus are shown in Fig. 6.1.
Menu items can be used to enter the input, set constraints, change the values of parameters,
change default options, generate core configurations and structural schemes, and view the
output. (Core configurations are normally expected to be provided as part of the input;
however, if the project is at a very early stage and all that is known about the plan are
the perimeter dimensions, Galileo’s library of standard core configurations can be used to
generate a configuration based on the plan area and the number of stories.) Some of the

relevant aspects of Galileo’s user interface are the subjects of the following sections.

6.2.1 Error Detection and Handling

Checks are performed on the input acquired from the user. Early detection of errors can
save users’ time and prevent erratic behavior on the program’s part. Checks can be of
several kinds. The simplest ones, syntactic checks, relate to the syntax of the input and
indicate discrepancies between the expected type of input for a certain parameter and the
type of the actual quantity obtained from the user. For instance, the number of stories
in a building should be a positive integer; anything else is erroneous and is detected by a
syntactic check. Semantic checks, on the other hand, detect logical inconsistencies in the
input. For example, if the user has provided a value of 20’ to be used as the minimum

economic span for beams and 15’ as the maximum economic span, it is clear that the range

67

CHAPTER 6. IMPLEMENTATION ISSUES

jund

= anes
aziwo)lsn)
uiejday
$3)}ON

"INdIn0 JYI MITA pUR ‘SOWSYDS [RINIONIIS PUR UOHRINSUOD
9100 djeIouad ‘suondo jmejop afueyd ‘siajourered JO SoNRA 9Y1 9ZURYD ‘SIUBIISUOD
198 ‘Indur oy} 19U 0] PAsn 3q UBD SWSIL NUIA *09[I[BL) JO SNUIIA :1°9 2InSL]

(Ieyo]) ejeq }soj

$32I§ jjetanp

(fyineig) eyeq iso)

(Ayneug) sazis uwnjo] |4 p uollnjos
(funeag) sazis IHT |4 ¢ uollnjos 9pOW 11adx]
: 4 Z uolinjos 9polN Juapnils
L% LU < | uonnjos |
g% SIaWa3Y3s |uan}ani}s ajeiauag
ds uejd 1004 uoljeanbijuo] ai0) a)eidUag
| uny |
ueds 1apiig HeW
UG 8] ueds 1opuig U
}9say
" ssadls ueds wieag Hew

** $89144 19410
** $331U4 [BLIa)R

ueds weag uiW T sjuledisuo] jedlueyiap
*** $}UIBA}SUO] |BAN}IB}IYIIY

T speot puim
*** sprO07 JIusIas
~* speo] fjineuy

buioeds weag Hew

Huiseds weag ulW ynduj juaun) paeasig
** }ndu] juauin) anes
ajueds 331130 UIW s 314 peay

=+ ubisag uwnjo)
- ubisaq 18paig/uieag
- ubisaq 100|4

suondg

a|npow bBuluuejy

yybiay Buipia)-1o0y4
s}inejag alo)say $3jeuipi00) 43)awlIad
U Ily moys $aL101§ J0 JaquinN

siajauleey E

CHAPTER 6. IMPLEMENTATION ISSUES 68

of economic spans for the beam is ill-defined. Such inconsistencies are detected through
semantic checks. For both syntactic and semantic errors, the user must correct the input
before proceeding with the solution stage.

A third type of checks, namely plausibility checks, are also useful in engineering appli-
cations. Plausibility checks result from the recognition that design parameters usually have
a set (or range) of “normal” or plausible values. Continuing the earlier example, a value
of 100’ as the minimum economic beam span is questionable and is probably a result of
user’s oversight. As opposed to the other two types of checks, however, the program does
not force the user to change the input and permits values outside the plausible range to
accommodate atypical cases. But such values are brought to the attention of the user by
either issuing a warning, or asking for a confirmation of the entered value.

A convenient interface should also facilitate easy correction of erroneous input. The
interactive input commands of Galileo are so built that they can be invoked repeatedly.
In case the value of a parameter has already been entered, invoking the corresponding
command again results in deletion of the earlier value and retention of the most recently
entered value. Thus, any time the user enters an incorrect value, all he or she has to do is

to execute the appropriate command again and enter the correct value.

6.2.2 Knowledge Structure and Content

Though knowledge structure and content issues do not fall completely within the purview
of interface issues, they are included here to the extent they influence the user interface.
One of the most important points in this regard is that heuristic values for quantities that
influence design (say, for instance, spanning capabilities of construction materials) should
not be “hard-wired” in the system. These values may change with time and technology and
thus invalidate the existing knowledge-base. Instead, the parameters that are relevant in
the design process have been identified and the knowledge has been structured in terms of

these parameters. Thus, instead of the statement

IF width_of_the bay > 40’

we prefer a more general statement of the form

IF width_of_the_ bay > maximum_economic_beam_span

where the parameter maximum_economic_beam_span can assume different values at different

times. Essentially, the domain knowledge is captured through statements that contain

CHAPTER 6. IMPLEMENTATION ISSUES

)

(i)

(i

(iv)

)

EI=———=——————listener
2

Current Uglues (in feet):
Planning Module : 3
Minimum Office Width : 20
Minimum Beam Spacing : 8

Maximum Beam Spacing : 12
Minimum Beam Span : 10
Maximum Beam Span ;45
Minimum Girder Span : 1S
Maximum Girder Span : 45
5

The present value of planning module is 5 feet.

New Ualue (in feet) [51: 15

Warning: Planning module should normally be in the range of
3 to 12 feet.

Done

?

The present value of planning module is 15 feet.

New VUalue (in feet) [15]1: 4

Done

?

The present value of maximum beam spacing is 12 feet.
New Value (in feet) [121: 6

?
Current Ualues (in feet):
Planning Module 4

Minimum Office Width : 20
Minimum Beam Spacing : 8
Maximum Beam Spacing : 12

Minimum Beam Span : 8
Maximum Beam Span ;44
Minimum Girder Span : 16
Maximum Girder Span : 44
-

Figure 6.2: Working with Parameters. The following commands from the Parameters
menu were executed respectively at the ? prompts: (i) Show All, (ii) Planning Module,

(iii) P1

anning Module, (iv) Max Beam Spacing, and (v) Show All.

Error: Maximum beam spacing is less than the minimum beam spacing.

69

variables representing the design parameters. Plausible default values for such parameters
are provided (for example the maximum_economic_beam_span parameter presumably can
have a default value of 45°), but there is a mechanism to enable the users to override these
defaults and suggest alternate values according to their preferences. Figure 6.2 shows an

example involving a few such parameters and the mechanism for overriding their default

values.

CHAPTER 6. IMPLEMENTATION ISSUES 70

6.2.3 Additional Considerations

One visual aspect of the interface relates to windows. Galileo exploits the multiple window
capability to present several alternative solutions simultaneously. Though a single window
can be used to display all the generated structural schemes, employing separate windows
leads to better maneuverability and flexibility in comparing the solutions. Thus, the de-
signer can look at only those solutions that he or she wants to examine without being
distracted by the other alternatives in view. Additionally, different types of information
about a solution are presented in different windows resulting in a better conceptual orga-
nization. To illustrate, while the geometry of a floor framing plan is graphically sketched
in one window, a separate window is used to display the textual information (e.g., notes
on the construction method) accompanying the solution. A third window presents the cho-
sen sections for various members while yet another window is used for explaining how the
solution was arrived at. Once again, though such information can be combined in a single
window, distinct windows give the advantage of choice—e.g., ability to concentrate on the
information of interest by getting rid of unnecessary windows—while retaining the func-
tionality of a single window, i.e., ability to view all the information at once. Galileo also
communicates parts of output through concise tabular summaries (e.g, member sizes, cost
data) that facilitate easy comprehension and comparison.

The philosophy behind the development of Galileo has been to make it an “advis-
able” [25] system. Thus, the system can be forced to forego certain decision-making pro-
cesses and instead adopt the decisions made by the designer. Figure 6.3 illustrates one such
example relevant to beam and girder design in Galileo. An associated concept implemented
in Galileo is the idea of modes to accommodate users with varying degrees of expertise in
the domain. The interaction with the system is different in different modes. For instance,
in the expert mode the user has access to certain advanced options; for example, quantities
like crew size and erectable pieces per day, used for estimating erection costs, can be altered
by the user in the expert mode. In the student mode the explanation can be at a more
elementary level and geared towards learning. Justification that an expert may find trivial
or uninteresting may be useful for an inexperienced engineer for learning purposes. As the
reader will see in the next chapter, explanations generated by Galileo are not mere traces
of “firings of rules,” but are more comprehensible and logically organized statements of

interest, with a vocabulary consistent with the professionals in the field.

CHAPTER 6. IMPLEMENTATION ISSUES 71

Beam & Girder Design Options

Steel Grade , Behavior
O A36 Only O Noncomposite
O A50 Only Composite [] Shored
@ Explore Both She‘ar Studs

LL Deflection Factor = OVI/Z“ ® 5"

Xl Cambered ® 3/4" v 5"

Depth Constraints
‘Beam Depth:d > |6 |inand < |36 |in

Girder Depth:d 2 |6 inand < |36 |in

[0K]

Figure 6.3: Options for Beam and Girder Design. Preferences for beam and girder
design can be set through the above dialog box. Other dialog boxes can be used to set
design options for floors and columns.

6.3 Closing Remarks

Flexibility is one of the most important guiding principles for good interfaces. Flexibility can
be manifested in many ways, including the ability to choose among design strategies, suggest
values for design parameters, and the ability to override the system’s decisions. Another
important consideration is consistency. Consistency can be apparent in the organization of
menus, behavior of various commands, layout of dialog boxes, etc. Effort has been made to
adhere to these principles while designing the user interface of Galileo.

The discussion in this chapter was designed to give the essence of the implementation

issues involved in Galileo’s development, without deluging the reader with low-level details.

CHAPTER 6. IMPLEMENTATION ISSUES

Finer details are available in Appendix C.

Theorists conduct experiments with their brains. Experimenters fave to use their hands, too. Theorists are
thinkers, experimeters are craftsmen. ... The theorist operates in a pristine place free of noise, of vibration,
of dirt. The experimenter develops an intimacy with matter as a sculptor does with clay, battling it, shaping
it, and engaging it.

— James Gleick, Chaos: Making a New Science (1987)

You need an arsenal of all-purpose irrelevant phrases to fire back at your opponents when they make valid
points. ‘Ihe best are:

You're begging the question.

You're being defensive.

Don't compare apples and oranges.

What are your parameters?
The last one is especially vaﬁtaﬁ.[e. Npbody, other than mathematicians, has the vaguest idea what "parameters”
means.

— Dave Barry, How to Win Arguments, As It Were

72

7

Examples

This chapter presents two representative examples of problem-solving sessions with the
design system developed in this investigation. The first example is restricted to floor framing
generation (using the FFG part of Galileo). The next example is more comprehensive and

is designed to show some features of Galileo that are not illustrated in the first example.

7.1 Example I

The architectural plan shown in Fig. 4.1(a) is adapted from the plan of a real ten-story
building and is used as a sample input to illustrate FFG’s working. The architectural
layout of the floor is based on a 4 ft. planning module. Accordingly, the planning module
in FFG was changed to 4 ft. from the default value of 5 ft. FFG generated four floor
framing schemes for the plan, one of which is shown in Fig. 4.1(b). Other framing plans are
displayed in Fig. 7.1. Member sizes for the first framing plan shown in Fig. 7.1 follow in
Fig. 7.2. Textual notes and explanation for Framing Plan 1 are shown in Figs. 7.3 and 7.4,
respectively. A cost comparison of the four alternatives is presented in Fig. 7.5.

It is interesting to compare the solutions generated by FFG with the ones generated by
the engineer responsible for the structural design. Of the four schemes generated by FI'G,
two matched with those generated by the engineer. However, there was one scheme that
was generated by the engineer but not FFG; this scheme involved nonorthogorial girders.
FFG is capable of generating solutions involving only orthogonal linear horizontal elements.

One of the ways in which FFG can be used is to estimate the effect of changing some
design variant(s). For instance, we solved the aforementioned problem for two different

cases to obtain a range of the unit steel weight for the resulting structural systems. First,

73

CHAPTER 7. EXAMPLES

= Fring Plan 1
RR Lo T
6 BT]
L1,
c7 c8
62 83
e2 Cd| [E5
B1 B2
ct Gl C3

(= FfrmgPlan2

"R o [
c14j§t 7
{
M)
foh] CAR
G5
c1 ciz ¢l
G3 BS G4
co B4 C11
ER frmg Plan 3
R Lo t
B8 Bg c2d5T ’ T
G? LS s
ct t2q [c2 €23
B6 B?
c1? 66 Cio

74

. Figure 7.1: Graphical Output of Framing Plans Generated by FFG. Sizes of columns

and flexural members of Framing Plan 1 are shown in subsequent figures.

CHAPTER 7. EXAMPLES 75

E[[J== Flenural Member Sizes (Gravity) for Solution 1 =
Member Where Span(ft) Spacings(ft> Section (¥studs)

B1 Exterior 28 0.0, 9.33 W 8x10 (14)

B2 Interior 28 9.33, 9.33 Wi2x14 18D

B3 Interior 14 9.33, 9.33 W 8x10 (4>

G1 Exterior 28 0.0, 28.0 W12x18 (24>

G2 Interior 28 28.0, 28.0 W16x31 ¢32)

L1 Core-Boundary 14 0.0, 9.33 W 8x10 4>

L2 Core-Boundary 28 0.0, 0.0 W10x12 125

(a)
SJ=—— Column Sizes (Gravity) for Solution | ===———1|
Stories ct c2 c3 c4 ¢S ce c? cs

10 - mid 8 U14x43 W14x43 W14x43 H14x43 W14x43 W14x43 W14x43 U14x43

mid 8 - mid 6 H14x43 W14x43 H14x43 H14x61 H14x61 H14x43 UW14x43 W14x43
mid 6 - mid 4 H14x43 W14x43 W14x43 Hi4x74 H14x68 H14x43 UH14x43 H14x43
mid 4 - mid 2 H14x43 W14x53 W14x53 W14x90 H14x82 W14x48 UW14x43 W14x43
mid 2 — Ground HW14x43 UW14xB1 W14x61 W14x90 H14x90 H14x53 H14x43 L 14x43

(b)

Figure 7.2: Member Sizes for Framing Plan 1. (a) Flexural member sizes. (b) Column

sizes.

ES[J=———— Notes for frmg Plan | 0———-——1|
Floor Concrete Type Lightweight
Floor Concrete Depth 3.25 in.
Steel Deck Depth and Gage 2 in., 18
Helded Hire Fabric 6X6-H1.4X1.4
Beam/Girder Steel Grade AS0
Column Steel Grade ASO
Concrete Strength for Floor 4 ksi
Flexural Member Construction Composite, Cambered, Unshored
Depth of the Floor System 3.27 ft.
Passage of Mechanical Ducts Below the Structure
LRFD Criteria have been used for designing the members.

Figure 7.3: Textual Notes for Framing Plan 1. This auxiliary information accompanies
Framing Plan 1.

CHAPTER 7. EXAMPLES 76

g —"—— | jstener

Explanation for Framing Plan 1

Column Locations

Column locations outside the core are based on intersections

of column lines. _

The column lines parallel to N-S direction use a characteristic
dimension of 28 ft. which was obtained by the pattern of elevators.
The column |ines parallel to E-W direction use a characteristic
dimension of 28 ft. which was obtained by the pattern of elevators.
Columns inside the core are based on the considerations of

minimum and maximum permissible beam spans.

Concrete Type

On the basis of volume alone, normalweight concrete was meore
expensive than lightweight concrete by $0.05 per sq. ft.
That's why lightweight concrete was selected.

Steel Grade of Flexural Members

Strength usual ly governed the sections of flexural members and
AS0 steel turned out to be cheaper when compared to A36 steel.
That's why AS0 steel was selected for flexural members.

Steel Grade of Columns

You restricted the choice of steel for columns to A30.
That's why AS0 steel was selected for columns.

Kal &)

Figure 7.4: Explanation for Framing Plan 1. FFG can explain its decisions in a
vocabulary consistent with structural engineering terminology.

to obtain the lightest system, the grade of steel for all members was restricted to A50,
composite behavior was chosen for beams and girders, and concrete was selected to be
lightweight. The resulting schemes had unit steel weight ranging from 4.24 to 5.08 psf
(pounds per sq. ft.) and costs ranging from 6.74 to 7.41 §/sq. ft. For the other extreme,
grade of steel for all members was restricted to be A36, noncomposite behavior was chosen
for beams and girders, and concrete was selected to be normalweight, with everything else
being the same. The resulting schemes this time had unit steel weight ranging from 7.05 to

8.39 psf and costs ranging from 7.62 to 8.19 §/sq. ft.

