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Abstract

Accurate, efficient data exchange is vital to improving productivity in the
architecture-engineering-construction industry. Much of the current work in
data exchange is focused on the development of data exchange standards. In
examining the data models in those standards and other efforts, we have
identified a number of problem areas, including overuse of aggregation
hierarchies, nonhomogeneous characterization hierarchies, and replacing
relationships with subclasses. To support easy exchange of data between
engineering computer applications while avoiding the data modelling pitfalls,
we have developed the primitive-composite approach. The P-C approach
provides a methodology for defining the primitive data concepts of a domain as
separate objects and for assembling those concepts to form the composite
abstractions that engineers customarily use. By relating composite objects from
multiple programs to the primitive concepts, the data in those programs can be
shared as primitive concepts derived from one program's composite object and
reassembled as another program's composite object without having to provide a
direct mapping between those two programs. The paper presents a formal
definition of the primitive-composite approach and explores its application in
structural engineering.






Contents

L INtrodUCHON . ....ovetii e e e 3
1.1 Data MOAelS. . ouuerrerereresiecececeieecee e, 4
1.2 Engineering Data Models.........ccooveieieiiiieiiiiieieeeeenenene. 5
1.3 DataExchange Standards ................ooooeiiiiiiiiniiinn.n, 6

2. Data Modelling Problem Areas........c.oovuiviiniinieeeeeeeeieneeeneeanananns 7
2.1  Overuse of Aggregation Hierarchies...............ccoeeivinnnen.n. 7
2.2 Nonhomogeneous Characterization Hierarchies.................. 7
2.3 Replacing Relationships with Subclasses..................c...... 9

3. A Primitive-Composite Approach to Building Data Models ................. 11
3.1. Our View of an Object-Oriented Data Model...................... 12

3.2. Basic Building Blocks of the Primitive-Composite Approach. . 14
3.3. Building a Primitive Schema............ eeveeeeeeans ............. 16
3.4. Building a Composite SCheMa.........ceeveeveeereeeerennnnsn. 17
3.5. Using the Primitive-Composite Approach for Data Exéhangc. .18

4. Application to Structural Engineering...........ccccoeviviivviiivniiiinnnenne. 20
4.1  Form, Function, Behavior.............cccooviiiiiiiiiiiienenns 20

4.1.1 FOIMuuiiiiiiiiiiiiiii e 20

4.1.2 FURCHON....e.veeveeeeeeeeeeeeeeeee e, R 23

4.1.3 Behavior ......civiiiiiiiiiiiiiiiiiie e 24

4.2 An Integrated Example of Form, Function, Behavior........... 24

5. Conclusions on the Primitive-Composite Approach................cc........ 28
6. ACKNOWIEAZMENIS .. ..uuititiiitit ittt e eeneeneaenes 30

7 R OTEIICES . e ettt et 30



5/31/191 page 1



A Primitive-Composite Approach for Structural Data Modelling

1. Introduction

The architecture-engineering-construction industry is still exchanging data as it did 100 years
ago with paper drawings and reports. The introduction of the computer to the design process has
changed the means of generating the paper, but it has not fundamentally changed the methods of
sharing data across organizational boundaries. It is not uncommon to find that in one office a
designer uses a powerful computer-aided design and drafting (CADD) package to produce a project
drawing, while in another office, a construction estimator uses a digitizer to put the information
from the same drawing back into a computer (in effect, unCADD). The result is a substantial net
loss in efficiency and an increase in the ever-present potential for errors.

Therefore, we are faced with the problem of getting computer tools to communicate about
engineering data. Whether the data is transferred directly or through a central database,
dynamically or via batch files, the first problem is identifying the data to be exchanged in an
integrated data model. A number of national and international efforts are underway to create
integrated data models for the exchange of product data. However, the data modelling task in the
architecture-engineering-construction domain is very difficult because so many different specialities
are involved and because the life cycle is very long. Many different professionals, organizations,
and programs contribute to and draw from the same overlapping set of data objects. In trying to
satisfy all users of an engineering object, the natural tendency is to add more and more description
to that object. The result is a set of extremely complex objects that no one specialist completely
understands and a data model that is difficult (if not impossible) to understand, maintain, and
extend.

To draw an analogy to human language, the result of the complex object approach is to produce
a phrase book. As long as the phrase you need is in the book, you can communicate. However, if
you need to communicate about something not in the book or even a subtle variation on a defined
phrase, you are out of luck. Frequently a bilingual dictionary can be more useful by translating
words rather than phrases. With the vocabulary of a language (along with the syntax), any phrase
or sentence can be constructed, not just the limited set in the phrase book.

A data model composed of complex objects is like a phrase book—it contains a limited number
of predigested ideas. With the primitive-composite approach described in this paper, we are
defining a methodology for creating and applying a data “vocabulary” for a domain—a primitive
data model—representing atomic concepts that can be arbitrarily combined. From this vocabulary,
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programmers and users can build the complex objects that they need and still communicate data by
sharing the same primitive objects.

