C I F E CENTER FOR INTEGRATED FACILITY ENGINEERING

A FRAMEWORK FOR CHANGE MANAGEMENT
IN A DESIGN DATABASE

by

Keith Hall, Gio Wiederhold and Kincho Law

TECHNICAL REPORT
Number 65

August, 1991

Stanford University

A FRAMEWORK FOR CHANGE MANAGEMENT
IN A DESIGN DATABASE

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Keith Hall
August 1991

Copyright © 1991 by Keith Hall
All Rights Reserved

Abstract

The complexity of many engineering designs is now so great that it is impossible for one
engineer to complete a design alone. Instead, a team of engineers work collaboratively to
achieve the design. This is known as concurrent design. Despite evolution of computer-aid-
ed design (CAD) tools toward integrated use of a design database, tools continue to assume
that they will operate in isolation from one another and will take turns accessing and ma-
nipulating design data. The result is a fool-centric approach that makes close cooperation

among a team of design engineers impossible.

This thesis argues that a tool-centric approach is unsuitable in a design environment for
concurrent design, which requires a new design-centric approach that does permit close co-
operation, and that existing tools and design databases cannot offer that new approach. As
a framework for the design-centric approach, this thesis presents the Change Manager,
which is a collection of software modules that are distributed among CAD tools and the de-
sign database. The Change Manager augments the functionality of tools and the database
by serving as an intermediary between application code in a tool, and design data in the da-

tabase.

The Change Manager offers a flexible model of concurrency control without the need for
exclusive locks, and also provides support for close cooperation of engineers and their
tools. The collaboration can be informal—directly among the engineers—as well as for-
mal-—computer-mediated. The Change Manager provides mechanism and protocol, but
does not enforce policy. This thesis describes the architecture and operation of the Change
Manager, explains how it supports a design-centric approach, and presents invariants that

its operation guarantees.

Acknowledgements

The experience of getting a Ph.D., that is, surviving coursework, locating a research topic,
exercising gray matter, writing a small book, taking exams, and Jjumping through various
flaming hoops, is an arduous one. Many people have provided invaluable technical assis-
tance or emotional support. In this section I thank a few of these people. I also greatly ap-
preciate financial support from National Science Foundation under grant DMC-8619595

“Support for Parallel Design in an Engineering Information System”.

Gio Wiederhold, my principal advisor, made sure that my research efforts were of technical
merit. He introduced me to interesting research areas and identified dead ends. Gio also fre-
quently adjusted my bearings away from system administration and toward the acquisition
of a doctoral degree. Thesis reader Kincho Law braved many incomplete drafts of this the-
sis and greatly improved its exposition. Kincho also repeatedly dislodged my perspecfive
from the ether and made this research practical. Tore Risch, another thesis reader, enthusi-
astically discussed and critiqued new ideas. Tore’s constant good humor enabled my opti-
mism toward eventual parole from graduate school. My officemate Peter Rathmann
generously offered and patiently provided his clear thinking to many of my ideas. Peter is

also responsible in part for my addiction to Thai iced coffee.

Vic, Sheri, Lisa, Brian, and Patty Hall supplied confidence in my ability to finish school
within this millenium. Voy Wiederhold provided positive energy that made steady progress
possible, and gave me furniture to move when I needed exercise. Bill McKinnon located
Jobs for me when money was tight, gave me refuge when I needed to escape from research,
and taught me hand signals for refereeing soccer games. Ellen Doyle encouraged me to per-

severe at times when I had given up, and extracted me from snow after skiing mishaps.

vi

Table of Contents

Chapter 1: Introduction
Part 1.A: Overview of Thesis .
Part 1.B: Concurrent Design.

Section 1.B.1: Complexity of Designs Requlres Concurrent Des1gn.

Section 1.B.2: Conflicting Updates.
Section 1.B.3: Design Partitioning .
Part 1.C: Evolution of the Design Environment . .
Section 1.C.1: Data-Files .
Section 1.C.2: The Database Approach
Part 1.D: Next-Generation Design Environment .
Section 1.D.1: Agent .
Section 1.D.2: Tool.
Section 1.D.3: Design Data Management System
Part 1.E: Related Work .
Section 1.E.1: The Use of Databases in CAD
Section 1.E.2: Frameworks for CAD .
Section 1.E.3: Groupware Systems.
Section 1.E.4: Transaction Models .
Section 1.E.5: Active Data .

Chapter 2: The Object Data Model
Part 2.A: Introduction . R
Part 2.B: Characteristics of Objects . .
Section 2.B.1: Identity
Section 2.B.2: Object Type.
Section 2.B.3: State.
Part 2.C: The Object Schema . Coe e e
Part 2.D: Relationships Among Ob_]ects e e e .
Section 2.D.1: Ownership

vii

NN R WL o =h

BN N RN N KRN e o et e
~N AW NN OBt o

29

. 29
. 30

30

. 30
. 30

31

. 34
. 34

Section 2.D.2: Object References .
Section 2.D.3: Versions and Design Elernents

Part 2.E: Computed and Derived Slots .

Part 2.F: Operations on Objects
Section 2.F.1: Operations on Design Objects
Section 2.F.2: Operations on Slots .

Section 2.F.3: Object State . .

Part 2.G: Example Schemata and Design Objects .
Section 2.G.1: Electronic CAD: Integrated Circuit Layout
Section 2.G.2: CASE: Software Modules .

Part 2.H: Extensions to Object Model .

Chapter 3: Motivation

Part 3.A: Traditional Design Environment .
Section 3.A.1: Traditional Tool Architecture and Opcratmn
Section 3.A.2: Traditional Workspaces . .
Section 3.A.3: Traditional Design Object Check-out & Check—m
Section 3.A.4: Limitations of Traditional Tools .

Section 3.A.5: Haphazard Consistency Checking in Trad1t10na1 Envuonment .
. 61

Part 3.B: Next-Generation Design Environment
Section 3.B.1: No Exclusive Locking in Next-Generation Environment .
Section 3.B.2: Information about Updates in Next-Generation Environment
Section 3.B.3: Tools React to Changes in Next-Generation Environment .
Section 3.B.4: Use of Differential Update in Next-Generation Environment
Section 3.B.5: Next-Generation Environment Must Be Open-Ended
Section 3.B.6: Support for Cooperation in Next-Generation Environment
Section 3.B.7: Next-Generation Environment Offers Workspace Hierarchy .
Section 3.B.8: Constraint Requirements in Next-Generation Environment .
Section 3.B.9: Conflict Logging in Next-Generation Environment .
Section 3.B.10: Design Status in Next-Generation Environment .

Part 3.C: The Change Manager.

Section 3.C.1: Definition . .
Section 3.C.2: Requirements of the Change Manager .
Section 3.C.3: Architecture and Operation.

35
37

38

. 41
. 41
. 42
. 43

. 43
. 45
. 49

51

. 51
. 52
. 54
. 57
. 58

59

61

62
. 62

63

. 63

. 65

68

. 70
.71

72
72
72

. 76

Chapter 4: Change Manager Support for the DDMS

Part 4.A: Architecture of the DDMS
Section 4.A.1: Introduction.
Section 4.A.2: DDMS Clock . . .
Part 4.B: Functionality of the DDMS Change Managcr .
Section 4.B.1: Tool Registration. .
Section 4.B.2: Creating and Destroying Workspaces
Section 4.B.3: Workspace Selection .
Section 4.B.4: Constraint Requirements. Coe
Section 4.B.5: Committing and Aborting Workspaces .
Section 4.B.6: Design Object Check-out and Check-in .
Section 4.B.7: Create or Destroy Version of Design Element
Section 4.B.8: Adding and Removing Object References .
Section 4.B.9: Update Design Objects in the DDMS .
Section 4.B.10: Conflict Logging .
Section 4.B.11: Active Design Status
Part 4.C: Invariants Maintained by the DDMS Change Manager

Section 4.C.1: Workspace Related to Superior by Update Delta .
Section 4.C.2: Annotations Provide Sufficient Information for Commit .
Section 4.C.3: Unresolved Conflicts Restrict Workspace Commit.
Section 4.C.4: Unhandled Notifications Restrict Updates By Tool

Section 4.C.5: Constraint Requirements are Met .

Section 4.C.6: Only Latest Version of Design Object Can Be Updated

Section 4.C.7: Referential Integrity is Enforced.

Chapter 5: Change Manager Support for CAD Tools

Part 5.A: Architecture of a CAD Tool .
Section 5.A.1: Introduction.
Section 5.A.2: Tool Clock .
Section 5.A.3: Message Queue .
Section 5.A.4: Object Cache Manager . .
Part 5.B: Functionality of the Tool Change Manager .
Section 5.B.1: Services from DDMS . .
Section 5.B.2: Design Object Check-out and Check-
Section 5.B.3: Read Design Objects in Cache
Section 5.B.4: Update Design Objects in Cache
Section 5.B.5: Handle Update Notifications .

77

o717
.77
.79

80
80

.. 81
.. 84
.. 84
. . 86
.. 93

. 98

. 101

. 102
. . 104
. . 105

. 107
. 107
. 107
. 108
. . 109
. 109
. 110
. 110

111

. 111
111
. 113
. 113
. 113

. 114
. 114
. 115
. 116
117
. 122

Section 5.B.6: Register Interests in Updates . .

Section 5.B.7: Locate Updated Dependencies of Computed Slots. .o

Section 5.B.8: Commit Updates to Workspace

Part 5.C: Invariants Maintained by the Tool Change Manager ..
Section 5.C.1: Object Cache Related to Workspace by Update Delta .

Section 5.C.2: Annotations Provide Sufficient Information for Commit .
Section 5.C.3: Unhandled Messages Restrict Updates by Application
Section 5.C.4: Computed Slots are Automatically Voided.
Section 5.C.5: Relative Timestamps of Slots are Maintained.

Chapter 6: CAD Applications for Concurrent Design
Part 6.A: The Well-Behaved Application.
Section 6.A.1: Absence of Exclusive Locking
Section 6.A.2: Definition of Well-Behaved
Section 6.A.3: Conversion of Existing Applications to be Well- Behaved
Part 6.B: Handling Messages e
Part 6.C: Application Coordination with the Tool Changc Manager .
Section 6.C.1: Low Level of Coordination.

Section 6.C.2: Medium Level of Coordination With Commutatlve Operatxons

Section 6.C.3: High Level of Coordination
Section 6.C.4: Other Levels of Coordination.

Section 6.C.5: Examples of Application Coordination
Part 6.D: The “CAD Application of the Future” Coe e

Chapter 7: Conclusions and Future Work

Part 7A:KeyConcepts

Section 7.A.1: Concurrent Design is Required for Complex Designs .

Section 7.A.2: Traditional Approach is Inadequate
Section 7.A.3: Change Manager Provides Framework
Section 7.A.4: The DCM Adds Capability to an Object Store

Section 7.A.5: The TCM Offers Services to an Application .
Part 7.B: Contributions. e e e

Section 7.B.1: Flexible Model of Concurrency Control.
Section 7.B.2: Object Model for a Design Database
Section 7.B.3: Annotations on Objects

Section 7.B.4: Handshaking Protocol Between Tool and DDMS . . .

Section 7.B.5: Architecture of the Change Manager

Part 7.C: Future Work
Section 7.C.1: Prototype of Change Manager

Section 7.C.2: Extensions to the Object Model . . .
Section 7.C.3: Use of Domain-Specific Knowledge .

References

List of Figures

VXL d W~

BN DN NN DR = ore e e e e b e s e
\IO\UI-PU)NF—‘O\OOO\JO\UIJ}-UJNHO

28.
29.
30.

Concurrent design.

Design partitioning. .

CAD tool file formats. . .

The database approach to design environments. .

High-level view of the design environment..

Agents. .

The major components of a tool that supports concurrent design. .
The components of the Design Data Management System. .

Object references. .

. Cyclic references. .

. Computed slots.

. Example objects using the layout schema .
. Example objects using the software module schema. .
. Traditional tool architecture..

. Workspaces. . ..

. Design object check-out. . .

. Integrated toolset. .

. Close interaction among engineers. .

- Workspace hierarchy.

. Generalized check-out. .

. Constraint requirements. . Ce e

. Use of the Change Manager in the design environment. .
. Architecture of the Design Data Management System.

. Creating a workspace.

. Destroying a workspace. .

. The third restriction on design ObJCCt check-out

. The fourth restriction on design object check-out.

Update of existing version versus creation of new version of design object. .

Architecture of a CAD tool. .
Interests.

o N M

1
15
16
18

N

. 20
. 35
. 36
.. 39
. 46
. 48
. 52
. 55
. 57
. 60

. 65

67

. 69
.73
. 18

82
83

. 95
. 96
. 99
112
. 128

List of Tables

1. Annotated Design Objects e e e e e e e e 88
2. Procedures to Update Design Objects 120
3. Operation of the Update Notification Handler. 124
4. Interests and Matching Updates C e e e e e . 130
5. Computing the Update Delta e e e e e 133

Xiv

Chapter 1

Introduction

The computer-based design environment to support engineering tasks, which consists of
computer-aided design applications, storage of design data, and an associated methodolo-
gy, is evolving from the use of numerous data files to the use of a central database. Even
with this evolution, emphasis continues to be placed on providing support for tools to op-
erate in isolation from one another and to take tums accessing and mampulatmg design

data; this is a tool-centric approach.

This thesis argues that a tool-centric approach is unsuitable for a design environment for
concurrent design, which requires a design-centric approach.In a design-centn’; approach,
engineers can use multiple tools to effect changes to the same design or portion of a design
simultaneously. Design centricity places special requirements on computer-aided design
(CAD) tools and the underlying database for design data. Existing tools and design data-

bases cannot offer a design-centric approach.

As a framework for the design-centric approach, this thesis presents the Change Manager.
The Change Manager is a revolutionary approach which uses asynchronous notifications,
rather than exclusive locking, in order to maintain consistency among tools. The Change
Manager is implemented as a collection of software modules which are distributed among
computer-aided design (CAD) tools and the data storage system for design data. The
Change Manager enables application code to perform as the “CAD tool of the future”, and

2 Copyright © 1981 by Keth Hall

converts the data store to the design database of the future—the Design Data Management

System or DDMS.

Note that a database to support a design-centric approach need not be physically central-
ized. There is extensive literature on the management of physically distributed data, and we

need not consider distributed databases [Ceri 84] here.

The functionality required of CAD tools that would support concurrent design were inves-
tigated in order to identify what services should be provided by the Change Manager. The
Change Manager adds capability both to CAD tools and to the DDMS. It provides mecha-
nism and protocol, but does not enforce policy. It serves as an intermediary between appli-

cation code in a tool, and design data in the data store.

The architecture and semantics of the Change Manager are independent of the semantics of
particular tools. Furthermore, the Change Manager does not require that tools understand
the semantics of other tools; each tool need understand only the view of design data that it
manipulates [Stefik 82]. The Change Manager does not assume a particular engineering do-
main, such as VLSI or software. It does assume an overall model of cooperating activities
during the design process, as exercised by participating engineers; that model of interaction

is presented in this chapter. ’

Part 1.A: Overview of Thesis

This thesis consists of eight chapters. Chapter 1 introduces fundamental concepts such as
concurrent design, design data management system (DDMS), and CAD tool, and concludes
with an overview of related research. Chapter 2 defines the object model used to represent

design data within the DDMS. The object model provides a formal basis for later chapters.

Chapter 3 motivates research in concurrent design by identifying ways in which existing

database systems and CAD tools are inadequate to provide the design-centric approach re-

Introduction 3

quired for a concurrent design environment, and offers Justification of design decisions of

the high-level architecture of the Change Manager.

Chapter 4 describes the architecture of the DDMS, explains what capability the Change
Manager adds to the data store in order to produce the Design Data Management System,
specifies a programmatic interface to that capability, and describes invariants maintained in
the DDMS by the Change Manager. Chapter 5 describes the architecture of a CAD tool,
explains what capability the Change Manager adds to an application in order to produce a
CAD tool that interfaces to the DDMS, specifies a programmatic interface to that capabil-

ity, and describes invariants maintained in tools by the Change Manager.

Chapter 6 defines what is minimally required of an application in order to be well-behaved,

and describes various levels of coordination of applications with the Change Manager.

Chapter 7 summarizes key ideas of the preceding chapters, identifies research contribu-

tions, and describes ongoing and future work on the Change Manager.

Part 1.B: Concurrent Design

Section 1.B.1: Complexity of Designs Requires Concurrent Design

Because of the complexity of engineered artifacts, the associated design phase is a large ef-
fort. Design activities are shared among a team of engineers whose work is coordinated by
a supervisor. Each engineer works under and reports to a supervisor. The same person can

assume both roles, but we keep them distinct.

In order to accomplish design tasks, engineers employ CAD tools to manipulate design
data. The complexity of engineering designs has rapidly increased, and will continue to in-
crease. Many engineering designs are now so complex that it is impossible for one engi-

neer, using one or two CAD tools, to complete the design alone. Instead, a team of

4 Copyright © 1991 by Kelth Hall

engineers work together and use a suite of tools. See Figure 1. Members of this team work
in parallel on different but related aspects of the design. This is known as concurrent de-

sign.

P20 %
7tool% iool’?
Crrrgsrs vs177. ’2’ 7 ’/{6’6 ?

7465517 ;/// rrrsl

/ 3
AN
Rt

Design Data
Ctools

rrrrsssss.

i @

III///IA

% '//////172 I"’f}} rirs,
2/592[/: V2ol 2 LA 5 {OO /’
/ tOOr ‘ Yrsrrrrss

lrrrrsrrs.

%

Figure 1: Concurrent design.

A team of engineers work in parallel on different aspects of the same design. CAD tools
provide the means for the engineers to manipulate the design data which represent the de-

sign.

An important aspect of concurrent design is that these parallel activities are cooperative,
that is, there exist communication and cooperation among design engineers in order to
achieve a common higher goal. That higher goal is the parent design, which is a combina-
tion of the work done by individual members of the design team. This approach contrasts

sharply with transaction models commonly used in databases [Ullman 82].

Section 1.B.2: Conflicting Updates

In concurrent design, engineers release their progress on the design to other members of the
design team at intervals rather than continuously, since an engineer’s state of progress is

often incomplete and experimental. Furthermore, engineers cannot be always fully aware

Introduction 5

of the impact of changes they make on the overall consistency of the design; aspects of con-
sistency are modeled by constraints on the design. As a result, the efforts of one engineer
may conflict with those of another. If the engineers cannot resolve the conflict themselves,

their supervisor must resolve the conflict.

In existing CAD tools, constraint checking is performed in a haphazard fashion, and engi-
neers and the tools they run are not provided with systematic assistance to become aware
of changes to the validity of constraints. Nor are engineers made aware of the occurrence

of other events, such as the creation of new versions of a subcomponent.

Section 1.B.3: Design Partitioning

It is the supervisor’s job to partition a design into smaller portions, each less complex and
of more manageable size. These portions of the original design are called components of
the parent design. Each component is an instance of another design called a subdesign of
the parent design. A component references the associated subdesign and provides parame-
ters, such as displacement and rotation, which characterize that particular instance of the
design within its containing design. Partitioning can be applied recursively to subdesigns,
resulting in a hierarchy of components or a directed acyclic graph of subdesigns. After per-
forming partitioning, the supervisor distributes work on the subdesigns among the engi-

neers, and assigns permissions to access and update designs. See Figure 2.
A well-partitioned design offers several benefits:

* After the functionality needed in a subdesign has been identified, the process of design
can proceed in parallel on the subdesigns and on the parent design. The completion of
a subdesign is a task smaller than that of completing the entire design before it was par-

titioned.

* Identifying subdesigns whose funétionality is generally useful means that multiple in-

stances of these subdesigns can be used in the parent design or in other design projects.

6 Copyright © 1991 by Kelth Hall

ssef

C)——Pn-—

Figure 2: Design partitioning.
The supervisor divides design A into a hierarchy of instances of subdesigns B-G, which are
themselves designs with their own components (and associated subdesigns). Work on sub-
designs proceeds in parallel.

* Subdesigns are themselves designs which can have their own subdesigns. Identifying
subdesigns reduces the complexity with which engineers must cope at any one time; an
engineer need ensure only that the (sub)design being completed meets its specifications

and can assume that all of its subdesigns will meet their specifications.

* The supervisor can use the ‘design’ (or subdesign) as the unit of protection. That is, the
supervisor can assign access and update permissions to specific engineers for specific

(sub)designs.

Introduction 7

Components in a partitioned design are interrelated, since they jointly implement the func-
tionality of the parent design. To the extent possible, however, the partition is chosen so that
interactions and interdependencies among subdesigns is minimized; this is done so that the
amount of communication required among the engineers working on the subdesigns, as

well as the likelihood of conflict, is reduced.

Part 1.C: Evolution of the Design Environment

The environment in which engineers work and the protocol they use in order to achieve
their designs is called the design environment. This part of the chapter will describe the
evolution of the design environment in recent years from the use of data-files to the use of

a design database.

Section 1.C.1: Data-Files

Most CAD tools in use today were developed by different vendors with different goals, and
before the importance of interoperability was recognized. For this reason, emphasis was
placed on the functionality of that one tool, that is, on the manipulations of design data
which that tool would perform. The fact that other tools might need to perform manipula-
tions on related aspects of the design, or even that other tools exist, was not initially con-

sidered.

The tools which resulted from this insular philosophy have their own private repositories
of design data [Mehmood 87]. These repositories are collections of files. The files are
opaque, that is, their semantic content is unknown to all but the one tool which uses those
files and for which the file formats were developed. Thus interrelationships among the
tools’ data sets, which may represent multiple aspects of the same design, are ignored and
it is impossible to automatically maintain consistency among these views. Instead, corre-

spondence among various files must be manually maintained. Doing so in a setting of con-

8 Copyright © 1991 by Kelth Hall

current design, that is, involving a number of engineers, is a complex, time-consuming, and

error-prone task [Wiederhold 86b][Wiederhold 88].

Many vendors have now made public the formats of files used by their CAD tools. This
openness has motivated the creation of a new market, that of CAD tool “integration”, in
which translation utilities or “filters” are developed to convert from one vendor’s file for-

mats to another’s. See Figure 3.

S EILIITLISIIIIS SIS, r/ IIIII///III/III/I/

/)
A . /
layout 7 7 schematic
editor 7 7 editor

/
/
/4
4
’
Srrsiseses, srsss07ls UssssissspriisrrsrY

NN NNNNN

design data-file

translator

reformatted data-file

V/I SATLSSIS IS s Illf
7 ’ . 7
’ 7 consistency 7
7 % checker 7

SISSIIII Ll

R
A\

Figure 3: CAD tool file formats.

Each tool requires a particular format for its data, and filters are developed in order to trans-
late among some of the formats.

Absence of communication among tool vendors during development of tools has resulted

in a large number of file formats. In order to reduce the number of file formats in use and

Introduction 9

to encourage the creation of these filters, various standards committees are actively defining
standard file formats which implement common views of designs. The electronic design
domain, for example, has standards such as EDIF and VHDL. CAD tools which use stan-
dard file formats along with the filters to translate among the various formats are collective-
ly referred to as a “CAD framework”. The advantage of this approach is that since the CAD
tools do not require modifications to use the framework, companies’ investments in exist-

ing tool suites are preserved.

A CAD framework, with its ability to translate among common file formats, is an important
first step toward interoperability of CAD tools and thus the sharing of design efforts among
a team of engineers. But such a framework fails to offer a single common integrated data

model of design data that all tools can use.

In some cases one view of a design nﬁay be automatically derived from another. For exam-
ple, some CAD tools can synthesize an integrated-circuit layout from a schematic. The
comparison of the timestamp of a derived file to the timestamp of the source file(s) permits
recognition that a derived file is out-of-date. Note, however, that this permits ré-dexivation
only at a very coarse granularity, namely at the level of an entire file. This is combined with
the fact that tools typically operate on their data by reading and writing entire files rather
than by making incremental updates. Limiting the granule size to entire files eliminates sup-
port for performing incremental analysis on evolving designs. Change notices to interested
parties (such as team members or supervisors) are also restricted to the coarse level of detail
“file X has changed”. If a tool does not automatically recompute derived files then the de-

sign engineer must repeat manual procedures previously performed.

The large granularity of change in the data-file approach is a serious weakness of that ap-
proach. Furthermore, since concurrent updates to different parts of the same file by two or

more engineers will result in inconsistencies, and the unit of design data is the “file”, two

10 Copyright © 1991 by Kefth Hall

design activities within a framework can proceed concurrently only to the extent that they

involve different, unrelated files.

Section 1.C.2: The Database Approach

In the data-file approach to design, emphasis was placed on the use of a particular tool at a
particular time and on translating design data into a format suitable for that tool. The use-
fulness of these tools is thus limited, because the design data they manipulate are not inte-
grated. The data management needs of the design environment are extensive and complex.
The need in the engineering design environment for capability which traditionally has been
associated with a database management system, such as structured information, an integrat-
ed data model, concurrency control, transactions, and controlled access to data, has become

apparent in the last few years [Brodie 84][Katz 83].

Meta-Data

Design data include both engineering data which represent physical quantities within a de-
sign, and meta-data which arise from relationships among engineering data and from de-

sign status [Batory 85][Wiederhold 80b]. Examples of meta-data are:

Relationships: There are dependencies and constraints among engineering data which
must be stored and manipulated. How design data are related affects how a team of engi-
neers coordinate their activities. The following are examples of relationships among design

data:
 structural relationships: The use of a design as a component in another design (the
part-of relationship).

* functional dependencies: The bounding box of a layout can be computed from the

bounding boxes of its components and the size and location of their interconnections.

* constraints: The equivalence between the layout and schematic views of a design.

Introduction 11

Design status: The supervisor sees design as a cooperative effort among several engineers.
However, even in a spirit of cooperation it is commonplace for one engineer to modify data
which are used by another (e.g., one designer changing the implementation of a compo-
-nent). Thus, knowledge that an engineer’s tool is updating a design can be useful to other
engineers. This is an example of design status, and is generated by use of the check-out/
check-in protocol with which tools specify an intent to update a design. Another example
of design status is a complaint made by a tool, possibly initiated by the engineer using that
tool, that another tool has made a change which has repercussions detrimental to progress
on the complaining tool’s part of the design; this is called a conflict. Which conflicts are
outstanding is another example of design status and is also useful knowledge for engineers

and their supervisors.

Uniform Data Model

Placing design data in a database makes them available for use by many tools and engi-
neers. The database provides the same programmatic interface and integrated data model
to all tools [van der Meijs 85]. Tools read and update the data in the database, and during
their operation cache their own views of those data; such a view enables the tool to effi-
ciently perform its task. Each tool derives the view it needs from the integrated data model
offered by the database. Conversely, when a tool needs to effect change in the database, it
must first translate updates from its view to the integrated data model before submitting
them to the database. Thus, in the database approach there exist filters, similar to those used
in the data-file approach, to translate from the data model offered by the database to and
from the view employed by the tool. A filter is tool-specific and is developed by the tool

vendor rather than by a tool integrator, and is thus part of the tool. See Figure 4.

12 Copyright © 1891 by Kelth Hall

e

g

O

NN

7

A / . 7
/ A . 7% /
7 layout 2 Zsimulator’ ,sche_matnc;
2 editor Z 7 7 ’ editor 7
z z 7 Z Z z
7 Z 2 Z 7 Z
7 7 A 4 4 /

\N
N
N
\
N
N
\
o
N
\o

IIII‘/I/I iLd

Y. Illfll /e

Design Database

X Y z

Figure 4: The database approach to design environments.
CAD tools employ the same programmatic interface to access and manipulate design data.
Translators internal to the tools convert from the common data model to special-purpose
data structures as needed by the tools.

Advantages Offered by Database Technology

A database offers several advantages over the use of data files to store design data:

* The integrated data model of the database is advertised. Any tool vendor is free to de-
velop tools which adhere to that model and which manipulate design data.

* A database accepts incremental updates. Thus a tool that updates a portion of a design
need not re-enter the entire design. Instead it can submit only those updates which rep-
resent the delta of change effected by the tool on the design. This aspect of databases is
particularly important to the utility of the Change Manager, as will be explained in later

chapters.

Introduction 13

* The database serves as central point where a supervisor specifies which engineers have

update access to designs.

* A database offers stable storage of design data, and typically includes techniques to en-
sure high availability of data in the event of hardware failures, and the ability to rollback

to previous states or undo recent changes.

