E(‘ENTER FORINTEGRATED FACIH ITY ENGINEERING

Managing Design Information
in a Shareable Relational Framework

by

Kincho H. Law

TECHNICAL REPORT
Number 60

January, 1992

Stanford University




R IFE Center for Integrated Facility Engineering « Stanford University

Copyright © 1992 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 95305-4020



Managing Design Information in a Shareable
Relational Framework

Kincho H. Law
Associate Professor of Civil Engineering
Stanford University, Stanford, CA 94305-4020
e-mail:lawQcive.stanford.edu

Abstract

The effectiveness of integrated engineering design systems depends on efficient access
and expressive presentation of data. Such data may be stored in databases, but is rarely
in the form that is suitable for access from engineering design software. In this report, we
describe a view object approach for accessing and storing engineering information in a
database management system. The object management system can serve as an interface
such that applications are built in object-oriented environment and data are provided
from relational databases. We propose to extend this view object paradigm to include
CAD graphic information as well as to provide a mediator for monitoring design changes.

Keywords: Object-based management, relational database, engineering design, infor-
mation sharing, structural data model, view object
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1 Introduction

In building design, we deal with large sets of independent but interrelated objects. These
objects are specified by data. The data items describe the physical components (for
example, columns, beams, slabs) and the topological aspects of the design (for exam-
ple, member and joint connectivities). The design data need to be stored, retrieved,
manipulated, and updated, during all phases of analysis, design, and construction of
the project. An efficient data management system becomes an indispensable tool for an
effective integrated computer aided analysis and design system.

Using a database to store and describe engineering data offers many benefits [38].
Some of these benefits include:

e Ability to store and access data independent of its use, so that the data can be
shared among the participants

e Ability to represent relationships among the data, so that dependencies are docu-
mented

e Control of data redundancy, so that consistency is enhanced

e Management of data consistency and integrity, so that multiple users can access
information simultaneously

e Enhanced development of application software by separating data management
function

e Support of file manipulation and report generation for ad hoc inquiry

To maximize these benefits, a database management system needs to have some knowl-
edge of the intended use of the data. That is, the formal structure or model used for
organizing the data must be capable of depicting the relationships among the data and
must facilitate the maintenance of these relationships. Furthermore, the structure should
be sufficiently flexible to allow a variety of design sequences and to aid an engineer to -
understand the design.

Traditional relational database systems provide many interesting features for man-
aging data; among them are the capabilities of set-oriented access, query optimization
and declarative languages. More important, from the user point of view, the relational
model is completely independent of how data are physically organized. The relational
model presents data items as records (tuples) which are organized in 2-dimensional ta-
bles (relations), and provides manipulation languages (relational calculus and algebra)
to combine and reorganize the tables or relations for processing. The relational approach
is simple and effective, particularly for business data processing. However, a “semantic”
gap exists between the relational data model and engineering design applications. The
relationships among the data items describing an engineering design are often complex.



The lack of a layered abstraction mechanism in the relational model makes it inadequate
for defining the semantics of applications and for maintaining the interdependencies of
related data items. Furthermore, the traditional set-oriented relational structure does
not support well the engineering views of the data. The engineering users have to supply
all the intentional semantics in order to exploit the data. That is, traditional relational
databases do not support the semantic expressiveness of the data needed by engineering
design systems.

Object-orientation has gained much attention in computer aided design in recent
years. Object-oriented systems help the user in managing related data having complex
structure by combining them into objects. The use of objects permits manipulatation
of the data at a higher level of abstraction. Object-oriented data models have been pro-
posed to increase the modeling capability, to provide richer expressive concepts and to
incorporate some semantics about engineering data. The main objective here is to reduce
the semantic gap between complex engineering design process and the data storage sup-
porting the process. In such a process, an engineer often approaches the design in terms
of the components (objects) that comprise the design, and the operations (methods) that
manipulate the components. A database system that supports the object-oriented nature
of the design process can certainly enhance the interactions between the engineers and
the system.

In engineering modeling and design, the information that an object represents is
often shared by various applications having different views of the data. Data sharing is
therefore as important as object-oriented access. However, most research in engineering
databases focuses on object management for specific tasks but gives little attention to
the shareability of the underlying information. Since object oriented systems entail early
binding of data and their semantics, storing objects poses a problem when these objects
are to be shared by multiple engineering design tasks. Another type of design task is likely
to require another type of binding. Furthermore, the amount of information pertaining
to an object grows as each design task requires different information about the object. As
a design progresses, an object may become too complex to be efficiently managed. Thus,
the benefits of understandability and naturalness of having objects are lost. Storing
objects (explicitly) in object format is not desirable, particularly if the objects are to be
shared [40].

It should be noted that an object-oriented data model does not necessarily imply
that the object-oriented paradigm need to be explicitly implemented inside the database
system. The approach described in this report is intended to manage complex engineering
objects in a shareable relational framework [3,25]. Relational model provides information
sharing through the definition of views but it lacks the expressive power to represent
complex design entities. The concept of views in the relational model can be used as a
tool for providing sharing and abstraction in integrating the object and relational models
[40]. The mapping between heterogeneous structures of the two models is performed by
linking object attributes to correponding relation attributes. The objective is to permit
object-oriented access to information stored in a relational database; information which



in turn can be shared among different applications.

