C I F E CENTER FOR INTEGRATED FACILITY ENGINEERING

AN INTEGRATED FRAMEWORK
FOR DESIGN STANDARDS PROCESSING

by

Nobuyoshi Yabuki
Kincho H. Law

TECHNICAL REPORT
Number 67

June, 1992

Stanford University

© Copyright by Nobuyoshi Yabuki 1992
All Rights Reserved

SUMMARY
CIFE TECHNICAL REPORT #67

Title: An Integrated Framework for Design Standards Processing

Authors: Nobuyoshi Yabuki, Ph.D., P.E., Electric Power Development Co., Ltd.,
Japan, and
Kincho H. Law, Associate Professor, Department of Civil Engineering.

Date: June 1992

Funding: Fellowship from the Electric Power Development Co., Ltd., Japan,
Fulbright Scholarship from the Japan-United States Educational
Commission,
Research Fund from the National Science Foundation, Grant No. IRI-
9116646.

1. Abstract:

This report describes an integrated-framework for the documentation, representation,
and processing of design standards in a Computer Aided Design (CAD) environment.
We combine object-oriented and logic programming paradigms to provide a unified
Object-Logic model to represent and process design standards. In this model, a
designer can check the design for compliance with design provisions as well as perform
component design. The framework also includes the storage of background
information such as commentaries of the design provisions in a HyperDocument
environment. To demonstrate the feasibility and practicality of this framework, a
prototype system has been implemented for the American Institute Steel Construction
(AISC) Load and Resistance Factor Design (LRFD) specification.

2. Subject:

This report describes the results of a research project that studies the representation,
processing, and documentation of design standards. In this report, we reviewed and
examined previous and current related work to this research, described an integrated
framework for design standards processing in detail, and demonstrated the feasibility of
this framework. The key idea of this framework is that the combination of the object-
oriented and logic programming paradigms is suitable for representing the organization
of the design standard and for representing and processing design provisions both for
component design and conformance checking. The other key idea is the importance of
storing and utilizing background information both for code writers and design
engineers. The framework integrates the model for representation and processing of
design standards with the model for the documentation of design standards and their
background information and knowledge.

3. Objectives/Benefits:

Design standards play a significant role in the design process to ensure safety, quality,
and functionality of civil engineering structures and facilities. Design standards contain
a large amount of complex information; thus an engineer would need a great deal of
experience to comprehend and use the code correctly and effectively. Conformance
checking and designing using standards is a tedious, laborious, and difficult task. The
objective of this research is to develop a model that can:

» perform both conformance checking and component design within the same

environment,
« represent both the organization and provisions of the design standard effectively,

 check the completeness and consistency of design standards,
o store background documents and knowledge that can be accessed by code writers
and engineers, and
e be integrated in a CAD environment.
The model would automate and enhance the design and conformance checking process.
In addition, the model would enhance and facilitate the code developing and revising
process.

. Methodology:

The background and status of current research on design standards processing and
documentation systems were acquired through literature review. A new model and a
methodology were developed by the authors. A prototype system was implemented
and tested on a few sample problems.

. Results:

The results of this research can be summarized as follows:

e A new representation scheme for design standards processing through a combination
of object-oriented and logic programming paradigms was developed.

» A methodology to perform both conformance checking and component design within
the same design environment was established using the Object-Logic scheme.

e A model for storing and utilizing heterogeneous documents of background
information and knowledge was developed and integrated with the design standards
processing model.

« A framework for checking completeness, uniqueness, and correctness of design
standards was developed.

« A framework for integrating a design standards processing system with other design
applications was developed.

A prototype system has been implemented.

. Research Status:

This research has been completed. The framework developed in this research project
can be readily applied to developing design standards processing systems. Nobuyoshi
Yabuki is planning to apply this model to a Japanese penstock design standard.

iv

Abstract

This thesis describes an integrated Hyper-Object-Logic model for the documentation,

representation, and processing of design standards.

There are two distinct categories of knowledge in a design standard: (i) knowledge of the
organization of design objects and (ii) knowledge of the methods used in reasoning about
design. The object-oriented paradigm lends itself naturally to representing the
organizational aspect of the design standard. The logic programming paradigm, on the
other hand, is well suited to implementing the reasoning mechanisms for design and
conformance checking. The object-oriented and logic programming paradigms are
combined to provide a unified Object-Logic model for the representation of design codes
and the processing of design standards. By storing the design provisions in a knowledge
base, the model is capable of performing conformance checking and component design,

and syntactically analyzing the applicable standards.

Besides the Object-Logic representation, this thesis also addresses the issue of the storage
of background information (such as commentaries) related to the design provisions. A
HyperDocument model, which is based on the HyperFile structure, is developed for the
documentation of design provisions. The HyperDocument model provides an
organizational model to store and access heterogeneous documents, including design
provisions, their background information and data, and programs that can enhance the
process of developing and revising design standards. In addition, the documentation
system can serve as a means to provide explanations and background information that are

needed to support design tasks.

The Object-Logic and the HyperDocument models are integrated into a unified Hyper-
Object-Logic model. To evaluate the feasibility and practicality of this model, a prototype
system, HyperLRFD++, has been implemented for parts of the American Institute of Steel
Construction (AISC) Load and Resistance Factor Design (LRFD) specification and tested
on a few sample problems.

Acknowledgments

This report is reproduced from a doctoral dissertation by Nobuyoshi Yabuki to Stanford
University. The doctoral committee comprised of Professors Kincho H. Law (principal
advisor), Helmut Krawinkler, Raymond E. Levitt, and William J. Rasdorf (North Carolina
State University).

We would like to acknowledge the sponsorship for the graduate study of Nobuyoshi
Yabuki at Stanford University by the Electric Power Development Co., Ltd. and the Japan-
United States Educational Commission (Fulbright Scholarship). This research is also
partially supported by the National Science Foundation, Grant No. IRI-9116646.

Some pictures in the figures of this report were optically scanned and reproduced from the
AISC LRFD Manual [AISC 86] and one part of the AISC Engineering Journal [Yura 71]
with the permission of the publisher, the American Institute of Steel Construction, Inc.

vi

Table of Contents

SUIMINIAT Y et eteneenneeasosonsonsoronsssessossnssasssconcsncsscnsssssscossssssses iii
ADSEIACE ¢t vivuiereonenueerenessesnseteareosassasnsosssnsonsaasossssssssssscsasse v
ACKNOWIedgmentS....ovuiiiiininieiiiiiiirersuesseetaeacasoensesesesssnsnssos vi
Table of Contentsouivivriuininrererseraeieresesusseassusasessasossasesscns vii
List of Figures. . icciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiitieiecesssotsananes xi
List Of Tables....ouiieiiiiiuiieieieieiiiiiesiisesesasaeesenssnconsnsososonsns xiv
Chapter 1 Introduction........cccevvieiiiiicierirenencnssasecreececence 1
1.1 Problem Statementuii ittt ittt e e 2
| O 0) 1wt O S P 4
1.3 SCOPE Of StUAY . enntit i e 5
1.4 Organization. ouuiiu ittt et 5
Chapter 2 Related WorK.....oooiiieriiiiiiirneneeiercciercnceceenennes 7
2.1 Standards Processing Models and Implementation Approaches........................ 7
2.1.1 The SASEMOdel....oouitiiniiiiiiie e 8
2.1.1.1 Data I emS . .ottt e 8
2.1.1.2 Decision Tables.....cocooviiiiiiiiiiiiiiiii 9
2.1.1.3 Information Network......ccvoeiiiiiieiiiiiiiiiiiiiiiiiiiiiieaean, 9
2.1.1.4 Organizational SyStem.........coeiviiiiiiiiiiiiiiiiiii e 11
2.1.1.5 Checking Completeness, Uniqueness, and Correctness 14
2.1.1.6 Discussion onthe SASEModel.........cooiiiiiiiiiiiiiiiiiii., 16
2.1.2 Production Rule Approach..........cooiiiiiiiiiiiiiiiiiiiiiiiiaiicieeenen 16
2.1.2.1 The Production Rule Approach for Design Standards Processing . 17
2.1.2.2 Checking Anomalies in a Production System..........ccccciinnnee 17
2.1.3 Frame-Based and Object-Oriented Representation of Design Standards......18
2.1.4 Logic-Based ApProachcooiuiiiviiiiiiiiiiii i 21

vii

2.1.4.1 Predicate CalculusS..ioviriiiiriiiiiiiiiiiiii i ceeicereee e aeens 21

2.1.4.2 Logic Programming and Prolog............coovviiiin 22

2.1.4.3 Logic-Based Approach for Standards Processing.............c.... 23

2.1.5 Automated Component Design Using Standards................oooiiiiinns 26

2.2 Hypertextand HyperFile ... 27
20 B 5 4 01 4 o5 27
2.2.2 The Standard Markup Language and HyTimecooooiiiiiiien, 29
2.2.3 HyperFile. oo e 30

PG TN 11111102 o OO 32
Chapter 3 The Hyper-Object-Logic Model........ccuc....eeee . 34
3.1 AnOverview of the Model......ouiiiiiiiii i e 35
3.1.1 The Object-Logic Model.......cccooiiiiiiiiiiiiiiiiiiiiii e, 36
3.1.2 The HyperDocument Model......ccocooiiiiiiiiiiiiiiiniiii i, 38

3.2 System Capabilitiesonuiniieiiiiii e 39
3.2.1 Structural Design ..o.viueiniiniiiii i 39
3.2.2 Development of Design Standardsooooiiiiiiiiiiiiiiiiiiiiiiinene 43

3.3 The Prototype SYSIEIM ... uenute it ittt ittt e e e ees 45
3.4 SUMIMATY .ottt ittt ettt et et a e 47
Chapter 4 The Object-Logic Model.......cccccviiiiirienniannnnnnes 48
4.1 Standards Baseouivuiiiiiiiiiii e 48
4.1.1 Member Class Hierarchycooviiiiiiiiiiiiiiiiii e, 50
4.1.1.1 The Structure of Member Class Hierarchy...............coooonin. 50

B.1.1.2 CIaSSES tuvertineeanteneeententeaneeeenteaaeesatiaiestiaaenesereenaanns 53

4.1.2 Method ODJeCtS .. ueinttiiitt e et it e as 58

4.2 CAD Object Data Base................. e e 65
4.2.1 ObJeCt MOEL...c.uinntiiiiiii i e 67
4.2.2 Engineering Databases and Data Objectscoocvviiiiiiiiiiiiiiiiiiane. 68

v G N V15 0100 ¥:1 U SO OO e 70
Chapter 5 The HyperDocument Model........cevvueieiinnnnnnn. e 71
5.1 Document Baseoouiiiiitiiiiiii i e 73
5.1.1 Method ODJECTS ..vuinrinitiieet e eiiri ittt ee e eaeeaaaas 73
5.1.2 The Provision Document Bas€....cc..ccoiiviiiiiiiiiiiiniiniiniiniiiinannines 75
5.1.3 The Background Basec.cceveeiniiiiiiiiiiiiiiiiiiiiiieiini e 76

viii

5.1.4 External ProgramisS......cocoiiiiiiiiiiiiiiiiiiiici e 77

5.2 The Navigation Systeml. .. .cuiuue ittt e 78
5.2.1 Navigation by POINIEIS ...coieiiiieiii i 78
5.2.2 Document Retrieval by QUETY....ccocoiiiiiiiiiiiiiiiiiiii e 79
IV T 23 {0} S PN 81

IR BN 110411 0T o PP 84

Chapter 6 Design Applications......ccccceeeeereeececiereericnccneaes 85

6.1 Conformance Checking and Component Design Modules................oooooiiiis 85
6.1.1 Conformance Checking Module.........coooiiiiiiiiiiiiiiiiniiiens 85
6.1.2 Component Design Moduleoooiviiiiiiiiiiiii 90

6.2 Preliminary Design of a Compression Member.......cccccvriiiiiiiniiiniiieiiennnnnnan. 91
6.2.1 Problem Definition..........cooiiiiiiiiiiiiiii 91
6.2.2 Selection of a Trial Designation for the Column...............ooooiiin. 95
6.2.3 Conformance Checking of a Trial Design......ccoeoviiiiiiiiiiiiiiiiiiiin.. 98
6.2.4 POSt-ProCessingc.cccouiriiiiiiiii i 99

6.3 Conformance Checking for Detailed Design of a Column........cccccceeviiiinnnniins 103
6.3.1 Problem Definitionoovvuiriiiiiiiii i 103
6.3.2 Conformance ChecKing....ooooiiiiiiiiiiiiiiiiiiiiii e 104
6.3.3 Re-designof the Column........ccoooiiiiiiiiiiiiiiiiiii e 108

6.4 Conformance Checking of a Flexural Member in the Detailed Design Phase......... 115

6.5 Detailed Design of a Flexural Compression Member ..., 117
6.5.1 Selection of a Trial Beam-Column Member...........c..coooiiiiiiiiiiin... 118
6.5.2 Conformance ChecKing.....coocoiiiiiiiiiiiiiiiiiiiiiiiiiiiieans 124

TN 1001007 A P 127

Chapter 7 Standards AnalysSiScccceeiieeiiiinnrrenncieeenencnnns .. 128

7.1 Analysis of Individual Provisions..........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 128
7.1.1 Checking Completenessuuueerrernreeteeteaeeieenteeeiaieeeaneenneannenns 132
7.1.2 Checking Lack of RedundanCycoooiiiiiiiiiiiiiies 136
7.1.3 Checking Lack of Contradiction...........ccoiiiiiiiiiiiiiiiiiiiiiiiiiien, 139
7.1.4 Compressing Multiple Method Objects.........ccoveiiiiiiiiiiiiiiiiiian, 140
7.1.5 Semantic Checking of Individual Provisionsoooiiiiiii.n. 143

7.2 Analysis of the Standards Organization......c....ccccoceeiieiiiiiiiiiinnniiinnnneinne 145
7.2.1 Checking Completeness of the Classification Method Object.................. 146
7.2.2 Checking Lack of Redundancy of the Classification Method Object.......... 147

1X

7.2.3 Checking Lack of Contradiction of the Classification Method................. 150

7.2.4 Checking Correctness of the Standards Organization.............oooeveennnne. 150
7.3 Checking Relations Among Provisions.......cccceooociviiiiiiiniiin . 153
T4 SUMIMATY «. ittt ettt ettt e r ettt it ae e s rae e naeaneaaaans 155
Chapter 8§ Summary and DiSCUSSION ...ceeeeeerecccercecssasscancnns 157
8.1 Summary and Contributionseveuetiitiii ittt an e 157
8.2 Limitations of the Research and Future Work ..., 161
ReferencCes cooeeeeeiioesicnnnneesneenerieretesssseessssesossesscasssnssssnes ..164

Figure 2-1
Figure 2-2
Figure 2-3

Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

Figure 3-6
Figure 4-1
Figure 4-2

Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8

List of Figures

Provision E2 from the AISC LRFD specification [AISC 86] 10
Decision Table for Determining Fcr ..., 10
Information Network for the Requirement for Compression

Y (513101 PP 11
Partial Facets of Two Fields [Harris 81] [Garrett 86]cccoceviiniinne. 13
Two Possible Outlines [Harris 81] [Garrett 86]...cccoveieiiieeniciiiiiinnnns 14
Partial Hierarchical Trees of Classifiers for Each Field [Garrett 86]....... 19
A Part of the Classification System [Garrett 86]c..cooviviiiiiiiiini, 20
Organizational Submodel [Rasdorf 90-a]coooiiiiiiiine, 25
HyperFile as a Back-end Service [Clifton 90]........cccoiiiiiiiiiiiniss 31
Overview of the Hyper-Object-Logic Model ..o, 37
Structural Design ProcCess......cococeviiiiiiiiiiiiiiiniiiiienaen 40
Structural Design Process and the Hyper-Object-Logic Model............. 42
Process of Design Standards Development...........coooooiiiiiinnn.. 43
The Process of Design Standards Development and the
Hyper-Object-Logic Model ... 44
The Structure of HyperLRFD++ and Implementation Software............ 46
System Architecture of the Object-Logic Model.........ccccoeeiiinninnnn. 49
A Part of the Table of Contents of the AISCLRFD -

Specification [AISC86]ccevuiiriiiiiii e 51
Object-Oriented Organization Model of the Standard........................ 52
Fields and Partial Classifierscocoveeieeiiiiiiiiiiiiiiiiiiiien 54
A Unified Hierarchical TT€ecccviviiiiiiiiiiiiiiiiiiiiiieeieaeas 55
An Object-Oriented Unified Hierarchical Tree.......cooiinin. 56
Object-Oriented Organization Model with AND-OR Tree................... 57
Member Class Hierarchy and Method Objectscovvviiiniiiiininnnn.. 59

X1

Figure 4-9

Figure 4-10

Figure 4-11
Figure 4-12
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8

Figure 6-9

Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
- Figure 6-16
Figure 6-17
Figure 6-18
Figure 6-19
Figure 6-20
Figure 6-21
Figure 6-22

An Example of a Requirement Method Object......cccoiiiniiiiinniininn. 63

An Example of a Determinant Method Object ... 63
An Example of a Classification Method ObjecCt........ccoviiiiiniiiiinnnn. 65
The CAD Object Data Baseoooviiiiiiiiiiiiie, 66
The Overview of the HyperDocument Modelooooi, 72
A Sample Document in the Document Base ... 74
The Document Base of the HyperDocument Model 75
Processing of the External Programc.ooiiiiiiiiiiiininen. 78
Query Menu and a Document List ..o 80
The Document “A-B5.3” Retrieved by Query............ooiiiiiiiiiiinns 81
A Sample Overview Networkcooiviiiiiiiiiiiiiiees 82
History of Visited DOCUMEntS........ooooviiviiiiiiiiiiiiieeceee 83
The Document Retrieved by the Browser...............oinn. 83
Requirement Focusing in the Preliminary Design Phase.................... 88
An Example of a Conformance Checking Result ...l 89
An Example for Column Design (Adapted from [Rokach 91])............. 92
The First Card of the User Interface............oooviiiiiiiiiiiiin. 93
The Object Data Model and “Column_25".........coooiiiiiiiiiiiiiiiiinn.. 93
Defining Member Attributes for “Column_25".......cccccoiiiiinninnn. 94
Attributes and Their Values of “Column_25” ..., 95
The Hierarchical Menu for Selecting a Focused Class in

Preliminary Designooveiiiiiiiiiii e 99
Member Class Hierarchy Traversal in Preliminary Design 100
The Table Showing the Result of Designing Column_235................... 100
The Session of Designing “Column_257 ..., 101
Design Report for the Member “Column_25"......c..ciiiiiiiiiiiiin 102
The Column in the Detailed Design Phase.............oooiiiiiiiiiinn, 104
Provision Document “C27 oo 105
The Document Showing the Alignment Chart with a Button............... 106
The Screen Image of the K-factor Program of Excel..................... .. 107
The Conformance Checking Result of “Column_25"....................e. 108
The Session of Conformance Checking of “Column_25".................. 109
Design Report for the Member “Column_25".........ccoiiiiiiiiiiiiinn. 110
Provision E2 from the AISC LRFD specification [AISC 86] 111
Explanation for the Requirements of Provision E2 [AISC 86]............. 111
A Part of the Commentary C2 of [AISC86]ooviiiiiiiiiiiiiiiiiine. 113

Xii

Figure 6-23
Figure 6-24

Figure 6-25
Figure 6-26
Figure 6-27
Figure 6-28
Figure 6-29
Figure 6-30
Figure 6-31
Figure 6-32

Figure 6-33
Figure 6-34

Figure 6-35
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13

Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17

Figure 7-18

A Part of the Paper [Yura 71] Referenced by the Commentary 113
HyperDocument Showing a Part of Table A “Stiffness

Reduction Factors” [AISC 86] ... 114
A Part of the “SRF” Excel Program.........ccooeiiiiiiiiiiiiiiiiiiiinnn, 114
Beam_234 and Its Design Condition...........cooiviiiiiiiiiiiiiii, 115
Attributes of Beam_234........ooiiiiiiiiiii e 116
The Result of Checking Beam_234....c.ccciiiiiiiiiiiiiiiniiniiiinnn 117
The Session of Conformance Checking of “Beam_234" 118
The Frame Structure and Load Condition of “Beam_column_45"......... 119
Attributes and Their Values of “Beam_column_45"..................oee. 120
The Session of Trial Section Selection of Designing

“Beam_column_457 .. e 123
The Result of Designing Beam_column_45............oooiiini 124
The Session of Conformance Checking of Designing

“Beam_column_45" (Continued from Figure 6-32)............c..oooiiil 125
Design Report for the Member “Beam_column_45"oooinil 126
The Basic Procedure for Checking Individual Provisions.................. 130
The Provision about the Coefficient Cb............oooiiiiiiiiiiiiii 134
Object-Logic Sentences in the Method Object “Cb”cocoiiiiin. 134
The Session of Checking Completenessovueeveeerireinniininiiiineinns 136
The Session of Checking Lack of Redundancy.............cooooviiiiiins 138
The Session of Checking Lack of Contradiction............coooeviiiniinns 141
An Example of Requirement Method Objectscoooiiiiiiiiin . 142
A Computer Screen Showing Method Objects and a Provision............ 144
Rules in the Method Object “clas_steel_mem”™cooeiiiiiiiiiiinin.. 146
The Session of Checking Completenesscvveveeieieeeinieininnnn......148
The Session of Checking Lack of Redundancy..............coooooi 149
The Session of Checking the Lack of Contradiction.........ccccoovvuniinn. 151
Provisions Corresponding to the Classification Method

“clas_steel_mem” [AISC 86ciiiiiiiiiiiii e 152
Graphical User Interface to Create a Member Class Hierarchy............. 152
An Example of Requirement Method Objectscoooiiiiiiiiii, 154
Dependency Network of the Requirement Method Object.................. 154
Dependency Network of the Requirement Method Object with

1 (221 1V o N 155
A Cyclic Network (A Hypothetical Example)......ocoooviiiiiinn. 156

xiii

Table 2-1
Table 4-1
Table 6-1
Table 6-2

List of Tables

Requirement Names and Argument Lists [Harris 81] ...l 13
A Part of a Relational Database ‘“WSHAPE_DIM’.........c.cccoeeiiienens 69
Design Compressive Strength for W14 Columns (Fy =36 ksi)........... 97
Table for Determining m and U for Beam-Columns

Fy =36 ksi (Adapted from [AISC 86]) ...c.covviiiiiiiiiiiiiiin, 122

Xiv

CHAPTER 1 INTRODUCTION 1

Chapter 1

Introduction

Design Standards play a significant role in the design process to ensure safety, quality, and
functionality of civil engineering structures and facilities. Design standards contain a large
amount of complex information; thus an engineer would need a great deal of experience to
comprehend and use the code correctly and effectively. Checking a design for
conformance with applicable design codes (conformance checking) and designing using
standards is a tedious, laborious, and difficult task. Misinterpreting or overlooking

provisions of a design code could have serious consequences.

A design standard can be defined as a document that states the requirements that must be
met in order to ensure that an adequate level of performance for an entity is provided
[Garrett 86]. Design standards can be divided into three basic types [Fenves 76]:
» performance standards, which state the required performance in a specific way but
contain no procedure for evaluating the performance.
 procedural standards, which consist of both statements of required performance and
procedures for evaluating the performance.
* prescriptive standards, which strictly state the required dimensions and properties of
components in a design.

-In structural design, procedural standards are most commonly used, e.g., American
Institute of Steel Construction (AISC) specifications [AISC 86] [AISC 89]. This thesis
focuses on procedural standards and they are referred to hereafter as design standards or
simply standards. In addition, within the context of this thesis, design codes and
specifications are treated as synonyms of design standards. A design standard consists of a

CHAPTER 1 INTRODUCTION 2

set of provisions, each of which stipulates some quality, function, or performance of a
product or process. Provisions are represented in a form of sentences, tables, charts, or
equations. This thesis concerns with the design of structural components in compliance

with the provisions.

For more than two decades, many researchers and engineers have attempted to computerize
design standards for design application and conformance checking purposes. The recent
developments in artificial intelligence and hypertext technologies could have significant
impact on the representation of design codes, the processing of design standards, and the
integration of design standard processing in an intelligent Computer Aided Design (CAD)
environment. This thesis identifies the problems in the current and previous approaches for
design standards processing and proposes a model for the representation, processing, and
the documentation of design standards.

1.1 Problem Statement

A common approach for incorporating design standards processing into CAD software is to
encode the provisions into a computer program using procedural languages. This approach
poses the following problems:

e It is difficult to modify the program when the standard is revised because the
provisions are “hard-coded” into the program.

