ECFNTFR EOR INTEGRATED EACH ITY ENGINEERING

Integrated Case-Based Reasoning
for Structural Design

by

Jenmu Wang
H. Craig Howard

TECHNICAL REPORT
Number 58

October, 1991

Stanford University

Center for Integrated Facility Engineering < Stanford University

Copyright © 1991 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

c/o CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020

Abstract

Recent knowledge-based expert systems for structural engineering design have focused
on case-independent knowledge (abstract reasoning rules for designing), and while great
strides have been made in that area, there is still a significant need to develop systems to
take advantage of the wealth of knowledge contained in every substantial structural design.
On the other hand, previous database-oriented design efforts have focused primarily on
knowledge-poor databases of solutions, in which the traditional engineering handbook of
solutions has simply been replaced by digital data. The challenge is to find a way to
capture and apply the kind of case-dependent knowledge that structural engineers have
traditionally used.

This thesis examines the new approach of implementing knowledge-based structural
design systems using both case-dependent and case-independent knowledge. The resulting
system, DDIS', combines case-based reasoning with case-independent reasoning in a
blackboard framework. In the blackboard model, the knowledge needed to solve a *
problem is partitioned into independent knowledge sources that are grouped into several
knowledge modules in the knowledge base. The knowledge sources communicate design
results via a global knowledge structure (the blackboard) and respond opportunistically to
the changes on the blackboard. DDIS has two major knowledge modules: case-dependent
and case-independent. The case-independent module represents abstract knowledge about
the problem domain and problem solving strategies. The case-dependent module uses
case-based reasoning techniques to transfer knowledge from previous designs to current
design tasks. Using the blackboard control mechanism and the two knowledge modules,
DDIS can apply both case-dependent and case-independent knowledge to perform
collaborative and opportunistic design.

The most important elements of case-dependent knowledge identified in this study are
design solutions, justifications, constraints, failures, plans and goals. Design solutions
include final solutions, intermediate solutions and partial solutions. Design justifications
are the calculations of previous design variables and the dependences of their values.
Design constraints are used to evaluate designs and are very important information for
understanding the history of a design case. Previous design failures can be used to avoid
unsuccessful design alternatives in the future. Design plans are the strategies used to solve
a design problem. Specific knowledge about how to achieve a particular design step is

1 DDIS stands for Design-Dependent and Design-Independent System. “Design-dependent” and “desigr.x-
independent” are the terms used for “case-dependent” and “case-independent” in the early stage of this
research.

contained in a design goal. Design goals are included in plans to form complete case-
dependent control knowledge of a case.

DDIS has a very flexible architecture and representation that can use any subset of the
above mentioned case-dependent knowledge. Past design solutions can be applied to very
similar new designs while previous design plans can be applied to guide designs with less
surface similarity. However, this study did not address the similarity problem. DDIS
relies on users to retrieve relevant designs from the case memory and to decide how similar
they are to the new design. '

Two structural design applications have been built using DDIS to demonstrate its
integrated design approach. The demonstration applications design structural steel beam-
columns and anchor base plates for electrical transmission poles.

Acknowledgements

This report is based on the Ph.D. thesis submitted by Jenmu Wang to the Department
of Civil Engineering, Stanford University. The doctoral committee comprised of Professor
H. Craig Howard, Dr. Barbara Hayes-Roth, Professor Helmut Krawinkler and Professor -
Kincho H. Law. Financial support from the National Science Foundation (Grant No.
MSM-8958316) and the Center for Integrated Facility Engineering (CIFE) at Stanford
University is gratefully acknowledged.

iv

Tabie of Contents

Abstract ii
Acknowledgements iv
Table of Contents v
List of Tables viii
List of Figures ' ix

B I 0514 01 1T Tt 5 1) | B EUER |

| O B\ (6111 7 (o + R OO 1

1.2. Definition of Case-Dependent Knowledge......uuvvvvvvveeviinirveneieirennnnnn, 2

N T 0 1+ 1o 1 L S TSR 4

1.4, Organizationiueieiieiiie it 5

2. Background.....oovuuuiiiiiiiiiiiiiiiiiiiitenettnnettnntecenneecsinecsnnanes?
2.1. Reasoning Paradigmscouveniniriiiiiiniiiiii e eenn 7
2.1.1. Rule-Based Reasoning..........cccevvnirininiineniniiiieineninennnnnnn, 7

2.1.2. Case-Based Reasoning......coceuveiiiieniieiiiiennenierenieerenanennns 8

2.2. Knowledge-Based Systems in Structural

Engineering Designl.....c.ouuiiiuiiuiiiiiiiii i eeie e ans 10

2.3. Related Case-Based Reasoning Effortsc.ceevvevieriininiiiiniininnnns, 12
3. An Integrated Model of Designcccovvieeerenenreceeneeeencroacaanesal8
3.1. Integrated Reasoning Paradigm.......c.oeveviuiiiiieiniiniiiiiieieeeeeenenss 15
3.2. Modeling the Design ProCesS.....cccccvurmruerrerrereeereeeeeeeereeieeeeeeenenns 17
3.3, Saving @ DESIZN..uueuinineiiiiiiiiiii e ee e e aaaaaas 18
3.4, Using CBRINDESIZN .euvuvnniniiitiiiiieiiieeiaieeeeeeeeeeeirereaeaenennnas 20
3.5. Integrating the Two Design Approaches.........coevevevuieenireioenenennnnnnns 21
4. The DDIS Environment......cccceeeieeeiussnirnsessscossorsosscscssessesssld
4.1, OVEIVIEW .ttt e e e eaeaseeaeaenesenenenannas 25
4.1.1. System ArchiteCturec.ovtiueiiiniiiiiiiiieiieneeeeneeneenenn. 27

. 4.1.2. Knowledge Representationoceeuevuiieiiniireneerneneenennenneneens 29
4.2, Blackboard....ooeiiiiiiiiiiii i e 33
4.2.1. Control Objects....cccuevueeneennen.. heeenerneenern e eentra e saens 33

4.2.1.1, Plans coueiniiiiiii i 34

4.2.1.2, Goals. .ot

4.2.1.3. Retrieved Designsooeiiiiii i e

4.2.2. SOIULION OBJECES..eeerrrerrieenreeeeeiieeeceeeeeeeeeee e eeeea e
4.2.3. ACtON OBJECIS. . eutintiiniiei ettt
4.2.3.1. Knowledge SOUICES....c.ecervuvriiirniiiiiniiiiiineaenn.,

4.2.3.2. KSARS ottt

4.3, COontrol SrategY....cceeeeiiiuumiiieieiiiiiiareeiiieeeeeeeierreeeeeevearneneeees
4.3.1. EXecution CYCle....uiuuninieniniieee e e
4.3.2. KSAR RatiNg.eeuiiiiiiiiiieiiiieiiieeiieeriee et eeiieeiineeiineenneianes
4.3.2.1. Rating Function for Case-Independent KSARs

4.3.2.2. Rating Function for Case-Dependent KSARs

4.3.3. Plan and Goal Maintenance.........coeeuererereninininininenenenenenn.
4.3.3.1. Plan Updating.....ccccuveeuriniiireinrenieeneriiieniennneennes

4.3.3.2. Goal Updating......coeveiiiiiiiniiiiiiiiiniiiieeneenns

4.3.4. Goal EXPANSIONcuvviiiiiieietiiinieeieeeeeerereieerererenenanenes
4.3.5. General Scheduling Criteriaccoeiereniniininiiiniiiiinenennen.

4.4, CaSE MEIMOTY . uuiiniiiniiieeier i eet e tee e e ee e et e e eeans
4.4 1. DeSiN CaSES ouuurinrint it ieet et e
4.4.2. Case-Dependent Plans........c..coeeuniiiiiiiiiiieiieeeiieeeneeeennnn
4.4.3. Case-Dependent GOalSocveeneniininiiiiieieirereieiinannnnns

4.5. Knowledge Base.........coueerinininiinininannnnnnsns e
4.5.1. Case-Independent Reasoner.........ocveuivininininirnininenereennnnnsn.
4.5.1.1. Design Generator.oouureinriinieneineeeeeeaneenneannn.

4.5.1.2. Constraint Checker........o.ovvvriviiniiiiniiiiienienenns

4.5.1.3. Backtracking ProvoKerccoovvviivinivninninnennnnnn.

4.5.1.4. Redesign AdVISET.....ccuvvvueiviniiniiieeeiieineeeineennns

4.5.2. Case-Based ReaSONETovvvivruininiiieiinienenineineees eaenenns
4.5.2.1. Memory Prober........covevuiiiiiiiiiiiiiiiiiiiiieeeenninns

4.5.2.2. Failure Anticipator.....cccccceeeiiuirieieneeereneeennneennnens

4.5.2.3. Analogy TransSformer........ccoveveiiiiiiiinnenenenennennnns

4.5.2.3.1. Solution Transformer........cccceeererruunnens

"4.5.2.3.2. Plan Transformer.......c.cocevevuevennenennnns

4.5.3. Case ReCOrder....co.iuiuiniiiiiiiiiiiiieiii e eee e aeeeenans

4.6. IMplemMentation.cc.veirieninieireneienaneneereerenenereeereraaarenerenans
S. Illustrative ExampleS...ccciiviiiiiiiiiencannns Cessesessceecearsscassncsanas
5.1. Beam-Column Design.....cccivuivuiiiiiriiiiiiirieiiierieerenereeneeneaanenns
5.1.1. Beam-Column Design SessionI........... e —————
5.1.1.1. Description of the Design Session........cccceeeeeenennnn.

5.1.1.2. Analysis of the Design Session........cccoevvveeeennnnnn..

5.1.2. Beam-Column Design Session II.........ooviiiieiiiiieniiiieinnnens

5.1.2.1. Description of the Design Session

..........................

5.1.2.2. Analysis of the Design Session..........ccovvvvenninn.... 81

5.2. Pole Anchor Base Plate Design ..o.o.uiiuiiiiniiiniiiiiie i 81
5.2.1. BasePlate Design Example I..........c.ocooiiiiiiiiiiiiiiiinen, 86
5.2.1.1. Description of the Design Session..........ccccceeeevvnenes 89

5.2.1.2. Analysis of the Design Session............cccoeevenennen.. 91

5.2.2. Base Plate Design Example Il.........ocooiiiiiiiiiiiiiiiinn, 92
5.2.2.1. Description of the Design Session...........ccceeeuuenene. 93

5.2.2.2. Analysis of the Design Session............cooeeiiveina.n. 96

5.3. Comments on the Two Demonstrationoevvereverreineeenreeneeeenneennnnns 96

6. Summary and ConclusSionsSc.ccoeseoececosscssscscsccscssssscssscosceed9

6.1. Design ReCOriNg....c.uuuireiniiniiteareeee et et eaeaeeteae e eenaeaenns 99
6.2. Design Retrieval...cooviiiiiiiiiiiiieii e eeeans 100
STCIRIF:N o) o) (o) o) o 115 o 11 S P U PP PP 101
6.4, Flexibility ..ottt e e 102
6.5. Scope and Limitationsoouuvuieneenntenieererreeaeenrnnirneennenneaeeaeenaenn 102
6.6. Directions for Future Research...........oooiiiiiiiiiiiiiiiiiiii e, 103
S - D 4T ...107

Abbreviations and ACrONYIMS ..ccoveeeeorescesssscscssscsesssssssesssosssscsslll

Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:

List of Tables

Action Overview of Beam-Column Design Session L.........ccccue... 75
Action Summary of Beam-Column Design Session II....... rrveerenenns 79 -
Design Overview of the Base Plate Design Example I.................... 87
Design Overview of the Base Plate Design Example IL................... 93

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

3-1:
3-2:
3-3:
3-4:

3-6:
4-1:
4-2:
4-3:
4-4:
4-5:

4-7:
4-8:
4-9:
4-10:
4-11:
4-12;
4-13:
5-1:
5-2:
5-3:

5-5:
5-6:
5-7:

5-9:

5-10:
5-11:
5-12:

List of Figures

Reasoning Paradigms in an Integrated Design System 16
Control Flow in the Case-Independent Reasoner........ccccceeeeeennnn. 18
The Case-Independent Reasoner, Case Recorder and Case Memory ... 18
The System with Case-Based Reasoner.............cccvvvvieiiiieneennn... 21
The Final Integrated Knowledge-Based Design System.................. 22
Overview of Integrated Knowledge-Based Design System.............. 23
Blackboard Metaphor........ovuviiiiiiiiiiiiiiii e 26
Data and Knowledge Flow in DDISo 28
A Sample of DDIS’s Class Hierarchy e 30
Hierarchy of Data Items in DDIS......oiiiiiiiiiiiiiiiiiiiie e 30
BASE.PLATE.DESIGN.PLAN.L...cciiiiiiiiiiiiiiieieeeeieeians 35
The DESIGN.BASE.PLATE Goal ...co.evviiiiiniiiiiiiiiinieniennnnn, 37
Knowledge Source REUSE.-WHOLE.SOLUTIONe. 40
KSAR REUSE.SOLUTION.FROM.CASE.2cccoooevuverennnn. 43
Execution Cycle of DDIS. ..o 44
An Example of the DDIS's Goal Expansion..........c.cceveveieiniennenn. 52
The Hierarchy of Case Memory Knowledge Base in DDIS.............. 56
Variable Dependence Graph......cococcoviiiiiiiiiiiiiiiniiinniennninnn. 69
The Blackboard Interface of DDISc.covveiiiiiiiiieieneneenenannn. 70
Beam-Column Design Examplesc.oooviiviiiiiiiiiiiiiiiiiinnnn. 73
The Beam-Column Knowledge Base.......ccevveiieiiiiiiiiiiiiiiiinnn.. 74
Design Cases in the Case-Memory Knowledge Base................o.... 76
Design Variables of a4-Bolt Base Plate......cccevvvveiiieiiiiiininnn. 82
The Base Plate Knowledge Base...........oooeeiiiiiiiiiiiiin, 84
A Solution Path of the Base Plate Design Problem...............coeeeen. 85
Anchor Base Plate Design EXamples.......ccoooevererrruerrveereeseeeens 86
The Primary Attributes of Case EXPERT.1ociiiiiiiiiiiinn.. 90
EXPERT.1.REDESIGN.PLAN.4......cotiiiiiiiiiiiiiiiiiiienne, 90
EXPERT.1.DESIGN.PLANottt 91
The Solution Path of the Base Plate Design Example I................... 92
The Solution Path of the Base Plate Design Example IT....................97

Chapter 1
Introduction

Design databases represent design solutions without capturing the knowledge behind
them. Rule-based expert systems capture case-independent knowledge—abstract reasoning
- rules independent of specific designs. To more fully capture the kind of knowledge
employed by experienced designers, knowledge-based design systems need to incorporate
case-dependent knowledge—a memory of good (and bad) designs and design strategies
together with the rationale that supports them.

Previous knowledge-based systems for structural design are based primarily on case-
independent knowledge. This research combines case-dependent and case-independent
knowledge in an integrated, knowledge-based structural design system. The case-
independent components use rule-based and frame-based methods to represent abstract _
knowledge about the problem domain and problem solving strategies. The case-dependent
components use case-based reasoning techniques to transfer knowledge from previous
designs to current design tasks.

The overall objectives of this research are to formalize case-dependent knowledge in the
structural engineering domain, to demonstrate the feasibility of using case-dependent
knowledge in knowledge-based structural design systems, and to develop a prototype
integrated design framework utilizing case-dependent and case-independent knowledge
cooperatively.

1.1. Motivation

This study arises from an intersection of interests in design databases and knowledge-
based expert systems. In looking at the problems of representing engineering design data
in formal databases and CADD (computerized drafting and design) systems, it quickly
becomes apparent that something is missing. The computerized design database fails to
capture the reasoning behind the design (as did the paper plans of the manual era); i.e., the
database represents the whar of the design, but not the why. Taken as a whole, the design
database represents the problem solution as data without knowledge. If that exact problem
is to be solved again, then the design task is trivial—just a database look-up. However, the
challenge of design is to solve new and different problems. Thus the use of the design
database in future design tasks requires that the designer recall at least part of the original
reasoning chain to determine where the design or parts of the design might be applicable.

Integrated Case-Based Reasoning for Structural Design

. In contrast to the design database approach, knowledge-based expert systems attempt to
codify the abstract reasoning processes of the expert into “if-then” rules; i.e., the expert
system captures the why, but not the whar. The expert system knowledge can be
characterized as case-independent knowledge. Examples of case-independent
knowledge from the structural engineering domain are:

IF the component is a column
THEN area and radius of gyration are the critical dimensions

IF the component is a beam
THEN moment of inertia and depth are the critical dimensions

Experienced designers do not design strictly by abstract reasoning processes, nor do
they exhaustively search a space of previous design solutions, testing whether each exactly
matches the current design criteria. Because they have typically performed many similar
design tasks to reach a level that we would term "experienced", these expert designers have
been exposed to a wide variety of design problems and the reasoning processes associated
with those design problems. Therefore, the experienced design professional has a memory
of good (and bad) designs and knows the rationale behind each of them. Potentially, the
designer may have generalized some of this experience into abstract reasoning rules, but
most of the experience is still in the form of case-dependent knowledge—knowledge
about specific previous designs and their supporting reasoning.

Previous knowledge-based systems for structural design such as HI-RISE [Maher 85]
and DESTINY [Sriram 86] are based primarily on case-independent knowledge (see
Section 2.2 for more about these systems). The use of case-dependent knowledge in
structural engineering can have significant benefits in the performance of the design
process, in the capture and formalization of the engineer’s-design knowledge, and in our
understanding of the art and science of structural design. This study presents a prototype
solution to integrate case-dependent and case-independent knowledge in a knowledge-
based design system and explores the issues that arise in the development of the system.

1.2. Definition of Case-Dependent Knowledge

The design of engineering structures is a complex process requiring knowledge of
structural material properties, mechanics of materials, structural analysis and design
specifications, in combination with experience built up over years of practice. The
experiential knowledge ranges from detailed positive and negative experiences associated
with specific design cases to abstract heuristics and general rules of thumb generalized from
many projects. The former is what we call case-dependent knowledge, and the latter is
case-independent knowledge. '

Integrated Case-Based Reasoning for Structural Design

Case-dependent knowledge is the knowledge about specific previous designs and their
supporting reasoning, including previous design solutions, plans, assumptions, history,
decisions and the rationale behind design decisions. On the other hand, case-independent
knowledge is generalized from many design experiences. It is independent of specific
design cases and can be applied generally to the problem domain.

There are many computer programs that provide algorithmic solutions to structural
design. A number of prototype expert systems [Maher 85, Garrett 86, Sriram 86, etc.]
. have been developed to integrated abstracted reasoning heuristics (i.e., case-independent

knowledge) with algorithmic design tools. Current development of case-based reasoning
in artificial intelligence has made it possible to capture the case-dependent knowledge into
knowledge based system.

To apply case-based reasoning techniques using case-dependent knowledge, we must
first identify those aspects of the case-dependent knowledge that can have a positive impact
on the solution process. In the discussion below, we examine some contrasting views of
potentially useful case-dependent knowledge.

¢ Design solutions and design plans—Frequently, previous design

solutions provide good starting points for new design problems. In modifying
a previous solution, knowing the reasoning behind that solution permits the
designer to quickly ascertain whether the proposed changes violate any of the
fundamental constraints on that design or what interactions those changes may
have with other aspects of the design. Similarly, it is as important to capture the
solution strategy (i.e., the plan) and the associated rationale as it is to capture
the actual solution. While a specific design solution can be applied to a small
range of similar problems, a previous solution strategy can be applied to
generate a completely different design.

e System designs and component designs—The granularity of the case-
dependent knowledge is important. From a single complete structural design
case, a designer can reason about one component (e.g., a standard beam), about
a module composed of several components systems (e.g., a floor slab with its
supporting beams), or the entire structural system composed of many
components (e.g., a building frame). Each complete design contains a wealth
of knowledge at all three levels.

* Good designs and bad designs—Since almost all design tasks require
multiple iterations, designers may actually have more knowledge about bad
solutions and solution strategies then they do about good ones. Therefore, it is
important to capture this knowledge to eliminate as many alternatives as
possible. In particular, knowledge about design failures can be used to bring
downstream constraints into consideration at the very early stages of the design

[nregrated Case-Based Reasoning for Structural Design

process. For instance, a concrete beam design may satisfy all applicable
building codes but be impractical to build on the construction site.

These pairs of ideas are intended to represent contrasting ends of non-exclusive ranges.
The full spectrum of useful case-dependent knowledge is constituted from the intersection
of these ranges and others as well. The objective is to capture knowledge about good
component solutions, bad system design plans, etc. A case-dependent, knowledge-based
system should be able to apply all the knowledge available from previous design tasks to
the improvement of the current design. '

1.3. Objectives

The purpose of this research is to explore the integration of case-dependent and case-
independent knowledge in a knowledge-based structural design system. The major
objectives are to:

e Formalize case-dependent knowledge in structural engineering
design—Although case-dependent knowledge is commonly used by human
structural engineering designers, it has not been formalized for applications in
computerized design systems. The first objective of this research is to identify
and formalize the case-dependent knowledge that is required for case-based
inference in structural engineering design; i.e., what knowledge and data is
important and useful in future design tasks and how should that knowledge and
data be captured and represented.

* Develop a prototype knowledge-based design environment
integrating both case-dependent and case-independent
knowledge—A prototype computer system has been implemented to serve as
an experimental framework so that the new approach of implementing a
knowledge-based design system using both case-dependent and case-
independent knowledge can be examined.

* Demonstrate the feasibility of using case-dependent knowledge in
knowledge-based structural design system—Previous knowledge-
based systems for structural design are based primarily on case-independent
knowledge. This research focuses on how case-dependent knowledge can be
used effectively within the design process: identifying similar design solutions,
applying previously successful design plans, etc. The prototype system is
demonstrated with two structural engineering applications: steel beam-column
design and anchor base plate design for electrical transmission poles.

It is important to point out that the long-term goal is not to build a “black-box”
designer. There are many aspects of problem-solving that humans perform very well, and

Inzegrated Case-Based Reasoning for Structural Design

our goal is to improve the interaction of computer tools and human designers by
constructing intelligent design assistants that support rather control the design process. The
aim with this research is to investigate a new approach of implementing those intelligent
design assistants. Although the knowledge acquisition and explanation interface were not
the emphasis of this project, they are taken into account in the overall system architecture
and considered as an influential factor throughout the project so that later expansion is

possible.

1.4. Organization

-The rest of this thesis is organized as follows:

Chapter 2 reviews background information relevant to this research. Two -
reasoning paradigms, rule-based reasoning and case-based reasoning, are
examined. This chapter also reviews related efforts in case-based reasoning and
research in knowledge-based systems.

Chapter 3 constructs an integrated design model based on the integration of
rule-based and case-based reasoning paradigms. The overview of this
integrated, knowledge-based design model and the functionality of its elements
are described in this chapter.

Chapter 4 introduces DDIS, the prototype system implementing the integrated
design model. The overall functionality and architecture of DDIS are presented
in the overview section. Then, the details of the elements comprising the
system are reported. The last section of this chapter summarizes the
implementation issues.

Chapter 5 describes the two demonstration applications with some illustrative
design examples. The intent of this chapter is to help the reader understand the
design approaches that are available in the integrated, case-dependent and case-
independent environment of DDIS.

Chapter 6 summarizes this research and discusses DDIS in terms of its
successes and shortcomings.

Chapter 2
Background

This chapter presents background information relevant to this research. The first
section describes two different inference methodologies used by knowledge-based expert
systems (KBES): rule-based reasoning and case-based reasoning. The second section
reviews previous KBES research in structural engineering design (and related disciplines).
The final section discusses a number of case-based design systems.

2.1. Reasoning Paradigms

The inference methodology of expert systems can be divided into two broad categories:
rule-based reasoning and case-based reasoning. This division is based on problem-solving
approaches rather than knowledge representation methods. Generally speaking, a rule- °
based reasoning system relies on abstracted heuristic knowledge to solve problems, but a
case-based reasoning system relies on similar previous cases to solve problems.

Since 1976 when MYCIN [Shortliffe 76] was developed as part of the Stanford
Heuristic Programming Project, rule-based reasoning has been the most popular expert
system reasoning paradigm. However, case-based reasoning is based on the fact that
human beings consider not only rules but also previous cases in problem solving. In the
following subsections, these two reasoning paradigms are examined in more detail.

2.1.1. Rule-Based Reasoning

Rule-based reasoning can be defined as the application of heuristic and causal
knowledge encoded as formal rules. A rule-based reasoning system reasons by heuristics
drawn from experience, judgment or insight of domain experts. Mostly, these domain-
specific heuristics are represented as rules (also called productions or production rules) in a
knowledge base. However, the knowledge representation of rule-based reasoning systems
is not restricted to production rules. For example, frame-based methods can also be
included to store object-oriented knowledge.

There is a large body of literature discussing knowledge representation for knowledge-
based systems (e.g., see [Brachman 85] and Chapter 7 of [Waterman 86]), but that is not
the intention here. The rule-based knowledge representation method will be described
briefly in order to illustrate the classification of a rule-based reasoning system.

[ntegrated Case-Based Reasoning for Structural Design

Production rules are conditional statements that have the form:
IF conditions THEN actions.

The IF part is called the left-hand side (LHS) of the rule, which can be any fact that can
be matched to fire the rule. The THEN part, which is called the right-hand side (RHS) of
the rule, can be problem-solving actions or conclusions.

The problem space of a rule-based system can be viewed as consisting of many
independent states (e.g., a initial state, intermediate states and a goal state), and a rule is a
legal transition from one state to another. Once the IF part (LHS) of a rule has been
matched, the THEN part (RHS) of the rule can be executed. The execution of a rule adds
new information to the problem space or alters the old context. Therefore, a problem is at a
different state after a rule is fired.

A rule-based system performs its problem-solving task either by applying rules to move
from an initial state toward a goal state (forward chaining) or by applying rules to move
from a goal state (or hypothesis) toward supporting data (backward chaining). The expert
system’s inference engine determines the order in which the rules are to be applied in a
particular problem. Given the initial state of a problem (i.e., a set of facts), the inference
engine uses knowledge in the knowledge base (i.e., production rules) to form a line of
reasoning which denotes a path toward the goal state.

2.1.2. Case-Based Reasoning

Case-based reasoning uses earlier experience of similar situations to help solve new
problems. Sometimes called reasoning by analogy, case-based reasoning is an important
problem-solving strategy that humans use frequently. When we encounter a problem, we
recall a similar one that we solved before, compare the two problems, solve the new one
analogously, and store it as part of our memory. While humans apply case-based
reasoning automatically to a wide range of tasks, programming computers to recognize
problem similarities and to transfer complete or partial solutions with analogic reasoning
has proven to be very difficult.

- Case-based reasoning is distinguished from rule-based reasoning system in two ways.
First, it uses the knowledge associated with previous individual cases rather than abstracted
heuristic rules to assist the current reasoning process. Second, its ability to reuse its
experience is actually an automated learning process. Therefore, case-based reasoning is a
powerful reasoning paradigm, especially for incomplete and intractable domains such as
design and planning.

Integrated Case-Based Reasoning for Structural Design

In general, case-based reasoning involves three stages:

¢ The access (or retrieval) phase involves the location of previous cases (stored in
the memory) that are similar to a new case an: the comparison of pertinent
features that are critical to a particular class of problems. Then, the best feasible
case(s) is selected as the source of analogy. l

e At the mapping stage, correspondences between the source case and the new
case are established to analyze differences and find similarities between them.

* Once the mapping is complete, analogical inference is applied to transfer
knowledge from the source case to the new case based on the similarities
identified. The identified differences also help to modify the previous
experience to fit the new situation.

To reason by analogy, we must first have some cases to reason from and a memory
structure in which to store them. The case memory is the resource of analogical problem
solving. The functionality of its organization is to index the cases by their use and make it
easy to access them. On the other hand, to retrieve a case that best matches the situation of
a new problem, a case-based reasoning system needs to have some metrics that judge
partial matches and serve to choose between potential cases. Therefore, the major issue in
the access phase is finding a case indexing and retrieval mechanism that can work together.

Currently, there are some fairly good memory models that can represent knowledge and
cases in a computer program. For examples, semantic network memory model [Quillian
68] typically represents static information and episodic memory model [Tulving 83] uses
temporally related information (e.g., events, scenes, occurrences, etc.).

With regard to analogical inference, there are three approaches in general. Carbonell’s
two theories, transformational analogy [Carbonell 82] and derivational analogy [Carbonell
85], are useful in transferring solution and reasoning strategy of previous successes, while
failure driven learning [Schank 81, Hammond 86] makes use of previous failures to avoid
repeating the same mistakes. Transformational analogy transfers the previous solution of a
similar problem to the new problem and modifies it based on differences between the
problems. The solution modification is performed by predefined transformation operators
and guided by heuristic rules. Derivational analogy uses the past reasoning process to
reconstruct a solution for the new problem. The decisions that underlie the past solution
are justified by the new problem situation. Violations are overcome by searching for
alternatives.