The proposed object management system is based on the semantic structural data
model which augments the relational model with a set of connections [41]. These connec-
tions define relationships, constraints, and dependencies among data that are of interest
to engineering modeling and design [23]. Besides being an effective database design tool,
the structural data model can serve as the basis for the development of an object inter-
face to a relational database system, supporting multiple object views for multiple design
tasks and applications. The key benefit of the view-object interface is the flexibility to
allow adding new attributes and relations to the underlying database as well as changing
the definition of objects.

This report is organized as follows: Section 2 elaborates on the requirements for
database support in engineering design applications. Section 3 reviews the semantic struc-
tural data model. Section 4 discusses various approaches in the integration of database
and object oriented applications. The architecture of the object management system is
described in Section 5. In Section 6, we discuss extending the object management system
for computer aided engineering environment. Section 7 concludes this report with a short
summary and discussion. While the examples given in this report are drawn mainly from
building and structural design application, the basic concepts can be extended to other
engineering domains.

2 Abstractions in Engineering Design

Practical engineering tasks have too many relevant facets to be intellectually represented
through a single abstraction process. Manageability of an application can be achieved
by decomposing the model into several hierarchies of abstractions. In general, an aspect
of a building and its design can be described as a collection of objects or concepts orga-
nized hierarchically [9,12,13,16,21,33,35]. The description of a design project grows as it
evolves. During the design, additional attributes may be added to the description of ex-
isting entitites; similarly, aggregated entities can be decomposed into their constituents.
That is, during design, information is added to the hierarchy by refinement in a top-down
manner or by aggregation in a bottom-up sequence. The concept of abstraction provides
a means for defining complex structures as well as the semantic information about the
data. Powell and Bhateja have defined some requirements for an abstraction model in
structural engineering application [33] : '

e The model must support several applications.

e The model should be in terms of well-defined entities, relationships and dependen-
cies.

¢ The model must support the creation of abstractions for real structures; that is, it
. must allow all relevant features of a structure to be represented. In addition, the



concepts used in the model should be familiar to the users.

e The model should allow the level of details to be increased as the design of the
structure 1s progressively refined.

e The model should be able to represent structures of various types.

A structural engineering database system must be capable of supporting such an abstrac-
tion model. In addition to enhancing the database design process, an engineering data
model should also provide the integrity rules to ensure consistency among the entities.

A relationship is a logical binding between entities. There are three types of relation-
ships that are commonly used: association, aggregation and generalization. Association
relates two or more independent objects as a merged object, whose function is to rep-
resent the many-to-many relationships among the independent objects. Association can
be used to describe multiple “member of” relationships between member objects and a
merged object. Aggregation combines lower level objects into a higher level composite
object. In general, aggregation is useful for modeling part-component hierarchies and
representing “part of” relationships. Generalization relates a class of individual objects
of similar types to a higher level generic object. The constituent objects are considered
specializations of the generic object. Generalization is useful for modeling alternatives
and representing “is a” relationships. These three relationship types, in particular aggre-
gation and generalization, are supported by many semantic data models and have been
widely used in computer aided building design research [5,12,13,17,20,21]. For instance, a
joint connector can be represented as an association of several structural elements (such
as beams and columns) and connecting plates, and carries some information about the
connectors to be used. A staircase is an aggregation of many similar parts. A concept
“beams” is a generalization of a variety of members supporting gravity leads.

These three relationships impose certain existential dependency among the object
entities. For example, the joint information is only meaningful while the referencing
beams and plates are part of the design. As another example, assuming that the enti-
ties “BEAM” and “COLUMN?” are specializations of a generic entity “STRUCTURAL
ELEMENT”, existence of a “BEAM” or “COLUMN?” instance requires that a corre-
ponding instance also exists in the generic entity “STRUCTURAL ELEMENT”. When
an instance is deleted from the generic entity “STRUCTURAL ELEMENT?, corrective
measure should be taken to remove the corresponding instance in a specialized entity
“BEAM” or “COLUMN?; as a result, consistency between the generic and the special-
ized entities can be maintained in the database. Dependency constraints of these three
types of relationships have been examined in details [3,6,8,22,34].

Besides association, aggregation and generalization, other relationships, such as “con-
nected to”, “supported by” (or “supporting”), “influence” and “determinants”, are also
of considerable interests in building design applications [1,10,16,33]. While incorporating
these types of relationship into a data model is desirable, dependencies among the entities
participating in these relationships have not been formally defined. For instance, when a
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supporting element is removed from a structure, corrective measures should be imposed
on the objects that it supports. On the other hand, removing a supported element, from
the data management point of view, should have little effect on the corresponding sup-
porting object. It is important for a database management system to ensure consistency
among the building design data, and to reflect appropriately the semantic relationships
among them.

To be general, a database must support all design activities, in addition to capturing
the semantic knowledge of the data. For each activity, an engineer works with specific
application abstraction of the building, rather than with a complete physical description.
For example, in the analysis of a building structure, an engineer is primarily interested
in the building frame in terms of the center line of the members, their physical properties
and the stiffness of the connections. Other information, such as room spaces and wall
partitions, can be ignored. The database system needs to support various abstract views
of the information pertaining to a specific domain. The ability to support multiple
views for satisfying the requirements of different applications is an important criterion
in selecting an engineering data model.