* The developers of the design software tend to be computer programmers or junior
engineers who may not be familiar with the design provisions. They may
misinterpret the code provisions, making the program invalid.

* “Hard-coded” programs often aim for either conformance checking or automated
designing, but it is rather difficult to implement both applications in a unified
manner.

Various models have been developed for representation and processing of design
standards. However, current models for standards processing as well as “hard-coded”
systems have no direct mapping between the provisions of design standards and the
program code representing the provisions. It is difficult to check the consistency between
the program code and the provisions.

CHAPTER 1 INTRODUCTION 3

Design code development is often a long and tedious process with many discussions,
writings, and rewritings. Although every effort is made to ensure the correctness of the
specification, it remains difficult to ensure that the specification is free of mistakes,
inconsistencies, and incompleteness. The methods currently used for checking standards
are rather trivial and error prone. Code issuing authorities distribute “draft” standards to
researchers and practitioners and depend on the human experts to detect possible conflicts
and errors. The effort required to identify inconsistencies is enormous if the standard is
complicated and voluminous. Itis desirable to have a systematic mechanism that can check

inconsistencies in a design standard represented in a certain computerized format.

During the code development process, many necessary documents and data are collected.
Collecting these background data and knowledge is time-consuming and expensive.
Unfortunately, the documents collected are often not shared by other researchers and
engineers. When the standard is revised, extra efforts are required to re-collect many of the
documents. It is thus desirable to develop a document storage system that can store and
access a large amount of various, heterogeneous documents containing text, charts,

drawings, pictures, video, and audio.

Due to the growing complexity of civil engineering projects and the increasing time
pressure on design, engineers often lack the time to study the fundamentals and
background of new or revised design standards. In practice, designers, especially junior
designers, tend to plug numbers in design equations without fully understanding the
meaning and implications of the provisions they use. Consequently, designers may
misinterpret and misunderstand the implications of a provision. Designers cannot achieve
an economical and safe design because they may not be able to distinguish the important
parameters from less important ones in terms of economy and safety. It is desirable to
include explanations and background information for easy access upon request.

In knowledge engineering, there are currently two approaches for providing explanations to
the “why” questions:

» showing explanations for anticipated questions (canned text approach), and

* paraphrasing the rules or the methods encoded in the program into English.
The drawback of the canned text approach is that the developer has to anticipate all the
questions the users may ask. The limitation of the paraphrasing approach is that it is weak

CHAPTER 1 INTRODUCTION 4

in justifying what the program does or did [Swartout 83]. We need a more flexible
explanation facility that can explain justification. The knowledge required to provide these
justifications is often available to produce the design standard but is seldom recorded as
part of the program or standard. Thus, the document storage system, as pointed out
earlier, could be a useful means to provide explanations to the user. That is we need
appropriate linkages and integration between the design or checking software and the

document system.

Current conformance checking programs that are available in the industry are mostly stand-
alone type. They are usually not integrated with CAD data models, engineering databases,
and Computer Aided Design and Drafting (CADD) systems. The user of such a
conformance checking system must supply to the system all the necessary input data or
design plans and documents by typing in the information from a keyboard. The issue of
integrating these heterogeneous application programs is also addressed in this thesis.

1.2 Objectives

The overall goal of this thesis is to develop an integrated framework for design standards
representation, processing, and documentation in an intelligent CAD environment. The
objective of this research is to develop a model that can:
» perform both conformance checking and component design within the same
environment,
 represent both the organization and provisions of the design standard effectively,
» check the completeness and consistency of design standards,
¢ store background documents and knowledge that can be accessed by code writers
and engineers, and
* beintegrated in a CAD environment.
To demonstrate the feasibility and practicality of the model, a prototype system is
developed in this study.

CHAPTER | INTRODUCTION 5

1.3 Scope of Study

The scope of the design process addressed in this thesis is limited to component design and
conformance checking. System design and analysis are not included in the scope of this
thesis. However, with appropriate interfaces, the developed model can be integrated with

system design and analysis tools.

The prototype system is developed solely for the purpose of demonstration and evaluation
of the proposed model for the representation, processing, and documentation of design
standards. The examples used to illustrate the model are limited to steel structural
components such as beams and columns. The design standard used in the prototype
development is the AISC Load and Resistance Factor Design (LRFD) specification [AISC
86]. Furthermore, the prototype implementation is limited to compression, flexural, and
flexural-compression members of standard wide flange W shape sections. However, the
model should be extendable to other type of design standards and component members.

1.4 Organization

This chapter presented the problems and objectives of this thesis. There are seven chapters
following this one. The next chapter reviews previous and current work related to this
study. Several models and approaches for design standards representation and processing
are examined, evaluated, and discussed. Chapter 2 also introduces current hypertext
technologies, and assesses their application for design standards representation and

documentation.

Chapter 3 presents an overview of a Hyper-Object-Logic model developed in this research
for the representation, processing, and the documentation of design standards. In addition,
a prototype system, HyperLRFD++, for the AISC LRFD specification [AISC 86] and its

capabilities are introduced briefly.

Chapters 4 and 5 describe in detail the methodologies for representing design standards and
their background information. The Hyper-Object-Logic model is an integration of two
models: an Object-Logic model, which represents design standards for design application

CHAPTER I INTRODUCTION 6

and standards analysis, and a HyperDocument model, which stores various documents
including design provisions and their background information. Chapter 4 describes a
framework for representing the organization and design provisions and for defining design
members, employed in the Object-Logic model. Chapter 5 describes the HyperDocument
model.

Chapter 6 and 7 describe the procedural modules and applications of the Hyper-Object-
Logic model. In Chapter 6, two program modules for conformance checking and
component design are described; design examples are presented to demonstrate the
capabilities of the HyperLRFD++ system. Chapter 7 describes the methodologies for
analyzing design standards and presents examples to illustrate the procedures in ensuring
consistency and uniqueness of design standards.

Chapter 8 summarizes this thesis and discusses the limitations of the prototype system and
possible future research directions.

CHAPTER 2 RELATED WORK | 7

Chapter 2
Related Work

This chapter surveys research work related to this thesis. In addition, this chapter reviews
the terminology, organization, and operation of knowledge-based system technologies
employed for representing and processing design standards. Section 2.1 reviews standards
processing models and implementation approaches. Section 2.2 presents the current state
of hypertext and HyperFile technologies. Section 2.3 summarizes the discussions in this
chapter.

2.1 Standards Processing Models and
Implementation Approaches

This section reviews approaches for design standards processing and automated component
design using standards. Section 2.1.1 discusses the SASE model, which is implemented
using decision tables. Section 2.1.2 reviews design standards processing using production
rules. Section 2.1.3 examines the frame-based and object-oriented approaches for the
representation of design standards. Section 2.1.4 describes the work on logic-based
approach for design standards processing. Section 2.1.5 reviews previous approaches for
automated component design based on design specifications.

CHAPTER 2 RELATED WORK 8

2.1.1 The SASE Model

The most mature model for standards representation developed so far is the SASE
(Standards Analysis, Synthesis, and Expression) model [Fenves 87]. The model uses
decision tables for the representation and processing of design standards [Fenves 66]. In
the SASE model the basic unit of a standard is a provision, which stipulates some quality
of a product or process. Based on their usage in the standard, provisions can be separated
into two basic types:

e Requirements — provisions that directly determine compliance with some portion of

a standard. Such provisions normally can be characterized as satisfied or violated.
» Determinants — all provisions that are not requirements. Determinants are normally

characterized by either numerical or nominal values.

The SASE model consists of four basic components:
1. data items, which represent all the variables in the standard,
2. decision tables, which represent the logic used to determine the values of data items,
3. information networks, which represent the precedence relations among the data
items, and
4. an organization system, which represents the organization of the provisions.
These four components are examined in the following subsections.

2.1.1.1 Data Items

Data items represent all the variables in the standard. A data item may be one of four types:
* anumeric quantity such as “Fy” (yield stress);
* a specific value of “satisfied,” “violated,” or “not applicable”;
* aboolean value of “TRUE” or “FALSE”; or

¢ amember of an enumerated set, such as “compact,

Y &L

noncompact,” or “slender.”
A data item 1is also distinctly classified into:
* a basic data item, which has no ingredients from within the standard to define its
value;
o a derived data item, which has both ingredients and dependents to derive its value;

and

CHAPTER 2 RELATED WORK 9

e a requirement data item, which has only ingredients to derive special value of
“satisfied,” “violated,” or “not applicable.”
The dependent of a data item “A” is a data item that uses “A” to compute itself. The
ingredient of a data item “A” is a data item that is used to compute the value of “A.”

2.1.1.2 Decision Tables

Decision tables represent the logic used to determine the value of data items. Each decision
table is responsible for producing a value for one (and only one) data item. A decision
table consists of three components:
» conditions — boolean expressions related to the choice of the value for the data item,
which may be true (T), false (F), or immaterial (I),
e actions — the possible values for the data item, which are either symbolic
expressions which can be evaluated or constants, and
¢ rules — which prescribe one (and only one) action for a given set of condition
values.
There are two kinds of decision tables:
¢ limited entry decision tables, in which condition values are restricted to T, F, or L
¢ extended entry decision tables, in which condition values can be any expressions.
The decision tables used in the SASE Model are restricted to limited entry decision tables.
As an example, a provision for computing the design compressive strength ¢oPy of a
member based on the AISC LRFD specification [AISC 86] is shown in Figure 2-1. A
decision table for determining the data item F¢r in the provision is shown in Figure 2-2.

2.1.1.3 Information Network

An information network is used to represent the precedence relationships among the data
items of the standard. The network is composed of nodes and directed links. Each node
represents one data item in the standard. A directed link indicates that the data item of the
initial node is a direct ingredient of the data item of the end node. An information network
of the requirement for a compression member as described in Figure 2-1 is shown in
Figure 2-3. The node farthest to the left (which does not have any successor nodes) such
as “Requirement for compression members” in Figure 2-3 is called a terminal data item or a

CHAPTER 2 RELATED WORK 10

E2. DESIGN COMPRESSIVE STRENGTH
The design strength of compression members whose elements have width-thickness ratios

less than A, of Sect. B5.1 is 0Py

¢oc =0.85
Pn :AgFCr v (E2-1)
fOl' A’C < 1.5
For = (0.658M 2)F, (E2-2)
forAs > 1.5
where
n —KLA[Ey
" mVE (E2-4)

A g = gross area of member, in.2

Fy = specified yield stress, ksi

Ey = modulus of elasticity, ksi

K = effective length factor

L = unbraced length of member, in.

r = governing radius of gyration about plane of buckling, in.
For members whose elements do not meet the requirements of Sect. BS.1, see Appendix
B5.3.

Figure 2-1 Provision E2 from the AISC LRFD specification [AISC 86]

Rules
R1 R2 where T : true
F : false
Conditions 1| Ac<15 T F X: l’lgﬁcg cttlzgc)n

Al| F,=(0.658M F, | *

Actions
A2 Fcr=[0'877J F, X

Figure 2-2 Decision Table for Determining F.,

CHAPTER 2 RELATED WORK 11

Design
compressive
strength

Requirement
for

compression
member

Required
compressive
strength

w/t : width-thickness ratio of compression element

Ar : limiting width-thickness ratio of slenderness

Figure 2-3 Information Network for the Requirement for Compression
Member

requirement. The intermediate node such as “Pp,” “Ag,” and “F;” represent derived data
items or determinants. The nodes farthest to the right (which do not have any predecessor
nodes) such as “Fy,” “K,” and “L” are the input or basic data items.

2.1.1.4 Organizational System

The user of a standard must be able to identify which provisions of the standard apply for a
given design situation. The standard, therefore, needs to be organized in a Systematic
manner such that individual provisions can be accessed easily. An organizational system
can also be used to develop an outline to arrange the provisions and to define the scope of
the standard.

CHAPTER 2 RELATED WORK 12

A provision of requirement type generally contains two basic components, a subject and a
predicate. The provision has the general form:
<subject> <predicate>.

The subject may be a physical entity (e.g., a part of a dam), a process (e.g., design or
construction), or a participant in the process (e.g., a designer or contractor); the subject is
referred to as THING. The predicate defines the particular quality required of the subject
(e.g., strength or stiffness of a structural member or submission of quality assurance
document from a manufacturer); the predicate is referred to as REQUIRED QUALITY.

Requirements in design standards can be viewed as expression of behavior limit states. A
requirement that represents a single behavior limit state is called a single requirement,
which has a single subject and a single predicate. A requirement that can be applied to
several behavior limit states is called a multiple requirement, which has multiple subjects or
predicates. The advantage of using only single requirements is that each behavior limit
state can be explicitly addressed in design. If a provision is a multiple requirement, it can

often be decomposed into single requirements.

In the SASE model, the methodology for classification of provisions is based on the
faceted classification system developed for library science. The classification consists of
several more or less independent areas, called fields and facets. A field can be thought of
as a subject area (e.g., a structural component) and a facet can be thought of as a way to
classify within a particular field (e.g., material, form, and function). Within the
organizational system, there must be at least two independent fields: one for THING and
one for REQUIRED QUALITY of the provisions. Each field is further subdivided into
facets. Each facet is a hierarchical tree with several levels, and must be a strictly logical
tree. That is, each succeeding level, called classifiers, must be a direct subdivision of the
parent node in the hierarchical tree and the logical principles of mutually exclusiveness and
collectively exhaustiveness must be satisfied at each level [Fenves 87].

As an example, partial facets from two fields, physical entity and limit state, are shown in
Figure 2-4 [Harris 81] [Garrett §6]. Appropriate classifiers from each field are associated
with each requirement. This association provides a means for accessing the requirements.
The set of classifiers associated with a requirement is called an argument list. Table 2-1
shows the example for the requirement identification numbers, their names, and associated

CHAPTER 2 RELATED WORK 13

FIELD: PHYSICAL ENTITY FIELD: LIMIT STATE
beam yield
PHYSICAL LIMIT
ENTITY STATE global
column instability <
local

Figure 2-4 Partial Facets of Two Fields [Harris 81] [Garrett 86]

Table 2-1 Requirement Names and Argument Lists [Harris 81]

Number Requirement Name Argument List

Req 1 Plastic moment capacity beam, yield

Req 2 Lateral torsional buckling " beam, instability, global

Req 3 Axial force capacity column, yield

Req 4 Euler buckling column, instability, global

Req 5 Local buckling PHYSICAL ENTITY, instability, local

argument lists. By merging all of the fields together to form one unified tree of classifiers,
we can locate all the requirements within that tree to form an outline of the standard. Each
leaf node of the tree must have at least one requirement. The outline contains the
organization, which is a tabular arrangement of headings, each of which corresponds to a
specific classifier, and the pertinent requirements classified under the selected heading. The
outline of the standard requirements can be altered by changing the order in which the fields
and facets are merged. Two examples of possible outlines for the same set of requirements
are shown in Figure 2-5.

14

CHAPTER 2 RELATED WORK
(A) PFirst Possible Outline
Chapter Section Subsection Reguirement Number and Name
1. Yield
1-1. Beam Req 1 Plastic moment capacity
1-2. Column Reqg 3 Axial force capacity
2. Instability
2-1. Local Reg 5 Local buckling
2-2. Global
2-2-1. Beam Req 2 Lateral torsional buckling
2-2-2. Column — Req 4 Euler buckling
(B) Second Possible Outline
Chapter Section Subsection Reguirement Number and Name
1. Beam
1-1. Yield Regq 1 Plastic moment capacity
1-2. Instability
1-2-1. Local -——— Req 5 Local buckling
1-2-2. Global -— Reqg 2 Lateral torsional buckling
2. Column
2-1. Yield Req 3 : Axial force capacity
2-2. Instability
2-2-1. Local —— Reqg 5 Local buckling
2-2-2. Global ~— Req 4 Euler buckling

Figure 2-5 Two Possible Outlines [Harris 81] [Garrett 86]

2.1.1.5 Checking Completeness, Uniqueness, and Correctness

Since design standards are the primary governing means for design, the quality of the built
environment depends on the quality of the standard. To assure the quality of the design

standard, it is essential to check the basic properties of completeness, uniqueness, and

correctness at the provision, information network, and organizational levels [Fenves 77].

The requisite qualities at these three levels are identified as follows [Fenves 87]:

1. Individual provisions must be:

e Unique — the provision must generate one and only one result in any possible

condition;

» Complete — the provision must be applicable to all possible conditions; and

CHAPTER 2 RELATED WORK 15

e Correct — the result of applying the provision must be consistent with the
objective of the standard. ’
2. The information network must be:
e Connected — each provision must show all the data required for the application
of the provision.
e Acyclic — the data produced by the evaluation of a provision should not be
required prior to its evaluation (no loops in logic); and
e Consistent — uniform logical and technical bases must be provided for
comparable provisions.
3. The standards organizational must be:
» Complete — explicit scope must be provided so that a user knows the subjects
and qualities covered by the standard; and
e Clear — the arrangement and display of provisions should be such that all
provisions pertinent to the user’s query can be readily found.

For each decision table represénting a provision, uniqueness (lack of contradiction and lack
of redundancy) and completeness can be checked. The procedures are straightforward.
Decision tables must be limited entry type, which each condition must be evaluated to be
either true, false, or immaterial. If one combination of conditions is a subset of another,
the two rules are redundant. If one combination of conditions indicates two or more
exclusive actions, the rules are inconsistent, and if the actions are not exclusive, the rules
are ambiguous. If not all combinations of conditions are covered in the decision table, the
rules are incomplete. Since combinations of conditions are represented in a tabulated
matrix, a computer program for checking the completeness and uniqueness of provisions is
to examine the values within the matrix. If the information networks are used to represent
the relations of decision tables, the properties of connectedness and acyclicity can be
checked graphically. The organization of the standard is represented in a classification
system, where the requisite properties can be checked when the code writers make an
outline of the standard. Most of these facilities have been implemented in the SASE
program [Fenves 87].

CHAPTER 2 RELATED WORK 16

2.1.1.6 Discussion on the SASE Model

The first significance of the SASE Model is the separation of the contents of the standard
and its computing processor. Contents of the standard are represented in a generic form of
decision tables, that not only programmers but also code writers and engineers can write or
check. The program for processing decision tables is generic so that modification of
contents of the standard represented as decision tables do not affect their processing
program. This feature has overcome the problem of the “hard-coding” approach. The
second significance lies in the generic organizational system that designers can select
applicable requirements and code writer can examine the orgaﬁization of the standard
systematically. However, although it is natural to apply the decision table technique to
conformance checking, it is very difficult to apply the technique to generate component
design. Only limited efforts for component design have been made, which are described in
Section 2.1.5.

2.1.2 Production Rule Approach

A production rule system consists of four basic components:

®

Knowledge base,
* Inference engine,
* Working memory, and

L

User Interface.
The knowledge base contains a set of rules of the form:

IF [condition] THEN [action].
The inference engine is a control system that interprets rules in the knowledge base,
controls the order in which the rules are fired, and resolves conflicts if more than one rule
is applicable. Working memory is a set of basic data structures that represent the current
state of the system. User interface obtains the input data from users and presents the

results to them.

There are two basic reasoning procedures to draw conclusions from the knowledge base:
* backward chaining, and
» forward chaining.

CHAPTER 2 RELATED WORK 17

In backward chaining a hypothesis is posed to the working memory. The inference engine
confirms the hypothesis by reasoning backward, i.e., from the THEN part [action] to the
IF part [condition]. In forward chaining facts are given to the working memory. The
inference engine matches the facts with the IF part [condition] of the rules. For the
matched rule, the THEN part [conclusion] is added to the working memory as new facts.

2.1.2.1 The Production Rule Approach for Design Standards Processing

With the emergence of expert system technologies, the production rule approach has been
proposed by several researchers for representing and processing design standards
[Rosenman 85] [Rosenman 86] [Dym 88] [Rasdorf 88] [Kumar 89]. In this approach, the
provisions of a standard are represented as production rules instead of decision tables. The
production rule approach is a more natural way of representing design standards than
decision tables.

As noted by Rasdorf et al. [Rasdorf 88] and Kumar [Kumar 89], the production rule
approach has the serious drawback of requiring a very large memory space. This
requirement results in a large number of rules that in practice could become unmanageable
because one provision may have to be represented as more than one production rule. Even
though it is possible to cast the decision table entries as production rules, one is likely to
end up with a large number of rules, requiring more memory than the equivalent decision
table representation. One approach is to represent production rules as facts to solve the
memory problem [Rasdorf 88] [Kumar 89].

C2.1.2.2 Checking Anomalies in a Production System

Although no formal mechanisms have been proposed for checking design standards using
production rule approach, various methodologies have been developed for checking
anomalies in rule-based expert systems. Suwa et al. [Suwa 82] developed a program for
verifying knowledge base completeness and consistency (lack of conflicting, redundant, or
subsumed rules) in the context of the ONCOCIN system, a rule-based system for clinical
oncology. Another program for checking consistency, cyclic rules, and completeness of a
generic rule-based expert system has been reported by Nguyen et al. [Nguyen 87]. Cragun
et al. developed a decision-table-based processor for checking completeness and

CHAPTER 2 RELATED WORK 18

consistency in rule-based expert systems [Cragun 87]; in this system, production rules are
translated into decision tables, which are checked by the processor. This checking

procedure is also employed in the SASE program.

2.1.3 Frame-Based and Object-Oriented Representation of
Design Standards

A “frame” is a knowledge representation technique for objects. An object may be a
physical object or an abstract concept such as a class of objects or even a theory. A frame
is a data structure composed of slots. Slots may have simple values, pointers to other
frames, called facets, or procedures that can compute the slot value. The slots of a frame
represent the attributes of an object, and slot values represent the specific attribute values of
an instance of such an object. The basic inference principle is inheritance. If a frame
represents a class of objects (such as building components) and another frame represents a
subclass of this class (such as beams), the subclass frame can inherit values from the
superclass frame. However, if the subclass has exceptions to the subclass slot values, the
subclass can override the superclass slot values.

Object-oriented programming is a relatively new paradigm and has been defined differently
by different people. An emerging agreement is that a fully object-oriented programming
language would include classes, inheritance, objects, message passing, encapsulation, and
polymorphism [Korson 90]. A class is a template that defines the general characteristics of
its sub-classes or objects. It contains attributes for storing data and methods (or
procedures) for handling messages sent to objects of that class. Classes are hierarchically
organized and inheritance is the ability of a class to inherit attributes and methods from its
superclasses. An object is an individual instance of a class. Message passing is a means of
communication among the objects. When a message is received by an object, its
appropriate method is invoked. Encapsulation is the process of isolating all the aspects of a
class within its outline to ensure the protection of internal methods of the class and to give a
clear interface with other classes. Polymorphism is the ability to have different methods in
different classes that can handle the same messages.

An application of “frame” to the representation of the design standards organization has
been proposed by Garrett [Garrett 86]. His classification system is built from three subject

CHAPTER 2 RELATED WORK 19

areas, or fields: object, stress-state, and limit-state. The “object” field is subdivided into
two hierarchical trees, or facets: object-type and object-composition. Thus, there are four
trees (two for the “object” field, one for stress-state, and one for limit-state). Each tree is
composed of classifier frames. Each classifier frame has the following slots, such as
“name” which represents the classifier and “<relation> <parent-frame>“ which represents
the relation between the classifier itself and its <parent-frame>. To build the classification
system, the four trees shown in Figure 2-6 are merged to form a tree of classifier frames.
Standards requirements are inserted into the classifier tree at the appropriate leaf classifier
frames. A part of the classification system is shown in Figure 2-7.