Limitation of Traditional Database Systems

In a traditional database, great care is taken to ensure that different threads of activity which
may be interrelated are not run concurrently, or are scheduled in a way that has the same
effect as though the threads’ execution times do not overlap—this is called serial schedule
[Papadimitriou 86]. In the design environment this would mean that concurrently executing
tools could not effect progress on the same design. Furthermore, existing tools operate un-
der the assumption that they have exclusive access to the data they manipulate. But these
characteristics are counter to the premise of concurrent design, in which multiple engi-
neers use multiple tools to complete the design as a team. Thus, a traditional database and
traditional tools are inadequate in a design environment which supports concurrent design.
The next part of this chapter describes a hypothetical design environment which does sup-
port concurrent design. Remaining chapters of the thesis constitute an exposition of how to

create such a design environment.

Part 1.D: Next-Generation Design Environment

As mentioned in the preceding section, in a design environment which makes use of a tra-
ditional database and traditional tools, there is an underlying assumption that a tool which
accesses design data has exclusive access to those data. But this is quite restrictive: at any
given time the tools that an engineer can invoke strongly depend upon which tools are pres-
ently in use by that and by other engineers. Said in another way, concurrent operation of

tools must be carefully controlled in order to retain consistency of the designs. This is a

14 Copyright © 1991 by Keith Hall

tool-centric approach. It should be the evolution of a design, rather than the interdependen-

cies among tools used, that is the focus of an engineer’s efforts.

Design activities involve the use of CAD tools to effect progress on the design; these tools
may involve any of presentation or synthesis or analysis of design data, and as such provide
the interface through which engineers inspect and manipulate the design. In concurrent de-
sign, the engineers plan, communicate, and cooperate, and the tools under their control are

used collectively to achieve the design. This we call a design-centric approach.

The importance of concurrent design has only recently been recognized [Wiederhold 86b].
A design database and CAD tools that support concurrent design must permit operations of
arbitrary length which do not preclude access to design data by other engineers. For this
reason, and for additional reasons to be presented in Chapter 3, traditional techniques for
databases and tools fail to adequately support concurrent design. Concurrent design re-
quires a new design environment. This “next-generation” design environment should facil-
itate a collection of design activities proceeding concurrently under the control of

collaborative team of engineers.

This part of the chapter elaborates the model of the next generation of design environment,
heretofore called simply “design environment”, by defining entities involved and describ-
ing their relationships. That model is the setting upon which architectural decisions present-
ed in the following chapters are based. The model is specific neither to particular CAD tools
nor to a particular engineering domain such as VLSI design or software, in order that it be
generally applicable. At the highest level, the design environment consists of agents using
instances of tools to access the design data management system (or DDMS). Each of
these elements is discussed below. See Figure 5. This figure and other figures in this chapter
use structural relationships to model relationships among entities in the design environment

[Wiederhold 80a].

Introduction 15

agent

using

K

L LLLL LTI I IIIIFTS

~

tool

AN
ASSNSERR

N

’/
PIIPTIT (o002l d
=] r . .
k) structural relationships
—p reference (many-to-one)
——¥k ownership (one-to-many)

aqress.

Figure 5: High-level view of the design environment.
Agents use tools to access and manipulate engineering data stored in the DDMS.

Section 1.D.1: Agent

In this thesis, an agent is a human who is involved in the design of one or more artifacts,
An agent either helps ‘complete or manages the completion of designs, and is either an en-
gineer or a supervisor, respectively. A permission is a right given by a supervisor to an

engineer to update a design object. See Figure 6.

Section 1.D.2: Tool

A tool is a program which can be used by an agent to access design data in the DDMS.
Tools, unlike the DDMS, provide a user interface to the agents that use them. The DDMS
can be used only indirectly through tools. Tools include programs used by either engineers
or supervisors, such as design editors, simulators, circuit extractors, compilers, and brows-

ers. One agent may use multiple tools at the same time.

16 Copyright © 1991 by Keith Hall

managed by

engineer

design , can access
object ™

Figure 6: Agents.
Agents are humans that use CAD tools, and are either engineers or supervisors. Each engi-
Dieer reports to a supervisor. Supervisors assign engineers permissions to update design ob-
jects.

Note that there is a difference between a program and a process, which is a running instance
of a program. Likewise there is the difference between a tool and a running instance of a
tool. In the remainder of this document, however, the term tool will be used for either, and

context will disambiguate the meaning.

Tools are independent. They jointly access the DDMS, but each tool is unaware of other
tools’ existence except indirectly through messages received from the DDMS (or more pre-
cisely, from the Change Manager within the DDMS, as will be explained in Chapter 3) as
a result of the actions of other tools. Unfortunately, there does not exist an algorithm to de-
termine whether an update to the design constitutes progress toward a superior or more

complete design. Thus there is no way to enforce that tools are cooperating and collectively

Introduction 17

operate in a constructive fashion. Because of this, it is the responsibility of the human
agents to ensure that the concurrent use of tools on shared design data is a cooperative ef-

fort.

A tool that supports concurrent design consists of application code, which implements the
tool’s functionality, plus the Change Manager. As mentioned earlier, the Change Manager
provides support for tools to concurrently access shared design data; the support provided
is elaborated in Chapter 5. The application code, in order to make use of the Change Man-
ager and thus perform suitably in the concurrent design environment, must obey a set of

rules which make it well-behaved, as explained in Chapter 6.

The Change Manager within the tool manages an annotated object cache, which is the
tool’s local object workspace. Designs are dynamic entities. As will be explained in Chap-
ter 3, to achieve concurrent design requires that each application stay informed of changes
made by other tools to objects which it is in the process of updating. In addition, an appli-
cation may request to be informed of changes to the design status. The Change Manager in
a tool achieves this by placing triggers on objects in the cache [Dayal 90]. N of all updates
to objects in the cache or changes to the design status are important to every application,
and since the design of the Change Manager is independent of, and thus doesn’t understand,
the semantics of the individual applications, it cannot by itself determine of what events an
application needs to be informed. For this reason each application must specify application
interests to the Change Manager. An application interest identifies some set of events in

which it is interested.

When an event occurs which matches an interest, the application which registered the in-
terest is sent an internal notification. If a different tool updates an object that has been
cached, the Change Manager in the tool with the invalid cache is sent an external notifica-

tion which is to be incorporated into the cache. See Figure 7. Application interests and no-

18 ' Copyright © 1991 by Kelth Hall

tifications are described in detail in Chapter 5. The interaction of the components within a

tool is the subject of Chapter 6.

Ml L L L Ll Ll L el e g0l IIIIIIIVIF IV I IV IIIIIP e Ld L eLd (L LLLL LA

Tool
application internal
code state

has
caches

application annotated

;
;
’
A
:
;
;
7
;
;
’
/
A
’
/
’/
’
/
’
’
’
4
A
A
/
’
;
¢ .

Z interest cached object
/ Do
’
/
A
/
/
A
’
:
;
’
/
’
/
/
v’
’/
/
/
/
’
v
/
’
’
’
A
/
/
’
’
A
/
4
’/
4

internal external
notification notification

&\\\

’

s rres. . Ll d CL L L Lt

N

Figure 7: The major components of a tool that supports concurrent design.
Application code implements the tool’s functionality. The annotated object cache holds un-
committed updates to objects and bookkeeping information. Application interests specify
which changes to the object cache the application code wishes to track, and internal notifi-
cations are queued when such a change occurs. External notifications are a result of changes
to objects in the DDMS by other tools.

Section 1.D.3: Design Data Management System

The database system used in a design environment we call a design data management sys-

tem, or DDMS. The DDMS offers tools the ability to access and make persistent changes

Introduction 19

to design data. Tools, rather than the DDMS, offer a user interface for engineers. Thus the
DDMS needs to provide only a programmatic interface to design data for use by tools. As
mentioned in Chapter 1, use of “the database” or “the DDMS” is not meant to exclude
multi-databases or distributed databases, but rather to refer to the aggregate functionality

of the database system being used.

The DDMS consists of an object-oriented data store with associated schema as a sub-
strate, plus additional components which are part of the Change Manager: workspaces,
tool interests, design status, and conflict records. See Figure 8. Chapter 3 will detail in
what ways a traditional database system is inadequate for use as a DDMS, thus identifying
the need for the Change Manager. The interaction of the components within the DDMS is
the subject of Chapter 6.

Objects

All persistent design data are stored in and accessible from the DDMS. In order both to con-
trol access to portions of design data and to make manageable the amount of data which is
transferred between tools and the DDMS, design data are divided into a large number of
interconnected objects. Objects are used to represent designs, subdesigns, and components

within the DDMS.

Our use of term object coincides with the use of that term in object-oriented circles
[Heiler 87][Spooner 85], in that an object has a type, an identity, an internal state, and a pro-
grammatic interface to access and change that state. Objects in the DDMS possess other
characteristics and are interrelated. The object model used by the Change Manager is pre-

sented in detail in Chapter 2.

Workspaces and the Check-out/Check-in Protocol

Workspaces are work areas in which tentative updates are made. When those updates are

no longer tentative, they are committed. Before a tool can update a design in a workspace,

20

Copyright © 1991 by Kelth Hall

tool

¥

caused by
identified by
contalj

design status conflit / 7/ conflict
record / resolution

workspace

constraint
requirement

structured

. according to
object "

DDMS

\\ data store

tool
interest

schema

/

conflict resolutions.

Figure 8: The components of the Design Data Management System.

The DDMS consists of an object-oriented data store and schema plus the DDMS Change
Manager, which contains workspaces, tool interests, design status, conflict records, and

Introduction 21

the tool must check-out that design into that workspace. This action indicates an intent of
the tool to update that design in the workspace. Intent to update a design is released when

the object is checked-in.

Although many engineers may have permission to update the same design object, that ob-
ject can be checked-out in at most one workspace at any time. Thus if two engineers wish
to update some design object at the same time they must do so within the same workspace.

Workspaces and their semantics are described fully in Chapter 3.

Design Status

As mentioned in Section 1.C.2, knowledge of design status can assist engineers in coordi-
nating their design efforts with those of other engineers. Design status is maintained by the

DDMS and made available to all tools.

Tool interests

Before committing changes to the DDMS, an application in a tool makes changes to cached
copies of the objects it is updating. This cache is managed by the Change Manager in the
tool. The cache may grow stale, in which case the tool must be informed of the ways in
which the cache has grown stale. The Change Manager in the DDMS uses tool interests to
record what objects have been cached by what tools, employs triggers to make objects in
the object store active, and sends external notifications to tools when the objects which they

have cached are changed by other tools.

Conflict Records And Conflict Resolutions

When an actual conflict is identified, that is, when an agent or tool disagrees with an update
made in some workspace, a conflict record can be created which references the offending
and offended agents, the update which caused the conflict, and the tool which performed

the update. Conflict records are appended to the conflict log. At some future point in time,

22 Copyright © 1891 by Keith Hall

a conflict resolution indicates what action was taken on behalf of the conflict. Conflicts are

described further in Section 3.B.9.

Part 1.E: Related Work

This part of the chapter surveys research related to that presented in this thesis.

Section 1.E.1: The Use of Databases in CAD

Commercial and academic efforts are underway to investigate how to apply database tech-
nology to CAD environments. Below are two examples of the type of research being per-

formed in this area:

U.C. Berkeley

The Oct project at U.C. Berkeley is an early attempt which provides limited database sup-
port for CAD tools [Harrison 86]. Oct supports a very simple data model: designs consist
of a set of cells; each cell is a hierarchy of facets. A cell represents a view of a design,.and
facets represent components of the design in that view. The mterpretation of data in facets
is left to tools, and is known as Oct policy. The Oct project includes some tools which dis-
play and manipulate design data according to the Oct policy. Oct does not offer workspaces
which encapsulate updates made by CAD tools. Oct does offer one programmatic interface

through which all design data may be accessed.

Delft University of Technology

The NELSIS integrated circuit design system developed at Delft University of Technology
uses a custom object-oriented design database as a foundation for its design environment
[van der Wolf 88]. The database offers a detailed integrated data model, with ownership
and reference relationships and consistency constraints in the schema, and a programmatic

interface for accessing design data. The database gives tools two levels of workspaces—

~ Introduction 23

public and private—and makes knowledge of the design status available to tools. The da-
tabase guarantees referential activity but does not support active data or concurrent updates

to design data by multiple tools.

Section 1.E.2: Frameworks for CAD

There exist several ongoing projects to build frameworks into which any number of tools
may be integrated and work together. The projects differ somewhat in the amount of alter-
ation required of existing tools for them to be integrated into the framework. This section

describes two important projects of this type.

CAD Frameworks Initiative

The CAD Frameworks Initiative is a coalition of several vendors of CAD tools, vendors of
object-oriented databases, and some universities. CFI is a commercial effort to define stan-
dard file formats for electronic design data. The current emphasis of CFI is to achieve the
immediate but limited integration of tools which is possible without changing existing tools
in use today. A longer-term goal of CFI is to standardize data models and database interfac-

es which will be used by tools that are developed in the future.

U.S. Air Force

Faced with rising costs of increasingly complex avionics, the U.S. Air Force initiated in
1985 the Engineering Information Systems project [Wiederhold 85][Wiederhold 89]. The
EIS project is an extremely ambitious project whose goal is to integrate all information re-
lated to the design, production, and maintenance of electronic systems. In other words, the
entire life-cycle of electronic artifacts is being considered. In addition, an attempt is being
made in the EIS project to provide evolutionary migration paths from existing techniques,

tools, and data formats into the integrated environment.

24 Copyright © 1991 by Kelth Hall

The EIS project unfortunately does not use database technology which has appeared only
recently, such as active data (described in Section 1.E.5). For this reason, we believe that
EIS project will be obsolete if it is completed. Unlike the evolutionary approach of the EIS
project, this thesis presents a revolutionary approach, which, this thesis argues, is needed

in order to achieve design-centricity in the design environment.

Section 1.E.3: Groupware Systems

An area of active research is Computer-Supported Cooperative Work, also known as
groupware. Groupware provides automated support for communication and collaboration
of a team of people who interact in order to achieve some common goal. Most software Sys-
tems only support the interactions between a user and the system. The goal of groupware
systems is to offer users a way to stay aware of progress in the context of the entire team

without being obtrusive.

Microelectronics and Computer Consortium

The Grove project at MCC is pursuing research in groupware systems, and has construéted
a prototype shared editor [Ellis 89][Ellis 91]. Users of the editor may be physically distrib-
uted, and the views of data which they see may be somewhat stale. By default, all users are
allowed to see and edit all"documents, even at the same time. Experience with the shared

editor has provided five important insights into collaborative computer-based activities:

1. Concurrent work occurs naturally and spontaneously when the restriction that only one
person can access a document at any given time has been removed.

2. Concurrent work can be confusing at times, but conflicts are surprisingly infrequent.

3. Learning the strategies of, and acquiring knowledge from, other team members is a nat-

ural consequence of concurrent, collaborative activities.

4. Members of a team become familiar with more aspects of the result when they work

collaboratively, than if they had worked independently on well-partitioned tasks.

Introduction 25

5. The fact that many people participate to achieve a shared goal tends to improve the
overall quality of the resuit.

Section 1.E.4: Transaction Models

Other research has concentrated on providing support to maintain aspects of consistency of

designs in the CAD environment. This section describes four such projects:

Hewlett-Packard Labs

Database research at H.P. Labs has investigated the use of notify locks and optimistic con-
currency control to maintain cache consistency [Wilkinson 90]. Notify locks cause notifi-
cations to be sent to interested processes when particular data are updated. The processes
use the information contained in notifications to make their caches current. Optimistic con-
currency control causes transactions to be aborted if data in the read set of a process are

disturbed before the process is able to commit its updates.

This technique is similar to that used by the Change Manager which is described in this the-
sis, whereby object caches with CAD tools are kept current. An important difference, how-
ever, is the support which is provided by the Change Manager to enable a process (i.e.,
CAD tool, in this case) to continue operation despite updates made by other processes to its

read set.

Brown University

Research being performed at Brown University is investigating the utility of what are called
cooperative transaction hierarchies [Nodine 90] in the design environment. In this re-
search, each design is partitioned into a hierarchy of components, and each component has
a corresponding engineer who is responsible for the correctness of that component. A trans-
action hierarchy is then created, and represents design activity occurring concurrently on

the components. This transaction hierarchy is made “cooperative” by defining rules which

26 Copyright © 1991 by Kekth Hall

specify what engineers must approve what updates to components before the design as a

whole is considered correct.

Two assumptions made in the above research are radically different from those presented

in this thesis. These assumptions limit the utility of cooperative transaction hierarchies:

1. Cooperative transaction hierarchies are isomorphic to the hierarchies of components in
designs. The workspace hierarchy offered by the Change Manager, however, need not
be similar to the hierarchy of components in any design. This permits the workspace
hierarchy to represent organization aspects of a team of design engineers, wherein any

number of people can share responsibility for the correctness of any one component.

2. Cooperating transaction hierarchies require that a design’s hierarchy of components be
chosen when work on the design commences, and that the partition be fixed throughout
the design process. The Change Manager, on the other hand, permits dynamic reparti-

tioning to occur.

University of Texas

Researchers at the Princeton University and the University of Texas are studying sets of da-
tabase updates which they call compensating transactions [Garcia-Molina 87][Korth 90].
A compensating transaction is a set of updates which makes adjustments to the state of the
database so that a process c;an continue operation even though the data in its read set have
been modified by other processes. An algorithm to automatically generate compensating
transactions is developed in the special case of commutative updates to the database. This
research is particularly relevant to the medium level of coordination between CAD appli-

cations and the Change Manager, as presented in Section 6.C.2.

University of California at Berkeley

Researchers at U.C. Berkeley have developed a mechanism called change management in

which a new version of a component is created each time it is checked-out for update. A

Introduction 27

system of version propagation is proposed in which the check-in of new versions of a set
of referenced objects results in the creation of new versions of referencing objects; this pro-
cess applied recursively up the design hierarchies [Katz 87]. (Note that their meaning of the

term “change management” differs sharply from that of the term “Change Manager” used

in this thesis.)

Interpretation of a rule base determines how far up within the design hierarchy new ver-
sions of parent designs are to be created. These new versions will incorporate the new ver-
sions of subdesigns. The research proposes that this recursive creation of new versions
terminate in certain situations, for example (1) when an object has been declared “indepen-
dent” of changes to subdesigns, or (2) when the interface of the new version is Incompatible

with what is required of a referencing parent design.

When a version is referenced multiple times, there may be ambiguity as to which references
to update to point to the new version; in this case the engineer disambiguates the references
prior to check-in. This research gives no consideration to shared updates by multiple engi-

neers to the same or related design objects.

Section 1.E.5: Active Data

A recent area of database research involves the use of active data. Active data can cause
predefined side effects to occur when they are updated. Active data are relevant to this the-
sis because the Change Manager uses active data to keep tools mutually aware of each oth-
er’s updates: the Change Manager sets the side effect associated with active data to be the

delivery of asynchronous update notifications to tools.

28 Copyright © 1991 by Kekth Hall

Hewlett-Packard Labs

An extension to the Iris object-oriented database being researched at H.P. Labs is the data-
base change monitor [Risch 89][Risch 91]. A database change monitor offers translation
of low-level updates to a high level of abstraction, and gives database clients the ability to
track changes to the results of queries, not merely simple state changes. This capability
could be used by the Change Manager in its interest matcher, which is described in

Section 5.B.6.

Chapter 2
The Object Data Model

Part 2.A: Introduction

The DDMS manages structured design data and makes them available to multiple tools. A
database can implement any of several types of data models. The DDMS implements an
object-oriented type of data model, in which design data are broken into a collection of
interrelated objects. Obijects represent entities in the real world or in the abstract design
world [Du 87][Wiederhold 86a]. It is important to distinguish between the type of data
model, such as relational, hierarchical, or object-oriented, and a specific data model which,
in the case of an object-oriented, determines the types and interrelationships of objects in

the database [Korth 86][Wiederhold 86¢].

This chapter describes the characteristics of objects, presents and explains the schema lan-
guage which is used to define a specific data model, and discusses the ways in which objects
may be related to one another. It then elaborates the semantics of derived and computed
slots, enumerates what operations can be performed on objects, offers two detailed exam-
ples of simple schemata for design data, and concludes with a discussion of ways in which

the object model presented might be extended.

29

30 Copyright © 1891 by Kelth Hall

Part 2.B: Characteristics of Objects

Objects have three important characteristics: identity, type, and state. Each of these is dis-

cussed in the sections below.

Section 2.B.1: Identity

Each object has an identity and corresponding object identifier or OID, which is guaran-
teed to be different from the OIDs of all other objects. The OID is used as a handle with
which a client of the DDMS (such as a tool) can reference and access the corresponding

object.

Objects are created and destroyed dynamically. The lifetime of an object is independent of
the lifetimes of other objects, except in the case of the object being owned by another ob-

ject; this case will be explained later in this chapter.

Section 2.B.2: Object Type

An object, when it is created, is specified to be of a particular object type. The type of an
object is fixed for the lifetime of the object and thus cannot be changed. Objects of a given
type are called instances of that type. An object type determines the structure of instances
of that type, that is, what slots the objects of that type have, and represents the category to
which the entities represented by those instances belong. Layout, Module, Rectangle, and
Schematic are examples of object types. A field names a value or instance variable which

is specific to an object.

Section 2.B.3: State

An object type describes the structural aspects common to all instances of that type. Objects

of the same type are specified and differentiated by their state. The state of an object is

31

maintained in a number of named slots. Slots are explained in detail in the next part of this

chapter.

Part 2.C: The Object Schema

The particular data model offered by the DDMS will depend upon the engineering domain
chosen and upon design decisions made by the person who defines the data model. The
DDMS can support any one of a number of data models. The data model in use, that is, the
object types and the structure and types of their slots, is described by the schema. The syn-
tax of a schema is defined by ten production rules below in Backus-Naur Form (BNF)
[Backus 60].

1. schema := objectTypeDecl ...
The schema consists of a number of declarations of object types.
2. objectTypeDecl := objectTypeName [siotDecl ...]

A declaration of an object type specifies the name of the object type followed by
declarations of the slots which will capture the state of objects of that type.

3. objectTypeName := identifier

Object types are named by identifiers, or character strings chosen by the person who
defines the data model. Object type names are unique within the database.

4. slotDecl := slotName : slotType

The declaration of a slot consists of a slot name, followed by the type of the value
that can be assigned to that slot in instances of the object type in which this slot is de-

clared.

Although a slot of one object can be referenced by other objects (described below), the
slot is owned by exactly one object and is not shared, and updates to a slot must be done

through the object which owns it.

32

5.

6.

Copyright © 1991 by Keith Hall

slotName = identifier
Slots are named by identifiers. Slot names are unique within an object type.

slotType :=
typeName |
computed rypeName computedSlotSpec |
derived derivedSlotSpec

A slot’s value either can be assigned and of a specified type, can be the result of a
potentially complex computation applied to the values of other slots (a computed slot),

or can be equal to another object or a slot of another object (a derived slot).

typeName :=
primitiveType |
objectTypeName |
set typeName |
ref objectTypeName

A slot’s value can be specified to be either a primitive type (described below), an
object type, in which case the value is a subobject owned by the object which owns the

slot, a set of values of a specified type, or a reference to another object of a specified
type.

There are important differences between a slot’s value being a subobject (or a set of su-
bobjects) and its value being a reference to another object: In the former case, the life-
time of the subobject is tied to that of the owning object in that the subobject is created
or destroyed when the owning object is created or destroyed, respectively. In the case
of a reference to an object, the lifetimes of the referencing and referenced objects are
unrelated. In this case referential integrity is enforced, however, which means that an
object cannot be destroyed if another object references it. Subobjects and object refer-
ences are examples of the “ownership connection” and “reference connection” [Wied-

erhold 83], respectively.

10.

33

Another difference between subobjects and referenced objects involves different inter-
pretations of timestamps which indicate when a object’s slots were last changed.

Timestamps are discussed fully in Chapter 6.

primitiveType :=

Boolean |

integer |

string

There are three primitive types in DDMS: Boolean (true or false), integer (numer-
ical), or string (array of characters). It should be noted that these types are merely ex-
amples. Other types might be added and are absent only for the sake of simplicity.
computedSlotSpec := { slotName ... }

In some cases, the value of the slot, which represents some aspect of the object, de-
pends upon the values of other slots in a way that requires some arbitrary computation.
The DDMS does not attempt to keep these computed values current. Such computations
are the responsibilities of tools. The schema of the DDMS, however, has computed-
SlotSpec entries which indicate upon which slots the computed slots depend. Derived

slots and computed slots are explained later in this chapter.

derivedSlotSpec :=
slotName . s{otName |

slotName *

As stated earlier, the value of a slot can be copied from subobjects or referenced ob-
Jects. The derivedSlotSpec specifies how that value is to be obtained. A derived slot
may have the value of the slot of a subobject, which, in the case of a set-valued slot,
would result in a set of values (and is similar to the projection operator I in relational

algebra), or may be the result of following a reference to another object.

34 Copyright © 1991 by Kelth Hall

Part 2.D: Relationships Among Objects

Although design objects are independent entities with their own separate identities, two ob-
jects can be related to one another in any of four ways: ownership, reference, version, and

alternative. This part of the chapter will discuss those four types of relationships.

Section 2.D.1: Ownership

It is possible for an object B to be nested within another object A, as defined by the data
model. In this case the nested object B is said to be a subobject of A that is owned by A.
An object can be a subobject in either of two ways: it can be the value of the slot of another
object, or it can be a member of a set-valued slot of another object. Set-valued slots are use-
ful when the number of members cannot be determined in advance; an example is a design

which owns some number of components.

An object which owns other objects can itself be nested in an object. Thus, recursive nest-
ing of objects can give objects an hierarchical structure. Ownership is acyclic. A given ob-
ject can have at most one owner, and its owner (if it has one) is fixed for the lifetime of that
object. As mentioned earlier, the lifetime of an owned object is tied to its owner: when an
object is created, subobjects are also created (except in the case of a set-valued slot, whose
initial value is the empty se:c @); when an object is destroyed, so are its subobjects (and in

the case of a set-valued slot, all subobjects in that set). These rules apply recursively.

Because a subobject is so closely tied to its owning object, it may be considered part of that
object. An object which is not owned by another has a lifetime independent of other objects.
It may thus be thought of as “top-level” or “free-standing” and is given a special name: de-

sign object.

The Object Data Model 35

Section 2.D.2: Object References

When an object is owned by another, it is accessible through a slot of the owning object,
and its lifetime is tied to that owning object. There is another way to make an object acces-
sible to another object: through a reference. A reference is a handle to an object which can
be stored in the slots of another object. If a slot of design object A or a slot of a subobject

of A references design object B or a subobject of B, then A is said to reference B, denoted

A — B.

References are useful because they permit sharing of information. In a design database, for
example, components within one or more designs may reference the same design because
instances of that design appear multiple times within the parent design(s). The referenced

object represents a common substructure of all objects which reference it. See Figure 9.

_\L \ //

Figure 9: Object references.
Designs A and B use references to incorporate multiple instances of design X into their de-
signs. The instances, because they are subobjects of the parent design, are destroyed when
the parent is destroyed.

36 Copyright © 1891 by Kelth Hall

When an object with references to other objects is destroyed, those references are de-
stroyed. “Referential integrity” is enforced, however: an object cannot be destroyed if there
are references to it. Unlike ownership, an object can have any number of references to it.

Object reference may be cyclic, as in Figure 10.

i 4& oo,
@
Ny

Figure 10: Cyclic references.

In this figure, design D is a ring. This can be represented in the object model by having each
of the components of D reference its counterclockwise neighbor.

Dependency

Let X, Y, and Z be design objects. Then we define the “depends upon” relation = between
design objects as the transitive closure of “references” —-:

X=X

X=YandY — Z implies X = Z

Note that for a set S of objects that reference each other circularly, X = Y for each

X,YeS.

37

Given the definition of =, we now define the “sources of X” Src(X) and the “dependents
of X Dep(X) as:

Src(X)‘=‘{a11YsuchthatX=>Y}

Dep(Y)={all Xsuchthat X = Y }

These definitions will be useful later in this chapter when derived and computed values are

discussed, and in other chapters.