3 The Structural Data Model

Choosing a good data model to represent design data and processes is a major step
towards the development of an integrated design system. A data model is a collection of
well-defined concepts that help the database designer to consider and express the static
properties (such as objects, attributes and relationships) and the dynamic properties
(such as operations and their relationships) of data intensive applications [7]. Despite
the data management capabilities that it has acquired over the years, the.relational data
model lacks the ability to provide abstraction mechanism to distinguish semantically
different relationships between relations. We thus use the relational data model only
to capture the data values, and extend it with the structural data model to capture the
semantic relationships among the data [39]. The semantics capture knowledge about
constraints and dependencies among tuples in the database relations.

The primitives of the structural data model are the relations and the connections for-
malizing relationships among the relations [41]. The connection between two relations R,
and R, is defined over a subset of their attributes X; and X, with common domains. We
denote the key and nonkey attributes of a relation R as K(R) and N K(R), respectively.
Two tuples, t; € R; and t, € R, , are connected if and only if the connecting attributes
in t; and ¢, match.

There are three basic types of connections, namely ownership, reference, and subset
connections, that can be used to define the relationships among the entities.. An own-
ership connection between an owner relation R; and an owned relation R, describes the
dependency of multiple owned tuples on a single owner tuple. The ownership connection
embodies the concepts of dependency and aggregation, where owned tuples are specifi-
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Figure 1: Example of a Building Database Schema using the Structural Data Model

cally related to and dependent on a single owner tuple. As an example, Figure 1 shows
the composition of a building structure consisting of a foundation and a number of floor
stories. The components exist if the building exists. This owner-component relationship
is best represented using the ownership connection. This connection type specifies the
following constraints:

1. Every tuple in R, must be connected to an owning tuple in R;.

2. Deletion of an owning tuple in R; requires deletion of all tuples connected to that
tuple in R,.

3. Modification of X; in an owning tuple of R; requires either propagating the modi-
fication to attributes X; of all owned tuples in R, or deleting those tuples.

The ownership connection requires that X; = K(R,;) and X, C K(R,); its cardinality is
1:n.

A reference connection between a primary (referencing) relation R; and a foreign
(referenced) relation R, is useful for representing the notion of abstraction; it describes
the dependency of multiple primary tuples on the same foreign tuple. The reference
connection can be used to refer to concepts which further describe a set of related entities.
Referring to the example shown in Figure 1, the doors reference to specific door types
that are available. The door type cannot be cancelled if there exists doors using that
door type. The reference connection specifies the following constraints:

1. Every tuple in R; must either be connected to a referenced tuple in R or have null
values for its attributes X;.

2. Deletion of a tuple in R, requires either deletion of its referencing tuples in Ry,



assignment of null values to attributes X; of all the referencing tuples in R;, or as-
signment of new valid values to attributes X; of all referencing tuples corresponding
to an existing tuple in R,.

3. Modification of X; in a referenced tuple of R, requires either propagating the mod-
ification to attributes Xj of all referencing tuples in Ry, assigning null values to
attributes Xj of all referencing tuples in Ry, or deleting those tuples.

The reference connection requires that X; C K(R;) or X; C NK(R,;) and X; = K(R,);
its cardinality is n : 1. Association, which allows the relationship of n tuples in Ry to m
tuples in R,, can be modeled with a combination of ownership and reference connections
[41]. It should be emphasized that depending on a specific application, when enforcing
the dependency constraints for a reference connection, one can modify the referencing
attributes instead of delete the referencing tuple.

A subset connection between a general relation R; and a subset relation R; is useful
for representing alternatives or “is a” type relationship; it links general classes to their
specializations and describes the dependency of a single tuple in a subset on a single
general tuple. For the example shown in Figure 1, an opening in a wall can either be
a door or a window. Deleting a specific instance in the generic class of a wall opening
must delete the corresponding instance existing in the subclass. The subset connection
specifies the following constraints:

1. Every tuple in R, must be connected to one tuple in R;.

2. Deletion of a tuple in R; requires deletion of the connected tuple in R,.

3. Modification of X;j in a tuple of R; requires either propagating the modification to
attributes X, of its connected tuple in R, or deleting the tuple in R;.

The subset connection requires that X; = K(R;) and X, = K(R,); its cardinality is 1: 1
or 0.

Besides supporting the three basic relationships of aggregation, generalization and
association, the connections can also be used to define relationships such as “connected-
to” and “supported-by”, that are useful in engineering application. In the “supported-by”
or “supporting” relationship, the supporting entity should not be removed unless all its
supported entities no longer exist. For example, when a wall is removed from a design,
the openings, such as windows and doors, located inside that wall have to be removed
also. As another example, a column should not be removed unless the references from
the components such as walls, beams, slabs that the column supports no longer exist.
This dependency property can be modeled using the reference connection as shown in
Figure 2.

One application of the “connected-to” relationship in structural engineering is for the
description of a joint connecting structural elements. As an example, we can represent a
joint connection that is described in an interactive modeling system for the design of steel
framed structure (Steelcad) [36] : “The connected members and the joint are logically
linked in the database:
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Figure 2: An Example of “Supporting” and “Supported-by” Relationships Implemented
Through Structural Connections

e If a joint is removed, then the previously connected members are automatically
restored, as they were before the connection was defined.

o If a member is removed, then all connections that it has with other members are
also removed and the other members reappear accordingly.”