To identify applicable requirements for a design member, the user gi{/es partial features, or
facets about the member, e.g., (OBJECT-TYPE, steel, I-shaped, hot-rolled, column,
STRESS-STATE, axial, compression). The program then determines all the classifiers by

OBJECT-TYPE OBJECT-COMPOSITION
steel member
I-shaped long
hot-rolled short
column local
beam flange
beam-column web
welded
C-shaped
concrete

STRESS-STATE LIMIT-STATE
axial strength
compression buckling
y-axis yield
x-axis serviceability
tension
flexure
moment
shear

Figure 2-6 Partial Hierarchical Trees of Classifiers for Each Field
[Garrett 86]

CHAPTER 2 RELATED WORK 20

treetop

-- OBJECT-TYPES

——-=~ steel

—————— I-shaped

———————— hot-rolled

~~~~~~~~~~ column

———————————— STRESS-STATES

—————————————— axial

———————————————— compression

—————————————————— y-axis

———————————————————— LIMIT-STATES

—————————————————————— strength

———————————————————————— buckling

—————————————————————————— OBJECT-~-COMPOSITION

———————————————————————————— member

—————————————————————————————— long

———————————————————————————————— REQUIREMENTS
1lrfd-column-buckling-y-axis-long

—————————————————————————————— short

———————————————————————————————— REQUIREMENTS
lrfd-column-buckling-y-axis-average

—————————————————— x-axis

———————————————————— LIMIT-STATES

—————————————————————— strength

e buckling

—————————————————————————— OBJECT-COMPOSITION

———————————————————————————— member

—————————————————————————————— long

———————————————————————————————— REQUIREMENTS
lrfd-column-buckling-x-axis-long

—————————————————————————————— short

———————————————————————————————— REQUIRFMENTS
lrfd-column-buckling-x-axis-average

———————————————— tension

—————————— beam

—————————— beam-column

———————— welded

—————— C-shaped

-—-—-— concrete

Figure 2-7 A Part of the Classification System [Garrett 86]

traversing the subtrees from the the given facets and executes all the requirements at the leaf
classifiers. Within a decision table representing a requirement, the condition part contains a
set of applicability criteria, which determine whether the requirement is applicable to a
given member. If it is not applicable, its performance criteria are not executed and the value
of that requirement is determined as “not applicable.”



CHAPTER 2 RELATED WORK 21

One deficiency in most methods representing design standards is treating each data item as
variable for storing its value. Information about how to compute the value of a data item is
kept separated from the data item. An object-oriented approach represents all the data items
as separate, unique objects, each of which contains a method for determining its own value
[Garrett 89].

In this section, a frame-based approach for representing the standards organization and an
object-oriented approach for representing data items and methods were reviewed. In this
thesis, the object-oriented paradigm is adopted for representing the organization of design

provisions and design members.
2.1.4 Logic-Based Approach
2.1.4.1 Predicate Calculus

Predicate calculus is a formal language that provides a way of representing knowledge of
objects and their relationships in the application domain of interest. The syntax of predicate
calculus consists of two types of symbols: variables and constants. In the notation used
most commonly, a variable starts with a lower case letter (e.g., X, y, z) and a constant
starts with an upper case letter or a number (e.g., A, B, 36). Facts are stated in the form of
expression called sentences, or well-formed formulas (wffs). There are three types of
sentences:
e atomic sentences, which are formed from a n-ary relation constant with n terms,
e.g., Supported_by (Beam_12, Column_34),
 logical sentences, in which atomic sentences are combined with logical operators,
e.g., Section(Column, Compact) — Limit_state(Member_buckling), and
 quantified sentences, which have either universal or existential quantifiers, e.g.,

Vx(dy Supports(x,y)).

Semantics of predicate calculus can be defined as an evaluation whether the sentence
accurately describes the world according to the conceptualization. An interpretation I'is a
mapping between elements of the language and elements of conceptualization. A variable
assignment U is a relation from the variables of a language within the objects in the



CHAPTER 2 RELATED WORK 22

universe of discourse. If a sentence is satisfied by an interpretation / and a variable
assignment U, the sentence is true with respect to the interpretation / and the relation U.

Inference is the process of deriving conclusions from premises. Given a set of predicate
logical sentences, we can derive a conclusion by using a powerful inference rule known as
the resolution principle. The resolution procedure requires the predicate logical sentences
to be converted to a simplified form, called clausal form, e.g., {Section(Compact) v

Section(Noncompact) v Section(Slender)}.

To derive a logical conclusion, the resolution procedure combines unification and
elimination in a single operation. Unification is the process of determiﬁing whether two
expressions can be made identical by the substitution of their variables. The basic form of
the elimination rule is

(AvVB)A(=AV(O)—>(BvVvO.
where A is a literal, which is an atomic sentence or the negation of an atomic sentence, and

B and C are clauses.

If a set of clauses is inconsistent, then it is always possible by resolution to deduce an
empty clause. Thus, we can prove the inconsistency of a set of clauses by concluding an
empty clause by resolution. We can establish that a set of formulas A logically implies the
formula ¥ by showing that the combined formulas of A and the negation of ¥, A U
{-W¥}, is inconsistent. This method is called resolution refutation [Genesereth 87].

2.1.4.2 Logic Programming and Prolog

The use of predicate calculus as a programming language is called logic programming
[Amble 87]. Logic programming is an attempt to store the knowledge of interest as a set of
Horn clauses and to automate the process of deducing the answers by the resolution
principle. A Horn clause is a variant of the predicate calculus. A Horn clause has a form
of:

7R /X T s Pm- mz20
A sentence of this form says that g must be true if all of the p;’s are true. Given a set of

clauses, we can logically derive a conclusion by the resolution principle.



CHAPTER 2 RELATED WORK 23

Prolog is by far the most popular and known logic programming language. In Prolog, a
constant starts with a lower-case character or a number while a variable starts with an
upper-case character. The Prolog program must be a set of Horn clauses, which can be
converted from clauses of predicate calculus. When issuing a query, which is a Horn
clause, to the Prolog program, the Prolog interpreter attempts to deduce that query clause

from the program.

Prolog is often viewed as a procedural programming language by ignoring its logical
aspects. However, by separating the logical aspects from non-logical ones in the problem,
one can use the logic programming paradigm in the development of a Prolog program
[Deville 90]. In the implementation of HyperLRFD++, the logical aspect of Prolog
language has been retained as much as possible by eliminating non-logical features such as
cut “I”” and the lack of “occur check” [Amble 87].

2.1.4.3 Logic-Based Approach for Standards Processing

A constraint-based approach for component design and conformance checking has been
proposed by Chan [Chan 86]. Design specifications and device causality can be
represented as constraints and implemented in Prolog. In the work, constraints are used:
e to derive a design description by propagating constraints with supplementary
heuristics, and
* to check the design description if all the design parameters are given.

In a recent application, Rasdorf et al. [Rasdorf 90-b] [Lakmazaheri 90] show how logic can
be used for both conformance checking and sizing of structural members. Standards
provisions and a design situation are first represented as logical axioms, then a theorem
prover performs design checking and member sizing. This formal model can be
implemented by using a constraint logic programming language.

For the formulation and analysis of information by the writers of building regulations, a
Prolog-based system has been proposed by Stone et al. [Stone 87]. In the framework
proposed, the rule-base, which is a set of Prolog rules translated from the design
provisions, is analyzed in terms of the rule dependency network and completeness and
uniqueness. One of the limitations of this system is that uniqueness cannot be completely



CHAPTER 2 RELATED WORK 24

checked. Given a design description, the system first generates a conclusion. Then, the
system backtracks to seek other solutions. If another solution is found, the rules lack in
uniqueness. Since this method depends on sample design descriptions, it cannot prove the
uniqueness, although lack of uniqueness may be found. The rule-base is used for
compliance checking with a CADD system interface. During the conformance checking the
user can ask “why” questions to the system. The answers to such questions are
paraphrased rules in English, which are poor in providing justifications for the program
and the design regulation. In the implementation of the Hyper-Object-Logic model, the
design program is integrated with a generic document storage and retrieval system to
facilitate finding such justifications for the user.

An application of predicate calculus to checking completeness and uniqueness of a design
specification has been proposed by Jain et al. [Jain 89]. In this work, limited-entry
decision tables are converted into predicate calculus sentences. Specifications are
represented as groups of statements of the form Si: Lj — Rj, where L; represents the part to
the left of the implication while R; represents the part to the right of the implication. Each
group represents rules for a single data item. For example, the decision table for the
determination of F¢rin Figure 2-2 can be converted as follows:

S1: C1 —A1

So: —C1 DA
Formal tests for checking completeness and uniqueness (lack of redundancy and lack of
contradiction) of a group of rules representing a provision of the design standard based on
predicate calculus are represented in this framework. This methodology is adopted and
extended in the implementation of Hyper-Object-Logic model.

Formal logic has been used for processing (reasoning about) the SASE organizational
model of a standard [Rasdorf 90-a]. The organizational submodel of a standard is
represented as a set of classifier subtrees, a set of provisions, and the mappings between
the subtrees and the provisions, as shown in Figure 2-8. Predicate logic is used to model
this organizational submodel. The four properties of the organizational submodel include:

* abundant: a provision is abundant if it is mapped to multiple nodes within a subtree;

e free: a subclassifier, which is a complete path from the root node to a leaf node of a

subtree, is free if it is not connected to any provision;



CHAPTER 2 RELATED WORK 25

classifier subtree

- L,

’ ‘ object-type /
/

subclassifier

/
/
7/

7’ steel P ’ concrete limit-state

, ’ /\ /I\
, 4 I-shaped , C-shaped

/\l\ yield  buckling  tearout
/ P 4

classifier subtree

4
i /\
hot-rolled 7 welded ,/' 1oed]
I R oca global
l 4 ,l /.
7/ .
I beam 7 column beam-colummp’ K classifier subtree
I \ N . e ’ .
- -4 . /s // stress-state
hd ’ ’
Y \ 7 /’/\
\ . ,
‘ AN al/ bendi
\ : . axial / ending
\ mapping e K4
A 7z N
3 ,I \\ /II\ /\
\ S \, compression / tension shear COMPIEssive tensile
P ’ N 1 .
\ ', R S e -
’ > 1 ———
k ’ SN -
\‘ ,I _____ \_\— T ',"
L == s

= hA

Figure 2-8 Organizational Submodel [Rasdorf 90-a]

» complete: a provision is complete if the number of mappings is equal to the number
of subtrees; and

* unique: a provision is unique if it is complete and not abundant.
These four properties can be checked by the resolution theorem proving strategy in the
work. On the other hand, the object-oriented paradigm seems more natural for representing
the standard organization. Furthermore, by merging the classifier subtrees to make a
unified tree, the four properties as noted above can be ensured easily.



CHAPTER 2 RELATED WORK 26

2.1.5 Automated Component Design Using Standards

Conformance checking is a passive use of design standards for compliance. Several
researchers have investigated how to generate component design by active use of design
standards. Conformance checking is generally easier than producing a design description,
because conformance checking has only two possible solutions (i.e., satisfied or violated),
while multiple solutions could exist in a design problem.

One approach to automating component design uses symbolic algebra [Holtz 82]. In this
method, decision tables are used to represent design provisions. The symbolic
reformulation system converts constraints, derived from standards requirements as decision
tables, into allowable boundaries of certain basic data items, called “designable” data. If
only one data item does not have a value, the system produces numeric bounds on the value
of that data item. Any value within the bounds satisfies the requirements of the standards.
The user can choose a value from the feasible region. However, if more than one data item
do not have values, the user has to select the designable data and determine how to produce

boundary values for the data items that appear on the symbolic expression.

Another approach is to use a database management system (DBMS) for assigning attribute
values such that the applicable design constraints are thereby satisfied if the constraints are
expressed as equality [Fenves 85]. For inequality constraints and multiple constraints,

some other procedures such as constraint re-formulation are necessary.

A numerical optimization technique has been used to generate component design using
standards represented by decision tables [Garrett 86]. It was reported that the optimization

routine may fail to find a solution when one actually exists.

One logic-based approach for designing is to let the theorem prover produce a predefined
ID number of a component of design interest from a set of constraints of the design
standard and a set of logic sentences depicting a design situation [Rasdorf 90-b]
[Lakmazaheri 90]. ID numbers can be shape designations such as “W14x43” of W shapes
of AISC manuals [AISC 89] [AISC 86]. The advantage of this approach is that the same
logic description of the specification can be used for both conformance checking and



CHAPTER 2 RELATED WORK 27

generating component design. Although this approach itself is formal, if there exists a very
large number of ID numbers of a component, this method could be inefficient.

Another methodology for component design using logic is to use heuristics for generating
the trial values which are then tested against the relevant constraints [Chan 86]. The design
heuristics are represented as constraints and written in Prolog. If the trial value does not
satisfy the constraint, Prolog backtracks and return an alternative value. When all the
possible values are exhausted, the heuristic simply fails.

In the Hyper-Object-Logic model, the heuristics-based approach is adopted. The primary
reason for the heuristic-based approach is the efficiency because the number of standard
shapes tends to be very large. The secondary reason is its applicability to arbitrary shapes
such as non-standard, or customized components. In the theorem prover based approach,
all the shapes must be predefined, while the heuristics could contain a procedure that
generates a plausible arbitrary shape based on the given design situation.

2.2 Hypertext and HyperFile

Large heterogeneous document storage systems and document processing models are
examined in this section. Section 2.2.1 discusses hypertext. In Section 2.2.2, the
standard generalized markup language (SGML) and Hypermedia/Time-based document
structuring language (HyTime) are examined. Section 2.2.3 introduces HyperFile and
assesses the feasibility of its application to design standards documentation and processing.

2.2.1 Hypertext

Hypertext can be defined simply as the creation and representation of interlinked discrete
pieces of data (text) [Fischer 90]. If this data is either an image or sound, in addition to text
or numbers, the resulting structure is referred to as hypermedia [Parsaye 89]. Hypertext is
composed of nodes, links, and a navigation system. Nodes represent discrete pieces of
information and each of them can be shown on a screen or a window. The user can
traverse between nodes via links, which are pointers from a node to other nodes. Links
can be divided into two types: navigation links and organizational links. Navigation links



CHAPTER 2 RELATED WORK . 28

connect a document to other referencing documents, including additional comments or
explanations to the document. Organizational links connect the table of contents and
indices of a book such as a design standard to its chapters, sections, or subsections, and
connect a document to the following one, e.g., a link from Section 1.1 to Section 1.2. A
navigation system provides a capability to find information in a systematic manner and with
a minimum amount of effort. The tools to navigate through hypertext (hypermedia) are
divided into three categories:
e links that allow traversal among the linked nodes,
» query languages that allow the user to request a list of documents filtered by queries
based on keywords, and
e a browser that allows a map of all or portions of nodes and links, path history of
previously visited nodes [Cornick 91].

The hypertext structure of directed linkage of documents is similar to semantic networks,
where the nodes correspond to concepts and the links correspond to semantic relationships
[Conklin 87]. The difference is that semantic networks are used to represent knowledge
for inferencing, whereas hypertext is used to capture documents without regard to their
machine interpretability. Hypertext can also be extended with frame-based or object-
oriented systems.

The use of hypertext to design standards documentation has been proposed simultaneously
by Cornick and Malasri et al. [Cornick 91] [Malasri 91]. Each section or provision of the
standard is represented by a node. A table of contents is also a node, in which the user can
go to any provision by clicking the provision title. If a provision contains references such
as other provisions, tables, and charts, the user can go to the reference documents by
clicking the name of the reference. In the work by Malasri et al. [Malasri 91], the
earthquake section of the Uniform Building Code [ICBO 88] is implemented by using the
hypertext software called GUIDE [Owl1 90].

There are various advantages in using the hypertext approach for the documentation of
design standards:

* The user can access desired information without viewing unnecessary information.

* The code can be easily updated and previous code can be attached.

» Explanations can be attached to provisions.



CHAPTER 2 RELATED WORK 29

e Hypertext can be expanded to include video sequences for providing explanations.
e Itcan be interfaced with external programs, such as design and analysis programs.
On the other hand, there are also disadvantages to this approach:
e The hypertext version of design standards is limited by the platforms (software and
hardware) selected by the developer.
e Users tend to lose their sense of location and direction in a complicated network of

document nodes.

The approach described above uses hypertext statically, i.e., the nodes and links within the
hypertext-based system cannot be changed by the user. Mitusch proposed “the spreadsheet
approach” by applying dynamic use of hypertext for Norwegian building regulations
[Mitusch 91]. All input and output data are represented as slots in multiple cards of
HyperCard [Apple 90]. Similar to spreadsheet programs, when the user specifies the input
data such as floor heights, floor areas, activities, and escape routes, the embedded
programs written in HyperTalk computes desired results and show it on the card. The
input data can be changed at any time and the consequences according to the regulations are
updated. This dynamic hypertext approach enables the user to perform design and design
checking. However, since the embedded programs are “hard-coded,” it is difficult to

modify and check correctness of the program.
2.2.2 The Standard Markup Language and HyTime

The Standard Generalized Markup Language (SGML) is the International Organization for
Standardization (ISO) standard for document description (ISO 8879) [Goldfarb 90]. It is
designed to enable text interchange among different document processing software and
hardware. The standardized markup specifies document structure and appearance, e.g., the
organization of the document, formats, and fonts. The markup is a tag for the information
about the structure and notation(s) of the document. By reading the markup any application
software that has been provided with an appropriate data converter can understand and
interpret the document. An application of the SGML to design standards has been
proposed by Bourdeau [Bourdeau 91]. Texts and tables of the French building technical
rules are keyboarded following the SGML and drawings are vectorized or just scanned in
the project. These documents are stored in a CD-ROM (Compact Disk - Read-Only
Memory) and can be read by using hypertext software.



CHAPTER 2 RELATED WORK 30

Another standard Hypermedia/Time-based Document Structuring Language called
“HyTime”, using the SGML, has also been proposed [Newcomb 91]. HyTime is a draft
standard language for representing the structure of multimedia, hypertext, hypermedia,
time- and space-based documents (such as music documents and icons that their relative
positions are specified on the document). It allows hypermedia software which cognize
HyTime to browse, render, format, and query the documents compliant to HyTime even if
that software is not able to understand or render its multimedia objects.

The SGML and HyTime have many advantages and seem to be a promising means for
document publishing, storage, and conversion. However, SGML use has significant costs
[Van Herwijnen 90], and very few word processors are SGML compatible. For the reason
of practicality, only the concept of standardized markups and pointers to other documents
of the SGML and HyTime are considered in the Hyper-Object-Logic model.

2.2.3 HyperFile

HyperFile is a back-end data storage and retrieval facility for heterogeneous document
management applications [Clifton 90]. The goal of HyperFile is:

* to store not only traditional documents containing text but also multimedia

documents containing images, graphics, or audio,

* to support hypertext applications, and

* to provide a shared repository for multimedia and diverse applications.
HyperFile is intended as a back-end service as shown in Figure 2-9. The HyperFile
structure allows the user running a particular document management system to view a
design drawing stored in HyperFile. Similarly, a user running a design tool should be able
to refer to a document that describes the operation of a particular component.

In HyperFile, objects represented as files are modeled as sets of tuples. These tuples can
contain text, pictures, key words, references and pointers to other objects, or arbitrary bit
strings. This simplicity of the structure makes HyperFile very useful for diverse
applications. Tuples have three parts:



CHAPTER 2 RELATED WORK 31

application application application | ... application

r ) 1

| HyperFile Server |

I l
server server server

I node node | e node I

l I

Figure 2-9 HyperFile as a Back-end Service [Clifton 90]

* type, which identifies the data types of the remaining fields to HyperFile,
 key, which is used by the application to specify the purpose of the tuple, and
e data, which can be simple type such as a string or pointer, or complex ( and not
understood by HyperFile) such as a paragraph of text or the object code of a
program.
A sample set “E2,” containing (for example) Section E2 of the AISC LRFD specification
[AISC 86], is:

{ (String, “Title”, #“E2 ., DESIGN COMPRESSION STRENGTH”)
(String, “Author”, “ATSC")
(String, "Keyword”, “column” )
(String, "Keyword”, “compression”)
(String, “Keyword”, “buckling”)
(Text,” “Description”, <The design strength of compression
member whose elements ...., see Appendix B5.>)
(Pointer, “Sect. B5.1”", <Pointer to Sect. B5.1.)
(Pointer, “Appendix B5.3”, <Pointer to Appendix B5.3>) }

HyperFile queries are based on the browsing techniques of hypertext with the addition of a
query language based on document sets and filtering. These queries consist of three basic
parts:
* A starting set of objects in the graph-structured document repository,
* A set of filtering criteria (keywords, size, etc.),
e A description of where to look: what types of links to follow (and how far) to find
prospective objects.



CHAPTER 2 RELATED WORK 32

A sample query to find all objects in the set “E2” which have a keyword “effective length
factor” is:

E2 | (String, “Keyword”, “effective length factor”) — T
This query takes the objects pointed by E2, checks to see if they have a tuple of type String
with the Key Keyword and data “effective length factor,” and puts the resulting items into
the set T. More complicated queries such as traversing the graph created by pointers can be
given (see [Clifton 90]).

HyperFile overcomes the primary disadvantage of hypertext, being limited to the software
selected. The HypeFile’s powerful query facility also addresses the “lost in hyperspace”
problem that arises in large hypermedia systems. In comparing with SGML and HyTime,
the initial and development costs are very low due to its simple structure. HyperFile seems
to be a promising framework for storing, retrieving, and managing a very large amount of
heterogeneous documents including graphics, sound, and video as well as text. The
concept of HyperFile has been employed in the development of the Hyper-Object-Logic
model.

2.3 Summary

In Section 2.1, previous approaches for design standards representation and processing
were described. The SASE model, which is based on decision tables, was first reviewed.
Then, the recent new approaches, a production rule approach, frame-based and object-
oriented representation, and logic based approach, were discussed. Each approach’s
representation technique and methodology of analyzing the design standard (if any) were
reviewed. Finally, several approaches for automated component design using design
standards were discussed.