Section 2.D.3: Versions and Design Elements

Besides not being owned by another object, design objects are special in another way: every
design object belongs to a set of design objects which are related in that they are versions
of the same design element. Versions of a design element form a linear sequence in which
each version except the first has a predecessor and each except the last has a successor. A
version is considered to be “derived from” its predecessor (but this should not be confused

with the notion of a computed value being derived from its source slots).

Only the latest version of a design element can be updated. The sequence bf versions
X1 = Xy = ... > X, for a design element X corresponds to a progression of attempts to
implement a particular piece of functionality; newer versions are corrections or enhance-
ments of earlier versions. The last (and most recently created) version of design element X

is the latest version of X; other versions are called obsolete.

Version versus Alternative

The concept of version should not be confused with that of alternative. An alternative is
a different design element, which shares similarities of functionality to some degree with a
given design element, but which has a different intended application. For example, an edge-
triggered flip/flop may be considered an alternative to a latch, and may have been designed

by altering some version of a latch. When a designer uses an instance of a design as a com-

38 Copyright ® 1991 by Kelth Hall

ponent in a design, the designer must choose whichever alternative is appropriate. The con-
cept of alternative, although useful in a design database, is not important to the research

presented in this thesis and will not be considered further.

Part 2.E: Computed and Derived Slots

Sometimes the value of a slot S may be related to other slots—called source slots—in that
if any of those slots change, then the value in S may also need to change in order to stay
current with its source slots. Such a slot S is called a derived slot. The object model pre-
sented in this thesis divides derived slots into two categories: computed slots and derived
slots. This part of the chapter explains the semantics of computed and derived slots.

Part 2.G gives two examples of the use of computed and derived slots.

Computed Slots

The value of a slot may depend upon the values of other slots in a way that involves an ar-
bitrary amount of computation. Such a slot is called a computed slot. An example of a de-
rived value is the bounding rectangle of a circuit design, which is a relatively simple
computation based upon the dimensions of its components and the size and placement of

the interconnect.

The schema within the DDMS designates a computedSlotSpec for each computed slot,
which is a list of slots upon which the value of the computed slot may depend; see produc-
tion rule #9 in Part 2.C. These slots are called source slots. If one or more source slots
changes, the computed slot is said to become void, that is, it requires a recomputation in

order to acquire a current value. See Figure 11.

Note that the schema does not specify a Junction whose execution will recompute the value
of the computed slot. This is an important point. The schema and DDMS do not require that

a particular function or tool be used for computation. That is because computation is out-

39

Figure 11: Computed slots.
The value of slot z is a function of the values of slots a, b, and c. The schema specifies the
dependency of the computed slot on other slots, but the function to recompute the comput-
ed slot is not specified; that computation is the responsibility of one or more tools.

side the scope of the DDMS and in the realm of CAD tools. Tools are responsible for com-
putation. A supervisor may require that the engineers use a particular tool to perform
design-rule checking, for example [Bhateja 871, but that is design policy and is- outside the
scope of this thesis.

In some proposals for next-generation design environments, which tools to use for validat-
ing consistency of the design is part of the schema [Hall 88]. This approach is useful for
automatically invoking validation tools but is less accommodating to engineers’ preferenc-

es to using particular tools.

Part of the integrated data model offered by the DDMS are constraints which represent as-
pects of consistency of a design. Constraints may be met or not; their state depends upon
the outcome of validation functions. When met, constraints ensure some level of “correct-
ness” of the design. When data are changed, constraints which depend upon those data may

no longer be valid. Which constraints are present in the data model is specific to the engi-

40 Copyright © 1991 by Keith Hall

neering domain; design rule checking, stress analysis, and type checking are examples that

would be found in electrical, mechanical, and software engineering, respectively.

Components of a design, since they collectively implement the design, are interrelated.
Since different engineers may work on different but related designs, the global consistency
of a parent design, which uses instances of those designs as components, may be disturbed.
Validation functions in tools, as described above, are applied across components when the

consistency of the parent design is to be ascertained.

Design constraints and consistency checks are modeled as computed slots; the validation
functions of the constraints are the functions which compute the values of these slots. In the
simplest case such a slot has a Boolean value which indicates whether the constraint is sat-
isfied. More generally, a constraint may contain a complex value, such as a list of design

rule violations.

Derived Slots

The schema can specify that the value of a slot is to be the same as that of another slot, or
the subobject(s) of a slot, or the result of following a reference to another object, or some
combination of the preceding. The derivedSlotSpec specifies how that value is to be ob-

tained.

Since copying a value, extracting a subobject, and dereferencing are Inexpensive operations
in an object-oriented data store, a tool can quickly recompute the value of a derived slot
when one of its source slots changes. Thus derived slots, unlike computed slots, stay current
with respect to their source slots. Note that the decision that particular computations are
“inexpensive enough” to be automatically recomputed is not clearcut. An extension to the
object model presented here might include additional operations, as described in

Section 7.C.2.

The Object Data Model 41

Part 2.F: Operations on Objects

Design objects can be created and destroyed. Updates to the state of an object are accom-
plished by making updates to its slots. Updates are performed by applications on their own
cached copies of objects, as will be described in Chapter 3. The operations permissible on
a slot depend upon the type of the slot. This part of the chapter presents those operations
that create and destroy design objects, describes what updates on slots of objects are per-
missible for each type of slot, then explains how updates to one object may affect the state

of another.
Section 2.F.1: Operations on Design Objects

Creation

A design object of a specified type can be created. The new object can be created as the
latest version in a chain of versions of a design element, or as the first version of a new de-
sign element. The newly-created object is given a unique object ID; its slots assume default

values.

Destruction

A design object can”be destroyed. When a design object is destroyed, all its subobjects are
destroyed. Referential integrity requires that an object can be destroyed only if it is not ref-
erenced by another object. In the case of a group of design objects participating in a circular
reference, the circularity must be broken by changing one or more of the references before

any object in the group can be destroyed.

Undestruction

A design object can be undestroyed, which means that the effect of previously destroying

the object has been undone, with the restriction that references to nonexisting objects are

42 Copyright © 1891 by Kelth Hall

nullified. Undestroying is similar to creating a new object, except that the identity and state

of the undestroyed object are the same as those before the object was destroyed.

Section 2.F.2: Operations on Slots

Primitive Slot

The only operation available on a primitive slot is that of assignment of a value v to S:

X.S ¢ v, where v is of the appropriate primitive type.

Subobject

If S is a subobject of X, then the updates possible on S are those possible on any slot of S,

as described in this section.

Set of Subobjects

If S is set-valued, then any of the following updates is possible:
create new member in X.S
destroy member Z € X.S
undestroy member Z € X.S

update Z € X.S, as described in this section.

Reference

If S is a reference to another object, then either that reference can be removed or replaced
with a different reference:
X.S < 1 (undefined), which nullifies any existing reference, or

X.S < AZ, which assigns a reference to object Z to slot S.

43

Computed Slot

Two types of operations may be performed on a computed slot S of object X:
X.S « J/, which marks the value of the computed slot as void, or
XS « T, which marks the value of the computed slot as valid, or
X.S « v, where v is of the appropriate primitive type.
The latter two operations would be performed only by an application in order to recompute

the computed slot based upon current values of the source slots.

Derived Siot

No updates are possible on a derived slot, since its value is automatically assigned when-

ever any of its source slots changes.

Section 2.F.3: Object State

The state of an object consists of the values of its slots. The value of a derived slot may
involve following a reference to another object, and the value of a computed slot may de-
pend upon the value of a derived slot. Thus, updating a slot in one object X may affect the
values of derived and computed slots in other objects; this can have a cascading effect. But
the state of object ¥ can be affected by updates to object X only if ¥ = X or, equivalently,
only if Y € Dep(X).

Part 2.G: Example Schemata and Design Objects

This part of the chapter gives two examples of schemata and associated objects. The first
example is from the domain of electronic CAD, the second from the domain of software
CAD (also called computer-aided software engineering or CASE). Other schemata would

be used for other domains [Eastman 91].

44 , Copyright © 1991 by Kelth Hall

Section 2.G.1: Electronic CAD: Integrated Circuit Layout

This section provides an example schema and objects for an integrated circuit layout. Each
layout consists of a set of rectangles plus a set of components. Each component is an in-
stance of a layout. This example makes use of three object types, three computed slots, and

five derived slots.

Schema

Layout

[

contents: set Rectangle
localBBox: computed Rectangle
{ contents }
components: set LayoutInst
subDesignRefs: derived components.layout
subDesigns: derived subDesignRefs *
componentsX: derived subDesigns.x
componentsY: derived subDesigns.y
componentsBBox: derived subDesigns.compositeBBox
compositeBBox: computed Rectangle
{ localBBox, componentsX, componentsY, componentsBBox }
designRulesMet: computed Boolean { contents, subDesigns.designRulesMet }

A layout contains a set of rectangles and uses instances of other layouts as compo-
nents. Each layout has a local bounding box that is computed from the rectangles, and
a composite bounding box that is computed from the local bounding box and from the
locations and bounding boxes of the components. Any change to a rectangle marks the
local bounding box void; any change to the local bounding box or the bounding box of

a component marks the composite bounding box void.

Each layout also has a Boolean-valued computed slot that indicates whether design
rules are met; this is an example of a constraint. In this example any change to a rect-

angle or component would mark this constraint void.

The Object Data Model 45

Layoutlnst
[
X, y: integer
layout: ref Layout
] |
A layout instance is a reference to a layout plus a designation of that layout’s posi-
tion.
Rectangle
[
X,y, w, h: integer
material: poly/diffusion/metal
1
A rectangle has width, height, and location and is of a specified material.
Objects

Figure 12 shows layout A which uses instances of layouts B and C as components. Layout
A contains ten rectangles, seven of which it obtains from its components. Layout B contains

three rectangles and layout C contains two rectangles.

Section 2.G.2: CASE: Software Modules

This section provides an example schema and objects for software modules in a CASE en-
vironment. In this schema, a program is built from subroutines and libraries. The executable
code of a program is the result of linking compiled subroutines with libraries. Subroutines
are compiled from their source éode, and libraries contain compiled object code. This ex-

ample makes use of three object types, two computed slots, and four derived slots.

46

Copyright © 1991 by Kelth Hall

%

Figure 12: Example objects using the layout schema.

Layout A uses one instance of layout B and two instances of layout C. The bounding box
of each layout is a function of the size and placement of its rectangles and components.

The Object Data Model 47

Schema

Program

[

subroutineRefs: set ref Subroutine

subroutines: derived subroutineRefs *

subObjCode: derived subroutines.objCode

libraryRefs: set ref Library

libraries: derived libraryRefs *

libObjCode: derived libraries.objCode

executable: computed bits { subObjCode, 1ibObjCode }

A program’s executable code is computed from compiled subroutines and libraries.
If the object code associated with a subroutine or library changes, the executable is

marked void and must be recomputed by a linker.

Subroutine

[
srcCode: bits

objCode: computed bits { srcCode }
1

A subroutine has two parts—source code, and object code computed from the
source code. If the source code of a subroutine changes, its object code is marked void
and must be recomputed by a compiler. The “bits” designation for source and object
code merely indicates a primitive type of data that have no semantic meaning fo the da-
tabase, and would probably contain ASCII text and machine instructions, respectively.

Library
[

1

objCode: bits

A library consists of pre-compiled object code.

This example is simplistic. A better schema for CASE would include structure for subrou-
tines, possibly a parse tree, rather than having two “bits” slots to represent the source and

object code for the subroutine. Adding structure would permit updates at a fine granularity

48 Copyright © 1991 by Kelth Hall

and allow smart compilers and linkers to incrementally recompute object code and execut-

ables [Breitbard 68].

Objects

Figure 13 shows programs Prog; and Prog, which use subroutines Main; and Main, and

library LibC; this example uses the programming language C.

Figure 13: Example objects using the software module schema.
The executable code for program Prog; (Prog,) is built from the object code from Main,
(Main,) and object code from LibC. If the source code for Main; (Main,) changes, the ob-
ject code for Main; (Main,) and the executable for Prog, (Prog,) are marked void.

The Object Data Model 49

Part 2.H: Extensions to Ob ject Model

The object model presented in this chapter is by no means the only model which is reason-
able. It was chosen to be illustrative of characteristics which are useful in the design domain
and to serve as a formal foundation for later chapters in this thesis. In particular, any object
model chosen should minimally include nested objects, object references, set-valued slots,
and computed slots. Extensions to this model may offer other characteristics or capabilities
that make the application programmer’s Job easier or improve efficiency or both. Section

7.C.2 discusses ways in which the object model can be extended.

50

Copyright © 1991 by Keith Hall

Chapter 3

Motivation

This chapter motivates research on the Change Manager by describing the characteristics
of traditional databases and CAD tools and by identifying the assumptions made when
those databases and tools were developed; these characteristics and assumptions limit the
amount of concurrency which can exist in the traditional design environment. This chapter
also discusses features which databases and tools need in order to support concurrent de-

sign, but which traditional databases and tools lack.

The first part of this chapter discusses the traditional design environment and describes how
the traditional design environment fails to adequately support concurrent design. The sec-
ond part discusses features of the next-generation design environment which compensate
for weaknesses of the traditional approach. The third and final part proposes the Change
Manager as a means to provide the features discussed in the second part, gives a high-level
view of the Changel Manager, and lists its requirements. Later chapters discuss in detail
what services the Change Manager provides for the database and tools, how the Change

Manager operates, and what invariants it enforces and degree of consistency it guarantees.

Part 3.A: Traditional Design Environment

This part of the chapter describes the design environment offered by a traditional database

and traditional tools.

51

52 Copyright © 1991 by Kelth Hall

Section 3.A.1: Traditional Tool Architecture and Operation

A traditional tool consists of application code, internal state, and a translator from and to

the data model offered by the database. See Figure 14.

7 //////////////I/////////////////////////I////I///////////I//////////I/////////////I/////I//I/

TOOL

NN

application code / computed slot functions

data format
translator

\\\

N
\\\

ALLILLLLLLSLLLLL LTSS S LSS LS LS SIS IS SIS ST SLLLLLS LSS LLSSS LS LA LSS LSS LSS L LSS SIS SIS LI SIS S S /4

LTS LISS LS LSS LTSS SLS S LS TSI LS SIS S SIS SSSLLLA /////////////////////////////////////I//I//

DESIGN DATABASE

\\\\\\\\\\\\\\S
ENNANNNNANANNANN

Figure 14: Traditional tool architecture.

The tool loads data from the database and translates it to a tool-specific format. When
changes are saved, the reverse translation occurs.

The operation of a traditional tool consists of repetitions of five phases; these phases are

described in this section.

~ Motivation 53

Acquisition of Locks

Before a tool can manipulate data, it must secure write locks on the design objects to be
updated, and read locks on design objects it will use during the course of its operation.

Locks are acquired by use of the check-out protocol described in the next section.

Data Loading

A tool developer uses particular data structures and algorithms in order to achieve efficient
operation of that tool. Because different tools perform different tasks, the data structures
and algorithms chosen to maximize that efficiency depend upon the tool. The design data-
base offers one integrated data model to tools; design data must be accessed and stored us-
ing this data model. No single data model can offer the representation of design data which

is most efficient for all tools.

The design database maintains data in some normalized format; tools then interact with the
database using the common data model, as defined by the database schema. In the case of
a database that offers an object model, this means that the contents of a tool’s data structures
are derived from the objects read from the database and that updates from a tool to the da-

tabase must be presented as updates to objects.

After the appropriatc; locks have been acquired, a tool loads from the design database those
design objects which it needs to access or update. Each tool has the responsibility of trans-
lating between the view offered by the database and the special-purpose data structures
which comprise its internal state. The translation is performed by the tool’s data format

translator.

Data Manipulation

After data have been translated to a form appropriate for the tool, the design data are ma-

nipulated. A tool such as an editor requires a high degree of interaction with the engineer

54 Copyright © 1991 by Kelth Hall

who invoked the tool during this phase. Other tools such as consistency checkers or simu-
lators can perform their tasks with little direction from the engineer. It may be impossible
to predict the duration of this phase of a tool’s operation; data manipulation may continue

for days or weeks.

Data Unloading

After a tool has manipulated design data to the satisfaction of the engineer who invoked the
tool, the internal state of the tool is translated to changes to design objects in the database,
and these changes are sent to the database. These design objects then assume their new state

in the database.

Release of Locks

After a tool has finished accessing or manipulating design objects, it should release locks it
acquired in the first phase, so that other tools can acquire locks on those objects. Some da-
tabases will, upon detecting that it has lost connection with a tool, assume that the tool’s
operation was aborted and release all locks that the tool had acquired, in order that the op-

eration of other tools is not delayed.

Section 3.A.2: Traditional Workspaces

Stable designs are placed in the public area of the database. All updates to design data are
encapsulated within work areas called workspaces [Gray 81]. A workspace is a region in
the database which holds copies of design objects. Tools make changes only to objects in
workspaces. These updates are tentative: a tool atomically commits changes to the public
area when the desired state is achieved. The public area is thus used to hold designs which
have achieved some level of correctness. Instead of committing changes in a workspace,

the changes can be aborted, which means that updates since the last commit are discarded

Motivation

5§

and the view offered by that workspace is the same as that offered by the public area. See

Figure 15.
VIIIIII/// ’/IIIIIIII; "/IIIIIII/; '/’/I/III/I’ ZI/III///’ ;/II/II/I//
? ‘7 7 7 7 7 ;7 ;7 7
Ztool’ 7tool? ’tool; ’tool’ ftool? Ztool?
7 7 7 7z 7z 7 7 4 z z 7
vl % 2 2 ‘

/I/II

Srrs, 2222

workspace]

workspace

workspace

public

arca

\ Design Database

Yrrrrrrrss

S

Changes made by teols to design data in worksp
committed, they take effect in the public area,

Figure 15: Workspaces.

aces are tentative. When those changes are
which holds stable designs.

Updates in Workspaces

Copies of design objects in the workspaces hold the tentative state of the objects. The up-

date operations described in Part 2.F can be applied to the design objects in a workspace.

A workspace offers a view of design objects, which is the collective state of the design ob-

Jects. The view of the design objects offered by a workspace is the view of the objects in

the public area modified by some delta; this delta is concatenation of all updates in that

56 Copyright © 1991 by Kefth Hall

workspace since the last commit. Each workspace has an associated transaction log which
records what updates have been performed to objects in the workspace. The transaction log

is useful in the event that one or more updates must be undone.

Commit and Abort

Let Vy(t) and Vp(t) represent the view offered by workspace W and the public area P at
time t. Let u; represent the i update to W, and Ay/(t) =<uy, u,, ..., uy, > represent the list
of all updates applied to W through time t since the most recent commit at time threy Commit-

Then the semantics of update, commit, and abort are as follows:

Forallt, Vy/(t) = Vp(t) + Aw(t). In other words, the state of objects in the workspace is the

same as that in the public area excepting updates made to objects in the workspace.

If update u occurs at time t,, then Aw(ty) = Aw(t, - 1) + <u >, which is to say that updates

have a cumulative effect on the workspace.

Suppose updates to W are committed at time tcommit-
Then for all t, tprevCommit < t < teommits Vp(t) = Ve(tprevCommit)-
Furthermore, Vy(teommit) = Ve(tcommit) = Ve(teommit - 1) + Awtommic - 1) and
Aw(tcommit) = <>)

In other words, updates in a workspace have no effect on the public area until the updates

are comrmitted, and all updates are applied atomically at commit time.

Suppose updates to W are aborted at time tabort-

Then Vy(tabort) = Ve(tabort) = Ve(tpreyCommit) 20d Ay(tapor) = < >.

In other words, aborting changes in a workspace causes them to be discarded.

Motivation 57

Section 3.A.3: Traditional Design Object Check-out & Check-in

Before a tool can read or update a design object in a workspace, it must check-out that de-
sign object into the workspace. Check-out is an association among tool, workspace, and de-
sign object. See Figure 16. Check-out may be made either for read or update access. A
design object may be checked-out for update access by only one tool at any given time. Fur-
thermore, checking-out an object for update access excludes read access by different tools.
Thus in the traditional design environment the check-out of a design object D for update in
a workspace W by tool T is an exclusive write-lock on D given to T which limits updates
to D to occur only in W and only by tool T, and checking-out for read access is a shared

read-lock.

v

CLLLLLL LTI 77777

N
SSS\

SAANANSNSSERERRGRY
§:} W

ANSERRRRERRRRSR

N
N
N

N

)
Lo

/7/// IIIIR

3
6
94—

Figure 16: Design object check-out.

Tool T3 checks-out design objects Ds, Dy7, and D3 into workspace Wy, either for read or
update, and caches copies of those objects internally.

Instead of checking out an existing version of a design object for update, a tool can create

anew version of that object and then check-out the new version for update access. This new

58 Copyright © 1991 by Kelth Hall

version is initially a copy of what was previously the latest version. Updates are then ap-
plied to this new version. The tradeoffs of Creating a new version versus undating an exist-

ing version are discussed in Section 4.B.7.

The act of check-in releases the intent to read or update an object which was checked-out.
Check-in is the inverse of check-out. A tool must apply internal updates to the workspace

or abort them before it checks-in design objects.

Section 3.A.4: Limitations of Traditional Tools

As described above, the design database offers the protocol of check-out and check-in
which ensures that tools have exclusive access to design data for the duration of their op-
eration. This is necessary because the tools have been written to assume that data in their
read set, that is, those data upon which it has predicated its operation, are not changed by
agents external to the tool. Allowing other tools to change those data might adversely affect

the integrity of the tool’s results.

Check-out uses an exclusive lock. So although it guarantees tools that their read sets will
not be disturbed, concurrent operation of tools is still severely limited. The check-out/
check-in protocol requires that tools which may need update access to design objects do not
execute concurrently, which means that engineers must carefully plan which tools they will

use when and on what design data.

The goal of concurrent design is to allow engineers to cooperate and their tools to share ac-
cess to design data, so that the design in progress, rather than the tools in use, is the primary
concem. For example, an engineer should feel free to invoke an editor and a simulator on
a design, and would expect the simulator to act in a reasonable fashion (\perhaps subject to
user preferences) when he edits the design. Likewise, two engineers may wish to edit “dif-

ferent regions” of the same design object, and have informally agreed not to disturb each

59

other’s efforts. Traditional design environments, because of their use of exclusive locking,

prohibit both situations.

Integrated Toolsets

The usefulness of a set of CAD tools is limited by the degree to which they can work to-
gether. There have been attempts by tool vendors to build integrated toolsets
[Henderson 89]. In an integrated toolset, each tool knows the data needs of every other tool;
by intercommunicating the tools are able to stay consistent with one another. This requires
that each tool stay aware of all tools which are running and inform them when relevant
changes occur. For example, a toolset might consist of a layout editor, a schematic editor,

and a simulator. See Figure 17.
There are several difficulties with the approach of building an integrated toolset:

¢ The complexity of intercommunication grows O(nz), where n is the number of tools.

* The approach taken in an integrated toolset requires that tools understand the semantics
of other tools. But doing so means that if any tool changes, other tools must be modified

to reflect that change.
* The addition of a new tool also requires modifications to existing tools.

* The communication mechanism is specific to a particular tool vendor. Thus the toolset
can include only tools from that vendor. No single vendor can provide all the function-

ality that a designer may need, however.

Section 3.A.5: Haphazard Consistency Checking in Traditional Environ-

ment

In a traditional design environment, consistency checking is done in a manual and haphaz-
ard fashion. CAD Frameworks use timestamps on data files to detect constraints that may

be invalid [Bushnell 86]. What is needed is the automatic invalidation of constraints when

60 Copyright © 1991 by Keith Hall

'//III/I/II//I/IIII////IIII/II/I/II/I/II/I/I//III/I//I/IIII/I/I//I’

Integrated Toolset

A
A
/A
/
/
;
/

/
/
/
/
/
/
/
4
/
A
/A
/
/
/
7/
/
/
A
/
/4
/
/
/
7
/
A
/
/
’
/
/
/A
/A
’
4
/
/
/1
/4
A
/
’
/
/
7/
/
7
/
4
/
/
/
7
/2
/
/
Z
YIIrIIIIIIIIIIIII P17 777 s 00177 (Ll LTI TP TIIVIIIIIIIIIIIIIIN

/
/
A
A
/
/
A
A
/
A
/
/
A
/
A
/
/
/
/
/
A
/
/
A
A
/
A
7/
/
/
/
/
/
/
A
/
4
/
/
A
/
/
/
A
/
/
/
/4
Z
/

Design Database

Figure 17: Integrated toolset.
Tools within the toolset share access to design objects and stay consistent by intercommu-
nicating,

design objects upon which they depend have been updated. Requiring that all tools be
aware of all constraints which have been defined by the schema, and trusting them to mark
relevant constraints as invalid when updates occur, are unreasonable expectations of tools,

however.

Motivation 61

Part 3.B: Next-Generation Design Environment

This part of the chapter continues the discussion of Part 1.D. It explains those features of
the next-generation design environment which support concurrent design and which are not

offered by traditional tools and databases.

Section 3.B.1: No Exclusive Locking in Next-Generation Environment

As mentioned in Section 3.A.3, when a tool checks-out a design object for update, the da-
tabase grants the tool an exclusive lock on the object. Thus the traditional design database
controls access to design data in a manner analogous to concurrency control in a business
transaction processing database. This should not be surprising, however, since most data-
base technology in use today has its origin in business application. It is important not to
make too much of this analogy, however, because the underlying paradigms are quite dif-

ferent.

In a business transaction processing system, transactions are short and are kept completely
isolated from each other via exclusive locking or optimistic protocols [Papadimitriou 84].
Agents requesting the transactions are not allowed to assume that state will be retained
across transactions. By contrast, in the design environment, transactions last much longer
and are explicitly allowed to interact. Traditional techniques for handling concurrent access
in 2 DBMS are not appropriate in a concurrent design environment, since a design database
must permit transactions of arbitrary length which do not preclude access to data by many

tools.

It is not feasible to place an exclusive lock on an entire design since many engineers work
on overlapping aspects of it simultaneously. Even exclusive locking of only one portion of
a design is also limiting: parts of a design are interrelated, and it may be useful to have two
or more tools share updates to the same portion of a design. For example, two engineers

might wish to share updates to the same portion. Or one engineer might want to run two

62 Copyright © 1991 by Kefth Hall

tools simultaneously (e.g., an editor and a simulator) on the same design data; tools must

not be constrained to be invoked in a serial fashion.

Unlike the traditional design environment in which exclusive locking by the database en-
sures that tools can assume the locked data they access are static, in a concurrent design
environment a number of tools may need to share updates to the same design objects. With-
out exclusive locks, there must be other mechanisms which permit tools to maintain views

of the design consistent with the database.

Section 3.B.2: Information about Updates in Next-Generation Environ-

ment

Keeping a tool informed of the ways in which its read set has changed enables it to adjust
its view to match the changing state of the database. Tools should not be expected to have
knowledge of the semantics of other tools, however. Thus a central mechanism is needed
which will notify a tool when data it has cached are changed by other tools. That mecha-
nism is part of the Change Manager; it makes use of active data in the object store and is

described fully in Chapter 4.

Section 3.B.3: Tools React to Changes in Next-Generation Environment

Even with a mechanism that guarantees tools that they are notified of changes to design
data, each tool, in order for it to interact harmoniously with other tools, must react to these
notifications in a proper fashion. This includes not only making its cache of design data
consistent with the database, but also possibly undoing or making compensating changes
to updates it had performed but not yet committed to the database. Exactly what a tool does
depends upon the semantics of the tool and the design data. How notifications should, in

general, be handled by a tool is discussed in Chapters 5 and 6.

Motivation 63

Section 3.B.4: Use of Differential Update in Next-Generation Environ-

ment

Most tools, when they execute, make incremental rather than sweeping changes to the de-
sign. But if a tool submits its updates to the database as “the new state of the design” rather
than “the differential changes applied to the design”, the incremental information is lost.
Incremental information can be lost in a similar fashion when a workspace is committed to

the public area.

Incremental information is useful because it enables notifications of changes which are sent
to other tools to take the form of a small rather than a large delta. A small delta can more
easily be handled by a tool, and might be used by an intelligent tool to incrementally re-
compute the value of a computed slot. Tools in the next-generation design environment will
update the database by submitting a list of differential updates A = <uy, uy, ..., uy > in order

to preserve knowledge of incremental updates.