77

CHAPTER 7. EXAMPLES

*aaoqe suoneindwoo 9y ur papnyout
10U I8 2109 3y} IPISUI BAIE JOOT] Y} PUE SIAQUIDW [RINIONIS) *dU0 9AISUAdXD 1589 9Y] 9 JOU PIdu UONNos
1YS1om 15897 B ‘Sajensnyyi o[durexa 9A0qe 9Y1 Sy *SIANBUIA[Y JO uosriedwio)) pue uorenieAsy G/ angny

68°0 180 zZhl zhl (a1/$> /1507 3| 4-u| 3§
18" ¥ z0's AR 9z b (3sd) 3BIaM 1993
(0Z'L> 0199ESL (bL'Q) ObTESI (6T'L> SO¥BSOL (ib'L) H8ZH8OL 1503 |pYolL
(9Z°b) S8VL96 (80'b) 92G8Z6 (99°b) SSPOSOL (8L ') HOOOBOI 3SOQ BVD|d-U| |993$
(Z0°0> $9¥S (€0°0) SOLS (ZO°0) Oblb (Z0'0) bb8h U013y odsunu]
(050> 089l (0S°0> 089ELL COS'0> 089l (OS" 0> 089ELL Buij00ud o414
(S1°0> 00LSE (€1°0> OOEOE (6L°0> 00EZy (61 °0) 00ibb Buy Jequoy
(000> 0 (000> 0 (00°0> 0 €00°0> 0 Buidoys
(61°1> 68Y69Z (SO'L) SBLLET (SH'L) 9Z66ZE (OS'1) SIBIYE uo1308u3
(80°1> 00SOYZ (66°0) 00SHZZ (SE'L) DGLQ0E (BE 1) 0SLZLE U0 13D | uqp
(EE€°1> ZSZEOE (6€°L) 9099LE (9L°L) BSOEZ (8L 1) SI889Z LINCCTRELE
(8E'0) 89148 (9E°0) $9808 (Zp 0> LOLY6 (Zb 0> SGLSE suun|og

(S6°0> $#809IZ (PO'L> ZHLSEZ (¥4 0) 86Z89I (92°0) 099¢ell SJopdlg 3 subsg

(P6'Zy SZI699 (99°Z> 0EBED9 (E9°T) 0L086S (EQ Z) 08ZB6S $3}sS0) ool

<Ol "0) 9gLZe (0l "0)> 9eLZZ <0l "0) 9eLZT (Ol "0) 9822 Qidgb BdIM PPN

(L1 °0) 08S8E = (0Z'0) OEOSH (L1 °0> OlZee (1 0) 08v6E Spn}s Wb3yg
(71> 69499C (90°L) 96¥0bT (90°1)> 96¥0FPT <90°1) 96v0bZ 93}9U0U0) voo| 4
(0S'1) OPOLPE (OE'l) B9SGBZ (OE'L)> B89SS6Z (OE'}) BISSHZ noeq [pyeY

p Uoiinjog g€ Uolinjos ¢ uolinjos } Uolynjos (35/¢5 ¢ Ul 51503 119

(Ryinean) e)eqg 1503

CHAPTER 7. EXAMPLES 78

7.2 Example II

This example illustrates several aspects of Galileo not discussed in the preceding section.
These include use of the library of standard core configurations, design of the lateral system,
and computation of cost premium for carrying the lateral loads.

In contrast with the example in the previous section in which the input was provided
both interactively and through a file, all the input to Galileo for this example was supplied
interactively. At the minimum, Galileo needs the extents of the perimeter and the number
of stories in the building as input. Using the Perimeter Coordinates menu item in the Input
menu, the coordinates of two opposite corners of the perimeter were set to (0, 0) and (110,
60). Through another menu item, the number of stories was set to thirteen.

Galileo includes a library of standard core configurations to assist in the preliminary
exploration of framing alternatives. If only the plan dimensions and the number of stories
in the building are known, Galileo can be used to generate a core configuration before
proceeding with structural design. The configurations in the library are indexed by the
number of elevators. There are fifteen configurations in all in the library, ranging in the
provision of the number of elevators from two to sixteen. This approach of selecting a core
configuration from a predetermined set has limitations, and accordingly the use of library
is restricted to buildings between three and sixty stories. Buildings taller than sixty stories
will usually need elevator experts to configure the vertical transportation system whereas
buildings shorter than three stories will typically not need elevators or will have nonstandard
installations. Other restrictions on the length and width of the plan also apply.

As mentioned earlier, the selection of a core configuration is based on the required
number of elevators. An assessment of the required number of elevators can be made based
on the gross plan area of the building, which in turn can be computed from plan dimensions
and the number of stories. Once a standard configuration is chosen, the core is centered
within the perimeter and the coordinates of various elements within the core are computed
with respect to the plan dimensions. For the given perimeter dimensions and number of
stories in the building for this problem, Galileo estimated the required number of elevators
to be two, and the resulting floor plan is shown in Fig. 7.6.

Before proceeding with generation of structural schemes, several options were set to
highlight the contrast between Examples I and II. Behavior of beams and girdérs was set
to be noncomposite and their steel grade was restricted to be A36. Concrete type for the
floor was set to be normalweight and the steel grade for columns was set to be A50. This

usage of Galileo differs markedly from Example Iin which the system was allowed to make

CHAPTER 7. EXAMPLES 79

Plan

k:

o

o~

St |RR RR St T
o

Lo T

)

1!-

o

o~

k-

. 25 8 . 120 .10 100, 120, 8 25 .

Figure 7.6: Floor Plan for Example II. The core configuration for this plan was generated
by Galileo.

most of the decisions based on perceived economy; in Example II, a greater control over the
functioning of the system was exercised.

All other options, including the ones for loading, were left unchanged (see Appendix C
for default values of options). In particular, the seismic zone for the building location was
taken to be Zone 4. Furthermore, exposure type for wind loading was assumed to be B.

Galileo generated four structural schemes for this problem, two of which are shown in
Fig. 7.7(a) and 7.7(b), respectively. Both gravity and lateral systems for each of the four
alternatives were designed. Member sizes for Solution 1 corresponding to gravity loading
alone are shown in Fig. 7.8. Member sizes corresponding to both gravity and lateral loading
for the same solution are shown in Fig. 7.9. Galileo indicated that corner columns in all
four solutions can be in tension due to lateral loads.

A comparison of the costs of gravity and total system follows in Fig. 7.10. As can be
seen from Fig. 7.10(b), the premium for lateral loading using perimeter moment frames for
this problem is close to 15% for each of the four alternative solutions. The premium can,

of course, be different if a different lateral system (such as a braced frame) is employed.

CHAPTER 7. EXAMPLES

80

El Solution 1
13 Jcz c8
T BR R 5T
L4 >
L1 L2
c2 c4 C6
G1 B2 162 B4 163
c1 B1 c3 B3 C5
(a)

El solution 4

BT RR R St

G11

c2 L] o

L10

L11
c3 C31

B13 B14

B15 |B16
c2 G10 C2 G12 C290

(b)

Figure 7.7: Two Generated Framing Plans for Example II. (a) Solution 1 (b) Solu-

tion 4.

CHAPTER 7. EXAMPLES 81

=[I= Flerural Member Sizes (Gravity) for Solution 1 =]

Member Where Span{ft> Spacings(ft> Section
B1 Exterior 25 0.0, 10.0 W14x22
B2 Interior 25 10.0, 10.0 W18x35
B3 Exterior 30 0.0, 10.0 W 16x26
B4 Interior 30 10.0, 10.0 W2 1x44
G1 Exterior 20 0.0, 25.0 W16x31
G2 Interior 20 25.0, 30.0 W18x50
G3 interior 20 30.0, 30.0 W2 1x50
Lt Core-Boundary 20 0.0, 10.0 W12x 16
L2 Core-Boundary 20 0.0, 10.0 H18x40
L3 Core-Boundary 10 0.0, 10.0 W69
L4 Core-Boundary 20 0.0, 0.0 W16x31

(a)
Column Sizes (Gravity) for Solution | =—————-|
Stories ct c2 c3 c4 €S cé c? c8
13 ~ mid 12 W14x43 W14x43 W14x43 W14x43 W14x43 W14x43 UW14x43 W 14x43

mid 12 - mid 10 W14x43 W14x43 W14x43 H14x43 H14x43 H14x43 H14x43 W 14x43
mid 10 - mid 8 W14x43 W14x43 UW14x43 H14x48 WH14x43 H14x43 H14x43 W 14x43
mid 8 -~ mid 6 W14x43 W14x43 W14x48 W14x61 W14x48 H14x43 H14x43 H14x43
mid 6 - mid 4 H14x43 W14xS3 W14x61 H14x68 UW14x61 UW14x43 UW14x43 H14x43
mid 4 - mid 2 W14x43 W14x61 W14x61 HW14x74 W14x61 W14x43 W14x48 UH14x43
mid 2 - Ground H14x43 H14x61 H14x61 UW14x82 UW14x68 W14x48 W14x53 H14x43

(b)
Figure 7.8: Gravity System Sizes for Solution 1. (a) Linear horizontal member sizes.
(b) Column sizes.

E[JE Overall Sizes for Solution 1
Beams & Sections
Girders 12th Story 2nd Story

B1 W18x40 H24x76
B3 W24x55 W30x 108
G1 W18x40 W24x76

Approx. Section Height

Columns 12th Story 2nd Story

o3] 61 176
c2 6t 145
c3 48 120
cS 48 120

Figure 7.9: Total System Sizes for Solution 1. The steel weights of columns are only
an estimate.

CHAPTER 7. EXAMPLES 82

S[IE==————————— Cost Data (Gravity) =

All Costs in § ($/SF) Solution 1 Solution 2 Solution 3 Solution 4
Metal Deck 105300 ¢1.50> 105300 < 1.50) 109300 (1.50> 105300 (1.50»
Floor Concrete 78000 <1.11> 78000 (1.11> 78000 C1.11) 78000 (1.11>
Shear Studs 0 <0.00)> 0 <0.00> 0 <0.00> 0 <0.00)
Welded Hire Fabric 7020 €0.10> 7020 <0.10> 7020 <0. 10> 7020 €0. 10>

Floor Costs 180320 (2.71> 190320 ¢2.71> 180320 2.71> 190320 (2.71>
Beams & Girders 111142 (1.38) 104013 (1.48> 113584 (1.65) 120734 (1.72>
Columns 49018 (0.70> 46886 (0.67> 46731 (0.67) 46309 (0.66>

Steel Material 160160 (2.28) 150898 (2.15> 162315 (2.31) 167043 €2.38)
Fabrication 160550 €2.29> 173550 €2.47> 154700 €2.20> 159900 (2.28>
Erection 142671 (2.03> 168431 (2.40> 138708 (1.98) 149012 (2.12>
Shoring 0 ¢0.00> 0 <0.00> 0 ¢0.00> 0 <0.00)
Cambering 16770 (0.24)> 19890 €0.28> 14820 €0.21)> 17940 (0.26>
Fire Proofing 35100 <0.50> 35100 €0.50> 35100 €0.50> 35100 <0.50)»
Transportation 3000 <0.04> 2826 €0.04> 3044 ¢0.04> 3134 (0.04>

Steel In-Place Cost 518251 (7.38> 550696 (7.84> 508687 (7.25) 532128 (7.58)

Total Cost 708571 (10.09) 741016 €10.56> 699007 €9.96) 722449 (10.29)>
Stee! Weight (psf) 8.55 8.05 8.67 8.93

Steel In-Place Cost/Ht ($/1b) 0.86 0.97 0.84 0.85

(a)

E[[==———————————— Cost Data (Total) EEEEEEEEEEEEEEEEEEEEEEEEEEEEQ
All Costs in $§ <($/SF> Solution 1 Solution 2 Solution 3 Solution 4
Beam & Girder Material 145268 (2.07> 136841 (1.65) 154896 (2.21) 154723 (2.20)
Column Material 79676 (1.13> 75930 <(1.08> 79021 (1,13 79609 (1.13)
Steel Material 224944 (3.20> 212771 <3.03)> 233917 (3.33> 234332 (3.34)>
Fabrication 203950 <¢2.91> 216950 ¢3.09> 191900 <(2.73) 197100 <2.81)
Transportation 4203 <0.06> 3975 (0.06> 4374 €0.06> 4382 €0.06>
Steel In-Place Cost 627638 (8.94> 657117 (9.36) 618819 (8.82) 637866 (9.09)
Total Cost 817958 (11.65) 847437 (12.07) 809139 (11.53) 828186 (11.8)
Steel Weight (psf) 11.97 11.32 12.46 12.48
Steel In-Place Cost/Ut ($/1b) 0.75 0.83 0.71 0.73
Lateral Loads Cost Permium 158 14% 168 158
Cost of other items is the same as for the gravity system.

(b)
Figure 7.10: Costs for Example II Alternatives. (a) Gravity system costs. (b) Total
system costs.

CHAPTER 7. EXAMPLES , 83

Comparing the gravity and total cost data given in Fig. 7.10 provides some interesting
insight into the cost impact of the lateral system. The total structural steel weight increased
by about 40% and the fabrication cost increased by about 25%, leading to a total cost
increase of about 15%. These increases have to be interpreted with due consideration of the
assumptions made in the analysis. Two important issues need to be considered. Firstly, in
the cost estimation process (see Section C.4) it is assumed that the cost difference between
- equally heavy “gravity” support elements (assumed to have only simple connections) and
“frame” elements (assumed to have rigid connections) is reflected only in the fabrication
cost; the erection cost is not affected. This heuristic knowledge is based on input provided
by one cost estimation expert and is expected to vary from expert to expert. Secondly, the
weight pehalty for the lateral system is a very conservative estimate since, as was discussed
in Chapter 5, all column sizes are limited to W14 sections, which are inefficient sections for
columns in perimeter frames. As a consequence of these assumptions, the cost per pound

of steel for the gravity and lateral system is less than that of the gravity system alone.

8

Observations on Logic

Because of its context-free and task-independent nature, declarative representation is a
convenient means of representing knowledge, especially so because it avoids major revisions
that must often be undertaken to accommodate even minor changes in knowledge in the
case of procedural representation. Knowledge represented declaratively can be used even
in situations that were not foreseen by the developer. This chapter summarizes some ob-
servations based on our experience with using formal logic for declaratively formulating
knowledge in the structural engineering domain. The next section comments about the ex-
pressive power and inferential capabilities of first-order predicate calculus, a variant of which
was employed in this investigation. Observations about knowledge transparency follow in
Section 8.2. Section 8.3 discusses a few observations on KIF whereas Section 8.4 discusses
efficiency in a logical environment. Shortcomings of logic and the proposed solutions to
overcome them are discussed in the penultimate section. The final section concludes with

an extended quotation of remarks made by developers of a large kndwledge base.

8.1 Expressive Power and Inferential Capabilities

First-order predicate calculus (FOPC) is one of the most expressive and versatile languages
available for representing knowledge declaratively. Alternative forms of declarative repre-
sentation, such as frames, production systems, and semantic nets, can be defined in terms
of rorc. Charniak and McDermott [11] illustrated translation of semantic nets into FOPC
while Hayes [36] has shown that frames can be defined using FoPC.

It is the expressiveness of first-order predicate calculus that gives it a significant advan-

tage over other languages. For instance, if we were to express the fact that “IF a building

84

CHAPTER 8. OBSERVATIONS ON LOGIC 85

has a moment resisting frame AND the lateral deflections are large THEN beams are too
flexible OR columns are too flexible orR columns have too small an area” in a production
system environment, the representation will be quite clumsy because of the OR’s in the
consequent part of the statement. On the other hand, such statements can be easily ex-
pressed in first-order logic using disjunctions. Also, as noted in Ref. [26], incomplete and
negative information can be much more readily expressed in predicate logic when compared
with other formalisms. An illustration of this can be observed when trying to state that a
load has an eccentricity, without specifying what the eccentricity is (though it may become
available later).

Perhaps the single most important source of the expressive power of FOPC is quantifiers.
Quantifiers allow one to state properties of all the objects in a domain or of some objects in
the domain without explicitly naming the objects. To give an idea of their power, consider
a case where there are several beams of different depths. If we wish to find out the deepest
beam(s) in a frame-based environment, it will not be possible to do so without explicitly
naming all the beams (which will be quite a nuisance whenever there are additions and
deletions to the list of beams). In FOPC, however, we just need to write a simple axiom like
the following.

Vb [Beam(b) A =3b1 Deeper(bl,b) = Deepest(b)]

When used in conjunction with unification, this axiom can be easily used to determine the
deepest beam or to find out if a given beam is the deepest.

Another benefit of symbolic logic is the reasoning power it offers. Ordinary production
systems, for example, perform only modus ponéns (i.e., given evidence of the antecedent
of a rule, they can infer the consequent). Besides modus ponens, a true logic system can
perform several other kinds of sound reasoning. To give a simple example, suppose one
knows that

Supports(column,beam) = SupportedBy(beam, column)
and that Beaml is not supported by Columni (or, in other words, —~SupportedBy(Beami,
Columni)). From this knowledge one can still not infer ~Supports(Columni,Beaml) in a
production system environment. However, one can do so in a logic system with application
of either modus tollens or resolution. We found logic to be inferentially adequate for our

purpose of modeling conceptual structural design of steel office buildings.

CHAPTER 8. OBSERVATIONS ON LOGIC 86

8.2 Knowledge Transparency

A couple of example applications in Appendix A illustrate the utility of FOPC for solving en-
gineering problems. As the application to structural analysis in the appendix shows, knowl-
edge for solving the problem, which is hidden in the case of algorithmic solution, becomes
transparent and natural in predicate calculus axioms. Similarly, processing design stan-
dards with predicate calculus is advantageous because, in contrast with other formalisms,
the same representé,tion can be used for both conformance checking (using demodulation)
as well as design generation (using paramodulation).