The object-orientation appeafs to be a most natural and promising paradigm for
representing the organization of the design standard for its hierarchical structure. This
paradigm is also useful for representing each data item as a unique separate object with the
method to determine its value. Design provisions can be represented either in decision
tables or logic sentences. While it is difficult to automate component design in the
decision-table-based approach, the logic programming paradigm can be used for both



CHAPTER 2 RELATED WORK 33

conformance checking and component design. It also lends itself to checking requisite
properties of completeness and uniqueness of design standards. Thus, the logic
programming paradigm is adopted for representing design provisions for this research.
For implementation of the model, the combination of object-oriented and logic

programming paradigms is used.

In Section 2.2, document storage and retrieval systems and models were described.
Hypertext-based approach for standards representation was first reviewed. Then, the
standard languages of SGML and HyTime were examined. Finally, HyperFile was
discussed. HyperFile is an excellent structure for a large heterogeneous document storage
and retrieval system. Furthermore, since HyperFile can make linkages between provision
documents and program code representing provisions, it provides a means to check the
requisite property of correctness of design standards. The form of the HyperFile structure
has been employed in the development of the Hyper-Object-Logic model. Although the
SGML and HyTime have many advantages, the development cost could be enormous.
Only the concept of markups and pointers of the SGML and HyTime has been adopted in
this work.

This thesis proposes a new framework by combining the standards processing system,
based on the unified Object-Logic paradigms and the HyperFile structure. In the following
chapters, the framework, the Hyper-Object-Logic model, and the prototype system called
HyperLRFD++ are discussed.






CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 34

Chapter 3
The Hyper-Object-Logic Model

This chapter provides an overview of a framework for the documentation, representation,
and processing of design standards. There are two distinct categories of knowledge in a
design standard:

* knowledge of the organization of design objects, and

e knowledge of the methods in reasoning about design.
The object-oriented paradigm lends itself naturally to representing the organizational aspect
of the design standard. The logic programming paradigm, on the other hand, is well suited
to implementing the reasoning mechanisms for design. The object-oriented and logic
programming paradigms are combined to provide a unified Object-Logic model for the
representation of design codes and the processing of the design standards. By storing the
design provisions in a knowledge base, the model is capable of performing conformance
checking and component design, and syntactically analyzing the standard.

Besides the Object-Logic representation, the framework also includes the storage of
background information (such as commentaries) of the design provisions in a
HyperDocument model, which is based on a form of HyperFile structure [Clifton 90]. The
HyperDocument model allows code developers to store and access heterogeneous
documents, including design provisions, their background information and data, and
programs, for developing and revising design standards. The model also allows designers
and engineers to obtain explanations and other background information to support design
tasks.



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 35

The Object-Logic and the HyperDocument models are integrated into a unified framework.
Section 3.1 presents an overview of the Hyper-Object-Logic model. Section 3.2 presents a
summary of the capabilities of a prototype system developed based on the model. Section
3.3 describes an architecture of a prototype system of this model.

3.1 An Overview of the Model

A design standards processing system should have the following features:

e The user can perform both conformance checking and component design within the
same design environment.

» The system should represent both the organization and provisions of the standard
effectively so that applicable requirements can be automatically identified and
executed.

» The properties of completeness, uniqueness, and correctness of the provisions can
be checked in a systematic and automatic manner. '

¢ Background information of the design standard should be stored and accessed easily
if necessary.

* The system should help engineers to understand implications of the provisions.

» The system should be integrated with design applications and engineering databases.

The Hyper-Object-Logic model for the documentation, representation, and processing of
design standards is developed to provide these features. The overall architecture of the
Hyper-Object-Logic model is depicted as shown in Figure 3-1. Broadly speaking, this
model consists of two submodels:

* Object-Logic model, and

* HyperDocument model.
The two models are integrated together by sharing Method Objects, which are program
codes representing the design provisions, and are stored in the Standards Base. In the
following subsections, an overview of the two models are provided. Detailed descriptions
of the models are discussed in the succeeding chapters.



CHAPTER 3  THE HYPER-OBJECT-LOGIC MODEL 36
3.1.1 The Object-Logic Model

The Object-Logic model represents the organization and provisions of design standards,
using a combination of object-oriented and logic programming paradigms. The model
allows the user to perform both conformance checking and component design generation
within the same design environment. The model also allows checking for anomalies such

as incompleteness and inconsistency of the design standard.

The Object-Logic model consists of the following five modules:

¢ Standards Base, which represents the organization and provisions of the standard,

e CAD Object Data Model, which facilitates member definition using the Object Model
and retrieving member data from engineering databases.

¢ Conformance Checking Module, which performs conformance checking of a given
member,

e Component Design Module, which generates component design of a given member,

¢ Standards Analysis Module, which checks completeness and uniqueness of
provisions and the organization of the standard, and also examines the relations of

provisions,

The Standards Base has the following two sub components:

¢ Member Class Hierarchy, which represents the organization of the standard, and

e Method Objects, which represent the provisions of the standard.
The Member Class Hierarchy is an object-oriented organizational model of design
standards, which is partially based on the frame-based classification system proposed by
Garrett [Garrett 86]. The Member Class Hierarchy consists of classes, which contain
attributes and pointers to Method Objects. Given a design member, the Member Class
Hierarchy can be used to identify all the applicable provisions based on the attributes and
properties. Each provision is represented by Object-Logic program in the Method Object.
" Reasoning such as concluding whether the given design member satisfies a requirement is
done by logical resolution and message passing among Method Objects.

A design member object consists of attributes, or properties of the member, and external
constraints given by the user. To define the attribute values and external constraints to the
design member, a CAD Object Data Base can be used. The main components of the CAD



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL

(User Interface)

Conformance | Component
Checking Design
Module Module

Standards Base

Object-Logic

Model

Standards
Analysis
Module

Navigation
System

Document Base

Member
Class
Hierarchy

Provision
Document

Base

CAD Object Data Base

Object Model

Background
Base

Design
Member /

Object

External
Programs

‘ DB Interface }

Engineering
Databases

Figure 3-1 Overview of the Hyper-Object-Logic Model

37

HyperDocument



CHAPTER 3 ~ THE HYPER-OBJECT-LOGIC MODEL 38

Object Data Base are
e an Object Model, which is a hierarchical structure representing member objects, and
e engineering databases, which contain data that are not often included in the standard
such as dimensions of standard component shapes.
If an attribute value of the design member object is not given, the data are retrieved from the

engineering database, if available.

The Conformance Checking Module checks a given design member for conformance with
applicable requirements. The Component Design Module generates a trial design
description based on a set of design heuristics and checks whether the candidate satisfies
the applicable requirements. If the trial member does not satisfy the design requirements,
the module generates another candidate and checks for compliance.

The Standards Analysis Module checks completeness and uniqueness (the lack of
redundancy and the lack of contradiction) of a set of rules in the Method Object. The
testing method is based on the procedure proposed by Jain et al. [Jain89]. Code
developers can check the three required properties at both the provision and the
organization levels. It also checks whether the relationships among the Method Objects are

connected and acyclic.
3.1.2 The HyperDocument Model

The HyperDocument model contains the provisions, background information of standards,
external programs, and Method Objects. The documents and programs stored in the
HyperDocument model can help engineers to design through easy access to external
programs and embedded Method Objects and to serve as a large document storage system
for the design provisions and background information.

The HyperDocument model consists of a Document Base and a Navigation system. The
Document Base contains the documents, each of which consists of its content and
HyperTag. The HyperTag is a tag that contains information about the document such as
title, author, file name, rendering software, and pointers to other documents. The content
of each document is shown and processed by its rendering software such as word



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 39

_processing software. The Navigation system facilitates document retrieval, and provides
three basic navigation mechanisms: pointers, queries, and browsers.

The Document Base of the HyperDocument system for design standards consists of the
following four document clusters:

e Method Objects, which are Object-Logic programs representing provisions,

* Provision Document Base, which contains provision documents,

» Background Base, which contains a large amount of background information related
to design standards such as explanations and commentaries to the provisions and
research papers, and

» External Programs, which process charts or complex equations that appear in the
standard and background information to derive necessary data items.

When creating or revising a standard, a large amount of information in various forms may
be collected. Such information as well as explanations about provisions is stored in the
Background Base. The documents in the Background Base can be used by code
developers for future revisions and by engineers for obtaining explanations and

background information about the provisions.
During the design process, many data items require complex calculations involving graph
or chart processing. External programs perform such tasks and return the computed results
to the design program. Such programs, for example, spreadsheet programs, can be
accessed through the HyperDocument system.

3.2 System Capabilities

This section briefly discusses the potential applications of the Hyper-Object-Logic model in
structural design and development of design standards.

3.2.1 Structural Design

A typical structural design process can be depicted as shown in Figure 3-2. The design
process can be divided into two phases: preliminary design and detailed design. In the



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 40

Designed Structure with Loads but N( Designed Structure with Loads
without Section Shapes and Section Shapes
(with relative sizing parameters)
[ E-g. [ E-e-
1.5I (beams) = W24x76 (beams)
|
I (columns) %:1{ W14x61 (columns)
\. AN J

i e ———— .

Approximate Structural Analysis

I : Moment of Inertia
M : Bending Moment

V : Shear Fozrce

N : Axial Force

(Member Forces (M, V, N))

Y

Component Design

Y

I W24x68 (beams)

Process

é W14x74 (columns)

1V —

l Structural Analysis

Re-design of | _pm] Conformance
—=1 Components Checking

Design OK ?

Yes

(Member Forces(M, V, N))

Conformance Checking

Design OK ?

Yes

Significant
Design Changg

Finish

Figure 3-2 Structural Design Process



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 41

preliminary design phase, an initial configuration of the main structural components are
defined and member forces are estimated using approximate structural analysis methods.
Once the member forces are obtained, preliminary member properties can be selected. The
member can then be checked to conform with design standards and constraints of the
project. In preliminary design, not all applicable requirements of the design standard need
to be checked. Engineers usually focus on one (or a few) requirement(s) that are likely to
govern the design of the member. If the member violates the requirement(s), it is re-
designed. If the modification in the re-design is significant, the structure should be re-

analyzed.

In the detailed design phase, the configuration and properties of all structural components
are often pre-determined. A detail structural analysis can be performed to determine the
member forces. Based on the member forces, the components need to be checked against
all the applicable requirements. If a member violates certain design requirements, an

iterative design and analysis process is needed until all requirements are satisfied.

Although their basic pﬁrposes and levels of performance are different, both preliminary and
detailed design phases have certain similar features, which can be represented in the
flowchart as shown in Figure 3-2. The objectives of the Hyper-Object-Logic model in the
design process are: to facilitate the preliminary design of components, conformance
checking with respect to applicable code requirements, and re-design process. The Hyper-
Object-Logic model can be used to enhancé the design process as shown in Figure 3-3,
where the design tasks supported by the model are depicted. The Conformance Checking
Module supports conformance checking, the Component Design Module supports the
component design and re-design of components, and the HyperDocument model supports
the re-design of components by users. Illustrative examples of design applications of the

Hyper-Object-Logic model are given in Chapter 6.



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 42

Designed Structure with Loads but ) Designed Structure with Loads
without Section Shapes and Section Shapes
(with relative sizing parameters)

MMM E.g. . [ E.g.

1.57 (beams) W24x76 (beams)
I (columns) W14x61 (columns)
\ L /

Y

Approximate Structural Analysis

CMember Forces M, V, N))

[ N RN A R E R AR R ER

e

“u"n

[ I.I-I I.I-l

AR R e s s s s e .

OO W24x76 (beams) )

W14x61 (columns)

J

Acting Module

Conformance
Checking Module

Component
Design Module

HyperDocument
Model

Y ¥

Structural Analysis

e-design of Components by Users

CMernber Forces (M, V, N))

: nformance Checkin

B A L s

Yes

No Yes
: b Component
Design OK ? =] Design Modul
e

P o o A 7 B

% Conformance Checkin

o o o f A S A T B

N
Design OK ?

Significant

Finish

Design Changg

No 9

Yes

Figure 3-3 Structural Design Process and the Hyper-Object-Logic Model



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 43
3.2.2 Development of Design Standards

The design standard is usually developed by a technical committee consisting of up to tens
of members. The development of a design standard is an iterative and tedious process.
Figure 3-4 shows a simplification of the process. In general, the committee collects related
documents and prepares a preliminary draft standard. The committee members discuss and
review the draft documents until “consensus” can be reached. Throughout this process,
many supporting data, background information, and documents are used but not recorded
in the design specification. Furthermore, inconsistency among design provisions often

occurs.

The Hyper-Object-Logic model can enhance the design standards development process,
depicted as shown in Figure 3-5. The HyperDocument system provides code developers
with the capabilities of collecting the related documents easily and quickly and sharing them
among committee members. When the preliminary draft is rewritten, the committee stores
the revised draft as Provision Documents in the HyperDocument system. When the draft
standard is translated into Member Class Hierarchy and Method Objects, the Standards
Analysis Module can be used to check the required properties of the standard at the
provision level and the organization level. The mappings between the Provision
Documents and Method Objects provide a capability of checking whether the Method
Objects, i.e., the program code, are correctly interpreted from the provisions. Finally, the

Collecting Preliminary Discussion | _pm! Revising
Related Draft by Committee the Preliminary
Documets Draft
. Yes -
Draft Checking Publishing
the Draft the Standard
No

Figure 3-4 Process of Design Standards Development



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 44

provision documents in the HyperDocument model and the Member Class Hierarchy and
the Method Objects in the Object-Logic model can be published with a book version of the
standard so that they can directly be used for component design and conformance checking

purposes.

A

Collecting Preliminary Discussion  |gef Revising
Related Draft by Committee the Preliminary
Documets Draft and

Storing it in the
HyperDocument

from the
HyperDocument

Y

Draft
(HyperDocument)

Member Class Hierarchy
&
Method Objects

Translating the
Draft into
Object-Logic

Sentences
N

Y

—Checking = Publishing
—Member Class Hierarchy &= the Standard
— Method Objects by the = i

— Standards Analysis Module=—

* Object-Logic

| Checking the Draft
by the Committee

Legend Standards Base

Standards Analysis Module

Figure 3-5 The Process of Design Standards Development and the
Hyper-Object-Logic Model



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 45

3.3 The Prototype System

To demonstrate the feasibility and practicality of the Hyper-Object-Logic model, a
prototype system, HyperLRFD++, has been implemented for the AISC LRFD specification
[AISC 86]. HyperLRFD++ incorporates the sections of the AISC LRFD specification that
are related to the following member types:

¢ compression members,

o flexural members, and

* members subject to bending and compression (i.e., beam-columns).
For demonstration purpose, only wide-flange W sections are included in the database.
HyperLRFD++ is capable of component design and conformance checking of W shape
section members. Furthermore, the prototype system can be used to analyze the design

standard.

HyperLRFD++ has been implemented on an Apple Macintosh IIsi computer. The
following software packages are employed in the implementation:

e Prolog++ [Quintus 90], an extension of Prolog with a full object-oriented
programming environment, is used to implement the Conformance Checking
Module, Component Design Module, Standards Analysis Module, Standards Base,
Object Data Model, and Member Object.

e HyperCard [Apple 90], a Hypertext software for Macintosh, is used to implement
HyperTags and documents in the HyperDocument system and the user interface.

* Oracle [Oracle 89], a relational database system, is used to implement the dimensions
and properties of wide-flange W shape sections.

e MacDBI [Quintus 91], a system interface between Prolog and the Oracle database
system for Macintosh, is used to integrate the Object Data Model and the engineering
databases within the CAD Object Data Base.

* Excel [Microsoft 91], a spreadsheet software, is used to implement the external
program that processes graphs and charts such as the alignment chart for determining
the effective length factor.

Figure 3-6 shows the overall structure of the HyperLRFD++ and software packages that
are used for implementation.



CHAPTER 3

THE HYPER-OBJECT-LOGIC MODEL

46

Conformance
Checking
Module

Standards Base

Member
Class

Hierarchy

aaaaaa

Legend
PROLOG++
PROLOG
User
HyperCard
. ORACLE
User Interface) -
----- MacDBI
EXCEL
Component :\Sfa‘flc\];;ras\ ————————————— :
Design ,Analysis ............. I
Module ‘Module Navigation :
S LSS S ST System l
L :
.......... I
I
Provision :
Document I
Base :
............... |
............. 1
1
Background | § |
CAD Object DataBase [ § |- | = B a.se. ,,,,, :
............. |
Object Data Model !
A~
A External !
Programs 1
e 1
I
. Engineering
Databases ! yperDocument
" System
i

<
- M S WS A ML M MR WGS TR S WM e e

Figure 3-6 The Structure

Object-Logic

System

of HyperLRFD++ and Implementation Software



CHAPTER 3 THE HYPER-OBJECT-LOGIC MODEL 47

3.4 Summary

In this chapter, an overview of the Hyper-Object-Logic model was presented. The
potential applications of the model for structural design and design standards development
were described. An architecture of the prototype system, HyperLRFD++, based on the
Hyper-Object-Logic model, was presented. Details of the model are described in the
succeeding chapters. The next chapter describes the Standards Base and the CAD Object
Data Base of the Object-Logic model. Chapter 5 presents the HyperDocument model.
Chapter 6 provides the details on the Conformance Checking Module and Component
Design Module and illustrates a few examples of design applications of the Hyper-Object-
Logic model. Chapter 7 presents the Standards Analysis Module and illustrates a few
examples of checking properties of design standards.



CHAPTER 4  THE OBJECT-LOGIC MODEL 48

Chapter 4
The Object-Logic Model

This chapter describes two main components of the Object-Logic model: the Standards
Base and the CAD Object Data Base, for the representation and processing of design
standards. Figure 4-1 depicts the system architecture of the Object-Logic model. The
system consists of five basic modules:

» Standards Base,

* CAD Object Data Base,

¢ Conformance Checking Module,

* Component Design Module, and

* Standards Analysis Module.
The details of the Standards Base and the CAD Object Data Base are described in the
following sections. The Conformance Checking Module and Component Design Module
are explained in Chapter 6. The Standards Analyéis Module is discussed in Chapter 7.

4.1 Standards Base

The organization and provisions of the standard are represented and stored in the Standards
Base. The organization of the standard is represented by Member Class Hierarchy and the
provisions are implemented by Method Objects.



CHAPTER 4  THE OBJECT-LOGIC MODEL 49

Standards
Analysis
Module

Component
Design
Module

Conformance
Checking
Module

Standards Base

Method Objects

Member Class Hierarchy

members Methods
member-strength member- ) . -
consideration serviceability require-  determi-  classifi-
consideration ments nants cations

comp_mem flex_mem ,/

CAD Object Data Base

Object Model Data Objects
members '
steel_members concrete_members shapes
steel _ steel _  steel
columns beams - beam_columns __ O 0O

1

i .
; Instance of
1

1
i
1
]
I
I
1
1
1
]
!
I
i
1
1
1
I
1

Engineering
Design Member Object DB Interface Databases

Figure 4-1 System Architecture of the Object-Logic Model



CHAPTER 4 THE OBJECT-LOGIC MODEL 50

4.1.1 Member Class Hierarchy

A design standard includes a set of provisions that a design object must satisfy. The
provisions provide the requirements that physical objects such as beams and columns must
conform with as well as guidelines by which abstract concepts such as measurement and
maintenance are prescribed. Typically, a standard has several chapters, each of which
represents a class of objects. Each chapter may contain some general provisions about the
class and is subdivided into several sections. Each section, which may contain many
provisions, may be further subdivided into subsections. That is, a standard is often
organized in a hierarchical manner. The root node of the hierarchy corresponds to the most
general thing in the standard, e.g. members. Each node of the hierarchy represents a
chapter, a section, or a subsection and contains specific provisions. Provisions at the
higher level of the hierarchy are “inherited” by the nodes at the lower level. As an example,
the outline of the content of the AISC LRFD specification for steel construction [AISC 86]
is shown in Figure 4-2.

4.1.1.1 The Structure of Member Class Hierarchy

The organization of a standard can be represented in a hierarchical object model. One

example of such a model is shown in Figure 4-3.

In the Object-Logic model, the organizational model of design standards is an object-
oriented class hierarchy, partially based on the frame-based classification system proposed
by Garrett [Garrett 86]. The model can be established using the following procedure:

1. Identify the fields and their classifiers of the standard. For example, Figure 4-4
shows three fields: object, stress-state, and limit-state, and their partial classifiers
from the AISC LRFD specification [AISC 86].

2. Merge all the classifier trees obtained in (1) to develop a unified hierarchical tree, as
shown in Figure 4-5. Delete inappropriate branches such as stress-state of
compression within the tension member subtree.

3. Remove the names of the fields from the unified hierarchical tree and rename the
classes. Figure 4-6 shows an object hierarchical tree that is converted from the tree
in Figure 4-5. In this example, the nodes, “global buckling” and “local buckling,”
in the previous tree correspond to the classes, “nonslender_y_comp_mem’” and



CHAPTER 4  THE OBJECT-LOGIC MODEL 51

o O W »

o

= r x &

GENERAL PROVISIONS

TENSION MEMBERS

D1. Design Tensile Strength

D2. Built-up Members

D3. Eyebars and Pin-connected Members

COLUMNS AND OTHER COMPRESSION MEMBERS
E1. Effective Length and Slenderness Limitations
1. Effective Length
2. Plastic Analysis
E2. Design Compressive Strength
E3. Flexural-torsional Buckling
E4. Built-up Members
E5. Pin-connected Compression Members

BEAMS AND OTHER FLEXURAL MEMBERS
F1. Design for Flexure
Unbraced Length for Plastic Analysis
Flexural Design Strength
Compact Section Members with Lp< L,