Section 3.B.5: Next-Generation Environment Must Be Open-Ended

For the reasons discussed in Section 3.A.5, integrated toolsets are complex and of limited
utility. It is not feasible for each tool to understand the semantics of changes made by all
other tools; indeed, sihce new tools will be added, it cannot be anticipated what their func-
tionality will be. Instead, tools must share an open-ended environment which can be ex-
tended to accommodate new tools without necessitating change to existing tools or other
parts of the design environment. Furthermore it must accommodate sets of tools which are
tightly coupled (such as two tools sharing updates to the same design objects), as well as
those which are loosely coupled (such as tools under the control of different engineers

working on different aspects of the same design).

64 Copyright © 1981 by Kelth Hall

Section 3.B.6: Support for Cooperation in Next-Generation Environment

Engineers use tools in separate workspaces when the design objects checked-out into those
workspaces are unrelated, or when integration of design objects into a parent design is be-
ing deferred. At other times, when engineers want to work on very closely related parts of
the design, any partitioning may seem artificial and may impose an unacceptable overhead.
In this case, they will use tools that access the same design objects in the same workspace.
See Figure 18. When tools share access to a design, the tools’ views of the design will be
kept synchronized with that of the workspace through notifications.

design hierarchy
AZ 7////////}///////
C 7 7
3 7z T1 4
4 o /
B5 2 :E:'v 4':’?:4
7z X 7
7 5 4
Y 7

Figure 18: Close interaction among engineers.

In this figure, engineer E; uses tool T; to update Bs in workspace W, and engineer E, uses
tool T to update C; in W. Both E; and E, update A, in W, because changes to Bs and Cs,
respectively, may require parallel adjustments to A,

Motivation 65

It is important to note that using tools constructively in this fashion depends upon informal
communication among the agents using them. This concept of cooperation among agents
is absent in the traditional design environment but is an important aspect of the next gener-

ation design environment which will support concurrent design.

Section 3.B.7: Next-Generation Environment Offers Workspace Hierar-

chy

The notion of workspace, as presented in Section 3.A.2, can be generalized to a hierarchy

[Moss 85]. See Figure 19. At the top of the hierarchy is the root workspace W,,.. Every

://1//////2 2. 2 7/ ;;. 2 ;/1 7 '?-' %
Ztool’ stool? 7tool? ‘tool{ %tool?
7 7 z 77 ’ / 7 ¢ A

’I/I/l/ll/; ;IIII[I/IA ;II//[II//‘ //II//[III; v

W, W,

Vw3 Vws

W3

Vw3

;’/IIII/I/I

Vi A
7 toolj
Zrrrrssisl W 1

W.
Vwi 2

;1/11//////
%

/
/ tool ,\
Vrrrrrrrrs

W,

ot
VWroot

Figure 19: Workspace hierarchy.
Tools check-out design objects in workspaces. Tool updates are encapsulated within a
workspace, and propagate to the superior workspace at commit time. An inferior workspace
offers a view of design objects which is that of the superior workspace modified by the up-
dates which have been applied to the inferior workspace.,

66 Copyright © 1991 by Kelth Hall

workspace W except Wy, has a superior workspace Superior(W). The root workspace
holds archived designs, libraries of components, and fully validated designs. “Super” work-
spaces, that is, those closer to Wit hold design data which is more “correct”, “stable”, or
“public”. The state of a design in a “sub” workspace has a lesser degree of validation, is

more tentative, or is less public.

The root workspace always exists. Other workspaces are dynamically created and de-
stroyed. A supervisor may create sub-workspaces in order to separate unrelated projects or
to create a work area with consistency requirements (described in the next section) less
stringent than those of the root workspace. An engineer may create an inferior workspace
In order to encapsulate tentative or experimental updates, or narrow his focus to some sub-

set of design objects.

Let W} and W, be workspaces. We define the < relation between workspaces to be the re-
flexive and transitive closure of the “inferior-of” relation as follows:

W;<wW;y

W1 < W, implies Wy < Superior(W,)
If W) <W; and W; # W,, then W, is said to be an sub-workspace of W,, and W, is said

to be a super-workspace of Wj.

The workspace hierarchy has invariants and semantics of commit and abort that are com-

pletely analogous with those presented in Section 3.A.2. Given workspace W Wp:

For all t, V() = V superiorw)(t) + Aw(t).
If update u occurs at time t,, then Apw(ty) = Aty - D+ <u>.
Suppose updates to W are committed at time tcommit-
Then for all t, tpreyCommit < t < teommits Vsuperiorew)(®) = Ve(tprevCommit)-

Furthermore, Vw(tcommit) = VSUperior(W)(tcommit) = VSupen' or(W)teommit - 1) +
Aw(tcommit - 1) and Awfteommir) = < > (the empty list).

Motivation 67

Suppose updates to W are aborted at time tabort-
Then Vy(tapor) = VSuperior(W)(tabort) = VSuperior(W)(tprevCommit) and
Aw(tapor) = <>.
Along with the workspace hierarchy come generalized forms of check-out and check-in.

See Figure 20. A design element can be updated only in the workspace in which it is cur-

A

e check-out

j check-out

5.9
%
%

Figure 20: Generalized check-out.

A design object can be checked-out into a sub-workspace in order to make tentative updates
which will later be committed to the superior workspace.

rently checked-out for update. The rules of check-out and check-in are described fully in
Chapter 4.

In 2 DDMS which offers two levels of workspace—public and private—the actions of
check-out and check-in of a design object strictly alternate. What is needed is a dynamic
hierarchy of workspaces for agents and their tools which permits a subworkspace to be cre-
ated at any time. In that subworkspace a subset of design objects can be checked-out and
experimentally updated without affecting the state of those objects in the superior work-

space. When a set of updates is deemed acceptable the objects can be checked-in and the

68 Copyright © 1991 by Kelth Hall

changes committed atomically to the superior workspace. The Change Manager offers a
programmatic interface to manipulate a hierarchy of workspaces; the interface will be pre-

sented in Chapter 4.

Section 3.B.8: Constraint Requirements in Next-Generation Environ-

ment

The object model described in Chapter 2 mentions constraints, which are types of computed
slots. Constraints among design data must at some point in the design be ascertained to be

valid. The following are example of constraints:

* The bounding box of a design element may be constrained to be small enough so as not

to overlap neighboring modules.

* Two design elements are alternate views of the same component and should at some

point in the design become equivalent.

* The implementation of a design element matches its specification.

One restriction which is intended to limit the propagation of potentially incorrect changes
to a design is the requirement that the validity of designated constraints of a design be as-
certained before changes can be committed to a workspace in the DDMS. In traditional de-
sign environments this tasE is performed manually. The manual method is error prone,
however: an engineer may forget to invoke tools to check consistency, or may be tempted

to give intuitive (and often incorrect) approval of the updates performed.

The Engineering Information System (EIS) project [Hall 88] incorporates a rulebase, and a
corresponding mechanism to interpret that rulebase, into the design environment for the
purpose of automatically running validation tools on modified designs. The Change Man-
ager offers constraint requirements in workspaces as part of the next-generation design
environment. A constraint requirement is an attachment to a workspace that names a con-

straint in design objects which must be known to be valid within a tool cache (or in an in-

Motivation

69

ferior workspace) before the tool (or inferior workspace) can commit to that workspace.

Constraint requirements are inherited by super-workspaces. See Figure 21.

W3

Wy

design
rules

Wroot

timing has been validated.

inherits the constraint requirement of desi

Figure 21: Constraint requirements.

In this figure, workspace W, guarantees that design rules are met by objects in that work-
space, and requires that updates to W, preserve the validity of design rules. Workspace W,
gn rules from W,, and additionally requires tim-

ing verification. The root workspace Wioot requires both that design rules are met and that

A supervisor can use constraint requirements to enforce some subset of constraints in cer-

tain workspaces in order to guarantee a known degree of consistency within that work-

space. The supervisor can assign different constraint requirements to different workspaces

depending upon the degree of correctness required. A public workspace might have strict

requirements, whereas an experimental workspace might have none, for example.

A constraint requirement does not specify how a constraint is to be validated, nor when. It

is merely a restriction on committing changes to a workspace which is based upon the status

of constraints. Other mechanisms would be needed to control when to fire consistency

checkers.

70 Copyright © 1991 by Kelth Hall

Section 3.B.9: Conflict Logging in Next-Generation Environment

Even when engineers are benevolent and attempt to cooperate, and the tools under their
control are operating correctly, there may be times when one engineer will make a change
to a design object that another engineer cannot understand, cannot adapt to, or considers an
error, and is therefore unacceptable. This is knows as a conflict. Conflicts may be identified
when updates are applied to a shared workspace, or when an attempt is being made some

time later to integrate a new version of a design object.

When a conflict occurs, an agent or the agent’s tool may wish to register disapproval of the
update in an effort to obtain corrective action or an explanation. That is done with a conflict
record that references the offending and offended agents, the update which caused the con-
flict, and the tool which performed the update. The engineers normally will try to resolve
the conflict between themselves. If they cannot, then resolution of the conflict is the respon-
sibility of the supervisor. A conflict resolution is a record that some action was taken on
behalf of the conflict. Such action might be a retraction of the offending update or an over-
riding approval by a supervisor. A record of conflicts and their resolutions are kept for each
workspace both in order to provide a history and to enable a supervisor to browse unre-

solved conflicts.

In order to limit the propagation of conflicting updates, the design environment should pro-
hibit a workspace from committing to its superior workspace if it contains unresolved con-
flicts. Support for conflict logging requires that change notifications sent to tools include
the identity of the engineer and tool responsible for the change. The traditional design en-

vironment offers no support for conflicts.

Motivation 71

Section 3.B.10: Design Status in Next-Generation Environment

As mentioned in Section 1.C.2, in the next-generation design environment a portion of the
internal state of a design database is an extension of the design data, and is referred to as

design status. Here are some examples of design status:

e which versions of a design element exist
* the hierarchy of workspaces
* which agents are running what tools

* which tool has checked-out what design object in what workspace

Note that information about tools which are currently running is part of the design status.
In order to acquire this information, CAD tools are required to register (unregister) them-

selves with the DDMS when they begin (respectively, end) operation.

Access to the design status can assist an engineer in coordinating design activities with
those of other engineers. For example, if engineer E; is updating design object Z, the
knowledge that another engineer E, is also updating Z will alert E; to potentié.l conflicts,
and may catalyze communication between E; and E;. Or an engineer may want to check
what constraint requirements have been attached to the workspace to which the design will
eventually be committed. Design status is useful for a supervisor, too, who wants to monitor
shared access to designs, conflicts, or the creation of new versions, for example, in order to

monitor progress of the design [Roussopoulos 91].

Traditional design databases do not make design status accessible to tools. The next-gener-
ation design environment must not only provide access to the design status, but make it ac-

tive, that is, allow tools the ability to track changes in design status.

72 Copyright © 1991 by Kelth Hall

Part 3.C: The Change Manager

Section 3.C.1: Definition

The two pfeceding parts of this chapter have described in what ways traditional databases
and CAD tools are inadequate for an environment of concurrent design, and have proposed
enhancements that overcome these deficiencies. The remainder of this thesis builds upon
the object model discussed in Chapter 2 and presents the Change Manager, which is a col-
lection of software modules, distributed among the DDMS and tools, which collectively

provide the framework for this enhanced capability.

The Change Manager is a software layer that sits above the repository of design data but
below the applications which manipulate those data, thereby acting as an intermediary be-
tween the application code in the tools and the data store in the DDMS. Operationally, ap-
plication code within a tool invokes libraries of the Change Manager which have been
linked with the tool—the Tool Change Manager or TCM—the TCM interacts with the
Change Manager in the DDMS—the DDMS Change Manager or DCM—and the DCM in-
vokes functionality of the data store. Procedure calls are synchronous, that is, the caller is
blocked until the procedure completes. Because of the use of triggers to achieve active data
in the data store, notifications are passed asynchronously from the data store through the

Change Manager to the application. See Figure 22.

Section 3.C.2: Requirements of the Change Manager

In order to provide services which are needed in the next-generation design environment
which supports concurrent design, the Change Manager must meet the following require-

ments:

Motivation

73

Agents

informal %
communication /

AAAAN A5 S NRRSRERRRRRCRR S

7 Y, Vol Ll a Gl 71///1/////////////
Z 1 7 7 1 7 7 z
jtool; 7 Ztooly, 7 Ztool,
s 7 V] 7
s z 7 7
v / /] /, %
/4 /] /4 4
7 7 7 Z Z
g application é ; application ? application ;
z 7 7 Z 7
/ / v A /
A / 7 z /
/ / 7 4 /
/ /7 /
/ 7 7 Z /
e Z 7

object store

Procedure Call/Return
: (synchronous)

§ Notification
(asynchronous)

Figure 22: Use of the Change Manager in the design environment.
The Change Manager offers services to CAD applications and augments the functionality
of an object-oriented data store in order to make them suitable for use in a concurrent design
environment.

74 Copyright © 1991 by Kekth Hall

° support for varying degrees of cooperation

Facilities provided by the Change Manager must accommodate sets of tools which
are tightly coupled (such as a schematic editor and a simulator which are being used
simultaneously by one designer) as well as those which are loosely coupled (such as
tools under the control of different engineers working on different aspects of the same

design). Thus it cannot make use of exclusive locking in order to ensure consistency of

design data.
* use of notifications rather than exclusive locking

The DCM tracks updates to shared data. Unlike a traditional database in which the
guarantee given to an application is that it has exclusive access to design data, the DCM
instead guarantees only that a tool will receive asynchronous notifications of changes
to data it is accessing. The tool can use these notifications to maintain a view consistent
with the database. Cooperating engineers communicate informally; the DCM formaliz-

es asynchronously communication between the DDMS and tools.
* open-ended

The Change Manager is independent of the semantics of particular applications
within tools, so that new applications can be added to the environment without neces-
sitating modification to the Change Manage. Thus, in order for the Change Manager to
track changes to design data in which an application is interested, each application must
inform the TCM of the set of updates in which it is interested. This requires that the
TCM offer a programmatic interface to applications with which they can specify that

set of updates.
* workspace hierarchy

The DCM offers a hierarchy of workspaces and associated check-out and check-in -

protocols with which to encapsulate tentative changes to design data.
* constraint requirements

The DCM enforces consistency constraints which have been attached to workspac-

€s.

Motivation 75

conflict mechanism

The Change Manager offers tools a mechanism to register conflict notices and con-
flict resolutions, and prevents updates in an inferior workspace from being committed
to its superior workspace if there are unresolved conflicts in the inferior workspace. The
Change Manager does not enforce a particular policy of conflict resolution but rather
provide a vehicle for instituting policy by allowing tools both to decide which changes

constitute conflicts and to determine what is done in the event of a conflict.
design status

The Change Manager gives tools access to the design status.
automatic tool cache consistency

Tools cache design objects which they are accessing. A cache may grow stale, how-
ever, when another tool updates those design objects. The TCM processes update noti-
fications from the DCM and ensures that the cache stays consistent with the DDMS in

the face of updates by other tools.
automatic voiding of constraints

It is unreasonable to assume that applications will understand the impact of updates
they make on all constraints in the design. The set of constraints may grow over time,
for example, as the data model evolves. For this reason, the TCM is responsible for
voiding constraints whose validity may have been disturbed by updates. This is dis-
cussed fully in Chapter 5.

efficiency

When modules of the TCM which are linked within a tool are invoked by an appli-
cation, the CPU of the workstation running the tool is used. Thus the TCM must be rea-
sonably efficient and not significantly degrade the performance of individual tools. The
DCM manipulates and controls access to data in workspaces, but the manipulations of
design data are performed by the individual applications, each with its own set of spe-
cial-purpose data structures which enable it to perform its task efficiently.

76 Copyright © 1891 by Kelth Hall

° programmatic interface to applications offered

The TCM offers a programmatic interface and associated protocol with which ap-
plications can create, destroy, commit, and abort workspaces, check-out and check-in

design objects, and access and update design data.

Section 3.C.3: Architecture and Operation

Remaining chapters of this thesis present in detail the architecture and operation of the
DCM and TCM, explain what capability they add to the DDMS and tools, respectively, and
show how that capability provides what is needed in the next-generation design environ-

ment (as described in Part 3.B) and meets the requirements listed above.

Chapter 4
Change Manager Support for the DDMS

The Design Data Management System (DDMS) is the design database of the next-genera-
tion design environment, as described in Part 3.B, which will support concurrent design. It
follows the paradigm of a server, whose function is to await and service requests from cli-
ents, in this case CAD tools. The DDMS is unlike a server, however, in that servicing a re-
quest from one tool may cause asynchronous notifications to be sent to other tools. This
chapter presents the architecture of the DDMS, describes what functionality the DDMS
Change Manager (DCM) adds to an object-oriented data store in order to overcome the
weaknesses discussed in Chapter 3, presents the programmatic interface between CAD

tools and the DDMS, and summarizes the invariants maintained by the DCM. -

Part 4.A: Architecture of the DDMS

Section 4.A.1: Iﬁtroduction

The Design Data Management System consists of an object store plus the DCM. The object
store provides persistent storage of the schema, annotated objects (explained in
Section 4.B.5 below) which store design data, and access permissions to those objects. The
DCM consists of seven modules: DDMS clock, tool registry, workspace manager, data ac-

cess module, update monitor, design status monitor, and conflict logger. See Figure 23.

77

78 Copyright © 1991 by Kelth Hall

SNNNRNANNRANNN

N

bea]

o

=t
A

ATLSLLLLS IS S S LSS ST //IVI’II////// ALLLLLLLLISLS LSS SIS SSS SIS S S SLLLLLLSS S LIS SLLT LSS S ST IS IS S

esign statu
Yotifications

N
N

y//////////////////

status
monitor

data access

object store

Z
Z
Z
z
Z
7
Z
Z
z
7
Z
7
7z
7
Z
Z
Z
7z
Z
Z
4
7
Z
7
7
Z
4
7z
Z
Z
7
Z
Z
Z
Z
2
Z
7
Z
Z
Z
Z
7
Z
7
Z
7
Z
7
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
7
Z
%
Z
Z
Z
Z
Z
Z
Z
Z
g
Z
Z
Z
Z
Z
Z
Z
Z
Z
7
Z
Z
7
7
Z
Z

Figure 23: Architecture of the Design Data Management System.
The DDMS consists of the object store plus the DDMS Change Manager. The DDMS
Change Manager is a layer between CAD tools and the object store; it consists of seven
modules: DDMS clock, tool registry, workspace manager, data access module, update mon-
itor, design status monitor, and conflict logger.

~ Change Manager Support for the DDMS 79

These seven modules work together and with the help of the object store offer a collection

of services to CAD tools.

In the next-generation design environment, agents will run tools locally on their own work-
stations. Tools are run asynchronously with respect to one another. The tools will commu-
nicate to the DDMS through the use of Inter-process communication (IPC). The latency of
IPC is high compared to communication within a workstation. So the choice of what func-
tionality to assign to the DDMS has been motivated by the need to reduce the frequency of
interaction of tools with the DDMS. In order to accomplish this, the programmatic inter-
faces presented in this chapter specify a granule of operation at the level of design object,

rather than at the level of slots.

Section 4.A.2: DDMS Clock

The DCM maintains an integer-valued clock in the DDMS. The clock is incremented (at
least) whenever the DDMS processes each request from any tool. If a request contains
many subrequests, such as when a tool commits a collection of updates to the DDMS, the
clock is incremented many times, once per subrequest. If the DDMS receives requests from
multiple tools at the same time, the requests are arbitrarily ordered and placed in a qucue to

be processed as soon as possible.

The timestamp of some operations, such as a tool committing a batch of updates, is remem-
bered by the DCM for later use. Other timestamps, such as the time at which the slot of an
object changed value, are stored in the object store. Because the clock is incremented after
each request, timestamps are unique. If the DDMS is distributed, then methods for event

ordering can be used to ensure uniqueness of timestamps [Lamport 78].

80 Copyright © 1991 by Kelth Hall

Part 4.B: Functionality of the DDMS Change Manager

This part of the chapter describes each service that the DCM offers to CAD tools, presents
the programmatic interface which a tool uses to access the service, and explains how mod-

ules within the DCM operate in order to provide that service.

Section 4.B.1: Tool Registration

Some of the information maintained by the DCM, such as which objects have been checked
out, is associated with a particular instance of a tool. Thus each instance of a tool has its
own identity. That identity is established when a tool registers itself, and is removed when

a tool unregisters.

Programmatic Interface

RegisterTool(AgentName, ToolName)

returns ToollD

When a tool begins execution, it must register itself with the DDMS. The DCM records
what tool is running and what agent is operating the tool, and returns a tool ID which
uniquely identifies that instance of the tool. The name of the tool and name of the agent can
be accessed as part of the design status, as described in Section 4.B.11. The identity of the
agent using the tool determines what access permissions are granted to the tool. The tool
ID returned by the DCM is used in subsequent requests to the DDMS to identify the tool
making the request.

UnregisterTool(ToolID)

When a tool terminates, it must unregister itself. The DCM invaiidates the tool ID and re-
moves the name of the tool and agent from the list of currently executing tools in the design
status. If a tool has a workspace selected (defined in Section 4.B.3), the tool must unselect

the workspace before it can unregister itself.

Change Manager Support for the DDMS 81

Section 4.B.2; Creating and Destroying Workspaces

As explained in Section 3.B.7, a hierarchy of workspaces is useful in a concurrent design
environment. The DDMS offers tools the ability to create and destroy workspaces and to
determine what workspaces exist. (It might be useful to limit creation and destruction of
workspaces to supervisors’ tools. Exactly what permissions are needed is a policy question,

and is beyond the scope of this thesis, however.)

Programmatic Interface

CreateWorkspace(ToolID, SuperiorWorkspacelD [, set InferiorWorkspaceID])

returns WorkspaceID

CreateWorkspace creates a new inferior workspace of a specified superior workspace and
retumns the unique ID of that new workspace. A set of IDs of workspaces which are inferiors
of the specified superior workspace can optionally be supplied; doing so will make them
inferiors of the new workspace. See Figure 24.

Initially the view of design objects in the new workspace is inherited (and is thus the same)
as the view in its superior, and the set of constraint requirements (explairied in
Section 4.B.4) is the union of those of its inferior workspaces (or the empty set & if no ini-

tial inferior workspaces were specified).

DestroyWorkspace(ToolID, WorkspacelD)

DestroyWorkspace destroys a specified workspace. A workspace W can be destroyed only
if the following three conditions are met:

1. W W, since the root workspace always exists

2. no currently executing tool has W selected (defined in Section 4.B.3)

3. there are no uncommitted updates in W

82

Copyright © 1991 by Kelth Hall

initial workspace hierarchy

workspace hierarchy after workspace hierarchy after
CreateWorkspace(Tool;7, W5) CreateWorkspace(Tooly7, Wo, { Wi H)

" Figure 24: Creating a workspace.

At the top is an example workspace hierarchy. On the left, workspace Wy is created initially

with no inferior workspaces. On the right, Wy is instead created with initial inferior work-
space W.

If there are uncommitted changes in W, W must first be committed or aborted before being

destroyed. When a workspace is destroyed, its inferior workspaces become inferiors of its

superior workspace. See Figure 25.

Change Manager Support for the DDMS 83

initial workspace hierarchy

workspace hierarchy after
Destroy Workspace(Tool 17 Wa)

Figure 25: Destroying a workspace.

The superior workspace inherits the workspace’s inferior workspaces when the workspace
is destroyed.

GetWorkspaceInferiors(ToollD, WorkspaceID)
returns set WorkspaceID

A tool can determine the inferiors of a given workspace by calling GetWorkspacelInferiors.

A tool can traverse the hierarchy of workspaces by recursive use of GetWorkspacelInferiors,

starting with W, .

84 Copyright © 1991 by Kelth Hall

Section 4.B.3: Workspace Selection

When a tool accesses and manipulates design data, it does so within a particular workspace.
The choice of workspace depends upon the degree of cooperation and interaction desired
with other agents and their tools. When two tools share a workspace they can work together
closely and share updates to design objects. The choice of workspace also depends upon

how stable a view of design objects is needed by the tool, as discussed in Section 3.B.7.

The tool must inform the DDMS in which workspace it needs to operate; this is called
workspace selection. After a workspace is selected, the operations of check-out and check-
in are performed with respect to the workspace selected. If a tool needs to work in a differ-

ent workspace, it must unselect the selected workspace and select the other workspace.

Programmatic Interface
SelectWorkspace(ToolID, WorkspaceID)

SelectWorkspace informs the DDMS that a tool wants to access design data within a par-

ticular workspace. A tool can have at most one workspace selected at any time.

UnselectWorkspace(ToolID)

UnselectWorkspace informs the DDMS that a tool has finished working in a workspace.
With no workspace selected, a tool cannot check-out design objects. Before a tool can un-

select a workspace, it must check-in any design objects that it had checked-out.

Section 4.B.4: Constraint Requirements

As discussed in Section 3.B.8, constraint requirements, which are attached to a workspace,
specify that a specified subset of constraints must be met both before and after any set of
changes is applied to objects in that workspace. A supervisor can use this facility to ensure

that designs meet certain standards before they are admitted to super workspaces that are

Change Manager Support for the DDMS 85

more publicly accessible, as mentioned in Section 4.B.5. Consistency requirements provide
assurance to any engineer who uses a workspace that design objects in that workspace con-

form to a certain level of validation.

The DCM enforces constraint requirements by rejecting a set of updates from a tool to the
workspace if one or more of those constraints is not valid; it also prevents an inferior work-
space from committing to that workspace if in the inferior workspace one or more of those
constraints 1is not valid. The DCM offers an interface to add or remove constraint require-

ments from a workspace.

Workspaces inherit constraint requirements from inferior workspaces. Thus the set of con-
straint requirements for a superior workspace is a superset of those for its inferiors, which
means that the degree of correctness required of a superior workspace is at least as stringent
as that required of its inferior workspaces. The root workspace, since it holds designs which
have achieved the highest level of validation, has a large number of constraint require-

ments.

Tools will normally operate in workspaces which have few constraint requirements, since
the use of a tool usually involves updates made interactively by a design engineer during

which no particular degree of consistency of the design is expected to have been achieved.

Programmatic Interface
AddConstraintRequirement(ToolID, WorkspaceID, ObjectType, Slot)

AddConstraintRequirement adds a constraint requirement to a specified workspace. The
constraint is specified as a slot of a particular object type, as defined by the schema; the slot
must be Boolean-valued. A constraint requirement cannot be added to a workspace unless
the constraint is met by all objects of that type in that workspace and in all super-workspac-

cS.

86 Copyright © 1991 by Keith Hall

RemoveConstraintRequirement(ToolID, WorkspacelD, ObjectType, Slot)

RemoveConstraintRequirement removes a constraint requirement from a specified work-
space and all sub-workspaces. Subsequent updates to those workspaces are accepted by the

DDMS even if the value of that slot is false or void.

GetConstraintRequirements(ToollD, WorkspaceID)

returns set Constraint

A tool can query the DDMS to determine what constraint requirements have been assigned

to a workspace by using GetConstraintRequirements.

Section 4.B.5: Committing and Aborting Workspaces

After designs in a workspace have achieved desired states of completion, it is useful to
make them more public or to move them to a workspace used for inte gration with the efforts -
of other engineers. This is accomplished by committing the workspace to its superior work-
space. As explained in Section 3.B.7, immediately after the commit, design objects in the

committed workspace and its superior have the same state.

One way to implement the commit operation would be for the DDMS to copy any design
objects which have changed since the last commit into the superior workspace. But this
would destroy knowledge of incremental updates, as explained in Section 3.B.4. In order
not to lose this knowledge, the DDMS maintains for each workspace W in the workspace
hierarchy the update delta between Superior(W) and W; when W commits, that delta is ap-
plied to Superior(W). That last sentence is not quite true: the DDMS doesn’t maintain the
update delta, but maintains information in annotated objects which it uses to easily com-

pute the delta.

Change Manager Support for the DDMS 87

Annotated Objects

The object store provides persistence for design objects, that is, it stores the values of their
slots. So that the DCM can remember what updates have been applied to each workspace,
the object store holds additional information for each workspace about each design object
that has been altered in the workspace. The result is an annotated object. The information

contained in design objects and in each type of slot of design objects is described in Table 1.