We can illustrate transparency of the represented knowledge in FOPC using another
simple example. Consider the case of computing the factorial of a nonnegative integer n
in procedural and declarative paradigms. Fig. 8.1 shows the mathematical definition of the
‘factorial’ function and its computation using Fortran, Forc, Prolog, and KIF respectively.
As is evident from the figure, the knowledge is hidden in the case of Fortran since it captures
the how of the problem. The predicate calculus and KIF representations, on the other hand, |
are very clean and elegant since they emphasize ,the what, leaving the how of the problem-
solving process to be decided by the interpreter. It is this elegance and cleanliness of
expression that is so dear to the proponents of logic.

The transparency of knowledge results in easier development as well as reduced effort for
maintenance, modification, and extension of the system. Debugging a procedural program
is a nontrivial chore and requires keeping track of how and when each piece of knowledge
is being used; in contrast, only the truth of statements matters in logic. Also, one does
not have to worry about such low-level details as indexing or memory allocation. (As an
aside, a procedural representation equivalent to a declarative one will always be bigger
because of the space needed for the how part.) When adding new knowledge to procedural
programs, the impact and interaction of such knowledge with existing knowledge has to be
considered; such concerns are minimal in the case of declaratively represented facts that
have clean semantics. After implementing any well-sized system in a procedural language,
the programmer often experiences a strong urge to redo the system differently; such is not

a characteristic of logic.

8.3 Observations on KIF

Because of its philosophy of no short-cuts or compromises, KIF, an extension of FOPC and the

language employed in this investigation, encourages much necessary discipline and rigor on

10

CHAPTER 8. OBSERVATIONS ON LOGIC 87

1, if n = 0;
n * Factorial(n — 1), ifn > 0.

(a)

Factortal(n) = {

SUBROUTINE FACTORIAL(N, IFACT)
TFACT = 1

DO 10 J =1, N

IFACT = IFACT * J

CONTINUE

RETURN

END

(b)

Factorial(0) =1
(n > 0) = Factorial(n) = n # Factorial(n — 1)

(c)

factorial(0, 1).
factorial(N, F) :- N>0, N1 is N-1, factorial(Ni, F1), F is N#*F1.

(d)

(= (factorial 0) 1)
(<= (= (factorial $n) (¢ $n (factorial (- $n 1))))
(> $n 0))

(e)
Figure 8.1: Computing Factorial of a Nonnegative Integer n. (a) Mathematical Def-

inition, (b) Fortran Representation, (c) Forc Axiomatization, (d) Prolog Representation,
and (e) KiF Representation. Note the correspondence between (c) and (e).

the part of the programmer. It may take a little extra effort at the development stage to be
quite precise in expression, but the effort is worthwhile from the long-term perspective. This

is because every time someone twitches the code just to get it running (without adherence

CHAPTER 8. OBSERVATIONS ON LOGIC 88

to rigorous declarative semantics), the person is creating a problem for the future. As an
illustration, assume that one is writing a small expert system for some narrow task. In the
small knowledge base (KB) the programmer may put in a “kludge” so that a chosen rule
‘always fires immediately after the firing of another rule. Such an unprincipled approach may
work for the small knowledge base, but some later day one may need to integrate that small
KB with another KB developed for some related task. Now the programming trick that was
working earlier may not work anymore because of the presence of additional rules that may
be candidates for firing. However, a fact ought to be true irrespective of whether it is part
of a small KB or a large one. But in our scenario the fact which was functioning well in the
small system may produce unexpected behavior once it is put in a different context—hence
the emphasis on semantics independent of the interpreter, though the process may seem
cumbersome initially. (Section 8.6 quotes from a large-scale KB development effort that
corroborates this observation.) One expresses a fact in a knowledge base and it will always
be true irrespective of how it is used.

One advantage of expressing domain knowledge in KIF is that one can write alternative
strategies (or meta-level knowledge) that operate on the same set of base-level statements.
Thus, while selecting sections for columns in Galileo, one can opt for either a least-weight
strategy to minimize the steel costs, or a constant-depth strategy to simplify splicing. There
is only one set of base-level statements expressing properties of hot-rolled steel sections, but
it can be used in multiple ways by separating the meta-level knowledge and providing for
alternative strategies. On the other hand, the idea of mixing base-level and meta-level
knowledge, or embedding the latter in the former (quite common in Prolog programs as
enabled by constructs like cut and fail) is anathema to purists.

Mathematical equations, quite commonly used in structural engineering for expressing
behavior and performance of components and systems, can be very conveniently expressed

in KIF using term simplification, or rewrite, rules. The general form of these rules is the

following.
(-7)

This statement signifies that an inference procedure is free to substitute the term 7 for all
occurences of the term 7. For instance, bending moment at the center of a beam of span /
carrying a uniformly distributed load w is expressed by the equation

wl?

M=—.
3

The same can be precisely expressed in KIF as follows.

CHAPTER 8. OBSERVATIONS ON LOGIC 89
(<~ (M udl center $w $1) (/ (x $w $1 $1) 8))

8.4 Efficiency

There is always a trade-off between the generality of representation and efficiency [86]. Thus
procedural representations, where the programmer encodes the knowledge about what is to
be done each step, are usually quite efficient, though the represented knowledge is specific
to a particular task. In contrast, the general purpose inference mechanisms in the case of
formal logic must either perform a blind search or deliberate at each step as to what to do
next; they are consequently slower [15].

The issue of efficiency must be seen in the proper perspective: if efficiency was to be the
most important considefation, most of us would be programming in machine language. In
other words, one has to consider how natural is the expression in alanguage and how clean is
its semantics, in addition to efficiency. This is where FOPC’s clear semantics combined with
its expressive power becomes important. Moreover, given the current rate of improvement

in hardware, excessive concerns about long run-times may not be entirely justifiable.

8.5 Shortcomings and Solutions

McDermott [64] raised questions about the suitability of logic for problem solving and
pointed to the inadequacies of logical deduction for modeling human problem solving. He
justifiably argued that humans do many other kinds of reasoning besides deduction (such
as abduction, induction, etc.). To that end it must be pointed out that though deduction
is an important form of reasoning, it need not be the only one. Some recent work in the
field of nonmonotonic logic, such as circumscription [63,55], default logic[75], and modal
operators [65,66], extends the reasoning power of classical logic. Nonmonotonic reasoning,
which provides means for making unsound inferences (that may later be retracted), has
interesting parallels in the structural design process. For instance, when designing high-rise
buildings, designers typically assume that the lateral loads govern the design of vertical
systems. Later on, they may discover that some individual components are governed by
gravity loads, and this will result in a revision of design of affected components. This is
an illustration of default reasoning, wherein the system makes certain inferences that are
normally true but at a later stage retracts those inferences when additional information

becomes available.

CHAPTER 8. OBSERVATIONS ON LOGIC 90

In addition to nonmonotonic logic, other nonclassical logics are actively being developed
to overcome the shortcomings of classical logic. They include temporal logic (to reason about
time), modal logic (to reason about, for instance, knowledge and belief)), many-valued logics
(to compensate for the inability of classical logic to account for anything other than binary
truth values), and fuzzy logic (to handle uncertain information).

Stefik [83] points out that there are computational problems with the use of logical de-
duction as the core of problem solving. For instance, even if logic does provide a means of
finding the result, it does not provide guidance for going about finding the result. Investi-
gations into meta-level constraints and reflection [26] are intended to address such concerns.

One of the shortcomings of predicate calculus is that it is too cumbersome for simple,
specific tasks. A specialized language may be more succint and natural than predicate
calculus for many applications. Predicate calculus expressions also appear to be awkward
to the uninitiated and it is only after some time and practice that one gains familiarity and
begins to feel comfortable with the language. A solution to this problem of readability will be
an automated front-end that can converse with the user in friendlier representations, while
using predicate calculus as a representation base. Mackinlay [59] worked in this direction
by building a program capable of displaying predicate calculus data in different modalities,
such as tables, trees, bar graphs, and pie charts.

A problem with the inference mechanisms in logic is their indeterminacy. The most
powerful of logical inference mechanisms, resolution, is only refutation complete;i.e., given
a set of inconsistent facts, resolution is guarenteed to deduce the empty clause from it.
However, if the set is consistent, there is no way of ascertaining it since inability of resolution
to deduce empty clause in a given amount of time does not necessarily imply consistency.
Perhaps the given set of sentences is inconsistent and a few additional inference steps would
have proved it. A proposed (though not entirely satisfactory) solution to the problem is to
limit the time allowed for deducing the desired clause. If a clause is not deduced within the
specified time, it will be taken to mean that the clause does not follow from the original set.

In several cases, one has to determine all the objects in the domain that satisfy a
particular condition. For instance, it may be desired to determine all the loads acting on
a given beam. In yet other instances,’the number of objects that meet some criterion may
be needed. For example, when computing the material cost, one may need to determine
the total number of beams of a particular type in a floor. Logic programming languages
like Prolog address these problems by providing second-order predicates such as setof and

bagof. (Epikit also extends KIF and provides functions such as bagof.) However, it must

CHAPTER 8. OBSERVATIONS ON LOGIC 91

be borne in mind that such constructs are outside the realm of first-order logic and carry

procedural semantics.

There are some tasks in the structural design process which are inherently iterative.
An example is the design of beam-columns, wherein one starts by choosing a section based
on some “equivalent” axial load and reiterates until the interaction equation is satisfied,
while ensuring that the section is not too overdesigned. Modeling such procedures appears
unnatural in logic. A process where the steps are repeated until some variable converges
to within, say, 5% of its value in the previous iteration will be another instance. Moment

distribution method is an example of such an iterative task.

8.6 Concluding Remarks

In this section we present the following extended quotation from a recent article [32] about
Cyc, a decade-long, two person-century effort to develop a large common sense knowledge
base intended to capture human consensus knowledge. Mid-way in the project, the authors
report on their experiences and lessons learned over the past five years. Much of what they

say about the representation language corroborates the observations in this chapter.

CycL is the language in which Cyc knowledge base is encoded. In 1984, our rep-
resentation was little more than frames. Although a significant fraction of knowledge
can be conveniently handled using just frames, this approach soon proved awkward or
downright inadequate for expressing various assertions we wanted to make: disjunctions,
inequalities, existentially quantified statements, metalevel propositions about sentences,
and so on. At least occasionally, therefore, we required a framework of greater expres-
sive power. We were thus led to embed the frame system in a predicate calculus-like
constraint language. ,

Moreover, there were a number of downright ad hoc aspects of the 1984 frame
language, such as how inheritance worked. We kept modifying and tweaking such
mechanisms, and often, this method forced us to go back and redo parts of the knowledge
base so that they corresponded to the new way the inference engine worked. As the
size of the knowledge base increased, this process became intolerable. We came to
realize that having a clean semantics for the knowledge base was vital, declaratively
expressing the meaning of inheritance, TheSetOf, default rules, automatic classification,
and so on, so that we wouldn’t have to change the knowledge base when we altered the

implementation of one of the mechanisms.

We conclude this section by listing our desiderata for the representation language
in which to build our large knowledge base. ... QOur point here is that this list bears
little resemblance to what we expected the language to be like five years ago.

CHAPTER 8. OBSERVATIONS ON LOGIC

First, the language should have a clear (and hopefully simple) semantics. The
semantics should be declarative for two reasons: to facilitate communication with, and
use by, many different problem solvers, be they human or machine and, as mentioned
previously, to prevent having to discard or redo the knowledge base when the inference
mechanisms change.

Second, it should provide certain inferential capabilities. ...

Third, it should provide some scheme for expressing and reasoning with default
knowledge. ...

Fourth, it should have the expressiveness of all first-order predicate calculus with
equality [67]. ...

Given this wish list, we could summarize the major changes in CycL over the past
five years as follows: We started with a frame language whose emphasis was more on
issues such as the data structures used, indexing, and interface. We have since realized
the importance of a declarative semantics for the language, the need for expressive
power, and the importance of making a clear distinction between what knowledge the
knowledge base contains and how the knowledge base is implemented.

Logic, as it is generally understood, is the organ with which we philosophize. But just as it may be possible
for a craftsman to excel in making organs and yet not Know how to play them, so one might be a great logician
and still be inexpert in making use of logic. Thus we have many people who theoretically understand the
whole art of poetry and yet are inept at composing mere quatrains; otfiers enjoy all the precepts of da Vinci
and yet do not know Fow to paint a stool. Playing the opgan is taught not by those who make opgans, but by
those who Know fow to play them; poetry is learned by continual reading of the poets; painting is acquired by
continual painting and designing; the art of proof, by the reading of books filled with demonstrations—and
these are exclusively mathematical ones, not logical ones. '

— Galileo Galelei, Dialogue Concerning the Two Chief World Systems (translated by

Stillman Drake) (1632) ‘

9

Closure

9.1 Conclusions

Several conclusions can be drawn from the study presented in this dissertation. As the
investigation illustrates, reasoning based on function, with an emphasis on first principles
(in place of heuristics), can be successfully applied for developing systems for conceptual
structural design. Although heuristics are not absolutely dispensable in all aspects of con-
ceptual design phase, minimizing their use even at the cost of speed can be worthwhile
because of added generality in the represented knowledge.

A first-order predicate calculus based representation was found to be suitable for rep-
resentation and reasoning in an integrated structural design environment. Especially note-
worthy features of the representation include its expressive power, inferential capabilities,
and cleanliness and elegance of expression resulting in knowledge transparency. Although
there are concerns about issues like efficiency and syntax, the benefits far outweigh the
drawbacks. Ongoing research in AI will hopefully address the concerns and remedy the
shortcomings.

A sequential approach to the design of subsystems, in which a gravity load resisting
system is synthesized independently of the lateral load resisting system, was adopted in
this research. This helps one visualize the premium being paid (in terms of extra cost) for
carrying the additional lateral loads incident on the structure.

This investigation also demonstrates that exogenous constraints can be advantageously
incorporated in the structural design process. Realistic and practical designs must con-
sider several other factors besides structural efficiency, and to that end, computer aids for

structural design must also be able to handle exogenous constraints.

93

CHAPTER 9. CLOSURE 94

Effects of changing different parameters can best be measured in terms of the trade-
off between Cost and Value. Because of the inherently subjective nature of Value, an
automated environment is not well-suited for its computation. However, by estimating the
Cost part of the Cost/Value ratio, and leaving the Value judgment to the user, a useful

basis for evaluating the generated alternatives can be presented to the user.

9.2 Directions for Future Work

Although advancements such as more efficient search strategies or powerful representation
schemes resulting from AI research will facilitate further developments, it is clear that even
with existing techniques significant results can be achieved with knowledge-based concep-
tual structural design systems. Thus, as structural engineers, our energies will be spent
more constructively in formalizing those parts of knowledge for which no widely acceptable
theories exist. These include the problem-solving knowledge and the strategies used by
expert designers. In this connection, application of general design methodologies to the
conceptual structural design process should be explored.

Efforts should be devoted to the development of libraries or repositories of that body of
structural engineering knowledge which is fairly stable. For this purpose, we will have to
agree upon an ontology, i.e., evolve a vocabulary in which the definition of representational
terms is standardized [31]. By encoding the knowledge in a declarative language (e.g., one
whose syntax is based on first-order predicate calculus), such knowledge resources can be
shared and reused, thus avoiding duplication of effort.

The problem of structural system elements layout is common to all civil engineering
structures. This dissertation presented a partial formalization for solving such problems in
the domain of building structures. Applications and extensions of the approach presented

here to other types of structures can be explored.

9.2.1 Enhancements to Galileo

Several enhancements can be made to the system developed in this investigation. Allowing
for non-rectangular geometries, non-prismatic buildings, and more than a single core are
some of the obvious possible avenues. In addition, occupancies other than commercial office
buildings and materials other than steel can also be considered.

The reasoning in Galileo can be made more intelligent by giving preference to symmetric

framing plans, by adding capability for generating plans that have nonorthogonal flexural

CHAPTER 9. CLOSURE 95

members, and by striving for uniformity in sections of the chosen members when doing
sizing. A more sophisticated system will also be able to generate framing plans in which
the orientation of floor beams (or girders) is not identical throughout the plan, but may
vary in different zones. Some other useful extensions include the ability to handle varying
load intensities in different parts of the floor plan and a more detailed treatment of the MEP
ductwork. For the latter, the actual route of the ducts and the particular members affected
by them can be used to gauge the influence of MEP constraints on the floor framing plan.

Since the unit erection costs for lower stories are usually smaller than those for higher
stories (erecting higher stories involves more time and effort), ideally one may use different
framing plans for higher and lower stories. The top stories may have fewer elements so as
to cut down on erection costs, while the bottom stories can use more elements and save on
material costs. Also, owing to the requirements of equipment for heating, ventilating, and
air-conditioning, mechanical floors may require framing plans that are different from typical
floors. The same may be true for the first floor since many columns may be discontinued
to obtain a big lobby area free of columns. Galileo can be extended to include all these
special-cases.

At the moment, the service core in the floor plan is treated as a weightless area during
the design of the gravity system. An extended system should be able to consider each
individual area within the core and design the structural system accordingly. Furthermore,
the design of lateral systems can be extended significantly, including such systems as braced
frames and tubes.

There are some possible extensions to the interface also. An interface with a computer-
aided drafting (CAD) system as a front-end to Galileo will facilitate graphic communication
of the input [42]. A customization module, implemented in the CAD system, will allow the
user to modify and customize generated alternatives. For improving efficiency, applica-
tion of automated transformation and compilation techniques can be explored to develop
specialized inference procedures. Finally, Galileo can be made into a closed-loop system
wherein results of the lateral system design are taken into account to modify the gravity

system alternatives and the process continues until the two are reconciled.