The purpose of this paper is to present the primitive-composite approach for data modelling and
describe its application to structural engineering data. The following sections first review
traditional data models (hierarchical, network, relational), object-oriented data models, and
problem areas in engineering data modelling. Then the formal definition of the primitive-composite
approach is presented, including descriptions of how to use it to build data models and exchange
data. The last two sections discuss how the primitive-composite approach can be applied to

structural engineering data and its overall merits for engineering data.

1.1 Data Models

A data model is a collection of conceptual tools for describing data in terms of data semantics,
relationships, and constraints among data items (Tsichritzis and Lochovsky 1982). A data model
thus defines rules according to which data structures are described, constraints among data items
are imposed, and operations on data items are defined. Combinations of different rules regarding
the definition of structures, constraints, and operations yield different data models.

The three dominant classical data models are the hierarchical, network, and relational models.
The network data model organizes data records into an arbitrary graph of linked nodes (CODASYL
1971). Each node may contain more than one record. Each record in a network model is a
collection of attributes of simple data types. Each link associates two related records. The major
weakness of the network data model is that operations are constrained to follow strict paths defined
by the node links, and that many-to-many relationships can not be represented directly. The
hierarchical model is special case of the network model in which each node has only one parent
(Date 1981). The hierarchical data model has severe limitations due to the fact that each node is
restricted to one parent. The relational data model (Codd 1970) was introduced by E. F. Codd in
1970 and quickly gained popularity among business applications. In this model, similar objects
are grouped into a single relation, which defines the attributes shared by all the objects. Each
individual object is described by a tuple (a row of a relation), which contains the set of attribute
values unique to that object. The major strength of this model is that it supports a powerful yet
simple data manipulation language in which the results of operations on relations are themselves
relations. On the other hand, relational databases are weak at handling complex design objects.
Design objects typically relate to each other in complex and unstructured ways. In order to fit
design objects into a relational model, complex interrelationships and constraints between relations
must be built; the end result infringes on the inherent simplicity and uniformity of the relational
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model. In spite of this limitation, the relational model is still the most powerful among traditional
data models. Rasdorf (1982) provides a detailed discussion of the applicability of these data
models to structural engineering.

The Entity-Relationship (E-R) model was introduced to add more meaning to the relational data
model (Chen 1976). The E-R model is intended primarily for data base design and supports the
definition of a data base schema without the concern of other data base issues (e.g., operations on
data, physical storage structure, etc.). The E-R data model is based on a perception of the real
world which consists of a set of uniquely identified things called entities, and relationships among
these entities. Many researchers have built on Chen's work in developing variations of the E-R
model.

Object-oriented data models are the most recent additions to the data modelling area. They offer
an opportunity to reduce the “semantic gap” between real world entities and their database
representations. Its development has been driven by object-oriented languages (e.g., Smalltalk
(Goldberg and Robson 1985), C++ (Stroustrup 1986)) and object-oriented data bases, e.g.,
Gemstone (Maier and Stein 1988), Sembase (King 1986), ORION (Kim 1990). In the object-
oriented data models, the basic unit is a class of similar instances (the actual objects) that defines
the fields (properties) shared by all instances of the class. Relationships can be used to link two
instances, two classes, or an instance and a class. Object-oriented data models make use of
common abstraction methods such as instantiation/classification, generalization/specialization,

aggregation/decomposition, and association.
1.2 Engineering Data Models

Although traditional data models (hierarchical, network and relational) have dominated the
business applications area, they have not been able to capture the complexity of engineering data.
Several researchers have suggested data models specifically aimed at representing engineering data.
These models include the complex object model (Lori and Plouff 1983), the molecular object
model (Batory and Buchmann 1976), and the functional model which was suggested in (Shipman
1981) and extended in (Manola and Orenstein 1986). In addition, there are several general purpose
data models that have been proposed, including the Structural (Wiederhold 1980), Semantic
(Hammer and McLeod 1981), Format (Tsichritzis and Lochovsky 1982), Binary (Tsichritzis and
Lochovsky 1982), and Infological (Sundgren 1974) models. The motivation of these efforts is to
provide more flexible data models and to close the “semantic gap” between the real-world and the
data model. A number of models have been proposed for structural engineering. These models
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include Eastman's 1978 model (Eastman 78), the Data Model for Building Design (Law 86), the
“Component-Connection” Abstraction Model (Powell et al. 88), etc.

In addition, there has been recent emphasis in engineering data modelling for the purposes of
data exchange, engineering views support, and management of the design project life cycle. A
close examination at data modelling for engineering in general, and structural engineering in
particular, reveals that:

1. Engineering design objects are complex and generally related to each other in different
ways through intricate relationships. Most of them have physical, functional,
behavioral characteristics about which the designer reasons at one point or another in
the design process.

2. During a design process, engineering objects tend to evolve continuously, from one
state to another and from one schema to another. This dynamic information growth
comes from two directions: new attribute values of the object and further
decomposition of the object (Eastman 1978).

3. Several engineering views must be captured for the different data needs among the
project participants and across interrelated disciplines of engineering. Each view may
refer to different levels of abstraction or aspects of the same design object.

4. Large amounts of heterogeneous data need to be created, maintained, and
communicated at various stages throughout the project life cycle.