Compact Section Members with Lp> Ly
Tees and Double-angle Beams
Noncompact Plate Girders
. Nominal Flexural Strength of Other Sections
F2. Design for Shear

1. Web Area Determination

2. Design Shear Strength
F3. Transverse Stiffeners
F4. Web-tapered Members (see Appendix F4)

NoO kL=

PLATE GIRDERS
MEMBERS UNDER TORSION AND COMBINED FORCES

Figure 4-2 A Part of the Table of Contents of the AISC LRFD

Specification [AISC86]



CHAPTER 4

52

THE OBJECT-LOGIC MODEL
members
prov
tension columns beams plate
members DoV DoV girders
prov prov
design design flexural- flexure shear
tensile compressive| | torsional
strength strength buckling prov prov
prov prov prov
compact compact noncompact
Lb<Lr Lb>Lr plate girders
. prov prov prov
prov = provisions

Figure 4-3 Object-Oriented Organization Model of the Standard

“slender_y_comp_mem,” respectively.

. Attach each requirement to only the corresponding leaf node class, and attach each

determinant to a corresponding class so that its descendant classes can inherit the

determinant.

Given a design member, the way to identify applicable provisions is to select appropriate
classes in the object hierarchical model by traversing the tree from the root node to leaf

nodes. However, there are cases when two or more nodes at the same level may be

applicable for a design object. For example, in Figure 4-6, the class “y_comp_mem_

strength_consideration” is divided into classes of “y_buckling comp_mem” and

“torsional_or_ftb_comp_mem” (ftb = flexural torsional buckling). The design member

“column #125” must be checked for both buckling and torsional or flexural torsional
buckling limit states. This thesis introduces both “AND” and “OR” relations in the Member
Class Hierarchy, as shown in Figure 4-7. When traversing the AND-OR hierarchy, all



CHAPTER 4 THE OBJECT-LOGIC MODEL 53

nodes under an AND node are traversed, while only one node under an OR node is
selected. Each OR node is linked to a classification method that classifies a design object
into a more specific subclass. For the example shown in Figure 4-7, given a design
member object “column #247” that is a steel non-slender compression member, the system
traverses the object hierarchy in a depth-first manner as (using the alphabets as denoted in
the figure):

A>B->D->H->K->M->P>U->K->N->R->H->L->0
For each leaf node visited, the system stores the requirements linked to the leaf node
classes. Thus, the design member object “column #247” is linked to the leaf nodes:

U, R, and O,
The requirements to be checked for the design object thus include:

e req_short_non_slender_y_comp_mem (linked to U)

* req_torsional_buckling_comp_mem (linked to R), and

e req_comp_mem_deflection (linked to O),
where the prefix “req_” denotes the requirement for a specific behavior limit state of the

member type.
4.1.1.2 Classes

Each Class in the Member Class Hierarchy contains:
e property attributes, which correspond to the specific characteristics of the class
object, and
e method attributes, which are pointers to the Method Objects representing the

provisions.

Property attributes are used to describe the specific characteristics of the object class. There
are two basic property attribute types:
 organizational attributes, which are used to represent the organization of the Member

Class Hierarchy. They are:

» super: its value indicates the super class,

* and_or_node: its value indicates whether the node is an AND node or OR node,

* and_sub: its value lists the child subclasses if the class is an AND node,

¢ leaf: its value indicates whether the class is a leaf node,



CHAPTER 4  THE OBJECT-LOGIC MODEL 54

OBJECT

member

steel composite ...

STRESS-STATE

P S

compression flexure flexural compression

PN N— .

X-axis y-axis moment shear

LIMIT-STATE

T T

strength serviceability

T

buckling torsional or flexural deflection vibration

/\mmional buckling

global buckling local buckling torsional buckling flexural-torsional
buckling

elastic buckling inelastic buckling = --eeer e

Figure 4-4 Fields and Partial Classifiers

* requirement: its value contains the name of the requirement which the class is
pointing to.
 object attributes, which are used to describe the basic properties of the objects such

b AN 1)

as “elastic_modulus,” “yield_stress,” and “unbraced_length_x.”



CHAPTER 4  THE OBJECT-LOGIC MODEL

OBJECT
melmber
/\
steel composite = -
STRILSS—STATE @-STATE
/v \
compression flexure flexural compression ~ sweeeees
X-axis y-axis moment shear — weer e

| | NN

LIMIT-STATE LIMIT-STATE LIMIT-STATE LIMIT-STATE

T T T~ T~

..... ree Strength Serviceability erreeeans reeveses
buckling torsional or flexural deflection vibration

torsional buckling

global buckling local buckling torsional buckling flexural-torsional

\ buckling

elastic buckling inelastic buckling -

Figure 4-5 A Unified Hierarchical Tree



CHAPTER 4  THE OBJECT-LOGIC MODEL 56

member

N

steel_member composite_member

T

comp_mem flex_mem flex_comp_mem

X_comp_mem y_comp_mem moment_member shear_member

"""" y_comp_mem_strength_ comp_mem_serviceability_
consideration consideration

. torsional_or_ftb_ comp_mem_deflection_
y_buckling_comp_mem comp_mem consideration

/T [ TTT—_

non_slender_y_  slender_y_ torsional_buckling_ flexural_torsional_
comp_mem comp_mem comp_mem buckling_comp_mem

long_non_slender_y_comp_mem  short_non_slender_y_comp_mem

Figure 4-6 An Object-Oriented Unified Hierarchical Tree



CHAPTER 4 THE OBJECT-LOGIC MODEL 57
rm———————— -
| Legend
1

A i
L oath member i CJ  AND node

traversal pa : class

]
B [ sicel_member C composite_member : OR node

: class
I
|
i
1

G

7\\ .....
D E E

comp_mem

flex_comp_mem

y_comp_mem

moment_mem

- shear_mem

T~

comp_mem_serviceability_consideration

Y

comp_mem_deflection_consideration

-~
~

K [ y_comp_mem_ L
strength_
consideration
0
M N
y_buckling_ torsional_or_fth_
comp_mem comp_mem

| ~ deflection_comp_me

~
\\

reg_comp_mem_

T

non_slender_y_ slender_y_ torsional _ ftb_comp_mem
comp_mem comp_mem buckling_ ~C
Ay comp_mem N
~ ;

long_non_slender_
y_comp_mem

short_non_slender_
y_comp_mem

req_torsional

buckling_comp

1
req_lor;g_non_ req_ short non_ L
slender_y_ slender_y_

comp_mem

comp_mem

mem

> ~
req_ftb_
» comp_mem

-

Figure 4-7 Object-Oriented Organization Model with AND-OR Tree

D




CHAPTER 4 THE OBJECT-LOGIC MODEL 58

A method attribute consists of pointers that link an object class to its Method Objects
representing specific provisions, i.e., requirements, determinants, and classifications in the
provision. Figure 4-8 depicts the reference to the Method Objects by object classes in the
Member Class Hierarchy via the method’s attributes.

In the implementation of the model, the same attribute name of the requirements or

determinants are used as the name of the Method Object. For example, the method

attribute, its value of the requirement for torsional buckling for compression members, and

the corresponding Method Object have the same name of:
req_torsional_buckling_comp_mem.

On the other hand, the method attribute for the classification method is always “classify.”

Both the value of the classification method of the class “torsional_or_ftb_comp_mem” and

the corresponding classification Method Object have the name as:
clas_torsional_ftb_comp_mem.

That is, the method attribute provides a link between an object class in the Member Class

Hierarchy and the corresponding Method Object.
4.1.2 Method Objects

Provisions of the design standard are represented in Method Objects. Each Method Object
determines a single data item and is referenced by the method attribute of an object class in
the Member Class Hierarchy. There are three types of Method Objects:

* requirements,

¢ determinants, and

* classifications.
A requirement is to check a given design situation and to deduce the conclusion of either
“satisfied” or “violated.” A determinant is a method to determine a data item on which
other methods depend. At an OR node of the Member Class Hierarchy, a classification
method is used to classify a design member object into a more specific subclass.



CHAPTER 4

THE OBJECT-LOGIC MODEL

Member Class Hierarchy

class

method attribute

59

Method Objects Hierarchy

methods

T\

comp_mem

critical_
ftb_stress

clas_torsional_
ftb_comp_mem

reqg_torsional _
buckling_
comp_mem

L

/

requirements | | determinants| |classifications|
» =)

g Sl|2 S ||E

g S| 5 ME

o AIE =1l

g" ells S ||E

) =1)) OI o

() Fa Ko ©

| S 2 ||

N = &~

= §s 1 ].E

2 S < | 1=

= o

: YORHIIE

2 S 1|

o -l

g c/)l CIJl

S S8

5 s s

Q

7

o

&

\ referencing pointers from

classes to method objects

Figure 4-8 Member Class Hierarchy and Method Objects



CHAPTER 4  THE OBJECT-LOGIC MODEL 60

The Method Objects are organized into a simple class hierarchy where the root node is
“methods,” as shown in Figure 4-8. The “methods” class has three subclasses, i.e.,
“requirements,” “determinants,” and “classifications.” The “methods” class contains the
general methods that any of its descendant classes and objects can inherit; for example, one
generic method “input_attr” is implemented for requesting an input of an attribute value.
Each requirement, determinant, or classification object is an instance of the class
“requirements,” “determinants,” and “classifications” respectively. The “requirements”
class contains general methods such as “respond_satisfied” and “respond_violated,” which
return the checked result of “satisfied” or “violated” respectively to the user that all
requirement objects can inherit. Each Method Object has attributes and a method. The
attributes defined in a Method Object consists of:
* identification: an indication that the method object is a requirement, a determinant, or
a classification, '
» class: an object class that points to the Method Object,
e provision: the provision number or section title in the design standard that the
method represents, and
 reference: a list of determinant Method Objects or attributes that the Method Object
itself references to determine the value of the Method Object.
* meaning: a brief explanation of the Method Object.

Methods are written in terms of Object-Logic sentences, which are based on a combination
of object-oriented and logic programming. The key idea of logic programming is
programming by description [Genesereth 85]. Because of their descriptive nature,
provisions of design standards can be translated into logic sentences. Once the provisions
are translated into logic sentences, conclusions can be deduced by the inferencing

mechanism of resolution.

Despite the powerful inferencing capability, logic programming lacks basic features of
software engineering like modularization, data abstraction, scoping, and information hiding
[Page 89]. Thus, the object-oriented and logic programming paradigms are combined in
the prototype development of the model.

In the Object-Logic model, methods are written in terms of Object-Logic sentences
expressed as: '



CHAPTER 4  THE OBJECT-LOGIC MODEL 61

A:-Cq Gy, , Cpe
or A.
A is a conclusion written in the form:
“Name of Method’(Term1, Termy, ...... , Termy,)

where Terms are either variables, object constants, or functional expressions.
C;(i=1,2,...,n)is acondition which has the following structure:

Mem::“Name of Method’ <- “Message,”

self <- “Message,”
or an arithmetic expression.
“Name of Method” is a method attribute value of the design member object variable
“Mem.” “Message” is a literal which has the same form as the conclusion A. The symbol
“<-” means that the “Message” is to be sent to the “Method Object” or “self”’; and “self”
denotes the Method Object itself. Each Method Object evaluates a single data item; that is,
sentences that determine a particular data item are clustered in a Method Object. The
Method Object contains only one method; that is, there is only one predicate for the
conclusion part of the Object-Logic sentences defined in the Method Object. The predicate
for the conclusion of Object-Logic sentences has the same named variable as the name of
the Method Object.

In this model, each requirement is restricted to represent a single behavior of a member. If
a provision has multiple requirements for different behaviors, the multiple requirement
must be divided into basic individual requirements. Each basic requirement identifies a
unique basic structural behavior constrained within the requirement. The Member Class
Hierarchy is arranged in such a manner that each individual basic requirement is attached to
a leaf node. This organization allows the user to identify the specific requirement that a
design member violates. For example, the requirement for compression members with
non-slender sections can be divided into four basic requirements according to the.limit
states of:

¢ 1inelastic or elastic buckling, and

* weak or strong axis buckling.
If the requirement for weak axis elastic buckling is violated, the user can decide whether to
select a member with a larger radius of gyration about the weak axis or to.provide an
intermediate bracing along the weak axis of the compression member.



CHAPTER 4  THE OBJECT-LOGIC MODEL 62

Each requirement Method Object contains at least two Object-Logic sentences
corresponding to the values of “satisfied” and “violated.” Figure 4-9 shows an example
requirement method “req_short_non_slender_y_corhp_mem.” This method is linked to a
leaf class “short_non_slender_y_comp_mem” (shown in Figure 4-7), which represents a
compression member that is not slender and its inelastic member buckling is governed by

the weak y-axis.

Let’s examine the process of how a given design member object, say, “column_247" with
the W shape section W14x99, satisfies a requirement. First, the message:
req short_non_slender_y_comp mem(column_247, Result, wl4x99)
is issued to the requirement Method Object. The Method Object receives the message and
matches it by unifying the variables (Mem, Result, Id) with the values (column_247,
satisfied, w14x99) respectively. The conditions in the Method Object are then being
examined. In the first condition:
Mem: :pn_short_y <- pn_short_y (Mem, Pn, Id)
the system sends a message “pn_short_y(column_247, Pn, w14x99)” to a determinant
Method Object “pn_short_y,” as shown in Figure 4-10. The Method Object “pn_short_y”
is a determinant which has a sentence:
pn_short_y {Mem, Pn, Id) : -
Mem: :gross_area<-gross_area(Mem, Ag, Id),
Mem: : fcry_short<-fcry short (Mem, Fcry, Id),
Pn is Ag * Fcry.
This sentence, in turn, sends a message “gross_area(column_247, Ag, w14x99)” to the
Method Object “gross_area”:
gross_area(Mem, Ag, Id) :- Mem::area<-area(Id, Ag).
The Method Object “area” retrieves the data “Ag” from an appropriate database (which is to
be described in the next section). Similarly, a message is sent to the Method Object
“fcry_short” to evaluate the variable “Fery.” Once the variables “Ag” and “Fery” are
evaluated, the variable of “Pn” in the sentence “pn_short_y” is determined. The first
condition of the requirement is then evaluated. Similarly, since the variable “Pn” has been
determined, the second condition of the requirement,
DS is 0.85 * Pn,
can be evaluated.



CHAPTER 4  THE OBJECT-LOGIC MODEL 63

open_object req short_non slender y_ comp_mem.

super = requirements.
class = short_non slender vy comp_mem.
provision = 'E2'.
reference = [pn_short_y,
attr(load_comp)].
meaning = 'requirement for a non-slender compression
member which y-axis inelastic buckling governs'.

reqg_short_non_slender_y_comp_mem({Mem, satisfied, Id) : -
Mem: :pn_short_y <- pn_short_y (Mem, Pn, Id),
DS is 0.85 * Pn,
self <- input_attr(Mem, load_comp,1000),
Mem: :egless <- egless(Mem: :load comp,DS),
self <- respond_satisfied.

req short_non_slender v comp_mem(Mem, violated, Id) : ~
Mem: :pn_short_y <- pn_short_y (Mem, Pn, Id),
DS is 0.85 * Pn,
not (Mem: :egless <- egless (Mem: :load _comp, DS) ),
self <- respond_violated.

close_object reqg short_non_slender_y_comp_mem.

Figure 4-9 An Example of a Requirement Method Object

open_object pn_short_y.

super = determinants.
class = short_non_slender_ y_ comp_memn.

provision = 'E2',
reference = gross_area,
fcry_short].
meaning = ‘nominal axial compression stress of a member which y-

axis inelastic buckling governs'.
pn_short_vy (Mem, Pnn, Id) : -
Mem: :gross_area<-gross_area(Mem, Ag, Id),
Mem: : fcry short<-fcry short (Mem, Fcry, Id),
Pn 1s Ag * Fcry.

close_object pn_short_y.

Figure 4-10 An Example of a Determinant Method Object



CHAPTER 4 THE OBJECT-LOGIC MODEL 64

In the third condition of the requirement,

self<-input_attr(Mem, load_comp, 1000),
the method “input_attr” requests the user to enter the attribute value if it has not been
assigned before. As noted earlier, this method is stored in the root class of the “methods”
Method Objects hierarchy so that any Method Object can inherit and use this method. If the
attribute value requested is available, this method simply returns true.

The fourth condition of the requirement,

Mem: : egless<-egless (Mem: : load_comp, DS),
is to check if the value of attribute “load_comp” is equal to or less than the value “DS.” If it
is true, the system proceeds to the last condition,

self<-respond_satisfied,
and informs the user that the requirement is satisfied; otherwise, the system backtracks this
rule, then goes to the second rule. As noted earlier, the method “respond_satisfied” is
located in the “requirements” class of the method object hierarchy which is shared by all

requirement Method Objects.

A classification method is a procedure that classifies an OR node into more specific
subclasses. For example, a compression member governed by y-axis member buckling
with a non-slender section can be classified as “short” or “long” by the value of A¢y in the
AISC LRFD specification [AISC 86]. Let’s examine how this classification method,
shown in Figure 4-11, classifies a given design member “column_247.” When the
member comes to the class “non_slender_y_comp_mem” during the traversal of the
Member Class Hierarchy, the message

classify (column_247,NextClass,wldx99)
is sent to the classification Method Object. Again, the variables (Mem, NextClass, Id) are
unified with the constants (column_247, short_non_slender_y_comp_mem, w14x99).
Then, the conditions in the first sentence,

Mem: : lambda_c_y<-lambda_c_y (Mem, Lambda_c_vy, Id),

Mem: :egless<-eqless (Lambda_c_ vy, 1.5),

writenl ('classified as short_non_slender_ y._comp_mem'),
are examined in the same manner with the requirement Method Object. In the first
condition, the variable “Lambda_c_y” is determined. If this value is equal to or less than



CHAPTER 4 THE OBJECT-LOGIC MODEL 65

open_object clas_non_slender y_ comp_mem.

super = classifications.
class = non_slender y_comp_mem.
provigion = 'E2',

reference = lambda_c_y].

classify (Mem, short_non_slender y_ comp_mem, Id) : -
Mem: : lambda_c_y<-lambda_c_y (Mem, Lambda_c_y, Id),
Mem: :egless<-eqless (Lambda_c_y, 1.5),
writenl(‘classified as short_non_slender_ vy comp_mem') .

classify (Mem, long _non_slender_y_comp_mem, Id) : -
Mem: : lambda_c_y<-lambda_c_y (Mem, Lambda_c_y, Id),
not (Mem: :eqless<-egless(Lambda_c_vy, 1.5)),
writenl('classified as long_non_slender y_ comp_mem') .

close_object clas_non_slender_y comp_mem,

Figure 4-11 An Example of a Classification Method Object

1.5 as noted in the second condition, the given member is classified as “short_non_
slender_y_comp_mem,” and the system writes that message on the computer screen.

Otherwise, the second sentence is to be examined.

4.2 CAD Object Data Base

A member object to be designed or checked consists of attributes and external constraints.
The attributes are the design properties of the member, such as effective length factor,
~ unbraced length, and yield stress. External constraints are user requirements given to the
design member object, such as the maximum depth of a beam. The CAD Object Data Base
is used to define a design member object and to assign attribute values and external

constraints to the design member.

The CAD Object Data Base consists of an Object Model, Data Objects, engineering
databases, and a database (DB) Interface. Figure 4-12 shows the basic architecture of the
CAD Object Data Base. The Object Model provides the user with a capability of defining a
design member object, assigning attribute values and external constraints to the object.



CHAPTER 4  THE OBJECT-LOGIC MODEL

Engineering databases contain data and information that are often not included in a design
standard, such as dimensions and properties of standard component shapes, properties of
various materials, and costs of materials, equipment, and labor. Data Objects and DB

Interface facilitate retrieving the design data from an engineering database.

Object Model
member
steel member concrete member

L N T

steel column steel beam steel beam-column
1
i
1
! Data Objects
1
I
! shapes material
1 ‘
1 PR \
: instance of wshape channel
I - /

Design Member Object

Engineering Databases

DB Interface

WSHAPE_DIM

CHANNEL_DIM

Figure 4-12 The CAD Object Data Base




CHAPTER 4 THE OBJECT-LOGIC MODEL 67

4.2.1 Object Model

A design member object is a component in a physical facility structure, such as a beam, a
column, or a truss member, to be designed or checked by the system. A design member
object is created by the user as an instance of a class of the Object Model. The Object
Model is an object hierarchy whose classes contain attributes. All the attributes within the
Member Class Hierarchy are collected and assigned to appropriate classes of the Object
Model. Figure 4-12 shows a sample design member object “column #567,” linked to the
class of “steel column” in the Object Model. The design member object “column #567”
inherits all the attributes of the class “steel column” which contains all the attributes defined
in the subtrees of “comp_mem” and “flex_comp_mem” of the Member Class Hierarchy

because a column may be either a compression member or a flexural compression member.

Once the design member object is defined, the user can assign attribute values in a tabulated
form provided by the system. The user may assign all, partial, or no attribute values prior
to the execution of the design program. When the attribute value is needed during the
execution of component design or conformance checking, the system requests the user to
enter the value if it has not been given by the user earlier.

The user can assign external constraints to each design member object. External constraints
to a design member object include architectural requirements such as restriction of the depth
of a beam and serviceability constraints such as allowable deflection of a beam. External
constraints are written in terms of Object-Logic sentences. The system provides several
common types of external constraints so that users can directly modify such constraints to
suit their needs. An example of external constraints restricting the weight of the component
is shown below:
ext_constraints (Mem, satisfied, Id) : -
Mem: :weight<-weight (Mem, Weight, I4d),
Weight < 15.
ext_constraints(Mem,violated, Id):-
Mem: :weight<-weight (Mem, Weight, Id),
Weight >= 15,
These constraints are used and ensured for conformance in the design process.



CHAPTER 4  THE OBJECT-LOGIC MODEL 68

Assigning attributes of the design member object is a time-consuming task. In a CAD
environment, the attribute information about the design member object may be stored in a
relational or an object-oriented database system. The Object Model provides a natural way
to integrate the design system with a CAD object database system with an appropriate
interface, which consists of mappings between the attributes of the Object Model and data
of CAD object databases [Elam 88].

4.2.2 Engineering Databases and Data Objects

Engineering databases contain data such as dimensions and properties of standard
component shapes, material properties, and costs of materials, equipments, and labor.
Such data is usually necessary during conformance checking and component design, and is
desired to be retrieved automatically by the system. The Object-Logic model naturally

' integrates itself with relational databases. Since relational calculus is a subset of logic, the
uniformity of the relational and Object-Logic models can be retained.

Two approaches exist for coupling Object-Logic programs and relational databases: loose
coupling and tight coupling. In the loose coupling approach, the data in the databases is
loaded into the memory of Object-Logic programming environment as facts when the
program is loaded. In the tight coupling approach, during the execution of the Object-
Logic program, a query is sent to the database, and the results (tuples) are returned to the
program [Ceri 90]. For conformance checking and component design, the tight coupling
approach is better because the amount of engineering data is usually large and the
interactions between the Object-Logic program and databases can be restricted to a small

number of queries.

The interface between the Standards Base and engineering databases consists of a set of
Data Objects and a DB Interface. Data Objects contain methods for data retrieval, written in
terms of Object-Logic sentences. During the design process, the design member object is
linked to appropriate Data Objects as their instance. The design member object can thus
send query messages to the Data Objects to obtain necessary information from the
engineering databases. The DB Interface couples Object-Logic programs and the relational
database system, and is typically provided by commercial software suppliers, e.g., Quintus
[Quintus 91].



CHAPTER 4  THE OBJECT-LOGIC MODEL 69

Table 4-1 shows a relational table “‘WSHAPE_DIM’ storing the section dimensional
properties of the W shapes. To retrieve the area of the W14x120 section, an SQL query is:
SELECT AREA
FROM WSHAPE
WHERE DESIGNATION = ‘wl4x120°.
In the Data Object “wshape,” the query is expressed in the form of logic sentences as:

area(Designation,Area) : -

db_record(‘WSHAPE_DIM’, [Designation,Area,_,_,_,_1).
This list [Designation,Area,_,_,_,_] in the querying sentences corresponds to the
attributes of the table “‘WSHAPE_DIM.” “_” in the list indicates an arbitrary variable. If a

message
area(wldx120,Area)
is sent to the Data Object “wshape,” the DB Interface then issues the query
db_record('WSHAPE DIM’, [wl4x120,Area,_,_,_,_1)
to the table “‘WSHAPE_DIM’ of the relational database system. The list in the query is
unified with a list of values from the table and the variable “Area” is instantiated to have the
value 35.3.

Table 4-1 A Part of a Relational Database ‘WSHAPE_DIM’
Desig- Area Depth Web Flange Flange
nation Thickness Width Thickness
wldx132 38.8 14.66 0.645 14.725 1.030
wldx120 35.3 14.48 0.590 14.670 0.940
wldx109 32.0 14.32 0.525 14.605 0.860