Two case-based reasoning tools are currently available: CBR Express™ (Inference
Corporation) and ReMind™ (Cognitive Systems, Inc.). They are recently commercialized
case-based reasoning technology. However, the functions of the two systems are
limited——emphasizing on the search and retrieval mechanism as well as user interfaces for

Integrared Case-Based Reasoning for Structural Design

entering cases and browsing memory. They are not well suited for solving the kind of
structural engineering design problems that this study is interested in.

2.2. Knowledge-Based Systems in Structural
Engineering Design

Knowledge-based system prototypes have been developed for a wide range of civil
engineering problems. A survey of those applications can be found in [Maher 87]. In this
section, we will focus on structural design systems and notable design systems from
related engineering fields.

Three of the most significant knowledge-based systems for structural design are HI-
RISE [Maher 85] (for preliminary design of high-rise structures), SPEX [Garrett 86]
(structural component design) and DESTINY [Sriram 86] (integrated building structure
design). The first two systems will be described in more detail shortly. Other structural
design systems include SSPG [Adeli 86a], BDES [Biswas 87], RTEXPERT [Adeli 86b],
and truss design [Chan 87] (exploratory design using constraints). SSPG is a system for
design of stiffened steel plate girders. To start the design, 300 production rules are used to
select the ratio of the depth of the web and the length of the span (h/L). BDES and
RTEXPERT are microcomputer-based expert systems. BDES designs small to medium
span highway bridges. Heuristic rules are used to support the front-end decision-making
process (e.g., choice of templates from a finite number of patterns of configuration,
selection components of the template, and preliminary sizing of the selected components).
RTEXPERT is developed using INSIGHT 2+, a rule-based expert system shell
implemented on IBM PC, for roof truss design.

There are several experimental systems developed for other engineering design
problems that are of interest in this research. AIR-CYL [Brown 84] designs specialized air
cylinder. PRIDE [Mittal 86] designs paper handling systems inside copiers using a
generalized design plan represented as an object-oriented model with design rules
associated. DOMINIC [Howe 86] is a domain-independent system for mechanical
engineering design derived from Dixon’s earlier V-belt and shaft design KBES [Dixon 84].
DOMINIC takes a domain-independent approach to design using an evaluate-and-redesign
architecture that applies a best-first search and domain-specific heuristic knowledge.

All the systems mentioned above are based primarily on case-independent knowledge.
In order to fully illustrate this point, two systems are described in more detail below,
namely, HI-RISE and SPEX. The discussion emphasizes the kinds of knowledge that they
apply to the design process.

» HI-RISE [Maher 85] is a knowledge-based expert system for the preliminary
. design of high-rise buildings. The design process model used by HI-RISE is
divided into three stages: synthesis, analysis, and evaluation. During the

10

Integrated Case-Based Reasoning for Structural Design

synthesis process, HI-RISE employs heuristic elimination rules to guide the
search in constructing all feasible structural configurations. The following are
the typical elimination rules (in English translation) that are used to select the
lateral load resisting system:

IF number of stories > 50 AND 3D system is core
THEN alternative is not feasible

IF 3D system is tube AND 2D system is solid shear wall
THEN alternative is not feasible

IF 2D system is rigid frame AND material is concrete
AND number of stories > 20
THEN alternative is not feasible

During the analysis task, HI-RISE must initialize some parameters (e.g.,
geometric and material properties of components) to evaluate the feasibility -
constraints of each alternative. The parameter values are selected using heuristic
rules such as those that follow:

° Typically a W14 section is used for steel column design.
° The depth of a reinforced concrete slab is one twenty-eighth of its span.
° A double angle section is usually used for braced frame diagonal design.

Both the elimination rules and parameter selection rules represent the abstracted
heuristic knowledge in high-rise building design. They are independent of
specific design cases and can be applied generally to the problem domain. So,
the knowledge that drives the inference of HI-RISE can be characterized as rule-
based, case-independent knowledge.

SPEX (Standards Processing Expert) [Garrett 86] is a knowledge-based,
specification-independent structural component design system. SPEX selects a
few key behavior limitations that govern the current design problem and locates
the corresponding design requirements in the standard. Then, a set of
constraints is constructed from the logical content of each requirement and other
known structural, material and geometric relationship. Once the constraint set
has been generated, the design can be solved as a optimization problem
bounded by these constraints. The major role of design heuristics in SPEX is
to generate or complete the design focus hypothesis identifying the key behavior
limitations. The design heuristics are represented as abstracted reasoning rules
called hypothesis generation rules in SPEX. An example is showed below in
English translation:

11

Integrated Case-Based Reasoning for Structural I »sign

IF the component type is column
AND the unbraced length about the x-axis is long
AND the unbraced length about the y-axis is long
AND the hypothesis is NIL
THEN the complete design focus hypothesis is
long column buckling about the x-axis due to axial compression
AND long column buckling about the y-axis due to axial
compression

In addition to selecting governing behavior limitations, heuristic rules are also
used for backtracking control, constraint set modification and hypothesis
modification. As with HI-RISE, SPEX can be categorized as a rule-based
reasoning expert system using case-independent knowledge.

2.3. Related Case-Based Reasoning Efforts

Analogy has been an active research topic in cognitive psychology for many years
[Winston 80, Gentner 83, Kedar-Cabelli 85, Prieditis 88, etc.]. Recently, increasing
attention is given to case-based reasoning in the Al community. A variety of recent efforts
can be found in Kolodner 88, AAAI 88, DARPA 89, AAAI 90, Slade 91]. However,
using previous experiences to solve a new design problem analogously is a relatively new
research topic in applying knowledge-based system in the design process.

Some of the applicable analogy techniques have been implemented recently in a number
of design systerns which include STRUPLE, CADSYN, CYCLOPS, ARGO and
BOGART.!

» STRUPLE [Zhao 88] is a prototype system that uses previous design solutions
to identify the relevant design elements for a structural design synthesizer (e.g.,
HI-RISE). The system applies the transformational analogy technique to
transfer a set of appropriate design elements to a new design as the design
vocabulary so that the search space of the new design is better confined: In
STRUPLE, case-based reasoning is used only at the beginning of the design
process to identify the most likely solutions.

« CADSYN [Maher 91] is an extension of EDESYN [Maher 88] (a domain
independent inference mechanism for design synthesis derived from HI-RISE)

1 This list is not intended to be comprehensive, but rather a sampling of the recent work that we find
relevant to our projects.

12

Integrated Case-Based Reasoning for Structural Design

to accommodate case-based reasoning. At every subsystem design level,
CADSYN searches its case memory for relevant cases using pattern matching.
If a relevant case is found, it uses adaptation rules to transfer solutions from a
relevant case to a new design before EDESYN’s design constraints and
decomposition rules are used. CADSYN uses case-based reasoning only for
adapting previous solutions as initial trials. The system, however, can reuse
solutions at different levels of abstraction during various stages of the design
process.

CYCLOPS [Navinchandra 88] is a problem-solver that uses case-based
reasoning as one of its strategies for solving landscape design and planning
problems. The system focuses on the use of past failures and their repairs.
Causal explanations of the goals and subgoals of previous cases are stored in a
semantic network memory. Therefore, potential problems can be recognized,
and cases can be identified and retrieved by demand posting technique. To
repair a problem, CYCLOPS analogically transfers the previous solution to the
new situation.

ARGO [Huhns 87] is an analogical reasoning system that has been applied to
the design of VLSI digital circuits. It constructs micro rules with pre and post
conditions to represent the design plan of a design session, and the micro rules
can be reused to reduce the amount of search in similar designs. A design plan
can be replayed by executing the corresponding macro rules. A problem
solving session is compiled into several micro rules with different abstractions,
which can be reused independently to increase design efficiency in later design
sessions. The design strategy of ARGO is to perform top-down design by
applying the most specific micro rule first (i.e., analogical reasoning). If no
micro rule is available, general design rules in the knowledge base are used to
refine the current design. ARGO has a fixed design strategy and uses only
previous design plans. However, its design plans can be reused entirely or in
less detailed abstract forms.

BOGART [Mostow 87] reuses design plans for designing VLSI circuits. It is
built on top of the interactive circuit design system VEXED to capture human
design decisions and to reduce the amount of required user interaction later.
The user selects which module to refine and which decomposition rule to apply
at each design cycle in BOGART. The design plan is represented as tree-like
structure with decomposition rules and modules as nodes. Plans have to be
retrieved by the user and can be reused for design iteration (revising an early
implemented decision and replaying subsequent decisions) and design by
analogy (adapting a model using derivational analogy). BOGART is really a
. plan replay mechanism, which can automate many of the repetitious aspects of
design. It is mostly used for design iterations.

13

Integrated Case-Based Reasoning for Structural Design

Two small prototypes have been experimented in conjunction with this project at
Stanford University: RESTCOM (REdesign of STructural COMponent) and FIRST.

+ RESTCOM [Rafiq 89 and Howard 89] is a Prolog-based research prototype for
experimenting with similarity and matching in a small case base of reinforced
concrete beams. Given a problem to solve, RESTCOM compares that problem
to each previous problem in its case base, using six different methods to score
the matches. The case base is restricted to single-span, singly-reinforced
rectangular concrete beams.

¢ FIRST [Daube 89 and Howard 89], implemented in LISP on top of the BB1
system [Hayes-Roth 85], redesigns structural beams by transformational
analogy using a case memory of solution plans. FIRST starts by analyzing an
existing design, using general knowledge about elementary physics. If design
constraints are unsatisfied, FIRST searches for a similar problem situation in its
case memory and retrieves the solution plan associated to that situation. FIRST
then performs an analog transfer of the plan into the new problem situation and
applies the plan to its current design. By working on solution plans, rather than
solutions, FIRST’s case memory captures those decisions for which the
underlying rationale, often based on empirical evidence, experience and context,
cannot be derived from first principles.

The ideas from case-based reasoning in the artificial intelligence community combined
with the two initial experiments have led us to the model presented in this thesis for
combining case-dependent reasoning and case-independent reasoning in an integrated,
cooperative design system.

14

Chapter 3
An Integrated Model of Design

This chapter examines the nature of integrating case-dependent and case-independent
reasoning paradigms and what it takes to build such an integrated design system. The
- desire for an integrated reasoning paradigm inspired this research. A useful design model
gradually emerged. We started with a design process model and expanded it with additions
for design recording, reuse, and, finally, complete integration.

3.1. Integrated Reasoning Paradigm

In general, rule-based reasoning depends on heuristic and causal rules and, case-based
reasoning relies on memory. We believe that the integration of case-based and rule-based
reasoning can give knowledge-based design systems great power and flexibility. -
Figure 3-1 shows the different design approaches available in such an integrated reasoning
paradigm. The first four approaches listed below are the problem solving methods
classified by Carbonell in [Carbonell 85].

1. Applying heuristic rules to search the design space for solutions
and plans. Since design can be viewed as a search for a solution or sequence
of design actions in a large space of possibilities [Howe 86], it is possible to
find a design solution or plan by searching heuristically through a finite space.
This approach is performed by the rule-based reasoning part of the integrated
system and is the basic design control strategy.

2. Instantiating a specific design plan. An experienced designer can
perform a routine design by following a certain procedure without going
through all the design decisions that might provide alternative paths to a
solution. If this kind of knowledge can be generalized from cases in the form
of design plans, the system may retrieve and reuse them as the procedures for
solving design problems.

3. Applying a generalized design. A parameterized design can be
instantiated directly when its generalized specification is met. For some kinds
of design problems, if the configuration of the design can be predetermined, the
fixed components of the design can be decided by parameters. Therefore, the
system may design from such generic structures if they can be produced by
memory generalization or directly provided by domain experts.

15

Integrated Case-Based Reasoning for Structural Design

General Design

Specific
Design
Plans
New Design 4 Previous
il Designs

Positive Training |Negative Training
Instances Instances

T4

Methods

............ =l Design Approach
—= Generalization

(heuristic
search)

......... - Learning

Figure 3-1: Reasoning Paradigms in an Integrated Design System (after [Carbonell 85])

4.

Applying an analogical transformation to adapt the solution or
plan of a similar previous design. The system should ‘be able to utilize a
variety of case-dependent knowledge in the memory to assist the design of
structures using case-based reasoning. For instance, it is easier to design a
structural component with some similar past design experiences than solely with
codes and general procedures presented in handbooks or texts. One can get
important information (e.g., initial assumptions, crucial design variables and
constraints, or even design decisions) from similar past designs to guide the
current design.

Combining multiple approaches. For example, a design problem can be
divided into subproblems by applying heuristic rules. Then, each subproblem
may be solved by instantiating a specific design plan, a generalized design, etc.
This can be achieved by a global design monitoring and control mechanism of

16

Integrated Case-Based Reasoning for Structural Design

the integrated design system, which dynamically selects an applicable design
approach. '

3.2. Modeling the Design Process

A knowledge-based design system needs an underlying design model to represent the
design process. Designing a structure is a complex task. Usually, the problem space is too
big to search. Decomposition is a common strategy used by engineers to divide the search
space. Domain specific knowledge and general problem-solving skills are required to
control the decomposition and to search effectively for the reduced design space.
However, the complexity of individual subproblem and the interaction between subdesigns
can still make the design an iterative process. The generated design has to be tested against
all the design constraints and relevant parts of the design must be modified to overcome any
constraint violation. This process may have to be repeated several times to produce an
acceptable design.

Therefore, designs are divided into subtasks in the design system, and the knowledge .
for solving individual subtasks is stored in a knowledge base. The problem solver uses
that knowledge to develop design solutions through a generate-test-modify paradigm. Top-
down decomposition plans are also stored in the knowledge base. A plan represents a
design strategy that consists of a sequence of design steps. Each step in a plan is called a
goal; goals guide the problem solver toward the desired solution. Different levels of
abstraction of plans can help decompose and organize design knowledge. A plan can
specify a sequence of goals that produce a subdesign. A plan can be a top level design
strategy that points to other plans.

The problem solver checks design constraints throughout the design as appropriate.
Whenever a constraint violation is found, the problem solver has to overcome the design
failure by redesign (i.e., modifying the partial design). Redesign in the system is based on
dependency-directed backtracking with knowledge-based advice. The problem solver’s
truth maintenance system (TMS) provides dependency links for a design failure. The
dependency network is built during design. The design variables involved in the current
design failure can be traced through the links. The problem solver analyzes the dependency
information and the violated constraints to suggest what part of the partial design to modify
and how to fix it. The TMS updates the current design according to the modification.
Design values that are no longer valid (as well as values derived from those values) are
removed, and the problem solver proceeds from there to its generate-test-modify cycle.

17

Integrated Case-Based Reasoning for Structural Desi an

----------------------- DeSIgn
w{ Design Generator]-'ﬂ t Speclfication)

———— Redesign Adviser |
«—] Backtracking Provoker |e——{ Constraint Checker | E— m-(Final Design

g Control Flow o - Information Flow

Figure 3-2: Control Flow in the Case-Independent Reasoner

Based on the design model, our case-independent reasoner has four modules (see
Figure 3-2): a design generator, a constraint checker, a backtracking provoker and a
redesign adviser. They are comprised of design rules corresponding to the general design
heuristic knowledge. The design generator assigns values for design variables based on
design heuristics, analysis, calculation, etc; the constraint checker checks for constraint
violations; the backtracking provoker controls the extent of design modifications and the
redesign adviser gives redesign recommendations. The case-independent reasoner also
contains some deep knowledge about domain-specific aspects such as design codes,
constraints and analysis procedures.

3.3. Saving a Design

One of the motivations for building an integrated case-dependent and case-independent
system arises from the desire to improve the system’s abilities on the basis of its own
experience. Therefore, the next step is to build a recording mechanism (the case recorder)
to store case-dependent knowledge to the system’s memory (the case memory) after a
design session is done. Figure 3-3 shows the system with the additional case recorder and
memory.

- Design
bl Design Generator]-ul Specification)

————1 Redesign Adviser

<¢— Backtracking Provoker [<—— Constraint Checker - - Final Design

Case
7] I— ‘ rder L)]
——> Control Flow Memory " Case Recorder |

........... I Information Flow

Figure 3-3: The Case-Independent Reasoner, Case Recorder and Case Memory

18

Integrated Case-Based Reasoning for Structural Design

A lot of information is generated during design. Because of the limitation of memory
space and efficiency of search, only a subset of the design information should be recorded.
The system should save only the most potentially reusable case-dependent knowledge and
index it with its significant features in the memory. The most important elements of case-
dependent knowledge identified in this research are:

o

Design Solutions—The final design solution of a design problem is certainly
the most apparent information that can be reused in the future. However,
intermediate solutions and partial solutions can also be useful. Solutions need
to be indexed by the goals that they achieved and by the physical components
that they belong to.

Design Justifications—The calculations of previous design variables and
the dependences of their values can be used to predict design outcome without
going through all the design steps that lead to previous result. Design
Justifications are associated with each design case.

Design Plans—Design plans are the strategies used to solve a design
problem. Plans are the control knowledge of design cases, which can be used to
schedule design steps and to select a design method for each design step. Plans
for the global control of design processes and the control of backtracking
processes need to be separated in the memory. Plans can be indexed in a
number of ways (i.e., by the goals that they accomplished, the design values
that they produced and the constraints that they satisfied and unsatisfied).

Design Goals—Specific knowledge about how to achieve a particular design
step is contained in a design goal. Design goals are included in plans to form
complete case-dependent control knowledge of a case.

Design Failures—Previously unsuccessful design alternatives can be used to
avoid similar design failures in the future. Design failures should be linked to
their recovery plans.

Design Constraints—Constraints are used to evaluate designs. Their
statuses throughout the design indicate the progress of a problem-solving
session. They are very important information for understanding the history of a
design case.

In order to support the capture of different types of case-dependent knowledge, the
design process model discussed in the previous section not only needs to define the
computational process of design, but also should provide the basis for representing
different types of useful case-dependent knowledge. Then the case recorder can process
the design case after a design session is finished to capture the associated case-dependent
knowledge and store it in the case memory knowledge base. The case memory knowledge '

19

Integrated Case-Based Reasoning for Structural Design

base should be organized to provide easy access to all kinds of case-dependent knowledge.
For example, the case memory knowledge base can be divided into a memory of plans, a
memory of solutions and a memory of failures, according to the contents that the case
recorder stores.

Furthermore, if generalization of the case memory is desired, we could include a
generalizer to generalize the case memory. The design cases or their indices can be
generalized to have uninstantiated variables, and the case memory can be further divided
into a case-specific and a generalized memory.

3.4. Using CBR in Design

With the case recorder and memory, we can now store the system’s own design
experience. However, the design system needs a case-based reasoner to reuse the saved
case-dependent knowledge. The function of the case-based reasoner is to assess previous
design cases and transfer knowledge from them to the current design task. Therefore, a
memory prober is added to the case-based reasoner to retrieve potentially applicable cases
from the case memory. These cases supply the knowledge used in the other case-
dependent modules. Then, an analogy transformer is used to transfer the design solution
or solution strategy of a retrieved design to the new design and modify it to satisfy the
requirements of the new design. |

We discussed the different aspects of case-dependent knowledge in Section 1.2 and
3.3. Ideally, the case-dependent reasoner is capable of performing case-base reasoning
using all available case-dependent knowledge in different phases of the design process.
For example, a failure anticipator can be included to check for the potential for failures and
avoid them in the new design. Past design failures and the reasons that they occurred
should be stored in the case memory so that the failures can be predicted if the same causal
conditions appear again in a new design. If the system is capable of memory
generalization, we can also add an instantiater to instantiate a generalized design plan or
solution retrieved by the memory prober. The generalized design solutions can be idealized
configurations of components or detailed, parameterized representations of an individual
component.

20

Integrated Case-Based Reasoning for Structural Design

’ " Deslgn .
Wisersesnerernoesssnns d N e
M Design Generator }l! Speclfication

| Redesign Adviser | —

Y

4—-—-[Backtracking Provoker]4—-—{ Constralnt Checker } mCFinal Deslign)il

Case

i Case Recorder |uff. ‘

Memory Prober

Constraint |
1 ¢

Analogy Transformer

Instantlater |

i Control Flow

.......... 1B Information Flow

Figure 3-4: The System with Case-Based Reasoner

The expanded system is show in Figure 3-4. Up to this point, our design system can
perform either a heuristic-based design or a case-based design. However, the two
reasoning paradigms are independent. We can only select one reasoning method at the
beginning of each design session and stick to that ideal to the end.

3.5. Integrating the Two Desilgn Approaches

Case-based design alone is not usually the best way to tackle a design problem. The
recognition of similar cases and the availability of representative cases can influence the
effectiveness of case-dependent reasoning. It is our belief that the combination of case-
dependent and heuristic knowledge gives the most power and flexibility to the human
designer. Therefore, the last step of building our system is to integrate case-based
reasoning into the basic case-independent reasoning loop (see Figure 3-5).

21

Integrared Case-Based Reasoning for Structural Design

........... Design
Specification

Constraint Checker [In(Final Design)

Case Recorder

Retrleved
Deslgns

Memory Prober [ilfiii il Memory

— Control Flow

........... n- Information Flow
Figure 3-5: The Final Integrated Knowlcdge-BaSed Design System

In the new arrangement, a design session can start from the design generator or
memory prober as usual. However, the new arrows between the case-independent
reasoner and the case-based reasoner allow both of them to get their hands on a problem.
For instance, the design generator can be used first to generate a partial design, then the
design is checked by the constraint checker. If a constraint violation is found, the -
backtracking provoker launches the design modification process. Instead of going to the
redesign adviser, the system can use the memory prober to find a past design that had
encountered the same design failure. The analogy transformer transfers the previous fix to
the new design and the constraint checker confirms that the current design satisfies the
previously violated constraint. Now, the system can go back to the design generator to
develop more design solutions for the other parts of the design, or it can use the analogy
transformer to transfer more solution from the retrieved design.

This kind of integration is truly flexible and powerful, furnishing the system with all
the five design approaches discussed in Section 3.1. Combined with a good control
mechanism, the integrated reasoning paradigm can be used opportunistically to take full
advantage of available design knowledge including both case-independent and case-
dependent.

22

Integrated Case-Based Reasoning for Structural Desi gn

Design Blackboard
memory
design design
/ \ \
Case-
Independent [—ed Case-Based d Case-Memor
Ressoner learning Reasoner recall A y

Figure 3-6: Ovei'view of Integrated Knowledge-Based Design System

Now the question is; How can we achieve this kind of integration? The answer is to
use a blackboard model, which supports collaborative problem solving. The conceptual
model of the integrated case-dependent and case-independent design system is shown in -
Figure 3-6. Design processes are divided into subtasks. Knowledge that specifies how to
carry out a subtask, give a redesign suggestion, or decompose a design goal can be either
case-based or heuristic-based. With a case memory, the integrated system can perform
each design subtask based on either case-dependent or case-independent knowledge. The
blackboard architecture allows case-based reasoning to compete with case-independent
reasoning throughout the design process, which makes the system an integrated
opportunistic design model.

Furthermore, the model provides for the extraction of case-independent knowledge
from case-dependent knowledge (a process otherwise known as learning). The long-term
objective is to produce integrated design systems that interact with designers during design
tasks, functioning both as intelligent design assistants and as knowledge acquisition
systems that record the designers’ steps and rationale. In this way, the design systems
become true apprentices to the experienced designers, progressively learning to solve more
and more difficult design problems.

23

Chapter 4
The DDIS Environment

The integrated design model described in the last chapter is implemented in the
computer program DDIS!. DDIS is an integrated knowledge-based design system
incorporating both rule-based and case-based problem-solving techniques to combine case-
independent and case-dependent knowledge. The overall organization of DDIS is based on
a blackboard model very similar to the BB1 architecture [Hayes-Roth 84 and 85] and is
implemented in KEE. In the blackboard model, the knowledge needed to solve a problem
is partitioned into independent knowledge sources that are grouped into several knowledge -
modules in the knowledge base. The knowledge sources modify only a global knowledge
structure (the blackboard) and respond opportunistically to the changes on the blackboard.
Using a blackboard architecture, DDIS can apply both case-dependent and case-
independent knowledge to perform collaborative and opportunistic design. This chapter .
first presents the overall functionality and architecture of DDIS Then, the details of its

" blackboard are described, the strategies for execution control are elaborated, and the
elements composing its case memory and knowledge base are reported. A summary of the
implementation is given at the end.

4.1. Overview

The behavior of DDIS’s blackboard architecture draws on the following analogy. A
design problem is stated on the blackboard in a room, and a team of designers with
different talents surrounds it (see Figure 4-1). None of the designers can solve the design
alone, but each is capable of solving a piece of the problem. Each designer knows exactly
what he can do and when he can do it. The designers look at the blackboard to see if their
solutions can fit into the current problems. Those who can contribute to the current design
situation raise their hands. It is possible that several options may exist for one designer
under certain conditions. In this case, the designers with more than one option need to
identify all the possible design actions that they can provide. The team manager chooses
one designer (and one action if the designer has more than one alternative) based on some
criteria, which are presented as design strategies on the blackboard. The chosen designer
goes up to the blackboard and makes changes to the evolving solution. Note that, at one
time, no more than one designer can work on the blackboard and only one design option

1 DDIS stands for Design-Dependent and Design-Independent System. “Design-dependent” and “design-
independent” are the terms used for “case-dependent” and “case-independent” in the early stage of this
research.

25

Integrated Case-Based Reasoning for Strucrural Design

can be used. After the designer is done, a blackboard engineer makes necessary updates to
the other parts of the design that are related to the changes and to the design strategies on
the blackboard to maintain design consistency and focus.

All the designers can now respond to the new updates and raise their hands if they
know what to do next. The manager once again selects one person to work on the design,
and the blackboard engineer updates the blackboard situation accordingly. Consequently,
the changing blackboard state causes other designers to work on the design and other
pieces of the design solution to form incrementally.

It is important to point out that the design team consists of two major design groups: a
case-independent group and a case-based group (see Figure 4-1). The designers in the
case-independent group specialize in analysis and heuristic design methods (e.g., equation
calculation, finite element analysis, optimization, rule-based design, etc.), and the
designers in the case-based group specialize in case-dependent methods (e.g., solution
adaptation, design plan reuse, case-based failure anticipation, etc.). Of course, the case-
based group has a collection of previous design cases and associated case-dependent
knowledge. The designers do not directly talk with each other. They propose their design
actions to the team manger when proper situations appear. The manager decides whose
proposal is the best. At a given situation, there may be proposals from both the case-
independent group and the case-based group. Therefore, the case-independent group
- competes with the case-based group for the design task. At the same time, the designers
within each group have to compete with each other as well.

Design Cases Manager

Case-Iindependent
Group

Blackboard
Engineer

Figure 4-1: Blackboard Metaphor

26

Integrated Case-Based Reasoning for Structural Design

The team manager dynamically selects a sequence of actions from different designers to
produce a design according to the design strategies that are in use. For example, a design
strategy can be “design component B1 before component A2” or “favor case-based design
group over case-independent design group.” The manager’s choice of a designer is based
on the latest solution state and design strategies and on the existence of designers capable of
improving the current design. At each design step, either a case-independent or a case-
based designer can be called in. The design team performs collaborative and opportunistic
design.

4.1.1. System Architecture

The preceding analogy illustrates the integrated nature of DDIS’s problem-solving
behavior. Now, the blackboard metaphor is mapped into the system architecture of DDIS
(see Figure 4-2). The design team is the knowledge base and the two design groups are
called the case-independent reasoner and case-based reasoner knowledge modules in DDIS.
The collection of case-dependent knowledge that the case-based designers use to do case-
based reasoning is called the case memory knowledge base in DDIS. The subsidiary
components in each of the knowledge modules were discussed briefly in Chapter 3 when
we built up the integrated design model and will be further described later. Note that DDIS
does not have the capability of learning new rules and generalizing cases—the shaded area
in Figure 4-2 is not implemented in the current version of DDIS.

Each “designer” in the design team is called a knowledge source (KS), and each
“design option” that is applicable under the given condition is called a knowledge source
activation record (KSAR). A KS represents a kind of problem-solving action in DDIS.
The KS knows when it becomes applicable and what actions it proposes to take. The
condition under which a KS can be executed is specified by a blackboard state with a set of
variables to represent different triggering contexts, and the action of the KS is also
specified by the same set of variables to represent alternative actions under different
contexts. Therefore, multiple KSARSs can be generated, one for each context, when more
than one triggering context exists.