As shown in Figure 3, this description of a joint can be modeled using the three basic
connection types. We assume that a joint connection may consist of one or more con-
nectors. Iach connector references a structural member and a connecting element. That
is, deleting a connector does not affect the connecting members. On the other hand, if a
structural member or a connecting plate is removed, the connectors are also removed.

STRUCTURAL ELEMENTS CONNECTING PLATE

l . |
) i

JOINT CONNECTOR

[ +— m)

W U
WELDED CONNECTION BOLTED CONNECTION

l I L il

Figure 3: Definition of a Joint Connection

4 Object-Oriented Applications and Databases

Integration of object-oriented programs with databases would enable applications in
an object-oriented environment to have shared, concurrent access to persistent storage.



There are two basic approaches to this integration. One approach is to use an object-
oriented model for both the applications and the persistent storage [2,29,31]. The design
objects would then be retrieved and stored as objects. Alternatively, one can use an
object-oriented model for applications and the relational model for persistent storage
[3,14,24,27,37]. The system is configured as a front-end system with an object-oriented
model and conventional relational databases as back-end storage. Objects are retrieved
by evaluating queries to database. In the former case, the sharability and multiplicity of
views would suffer, whereas the latter case serves multiple users well. The cost in this
case is an added overhead resulting from the mapping between the two models. Our
approach follows the latter, trading efficiency for flexibility. However, the formality of
the mapping approach we use identifies new data transmission optimizations, which will
be important in the modern file-server to workstation system architecture [28].

There are two basic implementations in integrating object-oriented applications with
relational databases. One is to map objects to relations [14,27,37], and the other is to
map relations to objects [3]. In the first perspective, relation schemas are generated
from the object schemas, i.e., types and their hierarchy; relations are used primarily for
storing objects. In the second perspective, object schemas are defined from the relation
schemas. Relations are the source for generating objects. This perspective is useful for
building object-oriented applications on top of existing relational databases. We have
adopted the second perspective in our work. The second perspective is compatible with
the first one, since it can access relational databases defined in that manner. But now
pre-existing relational databases can be accessed as well, and non-relational databases
can be accessed if the structural model is used to define their update constraints.

When the design object information is stored in a relational database, we deal with
entities that are more complex than single tuples or sets of tuples from a single relation.
Quite frequently, an object is a hierarchical group of tuples comprising a single root
tuple that defines the object, and one or more associated tuples that further describe the
object’s properties. Because of normalization theory, these dependent tuples reside in
one or more relations distinct from the relation containing the root tuple. Even if such a
structure is easily expressed relationally (through joins), it cannot be easily manipulated
as a single entity, nor easily displayed in its natural hierarchical structure. We need
to make such structures explicitly known to the system. Furthermore, as noted earlier,
different users require different views of the information included in an object. Update
anomalies and problems of redundancy would arise if the objects corresponding to the
different views were to be stored explicitly. Last but not least, changes to the set of
classes and to the inheritance can be made quite frequently at various stages of a design
project. In contrast, if the objects were explicitly stored, then the schema would have to
be changed accordingly.

There are three levels of object orientation for DBMS [11]:

1. Structurally object-oriented implies the capability of representing arbitrarily struc-
tured complex objects. ‘ '



2. Operationally object-oriented implies the ability to operate on complex objects in
their entirety, through generic complex object operators.

3. Behaviorally object-oriented implies the availability of classes, messages and data
abstraction as in object-oriented programming.

The proposed object management system is structurally and operationally object-oriented.

The objective is to develop an object interface to the persistent storage that supports
multiple object views for multiple design tasks and applications.

5 Architecture of the Object Management System

Our approach is to define and manipulate complex objects that are constructed from
base relations. Our prototype implementation keeps a relational database system as
its underlying data repository. Indeed, we believe that the relational model should be
extended rather than replaced. The relational model has become a de facto standard and
thus some degree of upward compatibility should be kept between the relational format
and any next-generation data model.

An architecture for combining the concepts of views and objects has been initially
proposed by Wiederhold [40]. Both the concepts of view and object are intended to
provide a better level of abstraction, bringing together related elements, which may be of
different types, into one unit. For example, to display a building frame, we bring together
structural entities, such as beams, columns and connections. A set of base relations serve
as the persistent database and contain all the data needed to create any specific view or
object. First, an object template is specified in terms of the connections of the structural
data model. Data is then extracted from the relational database, corresponding to a
view-object and assembled into object instances. The mapping between heterogeneous
structures of the two models is performed by linking object attributes to correponding
relation attributes. However, objects have more complex structure than relations. An
object may contain subobjects, thus having a nested structure. Nested objects differ
from nested tuples since the type of an attribute may refer to other objects. The idea is
not to store the objects directly in persistent form but rather to store their description,
which is used later to instantiate objects as needed. Multiple layers of view-objects can
be defined so that a view-object can be composed of subordinate view-objects and shared
by multiple view-objects. Figure 4 depicts this notion of multiple view objects and their
interaction with the underlying set of relations.