9.3 Summary Assessment .

A formal model of both the domain as well as the problem-solving process is an important

ingredient for developing extensible and intelligent design systems. Reasoning in terms of

CHAPTER 9. CLOSURE 96

the cause for the existence of a structure is a step towards that direction. An explicit repre-
sentation of the function of structural elements and systems is essential for such reasoning.
Also, if the model of the domain is based largely on first principles knowledge, the knowledge
base will rest on a sound foundation and will be more general and applicable to many dif-
ferent types of structures. This work extends and applies a formal methodology consistent
with such goals to the domain of structural design of multistory commercial steel build-
ings. A “proof-of-concept” implementation of a conceptual design system demonstrates the
utility of the model.

By exploring the use of a FOPC-based representation for developing a medium-sized
structural design application, strengths and limitations of FOPC as a representation language
have become apparent. Despite a few minor concerns, predicate logic appears to be a
suitable medium for representation and reasoning in conceptual structural design systems.

This work has also resulted in formalizing part of the problem-solving knowledge re-
quired for floor framing generation of steel office buildings. Although structural behavior is
largely well-understood and codified in the theory of structures, the issue of formalization
of problem-solving (or strategic) knowledge still needs attention. Partly, this involves for-
malizing the interaction between structural constraints and exogenous constraints. As was
discussed earlier, recognizing the importance of exogenous considerations is very important
for developing practical and useful designs. As the implementation in this work shows, such
considerations can be successfully incorporated in the reasoning process at the conceptual
phase of structural design.

It is important to provide flexibility to the user to control the actions of the design
system. The goal of flexibility has been tealized in several different ways in Galileo. To give
some specific examples, the user can (i) change the default values of design parameters and
prices, (ii) force the system to choose a particular type of concrete or a particular strength
of steel, (iii) select options related to construction, such as shoring and cambering, and
(iv) specify constraints on the products to be used, such as constraints on the depths of
beams and type of shear studs.

Whenever the system has to make a decision amongst alternatives, the selection is based
on a comparison between the respective economies of various alternatives, instead of heuris-
tics like “If the speed of construction is crucial then eliminate concrete from consideration.”
We believe that estimation of cost is the most useful indicator for discriminating between
alternatives at a localized scale (for instance, while choosing between lightweight and nor-

malweight concrete when developing a solution) as well as global scale (for instance, while

CHAPTER 9. CLOSURE

comparing fully developed structural schemes).

If you cannot understand my argument, and declare "It’s Greek to me,” you are quoting Shakespeare; ... if
you have ever refused to budge an inch or suffered from green-eyed jealousy, if you have played fast and loose,
if you fiave been tongue-tied, a tower of strength, Roodwinked or in a pickle, if you have Knitted your brows,
made a virtue of necessity, insisted on fair play, slept not one wink, stood on ceremony, danced attendance
{or your lord and master), laughed yourself into stitches, had short shrift, cold comfort or too much of a good
thing, if you fave seen better days or lived in a fool’s paradise—uwhy, be that as it may, the more fool you, for
it is a foregone conclusion that you are (as good luck would fave it) quoting ShaKespeare; . . . even if you bid
me good riddance and send me packing, if you wish I was dead as a door-nail, if you think I am an eyesore, a
laughing stock, the devil incarnate, a stony-hearted villian, bloody-minded or a blinking idiot, then——by Jove!
O Lord! Tut, tut! for goodness’ sake! what the dickens! but me no buts—it is all one to me, for you are
quoting Shakespeare.

— Bernard Levin

Appendices

98

A

A Propositional and
Predicate Calculus Primer

In this appendix we discuss two logical languages, namely, propositional calculus and pred-
icate calculus, that can be used to represent knowledge in a given domain in a declarative
fashion. Their use is illustrated through applications to structural engineering problems.
Our emphasis in this appendix is less on mathematical rigor than on informally convey-
ing the essence of how logic can be usefully employed for creating knowledge systems in
engineering domains. Thus we do not strive for completeness or mathematical precision;
however, references to appropriate material are provided throughout this appendix for the
inquisitive reader.

A representation language has two components: syntax and semantics. The syntax
establishes the rules of grammar that enable one to formulate legal sentences in the language.
For example, the sentence “updated Paris times word london below problem” is syntactically
unacceptable in the English language since it violates the rules of English grammar. The
semantics of the language, on the other hand, defines the meanings of the expressions in the
language. That is how, for example, we humans understand the essence of spoken words.
Thus, the symbol Paris is normally taken to denote the city that is the capital of France.
In a manner analogous to the English language, both propositional calculus and predicate
calculus have well-defined syntactic and semantic rules.

This appendix is divided into five sections. First, we discuss the syntactical (pertaining
to the organization of symbols) and semantical (pertaining to the meaning of the symbols)
aspects of propositional and predicate calculus in detail. The following section illustrates
a prototypical application of logic for structural analysis. Another application, this time

to standards processing for detailed design, is the subject of the penultimate section. The

99

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 100

final section presents some concluding remarks and suggestions for further reading.

A.1 Propositional Calculus

A.1.1 Syntax

Propositional calculus is a language of abstract statements that consist of propositions and
_connectives. Propositions can either be truth symbols, True and False, or propositional
symbols, such as P, ConstructionMaterialIsSteel, BldgIsInSeismicZone, and R2D2. In
the notational convention adopted here, propositional symbols begin with an uppercase
letter and can consist of alphanumeric characters. The connectives can be and (A), or (V),
not (-), implies (=), or equivalent (=).! Each proposition in itself is a sentence; thus P
and True are both legal sentences in propositional calculus. More complex sentences can

be formed using connectives. The types of sentences that can be formed are:

e
aApf
avp
o= pf
a=p0
where o and B can themselves be simple or complex sentences. Parentheses, (), and
brackets, [], are used to clarify the structure of a sentence when there is a possibility of
ambiguity. Using these rules, it can be seen that the following is a syntactically correct

sentence.

[(=P AQ) = (QV False)] = True

A.1.2 Semantics

Having discussed the syntax of propositional calculus, we move on to study the semantical
issues. Using semantical rules one can determine the truth value of a sentence—that is,
a value of either true or false can be assigned to a sentence based on the truth of its

propositions and the connections among the propositions. The following rules are used for

this purpose.

¢ The sentence True is always true.

1Some authors (for instance, [70]) prefer alternative symbols for connectives, e.g., & instead of A; ~ or
— instead of —; — or D instead of =; and « or & instead of =.

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 101

e The sentence False is always false. (Note the distinction between the truth symbols

True and False and the truth values true and false.)

e A sentence consisting of a single proposition and no connectives is true if the propo-
sition is true, and false if the proposition is false. Thus the sentence P will be true

if and only if the proposition P itself is {rue.
e The sentence —a is true if « is false, and false if « is true.
e The sentence a A B is true if both o and f are true, and false otherwise.
e The sentence a V 3 is false if both a and B aré false, and true otherwise.
e The sentence a = [is false if « is true and [is false, and true otherwise.

e The sentence a = 3 is true if both o and 8 have the same truth value (i.e., they are

either both true or both false), and false otherwise.

Thus, for the case when P is true and Q is false, the sentence
(P A -Q) = False
will evaluate to false since according to the rules:

Q will evaluate to false,

—false will evaluate to irue,

P will evaluate to {rue,

true A true will evaluate to true,
False will evaluate to false, and

true =false will evaluate to false.

Once knowledge is expressed as a set of sentences in propositional calculus, new sentences
can be deduced using rules of inference. Some example rules of inference are given in
Fig. A.1. One of these rules is modus ponens, which, from two sentences of the form o = 3
and o, permits us to deduce 3. This is a commonly employed rule in our daily reasoning
processes.

Besides the rules of inference, one can also make use of the laws of propositional algebra.
These laws are of the form « = /3, meaning that the expressions on both sides of the ‘=’
symbol are equivalent. Thus one expression can be freely substituted in place of the other
and new sentences can be formulated. A partial list of such laws is given in Fig. A.2. (A

fuller list can be found in Ref. [4].)

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 102

1. Modus Ponens: From two sentences of
the form
a=0

and
o

one can infer the sentence

B

2. Modus Tollens: From two sentences of
the form
a=p

and

-

one can infer the sentence

=1

3. And Introduction: From two sentences
of the form

and

B

one can infer the sentence
aAp

4. Modus Tollens: From a sentence of the

form
aAp

one can infer the two sentences
(4

and

B

Figure A.1: Sample Rules of Inference. New sentences can be deduced from a set of

sentences using rules of inference.

A.1.3 Example

The use of propositional calculus for reasoning is illustrated in this section with a simple,

though contrived, engineering example. We start with the following two axioms.

o If the building has a moment resisting frame and the lateral deflection at the top

under the lateral loads is too large, then increase the stiffness of columns or increase

the stiffness of beams.

e If the flexural stiffness of columns is much larger than the flexural stiffness of beams,

then do not increase the stiffness of columns.

Also, let us assume that for a given building the following is true.

e The building has a moment resisting frame.

e The lateral deflection at the top under the lateral loads is too large.

e The flexural stiffness of columns is much larger than the flexural stiffness of beams.

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 103

1. Commutativity Laws 5. Annihilator Laws
aVB=pVa True V a = True
aANf=BAa False A o = False

2. Distributivity Laws 6. Identity Elements

aA(BVY)=(aAB)V(aAYy) aVFalse=a
aV(BAY)=(aVB)A(aV7) a A True = o
3. Idempotence Laws 7. DeMorgan’s Laws
aVo=a =(a A B) = (ma)V (=8)
alNo =« —(aV B) = (~a) A (-F)

4. Complementation Laws 8. Cancellation of Negations

aV o = True : =(-a) =«

a A na = False

Figure A.2: Sample Laws of Propositional Algebra. By substituting expressions that
are equivalent to other expressions, new sentences can be formulated from given sentences.?

From the preceding statements, the reader can derive that the recourse for reducing the
lateral deflection in the given case is to increase the stiffness of the beams. We can reach
the same conclusion through syntactic manipulations with propositional calculus. In the
reasoning process we make use of the rules of inference and the laws of propositional algebra.

The following symbols are used for the propositions in the proof.
M The building has a moment resisting frame.
L The lateral deflection at the top under the lateral loads is too 1a1‘ge.

F The flexural stiffness of columns is much larger than the flexural stiffness of beams.

B Increase the stiffness of the beams.

2The distinction between the rules of inference and the laws of algebra of propositions is rather arbitrary.
For instance, the cancellation of negations law can be formulated as the double negation rule which permits
one to deduce o from a sentence of the form —(=a) and vice versa. Similar statements can be made about
DeMorgan’s and other laws.

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 104

C Increase the stiffness of the columns.

Using these symbols, the given statements can be expressed as follows.

1. MAL)= (BVC)

2. F= =C
3. M
4. L
5. F

From these statements, the following can be deduced with the aid of the rules of inference

and the laws of propositional algebra (mentioned within parentheses for each statement).

6. MAL (And Introduction: 3, 4)
7. BvVC (Modus Ponens: 1, 6)
8. -C (Modus Ponens: 2, 5)
9. (BVC)A(=C) (And Introduction: 7, 8)
10. (BA-C)V (CA—C) (Distributivity: 9)
11. (BA=C)V False (Complementation: 10)
12. BA=C (Identity: 11)
13. B (And Elimination: 12)

Thus, the desired conclusion (increase the stiffness of the beams) has been reached. The
proof may seem gumbersome, but we have employed only the most primitive of algebraic
manipulations. Higher level manipulations can also be formulated and shown to be valid
using the basic laws. Thus, for instance, we could have used the Disjunctive Argument rule,
a rule which allows us to infer o from « V 8 and —f3. Using this particular rule, the result

B is obtained in a single step from statements 7 and 8.

A.2 Predicate Calculus

Although propositional calculus is a useful language for expressing simple concepts, it is
often inadequate for expressing many facts about the real world. The language is too coarse
and primitive to express the concept of an object, properties of an object, or relationships
among several objects[61]. These shortcomings arise because the propositions in proposi-
tional calculus are a unit as a whole and not decomposable entities. Thus, if the symbol
P1 represents the proposition “Frame A has 5 bays” and P2 represents “Frame B has 3

bays,” one cannot infer that Frame A has more bays than Frame B. In predicate calculus,

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 105

the number of bays can be expressed as an attribute of each of the objects Frame A and
Frame B and it is possible to reason about such an attribute. Predicate calculus enhances
the expressive power of propositional calculus by introducing additional concepts such as

predicates, functions, variables, and quantifiers.

A.2.1 Syntax

There is a greater variety of symbols available in predicate calculus as compared to propo-
sitional calculus. The basic truth symbols remain the same: True and False. In addition,
there are constant symbols or constants (e.g., A5, Red, 123, FrameB, Delaware), variable
symbols or variables (e.g., x, pt, y1), function symbols or functions (e.g., Sin, Distance,
Age, Log), and predicate symbols or relations (e.g., Even, Taller, Neighbor). Constants,
variables, and functions correspond well with the similar notions in algebra. As the name
implies, constants denote those elements whose value never changes. Variables, on the other
hand, denote the elements that can assume different values at different instances. Func-
tion symbols denote operators or functions that operate on a fixed number of arguments
and evaluate to a legal value. Predicate symbols denote relations that hold among a fixed
number of arguments.

We adopt the following notational convention: A constant symbol is a sequence of al-
phanumeric characters in which the first character is either numeric or uppercase alphabetic.
A variable symbol is a sequence of alphanumeric characters in which the first character is
lowercase alphabetic. Function symbols can either be a sequence of alphanumeric charac-
ters in which the first character is uppercase alphabetic, or one of the following functional
operators: +, —, %, and /. Predicate symbols can either be a sequence of alphanumeric
characters in which the first character is uppercase alphabetic, or one of the following math-
ematical operators: =, <, >, <, and >. In predicate calculus, two punctuation marks are
also employed: (i) commas to separate the multiple arguments of a function or a predicate, °
and (ii) parentheses to enclose such arguments.

Functions and relations have associated arities (the number of arguments the function or
the relation requires) which are always positive integers. The arguments that functions and
relations take are called terms. A term can be either a constant, a variable, or a functional
expression, where a functional expression consists of a function symbol of arity n followed
by a list of n terms enclosed in parentheses and separated by commas. The following are

legal functional expressions:

Sqrt(Fy)

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 106

/(640,5qrt(Fy))?
MomentOfInertia(section, YY)
~(Note that the functional expressions themselves can serve as arguments to other functions.)
These functional expressions and the constants and variables such as A5, 123, and y1 are

all legal examples of terms.

From these terms, sentences can be formed. A sentence can be of one of three types:
atomic sentence, logical sentence, or quantified sentence. An atomic sentence can either be
a truth symbol or a predicate symbol of arity n followed by a list of n terms enclosed in
parentheses and separated by commas. Examples of atomic sentences are:

NumberOfBays(FrameA,5)

> (x,0)*

A logical sentence is formed by combining sentences using logical connectives such as and
(A), or (V), not (=), implies (=), and equivalent (=). The types of sentences that can be
formed with these connectives are the same as those for propositional calculus. An example
of a logical sentence is:

NumberOfBays(FrameA, 5) A NumberO0fBays(FrameB, 3)

A quantified sentence can either be a universally quantified or an existentially quantified
sentence. A universally quantified sentence consists of the universal quantifier, for all (V),
a variable, followed by a sentence. For instance, the sentence

Vy Partition(y) => PotentialColLine(y)
is a universally quantified sentence. The intended meaning of the sentence is that every
partition is a potential column line. An existentially quantified sentence consists of the
existential quantifier, for some® (3), a variable, followed by a sentence. For instance, the
sentence

Jx Eccentricity(Load,x) A =(x = 0)
is an existentially quantified sentence. The intended meaning of the sentence is that there

is a load with non-zero eccentricity.
For clarity, parentheses and brackets are used to specify the scope of quantifiers. A

sentence that uses both universal and existential quantifiers is the following.

3For readability purposes, the infix notation is sometimes preferred in the case of common mathematical
functions; for instance, (x/y), or x/y, may be used in place of /(x,y).

*For readability purposes, the infix notation is sometimes preferred in the case of common mathematical
relations; for instance, (x > y), or x > y, may be used in place of > (x,y).

5Also termed as there ezists.

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 107

Vline [PotentialColLine(line)A
—-JotherLine (ColLine(otherLine) A =(line = otherLine)A

Distance(otherLine,line) < MinDistance)] => ColLine(line)

The intended meaning of the sentence is that all potential column lines which are no closer
than a certain minimum distance to any other column line, become column lines themselves.

A language in which functions and predicates are constants is called a first-order lan-
guage. A language in which functions and predicates also vary is called second-order. In a
second-order language, functions and relations can serve as quantifying variables to quanti-

fiers. In this appendix, however, we will restrict ourselves to first-order predicate calculus.

A.2.2 Semantics

Now that the formulation of sentences in predicate calculus has been discussed, let us
examine how their truth values can be evaluated. For this purpose, introduction of some
additional notions—such as interpretation and variable assignment—is necessary. We first
examine the truth or falsehood of an atomic sentence. Later in this section we discuss
evaluation of truth values of logical and quantified sentences.