When a workspace W is committed, the DCM scans the objects in the workspace and uses
the annotations to determine what objects and set rﬁembers were created or destroyed and
what slots changed in order to generate a collection of updates that represent the update del-
ta for the workspace. That update delta is then applied to Superior(W) and the annotated
objects in W are discarded; they are no longer needed because the objects in Superior(W)

now have the same state as they did in W.

When a workspace W is aborted, no update delta is created and applied to Superior(W). In-
stead, annotations of design objects in W and in all sub-workspaces are merely discarded.
A workspace is aborted only if the updates that have been applied to design objects in the

workspace are to be undone.

The timestamps in the annotated objects assume the value T of the DDMS clock at the time
when the DDMS processes an update request by a tool. There is enough information in an-
notated objects without the timestamps to enable the DCM to infer the update delta. Time-
stamps are used for another reason: by comparing the timestamp of a computed slot to the
timestamps of the slots from which it is computed, it is possible for the dependency locator
in a CAD tool (presented in Section 5.B.7) to determine which slots were changed and
caused a computed slot to be made void; this can potentially save a tool a great deal of effort
In recomputing the computed slot. Timestamps are also used to ensure that a tool keeps a

consistent view of design objects in its cache; this use is explained in Section 4.B.6.

88

Copyright © 1991 by Keith Hall

Table 1: Annotated Design Objects

datum

annotation

value

meaning

design object

existence status

created in superior;
unchanged

The design object exists in the
superior workspace, and has not
been destroyed in this work-
space.

created in superior;
destroyed

The design object exists in the
superior workspace, but has
been destroyed in this work-
space.

destroyed in superior;
unchanged

The design object formerly ex-
isted in the superior workspace,
was destroyed in that work-
space, and has not been unde-
stroyed in this workspace.

destroyed in superior;
undestroyed

The design object formerly ex-
isted in the superior workspace,
was destroyed in that work-
space, but has been undestroyed
in this workspace.

not in superior;
created

The design object was created in
this workspace.

not in superior;

The design object was created

destroyed then destroyed in this work-
space.
value status same No slot of object has been up-
dated in this workspace.
different Some slot of object has been up-

dated in this workspace.

’ timestamp

some DCM time

This is the time at which slots of
the object were most recently
updated.

Change Manager Support for the DDMS

89

Table 1: Annotated Design Objects

datum

annotation

value

meaning

primitive slot

value

some value of the

The wvalue represents some

appropriate type physical or abstract quantity or
quantity.
value status same The value of the slot was not
changed in this workspace.
different The value of the slot was

changed in this workspace.

timestamp some DDMS time This is the most recent time at
which the slot was updated.
subobject slot value status same No slot of subobject was updat-
ed in this workspace.
different Some slot of subobject was up-
dated in this workspace.
timestamp some DDMS time This is the most recent time at
which slots were updated.
set-valued slot | timestamp some DDMS time This is the most recent time at

which a member of the set was
created or destroyed or that any
member was updated.

90

Copyright © 1991 by Keith Hall

Table 1: Annotated Design Objects

datum

annotation

value

meaning

member of
set-valued slot

existence status

created in superior;
unchanged

The set member exists in the su-
perior workspace, and has not
been destroyed in this work-
space.

created in superior;
destroyed

The set member exists in the su-
perior workspace, but has been
destroyed in this workspace.

destroyed in superior;
unchanged

The set member formerly exist-
ed in the superior workspace,
was destroyed in that work-
space, and has not been unde-
stroyed in this workspace.

destroyed in superior;
undestroyed

The set member formerly exist-
ed in the superior workspace,
was destroyed in that work-
space, but has been undestroyed
in this workspace.

not in superior;
created

The set member was created in
this workspace.

not in superior;

The set member was created

destroyed then destroyed in this work-
space.
other annota- | described in this table explained in this table
tions appropri-
ate to the type
of the member,
as described by
this table
object value OID of object or L The object ID of the object ref-
reference erenced, or a null value if there
slot is no reference.
value status same The reference in the slot was not
changed in this workspace.
different The reference in the slot was

changed in this workspace.

timestamp

some DDMS time

This is the most recent time at
which the slot was updated.

Change Manager Support for the DDMS

91

Table 1: Annotated Design Objects

datum

annotation

value

meaning

computed slot

validity status

void

Value of computed slot is not
current and must be recomput-
ed.

valid

Value of computed slot is cur-
rent.

voided

Computed slot has been voided
since workspace was last com-
mitted.

false

Computed slot has not been
voided since workspace was last
committed.

validated

Computed slot has been recom-
puted since workspace was last
committed.

false

Computed slot has not been re-
computed since workspace was
last committed.

timestamp

some DDMS time

if (validity starus = void)
The earliest time that the
slot was made void since
it was last made valid.
else
The most recent time
that slot was made valid.

other annota-
tions appropri-
ate to the type
of the comput-
ed slot, as de-
scribed by this
table

described in this table

explained in this table

derived slot

annotations ap-
propriate to the
type of the de-
rived slot, as
described by
this table

described in this table

explained in this table

92 ' Copyright © 1991 by Keith Hall

Programmatic Interface
CommitWorkspace(ToolID, WorkspacelID)

CommitWorkspace uses object annotations to compute the update delta between a work-
space and its superior, then atomically applies the update delta to the superior. The root
workspace Wy, since it has no superior, cannot be committed. A workspace W # W,

can be committed only if the following two conditions are met:

1. The constraint requirements of Superior(W) are met by all objects in W.

2. There are no unresolved conflicts in W. The existence of an unresolved conflict indi-
cates a problem that has not been resolved, such as a possibly erroneous update to a de-
sign. Preventing W from committing in this situation will block the propagation of er-

rors to more public workspaces.
AbortWorkspace(ToolID, WorkspacelID)
As mentioned above, instead of committing a number of updates in a workspace W to its

superior workspace Superior(W), the updates can be undone by aborting the workspace. A

workspace can be aborted only if the following two conditions are met:

1. there are no tools which have W or a sub-workspace selected

2. there are no uncommitted updates in any sub-workspace of W

The abort operation is accomplished by discarding all annotated objects in W. Aborting a
workspace W has no effect on Superior(W). After the abort, W and Superior(W) offer the

same view of design objects.

Aborting a workspace is a rather drastic operation. A less drastic way to undo selected up-
dates to a workspace is to use a tool to selectively perform compensating updates to achieve

a desired state of design objects.

Change Manager Support for the DDMS 93

Section 4.B.6: Design Object Check-out and Check-in

A workspace can be thought of as the working area for a long transaction whose lifetime
spans tool invocations. The DCM permits more than one tool, possibly under the control of

multiple agents, to share updates to the same design object in the same workspace.

Before a tool can access a design object, it must check-out that object. The object can be
checked-out for either read or update access. The DCM dramatically increases the potential
for concurrency and cooperation in the design environment; it offers mechanisms which en-
able check-out of design objects without use of exclusive locks. Neither check-out for read

nor check-out for update excludes check-out by other tools.

When a tool checks-out a design object X, the DCM retums the current state of the anno-
tated object; the tool places that annotated object in its cache of objects. The DCM will send
notifications of any updates made to X to the tool until the tool checks-in X. When a tool
requests to check-out a design object X for update, it implicitly checks-out all Dep(X) for
update access. (Src and Dep are defined in Section 2.D.2.) The tool must check-out Dep(X)

because updates to X may affect computed slots in Dep(X).

A design object can be checked-out for read without any restrictions. In order for the
DDMS to maintain a consistent view of objects, there are some restrictions on circumstanc-

es in which a tool is permitted to check-out a design object for update.

Restrictions on Checking-out Design Object for Update

A tool T which has selected workspace W can check-out object X (and implicitly Dep(X))

for update only if all of the following four conditions are met:

1. A supervisor has given the engineer who is running T the right to update Dep(X). If an
engineer has been given permission to update X, but not to update some design object

in Dep(X), then the engineer must create a new version of X, in this case an engineer

Copyright © 1991 by Keith Hall

who does have permission to update Y € Dep(X) must integrate the new version of X

into Y at some later time.

Each design object Y € Dep(X) is the latest version of a design element. Only the latest
version of a design element can be updated. Obsolete versions are read-only. The DCM
must be made aware of the creation and destruction of versions of design elements, so
that it can ensure that this restriction is enforced. The way this is done is presented in
Section 4.B.7.

For every design object Y € Sre(X) U Dep(X), Y is not checked-out for update except
in workspace W. This guarantees the invariant that if X = Y and both X and Y are
checked-out for update, then they are checked-out in the same workspace. See

Figure 26.

For every design object Y € Src(X) U Dep(X), there are no uncommitted updates to Y
in any workspace W~ unless W < W". This guarantees the invariant that if X = Y, there
are uncommitted updates to either X or Y in some workspace, and either X or Y is
checked-out for update, then the workspace with uncommitted updates is the same
workspace where X or Y is checked-out or is a super-workspace of that workspace. See

Figure 27.

Since X € Src(X) and X € Dep(X), restriction 3 mmplies that an object can be checked-out

for update in at most one workspace. If there is a need for two tools to update X at the same

time, they must check-out X in the same workspace. Restriction 4 implies that a design ob-

Ject can be checked-out only in the same workspace or in a sub-workspace wherein there

are uncommitted updates to the design object.

Suppose a tool submits updates A = < uy, uy, ..., u > to workspace Z at time tupdate- Just

PIIOT 10 typgate, at time t, for every workspace W #=Wioot, there exists some update delta

Aw(t) such that:

VW({) = VSuperior(W)(E) + AW(D .

Change Manager Support for the DDMS 95

design hierarchy design object references
Ay
B Cs A;— Bs
AZ —> C3

workspace hierarchy

W, W

® —T

O TG [

T_J._T

W

]

Figure 26: The third restriction on design object check-out.

If some tool has design object A, checked-out for update in workspace W,, then other tools
can check-out subdesigns A,, Bs, and Cj for update only in workspace W,.

Invariants maintained by the last two restrictions guarantee that for each workspace W < Z:
VW(tupdate) = VSuperior(W)(tupdate) + A\?V(tupdate)>
where AW(tupdate) = Aw(t) + A.

This result holds whether the update A comes from a comrmitting inferior workspace or

from a tool.

96

Copyright © 1991 by Keith Hall

design hierarchy

A,

B Cs

design object references

workspace hierarchy

W,

Ws

A2—>B5
A2“'>C3

W,

4

Figure 27: The fourth restriction on design object check-out.

If there are uncommitted updates to design object A, in workspace W5, then tools can
check-out design objects A,, Bs, and C3 for update only in workspaces W, Wy, or Ws.

Without these two restrictions the DCM would have to “merge updates” to X in W with the

state of X or the state of its dependents in sub-workspaces, rather than merely apply the up-

dates. The DCM is unable to merge updates, because this would require that it understand

the semantics of the design data and the intent of the tool in making the update.

When a tool updates a design object to reference another, it does so within its ob ject cache,

then sometime later commits that reference to the workspace selected by the tool. The

Change Manager Support for the DDMS 97

DCM must be aware of a tool’s intention to update a design object to reference another, so
that it can ensure that these restrictions are enforced should the tool commit its updates. The

way this is done is presented in Section 4.B.8.

Update Notifications

A tool checks-out into some workspace, and caches within its object cache, some number
of design objects that it needs to work with. The DCM sends the tool update notifications
of changes to all objects checked-out so that it can keep its cache consistent with the

DDMS.
An update notification contains the following four pieces of information:

1. the ToolID of the tool that submitted the update and caused the notification to be sent
2. the DesignObjectID of the design object updated

3. the update operation which was applied to the design object (one of those described in

Part 2.F)

4. atimestamp that records the DDMS time when the update was performed

A tool may defer handling those notifications so that the view of the design presented to the
engineer does not change unexpectedly. In this case, the notifications will be handled later;

in the meantime the view presented will be consistent, although somewhat out-of-date.

Over time, a tool may check-in some of the design objects it has checked-out or may check-
out additional design objects. Consider a tool that checks-out and caches an object, while
at the same time it is deferring the handling of notifications. Suppose the time the object
was last updated is more recent than the last notification handled by the tool. Then the state
of objects in the tool’s cache has become inconsistent, since updates to some design objects
previously cached have not been incorporated into the cache; the object just checked-out,

however, does already have the most recent updates applied to it. In order to prevent this

98 Copyright © 1991 by Keith Hall

inconsistency from occurring, when a tool requests to check-out a design object, it passes
the timestamp of the last update notification handled. If the design object to be checked-out
has a timestamp later than that value, the request by the tool is refused. In this case it must

handle additional notifications and resubmit the request if it chooses to do so.

Programmatic Interface

CheckOutForRead(ToolID, DesignObjectID, LastNotificationHandled)
returns annotatedObject / handleNotifications
CheckOutForUpdate(ToolID, DesignObjectID, LastNotificationHandled)

returns annotatedObject(s) / handleNotifications

A tool calls CheckOutForRead or CheckOutForUpdate to check a design object for read or
update access, respectively. The Change Manager retumns a copy of the annotated object or,
in the case of CheckOutForUpdate, checks-out and returns all dependents of that object.
Until it is checked-in, asynchronous notifications of updates to the design object will be

sent from the Change Manager to the tool.

CheckIn(ToolID, DesignObjectID, LastNotificationHandled)

returns ok / handleNotifications

A tool calls CheckIn to inform the DCM that it no longer needs to access a design object.
The Change Manager will then send no more notifications of updates to that object to the

tool.

Section 4.B.7: Create or Destroy Version of Design Element

As explained in Section 4.B.6, the DCM must be kept aware of the creation of new versions
of a design element so that it can mark other versions as obsolete and read-only. This is ac-
complished by having each tool make a request to the DCM when it needs either to create

anew version or to destroy an existing version of a design element.

Change Manager Support for the DDMS 99

Update of Existing Version v. Creation of New Version

A tool can choose between updating an existing version of a design element or creating a
new version. Suppose design object A, uses an instance of design object Bs as a component

and that B is to be updated. See Figure 28. A new version of B should be created if it is

Figure 28: Update of existing version versus creation of new version of design object.

This figure shows the tree of choices available to an engineer when updating a subdesign
of a parent design.

desired not to affect Aj and other design objects which depend upon Bs; creating a new ver-

sion preserves existing versions and configurations of existing versions.

100 Copyright © 1991 by Keith Hall

The disadvantage of creating a new version of B is that integration of Bg into Ay and other
design objects using B has been deferred. Updates to B¢ which cause unanticipated diffi-
culties in integration will not be identified until a later time. By updating an existing version
an engineer see what impact his changes have on parent designs and what constraints are
invalidated in those parent designs. Updating Bs forces changes to B to be integrated into
Dep(Bjs); an engineer is free, however, to make tentative updates to Bz in an inferior work-

space to see what effect those updates will have on design objects referencing Bs.

There are other approaches which automate particular policies of version control by using
heuristics and rulebases [Bjérnerstedt 88]. The Change Manager can be used as the mech-

anism with which to implement such policies.

Programmatic Interface

CreateDesignElement(ToolID, ObjectType)

returns DesignObjectID

A tool calls CreateDesignElement in order to create version #1 of a new design element.
The tool specifies what type of object is desired; that type must be one of the object types
declared in the schema. CreateDesignElement creates a design object with default values

for the slots and returns the OID of that object to the tool.

CreateVersion(ToolID, DesignObjectID)
returns DesignObjectID / notAllowed

Actool calls CreateVersion to inform the DCM that it wants to create a new version of a de-
sign element in the workspace W it has selected. The request will fail if the current latest
version is checked-out for update by any tool, or if there are uncommitted changes to any

version in any workspace other than W or super-workspaces.

Change Manager Support for the DDMS 101

DestroyVersion(ToolID, DesignObjectID)

returns ok / notAllowed

A tool can destroy an existing version of a design element by calling DestroyVersion. A de-

sign object X can be destroyed only if the following three conditions are met:

1. A supervisor has given the engineer using the tool permission to destroy the design ob-

ject.
2. No other design object references X, in order to guarantee referential integrity.

3. Xis not checked-out by any tool. Without this restriction an engineer might find that a

design object being accessed is unexpectedly destroyed.

A design element ceases to exist when all of its versions have been destroyed.

Section 4.B.8: Adding and Removing Ob ject References

As explained in Section 4.B.6, the DCM must be kept aware of references from one design
object to another in a tool’s cache that has not yet been commirted to a workspace, so that
the DCM can enforce the third restriction of checking-out a design object for update. This
is accomplished by having each tool inform the DCM when it updates a design object so

that it references, or no longer references, another design object.

Programmatic Interface

AddReference(ToolID, ObjectID, ReferencedObjectID)

returns ok / notAllowed

A tool informs the DCM that it has updated a design object in its cache to reference another
design object by calling AddReference and identifying the referencing and referenced ob-
Ject. This call increments the reference count from the referencing to the referenced object.

Suppose the tool has selected workspace W. This request will fail if the referenced object

102 Gopyright © 1991 by Keith Hall

either is checked-out for update in some workspace other than W or has uncommitted

changes in any workspace W~ except where W < W~

RemoveReference(ToolID, ObjectID, ReferencedObjectID)

A tool informs the DCM that it has updated a design object in its cache to no longer refer-
ence another design object by calling RemoveReference and identifying the referencing
and referenced object. If the referenced object is no longer referenced by any object in the
tool’s cache, then it is free to be checked-out for update in workspaces other than the work-
space selected by the tool, subject to the restrictions on checking-out a design object for up-

date which were presented in Section 4.B.6.

Section 4.B.9: Update Design Objects in the DDMS

Each tool is free to submit a batch of updates to the workspace it has selected at any time.
An update is any operation on an object as described in Part 2.F. The batch is applied atom-
ically. A side effect of a tool’s updates is that the DCM sends asynchronous update notifi-
cations to every other tool that has checked-out affected design objects in this or sub-

workspaces.

Handshaking to Eliminate Race Condition

Consider the following scenario. Assume there are two tools Ty and T working in the same
workspace in the DDMS, sharing updates on object X with initial state S. Tools Tl and Tp
initialize their internal state based on S. Tool T} applies update u; to its copy of X, yielding
S1 =S5+ Ay, and T, applies update u, to its copy of X, yielding S, = S + A,. Suppose that
T and T, now submit 1 and u; to the DDMS, and the DCM sends relevant notifications

to T2.

Suppose that, due to network delays, update u, now arrives from tool T,. The DDMS

doesn’t know whether T, received the notification before or after submitting u,. If T sub-

Change Manager Support for the DDMS 103

mitted u, before processing the notification, then the DDMS should reject uy, since Ty may
have predicated its update 1, on X having state S rather than state S 1 as it does now. On the
other hand, if T, did process the notification, then update u, should be applied to X. Thus
arace condition exists between the receipt of an update request from a tool and the delivery

of an update notification from the DCM in the DDMS.

The DCM eliminates this race condition by using the following handshaking protocol:
Each update notification is tagged with the current DDMS time, and the DCM remembers
the timestamp of the most recent notification sent to each tool. Whenever a tool submits an
update request, the timestamp of the last notification it processed is included. The DCM
then compares that timestamp with that of the last update notification sent to the tool. If an
update notification was sent since the time the update request was sent, then the DCM
knows that the tool’s update request was based upon incomplete knowledge. In this case the
update request is rejected by the DDMS and an error code is returned to the tool which in-
dicates that the tool has failed to process all update notifications. In response, the tool must
handle the notifications sent and resubmit the update request if it so chooses. This situation
may repeat—by the time the tool resubmits its request, there may be additional notifications

that it must handle before the DCM will accept the request.

Programmatic Interface

UpdateW orkspace(ToolID, list Update, NotificationTimestamp)

returns time/ handleNotifications / invalidConstraint

A tool commits its updates to the workspace it has selected by calling Update Workspace.
If the requests succeeds, the DDMS returns the current time. The tool uses the current
DDMS time to alter timestamps in its annotated object cache, as explained in Section 5.B.8.
When a tool commits its changes to the DDMS, the DDMS decrements counts of uncom-
mitted references between design objects; the purpose of these reference counts is ex-

plained in Section 4.B.8. UpdateWorkspace will fail either if the tool has not handled all the

104 , Copyright © 1991 by Keith Hall

update notifications sent by the DCM or if accepting the updates would cause one or more

of the workspace’s constraint requirements not to be satisfied.

Section 4.B.10: Conflict Logging

As explained in Section 3.B.9, conflict logging is needed in a design environment for con-

current design. The Conflict Logger in the DCM offers that service to tools.

Programmatic Interface

LogConflict(ToolID, OffendingToolID, Complaint)
returns ConflictID

A tool invokes LogConflict to register a complaint about an update made by another tool.
The tool identifies the offending tool and supplies a textual explanation of how the update
constitutes a conflict. The DCM doesn’t understand the semantics of conflicts, and can
make no attempt to remedy the conflict; it merely provides the mechanism with which con-
flicts can be recorded. Higher-level mechanisms are responsible for implementing particu-

lar policy [Hall 89].

Contflicts are logged in the workspace which the complaining tool has selected. If a work-

space has unresolved conflicts, it is not allowed to commit, as explained in Section 4.B.5.

ResolveConflict(ToolID, ConflictID, Resolution)

After some action has been taken to remedy a conflict, it can be marked as having been re-
solved; a textual explanation of how the conflict was resolved is supplied. Engineers who
cannot resolve a conflict may need assistance from their supervisor in order to do so. After
all conflicts are resolved, updates in a workspace can be committed to the superior work-
space. The DCM guarantees that registered conflicts are not lost, but provides no assurance

that a responder handles the resolution of a conflict correctly.

Change Manager Support for the DDMS 105

Section 4.B.11: Active Design Status

As discussed in Section 3.B.10, knowledge of the design status can aid engineers in the task
of planning and coordinating their activities. The DCM provides the mechanism with
which tools and the agents using them can access and stay aware of changes to the design
status. Higher level mechanisms can use this mechanism in order to implement policies of

design methodology or shared access.

The design status made available to tools by the DCM is exactly that internal state of the
DCM that can be altered by invocations of the procedures whose interfaces were presented

in this chapter, excluding updates to design data:

* which tools are currently running

* what is the hierarchy of workspaces

 which tools have selected what workspaces

* the constraint requirements attached to a workspace

* what workspaces have uncommitted updates

= which design objects have been checked-out by what tools
» what versions a design element has

* which design objects reference which other design objects

* what conflicts and conflict resolutions have been logged in a workspace

Programmatic Interface

GetDesignStatus(ToolID, WhichDesignStatus)

returns DesignStatusRequested

Tools can obtain any of the above design status by calling GetDesignStatus and specifying

what design status is needed.

106 Copyright © 1991 by Keith Hall

RegisterInterestinDesignStatus(ToolID, WhichDesignStatus, WhichChange)

returns InterestID

At times it is useful for a tool not only to obtain design status, but to track changes to it. For
example, an engineer might like to know when another engineer has checked-out the same
design object, or that a new version of some design object is available. Similarly, a super-

visor may wish to monitor what tools are run in what workspaces.

The design status monitor in the DCM makes the design status active, that is, the design
status can perform some action, such as sending a notification to a tool, when it is changed.
A tool indicates of what changes in design status it would like to be notified by calling Reg-
isterInterestinDesignStatus and specifying in what change to which design status it is inter-

ested. RegisterInterestinDesignStatus returns an ID of the interest registered.

Until an interest which has been registered is cancelled, the tool will receive asynchronous
notifications of changes to the specified design status. Those notifications travel along a dif-
ferent channel of communication (a different socket for IPC, for example) from the one
used by the Update Monitor when it notifies the tool of updates to design objects it has
cached. This is done so that a tool can keep a current view of the design status while defer-

ring the handling of update notifications.

UnregisterInterestInDesignStatus(ToolID, InterestID)

UnregisterInterestInDesignStatus cancels an interest that a tool had registered, and indi-
cates to the Design Status monitor that the tool no longer wishes to receive notifications of

those changes to the design status specified by the interest.

Change Manager Support for the DDMS 107

Part 4.C: Invariants Maintained by the DDMS Change

Manager

All modules within the DDMS Change Manager work together to jointly provide a collec-
tion of services to CAD tools. Guaranteeing internal consistency and correct operation of
the DCM requires that it maintain a number of invariants. This part of the chapter summa-

rizes those invariants.

Section 4.C.1: Workspace Related to Superior by Update Delta

CAD tools submit batches of updates to workspaces in the DDMS. In addition, updates in

workspaces may be committed to their superior workspace. The DCM guarantees:

Invariant #1:

Let V(1) be the view of design data at time t in workspace W = W, and

VSuperior(w)(t) be the view of design data in the superior workspace of W at time t.

Then Vy(t) = Vsupeﬁor(W)(t) + A(t), where A is the update delta which represents the
uncommitted updates to objects in W. The update delta is a concatenation of (1) all up-
dates which have been applied to design objects in W by CAD tools, and (2) updates to

design objects in W resulting from inferior workspaces of W having committed to W.

In order to preserve this invariant, the DCM enforces four restrictions on when design ob-
jects may be checked-out for update by tools; these restrictions ensure that updates applied
to a workspace have no effect on the states of objects in subworkspaces. The four restric-

tions are presented in Section 4.B.6.

Section 4.C.2: Annotations Provide Sufficient Information for Commit

A CAD tool can request that updates to a workspace be committed to its superior work-

space at any time. When it does so, the DCM scans the annotated object cache, interprets

108 Copyright © 1991 by Keith Hall

the annotations to determine how the objects were updated, and generates a list of updates

which are then applied to the superior workspace.
The invariant which makes this possible is:

Invariant #2:

The update delta can be computed at any time from the annotations on objects.

This invariant is maintained by the DCM because the DCM alters the annotations on ob-
Jects, as well as the values of object slots, whenever it processes an update request from a
tool or from an inferior workspace. The annotations in a workspace after each update reflect
how the states of design objects differ between that workspace and the superior workspace.
Table 1 in Section 4.B.5 describes the annotations in detail. Table 2 i Section 5.B .4 ex-
plains how the annotations are altered as a result of updates being applied to design objects.
Table 5 in Section 5.B.8 shows what updates result when the DCM scans object annotations

in a workspace in order to compute the update delta to be applied to the superior workspace.

Section 4.C.3: Unresolved Conflicts Restrict Workspace Commit

If there are unresolved conflicts in a workspace W, the DCM prevents W from committing
to its superior workspace Superior(W) so that potentially erroneous or deleterious updates

are confined to W.

Invariant #3:
Workspaces with unresolved conflicts cannot be committed.
The DCM enforces this invariant by first checking for unresolved conflicts within a work-

space before honoring a request to commit a workspace. Conflicts are discussed in Sections

3.B.9 and 4.B.10. Committing updates in a workspace is explained Section 4.B.5.

Change Manager Support for the DDMS 109

Section 4.C.4: Unhandled Notifications Restrict Updates By Tool

When a tool commits updates on design objects in its object cache to a workspace in the
DDMS, that tool does so based upon the state of the objects it had cached earlier. If the tool
has failed to process all asynchronous update notifications from the DCM, it may errone-

ously attempt to perform an update based upon stale data. The DCM guarantees:

Invariant #4:

Update requests from tools will be honored only if the tool has handled all asynchro-

nous update notifications which have been sent to it.

This invariant is preserved by virtue of the handshaking protocol used between the tool and
the DCM which is based on sequence numbers for the notifications. This protocol is ex-

plained in Section 4.B.9.

It is important to note that this invariant does not guarantee that a tool has responded in a
proper fashion to the notifications it has received. Such a guarantee of the tool’s behavior
cannot, in general, be enforced by the DCM. There is some assistance given to applications
by the Change Manager in the tool, however, in keeping the object cache consistent with

the DDMS; this is explained in Section 5.B.5.

Section 4.C.5: Constraint Requirements are Met

As explained in Sections 3.B.8 and 4.B.4, constraint requirements specify a degree of con-

sistency which is to be maintained at all times within a workspace. The DCM guarantees:
Invariant #5:
The constraint requirements which are attached to workspaces are met at all times.

The Change Manager preserves this invariant by refusing updates to a workspace W, either

from tools which have selected the workspace or from a committing inferior workspace of

110 Copyright © 1991 by Keith Hall

W, in which one or more constraint requirements attached to W is not true (i.e., false or
void). Sections 4.B.5 and 4.B.9 discuss committing updates in a workspace and in a tool’s

object cache, respectively.

Section 4.C.6: Only Latest Version of Design Object Can Be Updated

As explained in Section 2.D.3, all versions of a design object except the latest version are

read-only and cannot be updated.