CHAPTER 4 THE OBJECT-LOGIC MODEL 70

4.3 Summary

In this chapter, the Standards Base and the CAD Object Data Base of the Object-Logic
system were described. In the Standards Base, the organization of the standard is
represented by Member Class Hierarchy and the provisions are implemented as Object-
Logic sentences in Method Objects. CAD Object Data Base consists of the Object Model,
which provides the user with capabilities of defining a design member object, and
engineering databases, which store the data that are not often included in the design
standard. These data are retrieved during conformance checking or component design.

The advantages of the Member Class Hierarchy of the Object-Logic model are summarized
as below. In the Object-Logic model, the unified Member Class Hierarchy is built from
identified fields and classifiers, following an object-oriented structure. The “AND” relation
is introduced to allow the design modules to identify all the applicable requirements
systematically. A classification method attribute is attached to each OR node allowing the
design member to traverse the class hierarchy properly.

In the Object-Logic model, attributes representing determinants and basic data items are
attached to classes so that their lower classes inherit these attributes. This facilitates
reorganizing and documenting the design standard. That is, design standards can be
written based on the Member Class Hierarchy of the Object-Logic model, which contains
all the attributes of requirements, determinants, and basic data items.

The method of developing the Member Class Hierarchy is generic and does not depend on
design standards. Thus, multiple design standards, e.g., AISC LRFD and Allowable
Stress Design (ASD) specifications [AISC 86] [AISC 89], can be included within a single
Member Class Hierarchy [Garrett 86]. Method Objects are dependent of design standards.
Thus, if multiple standards are included in the Standards Base, each Method Object needs a
tag representing the design standard’s name.



CHAPTER 5  THE HYPERDOCUMENT MODEL 71

Chapter 5
The HyperDocument Model

This chapter describes in detail a HyperDocument model for the representation and
documentation of design standards. HyperDocument is a generic document storage and
retrieval model, following the current technology of HyperFile described in Section 2.2.
HyperDocument model stores program codes representing provisions (Method Objects),
standards provisions, their background information, and external programs as a set of
documents.

Figure 5-1 depicts the overall system architecture of the HyperDocument model, which
consists of a Document Base and a navigation system. The Document Base contains the
electronic documents stored in the computer. Each document consists of its content and a
HyperTag, which contains information about the document. A document can have pointers
to reference other documents. The navigation system provides a set of generic facilities for
document retrieval. The Document Base and the navigation system are presented in the
following sections.

As shown in Figure 5-1, the HyperDocument model is separated from the rendering
software, which is any kind of application software such as a word processing software,
graphics software, spreadsheet, a CADD package, or multimedia software. The separation
of rendering software from the HyperDocument model enables the user to select
appropriate software for creating and rendering each document. As noted in Chapter 3, the
HyperDocument model has been implemented in the prototype system HyperLRFD++.
HyperTags and the Navigation system are implemented by HyperCard [Apple 90], and



CHAPTER 5  THE HYPERDOCUMENT MODEL

HyperDocument Model

72

Navigation System

Document Retrieval by

¢ Pointers
* Query
° Browsers
[l
Document Document Base
—
HyperTag

HyperTags

VA .
2 \ \ ! ‘\
\ \ i 1
Content (File) \ rat===-==-=---- ittty A------- dom-- |
N Rendering Software \ !
A ! \ !
\" CADD package *ee “‘ Graphics package :
" !
: Y Word Processor 1 ****{ Word Processor 2| |

Figure 5-1 The Overview of the HyperDocument Model



CHAPTER 5  THE HYPERDOCUMENT MODEL 73

contents are implemented by HyperCard, Prolog++ [Quintus 90], and Excel [Microsoft
91].

5.1 Document Base

This section describes the Document Base of the HyperDocument model. In the Document
Base, a document consists of its content and HyperTag, as shown in Figure 5-2.
HyperTag consists of attributes about the basic information of the document, such as its
title, keywords, rendering software, content, and pointers. A number of pointers are set up
to link the document to other documents, such as the referencing and the referenced
documents, and the previous and next documents if they are in a sequence. The rendering
software attribute specifies the application software needed to show the content of the
document. The content attribute specifies a file name and its directory that stores the file of
the document. Figure 5-2 shows an illustrative example of a document, where Section E2
of the AISC LRFD specification [AISC 86] is optically scanned and pasted on HyperCard
[Apple 90].

In the HyperDocument model for design standards, the Document Base consists of four
document clusters:

* Method Objects (Provision Programs),

* Provision Document Base,

¢ Background Base, and

* External Programs.
Figure 5-3 shows a general structure of the Document Base. The four document clusters

are described in the following subsections.

5.1.1 Method Objects

As described in Section 4.1.2, the Method Objects represent provisions as Object-Logic
sentences. Method Objects are shared by both the Object-Logic model and the
HyperDocument model. Method Objects are viewed as a group of executable programs in
the Object-Logic model, and as a group of documents in the HyperDocument model. Each



74

CHAPTER 5 THE HYPERDOCUMENT MODEL
HyperTag r

Attribute Value i
Category Standards Provision B

Super Document AISC LRED 86 BS.1
Document Name E2 Method "Show'" | / Lo
Date of Issuance 9/1/86 I

Date of Posting 12/13/9 i T
Keywords coluntn, compressive strength, buckling § | [ § ......
Rendering SoftwarMerCard 7
Lontent_______¢ |- E2, LRED spe¢ ————rr—r

Pointer 1 @ | B5.1

; Pointer 2 © | AB53 —]
1 Pointer 3 e | C-E2

Pointer 4 ® | req_short_non_slender_x_comp_mem

Pointer 5 ® | req_long_non_slender_x_comp_mem HyperCard
Pointer 6 @ | req_short_non_slender_y_comp_mem @
Pointer 7 ® | req_long_non_slender_y_comp_mem 7

Pointer 8 ® | El ' E2 <J
Pointer 9 @Tg

Pointer 10 e Method ''Show Pointer 9" + File

|

Nobu:hLRFD++:LRFD spec

(6GoMarkup)

E3. DERIGN COMPRESSIVE STREKGTH

mTE
A, = prows ares of member, in2
F, = specificd yieh! stress, ke
K = moduhs of nlxaticly, ksi
K = effective iongth fsctor
! = unbraced Jength of member, im.

HyperLRFD++

The deaign o tbers whoes clament have VeakiCthicNuems
ratios besa Lhan ) off9nct. BS,] s.qf;: " oin have (Commentarg)
¢, ~ O8RS
= Agfe (E21)
Forh, % 1.8 . Icons
. E,=(0.688' )5 ®23)
for A > LS
0.877
=[S (E23)
where
VT z4)

r = governiag radlog of gyration sbout plane of buckbing, in.

@ ka k)

go back go starter go first

req_long..H
req_short_y

" (Explain E2 Req'2)
ﬁ

A
For_members whoss slemenis do rot nyset the raquitements u{-&ﬂ. BS.1, me
Appendix BS.S. : i - .
\ RN
— Rendered Image

Figure 5-2 A Sample Document in the Document Base



CHAPTER 5

THE HYPERDOCUMENT MODEL

Standards Base
Method Objects
(Provision Programs)

Provision Documents Base

J t Eoooe-b

/]

7/R I. -0 0 0 0 B>

\ Background Base

E Commentaries ‘

+t seses

e e o000

£, <

£
External Programs /

O (D eeve d/

Figure 5-3 The Document Base of the HyperDocument Model

75

Method Object has a pointer to reference the corresponding provision document. Such

references could be useful for the design and re-design of a member of a specific type.

5.1.2 The Provision Document Base

A standards provision is stored in the Document Base as text (with figures if any). In the

provision document, pointers are set up to reference:

Method Objects representing the provision,

explanation documents about the provision,

related Documents in the Background Bése,

external programs,

referenced provision documents within the provision, and



CHAPTER 5  THE HYPERDOCUMENT MODEL 76

e preceding and subsequent provision documents.
Such pointers are stored as attributes in the HyperTag.

If a provision consists of multiple requirements, each requirement is stored as a Method
Object as discussed in Section 4.1.2. Thus, there is a one to many correspondence
between the provision and its corresponding requirement Method Objects, i.e., one
provision document has multiple pointers referencing the multiple requirement Method
Objects while a requirement makes references to one provision document.

5.1.3 The Background Base

The Background Base contains explanations of the design provisions and various
background information about them. The explanation documents include commentaries on
the provisions and other important information such as historical notes and references.
When creating or revising a standard, a large amount of information in various forms may
be collected including:

» similar or related specifications,

e minutes of committee meetings,

¢ technical research reports and publications,

¢ experimental and measurement data,

* theoretical and computer solutions,

* video tapes of experiments, actual structural damages, etc.,

» audio tapes of experiments, interviews, etc.,

 graphics such as drawings, charts, maps, pictures, and photos, and

* miscellaneous resources.
Such background information can be processed by appropriate hardware and software,
such as scanners and rendering software, and stored in a computer as a HyperDocument.
Besides being the documentation of the standard development, the background information

may be useful for design applications.

As discussed in Section 4.2, when the requirements are selected for conformance checking
and used for component design, the design system reports the requirements'that are
violated. The user can now open documents about the violated provision and its
background information that may be useful for re-design.



CHAPTER 5  THE HYPERDOCUMENT MODEL 77

The Background Base provides a useful capability to store the knowledge, information,
and data used for creating the provision. The documents can be shared among engineers
and code developers and saved as a communication means when a design standard is
revised. Engineers can also use the Background Base as an “electronic library” — a large
document storage and retrieval system.

5.1.4 External Programs

During the design process, basic data items (input data) such as the yield stress and
unbraced length of a compression member can be obtained easily from the user, CAD
Object Databases, or Engineering Databases. However, many data items, such as the
effective length factor K of a compression member in an unbraced frame, require more
complex calculations and may include graphs and charts. External Programs may be
needed to process charts, tables, and complex equations. These programs can be stored as
part of the Document Base. While performing conformance checking and component
designing in the Object-Logic model, the user can execute external programs to obtain such
data items as effective length factor K. In this model, the procedure for executing an
external program from the HyperDocument system is summarized as follows:

1. If a required data item is not readily available, the user can request to see the
provision describing the data item.

2. If the user would like to see the description of the data item, the system shows the
provision document; otherwise the user can simply enter the value.

3. If the provision document has a pointer to an external program that can be used to
determine the data item, the user can execute the program by simply clicking the
icon representing the program.

4. After processing the external program, the resulting value is passed to the Method
Objéct of the Object-Logic model.

Figure 5-4 depicts the above procedure for the execution of External Program in the
HyperDocument model.



CHAPTER 5  THE HYPERDOCUMENT MODEL 78

Show the Execute the Program
provision
I
Method l :
etho
Obiect Executable
I Jee Program
(e.g., effective
length factor)
\__ (e.g., spreadsheet
Send a message to program)
execute the program  Prgvision Document
(e.g., a provision about  Return Output Data
effective length factor)

Figure 5-4 Processing of the External Program

5.2 The Navigation System

Since the Document Base contains a large number of documents, the user needs an efficient
means to access necessary documents. The Navigation system allows the user to retrieve
documents from the Document Base easily and efficiently. There are three basic means to
retrieve a document:

¢ Pointers or links,

* Queries, and

* Browsers.
They are described in the following subsections.

5.2.1 Navigation by Pointers

The user can navigate and retrieve a document by using the pointer attribute in the
HyperTag. From a document, the user can traverse to the next document by simply



CHAPTER 5  THE HYPERDOCUMENT MODEL 79

clicking the corresponding method icon. This procedure can be repeated until the document

being searched for is found.

The navigation system provides generic methods for traversing to referenced documents by
pointers. A method “Show” shows the attribute <Content> of the HyperTag by opening
the attribute <Rendering Software>. A method “Show Pointer 1” sends a “Show” message
to the document linked by the attribute <Pointer 1>. When the document receives such a
message, it invokes the “Show” method so that the content is rendered on the computer
screen. Each “Show Pointer N method (N = 1, 2, 3, ...) corresponds to <Pointer N>
attribute. “Show” and “Show Pointer N”” methods are represented as buttons and placed
after <Content> and <Pointer N> attributes, respectively, as shown in Figure 5-2.

If the rendering software can include a button icon or a menu item that sends the method
“Show Pointer N7 of the HyperTag, the user can retrieve the linked document by clicking
the icon or menu. Figure 5-2 shows a sample document, which is rendered by HyperCard
[Appled0]. If the user clicks the rectangle icon embedded on the word “B5.1,” the method
“Show Pointer 1” represented as a button icon after the <Pointer 1> attribute is invoked and
the document “B5.1” is rendered on the computer screen. If the document is rendered by
software that cannot embed such icons and methods in the document file, the user can
simply click the button on the HyperTag to retrieve the referenced documents.

5.2.2 Document Retrieval by Query

As used in database systems, querying is a powerful tool for document retrieval. In the
HyperDocument model, the user can query by the attributes such as keywords and
pointers. The navigation system provides three methods for querying the Document Base:
* Query by keywords:
The user enters one to three keywords, then the processor searches documents
containing the keywords. One example query “Show a list of document titles whose
keywords contain ‘column’ and ‘buckling’” is shown in the top portion of Figure 5-
5.
* Query by pointers:



CHAPTER 5  THE HYPERDOCUMENT MODEL 80

The user gives a document title, then the processor provides the titles of its linked
documents. One example query “Show a list of document titles that the document
‘E2’ points to” is shown in the lower portion of Figure 5-5.
* Query by both keywords and pointers:

The user can combine these two query methods by entering both keywords and
pointing document title. The processor first enlists a set of linked documents, then
selects documents that contain the given keywords. One example query “Show a list
of document titles that the document ‘E2’ points to and whose keywords contain

‘column’ and ‘buckling’” is shown in Figure 5-5.

The user interface includes a query menu and a document list board. The document list
board shows a list of documents which are answers to the query and a set of button icons
for the document list. If the user clicks the button, the corresponding document is shown.
For example, if the user clicks the button placed at the left of the document title “A-B5.3,”
this document pops up on the screen as shown in Figure 5-6.

Nobu:hLRFD++:Query = ——

OUIERYY,
1. Keywords: [column f[buckling 1 i
2. Pointing Document: [E2 I
o
List = Duswmos ( Seeeh
@ [85.1 l > )
A-B5.3 ] [%
‘ \_2.Search
v -——

1 & 2. Search
N msosssomm—

090006089

Figure 5-5 Query Menu and a Document List



CHAPTER 5 THE HYPERDOCUMENT MODEL 81

Nobu:hLBFD++:LRFD spec

(GoMarkup) HuperLRFD++ g ko l}c:}

go back go starter go first

A..
BS. LOCAL BUCKLING
3. Siender Compreasion Elements

Axially lvaded members containing elements subject ta compressicn which have a
width-thickness rutio in excess of the zpplicable \, as stipulated in[Sect. BS.1 shall he
proportioned according to this Appendix. Flexural members with slender compres-
sion elements shall be designed in accordance with [Appendix F1,7. Rolled fiexural
members with proportions not covercd by Appendix F1.7 shall be designed in acoord-
ance with this Appendix.

SN

Figure 5-6 The Document “A-B5.3” Retrieved by Query

5.2.3 Browsers

Another navigation tool is a browser. A browser allows the user to see a portion of the
documents by a given context. Browsers of the HyperDocument model provide the user
with an overview and history of visited documents to indicate the current location in the
Document Base. An overview is a map of documents, which shows how documents are
linked. Such an overview can be represented as a network where nodes represent
documents’ titles and links are pointers. An example of an overview network is shown in
Figure 5-7. The overview network can be created by reading title and pointer attribute
values of all the HyperTags in the Document Base. The history of visited documents is a
list of visited documents’ titles as shown in Figure 5-8. The user can read the document by

clicking the button next to the document title. For example, if the user clicks the button



CHAPTER 5 THE HYPERDOCUMENT MODEL 82

B5.1 —————&= C-BS5 =1 [9] Galambos 76
[14] Yura 78
E2
[80] Winter 70
A-B5.3 ———m= A-F1.7 [11] Johonson 76
Sect 1.9 1978 AISC
specification
[99] Tide 85
CE2 Table 3-36
Table 3-50

req_short_non_slender_p_x_comp

req_long_non_slender_p_x_comp

req_short_non_slender_p_y_comp

req_long_non_slender_p_y_comp

Figure 5-7 A Sample Overview Network

next to the document title “Figure C-H1.2,” the system pops up the document shown in
Figure 5-9.



CHAPTER 5  THE HYPERDOCUMENT MODEL

Nobu:hLRFD++:History

History of Yisited Documents

Click the button to read documents.

A-F1.7

Current document

A-B5.3

o]e;

Previous

E2

Figure C-H1.2

C-H1.2

[H1.2

Hi.1

000000000000

| o1d

Figure 5-8 History of Visited Documents

Nobu:hLRFD++:LRFD com

wremnanen EXACT

0.5 -0.4 (AT, /Ads) M
WP—EL« SSRC /AISC " 1005 0 ».5:0.8

3.0 !

Moy

s

3o

0k

Flgure CHLD

L @ D

@ K k)

go back go starter go first

Figure 5-9 The Document Retrieved by the Browser

83



CHAPTER 5  THE HYPERDOCUMENT MODEL 84

5.3 Summary

This chapter described the HyperDocument model for the representation and documentation
of design standards. The model is consists of the Document Base, which contains
documents, and the Navigation system, which is used to create, delete, revise, and retrieve
documents from the Document Base. The four document clusters in the Document Base,
i.e., Method Objects, Provision Document Base, Background Base, and External
Programs, were described. The three basic methods to retrieve a document, i.e.,
navigation by pointers, queries, and browsers, were presented. In this chapter preliminary
investigation of the use of HyperFile technology for design standards processing and

representation was discussed.



CHAPTER 6  DESIGN APPLICATIONS 85

Chapter 6
Design Applications

In this chapter, the usage of the Hyper-Object-Logic model for design applications are
illustrated. First, the Conformance Checking and Component Design Modules of the
Object-Logic model are described. Four design application examples of the prototype
system, HyperLRFD++, are illustrated. Section 6.1 describes the Conformance Checking
and Component Design Modules. Section 6.2 illustrates the preliminary design of a
compression member. Section 6.3 presents a conformance checking of the compression
member as designed in Section 6.2. Section 6.4 presents conformance checking of a
flexural member. In Section 6.5, the detailed design of a flexural compression member is

presented. Section 6.6 summarizes this chapter.

6.1 Conformance Checking and Component Design
Modules

6.1.1 Conformance Checking Module

Conformance checking refers to the evaluation of a designed member whether it satisfies all
the applicable requirements as defined in a design standard. For detailed design, the
system identifies all the applicable requirements and automatically executes these
requirements based on the given attribute values and external constraints of the member.




CHAPTER 6  DESIGN APPLICATIONS 86

For preliminary design, however, the user can focus on checking a single or limited
number of specific requirement(s) for a specific object type, stress state, or limit state by
selecting a specific class in the Member Class Hierarchy. This procedure reduces the
system’s execution time and interactions between the user and the system. That is, the user
can prune the unnecessary or unimportant requirements that are not of primary concerns in

the preliminary design of the member.

The conformance checking procedure consists of six basic steps:

1. The user defines a design member object.

2. The system links the design member object to engineering databases through the
Data Objects and the DB Interface.

3. The user selects a design strategy, that is either preliminary or detailed design.

4. The system traverses the Member Class Hierarchy and records all the applicable
requirements.

5. The system executes the applicable requirements.

6. The system reports the result to the user.
The operations are described in detail in the following paragraphs.

For conformance checking, the user first defines the design member object and provides
the data about the object. The user can define the object as an instance of a class in the
Object Model and type in attribute values for the design member to be checked. The user
can give either all, partial, or no attribute values about the design member. If an attribute
value is not available during the execution of conformance checking, the system would
request the user to enter the value or to accept the default value provided by the system. In
addition, the user can impose external constraints to the design member object, as
discussed in Section 4.2.1.

The system links the design member object to appropriate engineering databases via Data
Objects and DB Interface. The Data Object becomes a parent to the design member object.
As noted in Section 4.2.2, the data about the design member can be retrieved from an
engineering database.



CHAPTER 6  DESIGN APPLICATIONS 87

As noted earlier, the user can check the design member object for a preliminary or detailed
design. For preliminary design, the user also selects a specific class in the Member Class
Hierarchy that the member object is to be checked. The system first checks whether or not
the user-selected class is appropriate for the designated member by backtracking the
Member Class Hierarchy from the selected class. For example, if the user selects the class
“non_slender_y_comp_mem” in Figure 6-1, the member “column #247” backtracks from
this class to the root node “member.” During this process, the system executes the
classification method of the class which is the parent of the class node where “column
#247” is temporarily located. If the class is not appropriate for the given design member,
the system warns the user and asks the user whether the execution should continue. The
user has full control on design for a particular requirement and continues the session if it is

so desired.

If the user selects the preliminary design and the selected class is affirmed, its subclasses of
the Member Class Hierarchy are traversed to determine the appropriate requirements. In
the example shown in Figure 6-1, the member “column #247” traverses only the nodes N
and S, and the design member object is linked to the leaf node S “short_non_slender_y_
comp_mem.” If the user selects the detailed design option, the entire Member Class
Hierarchy is traversed and applicable requirements are identified and checked. As the
Member Class Hierarchy is traversed, the system records all the applicable requirements
linked to the leaf classes traversed by looking at their requirement attributes. When the
traversal is completed, a list of all the applicable requirements is recorded.

For each applicable requirement and its corresponding Method Object, the system checks
for conformance based on the data about the design member. As discussed in Section
4.1.2, the system sends a message to each requirement Method Object to determine
whether the requirement is satisfied or violated. Once the message is received by the
Method Object, the conditions of the rules in the object are examined by the resolution
principle and objects’ message passing.



CHAPTER 6  DESIGN APPLICATIONS 88

Backtracking to check whether
the selected class is appropriate

member

B steel_member C composite_member
- ™~
D . ” ” F v
comp_mem flex_mem ﬂex_comp_mem_l

~ o \
G \\\\H \ J e

X_comp_mem y_comp_mem moment_mem shear_mem

W\

K [ y_comp_mem_ L comp_mem_serviceability_consideration
strength_

consideration
4 comp_mem_deflection_consideration

N )
M y_buckling_ torsional_or_ftb_
comp_mem comp_mem req_ comp mem

User-selected ‘ wm _comp_mem
Q R S

class
slender_y_ torsional _ ftb_
_mem comp_mem buckling_ comp_mem

. comp_mem A
Traversing N
T
long_non_slender_ short_non_slender_ req_ tors1onal req_ ftb
buckhng comp_ comp_mem

\

non_siender_y_
comp

_comp mem comp_mem
req_. long non_
slender_y_
comp_mem

Figure 6-1 Requirement Focusing in the Preliminary Design Phase

req_short_non_\
slender_y_
comp mem

instance-of




CHAPTER 6  DESIGN APPLICATIONS 89

% Nobu:hLRFD++:show prov stacks e
=

HyperLRFD++ [K::] I}@

tarter go first
Member Name Designation Result so shrter @

column_25 w14x99 violated
go back
Provision Name Result Provision

@] | reg—short_non_slender—_prism_y_comp_mem violated E2
reg_short_non_slender_ftb_prism_comp_mem satisfied | A-E3

req_limit_slenderness_ratio_x_comp_mem satisfied | B7

@
req_limit_slenderness_ratio_y_comp_mem satisfied | BY

Click buttons to read provisions

f @

Figure 6-2 An Example of a Conformance Checking Result