The motivation for formulating sentences in logic is to conceptualize a world about which
one is trying to reason. In the process, certain symbols are used to represent the elements
of the world, since it is often not possible to substitute the actual elements—which can be
physical and conceptual entities—in the text. Thus, in the example in Section A.1.3, we
expressed certain conceptual ideas about the world in terms of single letter propositional
symbols. An interpretation maps the elements of the language to the elements of the world
that one is trying to conceptualize. Interpretation is similar to dereferencing the symbols in
a programming language—bringing into consideration the object the symbol denotes rather
than the symbol itself. Indeed, the idea of interpretation is so natural to us humans that
we do it frequently without even being aware of it. Thus, when we say that an I-beam has
three parts (two flanges and one web), we mean that the members of the category of objects
represented by the word I-beam each have three parts, rather than that the word I-beam
has three parts.

With reference to predicate calculus, an interpretation over a domain (a set of objects,
functions, and relations) provides a mapping for the constant symbols, the function symbols,
and the predicate symbols. To each constant symbol in the language, the interpretation
assigns an object in the domain. For each function symbol of arity n, the interpretation

assigns an n-ary function defined over the objects in the domain. A functional expression

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 108

evaluates to a value which itself is an object of the domain. For instance, the function
symbol Abs of arity 1 can be assigned the unary mathematical function ‘absolute’ over the
set of real numbers. The value of Abs(x) will then always be a nonnegative real number
for any value of x. For each predicate symbol of arity n, the interpretation assigns an n-ary
relation defined over the objects in the domain such that the value of an atomic sentence
composed of the relation and n terms always evaluates to either true or false depending
on whether the relation holds for the specified objects or not. For instance, the predicate
symbol Gtz of arity 1 can be assigned, over the set of real numbers, a relation ‘greater-than-
zero’ which is true for all positive numbers and false for nonpositive numbers. The value of
Gtz (x) will always evaluate to either true or false for all values of x.

Analogous to the concept of interpretation is the concept of variable assignment. A vari-
able assignment maps the free variables in the language to the elements of the domain. Free
variables in a sentence are those variables that are not within the scope of any quantifier.

When we write sentences, we have a certain intended interpretation in mind, that is,
we associate the elements of the language with specific elements in the world being con-
ceptualized. For instance, in the intended interpretation in the example of Section A.1.3,
the symbol B represented the concept that the stiffness of the beams should be increased.
But it is equally acceptable to assign a totally different interpretation (as well as variable
assignment) over an entirely different domain to the same set of sentences. To illustrate,
let us consider the sentence

Vy P(y) = Q(F(y),2)
under two different interpretations. The sentence has two predicate symbols (P and Q),

one function symbol (F), and one free variable (z). Let us first consider the following

A interpretation and variable assignment over the domain of steel sections and real numbers.

P is ‘rolled-section’ relation,
Q is ‘greater-than’ relation,
F is ‘cross-sectional-area’ function, and
z is ‘0’.
The given sentence intuitively transforms to:
the cross-sectional area of all rolled-sections is greater than zero.
This statement turns out to be true. However, consider another interpretation and variable

assignment, this time over the domain of beams.

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 109

P is ‘simply-supported-beam’ relation,

Q is ‘is-a’ relation,

F is ‘left-support’ function, and

z is ‘roller’.

The intuitive meaning of the sentence becomes:

the left support of all simply supported beams is a roller
which certainly is false.

In general, the truth of a sentence depends on the particular interpretation and the
particular variable assignment being employed. A sentence may be true under some inter-
pretation and variable assignment, and false under a different interpretation and variable
assignment. Normally, symbols for predicates and functions are so chosen that they cor-
respond well with what they represent in the intended interpretation. (We rely on such

practice throughout the appendix. Our prime motive, however, is brevity—instead of stat-

ing every time “consider the interpretation ... over the domain ... where predicate and
function symbols ... and ... represent ... and ... respectively, and consider the variable as-
signment ...,” we instead appeal to intuition to convey the meaning of symbols involved.)

However, as the previous example illustrates, it is important to distinguish between the
symbols and the referents.

The preceding paragraphs define the semantics of atomic sentences. The truth values of
logical sentences can be determined by following the rules for logical connectives presented
earlier in Section A.1.2. The truth values of quantified sentences can be ascertained as
follows. A universally quantified sentence Vu « is true under a given interpretation if and
only if the sentence « is true for all variable assignments of p. An existentially quantified
sentence du « is true if and only if there exists a variable assignment for p for which the
sentence « is true. In essence, the universal quantifier enables us to express some property
which is true of all the objects in the domain while the existential quantifier enables us to
express some property of an individual object without specifying the object. For example,
consider the sentence

Vx TrussMember(x) =- BendingMoment(x, O)

With this sentence we have expressed that the bending moment in all the truss members is
always zero, without enumerating any of the truss members. Similarly, we used existential
quantifier earlier to express that a load has certain eccentricity without specifying the

eccentricity.

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 110

A sentence is termed satisfiable if and only if there exists an interpretation and variable
assignment for which the sentence is true. Otherwise, the sentence is unsatisfiable (or
contradictory). If a sentence is satisfied by every interpretation and variable assignment,
it is termed as a valid sentence. For example, the propositional sentence PV =P is a valid
sentence (it will always evaluate to true irrespective of the truth value of P). In a manner
analogous to individual sentences, these definitions can be extended to sets of sentences.
In particular, a set of sentences is satisfiable or consistent if and only if all the sentences
in the set are true for some interpretation and variable assignment. Otherwise, the set is

unsatisfiable or inconsistent.

A.2.3 Inference

The rules of inference listed in Fig. A.1 are also applicable to predicate calculus. In addition,
there are some rules applicable to predicate calculus alone. One such rule is the universal
instantiation rule, which is quite intuitive. According to this rule, from a universally quan-
tified sentence one can infer any other sentence that has been obtained by replacing the

universally quantified variable with a suitable term. For example, from
Vx TrussMember(x) = BendingMoment(x,0)
the following (and many other such sentences) can be inferred.

TrussMember(AB) => BendingMoment(4B, 0)
TrussMember(TopChord(Truss1)) = BendingMoment(TopChord(Truss1),0)

The term used for replacing the universally quantified variable can be a constant, a func-
tional expression, or a variable. However, if the.variable is a free variable or the functional
expression contains free variables, it has to be ensured that the names of such free variables
do not match with the names of other variables already present in the sentence.

- The existential instantiation rule is similar to the universal instantiation rule and is
applicable to existentially quantified sentences. The restrictions on the terms that can be
used for replacement are, however, quite different.

Another rule of inference is resolution. To understand resolution, it is necessary to first
understand two other concepts: clausal form and unification. A detailed description of
clausal form and conversion of ordinary sentences to clausal form can be found in Ref. [26].
For our purposes, it suffices to say that any sentence formed by following the rules of syntax
for predicate calculus described earlier can be equivalently represented in a simpler form
called clausal form which consists of clauses. A clause is a set of literals (atomic sentences

or their negations) that represents the disjunction of such literals. For example, the clause

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 111

{~TrussMember(x), BendingMoment(x,0)}
is equivalent to the sentence

~TrussMember(x) V BendingMoment(x,0)

Unification in some sense is like pattern matching. We say that two expressions can be
unified if they can be made identical by replacing some or all of their variables with other

terms. For instance, the two expressions

BeamSupport(Beaml,Left, supportingBeam) and

BeamSupport(someBeam,Left,Beam5)

can be unified by replacing supportingBeam by Beam5 in the first expression and someBeam
by Beaml in the second. Such replacements, or substitutions, for variables (written, for
example, as [supportingBeam « Beam5, someBeam « Beam1]) that unify two expressions are
called unifiers. There may be more than one unifier for two expressions that are unifiable.
In such a case, a most general unifier (mgu) is one from which other unifiers can be obtained
after appropriate substitutions.

After this introductory background, we can now proceed to discuss the resolution
principle.f The resolution principle can be applied to any two clauses, © and £, if one
clause contains a positive literal (an unnegated atomic sentence) «, whereas the other con-
tains a negative literal (a negated atomic sentence) =, such that « and 3 can be unified by
a most general unifier ». If these conditions are met, then from the two clauses © and ,
we can infer another clause which is obtained by applying the substitution v to the union

of © and € minus @ and -f3. Mathematically, this can be written as
From © (a € 0O)
and Q (-8 €Q)
infer [(@—{a}h)U(Q—-{-B})] —v wherea —v=-0«v
(The symbol ‘—’ represents the substitution operator.)

As an illustration of application of resolution, consider the following two clauses.

{~TrussMember(x), BendingMoment(x,0)}
{TrussMember (TopChord(Truss1))}
The mgu [x—TopChord(Trussi)] will unify the two literals TrussMember(x) and Truss-

Member (TopChord(Truss1)). Thus, these two clauses will resolve to produce

5The definition here does not include the notion of factors. For a more general definition see Ref. [26].

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 112

{BendingMoment (TopChord(Truss1),0)}

The resolution principle is quite powerful. Logic programming languages exploit the
generality and the power of resolution to deduce facts and, in the process, instantiate
variables (using the coupled notion of unification). In many cases, unifiers are of prime
importance as one may be interested in the values of variables that will satisfy certain
conditions. In other cases, one may be interested in finding out if a statement logically
follows from a consistent set of statements. The procedure for these latter cases is similar
to the method of contradiction employed for proving mathematical theorems. The statement
to be proved is first negated and is added to the existing fact base of clauses. If the empty
clause (equivalent to a false statement), {}, can then be deduced from this new fact base
using resolution, it will mean that the set of sentences has become inconsistent because of
the addition of the negated statement—implying that the original statement does indeed
follow from the original fact base. This process is called resolution refutation.

How can one be sure that the conclusions derived from a set of sentences using a par-
ticular rule of inference will indeed be correct (or will logically be implied by the set of
sentences)? How can one be sure that all the conclusions that logically follow from a given
set of sentences can be derived using a particular rule of inference? In logicians’ parlance,
these properties of inference rules are known as soundness and completeness, respectively.
All the rules of inference given in this appendix are sound but none is complete. Resolu-
tion, though, has an important property of being refutation complete, i.e., if a given set of

sentences is unsatisfiable, the empty clause can always be deduced using resolution alone.

A.3 Application to Structural Analysis

In this section, an example of structural analysis is described to illustrate the concepts
presented earlier. The declarative approach is contrasted with the procedural approach of
solving a problem. The problem is part of a larger problem discussed by Fenves[18] and
involves determining reactions at the ends of simply-supported beams that comprise an
idealized floor system. The information about the floor geometry and loading is provided
to the program as input. The floor itself is composed of various rectangular areas that are
loaded with uniformly distributed area loads and behave as one-way slabs, transferring their
accumulated loads to two parallel supporting beams (specified by the engineer in the input)
at the edges. The beams lie on a rectangular grid and form a hierarchy, transferring loads

through beams lower in the hierarchy ultimately to the columns. One sample floor layout

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER

$.
b2
b5 b6 b7 b8 b9
& | - “
b3
i &
—

= v

113

Figure A.3: A Sample Floor Layout. Solving for end reactions of a beam requires
that end reactions of all beams supported by the beam under consideration have been

determined.

is shown in Fig. A.3. The problem appears to be trivial, but its solution requires knowledge

about beam hierarchy since the computation of end reactions of a beam can proceed only

if the reactions of all other beams supported by the beam under consideration have been

determined.

To appreciate the difference between the procedural approach and the declarative ap-

“proach, first consider the following abstract procedure (adapted from Ref. [18]) that can be

used to solve the problem.

Convert Area Loads
For each area load Do
locate edge beams under the area from the grid

assign a line load to the supporting beams

Carry Down Loads
For each beam Do
initialize counter to 0

For each beam Do

increase the counters of the left and right supports by 1

Repeat

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 114

" For each beam Do
If counter = 0 Then
place beam designation into the next location of a stack
decrease the counters of the left and right supports by 1

Until all beams are in stack

Solve for End Reactions
While stack is not empty

pop a beam from the top of the stack

compute its end reactions

assign the end reactions as point loads to underlying beams (or columns)
Effectively, the algorithm first explicitly determines the sequence in which the end reactions
for the beams should be determined, and then proceeds to solve for the reactions. However,
in solving problems of this type, a structural engineer does not typically determine such a

sequence beforehand but relies on the following fact:

e If the end reactions of all the beams that a beam under consideration supports have

been computed then the supporting beam can be solved.
Other knowledge that is needed for the solution to this problem follows.

e Each of the two beams acting as supports to an area carries a uniformly distributed
line load (udll) of intensity equal to half of the area’s dimension in the direction

perpendicular to supporting beams times the loading intensity on the area.

e The extent (portion of the span) of loading on the beam resulting from such area
loads coincides with that portion of the beam which corresponds to the edge of the

area.

e For purposes of computing end reactions on a simply supported beam, a udll can be
treated as an equivalent point load acting at the midpoint of the udll and having a -

magnitude equal to intensity times the extent of udll.

In addition, laws of static equilibrium are also needed to determine the end reactions of a
beam.
In contrast to the procedural approach, we will encode these pieces of knowledge as

declarative statements in predicate calculus and reason from them. However, before the

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 115

statements can be formulated in predicate calculus syntax, we must decide on a conceptual-
ization; for instance, we must choose what relations and functions will be used for presenting

the information about the floor geometry and loading. One possibility is the following.

AreaLoad(areaName,loadIntensity)

AreaSupport (areaName,Left,suptgBeamOnLeft)
AreaSupport(arealName,Right,suptgBeamOnRight)
AreaEdges (arealName,xLeft,yLeft,xRight,yRight)
BeamSupport (beamName,Left,leftSupport)
BeamSupport (beamName,Right,rightSupport)
BeamEnds(beamName,xLeft,yLeft,xRight,yRight)
UDLLoad (beamName,from,to,loadIntensity)

PtLoad(beamName,location,magnitude)

The importance of proper conceptualization cannot be overemphasized. The one shown
here is not unique; there are many others. However, with experience, one develops intuition
and judgement as to which ones are natural as well as efficient for reasoning. For the area
support information, for instance, we could have chosen relations like AreaSupportLeft
and AreaSupportRight, eliminating one of the arguments. These relations, however, are
undesirable because they embed the semantics of arguments in the predicate names where
they are not amenable to manipulation.

Using the proposed choice of relations for presenting the floor geometry and loading
information, the items of knowledge presented earlier can be formulated as the following
predicate calculus sentences. Note that there is a direct correspondence between the English

sentences and the predicate calculus sentences.

A beam is solvable if it has not already been solved and there does not exist another unsolved beam
that is supported by this beam.
[~Solved(beam)A
—~Jhigher (BeamSupport(higher,direction,beam) A =Solved(higher))]
=> Solvable(beam) "

If a beam supports an area on which there is certain loading, and the extent and intensity of loading
resulting on the supporting beam have been determined, then the beam can be assigned a udll of
such intensity and extent.

[AreaSupport(area,side,beam) A Areaload(area, load)A
LoadingExtents(area,beam,from,to,leftEdge, rightEdge)A

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 116

(intensity = load * Abs(rightEdge — leftEdge)/2)]
= UDLLoad(beam, from, to, intensity)

If the y coordinates of the two ends of a beam are the same (or, in other words, the beam is parallel
to the x-axis) then the x coordinates of the two edges of the area that are perpendicular to the beam
can be used to determine the extent of the loading.
[BeamEnds(beam,xLeft,y,xRight,y) A AreaEdges(area,x1,y1,x2,y2)]

= LoadingExtents(area,beam,x1,x2,y1,y2)

If the x coordinates of the two ends of a beam are the same (or, in other words, the beam is parallel
to the y-axis) then the y coordinates of the two edges of the area that are perpendicular to the beam
can be used to determine the extent of the loading.
[BeamEnds(beam, x,yLeft,x,yRight) A AreaEdges(area, x1,y1,x2,y2)]

= LoadingExtents(area,beam,y1,y2,x1,x2)

A udll is equivalent to a point load of magnitude equal to intensity times span and location at the
midpoint of the extent of udll.
UDLLoad(beam, from, to, intensity)

= PtLoad(beam, (from + to)/2, intensity % Abs(to — from))

These statements can be translated into any logic programming language in a fairly

straightforward manner. (A Prolog implementation, for instance, is given in Ref. [43].)

A.4 Application to Standards Processing

In the domain of structural design, designed entities need to meet certain established spec-
ifications or standards. Previous research works have emphasized the need for treating
design standards as data for application programs (or in other words, processing declara-
tively represented standards) instead of hard-coding them in the program structure[74,82].
One representation scheme that has been employed previously for this purpose is logic
decision tables (DT’s)[19,23,1]. Table A.1 shows a sample decision table for deciding on
whether a section is compact or partially compact (based on Section 1.5.1.4.1 of AISC
Specifications [5]) for the purpose of determining the allowable stress for bending about the
major axis. (See Ref. [38] for a description of decision tables.) Only I-shaped sections are
considered in the sample DT.

In this section we describe application of predicate calculus to standards processing.

The description is based on Ref. [44].