The basic schematic diagram of the system architecture is shown in Figure 5. The
system provides an object-oriented interface by performing three basic operations: object
generation, object instantiation and object decomposition. The prototype system includes
10 basic modules, as shown in Figure 6. In the following, we discuss briefly the three

'Research effort is proposed to extend the capability of the current system to support object-oriented
languages such as C++. The system will then be able to provide the features as in object-oriented
programming.
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Figure 4: Multiple View-Objects Sharing Information Stored in a Relational Database

basic operations and the roles of the utility modules.

5.1 Object Generation

Each view-object is defined by an object template. The object generator maps relations
~into object templates that describe the structure and Data Access Function (DAF) for
the objects. A DAF invokes join operations (combining two relations through shared
attributes) and projection operations (restricting the set of attributes of a relation) on
the base relations for the retrieval of the object data.

To define an object template the user first selects a pivot relation from a set of base
relations. Further information required for generating a template would come from the
connections described in the structural data model. The set of candidate relations and the
tree structure they generate through the structural connections is called the candidate
tree. Besides the pivot relation which describes the root of the tree, none, some, or
all of the relations and their attributes contained in the set of candidate relations may
be included in the object template. The relations selected are called the secondary
relations. Secondary relations and their attributes (including those of the pivot relation)
are selected from the set of candidate relations. Once an object template is defined, data
access functions are derived to facilitate the data retrieval process.

The DAF can then be derived in an algorithmic manner to facilitate the data retrieval
process. The key for the object is the same as the key of the pivot relation. Related
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Figure 5: System Architecture

templates can be subsequently grouped together to form an object network, identifying
a specific view of the relational database. The whole process is knowledge-driven, using

the semantics of the database structure as defined by the connections of the structural
data model.

The operations described above are carried out by the system modules as shown in
Figure 7 and explained here :

e The User/Programmatic Interface is used to create object template and define the
pivot and secondary relations for the object

e The Structural Model Manager is used to create and delete structural model con-
nections and to store them in the database system. The Structural Model manager
also performs consistency checking on the defined semantic connections

e The Object Generation Manager takes the structural model from the Structural
Model Manager, obtains the pivot relation, generates the candidate tree containing
the candidate relations for inclusion in the object, creates data access functions

(DAF) and object template, and finally sends the object template to the Object
Schema Manager

o The Object Schema Manager stores the template and assigns it to appropriate
object network and schema

e The User/Programmatic Interface receives confirmation about the object template
(i.e. a message indicating the success of object definition procedure)

12
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Figure 8 illustrates the definition of an object template “WALLS”. Figure 8(a) shows the
partial definition of a structural data model. To define the object template, we select
the pivot relation “WALLS” and the candidate relations “WALL_SHAPES”, “WALL_
OPENINGS”, “WINDOWS” and “DOORS” to be included in the template. For each
relation, we can select the attributes to be included in the object template as shown in
Figure 8(b) (although all key attributes required to perform the join operations during
object instantiation will automatically be included.)

5.2 Object Instantiation

The object instantiator provides nonprocedural access to the actual object instances,
performing all of the operations for information retrieval and manipulation that are
necessary to instantiate selected objects according to an object template and display it in
nested form. A declarative query stored with the object template, i.e., the DAT, specifies
the relational projection and join operations needed to retrieve the data of interest. The
DAF is further combined with user supplied selection criteria, resulting in a relational
query transmitted to the relational database system. The matching relational tuples
are returned and assembled into the desired object instances. This process is performed
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Figure 7: Control Flow during Object Definition

among the system modules. The operations are carried out as follows:

e The Programmatic Interface receives a request for an object instantiation

e The Object Schema Manager identifies the object template and passes it to the

Query Manager along with the selection clause defined in the request

e The Query Manager combines the object template and the selection clause, opti-

mizes the query and sends it to the DBMS

e The Composition Manager receives the data returned and places it into a structured
form, reflecting the proper abstraction type. The composition, as we call it, of the
object instances is based on the object template (as defined by the Object Schema

Manager)

o The Instance Manager receives the instances created, stores them in the instance
pool and returns a reply to the Programmatic Interface

14




SRC REL DESTREL CONN NAME CONN TYPE
WINDOW_TYPES WINDOWS win_type nv_ref
WINDOWS WINDOW_TYPES win_type ref
WINDOWS WALL _OPENINGS open_window inv_subsex
WALL_SHAPES WALLS wall_shape mv_ref
WKL SHAPES NODES wall_noded ref
WALL _SHAPES NODES well node2 ref
WALL _SHAPES NODES wall node3 ref
WALL SHAPES NODES wall_nodel ref
WALL_OPENINGS WINDOWS open_window subset
WALL OPENINGS WALLS wall_open inv_owner
WALL_OPENINGS DOORS wopen_door subset
WALLS WALL _SHAPES wall shape ref
WALLS WALL_OPENINGS wall_open owner

0)
[¢9)
(2)
(3)
4)
(5)
(6)
4

(0)
(¢
(2>
(3
4)
(5)
(6)
¥

Select attributes for relation:

Select attributes for relation:

(a,) An Example of Structural Data Model

HALLS (Toggle)
Wall ID INCLUDE

STOREY_NO  INCLUDE

SS_ID NOT_INCLUDE I
BUILDING_ID NOT_INCLUDE

GRIDUINE NOT_INCLUDE

OFFSET  INCLUDE

SHAPE_ID INCLUDE

THICKNESS  INCLUDE

choose attribute 5
Continue with changes (Yes =0 / No=1) : 0

WALLS (Toagle)
WALL_ID INCLUDE

STOREY_NO  INCLUDE

SS_ID NOT_INCLUDE

BUILDING_ID NOT_INCLUDE

GRIDLINE NOT_INCLUDE

OFFSET  NOT_INCLUDE

SHAPE_ID  INCLUDE

THICKNESS  INCLUDE

choose attribute §

(b) Selecting attributes for Inclusion

Figure 8: Definition of an Object Template
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As an example, the data access function for a specified query and a resulting object
instance are shown in Figure 10. Although it is not shown in the figure, it may be worth
pointing out that only the selected attributes for the candidate relations are included in

the object template.

5.3 Object Decomposition

The object decomposer maps the object instances back to the base relations. This com-

ponent is invoked when changes to some object instances need to be made persistent at

the database level. An object is generated by collecting (potentially) many tuples from

several relations. Similarly, one update operation on an object may result in a number of
update operations on several base relations. Dependency constraints are enforced during
these update operations to ensure the database consistency. These actions are based on
the integrity rules imposed by the connections of the structural data model. For example,’
when “owning” tuples are deleted from a relation connected via an ownership connection,
the structural model requires that all corresponding tuples in the “owned” relation also
be deleted. An object template however is just like a view. It is defined via join, selection
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[ WALLS ] ;
WALL_ID Al
STOREY _NO =1
SS_ID
BUILDING_ID
GRIDLINE eclipse.stanford.edu
OFESET Total of 1 file, 4305/4305 block
otal o e, S,
SHAPE_ID NIKI>run/nodebug main
THICKNESS [sender: 1
recejver: 5§
SELECT TO.WALL_ID, TO,STOREY_NO, T0.SS_1D, TO.BUILDING_ID, TO.GRIDLINE, TO,OFFSE
T, TO.SHAPE_ID, TO.THICKNESS, T1.NODEL, T1.NODE2, T1.NODE3, T1.NODE4, T2,0PENING
_ID, T2.ANCHOR_BIST, T2, HEIGHT_TO_FLOOR, T2.OPEN_DIRECTION
[ WALL_SHAPESFROH WALLS TO, WALL_SHAPES T1, WALL_OPENINGS T2
N WHERE TO,SHAPE_ID = T1,SHAPE_ID
9anD To.WALL_ID = T2.WALL_ID
NAND TO,BUILDING_ID = T2,.BUILDING_ID
AND T0.SS_ID = T2.5S_ID
NGAND T0.STOREY_NO = T2.STOREY_NO
NQTO.STOREY_NO = 1
SQLDA_IN->SQLD = 0
[WALL OPENIN sQLDQ_[N‘)SOLD =0
oPENNo more records found.
ANCHY walll 1 sup_strul bldal 9l_A 0.0 sh1 0,51 2 8 7 opent 3.0 0.0
HEIGHT | wall3 1 sup_strul bldel g1_3 0.0 sh3 0.5 3 4 10 9 openS 3.0 5.0
wall6 1 sup_strul bidol gl_1 0.0 sh6 0.5 1 6 12 7 open6 3,0 5.0
OPEN_D[lal17 1 sup_strul bldgl g1_2 0.0 sh7 0.5 2 5 11 8 open2 3.0 0.0
(a) Data Access Function for an Object Query
[ WALLS]
WALL ID wall3 _ p
STOREY_NO 1
SS_ID 3y sop_stral
BUILDING ID T bldgt
GRIDLINE g3
OFFSET 00
SHAPE _ID sh3
THICKNESS 05
1 V]
[ WALL_SHAPES ]
B NODET 3
NODE2 4
NODE3 10
NODE4 9 .
{ WALL_OPENINGS ]
OPENING ID ‘opens
ANCHOR _DIST 30
HEIGHT TO_FLOOR 50
| OFEN_DIRECTION y

(b) An Object Instance Retrieved from the System

Figure 10: Instantiation of an Object Template
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and projection operations. It thus inherits the well known problem of view updates [15].
Updating through views is inherently ambiguous, since a change made to the view can
translate into different modifications to the underlying database. The different sets of
modifications are called translators. Keller has shown that, using the structural seman-
tics of the database, one can enumerate such ambiguities, and choose a specific translator
at view-definition time [19]. Since the object templates are defined using join operations
on the database relations, we are then facing the well-known problem of updating rela-
tional databases through views involving multiple relations. When creating a new object
template, a simple dialogue, the content of which depends on the structure of the object
template, allows the user to select one of the semantically valid translators. The chosen
translator is then stored as part of the template definition. When an object instance is
modified, the object decomposer will use this information to resolve any ambiguity com-
pletely and to update the databadse correctly. Details in the development of a translator
for view-object update are described in Reference [4]. Example of a simple dialogue for
the translator is shown in Figure 11.

5 Done defining template
5 .
1 WALLS -
2 WALL_SHAPES
2 WALl OPENINGS
3 WINDOKS T
3 DOGRS
Dep Is] : WALLS
Dep Isl : WALL_OPENINGS
Dep Isl WINDOMS
Bep Ist : DOORS

fre all update operations allowed for this object?
(insertion/deletion/replacement)?