Invariant #6:

Only the latest version of a design object can be updated.

The Change Manager in the DDMS maintains this invariant by not allowing a design object
which is not the latest version, nor any design object X with some Y € Dep(X) which is not
the latest version, to be checked-out for update by any tool. Design object check-out is ex-
plained in Section 4.B.6. The DCM stays aware of what versions exist because a tool must
inform the DCM when a version is created or destroyed; the way this is done is presented

m Section 4.B.7.

Section 4.C.7: Referential Integrity is Enforced
The DCM enforces referential integrity within the object store:

Invariant #7:

A design object cannot be destroyed if there are any references to it from other objects.

The DCM maintains this invariant by first checking whether an object X is referenced by
any other object before honoring a request from a tool to destroy X. This includes checking
whether X is referenced by another object within the object cache of any tool. The DCM
knows which objects reference other objects within caches of tools, because a tool must no-
tify the DCM when it adds or removes an object reference within its cache; the way this is

done is presented in Section 4.B.8.

Chapter 5
Change Manager Support for CAD Tools

The CAD tool of the future consists of application code, along with application-specific
data structures and algorithms, plus additional functionality provided by the Tool Change
Manager (TCM). This chapter presents the architecture of a CAD tool, describes the func-
tionality added by the TCM, presents the programmatic interface between an application

and the TCM, and summarizes the invariants maintained by the TCM.

Part 5.A: Architecture of a CAD Tool

Section 5.A.1: Introduction

A CAD tool consists of an application plus the Tool Change Manager. The application im-
plements the particular functionality of the tool, and is what distinguishes one tool from an-
other. A tool developer is responsible for developing an application and linking it with the
TCM. The TCM consists of six modules: tool clock, object cache manager, void propaga-
tor, update notification handler, interest matcher, and dependency locator. See Figure 29.
These six modules work together and offer a collection of services to an application. Note
that an application does not communicate directly with the object store; it performs updates

only through the TCM, which then communicates with the DCM.

The TCM is linked with the application to create a CAD tool: because of this, communica-

tion between the application and the TCM is inexpensive. Thus frequent interaction be-

111

112 Copyright © 1991 by Keith Hall

77 //

NN

k\\

TOOL
APPLICATION
internal message
state queue
2 3
2o o
= g

interest matcher

dependenc
locator 1 object cache
manager

derived slo
calculator

\\\

e E 8 =~
~— o o & T A =@
QO = R - - 7 8 a.8o
=% 23 £E s 22
g &0 <3 =g] s
2o
o= =& z 8 gE
Z =
TLLLLL LTS LIS LSS S S YL SSSSSSS SIS SS S S SIS S S LSS SIS LSS S SIS LS SIS S SIS SIS G o e
- U2
e g =
23 o3 £
en= = v =
=88 = 2 c O
s8° o= R
farget = e 7 e
=% 2 O O
YILLLLILIS 71211711117 LILILLLLLIL LSS LSS SIS S LSS SSS LSS S SIS LSS 1 TSP 1 1 s TI I 111 s /??/F/////////;
7 DDMS 7z
Vi A
7o i :
2 - PDMS v 4
Z “CHANGE 2
g MANAGER 2

Figure 29: Architecture of a CAD tool.
A CAD tool consists of the application, which is responsible for implementing the func-
tionality of the tool, such as design synthesis, editing, or consistency checking, plus the
Tool Change Manager. The Tool Change Manager is a layer between CAD tools and the
application; it consists of seven modules: tool clock, object cache manager, void propaga-
tor, derived slot calculator, update notification handler, interest matcher, and dependency
locator.

Change Manager Support for CAD Tools 113

tween the application and the TCM is not inefficient, and the granule of interaction can be
small—there are operations involving slots of design objects, as compared to entire objects,

which is the case between CAD tools and the DDMS.

Section 5.A.2: Tool Clock

The TCM maintains an integer-valued clock in each tool. The clock in each tool is separate
from, and run asynchronously with respect to, the clock in the DCM and the clocks in other
tools. The tool clock represents the amount of time elapsed since a tool last committed its
updates to the workspace it has selected. The tool clock is initialized to zero when a tool
selects a workspace. It is incremented whenever the TCM processes any update request
from the application. The tool clock is reset whenever the tool commits its changes. The
times at which slots of design objects change value are stored in the annotated object cache,
which holds the same information as does the annotated object store in the DDMS.

Section 4.B.5 explains what annotations are attached to objects.

Section 5.A.3: Message Queue

One of the responsibilities of the TCM is to ensure that an application is made aware of the
occurrence of asynchronous events such as an update to a shared design object or a change
in design status. The TCM notifies the application of an event by creating a message with
a timestamp that indicates what event occurred and appending the message to the applica-

tion’s message queue.

Section 5.A.4: Object Cache Manager

Within each tool is a cache of annotated design objects which the tool has checked-out and
is currently accessing and manipulating. The cache is similar to a workspace in the DDMS
in that all updates are encapsulated within the cache; the updates are applied atomically to

the workspace the tool has selected when the tool commits its changes. Use of a cache en-

114 Copyright © 1991 by Keith Hall

ables a tool to make experimental updates to local copies of objects. Unlike workspaces in
the DDMS, the lifetime of the annotated object cache is tied to that of the tool. The object
cache manager within the TCM gives an application access to the annotated object cache

by handling requests both to load data not yet cached and to update the cache.

Part 5.B: Functionality of the Tool Change Manager

This part of the chapter describes each service that the Tool Change Manager offers to ap-
plications, presents the programmatic interface which an application uses to access the ser-

vice, and explains how modules within the TCM operate in order to provide that service.

Section 5.B.1: Services from DDMS

Some of the services available to an application are slightly-modified versions of services
from the DCM which are passed up through the TCM to an application. This section de-

scribes those services.

AppStart(AgentName, ToolName)

When an application begins operation it must notify the TCM. It does so by calling App-
Start. In response, the TCM initializes itself and registers the tool with the DCM by calling
RegisterTool. The TCM remembers the ToolID returned by RegisterTool for use in subse-

quent requests to the DDMS.

AppShutDown()

returns ok / workspaceSelected

An application must also notify the TCM when it wishes to end operation. It does so by
calling AppShutDown. The TCM permits shutdown only if the application has no work-
space currently selected. The TCM calls UnregisterTool in the DCM when the application

shuts down.

E Change Manager Support for CAD Tools 115

° creating and destroying workspaces

° workspace selection

e constraint requirements

* committing and aborting workspaces

* creating and destroying versions of design elements

° conflict logging

L 3

active design status

The TCM contains procedures that provide the above services to an application. These pro-
cedures provide the same functionality that the DCM offers to tools, as detailed in Part 4.B.
Invoking any of them calls the DCM procedure of the same names. The programmatic in-
terfaces of these procedures differ only in that the application need not pass a ToolID when
it calls procedures of the TCM; the ID of the tool is passed automatically by the TCM to
the DCM on behalf of the application.

Section 5.B.2: Design Object Check-out and Check-in

An application requests that a design object be cached by checking-out that object. If the
application needs only read access, it should check-out the object for read; if it needs update
access it must check-out the object for update. While an object is checked-out, the DDMS
will send asynchronous notifications of updates made by other tools to that object to the up-
date notification handler in order that the cache be made consistent; the way this is done
1s explained in Section S.B.5. A design object will remain cached and accessible to the ap-

plication until the application checks-in the design object.

Programmatic Interface

AppCheckOutForRead(ToollD, DesignObjectID, LastMessageHandled)
returns annotatedObject / handleMessages
CheckOutForUpdate(ToolID, DesignObjectID, LastMessageHandled)

returns annotatedObject(s) / handleMessages

116 Copyright © 1991 by Keith Hall
pyrig

An application calls AppCheckOutForRead or AppCheckOutForUpdate to check a design
object for read or update access, respectively. The TCM calls CheckOutForRead or Check-
OutForUpdate in the DDMS, respectively, and returns to the application a copy of the an-
notated object or, in the case of CheckOutForUpdate, checks-out and returns all dependents

of that object.

The same restrictions on a tool in checking-out an object for update, as presented in
Section 4.B.6, apply to an application. There is one difference between AppCheckOutFor-
Read (or AppCheckOutForUpdate) offered by the TCM to an application and CheckOut-
ForRead (or CheckOutForUpdate, respectively) offered by the DCM to tools: an
application passes the timestamp of the last message it handled to AppChéckOutForRead;
the TCM converts this timestamp to the timestamp of the last notification handled by the

tool and passes that to CheckOutForRead.

AppCheckin(ToolID, DesignObjectID, LastMessageHandled)

returns ok / uncommittedUpdates / handleMessages

An application calls AppCheckln to inform the TCM that it no longer needs to access a de-
sign object. The TCM calls Checkln in the DCM so that it will then send no more notifica-
tions to the tool of updates to that object. AppCheckln will fail if the application has failed
to handle all messages sent to it or if, in the case of a design object checked-out for update,

there are uncommitted updates to the design object in the cache.

Section 5.B.3: Read Design Objects in Cache

An application must be able to read the contents of design objects in order to initialize and
keep current its internal data structures. The object cache manager gives applications apro-

grammatic interface to access design objects in the cache.

Change Manager Support for CAD Tools 117

Programmatic Interface

GetSlotValue(OID, SlotName)

returns value

The value retumed by GetSlotValue depends upon the type of the slot:

primitive slot: value of the slot (of the appropriate type, as determined by the schema)
subobject: OID of the subobject
set-valued slot: values (or OIDs in the case of subobjects) of members of the set

object reference slot: OID of the referenced object

computed slot: the value of the computed slot if it is valid, else L (undefined) if the
computed slot is void
There is a special procedure GetStaleSlotValue that returns the old value of a com-
puted slot. The old value can be used by an application that is incrementally recomput-

ing the new value of the computed slot; incremental computation is explained in
Section 5.B.6.

derived slot: the value of the slot (of the appropriate type, as determined by the schema)
Section 5.B.4: Update Design Objects in Cache

An application effects change in design data by updating design objects in the cache, then
committing those updates to the workspace it has selected. This section discusses how com-
puted slots are marked void, presents the programmatic interface with which an application
updates cached design objects, and describes what effect each update opefation has on the

annotated object cache and on other parts of the TCM.

Voiding of Computed Slots

When slots in a design object X are updated, computed slots in X and in other objects that

reference X may be invalidated. It is unreasonable to assume that every application consci-

118 Copyright © 1991 by Keith Hall

entiously voids computed slots whenever it updates slots in the object cache which may af-
fect the computed slots. Furthermore, updates to the annotated object cache by the update

notification handler (presented in Section 5.B.5) may affect the validity of computed slots.

For these reasons, a truth maintenance system [Doyle 79] in the TCM called the void prop-
agator performs the task of voiding computed slots in the annotated object cache whenever
slots upon which they depend, as defined by the schema, are updated by either the applica-
tion or the update notification handler. The act of voiding a slot removes any value that the
computed slot Vhad and assigns a default value to it. Note that voiding a computed slot is
different from computing the new value of the computed slot. The TCM doesn’t know how
to recompute the value of a computed slot; instead, that is the responsibility of applications,
and may require an arbitrary amount of computation. Computed slots are explained in

Part 2.E.

One update may have a ripple effect in which computed slots, and other computed slots af-
fected by those computed slots, are affected. The void propagator recursively marks com-
puted slots affected by the update as void. Suppose an update to design object X caused the
void propagator to be invoked. The void propagator is guaranteed to have update access to
all design objects affected, since when X was checked-out for update so were Dep(X); this

side effect of design object check-out was explained in Section 5.B.2.

The computational complexity of void propagation depends upon the number of computed
slots which depend upon an updated slot. In design data this would correspond to the num-
ber of times a design object was used as a subdesign in parent designs, the number of times
those parent designs were used as subdesigns in other designs, etc. Thus modifying a low-
level design such as flip/flop in a layout may cause a large number of computed slots to be
marked as void. It is rare, of course, that such a drastic change would be made late in the
design process; an engineer making such a change would expect that change to have poten-

tially far-reaching consequences.

Change Manager Support for CAD Tools 119

When an application calls an update procedure, the void propagator completes its task be-
fore the call returns control to the application. Thus void propagation occurs synchronously

with respect to update requests from the application.

Recomputation of Derived Slots

Just as the value of a computed slot can become stale when a slot upon which it depends
has been updated, so can the value of a derived slot. Instead of calling the void propagator
merely to mark the derived slot void as it does a computed slot, the TCM invokes the de-
rived slot calculator to recompute the value of the derived slot. Derived slots are explained
in Part 2.E. The derived slot calculator computes the value of the derived slot based upon

the specification in the schema. Part 2.C discusses the object schema.

Programmatic Interface

An application creates and destroys design objects, which are versions of design elements,
by calling CreateDesignElement, CreateVersion, and DestroyVersion in the DDMS; these
functions are explained in Sections 4.B.7 and 5.B.1. An application updates a design object
by calling procedures in the object cache manager. When an application updates a design
object the tool clock is incremented; the time that an update occurs is used to timestamp

updated slots.

Table 2 below shows the update procedures that can be called for each type of slot in a de-
sign object and what effect each procedure has on the annotated object cache. Annotations
are used when a tool commits its updates to the DDMS in order to determine the differences
(that is, the update delta) between the object cache in the tool and the workspace which the

tool has selected; Section 5.B.8 discusses how the object delta is computed.

120 Copyright © 1991 by Keith Hall

Table 2: Procedures to Update Design Objects

type of slot | procedure changes to annotated object cache, where
tupdate = TCM time of update from application

primitive ChangeValue value < new value
value status < different
timestamp <= typdae

set-valued CreateMember existence status < not in workspace; created
timestamp «— tupdate

DestroyMember if (existence status = created in workspace; unchanged)
then existence starus < created in workspace; destroyed
else if (existence status = destroyed in workspace; unde-
stroyed)

then existence status < destroyed in workspace; un-
changed

else if (existence status = not in workspace; created)
then existence status <— not in workspace; destroyed

timestamp «— tupdate

DestroyMember calls RemoveReference (presented in
Section 4.B.8) for each uncommitted inter-object refer-
ence that is removed as a result of destroying the set
member.

UndestroyMember | if (existence starus = created in workspace; destroyed)
then existence status < created in workspace; unchanged
else if (existence starus = destroyed in workspace; un-
changed)

then existence starus <— destroyed in workspace; unde-
stroyed

else if (existence status = not in workspace; destroyed)
then existence status <— not in workspace; created

timestamp <— Lupdate

UndestroyMember calls AddReference (presented in
Section 4.B.8) for each uncommitted reference that is
added as a result of undestroying the set member.

Change ManagerSuppor& for CAD Tools

121

Table 2: Procedures to Update Design Objects

type of slot | procedure changes to annotated object cache, where
tupdate = TCM time of update from application
object ChangeReference | value « OID of object to reference
reference or
value « 1 (nullify a reference)
value status < different
timestamp «— tupdate
When an application adds a reference from one design
object to another, the TCM calls AddReference in the
DCM. When an application removes a reference the
TCM calls RemoveReference in the DCM.
computed MarkVoid if (validiry starus = valid) then
validity status <« void
timestamp < tupdate
voided < true
MarkVoid is called recursively by the void propagator.
MarkValid validity starus « valid '
validated « true
timestamp < tupdate
MarkValid is called by an application after it recomputes
and updates the value of a computed slot.
procedures to Which procedures in this table can be invoked to update
update value of the value of a computed slot depends upon the type of the
computed slot value of the computed slot, as specified by the schema.
These procedures are called by an application that has re-
computed the value of the slot.
derived procedures to Which procedures in this table can be invoked to update
update value of the value of a derived slot depends upon the type of the
derived slot value of the derived slot, as specified by the schema.
These procedures are called only by the derived slot cal-
culator and not by an application. To an application, the
value of a derived slot always appears current.

1 22 Copyright © 1991 by Keith Hall
The table above doesn’t show the four side effects of every update:

1. Annotations of both the object that contains the updated slot, and every object that owns
that object are updated as follows:
value status < different

timestamp <— tupdate

2. The update will cause computed slots affected by the update to be voided by the void

propagator.

3. The update will cause derived slots affected by the update to be recomputed by the de-

rived slot calculator.

4. The interest matcher will deliver a message to the application if the update matches

an interest placed by the application. Interests are explained in Section 5.B.6.

The TCM enforces two restrictions on when an application can update a design object in

the annotated object cache:

1. The application must have checked-out the object for update. Object check-out is ex-

plained in Section 5.B.2.

2. The application must have handled all messages sent to it by the interest matcher. Hand-
shaking similar to that explained in Section 4.B.9 guarantees that this is done: When the
application submits an update request to the object cache manager, it passes the times-
tamp of the last message it handled. If that timestamp is earlier than the timestamp of
the last message sent from the interest matcher to the application, then the object cache
manager knows that the application has failed to handle all messages and will refuse the

update request.

Section 5.B.5: Handle Update Notifications

When a tool commits updates to design object X to workspace W in the DDMS (explained
in Section 4.B.9), the cache within every other tool that has selected either W or a sub-

workspace of W and which has checked-out X will become stale. The update monitor in

Change Manager Support for CAD Tools 123

the DCM uses triggers in the object store to guarantee that each tool that is caching X will
be sent asynchronous notifications of all updates to X. Notifications are explained in

Section 4.B.6.

When notification of an update by another tool is received from the update monitor, that
update must be incorporated or “merged” into the tool’s annotated object cache. This action
is performed by the update notification handler in the TCM. Like the void propagator and
the derived slot calculator, the update notification handler operates automatically on behalf

of an application.

Purpose of the Update Notification Handler

Suppose tool T has selected workspace W. Let V(1) represent the view of the object cache
within tool T at time t, and Viy(t) represent the view of design objects in workspace W at

time t, to the extent that update notifications have been merged into the object cache in T.

Invariant: V(t) = V() + A(t), where A(t) is the update delta, or difference, from W to T.
The update delta represents the uncommitted updates on the object cache performed by the

application.

Suppose notification of update u is sent to the update notification handler, and that the up-
date notification handler merges u into the object cache at time tmerge- It does so by altering
Vr to reflect update u and computing a new update delta which is as close as possible to the
old one. That is, the update notification handler restores the invariant by finding some small
d such that:

VT(tmerge) = VW(tmerge) + A(tmerge)’

VW<tmerge) = VW(tmerse‘l) +u, and

A(meroe) A<tmeroe 1) + 6

124

Copyright © 1891 by Keith Hall

Operation of the Update Notification Handler

When the update notification handler receives an update notification from the update mon-

itor, it tries the best it can to effect the change in the object cache. Table 3 below shows how

the update notification handler updates the annotated object cache for each type of update

notification it can receive. As is the case with updates from an application, updates from the

update notification handler can have side effects, as explained in Section 5.B.4.

Table 3: Operation of the Update Notification Handler

type of slot

update
notification

changes to annotated object cache, where
tupdate = DCM time of update in DDMS

primitive

ChangeValue to v

value ¢~ v
value status < same
fimestamp <« tupdate

An update notification may describe an update to a slot in
an object that was a member of some set but that the ap-
plication has destroyed. In this case, the update notifica-
tion handler will first call UndestroyMember to restore
the object, then perform the update.

set-valued

CreateMember

existence status <— created in workspace; unchanged
1imestamp ¢— tyygae

DestroyMember

exisrence status < destroyed in workspace; unchanged
rimestamp <« tupdate

The update notification handler calls RemoveReference
{presented in Section 4.B.8) for each uncommitted inter-
object reference that is removed as a result of destroying
a set member.

UndestroyMember

existence status < created in workspace; unchanged
timestamp <« Lipdate

The update notification handler calls AddReference (pre-
sented in Section 4.B.8) for each uncommitted reference
that is added as a result of undestroying a set member.

object
reference

ChangeReference
to X (orto L)

value < OID of X (or ., if reference was nullified)
value status ¢~ same
1mestamp < tysdare

When the update notification handler removes an exist-
-ing reference from one design object to another, it calls
RemoveReference in the DDMS.

Change Manager Support for CAD Tools 125

Table 3: Operation of the Update Notification Handler

type of slot | update changes to annotated object cache, where
notification tupdate = DCM time of update in DDMS
computed MarkVoid When the update notification handler incorporates other

tools’ updates into the object cache, the void propagator
will automatically void any computed slots affected; no
action need be taken by the update notification handler
when it receives notification of a computed slot having
been marked void.

MarkValid if (voided = false) then
validity status < valid
timestamp <« tupdate

else
validity status < void

If a tool Ty recomputes and marks a computed slot as val-
id, that validity can propagate to the object cache of an-
other tool T, only if T, has never voided computed slot

in its cache.
updates to the After a tool recomputes a computed slot, it updates the
value of a slot to contain the new value. Thus the update notification
computed slot handler may receive notifications of updates by other

tools to a computed slot. It responds by applying those
updates, as described by this table, to the computed slot
in the object cache.

derived procedures to When the update notification handler incorporates other
update value of tools’ updates into the object cache, the derived slot cal-
derived slot culator will automatically void any computed slots af-

fected; no action need be taken by the update notification
handler when it receives notification of a derived slot
having been updated.

It is important to note that the manner in which the update notification handler merges up-
dates from other tools into the object cache is synzactic rather than semantic. The update
notification handler does not understand any meaning which may be assigned to the state
of design objects. Thus when the update notification handler merges updates it may un-
knowingly undo updates to or adversely affect the state of the object cache within the tool.

In such a case the application is responsible for applying compensating updates to the ob-

126 Copyright © 1991 by Keith Hall

Ject cache in order to restore it to a “consistent” or “useful” state before committing the
state of the object cache to a workspace in the DDMS. An application which does so is

called “well-behaved”; this concept is covered in Chapter 6.

Deferred Handling of Update Notifications

Innormal operation, the update notification handler makes asynchronous changes to the ob-
Ject cache in response to update notifications, received from the update monitor in the
DDMS, that describe updates made by other tools. Thus the view of data presented to an
application is subject to change. At times it may be convenient for an application to present
an unchanging view of design data to an engineer, and for the processing of update notifi-
cations by the update notification handler to be deferred. For example, an engineer might
choose not to be bothered by updates made by other engineers until the end of each day.
Note that the disadvantage of deferring the incorporation of updates made by other engi-
neers is that the engineer will not be aware of potentially conflicting or erroneous updates
until the merging of updates resumes [Winslett 89]. But at that time other updates may have
been predicated on the erroneous updates, and correcting the resulting problems will be
more difficult. In general, identifying conflicts early rather than late in the design process

reduces the cost of design [Boehm 81].

The TCM offers an application the ability to cause the update notification handler to defer
or to resume the merging of update notifications into the object cache. For the period of time

that the merging is deferred, the view of design data that the application sees may be stale.

When the object cache is stale, an application operates based on a view of the world that is
somewhat incorrect. For this reason, the application is restricted in what it can do while the
update notification processor has been turned off; in particular, it is not allowed to update
design objects in the DDMS. The handshaking used in the procedures CheckOutForRead,
CheckOutForUpdate, CheckIn, AppCheckOutForRead, AppCheckOutForUpdate,

Change Manager Support for CAD Tools 127

AppCheckin, and AppCommit prevent an application from checking objects out or in or
from committing its updates to the DDMS unless the update notification handler has han-
dled all update notifications and the application has handled all messages that result. These

procedures are described in Sections 4.B.6, 5.B.2, and 5.B.8.

Programmatic Interface
DeferUpdateHandling()

An application calls DeferUpdateHandling when it wants to suspend operation of the Up-
dateNotification handler. The application is then assured that any changes to the object

cache are results of its updates, not those of other tools.

ResumeUpdateHandling()

An application calls ResumeUpdateHandling to continue operation of the update notifica-
tion handler. When the update notification is running, objects in the annotated object cache

are subject to change asynchronously.

Section 5.B.6: Register Interests in Updates

After a tool checks-out (and caches) a design object X, the update monitor in the DCM
sends notifications of any updates to X to the update notification handler in the tool, which
uses the notification to make the object cache current. The application in a tool reads data
from and submits updates to the object cache, then at some point commits those updates to
the workspace it has selected. When the update notification handler updates the object
cache, it may make changes that require the application either to adjust its internal state, or
to make updates to the object cache which compensate for updates from another tool, or

both. Thus the application must be aware of some set of updates to the object cache.

Because different applications have different semantics, those updates in which an applica-

tion is interested in being notified depends upon the particular application. The TCM does

128 Copyright © 1991 by Keith Hall

not understand the semantics of application. Thus it is the application’s responsibility to in-
form the TCM of which updates it needs to be informed. It does so by registering interests
with the interest matcher in the TCM. Each interest identifies some set of updates. When
any update specified by an interest occurs, the interest matcher sends a message to the ap-
plication that describes the update. An application registers some number of interests with
the interest matcher; the interests are chosen so that the set of updates in which the appli-

cation is interested is covered by the interests. See Figure 30.

oo 8 g 4 O

= S = B =

Hig o0 Oig O O

iy T i e
o g o : C O O update

50 ;O updates in which
g O : application is interested

5 °

oo : ;~~-; updates covered
O : e : by interest

m|
U g

O p o2 o B o

Figure 30: Interests.
Each interest conveniently specifies some set of updates. In this figure the application reg-
isters three interests with the interest matcher, These three interests include all the updates
in which the application is interested (twenty-two in this case).

Collectively, a set of interests demarcates a region of interest. The region of interest should
include updates to design data upon which the application is basing its operation—the “read
set”. When an application performs an update to the object cache, the interest matcher

doesn’t send a notification of that update back to the application. That update may, howev-

Change Manager Support for CAD Tools 129

er, trigger the void propagator or the derived slot calculator to perform further updates on
computed or derived slots, respectively; these updates may cause messages to be sent to the
application that performed the original update if it has registered an interest in some com-

puted or derived slot affected.

The updates in which an application is interested may vary over time. An application is free
to adjust its region of interest at any time by registering additional interests or unregistering

an interest it had previously registered.

The mechanism of interests and messages provided by the TCM and DCM is what the
Change Manager offers in place of exclusive locking, which is traditionally used, to main-
tain consistency between tools and the database. The TCM and DCM do use warning locks,

which are free of deadlocks, to make the design data active [Dayal 883].

Matching Updates to Tool Interests

Table 4 below shows each interest that can be registered by an application, and indicates
which updates will cause a message to be sent to an application that has registered that in-

terest.

Incremental Computations

The ability to register interests and be informed of some subset of updates to the object
cache is useful to an application that can perform incremental constraint checking or incre-

mental recomputation of computed slots.

An application wishing to do so registers a region of interest which includes all updates to
design data upon which the application’s computations depend. The interest matcher en-
sures that the application is made aware of all updates in its region of interest. The applica-
tion then performs incremental adjustments to its internal state and to the computed slot

whenever messages describing updates in its region of interest arrive.

130 . Copyright © 1991 by Keith Hall

Table 4: Interests and Matching Updates

interest updates to annotated object cache that match interest,
where updates may be performed by void propagator,
derived slot calculator, or update notification handler

value of slot S S is a primitive slot:
ChangeValue(S, v)

S contains a subobject:
application would use an “existence of object” or a
“state of object” interest described below

S is set-valued:
CreateMember(S, X),
DestroyMember(S, X),
UndestroyMember(S, X), or
any update to a member of S

S is a reference slot:
ChangeReference(S, OID)

S is a computed slot:
MarkVoid(S) or
MarkValid(S)

S is a derived slot:
the derived slot calculator updates the value of the derived slot

existence of object X | DestroyMember(S, X), where X is a member of set-valued slot S
DestroyMember(S, Y), where X is a subobject of Y
UndestroyMember(S, X), where X is a member of set-valued slot S

UndestroyMember(Y), where X is a subobject of Y

state of object X any update to any slot of object X

any update to any slot of a subobject of X

Incremental recomputation, when possible, permits computed slots to stay current without
the computational expense of a complete recomputation [Overmars 83]. For example, there
exist algorithms to perform incremental design-rule checking on integrated circuit layouts
whereby the engineer remains aware of all outstanding design-rule violations [Ousterhout
83]. Note that the use of differential update by tools, as explained in Section 3.B .4, is re-

quired in order to make incremental recomputation possible.