1.3 Data Exchange Standards

A variety of national and international data exchange standards are being used and developed.
The key standards include:

» IGES (1988), Initial Graphics Exchange Specification, is a current US standard for
graphical data exchange.

« STEP (IPIM 1988), STandard for the Exchange of Product model data, is a project of the
International Standards Organization aimed at capturing and transferring all product data.

+ PDES (IPIM 1988), Product Data Exchange using STEP, is the US potential successor to
IGES that has evolved into a project to support the development of the STEP standard.
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These and the other ongoing standard efforts are primarily focused on defining terminology,
data organization, and neutral file formats for batch data exchange. The IGES standard
concentrates on representing graphical information; PDES and STEP have a much broader mandate
to represent all aspects of product data (where the “product” may be anything from a silicon chip to
a high-rise building). Data exchange under these standards is based on a “neutral” data file to
which data is written from a post-processor from one software system and from which data is
extracted by a pre-processor from another software system. The integrated data models for PDES
and STEP use variations of the entity-relationship model to build complex objects that include
many different views of data to satisfy all likely generators and consumers of the database.

2. Data Modelling Problem Areas

In developing our approach to data modelling, we have examined a wide variety of data
representations for structural and other engineering data. In that process, we have identified a
number of problem areas and associated symptoms, including overuse of aggregation hierarchies,
nonhomogeneous characterization hierarchies, and replacing relationships with subclasses. The
following subsections discuss those specific data modelling problem areas.

2.1 Overuse of Aggregation Hierarchies

Aggregation is an abstraction method that is used extensively in decomposing complex design
objects into their ingredient objects. It can also be used in a bottom-up approach to construct
complex design objects from the ingredients. Frequently, data models overemphasize the use of
aggregation hierarchies in their definitions.

As an example, Figure 1 shows the principal hierarchy from our early work on structural steel
framing data (Lavakare and Howard 1989). The first five levels (building through member) are
generally appropriate for structural steel, but the emphasis on aggregation is not appropriate for the
last three levels (element, part, and connection). For instance, a single steel column (a physical
part) may span multiple stories and be conceptualized as multiple members and elements. The
relationships between these objects are not necessarily aggregational nor are they necessarily
hierarchical.

2.2 Nonhomogeneous Characterization Hierarchies

In characterization hierarchies from a number of data models (e.g., Abdalla 1989, Ito et al.
1990), we observed that many different criteria have been used to distinguish subclasses at the
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different levels of the hierarchy. In the example shown in Figure 2, the first level of the
“component” hierarchy consists of subclasses defined according to their orientation and anticipated
structural behavior such as “beams” (horizontal, flexural) and “columns” (vertical, axial and/or
flexural). In the second level, the “beams” class has subclasses that are defined according to the
material selection: “reinforced concrete” and “steel.” The “reinforced concrete beams”
subhierarchy includes classes defined according to their cross-sectional shape such as “rectangular”
and “T-section,” whereas the “steel beams” subhierarchy classifies objects according to the method
of fabrication such as “rolled” or “built-up sections.” “Built-up steel beams” are further classified
according to the connection methods used to build up the part such as “bolted,” “welded,” and
“riveted.”

The result is a non-homogeneous hierarchy in which each level involves a different criterion
used in defining the object classes. The use of nonhomogeneous characterization hierarchies
requires that the data modeller anticipate all possible combinations of characteristics. Consider the
sample hierarchy for walls in Figure 3. “Walls” may be “load bearing” or “partition” (separating)
or both; they may be located on the “exterior” or “interior,” but not both. Note the cross product
effect in the hierarchy—the location qualifiers are introduced for every combination of functions.
- When the number of criteria to be represented in a single hierarchy grows larger, either the
resulting data model grows exponentially larger or the data modeller must supply the expertise to
eliminate subclasses that represent invalid combinations (and possibly some valid combinations as
well).
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Figure 1: Hierarchy from Structural Steel Framing Data Model (Lavakare and Howard 1989)

2.3 Replacing Relationships with Subclasses

A common problem in data models is that new subclasses are introduced when the nature of the
distinction between the subclass and superclass would be better described by a relationship
between the superclass and another object. This problem is particularly significant when
representing function in structural data models. Consider the two small hierarchies in Figure 4.
The subclasses “moment frames” and “braced frames” serve to qualify the superclass “frames,”
while the subclasses “lateral load resisting” and “gravity load resisting” really characterize the loads
supported by the frames. The latter distinction would be better represented by a relationship
between the “frames” class and subclasses of the “loads” class. The use of a relationship avoids
the redundancy of defining the subclasses in the “loads” hierarchy and the duplication of that
classification in the “frame functions” hierarchy to describe all the types of loads that a frame can
resist.