Give 1 for yes, 0 for no,

Give 1 for yes, 0 for no,
1
Can 1 use the default specifications for updates

that are required as side effects of requested updates
(to maintain integrity)

Give 1 for yes, 0 for no.

Figure 11: Defining Valid Updates on an Object Instance

Figure 12 shows the control flow for object decomposition. The basic operations are
summarized as follows:

e The Programmatic Interface receives a request for updating one or several object
instances in the object instance pool

o The Instance Manager invokes the Decomposition Manager and passes to it both
the updated and original objects

e The Decomposition Manager decomposes the object into relational tuples, validates
the update requests against constraints defined in the object template (based on
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the information received from the Object Schema Manager) and delivers all the
information to the Consistency Manager

e The Consistency Manager checks for global consistency of the updates with respect
to the structural model for the entire database and sends the update information

to the DBMS
e The DBMS updates the data in the base relations.

Object
Decomposition @
---Control Flow--- w ‘ O

™

Object Schema
Mngr .
Instances
————————————— ‘\ - == -> Mngr
=~ ~
~
~ \

[ Transaction ~ ~ N
= O~
! -~ N
~

~ N
[ Generaton Decomposition
| Mngr Mngr
|
©,
1
I

Query Composition
Mngr Mngr
!
Consistency
Mode] Mngr : _ - L g
L -7

[Database Management System

Figure 12: Control Flow during Object Decomposition

In the current prototype, the object schemas are stored in files in the user area; this
provides locality of references to the objects created by the user. The object instances are
stored in the main memory in some form of structure (such as linked lists or hash tables)
that would be convenient for the specific processing modules. A graphic user interface

is developed using Xwindow/motif and the prototype system is running on a VAX 3100 »
system. :
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6 An Object Management System for Integrated
Engineering Design Environment

The prototype object management system can be extended to support integrated com-
puter aided engineering environment. In this section, we first discuss the flexibility of
the system for supporting design abstraction and process. We then describe two spe-
cific current efforts: One attempt is to integrate the view-object paradigm with CADD
- graphic software. The other effort is to extend the view-object paradigm for the support
of cooperative engineering design.

6.1 View-Objects and Design Abstractions

As the design process progresses from conceptualization to design, the way to represent
the design is constantly changing. For an integrated design system to be effective, the
database system must be able to accomodate the “growth” of the design. As mentioned
earlier, the data model must support a wide variety of design representations, sharing
the same information in the engineering model. In addition, the data model must allow
dynamic changes of the object schema, reflecting the evolutionary process of design, and
must be able to minimize database reorganization. The view-object facility described
in the previous section allows the engineer to select the object information pertinent
to a design task and to ignore the irrelevant details. Furthermore, the separation of the
object schema and the database schema can facilitate schema evolution during the design
process.

An abstraction view of a building and its components is not unique. An engineer
abstracts a specific view of design to focus on a particular task. As an example, an
hierarchical decomposition of a building structure is shown in Figure 13(a). As shown
in Figure 13(b), for design purposes, a floor composed of beams (including girders and
joists), slabs, columns can be conveniently treated as objects. For analysis purposes, a
building frame composed of girders and columns is defined as shown in Figure 13(c).
We see here two multiple design views sharing the same information. For the respective
views, the attributes of a shared entity are not the same. For the description of a floor
plan, only the location and orientation of the columns are important. For frame analysis,
however, the location, the dimension and the properties of the columns are needed.

By allowing the user to select any number of secondary relations for inclusion, an
object can be specified to any level of details that is desired. For example, in the earlier
analysis stage, a floor may be treated as the basic component entity but may be ex-
panded to include other subcomponents such as beams and slabs at a later stage of the
design; an object schema can be changed dynamically as the design evolves. Hence, the
complexity of a design can be managed by suppressing the irrelevant details as necessary.
Furthermore, the description of an entity can be refined as needed.

In Figure 13(c), the entity “FRAME” is composed of subentities “GIRDER” and
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BUILDING : FLOOR

FLOOR FRAME  FOUNDATION COLUMN BEAM SLAB
GIRDER JOIST
(a) A Hierarchical Decomposition of (b) Decompaosition of a Floor Entity
a Building for Design Purpose
COLUMN GIRDER FRAME COLUMN FRAME GIRDER
I | l I |
COLL‘JMN GIRDER

1 [

(c) Decomposition of a Frame Entity (d) Alternative Definition of a
for Analysis Purpose Frame Entity

Figure 13: Multiple Views and Representations of Design Objects

“COLUMN?”. However, removing a “FRAME?” instance does not necessarily imply that
all its constituent components be deleted as well. As shown in Figure 13(d), an alter-
native may be to augment the “FRAME” object with the auxiliary relations “FRAME
GIRDER” and “FRAME COLUMN?”, which reference relations “GRIDER” and “COL-
UMN?, respectively, and are owned by relation “FRAME?”. This new structure provides
an assoclative relationship such that removing a “FRAME?” instance does not affect the
base relations “COLUMN” and “GIRDER”; however, a column cannot be deleted as
long as a structural frame containing that column exists. A similar view can be created
for the abstract entity “FLOOR”. It should be emphasized that modifications made to
an individual object template does not necessarily lead to modification of a higher level
object. Conversely, modifications of the object network do not affect the definition of the
base relations.
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6.2 Integration with Object-based Graphic System

One limitation of the current development is that all persistent data must be stored in
a relational data base. Relational databases are limited to character and numeric data
types and operations and related hashing and B-tree indexing. In general, design/built
environment depends heavily on graphical data. Data types associated with graphic
applications include points, lines and polygons; operations include intersection, union,
transformation etc.; and access is often by indexing. However, a geometric interpreter is
needed to convey objects (such as walls, windows) understandable to the designer from
points and lines on a drawing [32]. Alternatively, symbols can be assigned as collections
of graphic primitives (points and lines) for manipulation as a whole. The Graphic Design
System (GDS), for example, extends this concept to named graphic objects [30]. Object
and object class level operations are provided.