27

Integrated Case-Based Reasoning for Structural Design

Inference Mechanism

Case-Independent
Reasoner

[design generator |

Scheduler Monitor
Blackboard Knowledge-base
Control
4 retrieved] -
designs

Design Information

| Solution obijects|

knowledge source
activation records

Case Memory
Knowledge Base

case-specific memory

[constraint checker |

[backtracking provoker |

| redesign adviser |

Case-Based Reasoner
[memory prober |

Input/Output

(Explanation) g —

Facility

¢

user

not implemented in DDIS

Figure 4-2: Data and Knowledge Flow in DDIS

Integrated Case-Based Reasoning for Structural Desi gn

The “team manager” is the scheduler in DDIS. It looks over the design and selects one
KSAR for execution among all the alternatives at each design step. The scheduler’s
decision is based on how well the action of a certain KSAR matches the intent of the design
strategies that are in use. No preset order of execution is defined in DDIS. The design
strategies are represented as plans and goals in DDIS. A goal is a design consideration that
DDIS uses to rate KSARs. A plan is a sequence of design goals that represents a design
strategy. Each goal in a plan is a strongly desired design objective that leads to what the
plan intends to achieve. The rating of a KSAR against all plans on the blackboard is a
. numeric value ranging from zero to one hundred, which represents “no match” to “perfect
match.” At every cycle, the scheduler selects the highest rated KSAR to execute (or the
user can override DDIS’s scheduler by selecting a different KSAR). The design solution is
built incrementally and opportunistically. The blackboard éngineer is the inference monitor
that keeps track of the status of plans and goals on the blackboard and performs the truth
maintenance task described in Section 3.2.

With this basic understanding of DDIS, now let us look at how the above elements are
implemented in DDIS.

4.1.2. Knowledge Representation

Knowledge representation in DDIS is based on an object-oriented (or frame-based)
approach. Due to the hierarchical nature of the physical elements, the frame-based data
structure with value inheritance is convenient to represent design information at both
component and system levels. The abstract data type and class-instance inheritance
supported by an object-oriented paradigm captures the interrelatedness of design
information and stores different levels of generalization of design knowledge.

Almost all knowledge in DDIS is stored as objects at the lowest level (e.g., physical
objects, design actions, plans, constraints, and design cases). Figure 4-3 shows some
objects contained in the knowledge base of DDIS. Each object type defines special values
and procedures for a certain class of design objects or knowledge. The design objects,
variables, constraints, methods, plans, and heuristics that make up the knowledge base are
instances of those predefined object types.

In addition to the object-oriented model of design objects and knowledge, DDIS uses
Garrett’s object-oriented design standard model [Garrett 89]. All the logical expressions
and variables in the design standard are represented as objects that are called data items.
Each self-contained data item has a value, type information and methods for determining its
value. The data items and their interrelationships can be organized into a hierarchy of
object classes. The hierarchy of data items used in DDIS is shown in Figure 4-4. The
instances created from the leaf classes are used as the foundation for representing
knowledge in DDIS. Data items provide mappings between basic data items in the standard .

29

Integrated Case-Based Reasoning for Structural Design

i (OUthUN The G

LAN TRANSFORMER
OGY . TRANSFORMER
SOLUTION. TRANSFORMER
E.BASED REASOHN
AILURE ANTICIPATOR

STANTIATER
EMORY.PROBER

KTRACKING .PROYOKER:
LACTION

ASE.IND EP END ENT .REASONER STRAMNT .CHECKER

TABASE.LOOKUP
ESIGN.CALCULATOR
STEM.DESIGN.GENERATOR
SER DESIGN.SELECTOR

ETAILING
ESIGN.GENERAT
EDESIGN_ADYISER ELECTING

ENERALIZER

STORER

i EOMETRIC.CONSTRAINT

Il D ESIGN.CONSTRAINT: STRENGTH.CONSTRAINT

i SER.SPECIFIED.CONSTRAINT

e
i SIEN. COAL @ss«oeva&om.cou
ESeN. ASE-ANDEPERDENT .GOAL
| DESIGN.CONTROL.OBJECT ESIGN pw<§:SEnsvewm.nm
: 3

ASE.RECORD

E-NDEPENDENT.PLAN
ETRIEVED DESIGN
SEMBLY——BOLY.GROUP
GID .CONNECTION
ONNECTION SEMIRIGID .CONNECTION
SIMPLE . CONNECTION—DOUBLE ANGLE .BOLTED.CONNECTION
ONSTRUCTURAL MEMBER
MEMBER
EMBER EAM
STRUCTURAL MEMBER
. OLUMN
ER

EAM.BOTTOM.COPE

1] PHY SICAL DE SIGN.OBJECT| EAM.COP EAM.TOP.COPE

QUT.PART

BOLT.HOLE
LY
ASTENER YET
LD
LE
E.PART PLATE—BASE.PLATE
.SHAPE

LYED . SUBCONNECTION
SUBCORNE! YETED. . SUBCONNECTION
ELDED.SUBCONNECTION

Figure 4-3: A Sample of the DDIS Object Hierarchy

ART

ONDITION
LOGIC.DATA.ITEM~<§U N

BASIC DATAITEM=__0APPINE
STANDARD.DATA.ITEM<D -

ERIYED DATAJTEM<;‘J'::2§TN

DATAITEM

Figure 4-4: Hierarchy of Data Items in DDIS

30

Integrated Case-Based Reasoning for Structural Design

model and design object attributes in the design model. An important additional function of
data items in DDIS is to establish justifications of variable dependance during design,
which are used by the truth maintenance system of DDIS to justify redesigns and maintain
design consistency. When the value of a data item is accessed, its self-contained method of
evaluation is used to determine its value. At the same time, the attached procedure creates a
justification for that value. The following is a brief description of the leaf data items:

o

Mapping is a subclass of basic data item. A mapping data item has a
description of where to find its value. Mapping data items are used to link
variables in the design standards to the design objects. Therefore, an attribute
of a design object is referred to as the value source. An example of the mapping
data item is given below. The value of a mapping form should be a wff form
(well-formed formula in KEE’s TellAndAsk language) that indicates how to
retrieve the value for the data item. Note that the variable ?VALUE must be
used to indicate the final value returned form the wff form.

A (cross section area of a beam-column)
MAPPING.FORM: (THE AREA OF (THE DESIGNATION OF
BEAM-COLUMN.1) IS ?VALUE)
VALUE: 17
VALUE?: a method for locating the value of
mapping objects based on the provided
mapping forms

User.Query is another subclass of basic data item. A user query object is a
data item that needs to be supplied by the user. It contains the descriptions of
how to ask the user for its value and where to store the value. The following is
an example of the User.Query object.

P (factored axial loading)
QUERY.LABEL: "P (factored axial loading in kips)*™
STORAGE .FORM: (THE MAGNITUDE OF
FACTORED .AXIAL.COMPRESSION IS
_ 2VALUE)
VALUE: UNKNOWN
VALUE?: a method for retrieving the value of
query objects
Function is a subclass of derived data item. A function data item has an
expression of how to compute its value. The expression is a non-conditional
function and may involve other data item objects in the problem. Lisp functions
can also be used in the expression. For example, GET.VALUE is a KEE
function that retrieves the specified slot value from the given object. It can be
used in the expression to access slot values (see the first example). When the
value of a function data item is requested, the attached VALUE? mcthod

evaluates the expression and returns a value for the inquiry.

31

Integrated Case-Based Reasoning for Structural Design

PE (Euler buckling :I.oad)1
SYMBOLIC.EXPR: (/ (* (EXPT PI 2) E A)
(EXPT (/ (* K (GET.VALUE
'BEAM.COLUMN.1 LENGTH))
RX) 2))
VALUE: UNKNOWN
VALUE?: a method for computing the value of function

P.BOLT.MAX.RULE.1.CONCLUSION
SYMBOLIC.EXPR: (+ (/ P 4) (/ M BOLT.DIST (COSD 45) 2))
VALUE: UNKNOWN
VALUE?: a method for computing the value of functions

» Condition is a subclass of logic data item. A condition data item has a
symbolic expression that describes a logical relationship between data items. Its
value is either true or false. The following example is the condition of rule
P.BOLT.MAX.RULE.1 (see the example of rule data item).

P.BOLT.MAX.RULE.1.CONDITION
SYMBOLIC.EXPR: (= BOLT.PER.QUADRANT 1)

VALUE: T
VALUE?: a method for determining the value of
conditions

* Rule is a subclass of logic data item. A rule data item has two parts: a
condition and a conclusion. The condition part is a collection of condition data
items and the conclusion part is a function data item that represents the value of
the rule if the conditions are met. The example below is the first rule contained
in ruleset P.BOLT.MAX (see the example of ruleset data item).

P.BOLT.MAX.RULE.1
CONDITION: #[UNIT: }?.BOLT.MI-_X.RULI-E‘..1.CONDITION]2
CONCLUSION: #[UNIT: P.BOLT.MAX.RULE.1.CONCLUSION]3
SYMBOLIC.EXPR: (IF (= BOLTS.PER.QUADRANT 1)
THEN (+ (/ P 4)

(/ M BOLT.DIST (COSD 45) 2)))
VALUE: UNKNOWN
VALUE?: a method for determining the value of rules

- S_EA
1 This function object represents the equation ®L/w? in Figure 4-12. The definitions of the ingredient
variables are given in Section 5.1. '

2 acondition object (see the example of condition data item) created from the IF part of the symbolic
expression

3 afunction object (see the second example of function data item) created from the THEN part of the
symbolic expression

32

Integrated Case-Based Reasoning for Strucrural Design

° Ruleset is the second subclass of derived data item. A ruleset data item
collects a set of rule data items to represent its conditional value. Each rule
represents a possible value of the data item under certain conditions. Only one
value is feasible under a given condition. An examples of the ruleset object are
given below.

P.BOLT.MAX (max. anchor bolt load)

RULES: #[UNIT: P.BOLT.MAX.RULE.1]!
#[UNIT: P.BOLT.MAX.RULE.2]

VALUE: UNKNOWN

VALUE?: a method for determining the value of
rulesets

4.2. Blackboard

The blackboard is a centralized data structure responsible for the storage of dynamic
design information génerated during the design process. All information is stored on the
blackboard as DDIS objects. The blackboard of DDIS is divided into a control blackboard
and a design information blackboard. '

¢ The Control Blackboard collects three types of control objects: plans, goals
and retrieved designs, reflecting the different levels of abstraction of DDIS’s
control knowledge. The information on this blackboard contains the control
decisions that the system uses to schedule the activities.

¢ The Design Information Blackboard consists of solution objects and
action objects as well as information generated by various design knowledge
sources, including evolving solutions, design history, etc.

Descriptions of the various types of objects follow.

4.2.1. Control Objects

The blackboard control objects are used to define control knowledge in DDIS. When
they are posted on the control blackboard, DDIS uses the information contained in them to
rate and schedule KSARs. The DESIGN.CONTROL.OBJECT class in Figure 4-3 shows
the control object hierarchy of DDIS. The following are explanations of their properties.

1 arule object defined in the example of rule data item

33

Integrared Case-Based Reasoning for Structural Design

4.2.1.1. PLANS

A plan is a problem solving strategy in DDIS. It specifies a sequence of design goals to
be followed and the intention of the plan as well as several other attributes. Plan objects
can be classified into case-independent plans and case-dependent plans (design plans
associated with a particular case in the case memory knowledge base). Case-dependent
plans are treated exactly like case-independent plans except that they have an additional
attribute to indicate their origin. Below are required attributes of a plan.

e

GOAL.LIST—A list of goal objects to be activated sequentially. Each
element of the list can be a single goal object or a list of goals to be activated at
the same time. For example, BASE.PLATE.DESIGN.PLAN.1 given in Figure
4-5 is a heuristic plan for steel anchor base plate design. To represent the four
steps of the plan, its goal list contains four goals: (DESIGN.ANCHOR.BOLTS
(CHECK.BOLT.CONSTRAINTS DESIGN.BASE.PLATE) CHECK.
PLATE.CONSTRAINTS). Itis a valid goal list as long as all the elements in
the list are the names of goal objects defined in DDIS. The first objective of this
plan is to design the anchor bolts. After the bolts are designed, DDIS can check
bolt constraints or design the base plate. The two goals are made active at the
same time and can be pursued in parallel. Therefore, DDIS doesn’t have to
finish checking all the bolt constraints before it can perform base plate design.
For instance, DDIS can select several actions for constraint checking first and
follow with a few actions for base plate design. Then, it can go back to check
more bolt constraints. However, the final goal of the plan (i.e.,
CHECK.PLATE.CONSTRAINTS) should only be pursued after CHECK.
BOLT.CONSTRAINTS and DESIGN.BASE.PLATE are accomplished.

INTENTION—A LISP form that indicates when the plan needs to be
deactivated. When it evaluates to true, either the intention of the plan is satisfied
or it is no longer applicable. For instance, the intention of
BASE.PLATE.DESIGN.PLAN.1 indicates what design attributes must have
values before the plan can be terminated (see Figure 4-5). VALUE-
DESIGNED-P, a predicate function, is true if all the specified object and
attribute pairs have design values on the blackboard.

STATUS—Either OPERATIVE or INOPERATIVE. If the status of a plan is
inoperative, it is excluded from the problem solving process.

WEIGHT—A number between 1 and 10 (inclusive), representing the
importance of the plan. It is used in KSAR rating to account for different
priorities of design plans. The default value is 5. It can be changed by the user
when creating the plan object or by control KSs during design. A plan with a
higher weight value is considered more important than a plan with a lower
weight and is more influential in scheduling.

34

[nregrated Case-Based Reasoning for Structural Desi gon

GOAL.LIST:
(DESIGN.ANCHOR.BOLTS (CHECK.BOLT.CONSTRAINTS
DESIGN.BASE.PLATE) CHECK.PLATE .CONSTRAINTS)

INTENTION:
(VALUE-DESIGNED-P

' (BASE.PLATE.1 MATERIAL)
' (BASE.PLATE.l1 THICKNESS)
' (BASE.PLATE.1 DIAMETER)
' (BOLT.GROUP.1 NUMBER.OF .BOLTS.PER.QUADRANT)
'(BOLT.1 DIAMETER) ' (BOLT.GROUP.1 BOLT.SPACING)
' (BOLT.GROUP.1 BOLT.DISTANCE))

STATUS : OPERATIVE
WEIGHT: 5
ACTIVE.GOAL: NIL

REMAINING.GOAL.LIST: NIL

Figure 4-5: BASE.PLATE.DESIGN.PLAN.1

* ORIGINATED.CASE—A design case object in the case memory knowledge
base from which this plan was originally abstracted. This attribute is unique to
case-based plans. It is used by the rating mechanism to trace the origin of the
plan in order to modify the weight of the plan according to the similarity of the
case. Since the given example in Figure 4-5 is a case-independent plan, it does
not have this attribute.

¢ ACTIVE.GOAL—The goal (or goals) currently active in this plan. It is an
internal attribute used by the blackboard maintenance mechanism. The default
value is NIL, and it will be set to an appropriate value during blackboard

updating.

* REMAINING.GOAL.LIST—A list of goals that remain to be activated in
this plan. It is an internal attribute with a default value of NIL, and it will be set
to an appropriate value by the blackboard maintenance mechanism.

4.2.1.2. GOALS

A goal is the primary rating object for the blackboard system. It can be a part of a
design plan or a stand-alone design consideration. DDIS uses all activated goals on the
blackboard to rate KSARs.

35

Integrated Case-Based Reasoning for Structural Desi gan

Goal objects can be classified into case-independent goals and case-dependent goals
(design goals associated to a particular case-dependent plan). Case-dependent goals have
exactly the same structure as case-independent goals and are treated the same as case-
independent goals on the control blackboard. Below are required attributes of a goal.

®

FUNCTION—A LISP form that returns a value between 0 and 100. This is
the rating function that evaluates how well a KSAR serves the goal. The higher
the returned number is the better the KSAR is for achieving the goal. The
variable $KSAR must be used in the function to refer to the KSAR under
evaluation when information of the KSAR is needed. For example,
(* (GET.VALUE $KSAR 'PRIORITY) 0.9) indicates that the rating of
a KSAR is equal to the “priority” specified in the priority attribute of the KSAR
times 0.9. A more comprehensive example is given in Figure 4-6.
DESIGN.BASE.PLATE is one of the goals in BASE.PLATE.
DESIGN.PLAN.1. Its function attribute is a conditional statement that
specifies the different ratings of the KSARSs that know how to pursue the goal.

INTENTION—A LISP form that indicates when the goal needs to be
deactivated. When it evaluates to true, either the intention of the goal is satisfied
or it is no longer applicable. For instance, Figure 4-6 shows that the intention
of DESIGN.BASE.PLATE is to generate design values for the material,
thickness and diameter of the base plate.

STATUS—Either OPERATIVE or INOPERATIVE. If the status of a goal is
inoperative, it is excluded from the problem-solving process.

WEIGHT—A number between 1 and 10 (inclusive), representing the
importance of the goal. It is used in KSAR rating to account for different
priorities of design goals. The default weight of a goal is 5. It can be changed
by the user when creating the goal object or by control KSs during design. A
goal with a higher weight value is considered more important than a goal with a
lower weight and is more influential in scheduling.

INCLUDE.IN—The plan object to which the goal belongs. If the value is
NIL, the goal is not attached to any plan. Usually, a stand-alone goal is an
important design decision that needs immediate attention. For example, stand-
alone redesign goals fix constraint violations.

36

Integrated Case-Based Reasoning for Structural Design

FUNCTION:
(COND
((OR (EQUAL (UNIT.NAME (GET.VALUE S$KSAR 'KS))
"REUSE.PREVIOUS.DESIGN)
(EQUAL (UNIT.NAME (GET.VALUE S$KSAR 'KS))
"REUSE .WHOLE . SOLUTION))
(GET.VALUE S$KSAR 'PRIORITY))
((MEMBER 'BASE.PLATE.1
(STRIP-LIST
(GET.VALUES $KSAR 'ACTION.CODE)))
(* (GET.VALUE $KSAR 'PRIORITY) 0.9))
((EQUAL (UNIT.NAME (GET.VALUE $KSAR 'KS))
'"END.DESIGN) 20)
(T 0))

INTENTION:
(VALUE~DESIGNED-P
' (BASE.PLATE.1 MATERIAL)
' (BASE.PLATE.1 THICKNESS)
' (BASE.PLATE.1l DIAMETER))

STATUS: OPERATIVE
WEIGHT: 5
INCLUDED.IN: BASE-PLATE .DESIGN.PLAN.1

Figure 4-6: The DESIGN.BASE.PLATE Goal

4.2.1.3. RETRIEVED DESIGNS

A retrieved design is the source of case-dependent reasoning in DDIS. It provides
previous design solutions and plans that may be reused and specifies their similarity
ratings, which can influence the blackboard’s rating and scheduling decisions. Knowledge
sources in the memory prober module are responsible for creating retrieved design objects
and posting them on the blackboard. The following are required attributes of a retrieved
design.

¢ CASE.NAME—The name of the design case object in the case memory
knowledge base. The name provides the link to all previous design information
associated with the case (a detailed description of the case memory is presented
in Section 4.4).

* SOLUTION.SIMILARITY—A number between 1 and 100 (inclusive),
representing the usefulness of the solution of the retrieved design in the current
design. It is used to adjust ratings of KSARs that transfer solutions from the
case. The larger the number, the better the case is for solution reuse.

37

Integrated Case-Based Reasoning for Structural Design

e PLAN.SIMILARITY—A number between 1 and 100 (inclusive),
representing the usefulness of the design plans of the retrieved design in the
current design. It is used to adjust ratings of KSARs that transfer plans from
the case. The larger the number, the better the case is for design plan reuse.

The criteria for judging the usefulness of previous solutions and case-dependent plans
are different, and the methods for finding cases to use with solution transformer and plan
transformer can be different. For example, a design case can be retrieved to reuse its
associated design plans because of its highly successful control tactics. However, its
solution may not be very useful according to the solution similarity ranking method. DDIS
can retrieve the case for its plan transformer without confusing the solution transformer.
Therefore, the retrieved design object has two different attributes,
SOLUTION.SIMILARITY and PLAN.SIMILARITY, to take into account the need of two
kinds of similarity ranking.

4.2.2. Solution Objects

Solution objects are used to hold design data generated during the design process.
They include the following:

« Physical Objects, used for representing the design problem, are instantiated
from design object classes in the knowledge base. Design values are stored in
their attributes. The following is an example of a physical object.

BASE.PLATE. 1

DIAMETER: 21.75
MATERIAL: ASTM.A572.GR60
THICKNESS: 0.75

e Variable Objects, used for design calculation and constraint checking, are
instances of the data items discussed in Section 4.1.2. Their behaviors are
inherited from their parent data item. The following example is a variable object
instantiated from the function data item.

I.BOLT (moment of inertia of bolt)
SYMBOLIC.EXPR: (* NUMBER.OF.BOLTS.PER.QUADRANT
(/ PI 64) (EXPT BOLT.DIA 4))
VALUE: UNKNOWN
VALUE?: a method for computing the value of
function objects

» Constraint Objects, including strength constraints, geometric constraints and
user specified constraints, are design requirements to be satisfied. They are
instances of the condition data item with special attributes and methods for
constraint confirmation. The following is an example of constraint objects.

38

Integrared Case-Based Reasoning for Structural Design

AISC2.4-2
SYMBOLIC.EXPR: (< (+ (/ P PCR) (/ (* CM M)
(* (=1 (/ P PE)) MM))) 1)
STATUS: SATISFIED

4.2.3. Action Objects

In DDIS, action knowledge is stored in knowledge source objects in the knowledge
base. The action objects on the design information blackboard are KSARs (knowledge
source activation records) instantiated from triggered knowledge sources.

4.2.3.1. KNOWLEDGE SOURCES

A knowledge source (KS) is an action object that contains information about when it is
‘applicable, how its variables are bound, and what action to perform. Knowledge sources
can be divided into domain and control knowledge sources. Domain knowledge sources
contain knowledge about performing a particular design task in the problem domain. They
modify only the design information blackboard. Control knowledge sources, which
modify the control blackboard, contain knowledge about planning the blackboard activities.
Knowledge sources may also be classified according to the knowledge they apply—both
domain and control knowledge sources can be further categorized as case-independent and
case-dependent. Case-independent knowledge sources are based on generalized domain
knowledge, and case-dependent knowledge sources contain cased-based knowledge to
transfer information from previous design cases to new designs.

Despite the different KS classifications (defined for the sake of clarity, inheritance and
implementation), all the knowledge sources are treated the same in DDIS. All kinds of
knowledge sources compete at each design cycle based on how well they fit into the current
design plans on the blackboard. The rest of this section describes the attributes of a
knowledge source.

* TRIGGER.CONDITION—A LISP predicate that indicates the applicability
of the KS. When it evaluates to true, the KS is triggered and eligible for
instantiation. No context variables are allowed. For example, the trigger
condition of REUSE.WHOLE.SOLUTION (see Figure 4-7) is an AND
statement with three conditions: the design inputs are completed (problem-
solving cycle is greater than 2), no design attribute has values and at least one
retrieved design is on the blackboard.

39

Integrated Case-Based Reasoning for Structural Design

TRIGGER.CONDITIONS:
(AND (> (GET.VALUE 'CONTROL 'CURRENT.CYCLE) 2)
(NULL (GET-DESIGN-SOLUTION-WFF-LIST))
(GET.VALUE 'CONTROL ‘RETRIEVED.DESIGNS))

CONTEXT.VARIABLES :
(((SCASE S$SOLUTION)
(MAPCAR #' (LAMBDA (R-CASE)
(LIST R-CASE
(GET.VALUE (GET.VALUE R-CASE
'CASE.NAME)
'*SOLUTION)))
(GET.VALUES 'CONTROL 'RETRIEVED.DESIGNS))))

NAME . GENERATOR: (REUSE SOLUTION FROM S$CASE)

PRECONDITIONS:
(< 40 (GET.VALUE $CASE 'SOLUTION.SIMILARITY))

ACTION.CODE:
(LAMBDA (THISUNIT)
(ASSERT (ADD-AND (GET.VALUE (GET.VALUE SCASE
'CASE.NAME) 'SOLUTION)) NIL
$CURRENT .WORLD)
(FORMAT T ~%The solution is: ~%) '
(LOOP FOR SQOL IN '$SOLUTION DO (FORMAT T ~a~% SOL)))

DESCRIPTION:This knowledge source has no description yet.

PRIORITY:
(COND ((> (GET.VALUE S$CASE 'SOLUTION.SIMILARITY) 95)
70)
((> (GET.VALUE $SCASE 'SOLUTION.SIMILARITY) 80)
50)
(T 20))

ORIGINATED.CASE: S$CASE
STATUS: OPERATIVE

Figure 4-7: Knowledge Source REUSE.WHOLE.SOLUTION

* CONTEXT.VARIABLES—A list of variable-value pairs used to generate
multiple KSARs from a single knowledge source. The variables are bound to
the values when the KS is triggered. The variables are usually defined with a
“$” sign and can be used in all other attributes of the KS except the
TRIGGER.CONDITION. The value part of the list is a quoted list or a
function that returns a list of values. If no value is provided for this attribute,
this knowledge source generates only one KSAR when it is triggered. In the
REUSE.WHOLE.SOLUTION example, two context variable SCASE and

- $SOLUTION are used to generate one KSAR for each retrieved design and to
bind $SOLUTION to its previous solution. Let us assume that there are two

40

Iniegrated Case-Based Reasoning for Structural Design

retrieved designs on the blackboard, CASE.1 and CASE.2. At trigger time, the
function in the context variable attribute is evaluated and the list becomes
(((SCASE $SOLUTION) '((case.l case.l.solution) (case.2
case.2.solution)))). Two KSARs are then generated by DDIS with
bindings of $CASE=case.l $SOLUTION=case.l.solution and
SCASE=case.2 $SOLUTION=case.2.solution respectively. Also,
there is an implicit semantic in the context variable list. Providing multiple lists
in the attribute causes nested “for-loops” to be performed while generating
bindings. For example, let’s add a third context variable,
$ADAPTATION.PARAMETER, to the list. Then the context variable list
(((SCASE S$SOLUTION) (MAPCAR #' (LAMBDA (...)))
($SADAPTATION.PARAMETER '(0.8 0.6))) with two adaptation
parameters generates four KSARs with bindings of $CASE=case.1l
$SOLUTION=case.l.solution $ADP.PARAMETER=0.8; $CASE=
case.l S$SOLUTION=case.l.solution $ADP.PARAMETER=0.6;
$CASE=case.2 $SOLUTION=case.2.solution SADP.PARAMETER=
0.8 and $CASE=case.2 $SOLUTION=case.2.solution
SADP .PARAMETER=0.6 respectively. Using multiple context variable lists -
is a way to generate large number of design options in DDIS.

NAME.GENERATOR—A list that translates to the name of each KSAR
generated from this KS. For example, (reuse solution from S$case)
generates KSAR reuse.solution.from.CASE.1l, reuse.
solution.from.CASE. 2, or whatever is bound to the context variable
$CASE at trigger time. Note that critical context variables must be used in the
form in order to generate distinct name for each KSAR.

PRECONDITION—A LISP predicate that is passed to the KSARs generated
from this knowledge source. It then becomes the precondition of those
KSARs. Usually, variables defined in CONTEXT.VARIABLES are used in
PRECONDITION to represent context specific requirements of the action. For
example, the precondition of REUSE.WHOLE.SOLUTION is that the solution
similarity rating of the retrieved design must be greater than 40. Every KSAR
generated from this KS may have different similarity ratings and the ratings are
not available at trigger time.

ACTION.CODE—A LISP lambda expression that performs blackboard
modifications. This action is carried out when the KSAR instantiated from this
KS is executed.

DESCRIPTION—A textual description of the knowledge source.

PRIORITY—The priority of the knowledge source. Its value should be a
constant or a LISP function that returns a number when evaluated. It represents

41

[ntegrated Case-Based Reasoning for Structural Design

the importance of the KS under different conditions and is one of the rating
elements of DDIS. The normal range of its value is between 0 and 100
(inclusive) with higher numbers signifying greater weights. In the given
example, the priority of REUSE.WHOLE.SOLUTION depends on the solution
similarity rating of the retrieved design. The proper use of this attribute and its
role in rating is discussed in Section 4.3.2 and 4.3.5.

° ORIGINATED.CASE—A retrieved design object on the control blackboard
from which this KS intends to transfer knowledge. This attribute is unique to
case-dependent knowledge sources. It is used by the rating mechanism to trace
the source of the knowledge that the KS uses in order to modify the rating
according to the similarity of the retrieved design.

e STATUS—Either OPERATIVE or INOPERATIVE. If the status of the KS is
inoperative, it is not considered in the problem-solving process.