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER

51 52 53 54
. by 65
Cy: 3, < \/}_7; Y Y N N
. by 95 * *
Cy: 5i; < WA Y* Y* Y Y
Cs: & <0.16 Y N Y N
Yy
. d fa
Cy: £ < %(1 ~3.74%) Y I Y 1
. d o 257
Cs: £ < Jr I Y I Y
Section is Compact X X
Section is Partially Compact X X

Table A.1: A Sample Decision Table

117

A.4.1

Representation of Design Standards

Although decision tables have their foundations in logic, they do not have all the expressive

power of logical languages like first-order predicate calculus. For example, if a rule pre-

scribes a disjunction of actions, it cannot be expressed in a DT format unless the actions

themselves are not simple actions but composite actions. Converting a limited-entry DT

into predicate calculus sentences is a straightforward operation. The conditions and actions

can be replaced by appropriate relations. The upper part (consisting of condition entries)
of the rules is stated as the antecedent (composed of positive literals corresponding to Y in
the rule and negated literals corresponding to N in the rule) and the lower part (consisting

of action entries) as the consequent of an implication. The immaterials (I) can be simply

ignored when converting to predicate calculus format. For instance, the conversion of the

decision table in Table A.1 follows.

St
Sy:
S3:
Sa:

C1AC2AC3AC4 = Compact(section)
C1AC2A-C3AC5 = Compact(section)
~C1AC2AC3AC4 = PartiallyCompact(section)
AC1AC2A-C3AC5 = PartiallyCompact(section)

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 118

In many cases, the condition entries of the rules can be simplified to render them syn-
tactically more natural and more efficient for processing. For instance, the condition entries
for implied Yes and implied No can be completely ignored. In fact, by building and storing
a fact base of implied truth values in advance, it is possible to resolve and eliminate certain
redundant clauses in the converted rules. Hence, with a statement of the form C1 = (2
(which makes explicit the interdependency between the two relations) the statements S

and S can be resolved, yielding:

S51: C1AC3 A C4 = Compact(section)

S4: C1 A-C3AC5 = Compact(section)
Moreover, we can combine the statements that result in the same action to arrive at a more
compact representation. Thus, Table A.1 can be equivalently expressed by the following

two sentences.

S12: CLA[(C3AC4)V (=C3 AC5)] = Compact(section)
S34: ~C1AC2A[(C3AC4)V (=C3 A C5)] = PartiallyCompact(section)

An interesting problem arises when an else rule is present in the decision table. One way
to handle the else rule is the following. Left hand sides of all the other rules is negated and
their conjunction is included as the left hand side of the else rule. An alternative is to take
advantage of the inference mechanism of the particular implementation tool being employed.
For example, for Prolog language, the else rule can be a rule without any antecedent
conditions, placed at the end of the set of rules representing a particular specification. (The
feature of cuts can also be used in the earlier rules to prevent instantiation of the else
rule when other rules are applicable.) In Epikit, one can use the modal operator Provable
to express that the action of else rule should be executed when no other action can be
proved to be applicable. Thus, if Table A.1.included an else rule leading to the action
Noncompact (section), we could have represented it as

—~Provable(Compact(section)) A ~Provable(Partiallycompact(section))

= Noncompact(section)
This has the benefit of improved efficiency but also has the disadvantage of being imple-
mentation dependent. Depending upon the relative importances of clarity and efficiency,

the appropriate method of handling the else rule can be chosen.

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 119

A.4.2 Checking Properties of Design Standards

Design standards must meet the three requisite properties: completeness, uniqueness (ab-
sence of redundancy and contradiction), and correctness [20]. While the first two properties
relate to the syntax of representation, the third one is essentially a semantical issue. Given
here are formal tests for checking completeness, lack of redundancy, and lack of contra-
diction in the predicate calculus representation of design standards. These tests can be
performed once and for all when a predicate calculus formalization of a design standard is
developed. We represent specifications as groups of statements of the form S;: L; = R;,
where L; represents the part to the left of the implication while R; represents the part to
the right of the implication. Each group represents rules for a single specification; e.g., a
group may represent the specification for deciding on compactness of a steel section. The

total number of statements in a group is denoted by n.

1. Completeness: A set of specifications is complete if at least one rule in each specifica-
tion group is applicable for any given combination of logical variables. Completeness

can be verified by proving the validity of the following sentence for each group.
VL
=1

When the else rule is present in the equivalent DT representation for the group, the

specification will always be complete (since at least the else rule will be applicable if

no other rule applies).

2. Lack of Redundancy: A set of specifications is said to be redundant if more than
one rule is applicable in some specification group for a given combination of logical
variables. The lack of redundancy in a set of specifications can be verified by proving

the validity of the following sentence for each group.
imn-—1,j=n

N (=Liv=Ly)

i=1,j=i+1

3. Lack of Contradiction: Contradiction is a special case of redundancy. A set of spec-
ifications is said to be in contradiction if different actions are suggested by multiple
rules (in the same specification group) that are applicable for a given combination of
logical variables. The lack of contradiction in a set of specifications can be verified by

proving the validity of the following sentence for each group.
i=n—1,j=n

A [FLiv =L V(R = R))]

iz, jem=g41

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 120

As an illustration, we shall check the completeness of the criteria regarding compactness
of steel sections; the criteria have been given as statements S12 and S34 p1‘eViously. Thus,

if we can prove the validity of the sentence
[CIA[(C3ANCA)V(=C3ACH]V[-CLAC2A[(C3AC4A)V (-~C3ACH)]]

we will be assured of the completeness of specification regarding compactness of sections.
In order to prove the validity of this sentence, we first negate it, convert it to the clausal
form, é,nd then perform resolution on the resulting clauses to deduce the empty clause
({})- The clausal form of the negated sentences is shown in statements 1-4 that follow.

Statements 5 and 6 are deduced from these using resolution while statement 7 is deduced
from statements 5 and 6.

1. {=~C1,-C3,-C4}

2. {~C1,C3,-C5}

3. {€'1,~C2,-C3,~C4}

4. {C1,~C2,C3,-C5}

5. {~C2,~C3,~C4} (Resolution: 1, 3)
6. {~C2,C3,-C5} (Resolution: 2, 4)
7. {~C2,-C4,-C5} " (Resolution: 5, 6)

Since there are no positive literals for any of C2, C4, and C5, statement 7 can not be
resolved any further. Therefore, it is not possible to deduce the empty clause from this
set of statements. The statement can thus not be proven valid. That is, the specification
regarding the compactness of sections as coded in Table A.1 and rules Si2 and S34 is
incomplete. This process also suggests that simultaneous falsity of conditions C2, C4, and
C'5 can not be accounted for in the given set of rules. Thus, in order to make the specification
complete, additional rule(s) must be introduced that take care of the situations currently
unaccounted for, including when C2, C4, and C5 are false. In this particular example, an
else rule with the resultant action of Noncompact(section) on the right hand side will
obviously suffice. In some other instances, the specification can be made complete by an
~ else rule with the action NotApplicable to signify that the specification is applicable only

for the given cases.

A.4.3 Discussion

As mentioned earlier, decision tables have their basis in logic but lack some of the expres-

sive power which predicate calculus possesses. Any decision table can be converted into a

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 121

limited-entry decision table, which in turn can be converted into predicate calculus format.
One significant advantage of predicate calculus is that, without any extra effort, the same
representation of design standards can be used not only for conformance checking of a given
design but also to deduce the design descriptions themselves. On one hand, the unification
and resolution processes can instantiate the design parameters such that they satisfy the
specifications which are stored as axioms. On the other hand, through truth evaluation by
resolution refutation, one can ascertain the conformance of a given design with the speci-
fications. Rasdorf and Lakmazaheri [73] have illustrated this thorugh application to AISC
allowable stress design specifications pertaining to axially loaded components.

In their work, Garrett and Fenves[23] treated functions as degenerate decision tables
that have no conditions, only one possible action, and only one rule that specifies the
single action. There is a direct correspondence between predicate calculus functions and
the functions in mathematics as commonly used in standards, and therefore the need for an
artificial construct to handle functions can be avoided. Just as a standard can be viewed as
a network of decision tables, it can also be viewed as a network of logical axioms. It has been
claimed that of all the modeling tools (DT’s, information network, and organization system)
employed for standards, decision tables provide the most complete and precise description
of provisions[72]. Predicate calculus maintains all the benefits of the DT representation

and provides some additional benefits as discussed earlier.

A.5 Closing Remarks

In this appendix we have deliberately emphasized informality rather than strict exactness
in our treatment of logic. The reader may find minor variations in the description of logicin
“some other works. For example, many authors exclude the concept of truth values (true and
false) when describing formal logic systems and proof techniques. Despite the adequacy
of such an approach, we have chosen to include the notion of truth values to impart an
intuitive flavor to the syntactic manipulations.

We should also note that propositional and predicate calculi are not the only logical
languages. The governing characteristic of a logical language is that it must possess for-
mal semantics; i.e., one should be able to evaluate the truth or falsehood of statements
in the language for a given interpretation of the symbols. Decision tables, semantic nets,
even frames and rules can also be regarded as logical languages. All these specialized lan-

guages, however, provide only a subset of the expressive power and inferencing capabilities

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 122

of predicate calculus, and can be defined in terms of predicate calculus.

A.5.1 Further Reading

In addition to the rules of inference and laws of propositional algebra described in Sec-
tion A.1.2, there are several other techniques for proving validity (and invalidity) of propo-
sitional calculus sentences. These include truth tables, semantic trees, and falsification.
A good description of these techniques can be found in Ref. [61]. Refs. [70,71] are other
excellent book-length treatments of the two languages discussed in this appendix. We have
described clausal resolution in this appendix. Description of non-clausal resolution can be
found in Ref. [62].

Ref. [4] provides a good introduction to the field of logic programming and knowledge
engineering. For a wider perspective on applications of logic to the field of Artificial In-
telligence, the reader is encouraged to refer to Ref. [26]. Proceedings of the International
Conferences on Logic Programming[52,48] are a good source of the latest developments in
the area of logic programming.

In this appendix, we confined ourselves to describing monotonic reasoning. In monotonic
reasoning, sound rules of inference are used that lead to conclusions that will be true under
all circumstances. As it turns out, this is not enough to model common-sense reasoning.
In nonmonotonic reasoning one makes certain provisional inferences using rules of inference
that are not sound. These provisional inferences are not guaranteed to be correct and
may have to be later retracted in the presence of additional evidence. This may lead to a
nonmonotonic growth of the fact base. The field of nonmonotonic reasoning has attracted
significant attention recently and there is a growing body of work in this area. There are
several approaches being pursued, including modal operators [65,66], default theories [75],
and circumscription [63,55].

The deductive power offered by logic comes at a price—it is computationally expensive.
To overcome the drawback of slow execution and consequent long run-times with increasing
size of the fact base, semantic attachment, wherein appropriate computational structures
are used in place of rules of inference, can be employed. The idea of semantic attachment was
first proposed by Green [30] and later expounded by Weyhrauch [87]. The primary concept
behind semantic attachment is the following. Using sound rules of inference ensures that any
sentence derived from a given fact base will be consistent for all the possible interpretations
for which the database is consistent. However, we may be equally well off with conclusions

of less strength for most of our purposes, i.e., even when the derived sentence does not hold

APPENDIX A. A PROPOSITIONAL AND PREDICATE CALCULUS PRIMER 123

true for all the possible interpretations as long as it holds true in the intended interpretation.
Engineering systems of significant size will have to rely on semantic attachment extensively.

Some researchers have expressed reservations about the adequacy of logic. In particular,
they point to the inability of logic to model other types of reasoning besides deduction, and
inability to provide guidance regarding which deductions to perform out of the possible can-
didates. Nonmonotonic reasoning and meta-level architecture [24] are some of the proposed
solutions in response to such reservations. One of the more extensive discussions about the
suitability of logic appears in a special volume of Computational Intelligence which includes
a critique of logic by McDermott [64] and commentary by leading researchers on both sides

of the issue.

Through naming comes Knowing; we grasp an ofject mentally, by giving it a name—Hhension, prehension,
apprefiension. And thus through language create a whole world, corresponding to the other world out there.
Or we trust that it corresponds. Or perhaps, (iKe a German poet, we cease to care, becoming more concerned
with the naming than with the things named: the former becomes more real than the latter. And so in the
end the world is lost again. No, the world remains—rthose unique, particular, incorrigibly individual junipers
and sandstone monoliths—and it is we who are lost. Again. Round and round, through the endless [abyrinth
of thought—the maze.
— Edward Abbey, Desert Solitaire (1971)

B

Knowledge Interchange Format

Because symbols like V, 3, =, =, etc., are not available on a typical keyboard, and for
other reasons of implementation, the syntax of logic programming languages is usually not
identical to the one described in Section A.2.1. The syntax may differ in such details as
placement of commas ar}d parentheses, case insensitivity, etc. KIF, or Knowledge Inter-
change Format, is no exception; the correspondence between KIF’s syntax and the one in
Section A.2.1, however, is still instructive. This appendix briefly describes the syntax of
KIF with suitable illustrative examples from FFG’s knowledge base. The description is not
intended to be comprehensive—indeed the description is minimally sufficient just to give a
flavor of KIF as well as FFG’s knowledge base. (All examples in this appendix are taken
from FFG’s knowledge base.) For a complete definition of KIF, the reader should consult
Ref. [27].

Since KIF is meant to be a knowledge representation formalism for intercommunicating
Lisp programs, and since Lisp does not distinguish between uppercase and lowercase sym-
bols, the convention of using symbols starting with an uppercase letter for constants and
those with a lowercase letter for variables is not applicable in KIF. Instead, variables in KIF
are distinguished by placing a $ sign before them.! Thus, $span and $conc-depth are both
variables in KIF. The connectives and quantifiers are sentence operators in KIF. Hence,
there are operators like not, and, =>, forall, and exists. In addition to the sentence
operators, there is one more type of operators, namely term operators. Examples of term
operators are if and quote.

Any symbol that is neither a variable nor an operator is a constant in Kir. Both A36

1Symbols whose first character is a $ sign are called individual variables in KIF. KIF also has what are
known as sequence variables—they are denoted by symbols that begin with an @ sign.

124

APPENDIX B. KNOWLEDGE INTERCHANGE FORMAT 125

and 8 are examples of constants. There are certain basic (or predefined) constants in KIF.

These include:
e function constants such as *, sin, ceiling, and min;
e relation constants such as >=, <-, and integerp; and
e logical constants such as true and false.

With this vocabulary, one can formulate terms in a manner analogous to Section A.2.1.
However, the syntax for functional terms differs in one respect: instead of the function name |
followed by list of arguments (separated by commas) in parentheses, functional terms in
KIF are lists whose first member is a function constant and other members are arguments
separated by spaces. Thus, if conc-volume is a function of the deck depth and concrete
depth, we can formulate an example term as (conc-volume $deck-depth $conc-depth).
Some other sample terms are: A50, $direction, and (phi bending composite). Kir
also provides an additional type of terms known as special terms. The following simple

conditional, where ¢ is a sentence and 7, and 73 are terms is an example.
(if ¢ 1 T2)

(The value of the above conditional is the value of 7 if ¢ is true; otherwise it is the value
of 13.)

Formulation of sentences in KIF is also similar to that described in Section A.2.1 except
for differences in a few details. For one, the relation’s name goes within the parenthe-
ses along with the arguments (which are separated by spaces instead of commas). Thus,
(primary-behavior column axial-compression) is a syntactically acceptable KIF sen-
tence. (Here primary-behavior is a relation that holds between two object constants,
namely, column and axial-compression.) To illustrate sentence formulation with another
example, recall that the yield strength, f,, of A36 steel is 36 ksi. Ordinarily we write this

as:
fy = 36 ksi.

To be more precise, fy is a function of the grade of steel, and
fy(A36) = 36 ksi.
We can convert this into KIF syntax as

(= (fy A36) 36)

APPENDIX B. KNOWLEDGE INTERCHANGE FORMAT 126

Note that the representation is completely declarative and the statements do not have any
control information embedded in them.

Similar to the = relation, KIF has another basic relation <- which is used for writing
term simplification rules. Thus, a rule of the form (<- 7 72) means that instances of the
term 71 can be replaced by the term 75: This can be quite useful as the following simple
rules show. The first one declaratively states that a quantity can be converted from feet to
inches by multiplying it by 12. The next rule states that area of a circle of diameter $dia
is 7 $dia%/4. (pi is a basic constant in KIF.) The last rule states that perpendicular of XX
is YY.

(<= (ft-to-in $qty) (* $qty 12))

(<- (A $dia) (/ (x pi $dia $dia) 4))

(<~ (perpendicular XX) YY)

Proceeding to more complex examples, consider the case of estimating cost of éambering
of linear horizontal elements (lhe’s), such as beams and girders, in a floor. We can express
the relationship for cost as shown here. v
. Unit-Price(Cambering) * Total-Pieces(lhe), if lhe’s cambered;
Cost(Cambering) = {O

) otherwise.

This relationship can be expressed in KIF syntax as follows.

(<~ (cost cambering)
(if (known (is (lhe-cambering) cambered))
(*# (unit-price cambering) (total-pieces lhe))

0))

We conclude this appendix by giving two axioms from FFG’s knowledge base that are

used for reasoning based on function.

(=> (building-occupancy commercial)

(load vertical-distributed))

(=> (need-to-perform $function) ; If a function has to be performed,
(function $e $function) ; and there exists an element which performs that fn,
(not (provable (unusable $e))) ; and it can’t be proved that the element is unusable,
(usable-material $e $matl) ; and there is a usable material for the problem,
(possible-material $e $matl) ; from which it is possible to construct the element,

(use $e)) ; then use the element.