A second kind of problem arises when representing the function of components within
assemblies. Consider a web stiffener on a steel plate girder. This stiffener is a plate that stiffens
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the web of the plate girder assembly. The function of the web stiffener can be derived from its
aggregation relationship with the plate girder. That stiffening function may be better represented as
a relationship between two objects than as a subclass of the structural function characterization

hierarchy.
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Figure 2: Sample Nonhomogeneous Characterization Hierarchy
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load bearing partition and partition
interior exterior interior  exterior Interior exterior

load bearing load bearing

Iqad bearing load bearing partition  partition and-partition and partition

Figure 3: Sample Characterization Hierarchy for Walls

frames | N
/\ lateral load gravity load
moment frames braced frames resisting resisting

Figure 4: Sample Characterization Hierarchy for Frames

3. A Primitive-Composite Approach to Building Data
Modeis

To support easy exchange of data between engineering computer applications and provide
multiple data views while avoiding the data modelling pitfalls identified in the previous section, we
have developed the primitive-composite approach to building object-oriented models of engineering
data. The P-C approach provides a methodology for defining the primitive data concepts of a
domain as separate objects and for assembling those concepts to form the composite abstractions
that engineérs customarily use. By relating composite objects from multiple programs to the
primitive concepts, the data in those programs can be shared as primitive concepts derived from
one program's composite object and reassembled as another program's composite object without
having to provide a direct mapping between those two programs.
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This section presents the basic building blocks of the primitive-composite approach, how to
apply it to a domain, and how to use it to enable data exchange. However, since there are almost
as many different interpretations of object-oriented data models as there are database researchers,
we should first present our view of its elements and terminology to serve as a basis for the

discussion of our extensions.
3.1. Our View of an Object-Oriented Data Model

The starting point for the primitive-composite approach is the object-oriented data model. The
key elements of that model are revisited in items one through five below.

1. Class — A class is a descriptive template for a collection of like objects (called “instances”
of the class—see below). The class defines descriptive elements (attributes and elements—see
below) that are shared by the members of the class. As a convention, we will always name classes

1 LC

with plurals, such as “beams,” “walls,” and “loads.”

In object-oriented programming, the class definition also includes methods that describe the
behavior of the object. However, that aspect of classes will not be explored further since the initial
focus of the primitive-composite data model is on data representation and exchange.

2. Instance — An instance (or object) is a unique occurrence of a class. An instance has an
* identity which uniquely distinguishes it from all other instances. For instance, “beam23” is an
instance of the class “beams.” An instance does not contain attributes or relationships that are not
part of its class.

3. Attribute — An attribute contains a value or values that describe the dynamic properties of
an instance of the class. The class “beams” might have attributes for “depth,” “maximum shear,”
and “stiffeners required.” Each attribute value is associated with a data type (e.g., length, force,
boolean). The domain of the data type defines a finite or infinite set of possible values. Data types
can be simple types or more complex user-defined abstract data types. Useful abstract data types
might include coordinates (a triple of coordinate values), date, time, vector, matrix, etc.

4. Relationship — A relationship describes a link between two classes, an instance and a
class, or two instances. For example, “beam23” is part of “frame5” and “beam23” is connected to
“columnl16,” where part of and connected to are relationships between the indicated class
instances. (As a convention, we will always denote relationships by underlining them.) A
relationship describes the link in one direction; an inverse relationship describes the link in the
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opposite direction. For example, “beam23” is part of “frame5” and “frame5” has subpart
“beam23,” where part of is the relationship and subpart is the inverse relationship. The definition
of a relationship for a class includes a list of the target classes to which that relationship may
provide a link. Any instance of a target class or any instance of a subclass of a target class is a
candidate value for the relationship (subject, of course, to other constraints).

Three categories of relationships are supported:

 Characterization includes all relationships whose definition is based on
generalization/specialization or instantiation/classification. The descendents of a general
class are specialized by having new attributes, new relationships, or new values for
attributes or relationships. Characterization relationships support inheritance from the more
general classes to the more specialized ones. Attributes, relationships, and their values may
be inherited by specialized classes from the general classes to which they belong.
Characterization relationships can link two classes (i.e., generalization/specialization),
using the superclass relationship and its inverse subclass; or an instance and a class (i.e.,
instantiation/classification), using the instance relationship and its inverse instances. For
example, “Steels” are a subclass of “materials,” and “A36-Steel” is an instance of “steels.”
(Note: The relationship is-a is frequently used in frame-based and object-oriented
programming to convey any or all of these characterization relationships. We will use the
more specific terms to avoid confusion.)

» Aggregation includes those relationships that relate the component objects to their
assembly object. Conversely, aggregation can also be used to decompose an assembly
object into its component objects. The basic form of aggregation is represented by the part

- of relationship and its inverse subparts. However, the aggregation relationship can be used
to show more than just assembly and decomposition; it can also describe the function of a
component within an assembly. This use of the aggregation relationship is called a role,
describing the role that a component plays in the assembly. The notion of roles will be
very important in representing the function of structural elements. For example:
“plate125” stiffens “beam23,” where stiffens is a part-of relationship that describes the

function of the plate in the beam.

» Association is a broad category for relationships that do not represent characterization or
aggregation. There are many kinds of association relationships in engineering with
specialized semantics such as connected-to, supported-by, adjacent-to, etc.
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5. Schema — A schema is the set of object class definitions (including attributes and
relationships) that defines the data for an application or database. The schema for an analysis
program might consist of classes to represent “elements,” “nodes,” “loads,” “stresses,” and
“displacements.”