Relations or tables are useful for tabular data, but not graphic data. One possibility
is to extend view object paradigm to include the concept of graphic view objects [26].
The tabular representation of the graphic image of an object would generally require
a number of normalized relations. It has already been demonstrated that object based
graphic systemcs can be combined with relational database management systems. Using
a SQL*CAD approach, data relating to geometry, location and topology are stored as
graphic objects. An RDBMS is used to store additional non-graphic data. Nonpersistent
relations can be generated from the graphic objects for subsequent relational operations
with the RDBMS data. Reversing this strategy and combining it with the view object
paradigm results in the concept of graphic view objects. Figure 14 shows an example of
using the structural data model for linking the object wall to reference to graphic objects
available in a CAD system.

WALL OPENING

L > ]

DOOR ﬁ r WINDOW
DOOR REF Y WINDOW REF
(GDS) (6DS)

Figure 14; Linking a View Object to Graphic Library

With graphic view objects, geometric, locational, and topological data are stored
persistently in an object based graphics systems where the logical view of the data is its
graphic representation. Other data is held in a relational database. Graphic view obJects
are created from a combination of graphic objects and relational data.
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6.3 Change Management with View Object Paradigm

The usefulness of a set of computer-based design tools is limited by the degree to which
they can work together and share information. In exploring the possibility of an inte-
grated building database to improve design, engineering, construction and maintenance
processes, it is often found that data are usually lost during a building’s life cycle - infor-
mation that often must be recreated at considerable cost during the operational phases
of a building’s life. Furthermore, although there is a lot of information that could be
shared, the different tools that each discipline uses do not “talk” to one another.

Design is often a cooperative effort among several engineers. Even in a spirit of
cooperation, however, it is quite common for one engineer to modify data that are used
by another engineer. It is necessary that the changes are propagated in a controlled
manner, and that appropriate parties are informed of conflicting updates to the shared
data. Some attempts have been made to build an integrated CAD design system (i.e., a
set of design tools which are sensitive to the changes to the design data made by other
tools in the set), hardwiring the paths for change propagation. Unfortunately, it is not
feasible for each tool to understand the semantics of changes made by all other tools.

One approach is to formalize and develop change managers and change coordinators
in design database. The main idea is that each application tool has specific “interests”
which are collections of events for which the tool would like to be notified in case the
events occur. In the view-object paradigm, some “interests” are expressed through those
data shared by different view objects. In the object managment system, tools would
express the transactions to retrieve or update data from the database. These include the
processes of object instantiation and object decomposition. The interests would be the
changes on the shared data in the database. For example a tool may want to be notified
if an object instance “b” of class “B” has been changed, or if “any” instance has been
changed in class “C”. In the first case, we will have many messages passing back and
forth, but changes on different instances of the same object class will not be affected.
In the latter case, the number of messages would be considerably reduced, but a tool
might receive notification for changes that do not really concern it. This subject is of
great importance for engineering databases that must support a concurrent engineering
environment. Because transactions are dynamic, the number and configuration of change
coordinators vary. Additionally the change manager needs to maintain one registry of
tools which are executing and includes a module which watches for potential conflicts
(which involves changes occurring across transactions). A preliminary effort towards
defining a change manager that is suitable for cooperative design environment has been
initiated [18].
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7 Summary

For an integrated design system to be effective, the database system must be able to
accomodate the “growth” of the design as well as to support a wide variety of design
representations, sharing the same information in the engineering model. The view-object
facility described in this report allows the engineer to select the object information per-
tinent to a design task and to ignore the irrelevant details. An abstraction view of a
building and its components is not unique. An engineer abstracts a specific view of the
design to focus on a particular task. Multiple design views can share the same informa-
tion, but for each respective view, the attributes of the shared entity need not be the
same. The view object facility allows multiple views to be defined and to share the same
information.

By allowing the user to select any number of secondary relations for inclusion, an ob-
ject can be specified to any level of detail desired. An object schema can also be changed
dynamically a In this report, we have described an architecture for managing design ob-
jects in a relational framework. The key benefits of the proposed view-object interface to
a relational system include information sharing, data integrity and persistent storage of
data. In addition, any new attributes and/or relations added to the underlying database
do not affect the exisiting object definitions. Conversely, changes in the definition of
any objects do not affect the schema of the underlying database. In other words, the
architecture is sufficiently flexible to allow growth as design evolves. Continuing effort
is proposed to integrate this prototype object-based system to a CAD system and to
extend the view-object concept to support cooperative engineering design environment.
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