Change Manager Support for CAD Tools 131

If an application recomputes a computed slot immediately whenever the slot is voided, the
result is data-driven computation, and is similar to the operation of a spreadsheet, which
recomputes computed fields whenever data upon which they depend have changed. An ap-
plication also can achieve demand-driven computation by deferring recomputation of a

computed slot until the value of that slot is needed.

The value of computed slots, such as constraints, is useful information to an engineer be-
cause it will affect his personal design methodology and planning, such as invoking con-
straint-checking mechanisms or embarking on a particular subgoal such as updating one

aspect of the design.

If CPU resources were infinite, the value of computed slots could be constantly recomputed
and there would be no need for demand-driven computation. They are not, of course, so the
tradeoff between computational expense and keeping computed slots valid, and thus the

choice between use of data- or demand-driven computation, is an engineering tradeoff.

Programmatic Interface

RegisterInterest(SpecificationOfInterest)

returns InterestID

An application enlarges its region of interest by calling RegisterInterest and passing the
specification of an interest to be registered. When an update occurs to the object cache that
matches an interest that the application has registered, the interest matcher sends a message

to the application.

UnregisterInterest(InterestID)

An application calls UnregisterInterest when its region of interest has been reduced and no-
tification of updates corresponding to an interest which was registered earlier are no longer

needed.

132 Copyright © 1991 by Keith Hall

Section 5.B.7: Locate Updated Dependencies of Computed Slots

When an application needs to recompute the value of a void computed slot, it may be useful
to know which slots have changed since the slot was last valid. The dependency locator

in the TCM compares timestamps in the annotated object cache to locate those slots.

When a design object is cached in a tool, it contains timestamp annotations from the DDMS
clock. When the update notification handler merges updates into the annotated object
cache, it assigns the timestamps of the notifications to timestamp annotations of cached ob-
Jects; these timestamps are also from the DDMS clock. When an application makes an up-
date to the annotated object cache, however, the tirhestamps used are from the tool clock.
Thus timestamps in the annotated object cache will be a mix of timestamps from the DDMS
clock and from the tool clock. Suppose t; and t, are two timestamps. We define a total or-

dering on timestamps as follows:

ty <ty if and only if one of the following three conditions is met:

t; and ty are DDMS timestamps and t; is less than ty
t; and t are tool timestamps and t; is less than t,

t1 is a DDMS timestamp and t; is a tool timestamp

As explained in Section 4.B.5, each slot in an object is annotated by a timestamp. Updates
to the ann(;tated object cache performed by the application, void propagator, derived slot
calculator, and update notification handler all maintain the invariant that if a computed slot
Cis void, its value depends upon slot S (as defined by the schema), and S has been updated

since C was last valid, then timestamp~ < timestampe.
PC DS

The dependency locator works by comparing the timestamp of the computed slot C with
the timestamp of each slot S upon which it depends. If the timestamp of C is no greater than
the timestamp of S, then S is included among those slots which, as a result of being updated,

caused C to become void.

Change Manager Support for CAD Tools 133

Programmatic Interface

LocateUpdatedDependencies(OID, ComputedSlot)

returns set Slot

An application calls LocateUpdatedDependencies and specifies a particular computed slot
in order to retrieve the set of slots which have changed since the computed slot was last

computed.

Section 5.B.8: Commit Updates to Workspace

When an application wishes to save its updates of design objects to the workspace it has
selected, it commits to the DDMS. When the application commits its update, the TCM
computes the update delta, that is, a list of updates which represent the difference between
the workspace and the object cache, and submits that list to the DDMS by calling

UpdateWorkspace, as discussed in Section 4.B.9. An application may request that its up-
dates be discarded rather than committed; in this case the TCM reloads cached objects from
the database and reinitializes the annotated object cache. Table 5 below shows how the ob-
Ject cache manager in the TCM computes the update delta by recursively scanning each de-

sign object in the annotated object cache.

Table S: Computing the Update Delta

type of slot S | the state of update generated, where
in object X annotations to slot S | t .. = DCM time of commit by tool

primitive value status = different | value status « same

timestamp <« timestamp + leommit

The timestamp of each slot in the object cache that
was updated is incremented by the current DDMS
time when the tool commits, in order to convert it
from tool time to DDMS time.

ChangeValue(X, S, value, timestamp)

134

Copyright © 1991 by Keith Hall

Table 5: Computing the Update Delta

type of slot S
in object X

the state of
annotations to slot S

update generated, where
teommit = DCM time of commit by tool

subobject or
member of set

value status = different

value status <— same
timestamp <— timestamp + togp oo

Recursively scan each slot in object and generate
updates, as explained in this table.

set-valued Generate updates for | existence status < created in workspace; un-
each member where: changed
(existence status = not | timestamp < timestamp + teommit
in workspace; created
pace;) CreateMember(X, S, OID of new member,
fimestamp)
Generate updates for | existence status < destroyed in workspace; un-
each member where: changed
(existence status = cre- | timestamp < timestamp + too ..
ated in workspace; de-
P DestroyMember(X, S, OID of member,
stroyed) .
fimestamp)
Generate updates for | existence status <« created in workspace; un-
each member where: changed -
(existence status = timestamp < timestamp + teo oo
destroyed in work-
y ° UndestroyMember(X, S, OID of member,
space; undestroyed) .
timestamp)
object value status = different | value status < same
reference timestamp <— timestamp + teom i
ChangeReference(X, S, value, timestamp)
computed validity status = void voided « false

and
voided = true

validated < false
rmestamp < timestamp + teo oo

MarkVoid(X, S. timestamp)

validiry starus = valid
and
validared = true

voided < false
validared « false
timesiamp < timestamp + tegmmir

MarkValid(X, S, rimestamp)
to clear the old value of slot S

Recursively scan the value of the computed slot
and generate updates according to this table.

MarkValid(X, S, timestamp)

Change Manager Support for CAD Tools 135

Table 5: Computing the Update Delta

type of slot S | the state of update generated, where
in object X | annotations to slot S | t.ommit = DCM time of commit by tool

derived value status = different | value status « same
tmestamp < timestamp + toop e

Recursively scan the value of the derived slot and
generate updates according to this table.

Programmatic Interface

CommitUpdates(LastMessageHandled)

returns ok / handleMessages / invalidConstraint

An application commits its updates by calling CommitUpdates. The request will fail either
if the application has not handled all the messages sent to it by the interest matcher, or if
not all constraint requirements of the workspace selected by the application are true in the

object cache.

AbortUpdates(LastMessageHandled)

returns ok / handleMessages

An application discards its updates by calling AbortUpdates. The request will fail if the ap-

plication has not handled all the messages sent to it by the interest matcher.

Part 5.C: Invariants Maintained by the Tool Change

Manager

All modules within the Tool Change Manager work together to jointly provide a collection
of services to an application. Guaranteeing internal consistency and correct operation of the
TCM requires that it maintain a number of invariants. These invariants motivate the details
presented in the tables in Part 5.B of this chapter; this part of the chapter summarizes the

invariants.

136 Copyright © 1991 by Keith Hall

Section 5.C.1: Object Cache Related to Workspace by Update Delta

An application caches copies of design objects and performs updates on those copies. Be-

cause of updates by other tools, the cache may grow stale. The TCM guarantees:

Invariant #1:

Let Vyy(t) be the view of design data at time t in the workspace selected by a tool and

V1(t) be the view of design data in the tool’s object cache at time t.

Then Vr(t) = Vy(t) + A(t), where A is the update delta which represents the uncommit-
ted updates to objects in the cache. The update delta is a synthesis of updates to the ob-

ject cache by the application and updates to the workspace from other tools.

The object cache manager preserves this invariant by incorporating updates from the appli-
cation into the object cache. The update notification handler preserves this invariant by
merging updates from other tools, as described by update notifications, into the object
cache and making adjustments to the update delta; the way this is done is explained in

Section 5.B.5.

Section 5.C.2: Annotations Provide Sufficient Information for Commit

An application can choose to commit its updates to the DDMS at any time. When it does
so, the object cache manager scans the annotated object cache, interprets the annotation to
determine what updates were performed, and generates a list of updates which are then pre-

sented to the DDMS.

&

Change Manager Support for CAD Tools 137

The invariant which makes this possible is:

Invariant #2:

The update delta can be computed at any time from the annotations in the object cache.

The object cache manager, void propagator, update notification handler, and derived slot
calculator are the only modules that update the annotated object cache. They alter the an-
notations in such a way that the difference between the state of objects in the cache and ob-
Jjects in the DDMS is captured by the state of the annotations. Refer to Tables 1,2,3,and 5

for details.

Section 5.C.3: Unhandled Messages Restrict Updates by Application

When an application makes updates to design objects in the object cache, it does so based
upon the state of the objects it had read earlier. If the application has registered interests in

certain updates, it may receive message from the interest matcher. The TCM guarantees:

Invariant #3:
An application can update the object cache only after it has seen all messages sent to it.
This invariant is preserved by virtue of the protocol used between the application and the

object cache manager. Because of the protocol, the object cache manager may refuse an up-

date request from the application. The protocol is detailed in Section 5.B 4.

Note that this invariant does not guarantee that the application has responded in a proper
Jashion to the messages it has received. Such a guarantee of the application’s behavior can-

not, in general, be enforced by the TCM.

Section 5.C.4: Computed Slots are Automatically Voided

An application need not be be aware of all computed slots which may be affected by an up-

date, because the void propagator guarantees:

138 Copyright © 1991 by Keith Hall

Invariant #4:

For every slot S and computed slot C that depends upon S:
If S is updated, then the validity status of C is set to void.

The void propagator behaves as a simple truth maintenance system by recursively marking
computed slots as void after each update to the object cache made by either the application

or by the update notification handler. Void propagation is discussed in Section 5.B 4.

Section 5.C.5: Relative Timestamps of Slots are Maintained

The dependency locator determines for a specified computed slot which slots upon which
it depends have been updated since the computed slot was last computed. In order to do so,
the dependency locator compares the timestamp of the computed slot with the timestamps
of the source slots; if a computed slot has a timestamp no later than that of a source slot,
then the source slot may have been updated since the computed slot was last computed and

should be included in the answer returned by the dependency locator.
The invariant which guarantees that the algorithm used by the dependency locator works is:

Invariant #5:

For every slot S and computed slot C that depends upon S:
if S has been updated since C was last computed

then timestamp(C) < timestamp(S)

This invariant is maintained by the void propagator as follows:

When the void propagator is voiding a computed slot, and the computed slot is valid,
the void propagator marks the slot as void and sets the timestamp of the computed slot to
that of the update. If the computed slot has already been marked void, the void propagator
changes the timestamp of the slot to be the minimum of the timestamp of the update and

the timestamp already assigned to the computed slot.

Chapter 6
CAD Applications for Concurrent Design

The preceding two chapters have provided an operational definition of the DDMS Change
Manager and the Tool Change Manager, and have identified invariants that the operation of
the DCM and TCM guarantees. Despite the inclusion of the Change Manager within tools
and the DDMS, and the limitation that an application accesses design data through the
TCM, a tool may fail to operate suitably in an environment for concurrent design. This is
because there are certain requirements on the application code within the tool to make it
“well-behaved”. Among well-behaved tools there is a range of levels of coordination of the
application code with the TCM; higher degrees of coordination admit higher levels of con-

currency within the design environment.

This chapter specifies what is required of application code for it to be well-behaved and
what minimal alterations are needed to make an existing application well-behaved, ex-
plains what it means for an application to handle messages from the interest matcher, and
discusses levels of coordination of the application code with the TCM. This chapter con-

cludes with a list of characteristics of the “CAD tool of the future”.

Part 6.A: The Well-Behaved Application

The Change Manager gives multiple applications simultaneous update access to design

data. This places special requirements on applications so that they do not interfere with

139

140 Copyright © 1991 by Keith Hall

each other. An application that meets the requirements is said to be well-behaved. This part

of the chapter explains what those requirements are.

Section 6.A.1: Absence of Exclusive Locking

As explained in Chapter 3, the most significant benefit to the concurrent design environ-
ment offered the Change Manager is the use of asynchronous messages, rather than exclu-
stve locking, for concurrency control. Exclusive locking is a syntactic method of ensuring
that updates made by one application do not interfere with updates made by other concur-
rently-executing applications. As mentioned in Section 3.B.1, this technique is commonly
used by traditional databases in business applications, which have only short-lived transac-
tions. When an application acquires an exclusive lock on a design object, the application

knows that the object will not be affected by updates made by other applications.

The cost of exclusive locking is the prohibition of access of data by one application while
another application is updating the same data. This is not a high cost if the duration of ac-
cess and update is short. In a design environment, however, design activities are long-lived,

and a prohibition of concurrent access severely restricts concurrent design.

When the Change Manager, along with its asynchronous messages, is used, design objects
checked-out by one application are subject to change, due to updates by other applications.

The Change Manager does offer two important guarantees:

1. The update notification handler will incorporate updates made by other applications

mto the object cache.

2. The interest matcher delivers asynchronous messages to an application to notify it of

updates to the object cache which match interests registered by the application.

The Change Manager does not guarantee non-interference of applications, as does exclu-
sive locking. The responsibility that an application not interfere with updates of other ap-

plications belongs to the application. The Change Manager only provides assurance that

CAD Applications for Concurrent Design 141

notifications of possibly conflicting updates will be delivered to tools which are sharing up-

dates to the same design objects.

Section 6.A.2: Definition of Well-Behaved

In order for an application to be well-behaved and not interfere with updates of other appli-

cations, it must meet the following three requirements:

1. Even though the application is linked with the TCM and the object cache within the
TCM may be accessible within the same address space as the application, the applica-
tion must access the object only through the programmatic interface provided by the
TCM, as defined in Chapter 5.

2. As the application operates and reads data from the object cache and initializes internal
data structures, it must adjust its region of interest to include updates to all values upon
which it is currently basing its internal state, so that it will receive messages from the

interest matcher when those values change because of updates by other applications.

3. The application must handle all messages sent to it by the interest matcher before it

commits its updates to the DDMS. What “handle” means is covered in the next section.

Note that a tool can be well-behaved according to the above definition merely by never
committing its updates! Thus a application’s being well-behaved does not imply that it is
useful to an engineer, but merely not injurious to other applications’ updates. If an engineer
uses an application which fails to follow the above requirements, unpredictable alterations
to design objects in the DDMS may result; in such a case not only will progress on the de-
sign fail to be effected, but also damage to or reversal of the contributions of other engineers

may occur.

Section 6.A.3: Conversion of Existing Applications to be Well-Behaved

As mentioned in Section 6.A.2, an application, although well-behaved, may fail to be use-

ful. This section will discuss how an existing CAD application, which was not built to be

142) Copyright © 1991 by Keith Hall

used In a concurrent design environment, can be converted to be well-behaved and be
somewhat useful, but still not need to know how to handle any messages. Although such a
conversion ensures that the application will not disturb the efforts of other applications, the
application will be unable to effect progress on the design in the face of concurrent access

to the design by other applications.
Here is what is required of the tool:

» Upon starting, the application registers itself with the TCM.

» The application checks-out for update any design objects it needs to change, and

checks-out for read any other design objects it needs to access.

* The application initializes internal data structures based on data it reads from the object

cache, and specifies to the interest matcher a region of interest that covers those data.

 The application will perform its task as usual, including interacting with the engineer
as necessary, until the task is complete. Updates performed on internal data structures

need to be committed first to the object cache then to the DDMS.

* At commit time, the application will convert updates on internal data structures to up-
dates on the object cache then request that they be committed to the DDMS. But if any
messages have arrived from the interest matcher, the application must inform the engi-

neer using it that the updates must be aborted and the tool restarted.

The application must abort its updates if messages have been sent from the interest matcher.
That is because a simple-minded tool that lacks the intelligence to handle messages must
not predicate any updates to engineering data upon other data which have changed by an-
other application (as described by the messages). An application that operates in this fash-
ion would offer no benefit in the face of concurrent design, but would be considered well-
behaved and thus would not adversely affect updates by other applications. Note that this

scheme is analogous to optimistic concurrency control: acquisition of the same lock by two

CAD Applications for Concurrent Design 143

processes requires that one process abort, but if there is no such interference then both pro-

cesses can commit their updates.

Part 6.B: Handling Messages

Even though the update notification handler has incorporated external updates into the
tool’s object cache, there remains a very difficult question: Has the application’s internal
state, that is, its view of the world that it built from the object cache before the update no-
tifications were received, been disturbed? The answer is—maybe. It depends upon the se-
mantics of the application; these are known only to the application itself. The best
assistance that can be offered to the application is to let it tell the interest matcher what de-
sign objects and slots it has assumed to be static, then notify it via messages if any of those

change.

The above protocol presupposes that in most cases a tool will be able to handle notifications
it receives. This is a form of optimistic concurrency control. There is precedent to this ap-
proach of requiring clients of the database to adjust to shared updates: this was the only
form of concurrency control offered by the CODASYL database system [CODASYL 71].
In the worst case a tool is unable to incorporate the changes made by another tool into its
view and the engineer cannot continue his current thread of updates; this is analogous to a
database transaction being aborted. But in practice, the motivation for permitting multiple
tools to update shared design objects was to allow cooperating updates to be made. And
cooperation means that updates made by one agent and his tools are not catastrophic to the
ongoing efforts of another agent. This does not mean that the update might not cause prob-
lems with the functionality or correctness of the design. In general, a tool, perhaps under
direction of its agent, will try to adjust to changes made by other tools so that overall func-

tionality and correctness of the design are retained.

144 Copyright © 1991 by Keith Hall

As described in Section 5.B.6, each application submits interests to the interest matcher
which detail its region of interest. As a result, an update within that region of interest results
in a message being sent to that application. As described above, in order to be well-behaved
an application must handle every message received, if it is to commit its updates to the

DDMS.

A message from the interest matcher is a description of an update to the object cache that
occurred as the result of another application’s update. For an application to handle a mes-
sage means that it make its internal representations and data structures reflect the new state
of objects in the DDMS. This might also include updating a graphical display which offers
the engineer a view of the design data. (Whether the display should be automatically up-
dated, or whether that would require approval from the engineer, depends upon the seman-
tics of the tool and upon human factors which are beyond the scope of this research.) To
handle a message may also mean that the application must perform compensating updates
on the object cache in order to restore semantic invariants of the design data or to amend

changes which were performed automatically by the update notification handler.

Just before a tool receives a message, it presumably has been running and its controlling
engineer has made updates to the view of design data offered by the application. The man-
ner in which an application handles a message depends upon the application, its assump-
tions about the design data before the message arrived, and the focus and extent of the
updates which caused the message to be sent, the semantics of data involved, and the state
of design objects in the object cache. For this reason, the TCM cannot ascertain whether an

application has appropriately handled a message from the interest matcher.

"The requirement that applications respond in a reasonable fashion to messages is not trivial.
In the general case, handling a message may require of the application an arbitrary amount

of intelligence; converting existing applications to intelligently handle notifications is a dif-

CAD Applications for Concurrent Design 145

ficult task. The amount of intelligence that an application has is called as the “level of co-

ordination” of the application with the TCM, and is discussed in Part 6.C below.

Part 6.C: Application Coordination with the Tool
Change Manager

In many cases an application will be able to handle a message from the interest matcher by
adjusting its internal data structures to incorporate the update described by the message and
by performing compensating updates in order to achieve a required level of consistency. In
some cases the application will be unable to do so incrementally. For example, a simulator,
In response to a message that reports a change in the schematic, may be unable to modify
the results of an ongoing simulation and will have to restart the simulation. In still other
cases, an application may simply not have enough intelligence to enable 1t to handle a par-

ticular message from the interest matcher.

The variety of circumstances that an application is able to handle messages from the interest
matcher and still continue to operate without aborting the updates it has made is called the

“level of coordination” of the application with the TCM.

An application that has achieved a low-level of coordination with the TCM may frequently
be forced to abort operation when other applications update design data upon which it has
based its internal state. An application with a high-level of coordination with the TCM can
usually continue operating even when there are updates to shared design data that are per-

formed by another applications.

Section 6.C.1: Low Level of Coordination

If an application lacks the intelligence needed to handle messages from the interest match-

er, then it cannot commit its changes to the DDMS if another application updates design

146 Copyright © 1991 by Keith Hall

data upon which it has based its internal state. Such a simple-minded tool might merely in-

form the engineer using it that the tool must be restarted.

This is a low-level of coordination of the application with the TCM. It is interesting to note

that this corresponds to optimistic concurrency control, as described in Section 6.A.3.

Section 6.C.2: Medium Level of Coordination With Commutative Oper-

ations

Certain combinations of updates commute. For example, adding member m; then member
my 10 a set has the same result as adding them in the opposite order. An application which
Tecognizes commutative operations on design objects can mechanically handle those mes-
sages from the interest matcher that specify updates which commute with the updates made

by the application.

Unfortunately, commutativity among pairs of operations is not common except in financial
transactions such as ‘credit’ and ‘debit’. So if an application knows how to handle messages
only in such situations, there may be many messages it cannot handle and thus many situ-
ations in which the application will be forced to abort operation. Nonetheless, handling
even a few messages results in a medium level of coordination better than the lowest level
described in the preceding section: the more messages an application can handle, the less

frequently it will be forced to abort operation and discard updates made by the engineer.

Section 6.C.3: High Level of Coordination

If an application keeps its region of interest current, and handles all messages received from
the interest matcher, then it does become possible for that application to operate concurrent-
ly with other applications sharing the same design data and never need to abort because it
does not understand an update made by another application. This is a high level of coordi-

nation of the application with the TCM.

CAD Applications for Concurrent Design 147

An important premise of this thesis is that forced by a need for a high degree of concurren-
cy, applications will evolve toward a high level of integration. This level of integration is
difficult to achieve, since an application is not guaranteed that any data which it has read
are static; they may be changed at any time by another application operating on behalf of

the same or a different engineer.

A high level of coordination requires that the application be robust and that it perform rea-
sonably even in situations where data change unexpectedly (due to asynchronous updates
by other applications). The Change Manager guarantees that if an application expresses an
Interest in an update, and that update occurs, then the application will be notified of that up-

date by an asynchronous message from the interest matcher.
There are two important benefits from a high level of integration:

1. Tools from multiple vendors can be operated concurrently without understanding each
other’s semantics. Instead, a tool needs to understand only the semantics of the view of

the design which it accesses. This is called semantic encapsulation.

2. The designer is not forced into a specific order of tool invocation, as is the case when
exclusive locking on design objects is used. The design process can instead be viewed
as an evolution, rather than as a series of disconnected activities. A high level of coor-
dination removes this temporal disjointedness, and enables engineers 1o use a design-

centric rather than a tool-centric methodology.

Section 6.C.4: Other Levels of Coordination

There exist many levels of coordination between the low and high levels. It is not necessary
for an application to have a high level of coordination with the TCM in order to obtain any
benefit; it is simply that a higher level of coordination derives greater benefit. Thus coor-
dination need not be a single expensive error-prone conversion, but rather a migration to-

ward an increasingly intelligent and powerful set of design tools.

148 , Copyright © 1991 by Keith Hall
Section 6.C.5: Examples of Application Coordination

Layout Editor

Consider a tool T that allows engineers to place, move, and remove rectangles from a parent
rectangle. A VLSI layout editor, for example, is a tool with similar functionality. Assume
the application in T keeps its region of interest current with the interest matcher. Suppose
two engineers E; and E, are collaborating and are jointly updating the same design D using
instances Ty and T, of tool T, and that E; commits his changes to the DDMS. This results
in a number of notifications being sent from the DDMS to the update notification handler
in T, which in turn will merge the updates from Ty into the object cache and send messages
to the application in tool T, that describe how the object cache has changed as a result of
updates to D made by another tool (T in this case). The application in T, might respond to

the messages from the interest matcher in any of the following ways:

T is not well-behaved:

T ignores messages from the interest matcher that describe updates made by T; and
which have been merged into the object cache. Thus the view of D presented by Ts to
E, fails to show changes made by E;. Engineer E, sees a view of design D that is in-
correct, and will probably make erroneous updates to D based on that incorrect view.
The result is that E, may unwittingly hinder progress on, or damage the consistency of,

design D.

T is well-behaved and has been coordinated with the TCM at a low level:

At some time no later than when T, commits its updates to the DDMS, the application
in tool T notices that it received a message from the interest matcher, realizes that its
read set may have been disturbed, and notifies Ej that it cannot continue operation and
that the updates that E, had made must be discarded and that the operation of T must
be aborted. (In rare cases a supervisor might have enough knowledge of the semantics

of design data to permit E, to commit his updates despite updates made by E;.)

CAD Applications for Concurrent Design 149

As mentioned in Section 6.C.1, this is similar to optimistic concurrency control. This
behavior maintains the consistency of the design, but in this case tool T is not as useful
to E as it might have been if T could intelligently handle messages from the interest

matcher.

T is well-behaved and has been coordinated with the TCM at a hich level:

When the application T sees the messages from the interest matcher, it incorporates
knowledge of those updates into its internal data structures. Tool T, furthermore adjusts
the view of the design which is presented to E, to reflect those changes, so that E; can

make decisions based upon the current state of design D, including updates made by E;.

Bank Database

Suppose that the East Sandwich Bank on Cape Cod uses the Change Manager. The bank
offers a savings account to each customer. Each customer is represented in the bank’s da-
tabase by an object C that has one slot S that represents the current balance in the savings
account. The bank offers one tool which customers can use at automated teller machines:
“MakeDeposit”, which displays the current balance then accepts a single number to allow

a customer to increment the balance of his savings account.

The Smythe family is a customer at ESB; all members of the family use the same savings
account. Ellen and Nancy Smythe are fond of using two instances of MakeDeposit simul-
taneously on payday. Suppose the current balance is $100, and that Ellen and Nancy have

$20 and $30, respectively, to deposit. Consider the following sequence of events:
Ellen starts an instance of MakeDeposit, say MakeDeposity. MakeDepositg caches
Csmythe» Places an interest on updates to Csmythe-S, and displays Csmythe-S = 100.

Nancy starts an instance of MakeDeposit, say MakeDeposity;. MakeDeposity caches

Csmythe» places an interest on updates to Csmythe-S, and displays Cgpyhe-S = 100.

Ellen tells MakeDepositg to accept $20, places her deposit in the slot, and tells
MakeDepositg that she has finished. MakeDeposity commits the update

150 Copyright © 1991 by Keith Hall

Csmythe-S <= 120 to the database and informs Ellen that her transaction has completed.
This results in a message from the interest matcher to be sent to MakeDeposity that

Csmythe-S changed from 100 to 120.

Nancy tells MakeDeposity to accept $30, places her deposit in the slot, and tells
MakeDeposity that she has finished.

MakeDeposityy might pursue any of three courses of action in this situation, depending
upon whether MakeDeposit is well-behaved and at what level MakeDeposit is coordinated

with the TCM:

MakeDeposit is not well-behaved:

MakeDeposity ignores the message from the interest matcher, commits the update
Csmythe-S <= 130 to the database, and informs Nancy that her transaction has complet-
ed. Note that $20 has been lost, and that the consistency of the bank’s database has been
disturbed. In this situation the programmer responsible for writing MakeDeposit should

be fired! The need for applications to be well-behaved should now be apparent.

MakeDeposit is well-behaved and has been coordinated with the TCM at a low level:

When Nancy asks MakeDeposity to commit her deposit, MakeDeposity notices that it
received a message from the interest matcher, realizes that its read set has been dis-

turbed, and notifies Nancy that her transaction has been aborted.

As mentioned in Section 6.C.1, this is similar to optimistic concurrency control. This
behavior maintains the consistency of the database, but MakeDeposit is not as useful to

Nancy as it would be if it had a higher level of coordination.

MakeDeposit is well-behaved and has been coordinated with the TCM at a hich level:

When Nancy asks MakeDeposity to commit her deposit, MakeDeposity notices that it
received a message from the interest matcher, sees that the value of CSmythe'S’ which
it had thought was 100, is instead 120, and incorporates knowledge of the change into
the update it now submits to the database—Cgpmyhe-S ¢— 150—and informs Nancy that

her transaction has completed.

CAD Applications for Concurrent Design 151

This behavior both maintains the consistency of the database and enables Nancy’s re-
quest to be satisfied. A high level of integration in this case does require that MakeDe-
posity understand the semantics of making a deposit and automatically restart itself, or

incorporate the new value of Csmythe-S in its calculations, rather than abort.