3.2. Basic Building Blocks of the Pr'imitive-Composite Approach

Items 6 through 13 are the extensions that define the primitive-composite approach to object-
oriented data modelling. They describe how the objects are organized to isolate independent
concepts and how objects are combined to create complex abstractions that represent user views.
Several fundamental rules are included with the basic definitions in order to refine the approach
further. Future development of the approach will further expand these rules.

6. Primitive class — A primitive class is a class that represents a single concept such as
shape, material, or function. It serves as an atomic definition in the data model—something
indivisible and basic to the domain.

7. Primitive characterization hierarchy — A primitive class hierarchy groups primitive
classes that represent increasing specializations of a single concept. As illustrated in Figure 5, two-
dimensional shapes can be decomposed into 3-sided shapes, 4-sided shapes, 5-sided shapes, etc.
4-sided shapes can be decomposed into squares, rectangles, trapezoids, etc.

Rule I: (When to Introduce a New Subclass) A subclass in a primitive characterization hierarchy
should add at least one attribute or relationship to the set inherited from its super class. This rule

requires that the introduction of a new subclass add some new value or link to the description of its
instances. If there is no new information, then there is no reason for the subclass to exist. (This
rule states the ideal circumstance. Frequently, nonspecialized subclasses will exist as place holders
for future attributes, relationships, or knowledge.)

Rule II: (Don't Invent a Class When a Relationship Will Do) A primitive subclass should not be

introduced if its only unique feature can be represented by a relationship in its superclass. For

example, in a hierarchy of structural functions, the class “supports objects” should not be
specialized into “supports static loads™ and “supports dynamic loads,” but rather the additional
meaning should be represented as a relationship supports in the “supports objects” class which can
be instantiated as a link to an instance of a “load types” class.
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two-dimensional shapes

3-sided shapes 4-sided shapes 5-sided shapes ey
squares rectangles trapezoids .

Figure 5: Sample Primitive Characterization Hierarchy

8. Primitive schema — A primitive schema is a set of primitive characterization hierarchies
that define the basic concepts of an application domain such as structural engineering. The
primitive schema defines the concepts that are used directly or indirectly by the domain specialists.
Typically, there will be many primitive characterization hierarchies in the primitive schema to cover
the breadth of the domain and simultaneously satisfy the requirements that each primitive class
represent a single concept.

9. Primitive database — A primitive database contains instances of primitive classes from a
primitive schema to describe an object or a set of objects. As we will see later, a primitive database
can be used as a medium of data exchange between different application systems.

10. Composite class — A composite class is a subclass of, aggregation of, or association of
two or more primitive classes (see the example in Section 4.2). A composite class describes a
complex concept that is defined as a combination of simple atomic concepts in the domain of a
given application. For example, the concept of a beam as a combination of specific forms,
functions, and behaviors may be built into a program to provide users with abstractions to which
they are accustomed. By multiple inheritance, a “Beams” class could be a subclass of more than
one physical form class (e.g., for its location, shape, material, etc.), several function classes (e.g.,
for its load carrying role, load transferring role, etc.), and a behavior class that defines the beam as
a flexural element. Similarly, a “Beams” class could relate to different forms, functions and
behavior primitive classes by aggregation and association relationships. A composite class may
relate to other composite classes as well.
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The ability to construct composite classes are an important part of the primitive-composite approach
because domain specialists usually reason about objects that represent multiple concepts,
combining multiple physical forms, functions, and behaviors into a single object. Using composite
classes, an engineer can assemble special purpose objects without being constrained to the list
anticipated in a data standard.

Rule IMI: (No New Attributes in Composite Classes) Ideally, a composite class should not contain
attributes or relationships other than those inherited from its superclasses. This rule is really a test

for the designers of the primitive schema: does the primitive schema contain all the necessary
concepts? and are the concepts organized in such a way that they can be combined to represent all
necessary combinations of attributes and relationships that are meaningful in the domain? To state
this rule in more realistic terms, the introduction of new attributes and relationships in composite’
classes should be minimized because the new data would not be exchangeable.

11. Composite instance — A composite instance is an instance of a composite class. From
the primitive class ancestors of the composite class, the composite instance inherits a set of

attributes and relationships that define a new compound object.

12. Composite schema — A composite schema is a combination of a primitive schema and a
set of composite classes that define an application view of the domain data. Rather than using the
primitive classes directly, programmers and database administrators will generally provide their
users with composite classes that suit the needs of specialized domain tasks. Composite classes
provide a convenient framework for formalizing how the compound abstractions provided in
applications are related to the primitive schema.

13. Composite database — A composite database is a database that contains instances of
composite and primitive classes from a composite schema.

3.3. Building a Primitive Schema
The following algorithm specifies how to build a primitive schema using the primitive approach.
1. Define the classes that belong in the primitive characterization hierarchies.
2. Define the attributes and relationships for the primitive classes.

3. Examine the attributes and relationships in the hierarchies for adherence to Rule I,
which states that subclasses must add specifics to superclasses. Correct problems by
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cycling through steps 1 and 2 until the superfluous subclasses are satisfactorily justified
or eliminated.