4.2.3.2. KSARS

A knowledge source activation record (KSAR) is created from a triggered knowledge
source with all the context variables bound. KSARs are the action objects that actually
perform the backboard modification task. In order to simplify KS writing and to describe
several contexts of applicability of a KS and their different actions, DDIS allows the
creation of multiple KSARs from a single knowledge source with multiple contexts when
triggered. A KSAR is created at runtime for each possible combination of a triggered
knowledge source and a set of problem variables (a context). KSARs instantiated from the
same KS with different bindings have different names. The attributes of a KSAR and their
values are largely inherited from its parent KS. The attributes of a KSAR that are carried
over from the knowledge source object include TRIGGER.CONDITIONS
PRECONDITION, ACTION.CODE, PRIORITY and ORIGINATED.CASE. However,
every KSAR has three additional attributes:

e VARIABLE.BINDINGS—A list of dotted pairs that presents the context
variables and their bindings. The variables are bound when the original KS is
triggered and the KSAR is created. Figure 4-8 shows -the
REUSE.SOLUTION.FROM.CASE.2 KSAR created from knowledge source
REUSE.WHOLE.SOLUTION. Note that all the context variables in the
original KS are replaced with actual values now.

42

[ntegrated Case-Based Reasoning for Structural Design

TRIGGER.CONDITIONS:
(AND (> (GET.VALUE 'CONTROL 'CURRENT.CYCLE) 2)
(NULL (GET-DESIGN-SOLUTION-WFF-LIST))
(GET.VALUE 'CONTROL 'RETRIEVED.DESIGNS))

PRECONDITIONS:
(< 40 (GET.VALUE CASE.2 'SOLUTION.SIMILARITY))

ACTION.CODE:
(LAMBDA (THISUNIT)
(ASSERT (ADD-AND (GET.VALUE (GET.VALUE CASE.?2
'CASE .NAME) "SOLUTION)) NIL
SCURRENT . WORLD)
(FORMAT T ~%The solution is: ~%)
(LOOP FOR SOL IN '
' ({THE BOLT.SPACING. OF BOLT.GROUP.1 IS 6.75)
(THE NUMBER.OF.BOLTS.PER.QUADRANT OF
BOLT.GROUP.1 IS 1)
(THE BOLT.DISTANCE OF BOLT.GROUP.1 IS 19.5)
(THE DIAMETER OF BOLT.1 IS 0.625)
(THE DIAMETER OF BASE.PLATE.1 IS 21.75)
(THE MATERIAL OF BASE.PLATE.1 IS ASTM.AS572 .GR60)
(THE THICKNESS OF BASE.PLATE.1 IS 0.75))
DO (FORMAT T ~a~% SOL)))

PRIORITY: 20
ORIGINATED.CASE: CASE.2

VARIABLE.BINDINGS:
((SCASE . CASE.2)
($SOLUTION . ((THE BOLT.SPACING OF BOLT.GROUP.1 IS
6.75)
(THE NUMBER.OF .BOLTS.PER.QUADRANT OF
BOLT.GROUP.1 IS 1)
(THE BOLT.DISTANCE OF BOLT.GROUP.1 IS
19.5)
(THE DIAMETER OF BOLT.1 IS 0.625)
(THE DIAMETER OF BASE.PLATE.1 IS 21.75)
(THE MATERIAL OF BASE.PLATE.1 IS
ASTM.A572.GR60)
(THE THICKNESS OF BASE.PLATE.1 IS
0.75))))

RATING: ((FAVOR.CONTROL.ACTIONS 10 8 0)
(START.DESIGN 5 5 20))

KS: REUSE .WHOLE . SOLUTION

Figure 4-8: KSAR REUSE.SOLUTION.FROM.CASE.2

* RATING—The rating information of the KSAR under the current blackboard
situation. When the KSAR is rated, the control mechanism of DDIS puts the
individual ratings against each of the active goals in this attribute. In the

43

Inregrated Case-Based Reasoning for Structural Design

example, the two active goals on the blackboard are
FAVOR.CONTROL.ACTIONS and START.DESIGN. The KSAR’s ratings
against these two goals are 0 and 20 respectively. The two numbers preceding
each rating are the weight of the goal and the weight of its parent plan.

* KS—The knowledge source object from which the KSAR is instantiated. It is
used as a link to the parent KS to provide additional information for rating,
backtracking and design plan abstraction that is not locally available.

4.3. Control Strategy

The blackboard control strategy of DDIS can be broken down into five areas: problem-
solving cycle, KSAR rating, plan and goal maintenance, goal expansion, and general
scheduling criteria. A comprehensive understanding of these five sections is essential for
understanding the integrated case-dependent and case-independent design of DDIS.

4.3.1. Execution Cycle

The basic approach to solve a design in DDIS is based on the blackboard model of
problem solving. The design solution is generated on the blackboard incrementally by
applying knowledge sources one at a time. The system is able to reason opportunistically
because the sequence of executable knowledge source is determined dynamically based on
the applicability of knowledge sources and the latest blackboard state (information on both
control and design information blackboard).

@alize BlackboaD Stop Design

o~

Interpret Actions
Trigger DDIS Actions

> Instantiate Variables in Actions
Verify Preconditions of Actions
Maintain Blackboard Schedule Actions .
Check Design Consistency |emmm— Rate Executable Actions _
Update Plans & Goals Execute the Highest Rated Action

Figure 4-9: Execution Cycle of DDIS

44

[ntegrated Case-Based Reasoning for Structural Design

The problem-solving cycle of DDIS (shown in Figure 4-9) involves three stages:
blackboard updating, knowledge source interpreting, and scheduling:

o

®

Blackboard Updating—At the beginning of every cycle, control objects on
the control blackboard are updated according to the new blackboard
modification resulting from the completion of the previous cycle (this updating
process is discussed in detail later).

Knowledge Source Interpretation—The applicability of every knowledge
source (KS) under the current blackboard situation is determined by a three step
process.

° Triggering—A knowledge source is triggered when its primary
requirements (the trigger condition) are satisfied. A triggered knowledge
source is placed on the triggered agenda of DDIS.

For example, the trigger condition of the CHECK.CONSTRAINTS KS (see
Section 4.5.1.2) is the completion of problem input. When the problem .
input is completed, the KS is triggered and placed on the triggered agenda.

_° Instantiating—A knowledge source activation record (KSAR) is created

for each possible combination of a triggered knowledge source and a set of
problem variables (a context). In DDIS, KSs are written with context
variables and are triggered by a blackboard state and context combination.
Therefore, several KSARs can be created from a single KS when multiple
triggering contexts exist on the blackboard.

Instead of writing a specific constraint-checking KS for every single
constraint, a context variable $CONST is used in CHECK.CONSTRAINTS
to represent a unique constraint in the design problem. When
CHECK.CONSTRAINTS is on the triggered agenda, DDIS instantiates it
into as many KSARs as there are active constraints on the blackboard.

° Verifying—After the triggering and instantiating process, every KSAR’s
context specific requirements (the precondition) are checked. A KSAR is
executable and placed on the executable agenda when its precondition is met.

For example, the precondition of CHECK.CONSTRAINTS KS is that the
status of $CONST is unknown and the values of all the variables involved in
$CONST are known. Therefore, DDIS checks the status and ingredient
variables of each of constraint to determine if the corresponding constraint
checking KSARSs can be executed.

Scheduling—Every KSAR on the executable agenda is rated according to the
control objects on the blackboard (the plans and goals), and the highest rated

45

Integrared Case-Based Resoning for Structural Design

KSAR is recommended to the user for execution. The result of executing the
KSAR is posted back to the blackboard, and the process repeats itself until the
problem is solved or no executable KSARs are found.

Note that the problem solving cycle does not differentiate between case-dependent and
case-independent knowledge sources. All the KSs are treated alike in the integrated system
except that case-dependent knowledge sources are triggered by the presence of retrieved
similar designs on the blackboard and have special context variables to associate them with
the retrieved designs. The ratings of case-dependent KSARs, however, have to be
adjusted according to the similarity of the case from which they transfer case-dependent
knowledge. The strategies for rating are discussed next.

4.3.2. KSAR Rating

DDIS uses the control knowledge in plan and goal objects on the control blackboard to
schedule the problem-solving actions. When case-dependent actions are involved,
knowledge about design similarity in retrieved designs also plays a part in the schedule
rating.

Each KSAR in the executable agenda is rated against every goal on the control
blackboard by calling the function stored as the value of the FUNCTION attribute of the
goal. These are the KSAR'’s individual ratings with respect to different active goals (see
Section 4.3.5 for more information about individual ratings). To rate a KSAR with respect
to the whole control blackboard situation, each individual rating is multiplied by the weight
of each goal and each parent plan. Then the triple products for each KSAR is summed and
divided by the maximum possible rating sum.

This weighting procedure takes into account of the relative importance of design plans
and goals. The value of the weight attribute of a plan (or a goal) indicates its priority (see
Section 4.2.1.1 and 4.2.1.2). A goal and a plan with higher weight values are considered

~more important than those with lower weights. Therefore, they should be more influential
in scheduling. After all the executable KSARs are rated, DDIS recommends the highest
rated action for execution. If there are no posted plans and goals on the control blackboard,
the ratings for all KSARSs are zero and the most recently invoked KSAR is recommended.

Control actions compete with domain actions, and case-dependent actions compete with
case-independent actions for scheduling. The rating method described above applies to
every KSAR except that the individual rating of a case-dependent KSAR has to be adjusted
for the similarity of its source case.

46

Integrated Case-Based Reasoning for Structural Design

4.3.2.1. RATING FUNCTION FOR CASE-INDEPENDENT KSARS

The function DDIS uses to calculate the priority of a case-independent KSAR is:

a“ﬁvig“‘s rating of the KSAR against GOAL
coaL \X weight of GOAL x weight of GOAL's parent plan
active ‘goals ‘
2 (weight of GOAL x weight of GOAL's parent plan)
GOAL

Stand-alone goals have no parent plans. They are usually important aspects that need to be
dealt with promptly (like backtracking goals). Therefore, DDIS uses 10 as the weight of
the non exist parent plan when calculating ratings of stand-alone goals.

To illustrate the use of the above equation, consider the blackboard state shown later in
Figure 4-13. The active goals on the control blackboard are:

1. SELECT.MATERIAL (weight = 5) from
CASE.2.DESIGN.PLAN (weight = 20/3),

2. DESIGN.BEAM-COLUMN (weight = 5) from
BEAM-COLUMN.SYSTEM.DESIGN.PLAN (weight = 5) and
3. FAVOR.CONTROL.ACTIONS (weight = 8), which is
the stand-alone system default goal discussed in Section 4.3.5.

Then, the overall rating of KSAR USE.ASTM.A36.STEEL.FOR.BEAM.COLUMN
against all the active goals on the control blackboard is calculated as follow:

RserecrMaTERIAL+ RDESIGN BEAM-COLUMN + RFAVOR CONTROL ACTIONS
(5x339.)+(5x5)+(8x 10)

(12x5%x20) 4 (18 x 5x 5) + (0 x 8 x 10)
_ 3 -2400+450+0 _ 206

(5 % %Q) +(5%5) + (8 x 10) 138.333
in which
Rerr £CT MATERIAL = (the rating of the KSAR against SELECT.MATERIAL

X the weight of SELECT MATERIAL
X the weight of CASE.2.DESIGN.PLAN)

(72x5x2_:?.)

47

Integrated Case-Based Reasoning for Structural Design

(the rating of the KSAR against DESIGN.BEAM-COLUMN

X the weight of DESIGN.BEAM-COLUMN
X the weight of BEAM-COLUMN.SYSTEM.DESIGN.PLAN)

(18 x5x5)

RDESIGN .BEAM-COLUMN

= (the rating of the KSAR against FAVOR.CONTROL.ACTIONS
x the weight of FAVOR.CONTROL.ACTIONS x 10)
(0x 8 x 10)

RFAVOR.CONTROL.ACI'IONS

The action USE.ASTM.A36.STEEL.FOR.BEAM.COLUMN matches the intent of the
SELECT.MATERIAL goal, partly serves the DESIGN.BEAM-COLUMN goal and is
irrelevant for goal FAVOR.CONTROL.ACTIONS. Therefore, the individual rating of the
KSAR against these three goals are 72, 18 and 0, respectively.

4.3.2.2. RATING FUNCTION FOR CASE-DEPENDENT KSARS

The priority of a case-dependent KSAR is determined by the following function:

base similarity of DDIS
X weight of GOAL X weight of GOAL's parent plan
active goals
>, (weight of GOAL x weight of GOAL's parent plan)
GOAL

active goals (Min {100 , rating of the KSAR against GOAL x Similarity rating of KSAR's originated design})

GOAL

The base similarity represents the threshold value for case similarity adjustment. It is a
global constant in DDIS and currently set to 60. If the similarity rating of the KSAR’s
originated case is greater than the base similarity, the individual rating of the KSAR is
increased. The higher the case similarity rating is the better the KSAR is for transferring
case-dependent knowledge from the case. On the other hand, the individual rating of the
KSAR is decreased if the case similarity rating is less than the base similarity. Any
individual rating of a KSAR against a goal should not be greater than 100, so the maximum
individual rating after case similarity adjustment is 100.

The case similarity rating used in the above equation can be plan similarity or solution
similarity. When the action being rated is in the solution transformer knowledge module,
the solution similarity of the retrieved design where the action intends to transfer the
solution is used. If the action is in the plan transformer knowledge module, the plan
similarity is used. One exception to this rating method is the memory prober, which uses
the case-independent KSAR rating function instead of the case-dependent function. No
case similarity modification of the rating is needed (or possible) for the memory probers
because that they are case-dependent control KSs that change the retrieved design level of
the control blackboard but do not transfer particular case-dependent knowledge from any
retrieved designs. -

48

Integrated Case-Based Reasoning for Structural Design

The following example using KSAR REUSE.ASTM.A36.STEEL.FROM.CASE.3 in
Figure 4-13 illustrates the rating function for case-dependent KSARs:

RSFT ECT.MATERIAL4 RDFQTGNBEAM—COLUMN -+ RFAVOR‘COM'ROLACI‘IONS
(5><230-)+(5x5)+(8>< 10)

@2 x18 x5x20) + (14x18 x 5% 5) + (0x 18 x 8 x 10)
- 60 3 60 60 =1820+455+0 _ 1645

(5x 23) + (5% 5) + (8 x 10) 138.333

in which

(the rating of the KSAR against SELECT MATERIAL
X solution similarity of CASE.3
base similarity of DDIS
X the weight of SELECT.MATERIAL
x the weight of CASE.2.DESIGN.PLAN)

RSELECI' .MATERIAL

= 2xI8x5x20
60 3

(the rating of the KSAR against DESIGN.BEAM-COLUMN
X solution similarity of CASE.3
base similarity of DDIS
x the weight of DESIGN.BEAM-COLUMN
X the weight of BEAM-COLUMN.SYSTEM.DESIGN.PLAN)

(14 x 18 x 5 x 5)
60

RDESIGNBEAM-COLUMN

Reavor controLAcTIONs = (the rating of the KSAR against FAVOR.CONTROL.ACTIONS
x Solution similarity of CASE.3
base similarity of DDIS
X the weight of FAVOR.CONTROL.ACTIONS x 10)

(0x 18 % 8x 10)
60

The active goals on the control blackboard are stated in the previous section. Since
REUSE.ASTM.A36.STEEL.FROM.CASE.3 is instantiated from REUSE.
PARTIAL.SOLUTION in the solution transformer knowledge module and the source of
the solution transfer is CASE.3, the solution similarity rating of CASE.3 (i.e., 78) is used
in the rating adjustment.

49

Integrated Case-Based Reasoning for Structural Design

4.3.3. Plan and Goal Maintenance

The plans and goals posted on the control blackboard contain the control information
DDIS needs for scheduling. The applicability of plans and goals can change every cycle
due to the changing blackboard state. Therefore, plans and goals need to be monitored and
updated every cycle by DDIS. The structures of plan and goal objects are described in
Section 4.2.1.1 and Section 4.2.1.2. This section discusses their maintenance during
problem solving.

4.3.3.1. PLAN UPDATING

- At the beginning of every execution cycle, the plans on the control blackboard are
updated. The following is the procedure for updating the plans:

1. Check applicability of plans. The intentions of all active plans are
checked. If the intention of a plan is satisfied (evaluates to true according to the
current blackboard state), the plan is no longer applicable (either the intended
purpose of the plan is already accomplished or it is no longer desirable).

2. Remove inapplicable plans. The plans that are no longer applicable are
removed from the control blackboard. This triggers the goal updating stated in
the next section.

3. Check existence of retrieved designs. The existences of the
corresponding cases of every case-dependent plan are checked. Case-
dependent plans should only be considered when their associated case is
retrieved. The absence of the retrieved design means that it is no longer a
source of case-dependent knowledge in the design session.

4. Remove orphaned case-dependent plans. The case-dependent plans
whose originated case is no longer on the blackboard are removed from the
control blackboard. This also triggers the goal updating stated in the next
section.

4.3.3.2. GOAL UPDATING

After the plans are updated, the goal maintenance follows. It goes through the
following steps:

1. Check applicability of stand-alone goals. The intentions of every
active stand-alone goal (goals not included in any plans) are checked. If the
intention of a goal is satisfied, the goal is no longer applicable (either the

50

[niegrated Case-Based Reasoning for Structural Desi gn

intended purpose of the goal is already accomplished or it is no longer
desirable).

2. Remove inapplicable stand-alone goals. The stand-alone goals that are
no longer applicable are removed from the control blackboard.

3. Remove orphaned goals. The goals whose parent plans are no longer on
the blackboard are removed from the control blackboard.

4. Update active goals of plans. Previously satisfied goals of every active
plan on the blackboard are rechecked. If the intention of a previously achieved
goal is not satisfied according to the current blackboard state, the goal needs to
be satisfied again, and it becomes the active goal of the plan. If all the achieved
goals are still satisfied, check the applicability of the currently active goals of the
plan. If the current active goals are all satisfied, set the ACTIVE.GOAL of the
plan to the next applicable goal(s) in the GOAL.LIST as the new active goal(s).

5. Activate new active goals. All the active goals of the current plans are
posted on the blackboard. This new set of design goals supplies the rating
objects for the new execution cycle.

6. Remove plans with no active goals. Plans with an empty
ACTIVE.GOAL are removed from the control blackboard. When all the goals
in a plan’s GOAL.LIST are satisfied, its ACTIVE.GOAL is NIL.

4.3.4. Goal Expansion

Like the plan and goal updating mechanism, goal expansion is an important control
inference method in DDIS. A global design goal can be dynamically expanded into a more
detailed design plan (or plans) at run time. The individual goals of that plan may be further
expanded if specific plans are available. This top-down plan decomposition with several
levels of abstraction is goal expansion (see Figure 4-10 for an example). An active goal on
the blackboard becomes expandable when there is at least one plan in the knowledge base
that has the same intention as the goal. One exception is that the goal must nat belong to
the plan (usually, the intention of the last goal of a plan is the same as the intention of the
plan). Goal expansion is achieved by the generic control knowledge source
EXPAND.GOAL. The following is a description of this KS.

 EXPAND.GOAL expands design goals on the blackboard into case-
independent plans with same intention in the knowledge base of DDIS. The
trigger condition of EXPAND.GOAL is that at least one of the active goals on
the blackboard is expandable (i.e., the intention of at least one plan in the
knowledge base is the same as one of the active goals’ intention). Context
variables SEXPANDABLE-GOAL and $PLAN are used to generate one KSAR

51

[ntegrated Case-Based Reasoning for Structural Design

for each design plan found with more specific subgoals of achieving the -
expandable design goals on the blackboard. The precondition is that $PLAN
isnot already on the blackboard. The execution of the KS adds $PLAN on the
control blackboard as an expansion of SEXPANDABLE-GOAL. In order to
reflect the different importance of each expanded goal, EXPAND.GOAL gives
the expansion plan a weight equal to the weight of the expanded goal.

Design goals can also be expanded to case-dependent plans.
REUSE.PREVIOUS.PLAN is the case-dependent version of EXPAND.GOAL. Its
intention is to expand goals to past case-dependent plans in the case memory (see Section
4.5.2.3.2.). When a case-dependent plan is reused as an expansion of a goal, the weight
of the plan needs to be adjusted to account for the similarity of the design case it comes
from. The following equation is used by REUSE.PREVIOUS.PLAN to calculate the
weight of the case-dependent plan:

the plan similarity rating of the retrieved design

(the weight of the goal to be expanded x the base similarity of DDIS

)

However, the weight of a plan cannot be greater than 10. If the calculated value is greater
than 10, the weight of the case-dependent plan is only 10. The base similarity is the default
similarity value used in various KSAR rating functions of DDIS. It is currently set to 60
on the control blackboard.

[-_-Beam-Cqumn.System.Design.Plan <5>
Problem.lnput <5> Design.Beam-Column <5> Save.Design <5»

Beam-Column.Design.Subplan.1 <5» ‘
hoose.Designation <5> Choose.Materlal <5> Check.Constraint <5>

ECase.z.D'esign.Plan <20/3>
elect.Material <S> Select.Designation <5> —

L- Check.Constraint.Optimization.1 <5> Check.Remaining.Constraints <5»

onstraint.Checking.plan <5»>
Check.Constraint.AISC.2.4-3 «<5> Check.Constraint.AlSC.2.4-2 «<5> =

L—Check.Constralnt.OptlmlzatlonJ <5>

Figure 4-10: An Example of the DDIS’s Goal Expansion

52

[ntegrated Case-Based Reasoning for Structural Design

For example, when REUSE.CASE.2.DESIGN.PLAN.FOR.DESIGN.BEAM-
COLUMN is executed to expand the active goal DESIGN.BEAM-COLUMN (seecycle 5
of the first beam-column design session example in Section 5.1.1), the case-dependent
CASE.2.DESIGN.PLAN is posted with a weight of 20/3 resulting from the following
calculation:)

(the weight of DESIGN.BEAM-COLUMN x the plan similarity rating of CASE.2y _ 5 . 80 _ 5913
the base similarity of DDIS 60

It is possible that several expansions (including case-dependent and case-independent
expansions) are available for a given design goal. Then, we have several goal expansion
KSARs in the executable agenda for that goal. We may also have KSARs for other
expandable goals. Like all other KSARSs, they need to be rated by DDIS and compete with
other domain actions for execution. The rating of goal expansion KSs is discussed in the
next section.

4.3.5. General Scheduling Criteria

The general scheduling rule of DDIS is to prefer control KSARSs to domain KSARs and
prefer case-independent KSARSs to case-dependent KSARs. DDIS favors control actions
using the system default goal FAVOR.CONTROL.ACTIONS (with a weight of 8), which
does not show on the blackboard interface. When there are no other plans and goals on the
blackboard, control actions are always favored. However, in the presence of other design
plans and goals, the significance of FAVOR.CONTROL.ACTIONS in the overall design
plan decreases, and control actions have to compete with other domain actions for
execution.

In DDIS, each design goal rates KSARs by calling the function stored in the
FUNCTION attribute of the goal. Usually, the KSAR rating function of a goal accesses
the PRIORITY attribute of KSARs for ranking information. If the value stored in a
KSAR’s PRIORITY attribute is a constant, the priority of the KSAR is not changed with
changing blackboard states. On the other hand, the KSAR’s priority can be a dynamic
value if the PRIORITY attribute is a function involving some blackboard objects. Dynamic
rating can also be achieved by including different rating conditions in the FUNCTION
attribute of goals to account for different blackboard situations. The recommended method
of writing KSs and goals is to leave the dynamic rating to the PRIORITY attribute of
KSARs and always get the priority value in the KSAR rating function of goals. Therefore,
the general priority of KSARs can be predefined for various types of KSs and inherited by
their children through the class hierarchy of DDIS. For example, case-dependent KSs have
a default priority of 70, case-independent KSs have a default priority of 90, the memory
probers have a default priority of 85, etc. The general rule of preferring case-independent
KSARs to case-dependent KSARs is implied in those numbers.

53

Inte. ed Case-Based Reasoning for Structural Design

The knowledge source EXPAND.GOAL is an example of dynamic KSAR rating. The
PRIORITY of EXPAND.GOAL is described by the following conditional statements:

IF the goal in consideration has not been expanded yet

THEN the priority is 80

IF the goal has only been expanded to case- dependent plan(s)

THEN the priority is 60

IF the goal has only been expanded to case-independent plan(s)

THEN the priority is 40

IF the goal has both case-independent and case-dependent
expansions

THEN the priority is 20

The rationale is that the priority of a gc ~ 2xpansion action changes with the amount and
type of subplans that the expandable gc ... already has. However, goal expansion actions
should be able to be rated according to the importance of the goal they aim to expand.
Therefore, the PRIORITY of EXPAND.GOAL is modified to be the value of the
conditional function described above times the goal importance index, which is the weight
of the expandable goal divided by 8 (an experimental value from running the demonstration
applications).

For instance, KSAR EXPAND.DESIGN.BEAM-COLUMN.INTO.BEAM-
COLUMN.DESIGN.SUBPLAN.1 in Figure 4-13 is rated as follows:

Rser et MaTERIAL+ RDESIGN BEAM-cOLUMN + REAVOR.CONTROL ACTIONS
(5x%Q)+(5x5)+(8x 10)

3
0+0+ (60)><8><10) _0+0+(37.5x8x10) _ 3000 21.69

(5 X _Q) +(5% 5) + (8 X 10) 138.333 138.333
in which.
Rgrr T MATERIAL = (the rating of the goal expansion KSAR

against SELECT MATERIAL
X the weight of SELECTMATERIAL
x the weight of CASE.2.DESIGN.PLAN)

= (0x5><-2-39—) =0

54

Integrated Case-Based Reasoning for Srructural Design

(the rating of the goal expansion KSAR
against DESIGN.BEAM-COLUMN
x the weight of DESIGN.BEAM-COLUMN
x the weight of BEAM-COLUMN.SYSTEM.DESIGN.PLAN)

fi

RDESIGN.BEAM—COI.UMN

(OxX5%x5) =

Rravor conTrRoLACTIONs = (the rating of the goal expansion KSAR
against FAVOR.CONTROL.ACTIONS
X the weight of FAVOR.CONTROL.ACTIONS x 10)
((the priority of the goal expansion KSAR
x the goal importance index) x 8 x 10)

(60 x the weight of DESIGN. BEAM-COLUMN
8

)X 8 x 10)

((60x§) x 8 x 10)

The goal expansion KSAR is a control knowledge source and does not directly contribute .
to the design of the beam-column and the selection of its material. Therefore, it is rated
zero against SELECT.MATERIAL and DESIGN.BEAM-COLUMN. On the other hand,
the goal FAVOR.CONTROL.ACTIONS accesses the KSAR’S PRIORITY slot value as
the KSAR’s rating against favoring control actions. The PRIORITY of the goal expansion
KSAR is the product of the goal importance index and the value of the conditional function
described above, which is determined according to the blackboard situation at run time.
The value of the conditional function is 60 because DESIGN.BEAM-COLUMN has
already been expanded to case-dependent CASE.2.DESIGN.PLAN on the control
blackboard. The goal importance index is the weight of DESIGN.BEAM-COLUMN (i.e.,
5) divided by 8. Therefore, the PRIORITY of the goal expansion KSAR is 60 times 5
divided by 8, which is 37.5.

4.4. Case Memory

The case memory knowledge base is the resource of case-based design in DDIS.
Newly solved designs can be stored in the memory for reuse by the case-based reasoner.
The case recorder captures case-dependent knowledge in several forms. The case memory
needs to be able to accommodate all of them and still let the memory prober find them
effectively. Therefore, the memory is divided into three parts: a memory of solutions, a
memory of plans and a memory of goals, with interrelated objects (all knowledge bases in
DDIS consist of objects). Three kinds of objects are used in the case memory: design
cases, case-dependent plans and case-dependent goals. Figure 4-11 shows the structure of
the case memory with a sample case base.

35

Integrated Case-Based Reasoning for Structural Design

utput) The Graph of the CASE-ME!