APPENDIX B. KNOWLEDGE INTERCHANGE FORMAT 127

But surpassing all stupendous inventions, what sublimity of mind was his who dreamed of finding means to
communicate fis deepest thoughits to any other person, though distant by mighty intervals of place and time!
Of talking with those who are in India; of speaking to those who are not yet born and will not be born for
a thousand or ten thousand years; and with what facility, by the different arrangements of twenty characters
upon a page!
‘— Gafileo Galelei, Dialogue Concerning the Two Chief World Systems (translated by
Stillman Drake) (1632) '

A given representation language can be implemented in all manner of ways: predicate calculus assertions may be

implemented as fists, as character sequences, as trees, as networks, as patterns in associative memory, etc.: all

giving different computational properties but all encoding the same representational language. . . . Similarly,

any one of these computational techniques can be used to implement many essentially different representational

languages. Thus, circuit diagrams, perspective fine drawings, and predicate calculus assertions, three entirely
" distinct formal languages, can be all implemented in terms of list structures. Were it not so, every application

of computers would require the development of a new specialised programming language.

— 2. J. Hayes, in Frame Conceptions and Text Understanding (1980)

C
System Details

This appendix presents low-level details of Galileo not described elsewhere in this disserta-
tion. These include particulars of data organization, input format, interface, and reasoning.

The details and the rationale behind them are the subject of discussion for the remainder

of this appendix.

C.1 Data Organization

Galileo needs to keep track of two types of data: (i) problem-independent data and (ii) prob-
lem-dependent data. Examples of the former include information about properties of non-
composite and composite steel sections, whereas examples of the latter include information
about the topology and design of members of generated solutions. The data is organized in
terms of predefined predicates that have fixed associated arities. Conceptually, this amounts
to what can be termed as a database schema. Details of the schema, for both problem-
independent as well as problem-dependent data, follow in subsequent subsections. (The

reader is referred to Appendix B for a description of the KIF syntax.)

C.1.1 Problem-Independent Data

For load and resistance factor design, properties such as resistance capacities and moment
of inertia of different sections are needed. In the case of composite sections, the properties
depend upon the location of the plastic neutral axis (PNA) and thickness of the concrete
slab, as measured by two parameters Y1 and Y2 defined in Part 4 of the LRFD manual.
Accordingly, Galileo stores data about noncomposite and composite sections in the following

format.

128

APPENDIX C. SYSTEM DETAILS 129

(noncomposite <shape> <depth> <wt> <A36-mom-capacity> <A50-mom-capacity>

<Ixx>)

(composite-A36 <shape> <depth> <wt> <Y1> <sigmaQn> A36 moment capacity for
<Y2 = 4.0> <y2 = 4.25> <Y2 = 4,5> <Y2 = 5.0> <Y2 = 5.25>
<Y2 = 5.5> <Y2 = 6.0> <Y2 = 6.5> <Y2 = 7.0>)

(composite-A50 <shape> <depth> <wt> <Y1> <sigmaQn> A50 moment capacity for

4.25> <Y2 = 4.5> <Y2 = 5.0> <Y¥2 = 5.25>

6.0> <Y2 = 6.5> <Y2 = 7.0>)

<Y2 = 4.0> <Y2
<Y2 = 5.5> «Y¥2

(composite-Ilb <shape> <depth> <wt> <Y1> Lower bound moment of inertia for
<Y2 = 4.0> <Y2 4.25> <Y2 = 4.5> <Y2 = 5.0> <Y2 = 5.25>
<Y2 = 5.5> <Y2 6.0> <Y2 = 6.5> <Y2 = 7.0>)

]

where

sigmaQn is the horizontal shear force at the interface between the steel section and the
concrete slab,
Y1 is the distance from PNA to beam top flange, and

Y2 is the distance from concrete flange force to beam top flange.

(Please see Part 4 of the LRFD manual for more details.) Additionally, the shear and axial

capacities of noncomposite sections are stored in the form shown here.

(shear-capacity <shape> <depth> <wt> <A36-shear-capacity>
<A50-shear-capacity>)
(axial-capacity <shape> <depth> <wt> <eff-length> <A36-axial-capacity>

<A50-axial-capacity>)

Given the section properties and steel grade, shear capacity of a section can be determined.
Similarly, axial capacity of a given section of a particular steel grade is a function of its
effective length. Tables of these capacities can be prepared beforehand as a function of rele-
vant variables (they can also be extracted from the LRFD manual) and stored electronically
to save run time during actual design. In the case of Galileo, shear and axial capacities are
used for design of beams and columns, respectively, through comparison with the pertinent

demand.

Data about the metal decks is represented in the following format.

(unshored-clear-span <deck-depth> <gauge> <conc-type> <conc-depth>

)

APPENDIX C. SYSTEM DETAILS 130

(= (conc-volume <deck-depth> <conc-depth>) <volume>)

Properties of the decks are typically manufacturer-dependent; the ones in Galileo correspond
to the decks produced by Vulcraft. The representation, however, would be applicable to
decks produced by any manufacturer. In order to design using decks produced by some
other manufacturer, one only has to replace the current deck properties database in Galileo

with one corresponding to the chosen manufacturer.

C.1.2 Problem-Dependent Data

Framing plans typically contain a few different kinds of elements that are repeated several
times (e.g., see Fig. 7.1). Thus, there may be several instances of a particular type of beam
in a plan, all identical in every respect except location. Data which is the same for all
such beams (or, in other words, is independent of the location) is stored once, defining a
designation. In addition, a fact corresponding to each instance of the designation is also
stored. This is illustrated through examples in the passages that follow. '
Beams, girders, etc., in the floor are collectively referred to as linear horizontal elements
(or 1he’s for short) in Galileo. This is to facilitate the same code to perform operations like
sizing on all one-dimensional bending elements irrespective of their kind.” Accordingly, the

representation of lhe’s in Galileo is as follows.
(lhe-desig <type> <id> <where> <spcgl> <spcg2>)

In this template, <type> can be one of (i) beam, (ii) girder, (iii) core-1lhe, and (iv) redun-
dant-lhe (see Chapter 7 for examples of each type). Although core linear horizontal el-
ements can also be classified as beams and girders, they are assigned a separate category
to underscore the tentative nature of their design. This is because loads due to the service
core are not considered in the design of members for gravity loading. The <id> argument is
a name tag to label the element. Although Galileo assigns unique tags to all the elements,
the representation and reasoning in the system is not dependent on this property. The
field <where> can take either exterior or interior as a value. (Design considerations
are different for the two; e.g., cladding loads are applicable only to exterior lhe’s.) Finally,
 is the span of the lhe whereas <spcg1> and <spcg2> are the respective spacings on
either side.

Individual instances of the lhe’s are represented as follows.

(beam <id> <direction> <level> <start-coord> <end-coord>)

APPENDIX C. SYSTEM DETAILS 131

(girder <id> <direction> <level> <start-coord> <end-coord>)
(core-lhe <id> <direction> <level> <start-coord> <end-coord>)

(redundant-lhe <id> <direction> <level> <start-coord> <end-coord>)

Since ‘Galileo considers only orthogonal lhe’s, <dir> can be either XX or YY. If the direc-
tion is XX, three values—namely, the z coordinates of the start and end points and the y
coordinate (i.e., the <level>) of either point—are sufficient to describe the location of the
lhe. Alternatively, if the direction is YY, y coordinates of the start and end points will be
relevant and the <level> will correspond to z coordinate.

The organization of data about columns is similar and self-explanatory.

(column-desig <id> <where>)

(column <id> <x> <y>)
The design information of the members is represented in the following manner.

(lhe-section <loading> <id> <story> <shape> <depth> <wt>)
(column-section <loading> <id> <starting-story> <ending-story>
<shape> <depth> <wt>)

In this representation, <loading> can be either gravity or total. (Recall that Galileo
sizes members purely for gravity loads also to estimate the overhead for carrying the lateral
loads.) In the case of columns, which may be spliced every second or so story, the starting
story and the end story in which a particular section is used are recorded. For lhe’s, if
<story> is a variable (e.g., $n), it will imply that the section for that lhe designation is the
same for all stories since any story can unify with the variable. Alternatively, one fact per
story per designation will be stored. Section properties <shape>, <depth>, and <wt> are
self-evident. For example, for a W14 x 34 section, the <shape>, <depth>, and <wt> will be
W, 14, and 34 respectively. For composite lhe’s, the number of shear studs also needs to be

stored. Statements of the following form are used for the purpose.
(shear-studs <lhe-id> <no-of-studs>)

Besides the generated data, input to Galileo is aléo problem-dependent. The input
largely consists of the description of the geometry of the plan. Since entities in the plan
are restricted to be rectangular, coordinates of any two opposite corners are sufficient to
express their location. Thus, most input facts contain a system-recognized relation (i.e., a
keyword) followed by two sets of coordinates. A list of system recognized relations with

their arguments follows.

APPENDIX C. SYSTEM DETAILS 132

(perimeter <x1> <y1> <x2> <y2>)

(core <x1> <y1> <x2> <y2>)

(lobby <x1> <y1> <x2> <y2>)

(staircase <x1> <y1> <x2> <y2>)
(restroom <x1> <y1> <x2> <y2>)

(shaft <x1> <y1> <x2> <y2>)

(hallway <x1> <y1> <x2> <y2>)

(misc <x1> <y1> <x2> <y2>)
(elevator-bank <x1> <y1> <x2> <y2> <n>)

The last relation in the preceding list, elevator-bank, takes an additional argument that

specifies the number of elevators in the bank.

C.2 Parameters

As stated in Chapter 6, the knowledge in Galileo is structured in terms of certain parameters.
They are:

e Planning Module,

e Minimum Office Space,

e Minimum Beam Spacing,

e Maximum Beam Spacing,

o Minimum Beam Span,

e Maximum Beam Span,

o Minimum Girder Span, and

e Maximum Girder Span.

Default values of all these parameters are provided. The values for planning module, min-
imum beam spacing, and maximum beam spacing are shown in Table C.1. Default values
of other parameters depend on the value of the planning module and are taken to be an

integral multiple of the planning module closest to a specified value as shown in Table C.2.

When the user alters any of the default values, certain checks are applied on the new
value. First is a syntactic check, which ensures that the new value is a positive number.

Semantic checks ensure that the values are consistent; e.g., the entered value of maximum

APPENDIX C. SYSTEM DETAILS 133

Parameter Default Value (ft.)
Planning Module 5
Minimum Beam Spacing 8
Maximum Beam Spacing 12

Table C.1: Default Values of Some Parameters

Default Value (ft.) is a
Parameter Multiple of the Planning
Module Closest to

Minimum Office Space 20
Minimum Beam Span 10
Maximum Beam Span 45
Minimum Girder Span 15
Maximum Girder Span 45

Table C.2: Default Values of Planning Module-Dependent Parameters

beam spacing should not be less than the minimum beam spacing. Plausibility checks see if
the entered value is plausible. For example, the user-defined values of parameters mentioned
in Table C.2 should preferably be integral multiples of planning module. In a similar vein,
a value outside the range of 3-12 ft. for planning module is implausible. Violation of
syntactic and semantic checks results in an error and nonacceptance of the offered value.
If a plausibility check is not satisfied, a warning is issued; however, the offered value is

accepted.

C.3 Options

Galileo provides several different options to the user as briefly illustrated earlier in this

dissertation. A comprehensive account of the various options is given in Tables C.3~C.11.

APPENDIX C. SYSTEM DETAILS

Item

Legal Values

Default Value

Concrete Type

One of

o Lightweight

o Normalweight
e Explore Both

Explore Both

Floor Finish Depth

1 Any positive number 4 ksi
Mechanical Duct Depth | Any nonnegative number 14 in.
Light Fixtures Depth Any nonnegative number 7 in.

Any nonnegative number 1in.

Table C.3: Floor Design Options

134

APPENDIX C. SYSTEM DETAILS

135

and less than or equal to
36 in.

Item Legal Values Default Value Remarks
Steel Grade | One of Explore Both
o A36
o A50
e Fxplore Both
Behavior One of Composite | Shear studs and shoring
o Noncomposite options are disabled if
e Composite behavior is chosen to be
noncomposite.
Shear Studs | One of 3/4" x 5"
o 1/2" x 5"
o 3/4" x 5"
Shoring Yes or No No
Cambering | Yes or No Yes
Deflection Any positive number 360 d(liveload) < 'Cl;
Factor (a)
Minimum Any positive number less 6 in.
Beam than or equal to Maximum
Depth Beam Depth and greater
than or equal to 6 in.
Maximum Any positive number 36 in.
Beam greater than or equal to
Depth Minimum Beam Depth and
less than or equal to 36 in.
Minimum Any positive number less 6 in.
Girder than or equal to Maximum
Depth Girder Depth and greater
than or equal to 6 in.
Maximum Any positive number 36 in.
Girder greater than or equal to
Depth Minimum Girder Depth

Table C.4: LHE Design Options

APPENDIX C. SYSTEM DETAILS

136

o Minimum Weight
e Constant Depth

with d = 14 in.

Item Legal Values Default Value Remarks
Steel Grade One of Explore Both
o A36
o A50
e Explore Both
Strategy One of Constant Depth | d can be set by the user.

Plausible value for d is

14 in.

Effective Length | Any positive number 1.0 Plausible range is 0.5-5.0
Factor (Gravity)

Splicing Any positive integer 2 stories Plausible values are 1, 2,
Frequency and 3 stories.

Table C.5: Column Design Options

Item Legal Values Default Value

Office Live Load Any positive number 50 psf
Partitions Any positive number 20 psf
Ceiling Any positive number 10 psf
Cladding Any positive number 25 psf
Lightweight Concrete Any positive number 110 psf
Unit Weight

Normalweight Concrete | Any positive number 145 psf
Unit Weight

Construction Live Load | Any positive number 20 psf

Table C.6: Gravity Loading Options

APPENDIX C. SYSTEM DETAILS

137

Item Legal Values Default Value Remarks
Seismic Zone One of Zone 4 1988 UBC [40]
o Zone 0
o Zone 1
o Zone 2
o Zone 3
e Zone 4
Soil Profile One of S2
o S1
e 52
o S3
o 54
Importance Any positive number 1.0 Plausible value is 1.0
Factor (I)
Fundamental One of T= C’thf’/ 4 C; = 0.035 for moment
Period (T) o CihJ* resisting frames. Plau-
o User-supplied value sible value of T is less
thanvor equal to 10 sec.
Table C.7: Seismic Loading Options
Item Legal Values Default Value Remarks
Exposure | One of B
o B—Irregular Terrain
o C—Flat and Open
Terrain
Vao Any positive number 70 mph Plausible value is below
200 mph

Table C.8: Wind Loading Options

APPENDIX C. SYSTEM DETAILS

Item Legal Values Default Value
Steel—A36 Any positive number 525 §/ton
Steel—A50 Any positive number 555 §/ton
Concrete—Lightweight Any positive number 80 $/cu. yd.
Concrete—Normalweight Any positive number 60 §/cu. yd.
Metal Deck—2” deep Any positive number 1.30 $/sq. ft.
Metal Deck—3” deep Any positive number 1.50 §/sq. ft.
Shear Studs—1/2" x 5" Any positive number 1.20 $/ea.
Shear Studs—3/4" x 5" Any positive number 1.50 $/ea.
Welded Wire Fabric Any positive number | 0.10 $/sq. ft.
Fabrication—Gravity LHE Any positive number 100 $/ea.
Fabrication—Gravity Column | Any positive number 650 §/ea.
Fabrication—Frame LHE Any positive number 150 $/ea.
Fabrication—JFrame Column | Any positive number 1000 $/ea.
Erection Any positive number | 560 $/person-day
Cambering Any positive number 30 $/ea.
Shoring Any positive number 0.25 $/sq. ft.
Fire Proofing Any positive number 0.50 $/sq. ft.
Transportation Any positive number 10 §/ton

Table C.9: Price Options

Item Legal Values Default Value
Average Column Stress—A36 | Any positive number 19 ksi
Average Column Stress—A50 | Any positive number 26 ksi

These stresses are used only for estimating savings in column material
when comparing lichtweight and normalweight concretes.

Table C.10: Stress Options

138

APPENDIX C. SYSTEM DETAILS

139

Project Size (tons) Item Legal Values Default Value

0-1000 Erectable Pieces/Day | Any positive integer 65
Crew Size Any positive integer 23

10014000 Erectable Pieces/Day | Any positive integer 60
Crew Size Any.positive integer 26

4001-10000 Erectable Pieces/Day | Any positive integer 55
Crew Size Any positive integer 29

> 10000 Erectable Pieces/Day | Any positive integer 50
Crew Size Any positive integer 32

Table C.11: Erection Options

C.4 Cost Estimation

Cost of various items is computed through the following formulas.

Deck cost

Concrete cost

Shear studs cost
Welded wire
fabric cost

Steel cost
Fabrication cost

for gravity system

Price per sq. ft. of the deck (for the chosen depth and gauge)

X Deck area

Price per cu. yd. of concrete (for the chosen type)

X Concrete volume

Unit price X #studs,
0,

if The’s are composite;

if l1he’s are noncomposite.