4. Test the model by defining composite instances from textbook and real world
problems. Repeat steps 1, 2, and 3 until classes from primitive characterization
hierarchies can be combined to represent the instances without adding new attributes
and relationships specific to the instances.

For complex domains where domain specialists have difficulty isolating concepts, a primitive
data model may initially appear to be impossible. Therefore, a composite schema containing a
judiciously chosen set of composite classes may be substituted for a completely primitive data
model. The key idea is to keep arbitrary combinations of concepts at a minimum.

We want to emphasize that we do not regard the task of building a satisfactory primitive schema
as a trivial undertaking. On the contrary, it may prove just as difficult to develop a comprehensive
primitive schema as to develop the complex global schema that is the aim of the data standards
efforts. However, the flexibility, extensibility, and customizability of the primitive-composite
approach should make the resulting primitive schema a more useful artifact.

3.4. Building a Composite Schema

A composite schema may be defined to integrate the data space of an existing application with
other related programs or, more ideally, when an application is being developed. The steps in
defining a composite schema are:

1. Decide on the application object classes to be included in the model. The set of classes
should include all objects in the user view and all internal objects used in the program'’s
reasoning process.

2. Divide the application object classes into those that are completely defined by a single
primitive class in the primitive schema and those that represent combinations of
primitive classes. For the former set of application object, the task is complete. For the
latter set of application objects, define composite classes that are subclasses of the
necessary combinations of primitive classes. For convenience, the composite schema
may include its own characterization hierarchies of composite classes, with composite
objects being defined as subclasses of both other composite classes as well as primitive
classes. (A subclass of a composite superclass is by definition a subclass of the
primitive classes that comprise the composite superclass.)
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3. Examine the set of attributes and relationships inherited from the primitive classes. If
some important application values are missing, repeat step 2. Only as a last resort
should the composite class introduce attributes or relationships that are not inherited
from a primitive class. (In that case, the values for the new attributes and relationships
are not exchangeable with other programs.)

4. Test the composite schema with sample problems for the application.

3.5. Using the Primitive-Composite Approach for Data Exchange

The primitive-composite approach supports data exchange by providing a common language for
representing concepts in the domain: the . Each application (CAD system, analysis package,
database, etc.) is described by a composite schema. Comparison of the composite schemata of two
applications will immediately reveal overlapping data coverage simply by locating the primitive
classes referenced by both composite models. When two applications need to exchange data, the
data from the first application is translated into a primitive database (containing only instances of
primitive classes) and then translated into the composite form of the second application.

Furthermore, the two applications do not need to share the composite classes. They need only
share primitive classes from which their composite classes are formed. Figure 6 shows four
composite schemata which correspond to different applications, but are related to one primitive
schema. The exchangeable data is identified by the primitive classes which are referenced by both
composite models. For example, an architect may reason about a wall in terms of its location,
dimensions, color, and texture. A structural engineer will need to share the data about location and
dimensions, but will add data about materials, loads, and stresses. The building contractor will
use the engineer's data and add data about costs and scheduling. The interior finishing
subcontractor will go back to the architect's original data to order paint and plaster. The primitive
schema contains the primitive classes necessary to assemble the four different composite wall
classes and defines how overlapping data may be exchanged between those composite classes.

This style of neutral file exchange is commonly used in current data exchange methodologies.
The difference with the primitive-composite approach that the translations can be automatically
inferred from the information in the applications' composite databases. The data exchange can also
be dynamic, using a framework such as KADBASE (Howard and Rehak 1989) to support real-
time data queries between heterogeneous applications. (KADBASE is a flexible, knowledge-based
interface in which multiple knowledge-based systems and multiple databases can communicate as
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independent, self-descriptive components within an integrated, distributed engineering computing
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4. Application to Structural Engineering

In this section, we examine the application of the primitive-composite approach to structural
engineering data modelling. Form, function, and behavior are the basic conceptual building blocks
for defining the primitive characterization hierarchies. Using the primitive-composite approach, we
can define common structural design objects as composite objects in terms of form, function, and
behavior primitives selected from different characterization hierarchies. Luth (1991), Umeda et al.
(1990), and Garrett and Yau (1989) have studied form, function, and behavior in the
representation of structural and other engineering objects, with different emphasis.

Our purpose in this section is to identify the considerations and issues in defining the elements
of form, function, and behavior necessary for structural design objects, and to briefly demonstrate
how a simple beam object might be defined using the elements of a primitive structural data model.
The detailed development of a primitive-composite schema for structural engineering is the subject

of our ongoing research.
4.1 Form, Function, Behavior

Form, function, and behavior provide the three principal axes in the definition of a primitive-
composite structural data model. In Figure 7, different aspects of form, function and behavior are
shown as the three orthogonal planes that compose the complete description of complex design
objects. Figure 8 provides a simple example of a load-bearing wall supporting beams and a slab
for use in the explanations in this section.