_ CASE.1
E.SPECIFIC MEMORY< = CASE.2
AILURE MEMORY fCASE.3

ENERALIZED MEMORY
CASE. 1. DESIGN.PLAN-CHECK.CONSTRANT .AISC.2.4-2
/ CASE. 1 DESIGN.PLAN-CHECK REMAINING CONSTRAINT S
// GASE.1 DESIGN.PLAN-SYSTEM.SELECT MATERIAL
/11 CASE.1 DESIGN.PLAN-USER.SELECT.BEAM.COLUMN DESIGNATION
/111 ‘CASE.1 REDESIGN.PLAN. I-CHECK.CONSTRAINT.AISC.2.4-2
Nttt 2 "CASE. 1 REDESIGN.PLAN. IHNCREASE.CROSS.SECTION AREA
/1174 1 *CASE. | REDESIGN.PLAN. I-RETRACT .ONE DESIGN. YALUE
117 ¢ 78 CASE.2 DESIGN.PLAN-CHECK.CONSTRAINT OPTIMIZATION. 1
a1y /,’ ’ A CASE.2 DESIGN.PLAN-CHECK.REMAINING.CONSTRAINTS
¥ CASE.2 DESIGN.PLAN-SYSTEM.SELECT MATERIAL
“# CASE.2 DESIGN.PLAN-USER.SELECT BEAM COLUMN DESIGMATION
- J CASE.2 REDESIGN.PLAN. 1-CHECK.CONSTRAINT.OPTRJIZATION. 1
CASE.2 REDESIGN.PLAN. 1-DECREASE .CROSS.SECTION.AREA
CASE.2 REDESIGN.PLAN. 1-RETRACT ONE.DESIGN. VALUE
CASE.3.DESIGN.PLAN-CHECK.CONSTRAINT .AISC.2.4-3
CASE.3.DESIGN.PLAN-CHECK.CONSTRAINT OPTIMIZATION. §
CASE.3 DESIGN.PLAN-CHECK.REMAINING.CONSTRAINTS
CASE.3.DESIGN.PLAN-SY STEM.SELECT MATERIAL
CASE.3.DESIGN.PLAN-USER.SELECT.BEAM.COLUMN DESIGNATION
CASE.3 REDESIGN.PLAN. 1-CHECK.CONSTRAINT.OPTIMIZATION. 1
M\ CASE.3 REDESIGN.PLAN. 1-RETRACT.ONE.DESIGN. VALUE
: W\ CASE.3 REDESIGN.PLAN.1-5YSTEM.SELECT.MATERIAL
\\ CASE.3 REDESIGN.PLAN.2-CHECK.CONSTRAINT.AISC.2.4-3
\ CASE.3 REDESIGN.PLAN.24NCREASE.CROSS.SECTION AREA
CASE.3.REDESIGN.PLAN.2-RETRACT ONE DESIGN. YALUE
CASE.1.DESIGN.PLAN
CASE.1.REDESIGN.PLAN.1

\\Q
AN
RN
\

%"
&

OAL.MEMORY$ =
’g

N
-

71N \\

7,
v
/ln

CASE MEMORY

W\
\)\\ N

!
!
A

/.4

< -

PLAN .MEMORY€ = —
\\

CASE.2.DESIGN.PLAN
CASE.2 . REDESIGN.PLAN.1
CASE.3.DESIGN.PLAN

MU CASE.3.REDESIGN.PLAN.1
CASE.3.REDESIGN_PLAN.2
SOLUTION MEMORY!

Figure 4-11: The Hierarchy of Case Memory Knowledge Base in DDIS

4.4.1. Design Cases

A design case is the primary storage element of case-dependent knowledge in DDIS. It
stores information about a particular previous design. The case recorder is responsible for
creating design case objects and saving them in the memory. The following are required
attributes of a design case.

CASE.NAME—The name of the design case.

DESIGN.HISTORY—A sequence of the executed KSs and their bindings.
Its value is a list of KSs and variable binding pairs.

DESCRIPTION—A textual description of the design case.

56

Integrated Case-Based Reasoning for Structural Desi gan

¢ DESIGN.PLAN—A case-dependent plan object representing the control
knowledge used in the previous design. The creation of the object is discussed
in the next section.

¢ PROBLEM.INPUT—The problem specification of the design. It holds the
information about the problem input variables and their values.

* REDESIGN.PLANS—Several case-dependent redesign plan objects
representing the backtracking strategies used in the previous design. The
creation of the objects is discussed in the next section.

¢ SOLUTION-—The final solution of the design.

* STORAGE.LOCATION—A complete file path name representing the
physical storage location of all the propositions of the design.

4.4.2. Case-Dependent Plans

A case-dependent plan is a subclass of the plan object discussed in Section 4.2.1.1. It
stores the problem-solving or backtracking strategy of a particular previous design. It
specifies the sequence of design goals achieved by the previous design steps. The case-
dependent goals are discussed in the next section.

The case recorder is responsible for creating case-dependent plan objects and saving
them in the memory. The control knowledge of a previous design session can be
abstracted to one global design plan and several redesign plans. The process that the
SAVE.DESIGN.SESSION knowledge source (see Section 4.5.3) uses to capture design
plans is stated below: '

* Identify major design actions. The design history is analyzed, and all
KSs that modified the solution blackboard are gathered. This step is to filter out
unnecessary design steps that do not directly contribute to the solution process
(e.g., control KSs that only modify the control blackboard).

¢ Create case-dependent goals. A case-dependent goal is created for each
identified major action (KS) in order to prefer the same KS in the future. This
process is discussed in detail in the next section.

* Differentiate design and redesign goals. The major design actions can
be classified into design and redesign actions. Therefore, the case-dependent
goals are assigned to one design plan that represents the major design path and
several redesign plans that represent the various backtracking processes. The
goals then make up the GOAL.LIST of their plan.

57

Integrated Case-Based Reasoning for Structural Design

¢ State the intention of the plans. The intention of a global plan is to
generate design value for all the design attributes and to satisfy all the applicable
constraints of the design. The intention of a case-dependent redesign plan is to
satisfy all unsatisfied constraints that triggered the redesign process.

4.4.3. Case-Dependent Goals

The characteristics of case-dependent goals are discussed in Section 4.2.1.2. The case
recorder is responsible for creating case-dependent goal objects and saving them in the goal
memory of the case memory knowledge base. A case-dependent goal represents one step
of the case-dependent plan that it belongs to. It contains a rating function to evaluate the
usefulness of future KSARs for reproducing the effect that resulted from the past action
taken at that step.

Three different rating conditions are created for each case-dependent goal:

1. The highest rating is given to the KSARSs instantiated from the same KS that
previously triggered the KSAR used to accomplish the goal (i.e., KSARs from
the same KS).

2. KSARs that modify the same design objects and attributes attain a moderate
rating.

3. Same type of actions (i.e., KSARs with same parent class as the previously
used KSAR) score a limited rating.

In this way, each step of a case-dependent plan can be followed precisely, closely or
loosely by DDIS’s control mechanism when the past plan is reused by the plan
transformers. However, further experiment action shows that the usefulness of previous
case-dependent actions varies largely with the similarity between the new and past design.
The truly valuable decisions are those that select the design objects and attributes to design
for. So, only the second rating condition stays when case-dependent goals are extracted
from case-dependent actions. On the other hand, the following rating condition is added to
the top of the list for case-dependent goals that are extracted from previous backtracking
provoking actions.

0. The best rating is given to the KSARs that are the same as previously used to
accomplish the redesign goal (i.e., KSARs from the same KS with the same
bindings).

The level of backtracking is the most important guidance that a previous backtracking action
can give to later design sessions. The backtracking level is recorded with the bindings of
the previouly executed backtracking provoker KSAR (see Section 4.5.1.3 for details of the

58

Integrated Case-Based Reasoning for Structural Design

KS). Therefore, to capture that decision, four rating conditions are used (with highest
rating given by the condition stated in item zero) instead of three.

The intention of a case-dependent goal is the negation of the trigger condition of the KS
that previously accomplished the design step. A goal is not applicable when its intention is
true. The action is not appropriate or is already executed when its trigger condition is not
true. Therefore, when the trigger condition of a previous action is not true, the case-
dependent goal denoting that action is not applicable (either the goal is already
. accomplished or the intended purpose of the goal is not desirable). The formulation works
. well with the plan and goal updating mechanism of DDIS. Inapplicable goals from past
plans are delayed or skipped under this setup.

4.5. Knowledge Base

The knowledge base of DDIS consists of a number of knowledge sources. The KSs
can be grouped into three modules: the case-independent reasoner, the case-based reasoner
and the case recorder. The knowledge modules and their knowledge sources are described .
in this section.

4.5.1. Case-Independent Reasoner

Four subsidiary knowledge modules are included in the case-independent reasoner: the
design generator, constraint checker, backtracking provoker and redesign adviser. The
KSs included in this module are the fundamental design actions for implementing the
design model discussed in Section 3.2.

4.5.1.1. DESIGN GENERATOR

The function of the design generator is to generate values for design variables. The
knowledge sources in this module are capable of generating different values for the same
design variable (or a set of variables) using different case-independent knowledge including
design heuristics, design analysis, design calculation, database information, etc.
Knowledge source SYSTEM.SELECT.DESIGNATION of beam-column design problem
is an example of the design generator.

* SYSTEM.SELECT.DESIGNATION calculates the required cross section
area of the beam-column based on the heuristic equation

P+Mx02x12))
Fy

Arequired =

and recommends a w-shape section that has at least that area.

59

Integrated Case-Based Reasoning for Structural Design

The trigger condition of the SYSTEM.SELECT.DESIGNATION KS is true if
the designation of the beam-column is unknown, the end moment M) is
known, the axial load (P) is known, and the yield stress (Fy) of the material of
the beam is known. One context variable is used for this KS. When the KS is
triggered, the $W-SHAPE-FOUND context variable is bound to the smallest
AISC W-shape structural section that satisfies the cross section area requirement
calculated by the heuristic equation. The precondition is that $W-SHAPE-
FOUND is not NIL and is not equal to the most recently used designation.
DDIS posts $W-SHAPE-FOUND as the design value of the designation of the
beam-column on the blackboard when the action is executed.

4.5.1.2. CONSTRAINT CHECKER

The function of constraint checker knowledge module is to perform constraint
confirmation. When constraint violations are found, it posts “fix constraint violation” goals
on the blackboard to direct DDIS’s attention to design modifications. The constraint
checker of DDIS has three generic knowledge sources CHECK.CONSTRAINTS,
ACTIVATE.CONSTRAINTS and USER.SPECIFY.MAJOR.CONSTRAINTS.

« CHECK.CONSTRAINTS is written with one context variable, which can
be instantiated to different constraints on the blackboard to create multiple
constraint checking KSARs.

The trigger condition of the KS is the completion of problem input. DDIS
generates one check-constraint KSAR for every constraint object on the
blackboard at trigger'time. For every KSAR generated, the SCONST context
variable is bound to one unique constraint in the design problem. The
precondition of the K& that the status of SCONST is unknown and the values
of all the variables invc. -ed in $CONST are known. The action of the KS is to
post the status of SCONST (the possible values are satisfied and unsatisfied) on
the blackboard. If SCONST is unsatisfied, a FIX.$CONST.VIOLATION goal
is created and posted on the blackboard. '

+ USER.SPECIFY.MAJOR.CONSTRAINTS is an action that can be used
to relax constraints. It is sometimes useful to relax secondary constraints
during design, letting the system concentrate on the critical constraints and save
execution time.

The KS is triggered when there are still unchecked constraints (i.e., constraints
with an unknown status) on the blackboard. No context variables are used in
this KS. When the KS is executed, the user can select unchecked constraints
from a table that he/she wants DDIS to focus on. The selected constraints then
become the major constraints of the design session. A “check critical
constraint” goal is created and posted on the blackboard for every major

60

[ntegrated Case-Based Reasoning for Structural Design

constraint. Thus, DDIS can favor the actions for checking those major
constraints when they are ready to be checked. At the same time, the values of
the applicability attribute of all the unselected constraints are changed to
“relaxed” (the default value is “activated”), which prevents the action for
checking these constraints from becoming executable (because the preconditions
of the corresponding KSARs are false).

ACTIVATE.CONSTRAINTS is used to make previously relaxed
constraints active again. Usually, it is executed when major constraints are
already satisfied, and the user wants to check the secondary constraints.

The KS is triggered when there are constraints on the blackboard that have a
status of “relaxed”. Since this KS does not have context variables and
preconditions, only one executable KSAR is created after triggering. When the
KS is executed, the user can select relaxed constraints from a table to make
them active again. The relaxed applicability of all the selected constraints are
removed from the blackboard. The statuses of these constraints become
unknown, which can trigger more constraint checking actions.

4.5.1.3. BACKTRACKING PROVOKER

The backtracking provoker knowledge module initiates the redesign process when a
design failure is found. It controls the level to which DDIS backtracks. Certain design
values on the solution blackboard are retracted when a backtracking provoker is executed.
The truth maintenance system of DDIS then resets the blackboard state, and all other KSs
compete to solve the design again. One example of the backtracking provoker is the
RETRACT.ONE.DESIGN.VALUE generic KS.

RETRACT.ONE.DESIGN.VALUE retracts one attribute value of a design
object that is responsible for the current design failure. The assumption behind
this - KS is that we modify one design value at a time for one constraint
violation.

The KS is triggered when the status of at least one design constraint is
unsatified. This KS uses the justifications established by the truth
maintenance system during design to find out all the attribute values of design
objects that are responsible for the currently unsatisfied constraints. Then,
context variable $DESIGN-OBJECT and $SLOT are used in this KS to
generate one KSAR for every pair of design object and attribute involved in the
violated constraints. This particular KS has no precondition. The execution of
the KS retracts the $SLOT value of $DESIGN-OBJECT from the solution

blackboard.

61

Integrated Case-Based Reasoning for Structural Design

4.5.1.4. REDESIGN ADVISER

The function of the redesign adviser knowledge module is to give redesign advice. The
backtracking provoker is different from the redesign adviser. The former suggests what
design value to fix, and the latter recommends how to fix it. A redesign adviser is triggered
~ after a backtracking provoker removes values from the solution blackboard. Analyzing the
violated constraint(s) and design history, the applicable redesign adviser become executable
and can be evoked to modify the design.

The redesign advisers are usually domain dependent. For example,
INCREASE.CROSS.SECTION.AREA, INCREASE.BEAM.COLUMN.DEPTH and
DECREASE.CROSS.SECTION. AREA are three particular redesign adviser KSs in the
beam-column design knowledge base of DDIS. Each is capable of generating several
possible values using context variables for redesigning certain parts of the beam-column.

4.5.2. Case-Based Reasoner

The case-based reasoner performs the case-based design task in the integrated design
system. Three subsidiary knowledge modules are included in the case-based reasoner: the
memory prober, the failure anticipator and the analogy transformer.

4.5.2.1. MEMORY PROBER

‘The memory prober knowledge module is the retrieval mechanism of the case-base
reasoner. Its function is to locate previous design cases stored in the case memory
knowledge base that are similar to a new design and rank them with respect to a particular
class of problems. This version of DDIS has very limited ability in this area. All previous
cases that are potentially useful under the target condition are presented to the user for
evaluation and selection. '

Three generic knowledge sources, RETRIEVE.SIMILAR.CASES, FIND.
SIMILAR.CASES. FOR.REDESIGN and RANK.CASES, are in the current DDIS
knowledge base.

e RETRIEVE.SIMILAR.CASES searches the case memory for previous
similar designs as the source of case-dependent reasoning. At this point DDIS
does not have any knowledge about how to measure similarities between design
cases. Therefore, RETRIEVE.SIMILAR.CASES presents all the specific
designs in the case memory to the user for retrieval at the beginning of a design
session.

The trigger conditions of the KS are the completion of problem input and the
lack of retrieved designs on the blackboard. No context variables are used for
this KS. When the KS is triggered, only one KSAR is generated and it is

62

Integrated Case-Based Reasoning for Structural Design

always executable (precondition is T). The execution of the KS results in the
posting of retrieved design objects for each similar case selected by the user.

e FIND.SIMILAR.CASES.FOR.REDESIGN searches the case memory
for previous design plans to fix constraint violations. It is similar to
RETRIEVE.SIMILAR.CASES, but it examines the memory from a different
point of view. Plans associated with design cases are the target of the action.
All the cases in the memory encountered the same constraint violation are
presented to the user for retrieval.

The trigger condition of the KS is true if there are any “fix constraint violation”
goals on the control blackboard. It has a $FIX-CONSTRA1NT-VIOLATION-
GOAL context variable in order to generate one KSAR for each constraint
violation. The precondition is that the case memory has not been probed for
design plans to resolve this $FIX-CONSTRAINT-VIOLATION-GOAL yet.
The action of this KS is to find cases that have redesign plans to resolve the
constraint violation (i.e., with the same intention as $FIX-CONSTRAINT-
VIOLATION-GOAL). All the cases found are presented to the user in a pop-up .
window for selection, and the chosen cases are placed on the blackboard as the
new retrieved designs.

* RANK.CASES asks the user to rank each retrieved design regarding the
usefulness of reusing its solution and its affiliated plans respectively.
Numerical ratings are used. A rating of 100 is the best a retrieved design can
get, meaning that the case is exactly the same as the new problem. Likewise,
zero rating is the worst, meaning that the case is not considered relevant to the
new problem.

The trigger condition of the KS is true if there are unrated design cases on the
blackboard retrieved by the memory prober. No context variables are used for
this KS. When the KS is triggered, only one KSAR is generated and it is
always executable (precondition is T). The action of this KS is to rate each
retrieved design and post the similarity ratings on the blackboard.

4.5.2.2. FAILURE ANTICIPATOR

The failure anticipator knowledge module uses DDIS’s memory of previous design
failures. Remembering relevant previous design failures in a new design can help DDIS
detect unsuccessful designs earlier and correct them sooner. The DDIS’s failure
anticipation is limited to one KS at this time.

* REUSE.PREVIOUS.CRITICAL.CONSTRAINTS declares the major
~ constraints of a new design based on the critical constraints (i.e., constraints
that had been violated during the previous design session) of a retrieved

63

Integrated Case-Based Reasoning for Structural Design

similar design. This action is usually used at the beginning of a design session
to let DDIS pay special attention to the previously violated constraints.
Constraints that were hard to satisfy in a similar past design are likely to be
troublesome in the new design. This action can help DDIS identify critical
constraints and prevent important constraints being relaxed.

The KS is triggered when at least one retrieved design and no relaxed
constraints are on the blackboard. Context variable $CASE is used to create
one KSAR for each retrieved design. The KSAR becomes executable when
design failures and modifications exist in SCASE, the status of at least one
previously violated constraints is unknown in the new design, and the plan
similarity rating of $CASE is greater than 25. When the KS is executed, the
user can select critical constraints of the former design from a table to be the
major constraints of the new design. A “check critical constraint” goal is
created and posted on the blackboard for every major constraint. So, DDIS can
favor the actions for checking those major constraints when they are ready to be
checked. At the same time, the values of the applicability attribute of all the
unselected constraints are changed to “relaxed” (the default value is “activated”),
which gives these constraints a status of “relaxed” and prevents the action for
checking these constraints from becoming executable (because the preconditions
of the corresponding KSARs are false).

4.5.2.3. ANALOGY TRANSFORMER

The analogy transformer knowledge module is the case-based reasoning mechanism of
the case-based reasoner. It transfers case-dependent knowledge from the source designs
(retrieved by the memory prober) to a new design. The analogy transformer is further
divided into two subsidiary modules, the solution transformer and the plan transformer,
corresponding to two levels of abstraction of case-dependent knowledge currently in DDIS.

4.5.2.3.1. Solution Transformer

REUSE.WHOLE.SOLUTION, REUSE.PARTIAL.SOLUTION, REUSE.
PREVIOUS.DESIGN.OBJECT and REUSE.PREVIOUS.DESIGN are the four generic
knowledge sources in the solution transformer module.

®

REUSE.WHOLE.SOLUTION reuses the previous solution of a similar
design as the initial attempt of the new design. Frequently, previous design
solutions provide good starting points for new design problems.

The KS is triggered when the problem input is completed, all the design values
are unknown, and at least one retrieved design is on the blackboard. Context
variable $CASE and $SOLUTION are used to generate one KSAR for each

64

Integrated Case-Based Reasoning for Structural Design

retrieved design and to bind $SOLUTION to its previous solution. The
precondition is that the solution similarity rating of the retrieved design must be
greater than 40, which means that the solutions of previous cases not very
similar to the new design are not worth reusing. The execution of the KS
asserts $SOLUTION from $CASE as the trial solution of the new design on the
solution blackboard.

REUSE.PARTIAL.SOLUTION takes part of the solution in the previous
design and reuses it to achieve an active goal of the new design. This KS
intends to target the granularity problem of case-dependent knowledge. The
whole solution of a previous design is not always reusable. This KS helps
DDIS focus on the current active goal on the control blackboard to determine
what part of the previous solution can be reused.

The trigger conditions of the KS are the completion of problem input, the
presence of retrieved designs on the blackboard, and the existence of at least
one unsolved design parameter. $CASE, $OBJECT, $SLOT and $VALUE are
the context variables used. When triggered, the KS generates KSARs that-
reuse previous $VALUE of $SLOT from $CASE for $OBJECT (e.g.,
reuse.A36.material.from.case.2.for.column.1). The precondition is that
“Design $SLOT of SOBJECT” is one of the current goals on the blackboard and
the solution similarity rating of $CASE must be greater than 40. The action of
this KS is to put $VALUE as $SLOT value of $OBJECT on the solution
blackboard.

REUSE.PREVIOUS.DESIGN.OBJECT reuses the previous solution of
a similar design at the object level. The properties of a whole design object are
taken from a case. Using the base plate anchor bolt design as an example, this
KS can design the whole bolt group object (which includes bolt size, bolt
spacing, bolt distance and number of bolts) based on an old design. The
solution reuse is done by transferring the whole object, not just one parameter
of the object. This KS represents another level of flexible solution reuse
between of the capabilities of the two previously introduced KSs
(REUSE.WHOLE.SOLUTION and REUSE.PARTIAL.SOLUTION).

The trigger conditions of the KS are the completion of problem input, the
presence of retrieved designs on the blackboard, and the existence of at least
one undesigned object. $CASE, $OBJECT, $SLOT-VALUE-PAIR-LIST are
the context variables used. When triggered, the KS generates KSARs that
reuse the previous $OBJECT from $CASE (e.g., reuse.column. 1.from.case.2)
and binds $SLOT-VALUE-PAIR-LIST to all the attribute values of $SOBJECT.
The precondition is that “Design $OBJECT” is one of the current goals on the
blackboard and the solution similarity rating of $CASE must be greater than 40.

65

[ntegrared Case-Based Reasoning for Structural Design

The action of this KS is to put all the attribute values in $SLOT-VALUE-PAIR-
LIST of $OBJECT on the solution blackboard.

REUSE.PREVIOUS.DESIGN transfers the previous design history of a
similar case into the current solution blackboard. In addition to the final
solution, the intermediate analysis and calculation propositions of all alternatives
(including both final and abandoned results) are also transferred to the
blackboard. Therefore, DDIS can reuse the whole previous design history to
skip unnecessary design calculations, constraint confirmations, etc., which
have already been done in the past.

This KS works basically the same as REUSE.WHOLE.SOLUTION with the

- addition of transferring over the previous design history. The trigger conditions

of the KS are the same as REUSE.WHOLE.SOLUTION’s. Context variables
$CASE and $SOLUTION are used to generate one KSAR for each retrieved
design and to bind $SOLUTION to its previous solution. The precondition is
that the solution similarity rating of the retrieved design must be greater than 40.
The execution of the KS asserts previous $SSOLUTION from $CASE as the trial
solution of the new design and recreates all the propositions in the previous
design history stored with the case.

4.5,2.3.2. Plan Transformer

The function of the plan transformer knowledge module is to transfer previous design
plans to new designs. A design plan in DDIS is based on top-down decomposition.
Several levels of plan abstraction are possible. In order to transfer plans at different levels
of abstraction whenever appropriate, the plan transformer needs to work with the goal
expansion mechanism of DDIS (discussed in details in Section 4.3.4.). The plan
transformer of DDIS has one generic knowledge source REUSE.PREVIOUS.PLAN.

©

REUSE.PREVIOUS.PLAN is both a case-dependent KS and a control KS
because it transfers case-dependent knowledge (plans) from retrieved designs to
the control blackboard. Global design plans, subplans and redesign plans can
all be transferred when they are applicable. REUSE.PREVIOUS.PLAN does
not preform an explicit plan adaptation task because the plan and goal
maintenance mechanism of DDIS ensures the applicability of transferred plans.
Plan and goal maintenance is discussed in details in Section 4.3.3.

REUSE.PREVIOUS.PLAN is triggered when retrieved designs have design
plans or redesign plans to expand active goals on the blackboard. Context
variables SEXPANDABLE-GOAL, $PLAN and $CASE are used to generate
one KSAR for each design plan of the retrieved designs that can provide more
detailed steps of achieving the expandable design goals on the blackboard. The
precondition is that the plan similarity rating of the retrieved $CASE must be

66

Integrated Case-Based Reasoning for Structural Design

greater than 25 (a similarity threshold for case-dependent plan transformation)
and $PLAN is not already on the blackboard. The execution of the KS adds
$PLAN on the control blackboard as an expansion of $SEXPANDABLE-GOAL.
Goal expansion is discussed in details in Section 4.3.4, and an example of the
use of REUSE.PREVIOUS.PLAN is given there.

4.5.3. Case Recorder

The case recorder knowledge module is the recording mechanism of DDIS. Its
function is to capture case-dependent knowledge from design cases produced by DDIS
itself. SAVE.DESIGN.SESSION is the generic KS in this module.

e SAVE.DESIGN.SESSION saves the final solution, intermediate
propositions and control strategies of the design in the case memory knowledge
base at the end of a DDIS design session. The solutions and propositions are
recorded on the blackboard and can be easily saved in forms that the case-based
reasoners can recognize. However, the design strategies do not explicitly exist
on the blackboard. The KS processes the design history and abstracts one -
design plan along with several redesign plans to be stored with the case as its
case-dependent plans. The plan extraction process is discussed in detail in
Section 4.4.2 and 4.4.3.

The trigger condition of the KS is the completion of the design session. No
context variables are used for this KS. When the KS is triggered, only one
KSAR is generated and it is always executable (precondition is true). The
action of this KS is to make an entry in the case memory, analyze the design
session, create the objects that need to be stored with the case (e.g., design
plans, redesign plans, goals, etc.), and provide processed values for the
attribute of the objects.

4.6. Implementation

At the beginning of the study, experimental prototypes were developed using KEE and
BB1. The experience with the two systems allowed us to evaluate their feasibility as the
implementation environment of the project and to gain more practical knowledge about
certain techniques for transferring various types of case-dependent knowledge across
designs. KEE [Kunz 84] is favored for its rich and flexible frame-based knowledge
representation, object-oriented programming paradigm, data-driven reasoning, and truth
maintenance system. On the other hand, the blackboard control architecture of BB1
[Hayes-Roth 84] is ideal for the integrated design paradigm. Consequently, the resulting
solution was to use KEE as the underlying development tool and build our own blackboard
system, which is a reimplementation of BB1 with specific modifications (e.g., solution

67

Integrated Case-Based Reasoning for Structural . =si gn

blackboard maintenance and plan and goal updating) to facilitate the integrated design
model. The blackboard architecture of DDIS is not as sophisticated as BB1, but it supports
cooperative problem solving by means of a global data structure that records the evolving
solution and control plans contributed by different knowledge sources.

DDIS is implemented in IntelliCorp’s KEE running on a Texas Instruments
MicroExplorer installed in an Apple Macintosh II. KEE is a flexible and general-purpose
commercial Al development system produced by IntelliCorp. It is a hybrid environment,
which integrates frame-based knowledge representation, rule-based reasoning, data-driven
inference and object-oriented programming. It also has interactive graphics and a truth
maintenance system (TMS).

All the elements in DDIS, as described earlier, are all implemented as classes of objects
using KEE’s frame-based representation. However, the rule system in KEE is not used
(except for a few TMS justifications created by rules). DDIS is mainly implemented using
an object-oriented programming approach.

The blackboard reasoning paradigm is built in the KEE frame system utilizing its data-
driven capabilities (implemented as active values) and its object-oriented programming
facility. Every major blackboard component is represented as an object with attached
methods that define its own procedural characteristics. The blackboard activities are
sequences of data-driven message passing actions. For example, the plan and goal
maintenance procedures described earlier are invoked when the values of the blackboard
plan level (a slot of the control object) is changed, and the updating procedure is
accomplished by sending several messages to the plans and goals involved.

KEEworlds and the TMS are used to implement the solution information blackboard.
KEEworlds is a facility provided by KEE for modeling and exploring different hypothetical
situations that might arise in knowledge bases. A world represents an alternative state of
knowledge bases. Objects can have different attribute values in different worlds and can
inherit values from their parent worlds. DDIS creates a new child world for every design
cycle. The changes made on the solution information blackboard in that cycle are recorded
in the world. Design contributions from previous cycles are not stored locally, but are
inherited from the parent worlds. Therefore, the most recent world represents the latest
state of the solution information blackboard, and its parent worlds record the whole design
history.

KEE’s Truth Maintenance System (TMS) is a set of facilities for establishing and
maintaining dependencies between facts in the knowledge bases. The justifications created
during design by the TMS procedures associated with data items are also maintained by
KEE’s TMS. Figure 4-12 shows the dependence graph of a variable during design. The
dependencies play an important role in supporting backtracking, maintaining design
consistency and propagating redesign modifications in DDIS. Although both KEEworlds

68

integrdied Cuse-ouseq easoning jor Structural Desivn

and TMS are used, DDIS does not support parallel design. Multiple partial designs cannot
exist simultaneously; DDIS only follows one line of reasoning.