Price per sq. ft. (for the chosen type) X Deck area

Price per ton of steel (for the chosen grade) X Steel tonnage

(Fabrication price for gravity support columns

x Number of gravity support columns)

+ (Fabrication price for gravity support lhe's

x Number of gravity support lhe's)

APPENDIX C. SYSTEM DETAILS 140

Fabrication cost

for total system = (Fabrication price for gravity support columns
x Number of gravity support columns)
+ (Fabrication price for frame columns
X Number of frame columns)
+ (Fabrication price for gravity support lhe's
x Number of gravity support lhe's)
+ (Fabrication price for frame lhe's

X Number of frame lhe's)

Total number of pieces to be erected
Erectable pieces per day (for the project size)
X Persons required per day (for the project size)

Erection cost =

x Labor price per person-hour

. Price per sq. ft. x Deck area, if lhe’s are shored;
Shoring cost =
0, if lhe’s are unshored.
. Unit price X #lhe's to be cambered, if lhe’s are cambered;
Cambering cost =

0, : otherwise.
Fire proofing cost = Price per sq. ft. X Deck area
Transportation cost = Price per ton of steel X Steel tonnage

For every programming language, no maiter how clean, elegant, and high level, one can find programmers who
will use it to write dirty, contorted, and unreadable programs.
~— Leon Sterfing and Ehud Shapiro, The Art of Prolog (1986)

The value of knowledge les not in its accumulation, but in its utilization.

— E. Green

Bibliography

[1] M. H. Ackroyd, S. J. Fenves, and W. McGuire. Computerized LRFD specification. In
Proceedings of the National Steel Construction Conference, Miami Beach, FA, 1988.

[2] H. Adeli and K. V. Balasubramanyam, editors. Ezpert Systems in Construction and
Structural Engineering: A New Generation. Chapman and Hall, New York, NY, 1988.

[3] H. Allison. Steel design—Special considerations. In R. N. White and C. G. Salmon,
editors, Building Structural Design Handbook, chapter 19, pages 566-632. John Wiley
& Sons, New York, NY, 1987.

[4] T. Amble. Logic Programming and Knowledge Engineering. Addison-Wesley, Reading,
MA, 1987.

[5] American Institute of Steel Construction (AISC), Chicago, IL. Manual of Steel Con-
struction, 1980.

[6] American Institute of Steel Construction (AISC), Chicago, IL. Load and Resistance
Factor Design Specification for Structural Steel Buildings, 1986.

[7] N. C. Baker. Towards a spatial and functional building design system. Technical
Report EDRC 02-08-89, Carnegie Mellon University, Pittsburgh, PA, 1989.

[8] J. S. Bennet and R. S. Englemore. SAcoN: A knowledge-based consultant for struc-
tural analysis. In Proceedings of Sizth International Joint Conference on Artificial

Intelligence, pages 47-49, 1979.

[9] J. A. Bowen, T. C. Cornick, and S. P. Bull. BERT—An expert system for brickwork
design. In M.A. Bramer, editor, Proceedings of Ezpert Systems ’86, the Sizth An-
nual Technical Conference of the British Computer Society Specialist Group on Ezpert

141

BIBLIOGRAPHY 142

Systems, pages 207-216, 1986.

[10] W.-t. Chan and B. C. Paulson, Jr. Logic programming to manage constraint-based
design. Microcomputer Knowledge-Based Ezpert Systems in Civil Engineering, pages

188-202, 1988.

[11] E. Charniak and D. McDermott. Introduction to Artificial Intelligence. Addison-
Wesley, Reading, MA, 1985. :

[12] R. A. Coleman. Structural System Design. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1983.

[13] Council on Tall Buildings & Urban Habitat, ASCE, New York, NY. Tall Building
Systems and Concepts, 1978.

[14] R. Coyne. Logic Models of Design. Pitman, London, UK, 1988.

[15] R. Davis. Form and content in model based reasoning. In E. Scarl, editor, Proceedings,
Workshop on Model-Based Reasoning (held in conjunction with the Eleventh Joint
Conference on Artificial Intelligence), pages 11-27, 1989.

[16] C. L. Dym and R. E. Levitt. Knowledge-Based Systems in Engineering. McGraw-Hill,
Inc., New York, NY, 1991.

[17] Epistemics, Inc., Palo Alto, CA. The Epikit Manual, 1988.

[18] S. J. Fenves. Computer applications in structural engineering. In E. H. Gaylord,
Jr. and C. N. Gaylord, editors, Structural Engineering Handbook, pages 2-1 — 2-17.
McGraw Hill, New York, NY, 2nd edition, 1979.

[19] S. J. Fenves, E. H. Gaylord, and S. K. Goel. Decision table formulation of the 1969
AISC specification. Civil Engineering Studies SRS 347, Department of Civil Engineer-
ing, University of lllinois, Urbana, IL, 1969.

[20] S. J. Fenves and R. N. Wright. The representation and use of design specifications.
Technical Note 940, National Bureau of Standards, 1977.

[21] S. J. Fenves, U. Flemming, C. Hendrickson, M. L. Maher, and G. Schmitt. A pro-
totype environment for integrated design and construction planning of buildings. In
Proceedings of the First Symposium of the Center for Integrated Fucility Engineering,
Stanford University, Stanford, CA, 1989.

BIBLIOGRAPHY 143

[22] M. Fischer. Constructibility Improvement during Preliminary Design of Reinforced
Concrete Structures. PhD thesis, Department of Civil Engineering, Stanford Univer-

sity, Stanford, CA, (under preparation).

[23] J. H. Garrett, Jr. and S. J. Fenves. A knowledge-based standards processor for struc-
tural component design. Engineering With Computers, 2(4):219-238, 1987.

[24] M. R. Genesereth. An overview of meta-level architecture. In Proceedings of the

National Conference on Artificial Intelligence, pages 119-124, AAAI, Washington, DC,
1983.

[25] M. R. Genesereth. The Designworld project. Technical Report Logic-89-3, Logic
Group, Computer Science Department, Stanford University, Stanford, CA, 1989.

[26] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, Los Altos, CA, 1987.

[27] M. R. Genesereth, R. Letsinger, and N. P. Singh. Basic Knowledge Representation.
Technical Report Logic-89-15, Logic Group, Department of Computer Science, Stan-
ford University, Stanford, CA, 1990.

[28] J. S. Gero. Design prototypes: A knowledge representation schema for design. Al
Magazine, 11(4):26-36, 1990.

[29] J. S. Gero, M. L. Maher, and W. Zhang. Chunking structural design knowledge as
prototypes. In J. S. Gero, editor, Artificial Intelligence in Engineering: Design, pages
3-21. Computational Mechanics Publications, Southampton, UK, 1988.

[30] C. Green. Application of theorem proving to problem solving. In Proceedings of the
First International Joint Conference on Artificial Intelligence, pages 219-239, Wash-

ington, DC, 1969.

[31] T. Gruber and Y. Iwasaki. How things work: Knowledge-based modeling of physi-
cal devices. Technical Report KSL 90-51, Knowledge Systems Laboratory, Computer
Science Department, Stanford University, Stanford, CA, 1990.

[32] R. V. Guha and D. B. Lenat. Cyc: A midterm report. AI Magazine, 11(3):32-59,
1990.

[33] D. Haber and S. Karshenas. CONCEPTUAL: An expert system for conceptual structural

design. Microcomputers in Civil Engineering, 5(2):119-127, 1990.

BIBLIOGRAPHY ‘ ‘ 144

[34] F. Hart, W. Henn, and H. Sontag. Multi-Storey Buildings in Steel. Nichols Publishing
Company, New York, NY, 1985.

[35] P. J. Hayes. In defence of logic. In Proceedings of Fifth International Joint Conference
on Artificial Intelligence, Cambridge, MA, 1977.

[36] P. J. Hayes. The logic of frames. In D. Metzing, editor, Frame Conceptions and Text
Understanding, pages 46-61. de Gruyter, Berlin, 1980.

[37] H. C. Howard, J. Wang, F. Daube, and T. Rafiq. Applying design-dependent knowl-
edge in structural engineering design. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 3(2):111-123, 1989.

[38] R. B. Hurley. Decision Tables in Software Engineering. Van Nostrand Reinhold Com-
pany, Inc., New York, NY, 1983.

[39] P. J. Hutchinson. An expert system for the selection of earth retaining structures.
Master’s thesis, Department of Architectural Science, University of Sydney, Sydney,
- Australia, 1985.

[40] International Conference of Building Officials, Whittier, CA. Uniform Building Code
Standards, 1988.

[41] S. H. Iyengar and M. Igbal. Composite construction. In R. N. White and C. G. Salmon,
editors, Building Structural Design Handbook, chapter 23, pages 787-820. John Wiley
& Sons, New York, NY, 1987. '

[42] D. Jain and M. L. Maher. Combining expert systems and CAD techniques. Micro-
computers in Civil Engineering, 3(4):321-331, 1988. (Also in Gero, J. and Stanton, R.,
editors, Artificial Intelligence Developments and Applications, Elsevier Science Pub-

lishers, pp. 65-81, 1988).

[43] D. Jain, K. H. Law, and H. Krawinkler. Knowledge Representation with Logic. Techni-
cal Report 13, Center for Integrated Facility Engineering (CIFE), Stanford University,
Stanford, CA, 1989.

[44] D. Jain, K. H. Law, and H. Krawinkler. On processing standards with predicate
calculus. In Proceedings of the Sizth Conference on Computing in Civil Engineering,

pages 259-266, Atlanta, GA, 1989. ASCE.

BIBLIOGRAPHY 145

[45]

[46]

[47]

[48]

[52]

[55]

P. Jayachandran and N. Tsapatsaris. A knowledge based expert system for the selec-
tion of structural systems for tall buildings. Microcomputer Knowledge-Based Expert
Systems in Civil Engineering, pages 88-99, 1988.

A. Karakatsanis. FLODER: A floor designer expert system. Master’s thesis, Depart-

ment of Civil Engineering, Carnegie-Mellon University, Pittsburgh, PA, 1985.

S. H. Kim and N. P. Suh. Application of symbolic logic to the design axioms. Robotics
and Computer-Integrated Manufacturing, 2(1):55-64, 1985.

R. A. Kowalski and K. A. Bowen, editors. Proceedings of the Fifth International Con-
ference and Symposium on Logic Programming, volume 1 and 2, University of Wash-

ington, Seattle, 1988. The MIT Press, Cambridge, MA.

B. Kumar and B. H. V. Topping. An integrated rule-based system for industrial build-
ing design. Microcomputer Knowledge-Based Erpert Systems in Civil Engineering,
pages 5372, 1988. ‘

J. C. Kunz, M. J. Stelzner, and M. D. Williams. From classic expert systems to models:
Introduction to a methodology for building model-based systems. In G. Guida and
C. Tasso, editors, Topics in Expert Systems Design: Methodologies and Tools, pages
87-110. Elsevier Science Publishers B.V. (North-Holland), New Yérk, NY, 1989.

S. Lakmazaheri. A Study on the Constraint Logic Approach for Structural Design
Automation. PhD thesis, Department of Civil Engineering, North Carolina State Uni-
versity, Raleigh, NC, 1990.

J. Lassez, editor. Proceedings of the Fourth International Conference on Logic Pro-
gramming, volume 1 and 2, University of Melbourne, Australia, 1987. The MIT Press,
Cambridge, MA. '

D. B. Lenat and E. A. Feigenbaum. On the thresholds of knowledge. In Proceedings
of Tenth International Joint Conference on Artificial Intelligence, Milan, Italy, 1987.

R. E. Levitt. HOwWSAFE: A nﬁcrocomputer-based expert system to evaluate the safety
of a construction firm. In C. N. Kostem and M. L. Maher, editors, Fzpert Systems in
Civil Engineering, pages 55-66. ASCE, 1986.

V. Lifschitz. Computing circumscription. In Proceedings of the Ninth International

Joint Conference on Artificial Intelligence, Los Angeles, CA, 1985.

BIBLIOGRAPHY 146

[56] T. Y. Lin and S. D. Stotesbury. Structural Concepts and Systems for Architects and
Engineers. John Wiley & Sons, Inc., New York, NY, 1981.

[57] G. P. Luth. Representation aﬁd Reasoning for Integrated Structural Design of High-
Rise Commercial Office Buildings. PhD thesis, Department of Civil Engineering, Stan-
ford University, Stanford, CA, (under preparation).

[58] G.P. Luth, D. Jain, H. Krawinkler, and K. H. Law. A formal approach to automating
conceptual structural design: Part I—Methodology. To appear in Engineering With
Computers, 1991.

[59] J. D. Mackinlay. Automatic Design of Graphical Presentations. PhD thesis, Depart-
ment of Computer Science, Stanford University, Stanford, CA, 1987.

[60] M. L. Maher and S. J. Fenves. HI-RISE: A knowledge-based expert system for the
preliminary structural design of high rise buildings. Technical Report R-85-146, De-
partment of Civil Engineering, Carnegie-Mellon University, Pittsburgh, PA, 1985.

[61] Z. Manna and R. Waldinger.. The Logical Basis for Computer Programming, volume 1.
Addison Wesley, Menlo Park, CA, 1985.

[62] Z. Manna and R. Waldinger. The Logical Basis for Computer Programming, volume 2.
Addison Wesley, Menlo Park, CA, 1990.

[63] J. McCarthy. Circumscription—A form of non-monotonic reasoning. Artificial Intelli-

gence, 13(1-2):27-39, 1980.

[64] D. McDermott. A critique of pure reason. Computational Intelligence, 3(3):151-160,
1987.

[65] D. McDermott and J. Doyle. Non-monotonic logic 1. Artificial Intelligence, 13(1-
2):41-72, 1980.

[66] R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence,
25(1):75-94, 1985.

[67] R.C.Moore. The role of logic in knowledge representation and commonsense reasoning.
In H. Levesque and R. Brachman, editors, Readings in Knowledge Representation,

pages 335-343. Morgan Kaufmann, San Mateo, CA, 1986.

BIBLIOGRAPHY 147

[68] M. Musen. Automated generation of model~based knowledge—acquisition tools.

SIGLunch Presentation, Stanford University, Stanford, CA, December 1989.

[69] N. J. Nilsson. Logic and artificial intelligence. In Proceedings of MIT Workshop on
Artificial Intelligence, Cambridge, MA, (to appear).

[70] H. Pospesel. Introduction to Logic: Propositional Calculus. Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1974.

[71] H. Pospesel. Introduction to Logic: Predicate Calculus. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1976.

[72] W. J. Rasdorf and T. E. Wang. Generic design standards processing in an expert
system environment. Journal of Computing in Civil Engineering, 2(1):68-87, 1988.

[73] W. J. Rasdorf and S. Lakmazaheri. A logic-based approach for processing design

standards. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

(to appear).

[74] D. R. Rehak and L. A. Lopez. Computer-aided engineering: Problems and prospects.
Civil Engineering Systems Laboratory Research Series (CESLRS) 8, Department of
Civil Engineering, University of lllinois, Urbana-Champaign, IL, 1981.

[75] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132, 1980.

[76] T. J. Ross, H. C. Sorensen, S. J. Savage, and J. M. Carson. Daps: Expert system for

structural damage assessment. Journal of Computing in Civil Engineering, 4(4):327-

348, 1990.

[77] R. Sause and G. H. Powell. A design process model for computer integrated structural
engineering. Engineering with Computers, 6(3):129-143, 1990.

[78] E. Scarl, editor. Proceedings, Workshop on Model-Based Reasoning (held in conjunc-
tion with the Eleventh Joint Conference on Artificial Intelligence), AAAI, Detroit, MI,
1989.

[79] D. L. Schodek. Structures. Prentice-Hall Inc., Englewood Cliffs, NJ, 1980.

[80] D. Sriram. Knowledge-Based Approaches for Structural Design. PhD thesis, Depart-
ment of Civil Engineering, Carnegie-Mellon University, Pittsburgh, PA, 1986.

BIBLIOGRAPHY 148

[81] D. Sriram, G. Stephanopoulos, R. Logcher, D. Gossard, N. Groleau, D. Serrano, and
D. Navinchandra. Knowledge-based systems applications in engineering design: Re-
search at MIT. Al Magazine, 10(3):79-96, 1989.

[82] F. L. Stahl, R. N. Wright, S. J. Fenves, and J. R. Harris. Expressing standards for
computer-aided building design. Computer-Aided Design, 15(6):329-334, 1983.

[83] M. Stefik. Introduction to Knowledge Systems. Xerox Palo Alto Research Center, Palo
Alto, CA, (under preparation).

[84] B. S. Taranath. Structural Analysis & Design of Tall Buildings. McGraw-Hill, New
York, N'Y, 1988.

[85] J. A. Venegas Pabon. A Model for Design/Construction Integration During the Initial
Phases of Design for Building Construction Projects. PhD thesis, Department of Civil
Engineering, Stanford University, Stanford, CA, 1987.

[86] B. L. Webber and N. J. Nilsson, editors. Readings in Artificial Intelligence. Tioga
Publishing Company, Palo Alto, CA, 1981.

[87] R. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning. Artificial
Intelligence, 13(1-2):133-170, 1980.

[88] G. Winter. Cold-formed steel construction. In R. N. White and C. G. Salmon, editors,
Building Structural Design Handbook, chapter 20, pages 633-659. John Wiley & Sons,
New York, NY, 1987.

[89] F. Zhao and M. L. Maher. Using analogical reasoning to design buildings. Engineering
With Computers, 4(3):107-119, 1988.

This dissertation was produced using the IATEX macro package of Leslie Lamport under the
TEX typesetting system developed by Donald E. Knuth. The TpXtures™ implementation
of these systems for the Macintosh computer was employed. The Computer Modern family
of fonts, generated in METAFONT by Donald Knuth was used. Customized IATEX .sty files,

based on the suthesis style, were used for the design of the format of this dissertation.