4.1.1 Form

Form descriptions of an object define its physical characteristics. There are many types of form
description: spatial, geometric, topological, material, fabrication features, etc. This section covers
those aspects of form necessary to define structural engineering objects. (Many elements of the
form description are within the STEP data exchange specification and can be adapted to fit within
the primitive-composite approach. We will reference some of the useful STEP elements as we
proceed.)

The spatial form of an object describes the spatial envelope of the object as well as its location
and its orientation in three-dimensional space with respect to a global reference point or relative to
other objects in its environment. The spatial envelope of a physical object can be defined in terms
of a local coordinate system and the dimensions (length, width, and height) of its spatial enclosure.

5/31/91 page 19



A Primitive-Composite Approach for Structural Data Modelling

For example, the wall object can be located and oriented by its local coordinate system or in
reference to its neighboring objects such as the foundation or the floor slab.

The geometric form of an object defines shape. Physical objects are three-dimensional, but their
shapes can be represented by different geometric forms. Consider the wall object again. First, it
can be represented with a cross section on a planar surface and a line segment in the third
dimension. Second, it can also be represented by a cross-section and a projected view in the third
dimension. This method of using two fundamental views (front, top, or side view) to construct
the geometry of an engineering part is commonly used in engineering drawings. Finally, the wall
object can be represented as a solid parallelopiped. Three-dimensional shape models (such as
solid, surface, and wire frame models) are defined in the STEP Integrated Product Information
Model (IPIM 1988).

The topological forms define the connectivity of objects in the constructed environment. In
structural engineering, a wire frame model of the structure is commonly constructed in order to
define the topology of the structure. The wire frame models are also analogous to finite element
models used for structural analysis purpose. Vertices (dimensionality 0), edges (dimensionality
1), faces (dimensionality 2), volumes (dimensionality 3) are topological primitive entities whose
standard definition is available from the STEP Integrated Product Information Model and the
GARM model (Gielingh 1988).

The material form of an object describes the type and properties of the material that comprises
the object. The material types used in civil engineering include steel, reinforced concrete, asphalt,
mortar, timber, etc. In reference to the STEP Integrated Product Information Model, material
properties can be classified into groups such as physical, structural, thermal, and thermal
expansion. The material property primitives in these groups can be defined in separate
characterization hierarchies and used to describe isotropic, 2-dimensional anisotropic and 3-

dimensional anisotropic materials.

The fabrication form includes features of an engineering part that the designer prescribes for
building the part. There is a large set of standard fabrication features such as taper, bend, thread,
cut out hole, edge clipping, edge preparation, NC mark, etc. These standard fabrication features
are defined in the STEP Integrated Product Information Model and the NIDDESC Ship Structural
Model (NIDDESC 1988).
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4.1.2 Function

The functional description of an object reflects the intended role or purpose of the object in its
constructed environment. An object may serve several functions. The wall object in Figure 8 may
resist loading (structural function) and provide a partition (architectural function). Even within one
view such as structural engineering view, the wall may perform several functions such as resist
loads (gravity or lateral), support the girders and floor slab, and transfer the applied loading to the
foundation.

From the viewpoint of structural data modelling, functions of the building elements relate to
some aspect of load carrying, load transferring, member or part connecting, member supporting
roles, and so forth. The functions are frequently captured as specialized relationships between the
building elements and other elements, or between the building elements and other entities in the
model that takes part in the functional definition such as loads, load cases, etc. We have identified
the following key roles of common structural objects:

1. Load resisting function

2. Load transmitting function
3. Object supporting function
4. Object connecting function
5. Object bracing function.

These functions are illustrated in the function plane in Figure 7. Although there may be other
noteworthy functions, we are focusing our initial study on these functions.

The load resisting function of an object is to withstand a load (or loads) that is applied directly to
it or transmitted from another object. The wall object in Figure 8 resists its own weight, the
external loads directly applied to it, and the loads transmitted from the connected beams and floor
slab. The load transmitting function of an object is to transfer the loading it carries to other objects
in the load path. For example, the wall object in Figure 8 transmits its loads to the foundation.
The object supporting function is to support another object. This function enables the transfer of
loads from the supported object, to the supporting object, down to the next object in the load path.
The wall object in Figure 8 supports two beam objects and the floor slab object. The object

connecting function is to connect two or more objects together. For example, the function of a
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beam-to-wall connection object is to connect the beam object to the wall object. The object bracing
Junction is to brace another object.

4.1.3 Behavior

The behavior of a design object is the way that object responds to environmental stimuli in
carrying out a certain function. Since an object may perform several functions, it follows that it
may exhibit different behaviors, each of which corresponds to the particular function in question.
For instance, in resisting gravity loads, the wall develops internal axial stresses; in resisting lateral
loads, it exhibits shear and bending stresses.