The user interface of DDIS uses the graphic facility provided by both Explorer and
KEE. The input, output and blackboard interface are implemented in the windowing
system of MicroExplorer and the ActiveImages package of KEE. Figure 4-13 shows the
blackboard interface. All the case-dependent and case-independent executable actions and
their rating are presented on the right, and design plans and their currently active goals are
shown on the left.

The DDIS program consists of 690 KEE objects. In addition to the functions
associated with the objects, there are approximately 80 Lisp functions (about 66 KB in size
with comments). DDIS has 17 generic knowledge sources and 25 domain specific
knowledge sources (for the two demonstration applications described in Chapter 5). The
knowledge sources can generate temporary objects during design. Most of the knowledge
sources are written with context variables, which enable multiple actions (KSARS) to be
generated from a single knowledge source. The domain knowledge base is not complete.
More design and backtracking knowledge sources can be added to the knowledge base.
However, the domain knowledge sources are adequate for the illustrative purpose as they
are used in this study.)

THE YALUE OF PE

18
E THE THE THE

T The
YALUE YALUE VALUE VALUE YALUE
OF E OFA OFK OFL OF
is is 5] 1S RXIS
29960 156 ~_ 130 5.23
~
E.JUSTIFICATION.RULE AJUSTIFICATIONRULE RX_JUSTIFICATION RULE
m/ m £ ™E £
of OF AREA DESIGNATION fAX OF
ASTM.A38 BEAM.COLUMN.1 OF oF WI2X53
1S 290680 1s AST*I.ASS Wi2X53 BEAM.COLUMN.? 15,23

1515.8 is m?xs:

FROM.BACKGROUND.ONLY N
@ FROM.BACKGROUND .ONLY

FROM.BACKGROUND ONLY

~E A

Pe =
2
Ly

Figure 4-12: Variable Dependence Graph

Integrated Case-Based Reasoning for Structural Design

SIAQ JO 30BHION] PIeoqyIeld YL i€ [-p dIn31g

80°¢
1e°81
€781
9°02Z
69712

Zp°s
€1'8
9’8
¥S 01
8 01
69721

URVIdENE NOISAG NHNTOO-HVAL OLNI'Z 1" TVOO ANVAXA

{1 wu1dens MO 1530 1INTI00-HU38 OLNI "2 1 OO ONBdX3 $UOHIOD PusuLoddd |

Aopuip jdussadA] 3%

SNVIIWILERS 103738 ¥180-(t
ININTWITEOd a2
S3IBVO AV TINIS A TE LT 3¢
FIFVO ANVE-(»
TTIV0O BOL NV'Id NOIBAA T IFVD HIIENVAL{S

ORIV PN 1ISTH

NOLLOV'NOLLVHNOISAA NHNTOO HVAL LOATAS HASN
NMHOT0D WVAA HO4A TdALS 0SHO ZLSY WISV AsSN
NHATOD ' HVAL 404 "THALS 885V WISV ASN
NHNTOD WVAR HOd TAALS 9EV KISV ASN
UNVIdENS ' NOISHA NHNTOD-HVAL OLNI' 2 I TVOD ANVAXH

SEONIIY A CEINIIXT 16IPUILIPN]-LB

Z'4SVD 'HOHd NOLLN'TOS AS NHY
ZHSVO HSNAY
€ ASVD 'HOYd NOLLNTOS ASNAN
Z HSVO HOUA TVIHALVH 9cV WISV ASNAY
Z°1TYOD 804 NVId NOISAA € HSVO UHASNVHIL
£HEVD AS NAY
£ @SYO HOUA TVINALYH 9V KISV ASNAY

SNOTIAY .za.-uonu wapedig-

4uays] dsiy -) doyysag 33

<S>-NHNT0D-WVAL NOIsSHA-(Z1
<S>-TVINALVH LOATAS-NV1d NDISHA 2 asvo-(1°2

<$>-NVId NOISAA WALSAS NMWAT00-Wvaa-(1
<E10Z>-Z"ASVO 'HOUA Z 1" TVOD HOA NV'Id AAANVdXA-(2

F19VNA

q19Vs1d

SCONIY q-q sung [ohvo)) %3

E QML INNLLNOD LIVISHY -

PO NOLIMIIXT NOLIM[OZ IVIND) WRY) IWRSIZ OV PI[D ¥AF AN * U1 01 3D
| LICOQYIEYSF :SS.S

pa1sod ueld joopuadop-uSisa(g

70

] ntegrated Case-Based Reasoning for Structural Design

The computational speed of DDIS depends largely on the size of the problem. For
example, DDIS is mush faster in solving the beam-column design problem (described in
Section 5.1) than the base plate problem (described in Section 5.2). A typically 40 cycle
run with the base plate problem (e.g., the example given in Section 5.2.2) takes about 20
minutes, and a 40 cycle run with the beam-column problem takes about 8 minutes. The
truth maintenance system in KEE is relatively slow. Therefore, a large number of variables
and constraints (as in the problem space of the base plate design) slows down the system
dramatically. Speed was not a concern in the programming of the DDIS prototype. There
is room for improving the performance of the blackboard architecture of DDIS.

71

Chapter 5
Illustrative Examples

A domain knowledge base for structural steel beam-column design was built as the
initial test bed for the DDIS prototype. This problem served as a valuable vehicle for
learning about the concepts, formalisms, techniques and devices needed to integrate case-
dependent and case-independent knowledge in knowledge-based design systems. The
simplicity of the problem made the prototyping faster and the debugging easier. It is also
used as an example to easily communicate with people about DDIS’s ideal for integrating
case-dependent and case-independent reasoning. To provide a basis for further testing and
refinement of the prototype, the design of anchor base plates for electrical transmission
poles was implemented later. This problem allowed us to extend the architecture of DDIS
for more case-based design ability.

To demonstrate the integrated design approach of DDIS, this chapter describes the two -
domain knowledge bases and gives several illustrative examples with comments. The two
design examples from the beam-column problem explain the basic problem-solving
behavior of DDIS and the different uses of case-based design methods in DDIS (including
solution reuses and plan reuses). The base plate design examples show how DDIS
captures design plans from a user and reuses them in a new design session.

5.1. Beam-Column Design

The beam-column design problem is shown in Figure 5-1. The column is restrained
only at the ends and is subjected to an axial compression load and two end moments. The
design task is to find an efficient wide-flange structural section and the steel material for the
given load using the AISC plastic design method [AISC 80]. Figure 5-2 shows the beam-
column design knowledge base of DDIS.

P =205k P=205k

M1 = 150 kip-ft 4\ /“\ M1 =

(all forces are from
factored loading)

. L =120" LS
M2 = 20 kip-ft \%/ K=1 N\ M2 = 150 kip-ft

P =205k P =205k

(a) New Design Problem | (b) New Design Problem Il

Figure §5-1: Beam-Column Design Examples

73

Integrared Case-Based Reasoning for Structural Design

B 1 (OutBull The Graph ol the BEAM COLUMN Kniowiedie Buse

-C ANALOGY TRANSFORMER

i ASE-BASED REASON -C.FAILURE ANTICIPATOR
i MEMORY.PROBER

CONSTRAMNT.CHECKER
||B-C.DESIEN _ DECREASE.CROSS.SECTION AREA
il AEDESIGN_ADYISER< = INCREASE.BEAM.COLUMMN DEPTH
i ASE-SDEPENDENT REASON INCREASE CROSS.SECTION AREA

— SYSTEM.SELECT.DESIGNATION
-SYSTEM.DESIGN.GENERATOR= I oo con ' or, o et
h FACTORED.AXIAL COMPRESSION USER.DESIGN. SELECTOR~ ~ USER.SELECT.BEAM.COLUMMN.DESIGHATION
u LOADNG4 ~ FACTORED.END MOMENT.{ CHECK.CONSTRANT
i FACTORED.END MOMENT.2 7 CHOOSE.DESIGNATION
47 CHOOSEMATERIAL
% 7 DECREASE.AREA

-C.DESIGN.GOALE = — DESGN.BEAM-COLUMN
\\\ DOWNGRADE MATERIAL
i N\ INCREASE.AREA
B-C .DESIGN.CONTROL.OBJECT N INPUT.PROBLEM.STATEMENT
; : SAYE DESIGN
consmanr< 2 L3242 ~ BEAMCOLUMN REDESIGN.SUBPLAN.1
g - - . .
feous “< :m‘;mJ 'C'DEW‘”‘""\‘\ BEAM-COLUMN REDESIGN.SUBPLAN.2
ESIGN.OBJECT— — BEAM.COLUMN. 1 BEAM-COLUMN.SYSTEM DESIGN.PLAN
A
/ CC
17 CM
/"7t E
77 FA
“4rs FY
Nire v K
w;/// L
o, -
/’5;, M
ESIGN.YARIABLEG = = = M!
&~ 1 M2
Wl MM
W~ MP
RS 4
WAN PCR
W\ PE
W\ pY
W\ RX
\RY
4

Figure 5-2: The Beam-Column Knowledge Base

The design object of the problem is BEAM.COLUMN.1, which is an instance of the
W.SHAPE parts in the concept knowledge base. The problem inputs are P (factored axial
loading in kips), K (effective length factor), L (length of the beam column in inches), M1
and M2 (factored bending moment at two ends in kip-ft). The design constraints in the
knowledge base are the two interaction equations from AISC and an optimization
constraint:

P .M <1 AISC Formula (2.4-3)
Py L18Mp
P Cm M AISC Formula (2.4-2)

Pa (1-Pp) Mm

Max|[B-+-—Cm_M | L+_M_)zo.9
Pcr (I,P/e)Mm Py 118Mp

in which

74

Inregrated Case-Based Reasoning for Structural Design

P factored axial compression load.

M factored primary bending moment.

Per ultimate strength of an axially loaded compression member.
Mp plastic moment.

Mpm maximum resisting moment in the absence of axial load.
P. Euler buckling load.

Py plastic axial load.

Cm column curvature factor.

The above mentioned variables are all represented as design variable objects in the
beam-column knowledge base instantiated from appropriate type of data item. There are
three domain specific design generators (SYSTEM.SELECT.DESIGNATION,
SYSTEM.SELECT.MATERIAL and USER.SELECT.BEAM-COLUMN.DESIGNATION) and three
domain specific redesign advisers (INCREASE.CROSS.SECTION.AREA, INCREASE.BEAM-
COLUMN.DEPTH and DECREASE.CROSS.SECTION.AREA) in the beam-column knowledge
base. '

5.1.1. Beam-Column Design Session I

At the beginning of the run, the case memory has three design cases as shown in Figure
5-3 and Figure 4-11. Figure 5-1 (a) illustrates the new problem, and Table 5-1 summarizes
the design session. The next section describes the DDIS problem solving session step by
step.

Cycle Action Cycle Action
1 state problem 9 check critical constraint OPT.1 *
2 | input 10 | import redesign plan from CASE.2
3 | retrieve similar designs 11 | redesign beam-column designation
4 [rank CASE.2 and CASE.3 12 | decrease cross-sectional area
5 | reuse case-based plan from CASE.2 13 | recheck OPTIMIZATION.1 const.
6 | expand goal to system heuristic plan |14 - 15| check remaining constraints
7 | select beam-column material 16 | end design session
8 | reuse designation from CASE.3 17 | save design

Table 5-1: Action Overview of Beam-Column Design Session I
(Case-dependent actions are in italics and
constraint violations are marked with asterisks)

75

Integrated Case-Based Reasoning for Structural Design

P =1700k P =240k P =190k
/v’\ M1 = 1200 kip-ft 4\ M1 = 200 kip-ft /é\ M1 = 180 Kip-ft
L= 180° L=180° L =120°
K= 1 K= 1 K= 1
\}/ M2 = 1200 kip-ft M2 = 200 kip-ft M2 = 20 kip-ft
P=1700k P =240k P =190k
ASTM A36 ASTM A36 ASTM A36
W36X300 W10x68 W12x53
(a) Design CASE.1 (b) Design CASE.2 (c) Design CASE.3

Figure 5-3: Design Cases in the Case-Memory Knowledge Base

$.1.1.1. DESCRIPTION OF THE DESIGN SESSION

Cycle 1—state problem. The design plan BEAM-COLUMN.SYSTEM.DESIGN.PLAN
is posted on the blackboard as the global control strategy of the design session. The plan
has three sequential goals: INPUT.PROBLEM.STATEMENT, DESIGN.BEAM-COLUMN and
SAVE.DESIGN.

Cycle 2———input. The beam-column problem input action is executed. All the values
of the variables that need to be provided by the user are entered through a pop-up window.

Cycle 3—retrieve similar designs. Once the new problem inputs have been
entered, the global plan moves to its second goal—DESIGN.BEAM-COLUMN, and the
RETRIEVE.SIMILAR.CASES action is recommended. The user decides to retrieve CASE.3
and CASE.2 because the loading condition of CASE.3 is closer to the new requirement and
the design plan of CASE.2 has fewer redesign cycles compared to CASE.3.

Cycle 4—rank cases. Based on the above justification, the user assigns 50 and 80
respectively to the solution similarity and plan similarity of CASE.2. On the other hand,
the solution similarity and plan similarity of CASE.3 are ranked 78 and 60, respectively.
Note that the similarity ratings are provided by the user based on his/her judgement on the
usefulness of the previous design solutions and plans in the current design.

Cycle 5—reuse case-dependent plan. The retrieval of CASE.2 and CASE.3
triggers several case-dependent actions at cycle 5. However, the two retrieved designs are
not similar enough that their solutions can be reused as a whole. The ratings of the two
REUSE.WHOLE.SOLUTION actions are low. Therefore, DDIS recommends the reuse of the
design plan of CASE.2.

Cycle 6—expand goal to case-independent plan. Figure 4-13 shows the
blackboard state of this cycle. All the executable actions and their rating are presented on .

76

Integrated Case-Based Reasoning for Structural Design

the right, and two plans (one case-independent and one case-dependent) and their currently
active goals are shown on the left. The DESIGN.BEAM-COLUMN goal was expanded into
CASE.2.DESIGN.PLAN at cycle 5. However, the case-dependent plan is not considered
good enough to lead the design session due to the moderate plan similarity ratings of
CASE.2 (the evaluations of the three highest rated KSARs are shown in the KSAR rating
examples in Section 4.3.2.1, 4.3.2.2 and 4.3.5). Therefore, the case-independent BEAM-
COLUMN.DESIGN.SUBPLAN.1 becomes the second subplan of DESIGN.BEAM-COLUMN.

Cycle 7—select material. Using the two plans, two conflicting goals are on the
blackboard: CHOOSE.DESIGNATION and CASE.2.DESIGN.PLAN-SELECT.MATERIAL. Since
the case-dependent plan has a higher weight (i.e., 20/3 vs. 5), DDIS follows the case-
dependent plan from CASE.2 and executes the case-independent USE.ASTM.A36.STEEL
action.

Cycle 8—reuse partial solution. The execution of the action satisfies the case-
dependent goal and invokes the next goal in CASE.2.DESIGN.PLAN, which is
CASE.2.DESIGN.PLAN-SELECT.DESIGNATION. Now the two plans agree on selecting the
designation for the beam-column. There are three executable actions on the blackboard for
this task, one case-independent action that estimates the required section based on heuristic
rules and two case-dependent actions to reuse the previously used section in CASE.2 and
CASE.3. In this case, DDIS chooses the highest rated action, which is
REUSE.W12X53.DESIGNATION.FROM.CASE.3.

Cycle 9—check critical constraint. The new blackboard state triggers DDIS’s
constraint checker. The order of the constraint checking is influenced by the case-
dependent CASE.2.DESIGN.PLAN-CHECK.CONSTRAINT.OPTIMIZATION.1 goal. The
constraint OPTIMIZATION.1 is checked first because it was the more critical one in CASE.2,
and it is found unsatisfied. Therefore, a FIX.CONSTRAINT. OPTIMIZATION 1.VIOLATION
goal is posted on the blackboard by DDIS.

Cycle 10—employ previous redesign plan. The constraint violation triggers
two backtracking provoker actions as well as several goal expansion actions. However,
the two backtracking actions, REDESIGN.BEAM-COLUMN.1.DESIGNATION and
REDESIGN.BEAM-COLUMN.1.MATERIAL, are ranked the same. To modify the design
intelligently, DDIS first finds the redesign plan in CASE.2 that had corrected the same
constraint violation before and then posts it on the blackboard to guide the redesign
process.

Cycle 11—invoke backtracking. The designation of the beam-column should be
redesigned according to the first goal of the redesign plan from CASE.2. Therefore, DDIS
executes the highest rated REDESIGN.BEAM. COLUMN.1.DESIGNATION backtracking
provoker, which removes the W12x53 demgnatlon from the design information

blackboard.

77

Integrated Case-Based Reasoning for Structural Design

Cycle 12—decrease cross-sectional area. The removal of the value of the
beam-column’s designation invokes the next goal in the redesign plan (i.e.,
DECREASE.CROSS.SECTION.AREA) and reactivates the CHOOSE.DESIGNATION goal in the
two still-active design subplans. Although all goals participate in the rating, the previous
redesign plan has a much higher weight to focus the current task on the redesign. By
following the old plan again, DDIS decreases the cross-sectional area of the beam-column
and uses a W14X48 section.

Cycle 13—recheck constraint. The modified design of the beam-column is an
ASTM A36 W14X48 wide-flange structural steel. The modified design is checked against
the previously violated OPTIMIZATION.1 constraint, and the constraint is satisfied this time.

Cycle 14 to 15—check remaining constraints. Then, the other two constraints
are checked, and they are satisfied.

Cycle 16—end design session. Since all the constraints are satisfied, the design
is completed at cycle 16.

Cycle 17—save design. DDIS saves the design in the memory as CASE.4 at the
end.

5.1.1.2. ANALYSIS OF THE DESIGN SESSION

This example showed that DDIS is capable of utilizing more than one design case and
combining different design approaches. Two cases were retrieved. One was for reusing
its solution and the other was for reusing its design and redesign plans. The two design
values for material and designation were generated by case-independent design generator
and case-dependent solution transformer, respectively. Goal expansions were also used in
three occasions (cycle 5, 6 and 10) to provide DDIS with more detailed design plans. The
way DDIS works with multiple goals was also described.

5.1.2. Beam-Column Design Session II

To give another example, consider the beam-column problem shown in Figure 5-1 (b).
The only difference between this problem and the previous example is that the end moment
at bottom is increased to 150 kip-ft counterclockwise. Table 5-2 summarizes the design
session. Note that the case-memory knowledge base now has an additional case (i.e.,
CASE.4) just saved after the previous session.

78

Integrated Case-Based Reasoning for Structural Design

Cycle ’ Action Cycle Action

1-2 | input problem 11 | employ CASE.] redesign plan
3 retrieve similar design—CASE 4 12 | redesign beam-column designation
4 rank CASE.4 13 | increase cross-sectional area
5 | reuse case-based plan from CASE4 | 14 | recheck AISC 2.4-2 constraint
6 import CASE.4 15 -17 | repeat design modification steps
7 check OPTIMIZATION constraints 18 | reuse case-based plan from CASE.1
8 check constraints AISC 2.4-2 * 19 - 20| check remaining constraints
9 search memory for redesign plans 21 | end design session

10 | rank CASE.1

Table 5-2: Action Summary of Beam-Column Design Session II
(Case-dependent actions are in italics and
constraint violations are marked with asterisks)

5.1.2.1. DESCRIPTION OF THE DESIGN SESSION

Cycle 1 to 2—input problem. Once again the design starts by selecting the global
BEAM-COLUMN.SYSTEM.DESIGN.PLAN and by entering the problem input variables.

Cycle 3—retrieve similar design. CASE.4 is retrieved this time because of its
very close loading resemblance to the new problem.

Cycle 4—rank case. 90 and 80 are assigned to CASE.4’s solution similarity and
plan similarity rating, respectively.

Cycle 5—reuse case-dependent plan. Because of the lack of detailed design
plans on the control blackboard and the high plan similarity rating of CASE.4, DDIS
suggests the reuse of the design plan from CASE.4.

Cycle 6—import previous design. The close similarity of the loadings in
CASE.4 and the new problem make the previous design solution an excellent initial trial for
the new design. Therefore, the REUSE.CASE.4 action is highest rated and is executed. The
execution of the action posts the previous solution (i.e., ASTM A36 W14X48) on the
blackboard and loads in the previously saved world of CASE.4, which contains the
intermediate solutions and propositions involved in the old design.

Cycle 7 to 8—check constraints. The new blackboard state triggers DDIS’s
constraint checker. Only the coefficient Cr, changes during the calculation of the new
constraint values, so AISC formula 2.4-3 is still satisfied. Therefore, DDIS only needs to

79

Integrated Case-Based Reasoning for Structural Design

recheck stability according to AISC formula 2.4-2 and efficiency according to the
OPTIMIZATION.1 constraint. That is why the check AISC 2.4-3 constraint action is not
shown as one of the executable actions on the blackboard. The OPTIMIZATION.1 constraint
is satisfied. However, the AISC 2.4-2 constraint is not satisfied. Therefore, the goal
FIX.CONSTRAINT.AISC.2.4-2 . VIOLATION is posted on the blackboard by DDIS.

Cycle 9—search case memory for redesign plans. The constraint violation
triggers two backtracking provoker actions. However, the current control knowledge on
the blackboard cannot differentiate which one is better. Therefore, redesign plans are
needed for this constraint violation. Since neither heuristic redesign plans nor case-based
redesign plans are available from the knowledge base and from CASE.4, DDIS searches the
case memory knowledge base again to find cases that have experienced the same constraint
violation before. CASE.1 is found and retrieved for guiding the design modification. Note
that replacing CASE.4 with CASE.1 on the retrieved design level of the control blackboard
also removes all the case-dependent plans and goals associated with CASE.4.

Cycle 10—rank newly retrieved design. CASE.l is retrieved only for its
redesign plan. Its solution should not be considered because of its very different loading
condition. Therefore, 35 and 80 are assigned to its solution similarity and plan similarity
rating, respectively. CASE.1 could not be judged as a similar case if only the surface
similarities between the two problems were compared. This 111ustrates how DDIS’s case
memory can be searched from a different angle.

Cycle 11—employ previous redesign plan. The previous redesign plan for
fixing the AISC 2.4-2 constraint violation is reused to control the backtracking point.

Cycle 12—invoke backtracking. The designation of the beam-column should be
redesigned according to the first goal of the old redesign plan. Therefore, DDIS executes
the highest rated REDESIGN.BEAM.COLUMN.1.DESIGNATION backtracking provoker,
which removes the W14X48 designation from the design information blackboard.

Cycle 13—increase cross-sectional area. The removal of the value of the beam-
column’s designation invokes the next goal in the redesign plan (i.e.,
INCREASE.CROSS.SECTION.AREA). DDIS increases the cross-sectional area of the beam-
column and uses a W14X53 section.

Cycle 14—recheck constraints. AISC 2.4-2 is checked again and found still
unsatisfied.

Cycle 15 to 17—repeat redesign steps. The W14X53 section is still
underdesigned because the constraint is still violated. The CASE.1.REDESIGN.PLAN.1 is
reused again to start another round of design modification. DDIS repeats the redesign steps
in cycle 12, 13, and 14 again and settles down with a W12X58 section that satisfies the
AISC 2.4-2 constraint.

80

Integrated Case-Based Reasoning for Structural Design

Cycle 18— post case-dependent plan. The purpose of
CASE.1.REDESIGN.PLAN.1 and FIX.CONSTRAINT.AISC.2.4-2 VIOLATION is achieved
because of the success of the redesign. DDIS’s goal and plan updating mechanism
removes them from the control blackboard. With no specific plans for the rest of the
design session, DDIS refers to the past design plan of CASE.1 to guide its actions.

Cycle 19 to 20—check remaining constraints. The other two constraints are
rechecked, and they are satisfied.

Cycle 21—end design session. Since all the constraints are satisfied, the design
is completed at cycle 21. The final solution of the design is an ASTM A36 W12X58 wide-
flange structural steel.

5.1.2.2. ANALYSIS OF THE DESIGN SESSION

This example showed that DDIS is capable of reusing not only previous design
solutions, but also the propositions in an old design (e. g., intermediate design solutions,
calculations and variable dependences). Steps with known results can be skipped. At -
cycle 9, the case memory was searched for redesign plans to fix AISC 2.4-2 violation.
This illustrates the flexibility of DDIS in terms of changing the source of case-dependent
knowledge and searching the memory from a different perspective.

5.2. Pole Anchor Base Plate Design

The second demonstration application developed with DDIS is anchor base plate design
for electrical transmission pole. Douglas Phan provided this study with necessary design
documentation and expertise. Pole anchor steel base plate design is a design problem
involving many variables and general control knowledge. Figure 5-4 shows a typical 4-
bolt pattern base plate and its parameters. The design process consists of three major
design tasks: weld design, bolt design and plate design. Therefore, the base plate design
task may be considered as a subsystem design problem with interaction between the bolts
and the plate as well as the plate and the weld.

The inputs of the base plate design problem (see Figure 5-4) are the end reactions at the
base of the pole, which include P (axial load), V (resultant shear) and M (resultant
moment), and the geometry of the pole base, which includes POLE.BASE.DIA (flat-to-flat
diameter of the pole base shaft section) and POLE.SIDES (number of sides of the pole base
shaft). Because the implementation focuses on designing the plate and the bolts, the weld
information (the type and size of the weld) is also treated as input. The design variables
(see Figure 5-4) include the plate dimensions (length, width, and thickness) and the bolt
configuration (bolt pattern, number, size, and distance). The design objects on the design
information blackboard that collect all these values are: BASE.PLATE.1, BOLT.1 and

81

Integrated Case-Based Reasoning for Structural Design

-t
e

OCONOGO AN~

Bolt Pattern:

Number of Bolts per Quadrant:
Bolt Diameter:

Bolt Distance:

Horizontal Bolt Distance:
Plate Length:

Plate Width:

Plate Thickness:

Pole Base Shape:

Pole Base Diameter: -

<~
<
<

4-bolt

1

Diameter of the selected bolt
Diagonal Bolt Spacing Distance
Horizontal Bolt Spacing Distance

Not shown in this view
Octagonal
Flat-to-flat dimension of pole base

Figure 5-4: Design Variables of a 4-Bolt Base Plate

BOLT.GROUP.1. The base plate design knowledge base (shown in Figure 5-5) has
eleven design constraints in three categories: strength constraints, geometric constraints and
user specified constraints.

The strength constraints are:

Pmax + Vmax ¢ 1 o Bolt Interaction Equation

Pal
Diamplate - Distholt , __ Vmax Minimum Edge Distance
2 0.75 x Fy x t
S>_VYmax Diambon Minimum Bolt Spacing II
0.7S x Fy x t 2
6 X eff X Pmax < 0,66 Fy Plate Bending Single Bolt

b.singleaff X 2

82

Integrated Case-Based Reasoning for Structural Design

6 X deff X ¥ Pactural

b.groupeff X {2

< 0.66 Fy

The geometric constraints are:

Distholt < (Diampole + Weld.Size X 2 + Nut. Width + 1)

S 2 3 x Diampg]t

T x Distholt > § x NOBquag

4

Diampate - Distpolt

2

The user specified constraints are:

Pmax + Vmax > g9

Pan

Distpot < (Diampgle + Weld.Size X 2 + Nut.Width + 1) + 6

in which
Prax
Pan
Pactural
Vimax
NOBgyag
Distp o1t
Diamy)¢
S
Nut.Width
Diamp1ate

-t

eff
b.singleasr
b.groupesr
Fy
FU
Diampole
Weld.Size

maximum axial bolt load.
Bolt allowable load.

axial load on individual bolt.
maximum shear bolt load.
number of bolts per quadrant.
bolt circle distance.

diameter of anchor bolt.

bolt spacing.

width of bolt nut.

diameter of base plate.

thickness of base plate.

effective bending distance of base plate.

Plate Bending Bolt Group

Minimum Bolt Circle Distance

Minimum Bolt Spacing

Max. Number of Bolts

> the applicable minimum edge distance in AISC Table 1.16.5.1

Bolt Optimum Unity Factor

Maximum Bolt Distance

effective width of base plate for single-bolt bending.

effective width of base plate for multiple-bolt bending.

specified minimum yield strength of base plate.

specified minimum tensile strength of base plate.

point-to-point diameter of the pole base shaft.

width of pole base weld.