Part 6.D: The “CAD Application of the Future”

The CAD application of the future, which when linked with the TCM becomes a CAD tool
useful in the concurrent design environment, has characteristics which differ from those of

traditional applications:

e It doesn’t access design data in the design database directly but instead manipulates

cached copies of design objects through a well-defined programmatic interface.

* Itadjusts its region of interest to include updates to those data upon which it is currently

basing its internal state.

* Itresponds to messages describing updates made by other applications by incorporating
those updates into its internal state and by making compensating updates where neces-
sary in order to restore consistency. If the application defers handling the messages,
then it is obligated to handle them before committing updates from the annotated object
cache to the DDMS.

¢ Ituses the design status monitor to stay aware of the design status and makes the design

status known to the engineer using the tool.

It gives the engineer using the tool a means to log a conflict in order to identify updates

by another engineer as unacceptable.

152 Copyright © 1991 by Keith Hall

Chapter 7

Conclusions and Future Work

Part 7.A: Key Concepts

Section 7.A.1: Concurrent Design is Required for Complex Designs

Many engineering designs are now so complex that the effort of a team of engineers is re-
quired if the design is to be completed in a reasonable amount of time. This approach is

known as concurrent design.

Concurrent design is enhanced if engineers and their tools are able to cooperate at a range
of levels during the course of the design process. An important advantage of close cooper-
ation is that conflicts can be identified early in the design process and thus reduce expensive

redesign [Boehm 81].

Section 7.A.2: Traditional Approach is Inadequate

This section summarizes the ways in which traditional darabases and tools are inadequate
for use in a design-centric environment. A new approach which corrects these weakness-
es—the Change Manager—is the subject of this thesis.

An Alternative to Exclusive Locking Must Be Developed

Exclusive locking on design objects is too restrictive, and severely limits close cooperation

in a design environment. The use of exclusive locks prevents tools from accessing design

153

154 Copyright © 1991 by Keith Hall

objects if any other tool is updating those objects. Methods other than exclusive locking
must be used by the database to ensure consistency between the cache of design data within

tools and the design database.

A Workspace Hierarchy is Needed

There are times when updates of a tentative or experimental nature need to be performed
without affecting the existing state of objects. This situation may arise repeatedly, and re-
quires that the design database support a hierarchy of workspaces, in which workspaces
closer to the root workspace hold designs which are more stable. The next-generation de-
sign database must offer a workspace hierarchy and associated protocol of check-out and
check-in that accommodates the hierarchy. These processes are detailed in Sections 4.B.2

and 4.B.6.

Support for Cooperation Is Absent

Traditional databases assume that users do not cooperate informally. Hence they do not
give support for concurrent operation. The next-generation design environment will permit
access to design objects without excluding access to those objects by other engineers and
tools. There may be times, however, when engineers fail to coordinate or make erroneous

updates.

The next-generation design environment, which will support cooperation, must model the
concept of conﬂict in which one engineer’s efforts have been adversely affected by those
of another engineer. Knowledge of conflicts can be used to initiate recovery from high-level
concurrency failures which are are identified by agents and intelligent tools. The supervisor
has responsibility of ensuring that all conflicts are eventually resolved. Section 4.B.10 dis-

cusses conflicts.

Conclusions and Future Work 155

Engineers and Their Supervisors Need Access to Design Status

Information that might be considered “internal” in a traditional database, such as knowl-
edge of which process is accessing what data, is useful to clients of the database in a design
environment. Such process information is called design status. Design status can be used
to initiate direct communication among engineers, to help plan and coordinate design ac-
tivities, and to locate the source of updates which some engineer thinks to be incorrect or

conflicting with efforts in progress.

The next-generation design database must give tools access to the design status, and give
them the ability to track changes to the design status, that is, it must make the design status

active. This is explained in Section 4.B.11.

Translators Must Be Part of the Tool

The next generation of CAD tool is responsible for translating the data model offered by
the design database directly, or indirectly through mediators [Wiederhold 91], to and from

its internal data structures.

Engineering Data are Dynamic

Traditional tools assume that the design data they are accessing are not updated by other
tools. When an application assumes that design data it accesses are static, then that appli-
cation is unable to operate concurrently with other tools that might access the same design
data. But this is contrary to the nature of design-centricity. Thus the next-generation appli-
cation must see engineering data as dynamic and subject to change during a design trans-
action. This means that an application must respond to updates made by other tools by

making its internal state consistent with the new state of the database.

156 Copyright © 1991 by Keith Hall

Constraint Invalidation is Haphazard

The degree of consistency of a design, modeled as a number of constraints, may be affected
by updates to the design. In the traditional design environment, the marking constraints as
invalid is done manually or in a haphazard fashion. The next generation of tool should au-
tomatically invalidate constraints which may have been affected by updates performed by
the tool. This will ensure that designs are not given a higher degree of validation than they
have actually achieved. Consistency checking of designs must be the responsibility of tools
rather than the database, so that tool developers have the freedom to invent new ways of

performing consistency checks on design data.

Section 7.A.3: Change Manager Provides Framework

A central mechanism or framework is needed that will send messages to applications so
that they stay aware of updates to shared design data. The Change Manager provides such
a framework. Tools may be adapted to use the Change Manager; this will enable them to
work in a concurrent design environment. The Change Manager monitors updates to shared

data and sends messages to tools whenever updates in their regions of interest occur.

The Change Manager consists of two collections of modules: the Tool Change Manager
(TCM), which is part of a CAD tool, and the DDMS Change Manager (DCM), which is
part of the Design Data Management System. The Change Manager supports tool indepen-
dence: applications which make use of the Change Manager need not understand the se-
mantics of other applications. This enables the Change Manager to be open-ended,
- whereby neither it, nor the tools which make use of it, need be changed when a new tool is

introduced into the design environment.

Conclusions and Future Work 157

Section 7.A.4: The DCM Adds Capability to an Object Store

Since traditional databases are inadequate for use in a concurrent design environment, ad-

ditional techniques are needed. The DDMS Change Manager (DCM) adds capabilities to

an object store in order to make it suitable for use as a Design Data Management System.

These capabilities are described in detail in Chapter 4 and are summarized below:

tool registration

Tools can register the commencement and termination of their operation with the
DCM.

design object check-out and check-in

Tools can check-out design objects for update or for read access, and check-in ob-

jects they have checked-out when access is no longer required.
asynchronous update notifications

The DCM sends asynchronous update notifications to tools. These notifications de-

scribe updates made by other tools to design objects which have been checked-out.
workspace hierarchy and constraint requirements

"The DCM offers a hierarchy of workspaces into which updates may be encapsulat-

ed, and enforces constraint requirements.
active design status

The DCM gives tools access to the design status and sends notifications to tools

when the design status changes.
conflict logging

The DCM gives tools the ability to mark updates by other tools as conflicts, and en-
sures that a workspace cannot commit to its superior workspace if it contains unre-

solved conflicts.

158 Copyright © 1991 by Keith Hall

e resolution of race condition between a tool and the DDMS

The protocol of requests and acknowledgements between a tool and the DDMS pre-
vents tools from making updates to the DDMS with incomplete knowledge, even in the

face of delays in the transmission of update notifications.

Section 7.A.5: The TCM Offers Services to an Application

The Tool Change Manager (TCM) offers services to a CAD application which simplify the
development of tools that can operate effectively in a concurrent design environment.

These services are described in detail in Chapter 5 and are summarized below:

= consistency of the object cache within a tool

The TCM keeps the object cache consistent in the face of both internal updates made

by the application and external updates performed by other tools.
e automatic voiding of computed slots

The void propagator in the TCM uses the computedSlotSpecs of the schema to automat-
ically void computed slots when slots upon which they depend change. This causes con-
straints throughout a design hierarchy to be marked as invalid when low-level compo-
nents are changed. Thus applications need not be aware of all constraints and other
computed slots in which design data participate, nor of the manner in which those slots

depend upon the values of other slots of design objects.
» interests and messages

The TCM will monitor changes to data upon which an application has registered an in-
terest, and will inform the application when such an update occurs. The application can

use this information to make its internal data structures consistent with the object cache.

An application which performs consistency checks or recalculates computed slots can
use notifications to incrementally revalidate the constraint or computed slot. This can

result in a tremendous reduction in the computation required.

Conclusions and Future Work 159

» deferred handling of update notifications

At times, an engineer may wish to ignore updates which are made by tools other than
the one that engineer is using. For this reason, the TCM gives the application a pro-

grammatic interface to defer the incorporation of external updates into the object cache.

Part 7.B: Contributions

This part of the chapter identifies the research contributions of this thesis.

Section 7.B.1: Flexible Model of Concurrency Control

The use of a traditional database in the design environment means that exclusive locking is
used to maintain consistency of design data. Exclusive locking severely restricts engineers’
use of tools to work on designs. An engineer must carefully plan design activities so that
they do not preclude access to design data needed by other members of the design team.
This tool-centric approach is inappropriate in the concurrent design environment, where
engineers communicate and coordinate their updates in order to achieve progress on the de-

sign.

The most significant contribution of this thesis is the introduction of a flexible model of
concurrency control, which does not necessitate the use of exclusive locks, into the design
environment. The absence of exclusive locks makes a high degree of cooperation possible
among a team of engineers who are collaboratively completing a design. Informal collab-
oration (directly among the engineers) as well as formal collaboration (computer-mediated)

1s supported.

Use of Asynchronous Notifications in Place of Traditional Exclusive Locking

The Update Monitor in the DDMS Change Manager provides the mechanism through

which a tool can become aware of updates made by other tools to cached design objects.

160 | Copyright © 1991 by Keith Hall

The DCM sends asynchronous update notifications to the tools which describe updates that

occur.

Applications Handle Notifications

When applications use this mechanism and follow the requirements to make them “well-
behaved”, as explained in Section 6.A.2, they can keep their internal data structures consis-
tent with be the state of design objects in the DDMS without the need for restrictive exclu-

sive locks.

Since design data are dynamic, and access to them is shared during collaboration, particu-
larly in situations where there is a high degree of cooperation among engineers, the design |
applications of the future must respond flexibly to update notifications from the DCM. The
update notification handler in the TCM automatically incorporates updates from other tools
into the object cache, but the application has the responsibility of updatiﬁg its internal data

structure.

A Range of Levels of Coordination is Possible

Applications can be coordinated with the Tool Change Manager (TCM) in varying degrees.
A range of possible techniques is possible, all of which guarantee consistency. Degrees of
coordination differ in the amount of tool-specific knowledge required. Use of knowledge
offers a high level of coordination with the TCM and enables a tool to respond flexibility
to update notifications rather than abort operation. A suite of tools which are coordinated
with the TCM at a high level permits engineers to concurrently share updates to design ob-

jects. Section 6.C.3 discusses coordination of applications with the TCM.

Section 7.B.2: Object Model for a Design Database

Chapter 2 presented an object model and associated operations on objects which can be

used as a basis for a more complete object-oriented database. The object model presented

Conclusions and Future Work 161

in this thesis is a formal model, and was used in Chapters 4 and 5 to explain operation of

the Change Manager. Section 7.C.2 discusses extensions to the object model.

Section 7.B.3: Annotations on Objects

Section 4.B.5 described auxiliary information attached to design objects, called annota-
tions, that represent the difference between the state of objects in a workspace and the state
of those objects in its superior workspace. The DDMS uses this information to compute the

update delta when a workspace is to be committed to its superior workspace.

The same annotations enable a tool to track how design objects in its cache differ from
those in the database. The tool uses this information to compute the update delta when it

needs to commit its updates to the database.

- Section 7.B.4: Handshaking Protocol Between Tool and DDMS

The Update Monitor in the DCM uses an optimistic handshaking protocol in which a tool
cannot commit changes unless it has processed all pending notifications. This protocol re-
solves the race condition between a tool and the DDMS which may result from a delay in
the transmission of an update notification from the DCM to the TCM. The protocol is pre-

sented in Section 4.B.9.

Section 7.B.5: Architecture of the Change Manager

Chapters 4 and 5 present the architecture and operation of the Change Manager. The
Change Manager is distributed among the DDMS and tools, as the DDMS Change Manager
and the Tool Change Manager, respectively. The DCM and TCM jointly provide the fea-
tures required in a design-centric design environment, as explained in Part 3.B, and satisfy
the requirements presented in Section 3.C.2. The Change Manager provides the mechanism

with which many policies of design methodology can be implemented.

162 Gopyright © 1991 by Keith Hall

Part 7.C: Future Work

This part of the chapter describes four directions for future work on the Change Manager.

Section 7.C.1: Prototype of Change Manager

Since the notion of a Change Manager is new, there do not yet exist next-generation tools
or databases that use implementations of the Change Manager. The construction of proto-
type Change Manager, DDMS, and tools is an important aspect of future work. Working
prototypes will demonstrate the feasibility and utility of the Change Manager approach to

design environments.
Some of the concepts that a prototype will demonstrate are listed below:

+ Changes are propagated among tools which share updates to the same design objects.
For example, one tool might be a schematic capture program and the other a simulator,

both making use of the same data.

* Atool receives notification of the fact that another tool has checked out the same design
object for update. The tool can use this information to make the engineer using the tool

aware of the potential for conflict.

 Constraints are automatically invalidated by the void propagator when data affecting
the constraints are changed. (The state of being invalid is not committed to the DDMS,

however, until the associated updates are.)
* Requests to commit workspaces are allowed to proceed only if all constraint require-

ments have been validated.

Status of Prototype

Some prototyping of elements of the Change Manager has been performed on a Sun Sparc-
station. The X Window system is being used for the user interface portion of the tools, Lisp/

CLOS for the implementation language, and CLX for the bridge between Lisp and X. The

o

Conclusions and Future Work 163

DDMS and tools each have a corresponding lightweight process so that they can operate
asynchronously. The prototype has validated the approach of using a central mechanism

(the DCM) to keep tools aware of asynchronous updates to design objects.

Section 7.C.2: Extensions to the Object Model

The object model defined in this thesis offers simple abstractions such as object, slot, value,
set, ownership, and reference. Providing additional data structures and inter-object relation-
ships in the object model would simplify the job of the application developer by providing
additional abstractions with which design data could be organized and manipulated. This

section discusses four such extensions to the object model.

Arrays

One data structure offered by many programming languages is that of array
[Kemighan 88]. An array is a homogeneous collection of N objects, where N is the fixed
size of the array. The objects in the array are updated individually, and are referred to by a
numerical index. Interests and update notifications for arrays could distinguish among
changes to any part of the array, changes to some subarray, and changes to an individual

element.

Lists

Another useful data structure is the list [Aho 83][McCarthy 60]. A list is a sequence of ob-
Jects. Objects can be inserted into or removed from a list. The number of objects in a list
can vary, and the positions of the list’s elements can shift as objects are inserted and deleted.
Describing updates to particular elements or portions of a list in update notifications will

require a common specification which does not depend upon the positions of the elements.

164 Copyright © 1991 by Keith Hall

Automatic Evaluation of Simple Functions

The values of derived slots of objects are automatically recomputed when a source object
changes. The object model can be extended to include operations other than equality and
projection, such as arithmetic and logical operations, among those computations automat-
ically performed. Which operations to include will require an analysis of engineering

tradeoffs.

Section 7.C.3: Use of Domain-Specific Knowledge

The semantics of a particular engineering domain, e.g., of electronic design, can be used to
develop views, interests, constraints, and methods which incorporate knowledge of that do-
main. Modules which offered domain-specific capabilities could, like the TCM, be includ-
ed with each application and would simplify the task of the application developer. This

section describes three examples of domain-specific extensions.

Multiple Views of a Design

It is not uncommon for two views of a design, such as the schematic diagram and parts list
of a circuit board, to have non-isomorphic decompositions [Rubin 87]. There is nothing that
would prevent an application from representing this with the existing object model, but

there is now no explicit support for maintaining multiple non-isomorphic views of a design.

One extension to the Change Manager would be the automatic linkage of nodes in non-iso-
morphic hierarchies to the extent that they are isomorphic [Beetem 81]. The more general
problem of determining how an update to one view affects other views is known as the view
update problem and has been solved only in special cases [Keller 85]. Furthermore, use
of the object model adds complexity, since, unlike the relational model in which views are
derived from a set of normalized relations, there exists no foundation in the object model

from which all object views can be derived.

Conclusions and Future Work 165

Change Abstractions

Change abstractions are high-level interests which are translated from a domain-specific
level to a sets of more primitive interests. An example of a change abstraction is “switching
speed”, which is translated to interests involving capacitance and resistance, and ultimately

to interests in the values of slots in objects, such as length, width, and type of material.
Change abstractions are useful for two reasons:

1. The bandwidth of communication between the TCM and the application is reduced sub-
stantially. Not only can one change abstraction be mapped to many updates, but at times
many updates can result in one high-level notification being sent to the application
[Wiederhold 86b][Risch 89].

2. Change abstractions provide a programmer who develops applications with a more
powerful vocabulary with which to talk about updates on designs, and thus reduce the

complexity which the programmer must handle.

Pruning of Message Queue

When an update performed by a tool matches an interest registered by an application, a
message describing the update is sent to the application. While an application is busy with
calculations involving its internal data structures, a number of messages from the interest

matcher may be queued for later processing.

One way to extend the interest matcher is to enable it to recognize messages which repre-
sent inverse and idempotent operations and prune the queue appropriately. For example, if
a slot’s value is set twice, or an object is destroyed then undestroyed, then the application
need not receive messages which describe each update. Pruning of the message queue has
the potential of significantly reducing the number of messages which the application has to

handle.

Conclusions and Future Work 166

Intelligent reordering of messages in the queue in a domain-specific manner is another way
to improve the efficiency of a tool’s operation. For example, sorting messages based upon
the geometry of the update in a chip design would benefit a layout editor performing incre-
mental design-rule checking, since it would keep all messages together which describe up-

dates to a particular region.

References

[Aho 83] Alfred V. Aho et al. Data Structures and Algorithms, pages 37-52, Addison-
Wesley, 1983.

[Backus 60] John Backus. “The Syntax and Semantics of the Proposed International
Algebraic Language of the Zurich ACM-GAMM Conference”, Information
Processing, pages 125-132, 1960.

[Batory 85] D.S. Batory and Won Kim. “Modeling Concepts for VLSI CAD Objects”,
ACM Transactions on Database Systems, pages 322-346, September 1985.

[Beetem 81] John F. Beetem. “Structured Design of Electronic Systems Using Isomorphic
Multiple Representations”, Ph.D. thesis, Integrated Circuits Laboratory, Stanford
University, December 1981.

[Bhateja 87] Rajiv Bhateja and Randy H. Katz. “Valkyrie: A Validation Subsystem of a
Version Server for Computer-Aided Design Data”, Proceedings of the Twenty-fourth
ACMIIEEE Design Automation Conference, June 1987.

[Bjornerstedt 88] Anders Bjomerstedt and Christer Hultén. “Version Control in an Object-
Oriented Architecture”, Technical Report SYSLAB 57, Department of Computer
Sciences, Chalmers University of Technology, May 1988.

[Boehm 81] Barry W. Boehm. Software Engineering Economics, Prentice-Hall, 1981.

[Breitbard 68} Gary Y. Breitbard and Gio Wiederhold. “PL/ACME: An Incremental
Compiler for a Subset of PL/1”, Proceedings of the 1968 IFIPS Conference, pages 358-
363, 1968. ~

[Brodie 84} Michael L. Brodie et al. “CAD/CAM Database Management”, Database
Engineering, pages 64-72, June 1984.

[Bushnell 86] Michael L. Bushnell and S.W. Director. “VLSI CAD Tool Integration Using
the Ulysses Environment”, Proceedings of the Twenty-third ACMIIEEE Design
Automatrion Conference, pages 55-61, June 1986.

[Ceri 84] Stefano Cerl. Distributed Databases: Principles and Systems, McGraw-Hill,
1984,

[CODASYL 711 CODASYL Data Base Task Group Report, ACM, April 1971.

167

1 68 Copyright © 1991 by Keith Hall

[Dayal 88] Umeshwar Dayal et al. “Rules are Objects Too: A Knowledge Model for an
Active, Object-Oriented Database System”, Proceedings of the Second International
Workshop on Object-Oriented Database Systems, pages 129-143, September 1988.

[Dayal 90] Umeshwar Dayal et al. “Organizing Long-Running Activities with Triggers and
Transactions”, Proceedings of the ACM SIGMOD Conference, pages 204-214, May
1990.

[Doyle 79] Jon Doyle. “A Truth Maintenance System”, Artificial Intelligence, pages 231-
272, November 1979.

[Du 87] H. C. Du and S. Ghanta. “A Framework for Efficient IC/VLSI CAD Databases”,
Proceedings of the Third International Conference on Data Engineering, pages 619-
625, February 1987.

[Eastman 91] Charles M. Eastman et al. “A Data Model for Design Databases”, Technical
Report 12, University of California at Los Angeles, March 1991.

[Ellis 89] C.A. Ellis et al. “Concurrency Control in Groupware Systems”, Proceedings of
ACM SIGMOD, pages 399-407, May 1989.

[Ellis 911 C.A. Ellis et al. “Groupware—Some Issues and Experiences”, Communications
of the ACM, pages 38-58, January 1991.

[Garcia-Molina 87] Hector Garcia-Molina and K. Salem. “S agas”, Proceedings of the ACM
SIGMOD Conference, May 1987.

[Gray 81] Jim Gray. “The Transaction Concept: Virtues and Limitations”, Readings in
Database Systems, pages 140-150, Morgan Kaufmann Publishers, 1988.

[Hall 88] Keith Hall. “An Introduction to the Problems of Engineering Information
Systems”, Proceedings of the IEEE Systems Design and Networks Conference, pages
85-89, April 1988.

[Hall 89] Keith Hall et al. “Explicit and Implicit Change Coordination in an Information-
Rich Design Environment”, Proceedings of the NSF Engineering Design Research
Conference, June 1989.

[Harrison 86] David S. Harrison et al. “Data Management and Graphics Editing in the
Berkeley Design Environment”, Proceedings of the IEEE International C onference on
Computer-Aided Design, pages 24-27, 1986.

[Heiler 87] Sandra Heiler, Umeshwar Dayal, et al. “An Object-Oriented Approach to Data
Management: Why Design Databases Need It”, Proceedings of the Twenry-fourth
ACMIIEEE Design Automation Conference, pages 335-340, June 1987.

[Henderson 89] Peter B. Henderson. “Integrated Design and Programming Environments”,
IEEE Computer, pages 12-16, November 1989.

[Katz 83] Randy H. Katz. “Managing the Chip Design Database”, IEEE Computer, pages
26-35, December 1983.

IsY

169

[Katz 87] Randy H. Katz. “Managing Change in a Computer-Aided Design Database”,
Technical Report UCB/CSD 87/341, Computer Science Division, University of
California at Berkeley, January 1987.

[Keller 85] Arthur M. Keller. “Updating Databases Through Views”, Ph.D. thesis,
Computer Science Department, Stanford University, February 1985.

[Kernighan 88] Brian W. Kemighan and Dennis M. Ritchie. The C Programming
Language, Prentice Hall, 1988.

[Korth 86] Henry F. Korth and Abraham Silberschatz. Database System Concepts,
McGraw Hill, 1986.

[Korth 90] Henry Korth et al. “A Formal Approach to Recovery by Compensating
Transactions”, Proceedings of the Sixteenth Conference on Very Large Databases,
pages 95-106, August 1990.

[Lamport 78] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”, Communications of the ACM, pages 558-565, July 1978.

[McCarthy 60] John McCarthy. “Recursive Functions of Symbolic Expressions and Their
Computation by Machine”, Communications of the ACM, pages 184-195, April 1960.

[Mehmood 87] Z. Mehmood et al. “A Design Data Management System for CAD”,
Proceedings of the IEEE International Conference on Computer-Aided Design, pages
220-223, 1987.

[Moss 85] Eliot Moss. Nested Transactions: An Approach to Reliable Distributed
Computing, MIT Press, 1985.

[Nodine 90] “Cooperative Transaction Hierarchies: A Transaction Model to Support
Design Applications”, Proceedings of the Sixteenth Conference on Very Large
Databases, pages 83-94, August 1990.

[Ousterhout 83] John Ousterhout, Gordon Hamachi, et al. A Collection of Papers on Magic,
Technical Report UCB/CSD 83/154, University of California at Berkeley, December
1983.

[Overmars 83] Mark H. Overmars. The Design of Dynamic Data Structures, Springer-
Verlag, 1983.

[Papadimitriou 84] Christos H. Papadimitriou. “On Concurrency Control by Multiple
Versions”, ACM Transactions on Database Systems, pages 89-99, March 1984.

[Papadimitriou 86] Christos H. Papadimitriou. The Theory of Database Concurrency
Control, Computer Science Press, 1986.

[Risch 89] Tore Risch. “Monitoring Database Objects™, Proceedings of the Fifteenth
International Conference on Very Large Darabases, pages 445-453, August 1989.

[Risch 91] Tore Risch. “Building Adaptive Applications Using Active Mediators”,
Proceedings of the Second International Conference on Databases and Expert Systems,
August 1991. '

170 Copyright © 1991 by Keith Hall

[Roussopoulos 91] Nick Roussopoulos et al. “An Architecture for High Performance
Engineering Information Systems”, IEEE Transactions on S oftware Engineering, pages
22-33, January 1991.

[Rubin 87] Steven M. Rubin. Computer Aids Jor VLSI Design, Addison-Wesley Publishing
Company, 1987.

[Spooner 85] David L. Spooner et al. “Abstract Data Types for CAD Systems”,
Proceedings of the IEEE International Conference on Robotics and Automation, pages
359-364, March 1985.

[Stefik 82] Mark Stefik et al. “The Partitioning of Concerns in Digital System Design”,
Technical Report HPP-82-2, Computer Science Department, Stanford University,
February 1982.

[Ullman 82] Jeffrey D. Ullman. Principles of Database Systems, Computer Science Press,
1982.

[van der Meijs 85] N. van der Meijs et al. “A Data Management Interface to Facilitate
CAD/IC Software Exchanges”, Proceedings of the IEEE International Conference on
Computer-Aided Design, 1985.

[van der Wolf 88] Peter van der Wolf and Rene van Leuken. “Object Type Oriented Data
Modeling for VLSI Data Management”, Proceedings of the Twenty-fifth ACM/IEEE
Design Automation Conference, June 1988.

[Wiederhold 80a] Gio Wiederhold and Ramez El-Masri. “The Structural Model for
Database Design”, Entity-Relationships Approach to Systems Analysis and Design,
pages 237-257, North-Holland, 1980.

[Wiederhold 80b] Gio Wiederhold. “A Database Approach to Communication in VLSI
Design”, Technical Report 80-826, Computer Science Department, Stanford
University, October 1980.

[Wiederhold 83] Gio Wiederhold. Database Design, McGraw-Hill Book Company, 1983.

[Wiederhold 85] Gio Wiederhold et al. “Models for Engineering Information Systems”,
Proceedings of the 1985 VHSIC Conference, December 1985.

[Wiederhold 86a] Gio Wiederhold and David Beech. “Object Management in Engineering
Information Systems”, unpublished manuscript, 9 pages, March 1986.

[Wiederhold 86b] Gio Wiederhold. “Support for Parallel Design in an Engineering
Information System”, unpublished manuscript, 20 pages, August 1986.

[Wiederhold 86c] Gio Wiederhold. “Views, Objects, and Databases”, IEEE Computer,
pages 37-44, December 1986.

[Wiederhold 88] Gio Wiederhold. “Engineering Information Systems: Prospects and
Problems of Integration”, JEEE Spring COMPCON Digest of Papers, pages 228-229,
March 1988.

References 171

[Wiederhold 89] Gio Wiederhold et al. “Layering an Engineering Information System”,
IEEE CS Spring COMPCON Digest of Papers, pages 444-449, February 1989.

[Wiederhold 91] Gio Wiederhold. “Mediators in the Architecture of Future Information
Systems”, accepted for JEEE C omputer, March 1991.

[Wilkinson 90] Kevin Wilkinson and Marie-Anne Neimat. “Maintaining Consistency of
Client-Cached Data”, Proceedings of the Sixteenth C onference on Very Large
Databases, pages 122-133, Aagust 1990.

[Winslett 89] Marianne Winslett, David Knapp, Keith Hall, and Gio Wiederhold. “Use of
Change Coordination in an Information-Rich Design Environment”, Proceedings of the
Twenty-sixth ACM/IEEE Design Automation C onference, June 1989.

.
&