In structural engineering, the behavior of a structural component under the influence of loading
is manifested in terms of internal forces and stresses, deflection, deformation, vibration, etc.
Generally speaking, the design of a structural component has criteria that impose limits on its
behavior. These design criteria ensure the acceptable performance of the design object according to
professional standards from the following perspectives:

1. Strength (stresses and internal forces)
Serviceability (deflection, vibration, cracking, etc.)
Ductility

Stability

oA W

Reliability.
4.2 An Integrated Example of Form, Function, Behavior

In this section, we show an integrated example of form, function, and behavior in defining a
composite class for beams. Consider a simply supported, 10-foot beam that carries a distributed
live load wi, of 10 kip/feet as shown in Figure 9. In addition to the live load, this beam also
supports a piece of mechanical equipment. This results in a concentrated load Pp of 20 kips in the
middle of its span. The beam is an A36 steel standard rolled steel shape W14x30. Figure 9 shows
a composite instance of a composite class. This example is used in the following section to
demonstrate how a composite class can be defined in terms of its primitive classes using the
aspects of form, function and behavior.
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Figure 9: Simply Supported Beam Example

The definition of a composite class “Beams” includes several links with various primitive
classes from the form, function, and behavior class hierarchies that describe these aspects of a
beam. These links represent different relationships as shown in Figure 10. The primitive classes
that comprise the composite class include:

» aprimitive class from the spatial form hierarchy that includes attributes to position the
beam in space, including the coordinates of end A, the coordinates of end B, and the
length of 10 feet.

» a primitive class from the geometric form hierarchy representing the uniform cross-
section with the shape of a standard wide-flanged section (W14x30).

» a primitive class from the topological form hierarchy that establishes a connection
between the beam and the supports at A and C.

e a primitive class from the material form hierarchy containing the properties for A36
steel.

» the “load-resisting” primitive class from the function hierarchy linking the beam with
the distributed dead load and the concentrated equipment load.
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e a flexural response primitive class from the behavior hierarchy, which describes the
behavioral responses of the beam due to its loading such as internal forces, degrees of
freedom, boundary conditions, stresses, deformations, displacements, etc.
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5. Conclusions on the Primitive-Composite Approach

Using the primitive-composite approach, it is possible to develop a language for domain data
through the primitive characterization hierarchies of the primitive schema. To extend the analogy,
computer tools and users may speak specialized dialects, which are combinations of elements
found in the common language. Translation from one tool to another is driven by the mapping
information that links the composite schemata (dialects) to the primitive schema. It is important to
note that the primitive-composite approach is focused on the logical translation of data and does not
address issues of data ownership, integrity, consistency, and currency. However, without a
solution for the logical data translation, the other issues are just abstract questions.

The primitive-composite approach has the potential to produce the following impacts on
engineering data modelling and data exchange:

o Building complex integrated data models to support data exchange is no
longer necessary. Rather than trying to anticipate every possible combination of
engineering data, data exchange models need only define the relatively stable set of
primitives of the domain. The primitive-composite approach provides the methodology for
building composite objects as needed by users and programs as well as the mechanism for
translating those composite objects from one system to another via the primitive schema.
Users and programs need not share the same composite schema to exchange data that they

have in common.

» Complex user views are easy to develop. Using the primitive-composite approach,
the elements of form, function, and behavior are separated in disjoint primitive
characterization hierarchies. Each primitive characterization hierarchy uses only one
homogeneous criterion to define the primitive classes and therefore provides a clean view
about a specific aspect of a complex engineering object description. The strategy of view
separation in defining a complex design object enables the developer or different developers
to concentrate on one particular view of the object at a time. Moreover, this “divide and
conquer” modelling technique facilitates the creation of the model and the abstraction of
different views.

» Many user views can be supported from the same primitive schema. The
possibility of defining new composite object types by identifying their primitive
constituents provides the user with a great deal of modelling flexibility. This approach
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allows users and programmers to represent a wide array of different views about complex
objects and to capture their informational evolution throughout the design stages and the
project life cycle.

e Programs can be self-descriptive. A program with a formally defined composite
schema essentially carries its own descriptive knowledge to support the exchange of
common data with any other program that shares the same primitive schema. Programmers
do not need to build knowledge about an application's data into a special purpose
translator—all of that knowledge is already present in the definition of the composite

schema.

+ Software developers can add value through customization without
restricting data exchange. One pitfall of a standard is that it reduces the ability of
vendors to differentiate their products. In the P-C approach, even though the programs
must be built upon the primitive schema, developers can still produce complex and highly
customized applications without sacrificing easy data exchange. To provide the data
exchange capability, the developer need only define how the composite schema of the
system is assembled from the primitive schema. The tool and the data can be optimized to
solve the problem at hand, while retaining the ability to easily exchange data with other
systems that have overlapping data.

 Domain knowledge bases can be shared if they reference the primitive
schema. The most common knowledge bases of domain information for structural
engineering are the requirements from building codes and standards. Research in
computerized standards processing has shown that a critical prerequisite to the encoding of .
the requirements is formalize the data model implicitly represented within the standard
(Garrett and Fenves 87). If the requirements address the data in the terms of the primitive
schema (e.g., a combination of forms, function, and behavior primitives), then those
requirements can be used for checking or design in any composite model. In the same
way, other knowledge bases (both general and specific) can be shared if they reference the

primitive schema.

Our continuing research in this area is refining the basic concepts of the P-C approach, defining
a comprehensive primitive schema for structural steel, 'developing software tools to support the
assembly of primitive and composite schemata, and exploring how the data translation using the
primitive-composite can be automated within the KADBASE framework.
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