83

Integrated Case-Based Reasoning for Structural Design

_ANALOGY . TRANSFORMER
SE-BASED REASONER FAILURE_ANTICIPATOR
-9 MEMORY.PROBER
 CONSTRAINT CHECKER
BICREASE . BOLT DISTAMNCE
; < BICREASE PLATE.THICKMESS
il BASE-PLATE DESIGN " USE.LARGER.BOLYS
P REDESIGN ADVISER$. USE.LESS.BOLTS.PER.QUARDRANY
N\ USEMORE.BOLYS.PER.QUADRANT
USE.SMALLER.BOLTS
START VATH.S-BOLT.PATTERM
2 SYSTEM SELECT.BOLT.CIRCLE DISTANCE
" SYSTEM.SELECT.BOLT.SPACHIG
. SYSTEM.DESIGN.GENERATORY S SYSTEMSELECT PLATE.SZE
N SYSTEM.SELECT.PLATE.THICKNESS
USE.LARGE.2-U4.BOLTS
USER.SELECT.BOLY.PATTERN
/. UIER.SELECT DIAMETER.OF BOLT.CIRCLE
& 2 USER.SELECT.PLATEMATERIAL
USER.DESIGN.SELECTORG T — USER.SELECT.PLATE.SZE
CHECK.ALL.CONSTRANTS N X USER.SELECT.PLATE.THICENESS
CHECK.BOLT.CONSTRANTS \ USER.SELECT.SZE.OF.BOLTS
,/’; CHECK.PLATE.CONSTRAINTS USERN.SELECT.SPACING.OF .BOLTS
Z - DESIGN.ANCHOR.BOLTS
P DESIGN.GOALE T2 b o BASE. PLATE

N .
W\ INPUT PROBLEM STAT EMENT

| BASE-PLATE DESIGN.CONTROL OBJECT \ SAYVEDESIGH
i START.DESIGM

AN

/o

E-NDEPENDENT REASON|

N\

I}

\

~ BASE-PLATEDESIGN.PLAN.1

PDESIGN.PLANT = BASE-PLATE.SYSTEM DESIGN PLAN
AISC.TABLE.1.16.5.1 MIN.ED
MIN.BOLT .CIRCLE DISTANCE
MIN.3PACING. 1
NUMBER.OF BOLTS
INTERACTION. EQUATION
. N EDGE.DISTANCE
; -P.STRENGTH.CONSTRAINTY = MIN.SPACING.2
; ~'\ PLATE.BENDING.BOLT.GROUP

PLATE.BENDING. SINGLE.BOLT

\' — BOLT.OPTIMUM.UNITY.FACTOR
P USER.SPECIFIED.CONSTRAINT=
BASE.PLATE.1 MAX.BOLY.CIRCLE DISTANCE

pESiaN.0BsECTe = BOLTI :“chlrsé:mup
! ~ / B R
S~ zg’?‘w'" /7 B.EFF.SNGLE
N 2.7 BOLT.IST.Mm
4.7 D.EFF
TION.YARIABLES = ~ ED
= T LBOLT
NN LY
S\ P.BOLT.3UM
\ POLEDIA
¥.BOLT.MAX
ATENSILE.BOLT
BOLT.DIA
27 BOLT.DIST
277 BOLT.SPACING

.

'~ BOLVS.PER.QUAD
DESIGN. VARIABL PING.YARIABLE® = — Nw
‘\: P.BOLYT ALL
W\ PLATEDIA
S\ PLATE.FU
N PLATE.FY
PLATEY
LESET.YARASLE=- = P.BOLT.MAX
N
s ®
.7 POLE.BASEDIA
SER.QUERY.VARIABLEG S T FOLE-SOES

=
~

-
B-P.CEOMETRIC.CONSTRANT ¢ \:
~

~

AXAL LOAD P W~
z \\ WELD.ELECTRODES
by nz;u:;m.;‘ouan'.u \ WELD.SZE
- N WELD.TYPE

Figure 5-5: The Base Plate Knowledge Base

84

[nregrated Case-Based Reasoning for Structural Design

Base Plate Design

Woeld Deslgn

Bolt Deslgn

cevevinan.. AB25 A2 eriererenes....d¥peofBos

Circular Pattern
. 4BoltPattem 8-BoltPattern . *?‘?2‘?‘?"??.%9.'!‘...............'3".‘?‘.’.".9!.5.".'!'?. Ceeevenas
: ... Bolt Spacing: 67 SpacingofBolts |,

I N N O F RN R R R R R R R R R Y CesasEreses sy Ore)

2 .1/4- dia. - Size of Bolts

s cssrnacan R R T seseadenan

vesssiennnenhcnnininni . BOlDistance; 687, L., Diamater of

Check Interaction Equation

Check Unity Factor
Check Other Bolt Constraints

D Y (S P P R R RN I I AP PP @ ae ae DA e i S .

Plate Daslign

Material of Plate

Cesresserrsessnaasanne

Thickness: 3" Thickness: 3 1/ 4" . Plate Thickness

tesees s et serr et earaas s . R NN R R R

Plate Shape

® sq“a“’n‘j‘“’

Falled alternative I

Check Plate Bending

Check Geomaetric Constraints
Check Weld

R R N R R R R IR I I AP A2 4 N N I A A

Figure §-6: A Solution Path of the Base Plate Design Problem

85

Integrated Case-Based Reasoning for Structural Design

The current knowledge base contains thirteen design generators and six redesign
advisers representing the domain-specific actions in anchor base plate désign. The design
task is not a fixed procedure (see Figure 5-6 for one example of the possible solution
paths). Because of the interaction between design steps, evaluation and subjective
decision-making are included in the design cycle. Decisions have to be made to construct
design plans to minimize search and guide the design process. A good design should
achieve compact plate size, small plate thickness and feasible bolt distance. In addition to
those considerations, local availability (as equipment and expertise), and preferences may
also influence the design. Frequently, there is more than one configuration that is
acceptable. Therefore, base plate design needs much more high-level guidance during the
design process than does the design of simple beam-columns, which makes the base plate
design problem a very interesting and feasible problem domain to investigate how to apply
case-based design strategy.

5.2.1. Base Plate Design Example I

This example demonstrates how DDIS acquires design strategies from the user, and the
next example reuses them in a new design. The two design problems are illustrated in
Figure 5-7. The sample problem is given to DDIS first. The case-dependent actions of
DDIS are turned off, and an experienced designer helps the design. When necessary, the
designer overides DDIS’s decisions to guide the design to his/her prefer path. The design
actions at each cycle are listed in Table 5-3, and the design is summarized in the following
section.

15" diam.
12-side v
pole base "
75 12" diam. >
" 12-side .
M = 71 kip-in pole base M = 177900 kip-in
}-‘K V=19k E‘Z V=1415k
P=21k P=87.1k
(a) Sample Design (b) 150" pole

Figure 5-7: Anchor Base Plate Design Examples

86

Integrated Case-Based Reasoning for Structural Design

Cyclg Action Cycle Action

1 -3 | input problem & expand global goal | 27 | ASTM.A572.GR60 plate selected
4 | user specifies major constraints 28 | use 21.25" diam. plate
5 | use 2-1/4" bolts 29 | use 0.5" thick plate
6 | start with 8-bolt pattern 30 | check single-bolt plate bending
7 | use 24" bolt distance 31 | check multiple-bolt plate bending
8 | use 6.75" bolt spacing 32 - 37| check other constraints
9 | check interaction.equation 38 | check MIN.BOLT.CIRCLE.DIST *
10 | check BOLT.OPTIMUM.UNITY * 39 | redesign bolt distance
11 | redesign bolt diameter 40 | 19.5" bolt distance selected by user
12 | select 1/2" diam. bolts by user 41 | check MIN.BOLT.CIRCLE.DIST
13 | check BOLT.OPTIMUM.UNITY * 42 | recheck INTERACTION.EQUATION
14 | redesign bolt pattern 43 | recheck single-bolt plate bending *
15 | use fewer bolts per quadrant (4-bolt)| 44 - redesign plate thickness
16 | check BOLT.OPTIMUM.UNITY 45 | increase plate thickness to 0.75"
17 | recheck INTERACTION.EQUATION *| 46 | check single-bolt plate bending
18 | redesign bolt diameter 47 | check multiple-bolt plate bending
19 | use larger bolts (5/8" diam.) 48 - 51| check remaining constraints
20 | check INTERACTION.EQ 52 | check AISC min. edge dist. table *
21 | check BOLT.OPTIMUM.UNITY * 53 | redesign plate diameter
22 | redesign bolt distance 54 | use 21.75" diam. plate
23 | use 19" bolt distance 55 | check AISC min. edge dist. table
24 | check BOLT.OPTIMUM.UNITY 56 - 58| check remaining constraints
25 | check INTERACTION.EQUATION 59 | end design session
26 | activate the plate constraints 60 |'save design as EXPERT.1

Table §-3: Design Overview of the Base Plate Design Example I
(Constraint violations are marked with asterisks)

87

Integrated Case-Based Reasoning for Structural Design

5.2.1.1. DESCRIPTION OF THE DESIGN SESSION

Cycle 1 to 3—input problem. As usual, the design session starts by entering the
problem inputs and posting system design plans. The system plan calls for anchor bolt
design after the problem input is completed.

Cycle 4— specify major constraints. The user selects the
INTERACTION.EQUATION and BOLT.OPTIMUM.UNITY.FACTOR as the critical constraints to
which DDIS should pay special attention. Two stand-alone
CHECK.CRITICAL.CONSTRAINT.GOALS are posted on the control blackboard. In order to
speed up the system, DDIS also deactivates other constraints that are not selected.

Cycle 5 to 8—design anchor bolts. Various parts of the bolt group are generated
by the system design generators. Note that the particular order of these design actions is
chosen by the designer. DDIS does not prefer one action over the other because the design
plans on the control blackboard are not detailed enough to guide the design at this level.

Cycle 9 to- 10—check critical constraints. The INTERACTION.EQUATION is
checked and satisfied. However, the BOLT.OPTIMUM.UNITY.FACTOR is unsatisfied. The
anchor bolts are overdesigned.

Cycle 11 to 16—fix BOLT.OPTIMUM .UNITY.FACTOR constraint violation.
All backtracking provokers are invoked, and no particular preferences are given to them
because DDIS has no knowledge (i.e., redesign plans) that can apply. The designer
chooses to redesign the diameter of the bolt first, and the smallest bolt (1/2" diam.) is
selected. DDIS rechecks the optimum constraint and finds out that the bolts are still
overdesigned. This time, the designer wants to modify the bolt pattern. He/she selects the
backtracking provoker that redesigns the pattern of bolts, and the redesign adviser suggests
a 4-bolt pattern (the original design is an 8-bolt pattern). The two design modifications
resolve the constraint violation.

Cycle 17—recheck INTERACTION .EQUATION. The INTERACTION.EQUATION is
no longer satisfied after the design modifications. The bolts are underdesigned.

Cycle 18 to 20—fix INTERACTION .EQUATION violation. To overcome the
design failure, the designer modifies the bolt diameter by using a larger bolt (5/8" instead of
1/2").

Cycle 21—recheck BOLT.OPTIMUM.UNITY.FACTOR. Although the
INTERACTION.EQUATION is satisfied now, the bolts are overdesigned again.

Cycle 22 to 23— fix BOLT.OPTIMUM.UNITY.FACTOR violation. The
designer chooses to redesign the bolt circle distance this time because the unity factor is not

88

Integrated Case-Based Reusoning for Structural Design

too faraway from the requirement. Then, DDIS suggests a value of 19" for the bolt
distance based on the smaller bolt size used by the current design.

Cycle 24 to 26—recheck critical constraints and active more constraints.
The two constraints are satisfied now, so the designer actives the other constraints related
to the base plate.

Cycle 27 to 37—design base plate. The bolt design is complete. The next goal
of the BASE.PLATE.SYSTEM.DESIGN.PLAN is DESIGN.BASE.PLATE. The designer again
- selects a sequence of actions from DDIS’s executable agenda from cycle 27 to 37 according
to his/her judgment. Up to this point, the design is fine. Nine of eleven constraints are
satisfied.

Cycle 38—check MIN.BOLT.CYCLE .DISTANCE constraint. The constraint is
unsatisfied. Backtracking is needed.

Cycle 39 to 41—fix MIN.BOLT.CYCLE.DISTANCE constraint violation.
This design failure is fixed by increasing the bolt distance to 19.5". Note that the bolt
design is modified. Therefore, many constraints need to be rechecked. '

Cycle 42—recheck INTERACTION.EQUATION. The INTERACTION.EQUATION is
still satisfied. '

Cycle 43—recheck SINGLE-BOLT PLATE BENDING constraint. The
constraint PLATE.BENDING.SINGLE.BOLT is not satisfied. The design needs to be modified
again.

Cycle 44 to 46—fix PLATE .BENDING .SINGLE .BOLT constraint violation.
There are a few design modifications that we can do to resatisfy the constraint (e.g., change
the bolt spacing, the bolt distance or even the bolt pattern). The designer chooses to
redesign the plate thickness in order to isolate the effect of the changes. The redesign
adviser suggests increasing plate thickness to 3/4", and this resolves the problem.

Cycle 47 to 52—recheck other constraints. Several constraints are rechecked
to make sure they are still satisfied after the above design modification. They are all
satisfied except AISC.TABLE.1.16.5.1.MIN.ED.

Cycle 53 to 55—fix AISC.TABLE.1.16.5.1.MIN.ED constraint violation.
The edge distance is not enough according to AISC table 1.16.5.1. Therefore, the diameter
of the plate is increase to 21.75".

Cycle 56 to 59—recheck constraints. The three constraints that are influenced
by the latest change are rechecked. All are satisfied. Therefore, the design is finished at
cycle 59.

89

Integrated Case-Based Reasoning for Structural Design

Cycle 60—save design. DDIS saves

plans.

the design in its case memory knowledge as’
case EXPERT.] at the end. The primary attributes of the case are shown in Figure 5-8. The
control strategies of the whole design process are captured in one design plan and six
redesign plans. Figure 5-10 shows the design plan and Figure 5-9 shows one of redesign

CASE.NAME: EXPERT.1

DESIGN.PLAN:

PROBLEM. INPUT:
((P 21) (M 71) (V 19)
(POLE.SIDES 12)
(WELD.TYPE FILLET)

REDESIGN.PLANS:
EXPERT.1.REDESIGN.PLAN.1
EXPERT.1.REDESIGN.PLAN.3
EXPERT.1.REDESIGN.PLAN.5

EXPERT.1.DESIGN.PLAN

(POLE.BASE.DIA 15)
(WELD .ELECTRODES E70XX)
(WELD.SIZE 0.75))

EXPERT.1.REDESIGN.PLAN.2
EXPERT.1.REDESIGN.PLAN.4
EXPERT.1.REDESIGN.PLAN. 6

SOLUTION:

((THE DIAMETER OF BASE.PLATE.1l IS 21.75)

(THE MATERIAL OF BASE.PLATE.l1 IS ASTM.A572.GR60)
(THE THICKNESS OF BASE.PLATE.1 IS 0.75)

(THE DIAMETER OF BOLT.l1 IS 0.625)

(THE BOLT.SPACING OF BOLT.GROUP.1 IS 6.75)

(THE NUMBER.OF .BOLTS.PER.QUADRANT OF

BOLT.GROUP.1 IS 1)

(THE BOLT.DISTANCE OF BOLT.GROUP.1 IS 19.5))

STORAGE .LOCATION:
MEMORY:EXPERT.1.W

261MT1:KEE :WANG:CASE~

Figure 5-8: The Primary Attributes of Case EXPERT.1

GOAL.LIST: _ _
(EXPERT.1.REDESIGN.PLAN.4-REDESIGN.BOLT.GROUP.1.
BOLT .DISTANCE
EXPERT.1.REDESIGN.PLAN.4-USER.SELECT.DIAMETER.
OF .BOLT.CIRCLE
EXPERT.1.REDESIGN.PLAN.4-CHECK.CONSTRAINT.
MIN.BOLT.CIRCLE .DISTANCE)

INTENTION:

(CONSTRAINTS-SATISFIED-P 'MIN.BOLT.CIRCLE.DISTANCE)

ORIGINATED.CASE: EXPERT.1

Figure 5-9: EXPERT.1.REDESIGN.PLAN.4

90

Integrated Case-Based Reasoning for Structural Design

GOAL.LIST

INTENTION:

(EXPERT.
EXPERT.
EXPERT.

EXPERT.
EXPERT.

EXPERT.
EXPERT.
EXPERT.
EXPERT.
EXPERT.
EXPERT.
EXPERT.
EXPERT.

EXPERT.

e

R =

[uny

-DESIGN.PLAN-USE.LARGE.2-1/4.BOLTS
-DESIGN.PLAN-START.WITH.8-BOLT.PATTERN
.DESIGN.PLAN~-SYSTEM.SELECT.

BOLT.CIRCLE.DISTANCE

.DESIGN.PLAN-SYSTEM.SELECT.BOLT.SPACING
.DESIGN.PLAN-CHECK.CONSTRAINT

BOLT.OPTIMUM.UNITY.FACTOR

.DESIGN.PLAN-CHECK.CONSTRAINT

INTERACTION.EQUATION

.DESIGN.PLAN-CHECK.CONSTRAINT.

BOLT.OPTIMUM.UNITY.FACTOR

.DESIGN.PLAN-USER.SELECT.PLATE .MATERIAL
.DESIGN.PLAN~SYSTEM.SELECT.PLATE.SIZE
.DESIGN.PLAN-SYSTEM.SELECT.PLATE.THICKNESS
.DESIGN.PLAN-CHECK.CONSTRAINT.

MIN.BOLT.CIRCLE.DISTANCE

.DESIGN.PLAN-CHECK.CONSTRAINT.

AISC.TABLE.1.16.5.1.MIN.ED

.DESIGN.PLAN-CHECK.CONSTRAINT.

PLATE.BENDING.SINGLE.BOLT

.DESIGN.PLAN~-CHECK.REMAINING.CONSTRAINTS)

(VALUE-DESIGNED-P
' (BOLT.1 DIAMETER)
' (BOLT.GROUP.
' (BOLT.GROUP.
' (BOLT.GROUP.
' (BASE.PLATE.
' (RASE.PLATE.
' (BASE.PLATE.

NUMBER .OF .BOLTS .PER . QUADRANT)
BOLT .DISTANCE)

BOLT.SPACING)

DIAMETER)

MATERIAL)

THICKNESS)) -

g e

ORIGINATED.CASE: EXPERT.1

Figure 5-10: EXPERT.1.DESIGN.PLAN

5.2.1.2. ANALYSIS OF THE DESIGN SESSION

Without detailed design plans, DDIS does not have much control knowledge to
schedule actions. The design path that the designer chose is graphically shown in
Figure 5-11. Compared with Figure 5-6, Figure 5-11 took a different design approach.
The initial ordering of different design tasks is different. The backtracking levels used are
different. All these are captured in the saved case EXPERT.1 representing the individual
design judgment and style of that particular designer. The following example will reuse

this case and reproduce the same decision when appropriate conditions appear.

91

Integrated Case-Based Reasoning for Structural Design

Base Plate Design
Wetd Design @ Redesign cycie

;L ® Falled altemative
Bok Dasign

Type of Bolke

...........................

Figure 5-11: The Solution Path of the Base Plate Design Example I

5.2.2. Base Plate Design Example II

Now, we give DDIS a very different problem. The inputs for a new base plate design
are shown in Figure 5-7 (b). The loadings are much higher and the dimension of the pole
is also much larger than the sample problem. Apparently the previous design solution is
not feasible for the new design. However, the design plans used by the experienced
designer can still be applied to the new problem to produce an entirely different design.
Let’s see how DDIS takes advantage of its case-based design ability using its newly
acquired case-dependent knowledge. Table 5-4 describes the design session, and the
explanation of the design session follows.

92

Integrated Case-Based Reasoning for Structural Design

Cycle Action Cycle Action

1 -2 | input the new problem 20 | use more bolts (20-bolt pattern)

3 - 4 | retrieve and rate case EXPERT.] 21 check INTERACTION.EQUATION *
5 | reuse critical consts. of EXPERT.1 22 | redesign bolt pattern
6 | expand goal to heuristic plan 23 | use 36-bolt pattern
7 reuse EXPERT.l.DESIGN.PLAN 24 check INTERACTION.EQUATION
8 | use 2-1/4" bolts 25 | check BOLT.OPTIMUM.UNITY
9 | start with 8-bolt pattern 26 | reuse EXPERT.I.DESIGN.PLAN
10 | use 85" bolt distance 27 | reuse ASTM.AS72.GR60 material
11 | check MIN.BOLT.CIRCLE.DIST * 28 | use 95" diam. plate

12 | reuse EXPERT.1 REDESIGN.PLAN.4 | 29 | check AISC min. edge dist. table

13 | redesign bolt distance 30 | use 4" thick plate

14 | increase bolt distance to 87" 31 | check single-bolt plate bending
15 | check MIN.BOLT.CIRCLE.DIST 32 | activate all constraints

16 | use 6.75" bolt spacing 33 - 38| check remaining constraints

17 | check INTERACTION.EQUATION * 39 | end design session

I8 | reuse EXPERT.] REDESIGN.PLAN.2 | 40 | save design session

19 | redesign bolt pattern

Table 5-4: Design Overview of the Base Plate Design Example II
(Case-dependent actions are in italics and
constraint violations are marked with asterisks)

5.2.2.1. DESCRIPTION OF THE DESIGN SESSION

Cycle 1 to 2—input problem. The new design session starts from selecting the
global BASE-PLATE.SYSTEM.DESIGN.PLAN and entering the problem input variables.

Cycle 3 to 4—retrieve and rate case EXPERT.I. Case EXPERT.] is retrieved
for its potentially reapplicable design plans although the solution is not reusable. DDIS
wants to transfer the design steps of the experienced design to the new design. 45 and 70
are assigned to the solution similarity and plan similarity rating of EXPERT. 1, respectively.

93

Integrated Case-Based Reasoning for Structural Design

Cycle 5—reuse previous critical constraints as major constraints. During
the previous design process, five constraints (INTERACTION.EQUATION, BOLT.OPTIMUM.
UNITY.FACTOR, PLATE.BENDING.SINGLE.BOLT, MIN.BOLT.CIRCLE.DISTANCE and
AISC.TABLE.1.16.5.1.MIN.ED) were violated. Therefore, DDIS’s REUSE.PREVIOUS.
CRITICAL.CONSTRAINTS action marks them as the major constraints of the new design and
places five CHECK.CRITICAL.CONSTRAINT.GOALs on the blackboard accordingly. All
other constraints are deactivated at this time. This action assures that the constraints most
likely to be critical are checked as soon as they become checkable. Moreover, the
performance of DDIS does not suffer because it does not have to handle too many
constraints at the same time.

Cycle 6—expand START.DESIGN goal. The START.DESIGN goal of BASE-
PLATE.SYSTEM.DESIGN.PLAN is expanded into BASE-PLATE.DESIGN.PLAN.1 whose first
goal is DESIGN.ANCHOR.BOLT. At this point, we can also reuse the
EXPERT.1.DESIGN.PLAN.1 to expand START.DESIGN. However, the moderate plan
similarity rating of EXPERT.1 makes DDIS think that it is better to transfer the old plan
piece by piece rather than take it as a whole.

Cycle 7—transfer EXPERT.1.DESIGN.PLAN.1 for DESIGN.ANCHOR.BOLT.
DDIS transfers the relevant goals for anchor bolt design from EXPERT.1.DESIGN.PLAN.1 to
the control blackboard. The lack of detailed heuristic design plans in the knowledge base is
remedied by the plan transformer.

Cycle 8 to 10—design anchor bolts. With the case-dependent plan on the
blackboard, DDIS follows the previous design procedure step by step. First, it selects the
largest bolt size (2-1/4" diam.) and the 8-bolt pattern design. Then, the same knowledge
source used in the sample design is used again to generate the bolt distance. Because of the
different problem inputs, the design value turns out to be different even the same heuristics
are used to design the bolts.

Cycle 11—check MIN.BOLT.CYCLE.DISTANCE constraint. This constraint is
found unsatisfied late in the earlier design session, which causes a great deal of trouble
when modifying that design. This experience is transferred into this design by declaring
the constraint as a critical constraint at cycle 5. Therefore, DDIS knows to check the
constraint earlier to avoid the same mistake. Indeed, this constraint is violated.

Cycle 12 to 15—reuse earlier redesign plan. The constraint violation triggers
three backtracking provoker actions. However, the current control knowledge on the
blackboard cannot differentiate which one is better. In order to reuse the previous design
modification steps, DDIS posts EXPERT.1.REDESIGN.PLAN.4 on the blackboard. The
redesign goals in the case-dependent plan (see Figure 5-9) guide DDIS through the design
modification. At the end of the redesign process, DDIS recovers from the design failure by
choosing a bolt distance of 87 inches and is back on the course of its original design plan.

94

[niegrared Case-Based Reasoning for Structural Design

Cycle 16—resume the anchor bolt design. The system generator selects 6.75"
bolt spacing for the new design.

Cycle 17—check INTERACTION.EQUATION. The anchor bolt design is
completed now. Another critical constraint, the INTERACTION.EQUATION, is checked and
found unsatisfied.

Cycle 18— reuse earlier redesign plan. DDIS tries to reuse
EXPERT.1.REDESIGN.PLAN.2, which encountered the same constraint violation earlier.
However, the plan calls for a bolt diameter increase. This is not a feasible plan under the
current situation since the failed design already uses the largest available bolts (2-1/4").

Cycle 19 to 21—redesign bolt pattern. The user steps in to tell DDIS to
redesign the bolt pattern. Because of the big gap between the design value and the
requirements, a 20-bolt pattern is selected. However, the INTERACTION.EQUATION is still
violated. Further redesign is necessary.

Cycle 22 to 24—repeat redesign steps. The 20-bolt pattern is still
underdesigned since the constraint is still violated. The same actions are reused again to
start another round of design modification. DDIS repeats the redesign steps in cycle 19,
20, and 21 and settles on a 36-bolt pattern that satisfies the INTERACTION.EQUATION.

Cycle 25—check BOLT.OPTIMUM.UNITY.FACTOR. Another critical
constraint, the BOLT.OPTIMUM.UNITY.FACTOR, is checked and found satisfied. The bolt
design is completed now. All the critical constraints related to the anchor bolts are
satisfied.

Cycle 26—transfer case-dependent plan for base-plate design. The goal
DESIGN.ANCHOR.BOLT is achieved. Therefore, it is removed from the control blackboard
as well as the case-dependent plan from EXPERT.1 that expands it. With no specific plans
for the base plate design, DDIS refers to the design plan of EXPERT.1 to guide its actions
again. The goals for plate design are transferred to the control blackboard to expand
DESIGN.BASE.PLATE.

Cycle 27 to 31—design base plate. To design the base plate, DDIS follows the
steps that the experienced designer used when solving the sample problem and interrupts
the design only to check the two previously violated critical constraints. This time
everything goes well. The completely designed base plate satisfied the two constraints.

Cycle 32—activate all constraints. Since all the critical constraints are satisfied,
the user has the option to end the design or to make more constraints active. The rest of the
unchecked constraints are made active.

Cycle 33 to 38—check remaining constraints. Six newly activated constraints
are checked and all satisfied.

95

Integrated Case-Based Reasoning for Structural Design

Cycle 39 to 40—end and save the design session. Since all the constraints
are satisfied, the design is completed at cycle 39 and saved in the case memory as
POLE.150 at cycle 40. The final design of the pole base is:

((THE DIAMETER OF BASE.PLATE.l IS 95.0)

(THE MATERIAL OF BASE.PLATE.l1 IS ASTM.A572.GR60)
(THE THICKNESS OF BASE.PLATE.1 IS 4.0)

(THE DIAMETER OF BOLT.l IS 2.25)

(THE BOLT.SPACING OF BOLT.GROUP.1l IS 6.75)

(THE NUMBER.OF.BOLTS.PER.QUADRANT OF BOLT.GROUP.1 IS 9)
(THE BOLT.DISTANCE OF BOLT.GROUP.1 IS 87.0))

5.2.2.2. ANALYSIS OF THE DESIGN SESSION

The final solution of this problem is very different from the solution of the EXPERT.1
case although the previous design control knowledge was used to schedule actions in this
session. Design plans, which are previous design strategies, can be applied to a large
range of problems to generate completely different designs. Figure 5-12 shows the new
design path. It follows the previous line of reasoning except that constraint checking was
done more wisely. However, even when the same KS is used to perform a specific task,
the design value generated can be different. For example, SYSTEM.SELECT.
BOLT.CIRCLE.DISTANCE KS was used at cycle 10 to generate a bolt distance. The bolt
distance generated for the new design was 85 inches instead of 24 inches as used before.
The rules encoded in KSs can adjust to different blackboard contexts to produce adequate
value for new designs. A complete design plan covers several aspects of a design problem.
This example showed that DDIS can flexibly transfer part of a plan to perform a subtask of
anew design. For example, the EXPERT.DESIGN.PLAN.1 (which is the whole design plan
of the previous base plate design session) was used for the subtask of designing the anchor
bolts in cycle 7. This example also showed that DDIS anticipated potential design failures
by declaring critical constraints at the beginning based on past design experience. At the
end of this design session, DDIS increased its case-dependent knowledge by saving the
design in the case memory. In addition to capturing one more design solution and plan,
DDIS also learned one more way to repair the underdesign of anchor bolts (i.e.,
INTERACTION.EQUATION violation).