When all the requirements are checked, the results are presented in a tabulated form as
shown in Figure 6-2. The information presented includes:

* Name of the design member object,

* Design ID such as a W shape designation (e.g., w14x99),
* Result (satisfied or violated) for each requirement,

¢ Requirements and their icons such as buttdns, and

¢ Provision title for each requirement.
If the member violates a requirement, the user can read the corresponding provision and its
explanation stored in the HyperDocument system by clicking the provision button icons on
the result table. This information can be useful when re-design is necessary. For example,
suppose a beam violates a requirement for the shear stress of a thin web but satisfy all other
requirements. The user may want to select a section with a thicker web without changing
other parts of the design. |



CHAPTER 6  DESIGN APPLICATIONS 90

6.1.2 Component Design Module

In the Object-Logic model, the design approach is to generate a plausible component design
using a set of heuristics and to test the design for conformance checking. The design
heuristics are procedures applicable for a group of members governed by appropriate
requirements and are expressed in Object-Logic sentences. For example, for selecting a
least weight W shape section as a flexural member, one heuristic is based on the W shapes
listed according to the plastic section Module Zy, as given in Part 3 of LRFD Manual
[AISC 86]. A partial example list is:

[ooeennt. , [wl0x54,wldx43,wl2x50,wlé6x40],

[wl0x60,wl2x53,wldx48,wl8x40],
[Wl6x45,wl2x58], .ttt e ]

The list is subdivided into groups such as [w16x45, w12x58] in such a manner that the last
W shape designation of each group is the least weight section within the group. For each
shape designation in the list, we can compute the maximum design resisting moment:

doMp = OpZyxFy [ 12 .
where ¢p = 0.85, Mp = plastic bending moment, Fy = yield stress. If a section (e.g.,
w12x53) that 0pM)p equals or exceeds the required strength is found, the last designation
of the section’s group is the plausible design (e.g., w18x40). Since this design heuristics
is based on the requirement for a compact flexural member whose unbraced length is
shorter than the limiting laterally unbraced length for full plastic bending capacity Lp, the
selected section is to be checked for conformance of the assumptions as noted in the
member class. If the plausible design violates other requirements or external constraints,
the next least weight designation is to be selected as a candidate design (e.g., w12x58).

The procedure for component design can be summarized as follows:
1. The user defines a design member object and selects a focused object class deemed
most appropriate for the design member object.
2. The system generates a component based on the heuristics derived from the
requirement of the focused object class.
3. The system checks the design for conformance with the applicable requirements.



CHAPTER 6  DESIGN APPLICATIONS 91

4. If the design violates a requirement or external constraints, the system generates
another plausible design and return to step (3). If the design conforms with all the
requirements and the user is satisfied with the design, proceed to step (5).

5. The system generates a design report.

The following sections present conformance checking and component design examples.

6.2 Preliminary Design of a Compression Member

This section describes an example for the preliminary design of a column (Figure 6-3)
using the prototype system HyperLRFD++. While both the column and the beams are
assumed to be W shapes, their designations are not given. There are four basic steps in the
preliminary design process:

1. Problem definition: the user defines the column and the known attribute values.

2. Initial design: the system selects a trial W shape designation.

3. Design checking: the system checks the conformance of the trial section against the
design provisions, and selects a new trial section if the design provisions are
violated.

4. Post processing: the system summarizes and presents the result to the user.

In the following subsections, this preliminary design procedure is described in detail.

6.2.1 Problem Definition

There are three basic steps that the user follows in defining the column design problem:
* opening the HyperLRFD++ interface,
* defining the member object as an instance of the “steel column” class of the Object
Data Model, and
* assigning attribute values of the member.
These tasks are described in this section.

To begin the preliminary design of the column, the user first opens the user interface of
HyperLRFD++, as shown in Figure 6-4. The user interface consists of a HyperCard stack
that provides instructions and facilities for the design procedures. The user opens Oracle, a



CHAPTER 6  DESIGN APPLICATIONS 92

relational database system, which stores the properties of W shape sections, by clicking the

first button.

To assign known attribute values to the member, the user clicks the second button for
“Define Member.” The user defines the member, “column_25,” as an instance of a class
“steel column” in the Object Model shown in Figure 6-5. “Column_25" inherits attributes
from the class “steel column.” Note the Object Data Model is in the CAD Object Data Base
and is not the same as the Member Class Hierarchy in the Standards Base.

2 T >

\ igid Connections

Column Required Strength
Pu =720 kips

14 ft

Figure 6-3 An Example for Column Design (Adapted from [Rokach 91])




CHAPTER 6  DESIGN APPLICATIONS

Nobu:hLRFD++:hLRFD++ Starter

Welcome to

HyperLRFD++

DESIGN / CHECKING PROCEDURE

1. Start ORACLE
2. Define Member

3. Open Design/Checking Program

4. Show the Result
!

e @

ka ko

go starter go first

LRFD specification
| —

TN

LRFD commentary
[ —

Figure 6-4 The First Card of the User Interface

component

P

steel component

composite component

e N

steel column steel beam steel beam-column

L

rd
,~ instance-of

7

Figure 6-5 The Object Data Model and “Column_25”

93



CHAPTER 6  DESIGN APPLICATIONS 94

Once the member “column_25" is defined as an instance of “steel column,” an appropriate
table appears as shown in Figure 6-6 to allow the user to enter the name, attribute values,
and external constraints (if any) for the design member. Note that not all the attribute
values are required and default values are provided. During the execution of the program,
the system will request the user to enter the attribute values that are needed but are not given
or determined earlier. Assume that the required strength of the column is given as 720 kips
and that the unbraced lengths of both x and y axes are 14 ft = 168 in. Figure 6-7 shows a
summary of the attribute values assigned to the member “column_25.” By clicking the
button “Make File” in Figure 6-6, an input file that is readable by Prolog++ is created for

the member.
[E==—=——=——— Nobu:hLRFD++:define each member
Ve
HyperLRFD++
Compression Member < [K::l ke

Member Neme:[column 25 [ Make File J go back go starter go first
Attribute : Value Default Unit
elastic.modulus is 29000. £ 29000 ksi
shear_modulus is 11000. & 11000 ksi
yield_stress is 36. £ 36 ksi
unbraced._length_x is 168. £ 120 in
unbraced_length_y is 168. £ 120 in
effective_length_factor_x is unknown. %1
effective_length_factor_y is unknown. g 1
effective_length_factor.z is unknown. £ 1
section_shape = j_shaped. & i_shaped
longi tudinal _shape = prismatic, £ prismatic
shape = wshape. & wshape
make = rolled. % rolled
braced_x = no. £ yes
braced_y = no. £ yes

& k* 9 Please scroll.

O

Figure 6-6 Defining Member Attributes for “Column_25”




CHAPTER 6  DESIGN APPLICATIONS 95

Attribute Value Default Value Unit
elastic_modulus is 29000. % 29000 ksi
shear_modulus is 11000. % 11000 ksi
vield_stress is 36. % 36 ksi
unbraced_length_x is 168. % 120 in
unbraced_length_ vy is 168. % 120 in
effective_ length_factor_x is unknown. % 1
effective_length_factor_ vy is unknown. % 1
effective_length factor z is unknown. % 1
section_shape = 1i_shaped. % i_shaped
longitudinal_shape = prismatic. % prismatic
shape = wshape. % wshape
make = rolled. % rolled
braced_x = no. % yes
braced y = no. % yes
material = steel. % steel
load_tension is 0. % 0 kips
load _comp is 720 % 300 kips
load_moment_x is 0. % 0 kips
load_moment_y is 0. % 0 kips
load _shear x is 0. % 0 kips
load_shear_y is 0. % 0 kips
load _moment_nt_x is 0. % 0 k-in
load_moment_nt_y is O. % 0 k-in
load _moment_lt_x is 0. %0 k-in
load_moment_1t_vy is 0. % 0 k-in
ml_x is 0. % 0 k-in
m2_x is 0. % 0 k-in
ml_y is 0. % 0 k-in
m2_y is 0. % 0 k-in

Figure 6-7 Attributes and Their Values of “Column_25”

6.2.2 Selection of a Trial Designation for the Column

The process in which the Component Design Module selects a trial W shape designation for
“column_25” can be summarized as follows:
* The user starts the design/checking programs.
* The system reads the attributes of the member and links it to the “wshape” Data
Object.
* The user specifies the depth of W shape member and its yield stress.



CHAPTER 6  DESIGN APPLICATIONS 96

e The module selects a trial designation from the table “Columns W Shapes” by the
effective length of the y-axis and the required strength.
e The module checks the required strength about the x-axis by computing the
equivalent effective length of the x-axis.
These tasks are described in this section.

The user initiates the design/checking process by clicking the third button “Open
Design/Checking Program” of the card of HyperCard shown in Figure 6-4. Then, the user
sends a message “design(column_25, ID)” to the object “designer” of the Component
Design Module in the form of a query:

designer<-design{colurm_ 25, ID). ,
ID is a variable representing a W shape designation that will be returned by the module.

The system then reads in the input file for the design module as prepared earlier. Since the
“shape” attribute value is “wshape,” the module links the object “column_25" to the Data
Object “wshape,” and then opens the database containing W shape dimensions and

properties.

The Component Design Module for W shape compression members consists of heuristics
for finding the least weight W shape designation of compression members. The heuristics
is based on the “columns W shapes” table given in the LRFD Manual [AISC 86]. The table
consists of a set of designations, effective lengths of the y-axis, and corresponding design
compressive strengths based on the limit state of member buckling about the y-axis. The
table can be further divided into multiple tables according to the depth and yield stress Fy of
member sections. Table 6-1 shows an example of the table of W14 sections with yield
stress Fy = 36 ksi. The table is currently stored in the module in the form of Prolog++
sentences such as:

column (wl4x90, [ (0,810), (6,795), (7,789),(8,783), ... , (38,365)])~

column (w14x99, [ (0,890), (6,873),(7,867),(8,860), ... , (38,402)]1).



CHAPTER 6  DESIGN APPLICATIONS 97

Table 6-1 Design Compressive Strength for W14 Columns (Fy = 36 ksi)

RyLy (f£) | .......... W14x90 W14x99 Widx109 | ..........
o ... . 810 890 979 | ...
6 . 795 873 960 | ...
7 o eeeeiaia. 789 867 950 ] ...
8  f ... 783 860 946 | ...,
9 ] ... 775 852 937 | o
10 ] oo, 767 843 927 o e
T 758 833 917 | oo
R 749 823 905 | ...,
3 ] o, 738 811 893 | ...,
N 728 799 880 | ..........
5 | ..., 716 787 866 | ...,
N 704 773 852 | ...,
B 691 759 837 | ...
18 ] oo « 678 745 821 | ...,
19 ] ..., 664 730 804 | ..........

In order to select a trial section, the effective length of y-axis of the column is needed.
Since the effective length factor Ky is not given, the module asks the user to enter the
value. If necessary, the user can first read the provision about the effective length factor.
In this preliminary design example, the user simply gives Ky = 1.2 because the frame is
unbraced. Since the values that the user enters during the program execution are stored in
the computer memory, the system will not ask the user again during the session.
However, they are not stored in the Design Member Object permanently. Thus, when the
user checks the design in the future, the system will ask for these values unless the user
changes the attribute values of the Design Member Object. The module can now try to find
a least weight W14 section that satisfies the condition that the design compressive strength
is greater than P, = 720 kips for effective length, KyLy = 16.8 ft. From Table 6-1,
W14x99 is chosen as the candidate section. This table can also be stored in a relational

database system. A query can be issued to retrieve the candidate section.

Finally, the module checks the design strength of the member about the x-axis by
computing the equivalent effective length of x-axis:
KxLx_eq :KxLx /(rx/ ry)



CHAPTER 6 DESIGN APPLICATIONS 98

Note that if the equivalent effective length KLy ¢4 is smaller than the effective length
about the weak y-axis KyLy the selected member will satisfy the required strength
automatically. Otherwise, new selection is needed based on the equivalent effective length
KyxLy_eq- Since Ky is unknown, the system asks the user to enter the value. In this
example, the user enters the value of K as 1.2. The radii of gyration, rx and ry, about the
x and y axes, are automatically obtained from the table “WSHAPE_DIM?” in the Oracle
database system. In this example, we obtain,
KiLx_eq = 8.44 < 16.8 = KyL,

Since KyLy ¢4 is smaller than KyLy , buckling about the weak y-axis governs and the
W14x99 remains as a feasible candidate. The system can now proceed to check this trial

designation according to appropriate design provisions.

6.2.3 Conformance Checking of a Trial Design

This section presents the checking of the trial design selected in the previous section for
compliance with design provisions. The procedure for conformance checking can be
summarized as follows:
» The user selects a specific behavior state as a focused class in the Member Class
Hierarchy.
» The module checks if the user-selected class is appropriate.
* The module traverses the subtree of the selected class to identify applicable
requirements.
* The system executes the identified applicable requirements.
This procedure is described in detail in this section.

In conformance checking, the system distinguishes whether the design stage is a
preliminary or detailed design. For detailed design, the system checks all the appropriate
design provisions. The user can also perform preliminary design checking by focusing on
a class of a specific behavior state. In this example, the user specifies for preliminary
design of members. As noted in Figure 6-8, the user selects the class “non_slender_
prism_y_comp_mem” by clicking the items “Class,” “comp_mem,” and “y_buckle” from
the hierarchically structured menu.



CHAPTER 6  DESIGN APPLICATIONS 99

Menu Bar

limit_slenderness_¥x
flex_mem limit_slenderness_y
flex_comp_mem 2 ®_buckle

flex_torbuckle

Figure 6-8 The Hierarchical Menu for Selecting a Focused Class in

Preliminary Design

As described in Section 6.1.1, the design checking module identifies whether the selected
class is appropriate for this member by traversing backward from the selected class to the
root node class “member” of the Member Class Hierarchy. Once the selected class is
affirmed, its subclasses are traversed to determine the appropriate requirements. This
classification process is shown in Figure 6-9. In this example, the method “clas_non_
slender_prism_y_comp_mem,” which is linked to the class “non_slender_prism_y_
comp_mem,” will find that the member “column_25" is a “short_non_slender_prism_
y_comp_mem” since the column slenderness parameter A, is less than 1.5. Furthermore,
the member “column_25" is linked to the leaf class “short_non_slender_prism_y_
comp_mem,” which is the requirement to be checked for the member.

6.2.4 Post-Processing

After the Component Design Module determines the designation, the system shows the
result to the user in a tabulated form as shown in Figure 6-10. The provisions that have
been checked are displayed in the table. In this example, the member with W14x99 is
checked to be satisfied for the requirement. Figure 6-11 summarizes the steps of the
session for designing the column. In this figure the user input is indicated by bold face.
Finally, the variable ID in the query “designer<-design(column_25,ID)” is returned with a



CHAPTER 6  DESIGN APPLICATIONS | 100

Member Class Hierarchy member I

Backtracking to check whether

//V the selected class is appropriate.

y_buckling_comp_mem Selected Class Method Objects

non_slender_prism_y_comp_mem

.....

— -/ clas_non_slender_
,' prism_y_comp_mem

~

short_non_slender_ long_non_slender_
prism_y_comp_mem prism_y_comp_mem | _(req_short_non_slender_)
!

T < prism_y_comp_mem

Figure 6-9 Member Class Hierarchy Traversal in Preliminary Design

Nobu:hLRFD++:show prov stacks

<
( HyperLRFD++ ﬂ@ [IQJ
tarter 9o first
Member Name Designation Result go starter &
column_25 w14x99 satisfied
go back
Provision Name Result Provision

reg_short_non_slender_prism_y_comp_mem satisfied | E2

08000

Click buttons to read provisions

Figure 6-10 The Table Showing the Result of Designing Column_25



CHAPTER 6  DESIGN APPLICATIONS 101

:- designer<-design(column_25, ID)

*xx%*  TRIAL SECTION SELECTION ***%%*

Designing wshape_conp_mem

Enter a designation (default: wl4: enter d) : 4

Please input effective_length factor_y.

Do you want to read the corresponding provision? (y/n):n
Enter effective_length_factor_y (default is 1 :enter 4) = 1.2
Please input effective_length_factor x.

Do you want to read the corresponding provision? (y/n):n
Enter effective_length_factor_x (default is 1 :enter d) = 1.2
Kyly = 16.8

First Trial Section ID = wl4x99

KxIx_eq = 8.44

OK

TRIAL SECTION ID = wl4dx99

**x%*% CHECKING THE TRIAL SECTION **x*x

Preliminary Design or Detailed Design? (p/d) = p

Please enter the class representing the member

Class name = non_slender prism y comp_mem

*%% Checking the selected class by traversing the hierarchy backward:
classified as non_slender_prism_y_comp_mem

classified as non_slender prism comp_mem

classified as prism_conp_mem

classified as comp_mem

classified as steel_mem

The selected class is OK

*%%  Traversing the hierarchy from the selected class:
classified as short_non_slender prism y_comp_mem
Requirement List = [req _short_non slender prism y. comp_mem]

*%%  Requirement req short_non_slender prism y_comp _mem is being
evaluated.
req _short_non slender_prism y_comp_mem 1s SATISFIED.

Do you want to read the provisions? (y/n) : y
Please change to HyperCard by clicking the Apple menu.
Then, click the #4 button of “Show Provisions.*®

* k% RESULT * %k %

**xxx wWldx99 1is the design **x*x
Nel ID = wl4dx99

Figure 6-11 The Session of Designing “Column_25”



CHAPTER 6  DESIGN APPLICATIONS 102

1. Problem Description

Task: component design
Member Name: column_ 25

Attribute Value Unit
elastic_modulus is 29000. ksi
shear modulus is 11000. ksi
yvield_stress is 36. ksi
unbraced_length_x is 168. in
unbraced_length vy ‘ is 168. in
effective_length factor_x is 1.2.
effective_length_factor y is 1.2.
effective_length factor z is unknown.
section_shape = i_shaped.
longitudinal_shape = prismatic.
shape = wshape.

{The rest is omitted.)
2. Design Strategy

Preliminary design

Selected class: non_slender_prism y_comp_men
{prismatic non-slender compression member which y-axis
buckling governs)

3. Result
Designation: wl4x99
Requirement Result
req short_non slender prism y_comp_mem satisfied

{requirement for a non-slender prismatic compression member which
yv-axis inelastic buckling governs)

Figure 6-12 Design Report for the Member “Column_25"

value w14x99. Based on the user’s request, the system generates a design report, which
consists of:
e problem description, which contains the name, attribute values, and external
constraints of the design member, as shown in Figure 6-7,;
* design strategy, which shows either the preliminary or detailed design and
assumptions given by the user,
* result, which shows checked requirements and their results of either satisfied or
violated.
A part of the design report for the member “column_25" is shown in Figure 6-12.



CHAPTER 6  DESIGN APPLICATIONS 103

6.3 Conformance Checking for Detailed Design of
a Column

This section describes a second example for checking all the appropriate provisions that are
applicable to the column designed in the previous section. This example illustrates how
external programs and documents in the HyperDocument system may help the user in the
design process. As shown in Figure 6-13, the required compressive strength of the
column is larger than the one in the preliminary design (because of the change in load
condition.) Furthermore, the beams are provided to be W21x50, rigidly connected to the
column in both direction.

The design checking procedure is divided into three basic steps:
1. Problem definition: the user defines all known attributes of the example problem.
2. Conformance checking: the system determines all appropriate classes and
requirements, given the description of the column.
3. Re-design: the user re-designs the column by exploring provisions and background
information.
These tasks are described in the following subsections.

6.3.1 Problem Definition

Defining this example problem involves two basic steps:
* modifying the data file for the column, and
* accessing the attribute values of the column from the database.

First, the user opens the file representing column_25, then changes the “load_comp’
attribute value from 720 to 770 in the member definer table shown in Figure 6-6.



CHAPTER 6 DESIGN APPLICATIONS 104

W14x99 (14ft)

\ N 1 beams are W21x50 (30 ft).
= = ——T

A

Column Required Strength igid Connection

Pu=770ki \w
“ ps 14x99 14 1t

N \W14x99 (14 o)

Figure 6-13 The Column in the Detailed Design Phase

6.3.2 Conformance Checking

This section presents the conformance checking procedure. After opening the
design/checking programs, the user issues a query:

checker<-check(column 25, wl4x99, Result)
where Result is a variable that “satisfied” or “violated” will be instantiated. Then, the
Conformance Checking Module is executed. The module links “column_25" to the Data
Object “wshape,” then asks the user if it is a preliminary or detailed design phase.

In the detailed design process, the system traverses the Member Class Hierarchy from the
root node “member.” During this traversal and classification process, the effective length



CHAPTER 6  DESIGN APPLICATIONS 105

factor Ky is unknown and needed. The system asks the user to enter the value. In this
example, the user requests the system to show the provision explaining the effective length
factor. By the pointer from the Method Object “k_factor_x” to the provision document
“C2,” the system shows the provision to the user as in Figure 6-14. The user can further
read its commentary “C-C2” by clicking the “Commentary” button on the provision
document. The commentary on this provision is quite long and is spread over several
cards. As the user browses through these cards, the alignment chart for determining the
effective length factor K of unbraced frame appears on the screen as shown in Figure 6-15.
As noted in the lower corner of Figure 6-15, there is an external program that can be used
to calculate the K-factor. The user can click the button “K-factor” to open the Excel

spreadsheet program for determining K as shown in Figure 6-16.

E====—=——————— Nobuw:hLRFD++:LRFD spec = ——

GoMarkup HyperLRFD++ ) “@ k= 1

go back go starter go first

c2
2. Unbraced Frames

In frames where Interal stability depends upon the bending stiffnese of rigidly oon-
nected beams and columus, the effective length factor X of compression members..
shall be determined by structural analysis and shall be not less than unitye
Agalysis of the required strength of unbraced multistory frames shall include the

effects of frame instabilily and column axial deformation under the factored loads
given in Sect[ A4 ]

In plastic design the axial force in the columns caused by factored gravity plus
factored haorizontal loads shall not exceed 0.754, F,.

Commentar
\ o o ((commentary )

Figure 6-14 Provision Document “C2”




CHAPTER 6 DESIGN APPLICATIONS

Nobu:hLRFD++:LRFD com

X = & @ kK k)
® P = hmﬁm?-‘-“:hn:;u o spec o back go starter go first
1000 k4% 10Q0  lums wekha indng caevdderad. g0 =P g 9
850.0= 300 Sosoed
300 - <+ BO 380 Z""
£0.04 <+ 40 280 Gw s ;‘
- Z;;
12.0 . - 80 180 b et ¥ mdicoien o summmtinn
iE t R T G
-9 T 70 - il )
6.0~ + €0 b Diow i Vi e
8.0 1 B menel of koetik &M Le tm
Ap] 4D cohet T AT Ak
a 1 g . - D o
o B Gl
- X0  Aaliing I el by
i 250 10t A £ Mk
e plann of Reohling Budup
2.0+ 20 miuma cods
] » L5 hy Put oot 7aidly comackd S0 &
B e
1.0-4 1O amally desnd &8 e frio
3 Gon fret ge, wuy b» ke o>
; 150 oo £ e A il
b i s pegerly cnipeert Do, K-factor
B 8 zduy bwr ko wn 1.0, Menekne
[ - 1,0 D MMM he tied i judifed by external program
Sedearny Uninhibited
Allgnment. Chart for BEffective Langth of Cohamsa tn Conthuueua Premem ‘
Reuwe €-C22 K-factor
L N aln'd ' )

106

Figure 6-15 The Document Showing the Alignment Chart with a Button

As shown in Figure 6-16, based on the input data (designations, lengths, and considering

axes of the columns and beams) provided by the user, the spreadsheet program

automatically computes the restraint factors G4 and Gp for the end joints of the column and
the effective length factor K. The K value is sent to the Method Object “k_factor_x" after
the spreadsheet program is closed. The effective length factor Ky about the weak y-axis

can be calculated in a similar manner. (In this example, the Ky and Ky values are

determined to be 1.6 and 1.2 respectively.)

After the traversal of the Member Class Hierarchy is complete, the column is classified as

the following types:
* short_non_slender_prism_y_comp_mem,
» short_non_slender_ftb_prism_comp_mem,
* limit_slender_x_comp_mem, and

* limit_slender_y_comp_mem,

Furthermore, the applicable requirements of these leaf node classes are recorded:

* req_short_non_slender_prism_y_comp_menm,



CHAPTER 6  DESIGN APPLICATIONS 107

e req_short_non_slender_ftb_prism_comp_mem,

e req_limit_slenderness_ratio_x_comp_mem, and

* reqg_limit_slenderness_ratio_y_comp_mem.
The system executes the Method Objects of each requirement for conformance checking.
The results are tabulated as shown in Figure 6-17. Figure 6-18 lists the details of the
session on the conformance checking of the column. A part of the design report is shown
in Figure 6-19. As the result indicates the requirement “req_short_non_slender_prism_y_
comp_mem” is violated. The next section describes the re-design process that takes

advantages of the availability of the HyperDocument system.