5.3. Comments on the Two Demonstration
Applications

The beam-column design problem is adequate for design solution reuse. Previous
design cases can provide shortcuts and make the design cycle converge a little faster.
However, the limited design space does not make the use of previous design plans an
important capability. On the other hand, the base plate design problem can really take
advantage of DDIS’s ability to transfer past solutions and plans. The complicated design

96

Integrated Case-Based Reasoning for Structural Desi on

Bage Plate Design

Wald Deslgn @ R lgn cycle
i ® Falled akernative
Boit Deslgn
.............. A i, TypootBotts
v —— BB e SESSLBONE

Circular Pattern

() (2

8-Bolt Pattemn 20-Bolt Pattern 36-Bolt Pattern Pattern of Bolts

...

Bolt Distance: 85" Bolt Distance: 87" Bolt Distance: 87" Dlameter of Bolt Clrcle

. Gheck Interaction Equation

.......................... Ghack Unlty Faster.............
................ AST28Q. ieiiiiii..., . MaterialotPlate
Plate Diameter:95* Size of Plate

...

R RN RN TS RN IS ISP 441 v Ve " s

Thickness: 4° Plate Thickness

----------- L I R R R N N R R R R R R R R R Y

Figure 5-12: The Solution Path of the Base Plate Design Example II

process and large number of design options make the base plate design a knowledge
intensive problem. While it can benefit from a better starting point, it can also benefit from
a systematic design plan. A good initial trial design helps DDIS reach the solution faster,
~and an effective design plan reduces the design search space. Most importantly, plans
about how to recover from design failures are critical to the generate-test-modify design

97

Integrated Case-Based Reasoning for Structural Design

paradigm. A good redesign plan repairs the defect promptly and confines the scope of
design modification. As shown in the examples, DDIS’s plan transformer can be
effectively used in these areas.

Further study of the problem shows that the large number of design constraints and
variables slow down DDIS dramatically. So, constraint relaxation was added to DDIS’s
generic design actions. In addition to relying on case-independent knowledge to declare
critical constraints, case-dependent knowledge about previous design failures can also be
used to anticipate possible design problems. Therefore, a failure anticipator with one KS—
REUSE.PREVIOUS.CRITICAL.CONSTRAINTS—was added to the system.

Very limited heuristics are in DDIS’s knowledge base for base plate design. The
experiment (as shown in the examples) demonstrates the memory-oriented learning ability
of DDIS. Giving DDIS an incomplete domain knowledge base, it is probable that DDIS
can improve its performance through design sessions with human interaction.

The blackboard architecture of DDIS and its case-independent and case-based
knowledge modules provide a cooperative design environment to integrate case-base
reasoning with knowledge-based design. The two design problems validate the power of
DDIS’s integrated reasoning paradigm. They also reveal the difficulties of capturing case-
dependent knowledge in the form of design strategies. While recording the designer’s
steps as design plans, DDIS can capture the explicit basis of the design plan, such as the
ingredient design attributes, satisfied constraints, unsatisfied constraints, performed
actions, etc. However, the implicit supporting reasoning behind design plans can not be
acquired (e.g., judgment based on unrepresented design considerations and analysis of
values from several objects, etc.). To more effectively use case-dependent plans, DDIS
needs to capture the undeclared reasons associated with individual human design decision.
Furthermore, DDIS can not justify design steps of its user. It only records the designer’s
steps and assumes their correctness.

98

Chapter 6
Summary and Conclusions

The intent of this study was to investigate a new approach for implementing
knowledge-based structural design systems using both case-dependent and
case-independent knowledge. The resulting system, DDIS, combines case-based
reasoning with case-independent knowledge in a blackboard framework very similar to
BB1 [Hayes-Roth 84 and 85]. In the blackboard model, the knowledge needed to solve a
problem is partitioned into independent knowledge sources that are grouped into several
knowledge modules in the knowledge base. The knowledge sources modify only the
global data structure (blackboard) and respond opportunistically to the changes on the
blackboard. DDIS has two major knowledge modules: case-dependent and case-
independent. The case-independent module represents abstract knowledge about the
problem domain and problem solving strategies. The case-dependent module uses case- .
based reasoning techniques to transfer knowledge from previous designs chosen by the
human designer to current design tasks. Using the blackboard control mechanism and the
two knowledge modules, DDIS can apply both case-dependent and case-independent
knowledge to perform collaborative and opportunistic design.

The development of DDIS involved research in producing a formal representation for
structural engineering case-dependent knowledge, developing an architecture for applying
case-dependent knowledge to design problems, implementing a prototype computer system
based on the architecture developed, and demonstrating the prototype system with
structural engineering examples.

Many issues of case-based reasoning, case-dependent design in particular, are raised by
the work. The rest of this chapter discusses these general issues and examines how well
DDIS addresses each of them. This discussion also includes the limitations of DDIS and
how DDIS could be expanded in these areas.

6.1. Design | Recording

In addition to the standard elements that must be described in blackboard systems, such
as control knowledge, states, actions, constraints, etc., DDIS needs to acquire and retain
past designs for future reuse. The questions are: what information about the original
design is needed? when should it be recorded? and how can it be expressed?

The most important elements of case-dependent knowledge identified in this study are:
design solutions, justifications, constraints, failures, plans and goals (see Section 3.3).

99

Integrated Case-Based Reasoning for Structural Design

Design solutions include final solutions, intermediate solutions and partial solutions.

Design justifications are the calculations of previous design variables and the dependences
of their values. Design constraints are used to evaluate designs and are very important
information for understanding the history of a design case. Previous design failures can be
used to avoid unsuccessful design alternatives in the future. Design plans are the strategies
- used to solve a design problem. Specific knowledge about how to achieve a particular
design step is contained in a design goal. Design goals are included in plans to form
complete case-dependent control knowledge of a case.

A design session in DDIS can be divided into two steps, a design phase and a memory-
oriented learning phase. The design case to be recorded is captured at the end of the design
phase. Therefore, the design performance of DDIS is not significantly influenced because
of its additional learning task. Only a minimum amount of necessary information (e.g.,
design history—the sequence of design actions) is recorded during the design phase. Most
of the case-dependent knowledge is captured during the learning phase by processing the
recorded design information on the blackboard.

The case-based design capabilities of DDIS are fundamentally supported by the
underlying model of the system, and the model directly influences the representation of
design solutions and the description of solution strategies (i.e., the plans). The solution of
a recorded design includes the final solution and intermediate propositions. The final
solution is saved as object attribute values, and the intermediate solutions, value
justifications and constraint statuses are recorded as variable dependency graphs in
KEEworlds format. Case-dependent design strategies are captured as case-dependent plans
and goals. Plans and goals are created after designs using design history and constraint
statuses, as well as other information on the blackboard (see Section 4.4.2 and 4.4.3). The
case-dependent control knowledge captured is of little use unless it can be recognized by
DDIS’s control mechanism. Therefore, the plans and goals are expressed in a format that
can later be directly posted on the control blackboard by case-dependent control actions to
change the behavior of DDIS.

6.2. Design Retrieval

Given a new design problem, the concerns of design retrieval are: how can relevant
previous designs be identified? when should the memory be searched? and how effective
should the search be?

DDIS relies on users to retrieve relevant designs from the case memory and to decide
how similar they are to the new design, although it does have the ability to find the relevant
redesign plans based on the constraint violations. Our intent is to rely heavily on human
interaction during design retrieval since the focus of the research was on the integration of
case-dependent and case-independent reasoning.

100

Integrated Case-Based Reasoning for Structural Desi gn

In order to maintain the effectiveness of DDIS, the retrieved designs on the blackboard
(which are retrieved from the memory by the memory probers with the assistance from the
user) are the only eligible sources for case-dependent knowledge transfer. The analogy
transformer knowledge module does not directly access the larger case memory. This
focuses the case-dependent reasoning on the chosen designs, minimizes time-consuming
memory search, and ensures uninterrupted design actions. However, either the user or a
design failure can invoke the memory prober knowledge module to search for other designs
to transfer more case-dependent knowledge.

The case memory of DDIS has multiple indexes and can be searched for different
purposes. A design case can be retrieved for its solutions or its design plans. Design
solutions are indexed by their problem statements and can be searched to find a match for a
new design specification. Design plans and redesign plans are indexed by their intentions.
When the intention of a case-dependent plan matches a current design goal, its associated
case can be retrieved.

6.3. Appropriateness

Recorded designs do not always fit into a new problem perfectly. Frequently, it is
necessary to modify previous solutions and plans in order to reuse them appropriately in
new situations. For instance, we may want to omit the execution of unnecessary steps in
an old plan or repeat the execution of the old plan until the desired subgoal is achieved.
Therefore, the question is: how do we appropriately fit a previous design into a new
problem?

Design solutions are reused in DDIS without modifications. The correctness of a
reused solution is checked by DDIS’s constraint checkers. Previous solutions are reused
as the initial trial of the generate-test-modify design cycle. The appropriateness of the reuse
depends on the high solution similarity rating needed to trigger the reuse solution case-
dependent action.

Although case-dependent plans are reposted on the blackboard without explicit
modifications, their appropriateness for reuse is determined by DDIS’s plan and goal
maintenance mechanism. The plan and goal maintenance mechanism and the structure of
the case-dependent goals allow plans that don’t fit exactly into a new design to behave
correctly under the new situation. For instance, inapplicable goals in a plan can be delayed
or skipped. Goals can be revisited when they need to be reachieved. Also, plans are killed
automatically when they become inapplicable.

101

Integrated Case-Based Reasoning for Strucrural Design

6.4. Flexibility

Recorded design solutions and plans cannot always be reused as a whole. A previous
design solution may not be reused in its entirety, but parts of the solution can still be useful
in a new problem. Furthermore, a very detailed recorded sequence of design actions that
satisfies a special order of goals can rarely be followed entirely in a new design session.
This is a granularity problem. Therefore, we have to ask: how can design cases in the case
memory be reused even though they are only partly useful?

DDIS has a very flexible architecture and representation that can use any subset of a
past design. Past design solutions can be applied to very similar new designs while
previous design plans can be applied to guide designs with less surface similarity. The
flexibility of solution reuse is achieved by the solution transformers, which apply part of a
previous design solution to satisfy a new goal. The flexibility of plan reuse comes from
several places. Previous design steps of a recorded design are decomposed into a main
design plan and several redesign plans in the case memory, so that they can be reused
separately. The different levels of generalization built into case-dependent plans enable
them to be followed very flexibly according to the new situations they encounter (see
Section 4.4.3). Also, DDIS’s goal expansion allows previous plans to be reused at the
desirable level of abstraction in the new design.

Furthermore, DDIS can work with multiple design cases simultaneously. For
instance, DDIS can follow a case-dependent plan from one case by satisfying one of its
goals with a design solution of another case or DDIS can reuse a partial solution from one
case to satisfy a goal and reuse a solution from another case to satisfy another goal.

Another level of flexibility comes from the integrated reasoning paradigm of DDIS.
Case-dependent actions compete with case-independent actions. Case-dependent and case-
independent plans can work together competitively or in a complementary fashion. Case-
based design actions are not always available or competent. DDIS has the flexibility to use
its case-independent actions instead. It should be noted that the selection between heuristic-
based and case-based design approach can be altered from one design step to another since
the design is divided into generic actions and subgoals, and the blackboard architecture
provides a framework for integrating multiple sources of knowledge to solve a shared
problem.

6.5. Scope and Limitations

DDIS is.a research prototype intended to demonstrate the idea of integrating case-
dependent and case-independent knowledge in knowledge-based structural engineering
design systems. It is not meant to be a production tool.

102

Integrated Case-Based Reasoning for Structural Desi gn

The scope of this study is limited to the design of structural steel beam-columns and
electrical transmission pole anchor base plates. The beam-column design example is a
component design problem. It was implemented to facilitate the prototyping ahd to
demonstrate DDIS’s idea for integrating case-dependent and case-independent reasoning
casily. In a practical sense, beam-column design cannot really benefit from the case-
dependent design approaches offered in DDIS (except for design solution reuses). The
base plate design problem is at the subsystem design level. It provided adequate
complexity to study the DDIS architecture. However, to explore the capture and reuse of
the other kinds of case-dependent knowledge, a more complicated design problem at the
system design level (such as conceptual structural design) is more desirable (and very
challenging). Furthermore, the assessment of the utility of DDIS in terms of design speed,
accuracy and optimization requires a more challenging design problem.

The current case memory of DDIS has only limited number of cases generated by the
system. The design cases were saved after controlled sample design sessions. They were
produced to validate and demonstrate different features of DDIS. To further evaluate the
priority functions used in the generic knowledge sources and the heuristic weights of rating
functions, more cases are needed. For example, the priority function of knowledge source -
EXPAND.GOAL (see Section 4.3.5) can be refined by running more cases. The base
similarity (see Section 4.3.2.2) and goal importance index (see Section 4.3.5) implemented
in DDIS can be polished with a large number of cases in the memory. It is necessary to
study and compare more design cases to refine the knowledge source rating scheme, to
ixhprove the plan and goal weighting strategy, and to discover other potential utility of case-
dependent knowledge. Furthermore, additional research in case indexing, similarity
matching and memory generalization require a large case memory to begin with.

Other weaknesses of DDIS will be addressed in the following section along with their
possible enhancements.

6.6. Directions for Future Research

The long-term goal of investigating the integrated, case-dependent and case-
independent system is not to build a "black-box" designer. There are many aspects of
problem-solving that humans perform very well, and our goal is to improve the interaction
of computer tools and human designers by constructing intelligent design assistants that
support rather control the design process. The DDIS project serves as a starting point for
the development of those intelligent design assistants. Much more work is required to
accomplish the larger integrated design model. DDIS can be enhanced and improved in
many areas. Future research directions might focus on the following areas:

+ Similarity Matching Algorithm—This study did not address the similarity
problem. DDIS relies on users to retrieve relevant designs from the case
memory and to decide how similar they are to the new design. The design

103

[niegrared Case-Based Reasoning for Structur... Design

retrieval process can be improved by employing matching heuristics and
similarity metric techniques that judge partial matches and serve to choose
between potential cases. In [Carbonell 82], a similarity metric is used in the
retrieval process for judging partial matches. It compares differences between
the (a) initial state, (b) final state, (c) path constraints, and (d) operator
preconditions of the new problem and the previously solved problems. A value
hierarchy is used in the CHEF program [Hammond 86] to determine relative
importance of a matched feature with respect to a set of features that have been
compared. The similarity metric applies for single aspect comparison. The
metric determines whether two cases are similar with respect to that aspect,
while a value hierarchy is used to determine how much that aspect is worth in
‘the overall comparison. However, the matching criteria and their relative
importance heavily depend on the domain and the type of problems in the
domain [Rafiq 89]. In order to automate DDIS’s design retrieval process,
further research in the area of indexing and similarity matching is needed. On
the other hand, the design retrieval does not have to be fully automated. Human
interaction can still play an important role during the retrieval process.

Design Decision Capture—The experiments with the two sample
applications revealed the difficulties of capturing case-dependent knowledge in
the form of design strategies. While recording the designer’s steps as design
plans, DDIS can capture the explicit basis of the design plan, such as the
ingredient design attributes, satisfied constraints, unsatisfied constraints,
performed actions, etc. However, the implicit supporting reasoning behind
design plans can not be acquired (e.g., judgment based on unrepresented design
considerations and analysis of values from several objects, etc.). DDIS assures
the fundamental appropriateness of transferring previous plans. However, the
good result of plan reuse is not promised. The prediction of the results of plan
transfer needs more high level information. To more fully assess the
correctness of plan reuse, DDIS needs to capture the undeclared reasons
associated with individual human design decision. Furthermore, DDIS can not
justify design steps of its user. It only records the designer’s steps and
assumes their correctness. A possible solution to these problems is to build an
interface to let the user provide justifications whenever he/she overrides the
system’s decisions. If case-dependent knowledge of this kind can be captured
through the interface (as mentioned above), it can be presented to the designer
and let the designer help DDIS to make evaluations. A more robust solution,
involving acquiring design knowledge during design through decision
justifications, is being studied by Garcia [Garcia 91].

Anticipating and Avoiding Design Failures—The steel anchor base
plate design problem showed that failure anticipation is very important when
multiple levels of design process abstraction and interrelated design constraints

104

[nregrated Case-Based Reasoning for Structural Design

are involved. Therefore, past design failures are another type of case-dependent
knowledge that should be captured while recording a design. A memory of
failures could be added to the case memory of DDIS. Since previous bad
design solutions and solution strategies can be used to eliminate unfavorable
alternatives, they are as valuable as previous good solutions and strategies.
Therefore, it is important to capture this kind of case-dependent knowledge and
to develop the failure anticipator knowledge module to check for potential
design failures and so avoid them in the new design. The current failure
anticipator of DDIS has only one knowledge source that predicts the critical
constraints of a new design based on a past similar design. Another solution
for failure anticipation may be the use of elimination plans and goals to give
negative ratings to bad alternatives.

Design Adaptation—DDIS lacks the ability to modify previous design
solutions and plans before reusing them. More analogy transformer knowledge
sources can be added to perform case adaptations. General knowledge and
heuristic rules can be used to write domain specific knowledge sources that
adapt previous design solutions and plans to fit the specifications of new -
designs.

Memory Generalization—DDIS does not have the capability to generalize
the design cases in its memory knowledge base. A possible improvement is to
develop a better categorized memory structure to support memory indexing and
generalization. The MOP [Schank 79] memory structure is a potential candidate
for this improvement.

Learning and Knowledge Acquisition—DDIS focused on the case-based
design aspect and its cooperation with conventional heuristic-based techniques,
but a major original motivation behind the integrated design paradigm developed
in this research is its ability for incremental expertise acquisition. In addition to
the potential improvement of design performance, the knowledge representation
and case-based design strategies developed during this research can support
various processes of capturing design knowledge from experts and by
automated machine learning. The research can be extended to include a learning
component and an expert knowledge acquisition interface to surmount the
current difficulty of acquiring domain-specific rules from experts. The new
design approach enables the knowledge acquisition to be done as a case-by-case
process and the results to be recorded as case-dependent knowledge.
Furthermore, a learning component can extract design rules (i.e., case-
independent knowledge) from this case-dependent knowledge incrementally.

105

[AAAI 88]

[AAAIS0]

[Adeli 86a]

[Adeli 86b]

[AISC 80]

[Biswas 87]

[Brachman 85]

[Brown 84]

[Carbonell 82]

References

Proceedings, AAAI-88 Case-Based Reasoning Workshop,
Minneapolis - St. Paul, Minnesota, American Association for Artificial
Intelligence, August, 1988.

Working Notes, AAAI-90 Spring Symposium Series—Case-Based
Reasoning, Stanford University, Stanford, California, March 27-29,
American Association for Artificial Intelligence, March, 1990.

Adeli, H. and Paek, Y., “Computer-Aided Design of Structures
Using LISP,” Journal of Computer and Structures, Vol. 22, No. 6,
pp- 939-956, 1986.

Adeli, H. and Al-Rijleh, M. M., “A Knowledge-Based Expert System
for Design of Roof Trusses,” Microcomputers in Civil Engineering,
Vol. 2, No. 3, pp. 179-195, September 1986.

American Institute of Steel Construction, Manual of Steel
Construction, Eighth Edition, AISC, Chicago, IL, 1980.

Biswas, Mrinmay and Welch, James G., “BDES: A Bridge Design
Expert System,” Engineering with Computers, Vol. 2, No. 3, pp.
125-136, 1987.

Brachman, Ronald J. and Levesque, Hector J., Eds., Readings in
Knowledge Representation, Morgan Kaufmann Publishers, 1985.

Brown, D. C. and Chandrasekaran, B., “Expert Systems for a Class
of Mechanical Design Activity,” Knowledge Engineering in
Computer-Aided Design, IFIP WG 5.2 Working Conference on
Knowledge Engineering in Computer-Aided Design, Budapest,
Hungary, September, 1984.

Carbonell, Jaime G., Learning by Analogy: Formulating and
Generalizing Plans from Past Experience, Technical Report CMU-CS-
82-126, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, June 1982.

107

Integrated Case-Based Reasoning for Structural Design

[Carbonell 85] Carbonell, Jaime G., Derivational Analogy: A Theory of
Reconstructive Problem Solving and Expertise Acquisition, Technical
Report CMU-CS-85-115, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, March 1985.

[Chan 87] Chan, Weng Tat and Paulson, Boyd C., Jr., “Exploratory Design
Using Constraints,” Arrificial Intelligence for Engineering Design,
Analysis and Manufacturing, Vol. 1, No. 1, pp. 59-71, 1987.

[DARPA 89] Proceedings, DARPA Workshop on Case-Based Reasoning,
Pensacola Beach, Florida, May 31 - June 2, Defense Advanced
Research Projects Agency, Kluwer Academic Publishers, May, 1989,

[Daube 89] Daube, Francois and Hayes-Roth, Barbara, “A Case-Based
Mechanical Redesign System,” Proceedings, The Eleventh IJCAI,
Eleventh International Joint Conference on Artificial Intelligence,
Detroit, Michigan, pp. 1402-1407, August, 1989.

[Dixon 84] Dixon, John R., Simmons, M. K. and Cohen, P. R.,, “An
' Architecture for Application of Artificial Intelligence to Design,”
Proceedings, 21th Design Automation Conference, 1984.

[Garcia 91] Carcia, Ana Cristina Bicharra and Howard, H. Craig, “Building a
Model for Augmented Design Documentation”, Artificial Intelligence
in Design ’91, First International Conference on Artificial Intelligence
in Design, Edinburgh, UK, June 25-27, 1991.

[Garrett 86] Garrett, James H. and Fenves, S. J., A Knowledge-Based Standards
Processor for Structural Component Design, Technical Report R-86-
157, Department of Civil Engineering, Carnegie-Mellon University,
Pittsburgh, PA, September 1986.

[Garrett 89] Garrett, James H., “An Object-Oriented Representation of Design
Standards”, Computing in Civil Engineering, Barnwell, Thomas O.,
ed., Sixth Conference on Computing in Civil Engineering, Atlanta,
Georgia, 1989, American Society of Civil Engineers, pp. 267-274,
1989.

[Gentner 83] Gentner, Dedre, “Structure-Mapping: A Theoretical Framework for
Analogy,” Cognitive Science, Vol. 7, No. 2, pp. 155-170, 1983.

[Hammond 86] Hammond, Kristian J., Case-based Planning: An Integrated Theory of
Planning, Learning and Memory, Technical Report
YALEU/CSD/RR#488, Department of Computer Science, Yale
University, October 1986.

108

Integrated Case-Based Reasoning for Structural Design

[Hayes-Roth 84]

[Hayes-Roth 85]

[Howard 89]

[Howe 86]

[Huhns 87]

[Kedar-Cabelli 85]

[Kolodner 88].

[Kunz 84]

[Maher 85]

[Maher 87]

Hayes-Roth, Barbara, BBI: An architecture for blackboard systems
that control, explain, and learn about their own behavior, Heuristic
Programming Project Report HP-84-16, Stanford University,
December 1984.

Hayes-Roth, Barbara, “A Blackboard Architecture for Control,”
Artificial Intelligence, Vol. 26, pp. 251-321, 1985.

Howard, H. C., Wang, J., Daube, F., and Rafiq, T., “Applying
Design-Dependent Knowledge in Structural Engineering Design,”
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, Vol. 3, No. 2, pp. 111-124, 1989.

Howe, Adele E., Cohen, Paul R., Dixon, John R. and Simmons,
Melvin K., “Dominic: A Domain-Independent Program for
Mechanical Engineering Design,” The International Journal for
Artificial Intelligence in Engineering, Vol. 1, No. 1, pp. 23-28, July
1986.

Huhns, Michael N. and Acosta, Ramon D., Argo: An Analogical

‘Reasoning System for Solving Design Problems, MCC Technical

Report AI/CAD-092-87, Microelectronics an April 1987.

Kedar-Cabelli, Smadar, Purpose-Direcred Analogy, Technical Report
ML-TR-1, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey 08903, July 1985.

Proceedings, DARPA Workshop on Case-Based Reasoning,
Kolodner, Janet L., Eds., Clearwater Beach, Florida, May 10-13,
Defense Advanced Research Projects Agency, Kluwer Academic
Publishers, May, 1988.

Kunz, John C., Kehler, Thomas P. and Williams, Michael D.,
“Applications Development Using a Hybrid AT Development System,”
Al Magazine, Vol. 5, No. 3, pp. 41-54, Fall 1984,

Maher, Mary Lou and Fenves, Steven J., HI-RISE A Knowledge-
Based Expert System for the Preliminary Structural Design of High
Rise Buildings, Technical Report R-85-146, Department of Civil
Engineering, Carnegie-Mellon University, Pittsburgh, PA, January
1985.

Maher, Mary L., Ed., Expert Systems for Civil Engineers:
Technology and Application, American Society of Civil Engineers,
345 East 47th Street, New York, New York 10017-2398, 1987.

109

Inregrated Case-Based Reasoning for Structural Design

[Maher 88]

[Maher 91]

[Mittal 86]

[Mostow 87]

[Navinchandra 88]

[Prieditis 88]

[Quillian 68]

[Rafiq 89]

[Schank 79]

[Schank 81]
[Shortliffe 76]

[Slade 91]

Maher, M. L., “Engineering Design Synthesis: A Domain
Independent Representation,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, Vol. 1, No. 3, 1988.

Maher, M. L. and Zhang, D. M., “CADSYN: Using Case and
Decomposition Knowledge for Design Synthesis”, Artificial
Intelligence in Design ’ 91, First International Conference on Artificial
Intelligence in Design, Edinburgh, UK, June 25-27, pp. 137-150,
1991.

Mittal, S., Dym, C. L. and Morjaria, M., “PRIDE: An Expert
System for the Design of Paper Handling Systems,” Computer, Vol.
19, No. 7, pp. 102-114, 1986.

Mostow, Jack and Barley, Mike, Autornated Reuse of Design Plans,
Technical Report ML-TR-14, Department of Computer Science,
Rutgers University, May 1987.

Navinchandra, D., “Case Based Reasoning in CYCLOPS, a Design
Problem Solver,” Proceedings, DARPA Case-Based Reasoning
Workshop, Kolodner, Janet, Ed., Morgan Kaufmann Publishers,
May, 1988.

Prieditis, Armand, Ed., Analogica, Morgan Kaufmann Publishers,
Inc., Los Altos, CA, 1988.

Ouillian, M. R., “Semantic Memory,” in Semantic Information
Processing, Minsky, M. Ed., MIT Press, Cambridge, MA, 1968.

Rafiq, Taufiq, Similarity in Structural Component Case Bases,
unpublished Engineer’s degree thesis, Department of Civil
Engineering, Stanford University, 1989.

Schank, R. C., Reminding and Memory Organization: An
Introduction to MOPs, Technical Report 170, Yale Umversuy
Department of Computer Science, 1979.

. Schank, R. C., “Failure-driven Memory,” Cognition and Brain

Theory, Vol. 4, No. 1, pp. 41-60, 1981.

Shortliffe, Edward H., Computer-Based Medical Consultations:
MYCIN, New York: American Elsevier, 1976.

Slade, Stephen, “Case-Based Reasoning: A Research Paradigm,” Al |
Magazine, Vol. 4, No. 1, pp. 42-55, 1991.

110

Integrated Case-Based Reasoning for Structural Design

[Sriram 86] Sriram, D., “Knowledge-Based Approaches for Integrared Structural
Design,” unpublished Ph.D. Dissertation, Department of Civil
Engineering, Carnegie-Mellon University, Pittsburgh, PA, February
1986.

[Tulving 83] Tulving, E. Elements of Episodic Memory, Oxford University Press,
Oxford, 1983.

[Waterman 86] Waterman, Donald A., A Guide to Expert Systems, Addison-Wesley,
Reading, MA, 1986.

[Winston 80] Winston, Patrick H., Learning and Reasoning by Analogy: The
Details, Technical Report AIM 520, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, May 1980.

[Zhao 88] Zhao, F. and Maher M. L., “Using Analogical Reasoning to Design
Buildings,” Engineering with Computers, Vol. 4, No. 3, pp. 107-
119, 1988.

111

Abbreviations and Acronyms

BB1 A domain-independent blackboard architecture conceived and
developed by Dr. Barbara Hayes-Roth at Stanford University

CBR Case-Based Reasoning

 DDIS Design-Dependent and Design-Independent System (“Design-
dependent” and “design-independent” are the terms used for “case-
dependent” and “case-independent” in the early stage of this research.)

KBES knowledge-based expert system

KEE Knowledge Engineering Environment developed by IntelliCorp
KS knowledge source

KSAR knowledge source activation record

LHS left-hand side of a rule

RHS right-hand side of a rule

™S truth maintenance system

113