&€ File Edit Formula Format Data Options Mécro Window.

Berms 3] [+ ]+ J=) SEENNEES

C20 | | =LOOKUP(F22K)

= K-factor
A I B | C | D | E | F
1 _|Alignment Chart for Effective Lenght of Columns in Continuous Frames
2 Sidesway Uninhibited
3 Input Data
4 Designation Length Axis
5 (e.g.,w14x99) (1t) (xory)
6 A Upper Column w14x99 14 X
7 Left Girder w21x50 30 X
8 Right Girder w21x50 30 X
9
10 Column w14x99 14 X
11
12 Right Girder w21x50 30 X
13 Left Girder w21x50 30 X
14 B Lower Column| w14x99 14 X
15
16
17 ’
18 Ga = 241725+ Gb = 241725
19
20 |Output Data X = 1.6 Y of Ga = 26.5
21 Y of Gb = 26.5
22 Yof K = 26.5
23

Figure 6-16 The Screen Image of the K-factor Program of Excel



CHAPTER 6  DESIGN APPLICATIONS 108

i%— Nobu:hLRFD++:show prov stacks =0———————1}
Y
HyperLRFD++ [K:l [K"‘
tarter go first
Member Name Designation Result go harter o
column_25 w14x99 violated
go back
Provision Name Result Provision

reg_short_non_slender_prism_y..comp..mem violated | E2
req_short_non_slender_ftb_prism_comp_mem | satlisfied | A-E3
req_limit_slenderness_ratio_x_comp_mem satisfied | B7

reqg—limit_slenderness_ratio..j._.comp_mem satisfied | BY

eeekE

Click buttons to read provisions

e =

Figure 6-17 The Conformance Checking Result of “Column_25”

6.3.3 Re-design of the Column

This section describes the use of the HyperDocument system for re-design. Continuing the
example discussed in the previous section, the W14x99 column violates the requirement
“req_short_non_slender_prism_y_comp_mem” of Provision E2. To understand the nature
of the requirement, the user can proceed to browse the provision E2 shown in Figure 6-20,
by clicking the button next to the requirement name in Figure 6-17. By clicking the button
“Explain E2 Req’2” on the provision the user can obtain the specific meaning for the
requirements as shown in Figure 6-21. Now, the user realizes that the governing limit state
of the column is inelastic buckling through the explanation.



CHAPTER 6  DESIGN APPLICATIONS 109

:~- checker<-check(column_25, wl4x99, Result)

Preliminary Design or Detail Design? (p/d) = 4

*%* Traversing the hierarchy:

classified as steel_mem

classified as comp_mem

classified as prisn_comp_mem

clagsified as non_slender prism_comp_mem

Please input effective_length_factor x.

Do you want to read the corresponding provision? (y/n):y
Did you use the External Program K-factor? (y/n):y
K_factor_x = 1.6 is returned.

Please input effective length factor_y.

Do you want to read the corresponding provision? (y/n):y
Did you use the External Program K-factor? (y/n):y
K_factor.y = 1.2 is returned.

classified as non_slender prism y_conp_mem

classified as short_non_slender prism y_Comp_mem
classified as non_slender ftb prism_comp_mem

Enter effective_length_factor_z (default is 1 :enter d) = d
1

classified as short_non_slender ftb prism comp_mem
classified as limit_slender_x_comp_mem

classified as limit_slender_y_ comp_mem

Requirement List = [req short_non_slender_prism_y_comp_mem,
req_short_non_slender_fth prism_comp_memn,
req limit_slenderness_ratio_x_comp_mem,
reqg_limit_slenderness_ratio_y._comp_mem]

*kk Requirement reqg_short_non_slender prism_y_comp_mem 1is being
evaluated.
req short_non_ slender prism y_comp_mem is VIOLATED.

*¥** Requirement req short_non_slender_ftb_prism_comp_mem is being
evaluated.
req_short_non_slender ftb_prism comp_mem is SATISFIED.

**%*  Reguirement req_ _limit_slenderness_ratio_x_comp_mem 1s being

evaluated.
reqg limit_slenderness_ratio_x_comp_mem 1s SATISFIED.

* %k Requirement reqg limit_slenderness_ratio_y_comp_mem is being
evaluated.
reqg_limit_slenderness_ratio_y_comp _mem is SATISFIED.

*** PFinal Result 1s VIOLATED **x**%

Do you want to read the provisions? (y/n) : ¥

Please change to HyperCard by clicking the aApple menu.
Then, click the #4 button of "Show Provisions."

Nel Result = violated

Figure 6-18 The Session of Conformance Checking of “Column_25”



CHAPTER 6 ~ DESIGN APPLICATIONS 110

1. Problem Description

Task: conformance checking
Member Name: column_25
Designation: wl4x99

Attribute Value Unit
elastic_modulus is 29000. ksi
shear_modulus is 11000. ksi
vield stress is 36. ksi
unbraced_length x is 168. in
unbraced_length vy is 168. in
effective_length_factor_x is 1.6.
effective _length factor_ y is 1.2.
effective_length_factor_z is unknown.
section_shape = 1_shaped.
longitudinal_shape = prismatic.
shape = wshape.

(The rest is omitted.)
2. Design Strategy
Detailed design
3. Result

Requirement Result

req_short_non_slender_prism y_comp_mem violated

(requirement for a non-slender prismatic compression member which
yv-axis inelastic buckling governs)

req torsional_buckling comp_mem satisfied

(requirement for a compression member whose limit state is torsional
buckling)

req limit_slenderness_ratio_x_comp_mem satisfied

{(requirement for a limit slenderness of the x-axis fQr a compression
member)

reqg limit_slenderness_ratio_y_comp_mem satisfied

{(requirement for a limit slenderness of the yv-axis for a compression
member)

Figure 6-19 Design Report for the Member “Column_25”




CHAPTER 6  DESIGN APPLICATIONS 111

Nobu:hLRFD++:LRFD spec

(GoMarkup) ’ HyperLRFD++ O kK ke 1

go back go starter go first

E2. DERIQN COMPRESEIVE STRENGTH

The degign strength of conpression members whose clemen ave Wilicuicineme,
e e e s BT R

4 =~ 083 .
Py = Agfr (E2-1)
Jork, % 1.8 .
. E,=(0.688"7 )7, ®23)
for A > 1S
Fom [“;':” ]& (E23)
where
LY
N -—=Y3 B aShert R

A, = grow area of member, in?

K] = specifiod yieM strems, ke

E = modahy of sixsticlly, kel

K = elfevtive length factor

| = unbraced Jeopth of member, in.

» = goveraing radlus of gyration about plune of buckkng, in.

Por_memibern whosa slemesta do ot moatl!wrequkvmamolwe

Appendix BS.3. .

L G D M (Explain E2 Req'2)

reqg_long_x
req._short_y

Figure 6-20 Provision E2 from the AISC LRFD specification [AISC 86]

Nobu:hLRFD++:LRFD explain =

(GoHyperTag) HyperLRFD++ @ & [Ka [}@}

go spec  go back go starter go first

Explain E2 Req's

1. req-short_non_slender_prism_x_comp_mem
This requirement is applicable for a non-slender prismatic compression
member which x—-axis inelastic buckling governs.

2. req.long_non_slender_prism_x_comp.mem
This requirement is applicable for a non-slender prismatic compression
member which x-axis elastic buckling governs.

3. req.shori_non_slender_prism_y_comp_mem
This requirement is applicable for a non-slender prismatic compression
member which y-axis inelastic buckling governs.

4. req-long-non_slender_prism_y_comp_mem
This requirement is applicable for a non-slender prismatic compression
member which y—axis elastic buckling governs.

@ )

Figure 6-21 Explanation for the Requirements of Provision E2 [AISC 86]



CHAPTER 6  DESIGN APPLICATIONS 112

The user can go back to the provision E2 by clicking the button “go back™ as shown in
Figure 6-21, and then proceed to the commentary C2 by clicking the button “commentary”
from the provision E2 shown in Figure 6-20. As shown in Figure 6-22, the commentary
C2 describes that the alignment chart is based on the assumption that behavior is purely
elastic. As noted in the commentary,
“Where the actual conditions differ from these assumptions, unrealistic designs may
result. There are design procedures available 52, 53 which may be used in the
calculation of G for use in Fig. C-C2.2 to give results more truly representative of
conditions in real structures.” [AISC 86]
This fact suggests that using the alignment chart alone may be inappropriate. The
commentary C2 also refers to two research papers. The user can browse through segments
of these research papers by clicking the buttons on the reference numbers. For example,
Figure 6-23 shows a portion of the research article written by Yura [Yura 71] for the
reference 52.

As noted in this article, stiffness reduction factors may be used to calculate the restraint
factors G4 and Gp. The user can issue the keyword “stiffness reduction factor” in the
HyperDocument system and obtain a document on “Stiffness Reduction Factors” of the
LRFD Manual [AISC 86], as shown in Figure 6-24. An external spreadsheet program for
calculating stiffness reduction factors is shown in Figure 6-25. By entering the required
compressive strength Py, (= 770 kips) and the designation of the column (W14x99), the
“SRF” program computes the stiffness reduction factor as 35 = 0.614. Thus, the restraint
factor is obtained as
Ginelastic = Gelastic Bs = 2.42 ¥ 0.614 = 1.49
Then, the user can now return to the spreadsheet program for calculating the K-factor and
enter G = 1.49 into the cells of G4 and Gp. The effective length factor is thus obtained as:
Ky=13
In the same manner, the K-factor for the y-axis Ky is determined to be 1.1. The user can
re-execute conformance checking of the column, using these effective length factors. In
this example, the W14x99 section is found to satisfy all the applicable requirements. This
example demonstrates how the HyperDocument system can be used when the user
performs re-design due to the requirement violations.



CHAPTER 6  DESIGN APPLICATIONS 113
= Nobw:hlRFD++IRFlcom —r—————|
(GoMarkup) HyperLRFD++ @ & [K‘] ke }
go spec  go back go starter go first
However, it shonld be noted that this afignment chart is based upon assumptions
of idealized canditions which seldom exist in real siructures. ' These assumptions are
a3 follows:
1. Behavior is purely elastica
2., All members have canstant cross section.
3. All joints are rigid:
4. For braced frames, rotations at opposite ends of beams are equal in magni-
tude, producing single turvature bending. '
5. For unbraced frames, rotations at opposite ends of the restruining heams aze
equal in magnitude. producing reverse curvalure bending. .
6. The stiffness parameters LV P/E[ of all columns arc equal, Buttons Pointing
7. Joint restraiot is distributed to the volumm above and below the joint n || References 52
proportion to f/L of the two columns. and 53
8. Al columns buckle simuttancously.
Where the actual conditions differ from thase gssumptions, anrealigtic designs
may result, There are design procedures availebl which may be psed in the
calevlation af G for use in Fig. C-C2.2 to.give tesalts more truly repreeentative of
\__conditions in real structures.

Figure 6-22 A Part of the Commentary C2 of [AISC 86]

Nobuw:hLRFD++LRFD com ——r———————

(GoHyperTag) HyperLRFD++ @ D KA I}Q-"T

The Effective Length of Columns in Unbraced Frames

" fOSEPH A, YURA

remTYY= camorpe Az ccloxn: desige- i 7 - )
T Kﬁ—ﬁh&;‘ incorparant: e~ ALIG & ‘
Spccificnatine aihnee- 196} Trs sierzplifiod torms the canropt
i ey v ombod o pamtincmatically: cedusing ¢ha
pablaFoliewalanting (o artilcal srews R comns &1 i
pmetmiea w0 thac of cquivalas pincedend braced
ﬂ;ﬁm l!u!:db;h_nngm: &or 2 cobown wich o Sworp {h) Na Sway
£B My ). Sovey asd nonrmmy Seckileg meder
A o

: 77
. som b tiseck bor-alPelmser e buckliog groblecss by foctor srm LAIge 10 many egineon, apoclly sinc
i bwtotingam cqnaraleas on eiictivw column g ZT  actiad sy beighits wore med i eoiuoin desgn prioe
1 & plava cftheractisal cotan Jongid Thw cliective kngi 1961, Comequently, the sffsctive kngth concept appeass

(Continued)

L 2

Figure 6-23 A Part of the Paper [Yura 71] Referenced by the Commentary



CHAPTER 6

DESIGN APPLICATIONS

Nobu:hLRFD++:LRFD com

(GOHgDEI’Tﬂg)

Sk

go back go starter go first

HyperLRFD++
go spec
£, = 36 ksl
F, = 50 ksl ' TABLE A (cont'd]
Stiffness Heduction Factors
Foinewarc/ Fersinatc
L i & g [ v
A % | S0k A ks | Boka || A ki
.0 oeeE - oart @y v oS 20 0.683
pAN:] 0.282 0780 759 A6 oO¥T 199 Q4832
38 4.268 0783 254 Q.660 0929 198 NS
Ay 7968 q.70€ ./ Lxbb 0831 197 0h3p
Me 9.311 d.28d 25E cesd | vem 196 4931
e aae |, o 55 1373 oS 193 12
e 0.3¢% . 0.99K 243 0.€70 o538 194 N7
ik n.aYs aen b8 DU 088 | 1wy 391d
M2 0938 Qad 25.2 67T AB4D " 192 2912
N’ 0.344 S804 253 0681 [T Y d915
Sio 0350 ey a0 Q.08 b 190 0318
e 0.357 0808 - | 749 54 ome | 1o a2
DB n.asz oat2 | 2¢a €00 QNS 188 9993
©7 03T vk Bz e - 0648 E4 292
continued Click this button
to start the
& SRF program.

SRF program

Figure 6-24 ‘HyperDocument Showing a Part of Table A “Stiffness

Reduction Factors” [AISC 86]

S SRF ===
A ] B | C | D
1 |Stiffness Reduction Factors
2
3 INPUT Pu = 770 (kips)
4 Pesignation =] W1 4X90 |(e.g.,w14x99)
5 Fy = 36 (eq., 36)
6
7 DUTPUT sRF=] 0.614
8
9 Pu /A SRF SRF
10 (Fy=36) : (Fy=50)
11 25.0 0.689 0.943
12 255 0.665 §.935
13 26.0 0.640 0.925
14 26.5 0.614 0.916
15 23.0 0.587 0.906
16 275 0.560 0.895
17 28.0 0835 0.884
18 285 0.503 0.872

Figure 6-25 A Part of the “SRF” Excel Program

114



CHAPTER 6  DESIGN APPLICATIONS 115

6.4 Conformance Checking of a Flexural Member
in the Detailed Design Phase

In this section, an example of checking the beam design with an external constraint is
described. Figure 6-26 shows the beam and its design condition. Figure 6-27 summarizes
the attribute values of the member “beam_234" defined as an instance of the class “steel
beam” in the Object Model. Note that the user gives an external constraint of flange width
(bf) less than 10 inches.

After traversing the Member Class Hierarchy, the Conformance Checking Module links the
member “beam_234" to the following leaf node classes:

e medium_compact_icb_flex_mem, and

¢ thick_web_flex_mem.
The requirements corresponding to these classes are:

¢ req_medium_compact_icb_flex_mem, and

e req_thick_web_flex_mem
The beam is checked for conformance with these requirements and the external constraint.
The result is displayed in Figure 6-28, and the design session is given in Figure 6-29.

Lb=10ft=1201in

- -

]
e - - o

Required
Flexural
Strength:

M?2x = 3000 kips-in

Required Shear Strength: \I M1x = 2000 kips-in
Vux = 50 kips .

Figure 6-26 Beam_234 and Its Design Condition




CHAPTER 6  DESIGN APPLICATIONS

Attribute

elastic_modulus
shear modulus
yvield stress
tensile_strength

load _tension
load_comp
load_moment_x
load_moment_vy
load shear_x
load_shear vy
load moment_nt_x
load_moment_nt_vy
load _moment_lt_x
load_moment_lt_y
ml_x

m2_x

ml_y

m2_y

unbraced_length_x
unbraced_length vy

section_shape
longitudinal_shape
shape

make

braced_x

braced_y

material
unbraced_cantilever_x
unbraced_cantilever_ vy
greater_moment_x
greater_moment_vy
reverse_ml_m2_X
reverse_ml_m2_y
have_stiffeners
transverse_loading_x
transverse_loading vy
ends_restrained_x
ends_restrained_y

ext_constraints (Mem,

ext_constraints (Mem,

Figure 6-27

ID, satisfied)

ID, violated)

is
is
is
is

is
is
is
is
is
is
is
is
is
is
is
is
is
is

is
is

L | O V1 ¢ ¥ 1 T 1 O | R VRO TR TR

:— Mem: :bf<-bf (Mem,

120.
120.

1_shaped.
prismatic.
wshape.
rolled.
no.

no.
steel.
no.

no.

no.

no.

ves.

ves.

no.

no.

no.

no.

no.

Bf < 10.

Mem: :bf<-bf (Mem,

Bf >= 10.

Default Value

o 0P o0 oP

o° o0 00 90 O P P O o IC OC o o o

oP o

o° 00 dC 00 0P A0 GC AC P I O O OP IO OC O d° o°

29000
11000
36
58

o
[ew)

OO OCOOOOODODOOONOO

120
120

i_shaped
prismatic
wshape
rolled
ves

yes
steel

no

no

no

no

ves

ves

no

no

no

no

no

Bf, ID),

Attributes of Beam_234

Bf, ID),

116

Unit

ksi
ksi
ksi
ksi

k-in
k-in

k-in
k-in
k-in
k-in
k-in
k-in
k-in
k-in

in
in



CHAPTER 6  DESIGN APPLICATIONS

Nobu:hLRFD++:show prov stacks

080080

=
HyperLRFD++ K:' [K“
tart go first
Member Name Designation Result go starter o
beam_234 w21x44 satisfied
go back
Provision Name Result Provision
req_medium_compact_icb_flex_mem satisfied | F1.3
req_thick_web_flex_mem satisfied | F2.2
ext_constraints satisfied | no

Click buttons to read provisions

Figure 6-28 The Result of Checking Beam_234

6.5 Detailed Design of a Flexural Compression

Member

117

This section illustrates the design of a flexural compression member (beam-column) as a

part of the frame structure shown in Figure 6-30. The design procedure is divided into two

basic steps:

1. Trial member selection: the system selects a trial W shape member.

2. Conformance checking: the system checks the conformance of the member with

design provisions.

These two tasks are described in the following subsections.



CHAPTER 6  DESIGN APPLICATIONS

:- checker<-check(beam_ 234, w2l1lx44, Result)

Preliminary Design or Detail Design? (p/d) = 4
classified as steel_mem

classified as flex_mem

classified as prism_flex mem

classified as icbhbox_major_flex mem

classified as compact_icbh flex_mem

classified as medium compact_ich flex_mem
classified as has_web flex mem x

classified as thick web_ flex mem

***  Requirement List = [reg medium_compact_ich flex_mem,
req thick web flex mem,
ext_constraints]

**%*  Requirement reqg medium compact_icbh flex mem is being evaluated.
reqg_medium_compact_icbh_flex mem is SATISFIED.

***  Requirement req thick web_flex mem is being evaluated.
req thick web_flex mem is SATISFIED.

*%*  Requirement ext_constraints is being evaluated.
ext_constraints are satisfied

***  winal Result is SATISFIED *x*

Do you want to read the provisions? (y/n) : y

Please change to HyperCard by clicking the Apple menu.
Then, click the #4 button of "Show Provisions."

Nel Regult = satisfied

Figure 6-29 The Session of Conformance Checking of “Beam_234"

6.5.1 Selection of a Trial Beam-Column Member

118

Figure 6-31 summarizes the attribute values of the member “beam_column_45" defined as

an instance of the class “steel beam-column” in the Object Model.

In this section the procedure in selecting a trial section for the beam-column employed in
the prototype system is described. In the flexural compression member design module,
which is a submodule of the Component Design Module, the procedure in selecting a trial
member is based on the approximate interactive equation given in the LRFD Manual [AISC

86]:



CHAPTER 6  DESIGN APPLICATIONS 119

Pu:?_(?()kips
* | X Pu=4 Pu= 800 kips
2 Hx —
14 ft = 60 kips I~ 3, Hy = 80 kips
|

w‘iﬁ):,;@i)\
Y P Y y ~ \

I
2H IR RRRRRRHERRRRNRN *
_‘ Hlllﬂlllllllllll-l_lgll‘ . — 'l
/ - ! !
™ l . 1 ¥ 300k-in |/
14 ft = \| Mnx=360k-in |, + p I
\ / b Miry = 480 k-in
X i 180 k-in
Original Frame Nonsway Frame Sway Frame
40 ft
P
* Pu Pu
2Hy HIIIHIIIIHIHHHv vIIHIHIIIHHIHIHv ZHy l’
> = >} > —=1~1

- —

,.' ¥\ 450 k-in

\14 ft =

\ |Mnty = 360 k-in l| + k "
\ 180 ki ! t Mitx =720 k-in "
R IV
I e R_J 1 \ A 1
Original Frame Nonsway Frame Sway Frame
30 ft
>

Figure 6-30 The Frame Structure and Load Condition of “Beam_column_45”



CHAPTER 6 DESIGN APPLICATIONS
Attribute Value
elastic_modulus is 29000.
shear_modulus is 11000.
vield_stress is 36.
load_tension is O.
load_comp is 200.
load_moment_x is unknown.
load_moment_vy is unknown.
load_shear x is 0.
load_shear_y is 0.
load_moment_nt_x is 360.
load_moment_nt_v is 360.
load_moment_lt_x is 720.
load_moment_1lt_y is 480.
ml_x is 180.
m2_Xx is 360.
mi_vy is 180.
m2_y is 360.
unbraced_length_x is 168.
unbraced_length_vy is 168.
effective_length_factor_x is unknown.
effective_length_factor_y is unknown.
effective_length_factor_z is 1.
effective_length_factor_x_nt is 1.
effective_length_factor_v_nt is 1.
effective_length_factor_x_1t is 1.2.
effective_length_factor_y_1lt is 1.2,
sum_load_comp is 800.
translation_deflection_x is 0.336.
translation_deflection_ vy is 0.336.
number_of_columns_in_story is unknown.
sum_horizontal_forces_x is 60.
sum_horizontal_forces_vy is 80.
stiffener_distance is unknown.
section_shape = i_shaped.
longitudinal_shape = prismatic.
shape = wshape.
make = rolled.
braced_x = no.
braced_y = no.
material = steel.
unbraced_cantilever_x = no.
unbraced_cantilever_y = no.
greater_moment_x = no.
greater_moment_y = no.
reverse_ml_m2_x = yes.
reverse_ml_m2_vy = yes.
have_stiffeners = no.
transverse_loading_x = no.
transverse_loading_y = no.
ends_restrained_x = unknown.
ends_restrained_ vy = unknown.
mu_x_given = unknown.
mu_y_given = unknown.

Figure 6-31

120

Default Value Unit

o oe

o0

0 I P ¢ J° P o oe

o0 ov

e o o0 o de

oe

o 0P e Jdo ov

o

00 P P IO IO 0 P OO B o0 OC ° P O P oe

a0 o0 e

00 o0 P o0 o° o© de oe

o

29000
11000
36

j)
o

bo DO
[N

NV b b kd b pd et D 2 OO OO0 OO0 O0OO000 0 WO
P N
o O N

=
o o
o o

10
i_shaped
prismatic
wshape
rolled
ves

ves
steel

no

no

no

no

ves

ves

no

no
no

unknown
unknown

ksi
ksi
ksi

R AR ARANAAAANATAER YRR
1
b
3

e b
ja el

in
in

in

Attributes and Their Values of “Beam_column_45"



CHAPTER 6  DESIGN APPLICATIONS 121

Pyefr= Py + Myxm + Myy mU (1)
where

Py ofr = effective axial load,

P, =required compressive strength, kips

Myyx, Myy = required flexural strength, kip-in

m and U are factors determined from Table 6-2 [AISC 86] [Rokach 91],
Once Py ¢f has been obtained, the beam-column is designed as a compression member
whose required compressive strength is equal to Py . With the effective axial force, a
candidate W shape member can be selected as a trial section by the compression member
design heuristics described in Section 6.2.2. To calculate the effective axial load, the

values of My, Myy , m, and U are necessary.

The LRFD manual [AISC 86] provides a table to establish the values of m and U, which is
depicted in Table 6-2. In HyperLRFD++, the table is written in Prolog++ sentences as:
flex_comp_list{wl4d,RKyly,2.2,1.5) :- Kyly =< 10.
flex comp_list{wl4d,Ryly,2.0,1.5) :- Kyly > 10.
To determine the coefficients m and U, the user needs to select one designation group from
the list [W14, W12, W10, W8] and input the effective length factor Ky, For this example,
W14 section and K, = 1.2 are used in the calculation. Based on this information, the
system calculates the effective length about the x-axis, KyLy = 1.2 * 14 = 16.8 ft, and
retrieves the values of m and U as 2.0 and 1.5.

To estimate the required flexural strength My, the following equation can be used [AISC
86]:
My = B1x Mpi + Box My )
where
My = required flexural strength about the x-axis in member assuming there is no
lateral translation of the frame, kip-in.
Mj = required flexural strength about the x-axis in member as a result of lateral

translation of the frame only, kip-in

lez-iﬂ}f——m

ex,nt



CHAPTER 6  DESIGN APPLICATIONS 122

Table 6-2  Table for Determining m and U for Beam-Columns:
Fy = 36 ksi (Adapted from [AISC 86])

m 9]
KL, ft 10 12 14 16 18 20 2 22
W8 3.6 3.5 3.4 3.1 2.8 2.4 2.4 1.5
W10 3.1 3.0 3.0 2.9 2.8 2.5 2.4 1.5
W12 2.5 2.5 2.4 2.4 2.4 2.4 2.4 1.5
W14 2.2 2.0 2.0 2.0 2.0 2.4 1.5
By = 1
1-2Pz4(———~A”"y ) )
2 HyL,
or By =—d—
L X Pe
z Pex,lt ©)
Cyix = coefficient for beam-column,
Pexnt = 72 EI | (Ky piLy) where Ky nr < 1.0 (6)

Ky n: = effective length factor about the x-axis in no lateral translation case,

X Py, =required axial strength of all columns in a story, kips

Aohy = translation deflection of the story under consideration, in

% Hy = sum of all story horizontal forces producing Aypy, kips

Pexy =2 EL; |/ (Ky;Lx) where Ky ;= 1.0 7

Ky 1r = effective length factor about the x-axis in lateral translation case,
The system first assumes Bix to be 1.0 and calculates By based on Equation (4), since
Equation (5) requires the member properties which are yet to be determined. The story
drift index, Agpy / Ly, especially for tall buildings, is a design criterion [Rokach 91],
which is assumed to be 1/500 by the user in this example. The attribute “translation_

deflection_x"’ can be estimated to be:



CHAPTER 6  DESIGN APPLICATIONS 123

:- designer<-design(beam_column 45, 1ID)

*¥* k%% TRIAL SECTION SELECTION **#*%*

Enter mu_x_given (default is no :enter d) = 4
no
Enter mu_vy_given (default is no :enter d) = 4
no

Want to design a flex comp_mem as a comp_mem or a flex_mem

or a flex comp_mem?
Enter (c:comp_mem/f:flex _mem/fc:flex _conp _mem) : fc
Designing wshape_comp_mem
Enter a designation (e.g., default - wl4, enter d) : d
ColumnClass = wld_36_columns
To calculate B2_x, use (1)translation deflection,

or (2)sum of axial loads in colums. 1 or 2:1

B2_x = 1.020408163265306122
Mu_x = 1094.693877551020408
To calculate B2_y, use (1)translation deflection,
or (2)sum of axial loads in columns. 1 or 2:1

B2y 1.027397260273972603
Mu_y 853.1506849315068494
Pu_eff = 595.7366507523405812
TRIAL SECTION ID = wl4x90

In

Figure 6-32 The Session of Trial Section Selection of Designing

“Beam_column_45”

Aopy =14 # 12/ 500 = 0.336 (in)
The system calculates:

Byy =1/(1-800/80* (0.336/ (14 * 12))) = 1.020
and by Equation (2)

Myy = Bix Mpsx + Boxy My = 1.0 * 360 + 1.020 * 720 = 1094.4 (k-in)
M,y can be determined similarly as 853.0 (k-in) by the system.

Thus, following Equation (1), the system determines the effective axial load as:

Pyesr =200 +2.0*1094.4/12+2.0* 1.5 * 853.0/ 12 = 595.65
Given the values Py gfr and KyLy = 1.2 * 14.0 = 16.8 ft , the candidate member W14x90
can now be selected from Table 6-1. This trial design can now be checked for
conformance with design provisions. This process is summarized in the session as shown

in Figure 6-32.



CHAPTER 6  DESIGN APPLICATIONS 124

6.5.2 Conformance Checking

Next, the system checks whether the selected W14x90 member satisfies all applicable
requirements. By traversal of the Member Class Hierarchy, the member is classified as the
leaf node class of “medium_compact_ha_short_y_sp_fc_mem.” The corresponding
requirement “req_medium_compact_ha_short_y_sp_fc_mem” needs to be checked. In
conformance checking, the system uses Equation (5) to determine By because Py, i can be
calculated with the given section designation, while the true value Aypy in Equation (4)
requires a detailed structural analysis. The result is tabulated as shown in Figure 6-33 and
the design checking session is given in Figure 6-34. The design report is shown in Figure
6-35.

In this example, W14x90 fulfills the requirement; otherwise the Component Design Module
will proceed to select the next heavier section, i.e., W14x99, as a candidate member and
the design procedure will be repeated.

Nobu:hLRFD++:show prou stacks

=
r HyperLRFD++ [K:-] [}@
tarter go first
Member Name Designation Result g starter
beam_column_45| wi14x90 satisfied &
go back
Provision Name Result Provision

reg-medium_compact_ha_short_y_sp_fc_mem satisfied | H1.2

008000

Click buttons to read provisions

f* 9

Figure 6-33 The Result of Designing Beam_column_45



CHAPTER 6  DESIGN APPLICATIONS 125

*%x%k%x* CHECKING THE TRIAL SECTION ****%%
Preliminary Design or Detail Design? (p/d) = 4
**%%* Traversing the hierarchy from the selected class:
classified as steel_mem

classified as flex_comp_mem

classified as prism flex_comp_mem

classified as sym p fc_mem

classified as non_slender_sp_fc_mem

classified as non_slender_y_sp fc_mem

classified as short_ns_y_sp_fc_mem

clagssified as high_axial_short_ns_y sp_fc_mem
classified as compact_ha_short_vy_sp_fc_mem
classified as medium compact_ha_short_ vy sp fc_mem

**%*  Requirement List = [reg medium compact_ha_short_vy_sp fc_mem]

***  Requirement req medium_compact_ha_short_y_sp_fc _mem is being
evaluated. '

To calculate B2_x, use (l)translation deflection,
or (2)sum of axial loads in columns. 1 or 2:2
1.0292587153585025721
Mu_x 1101.1387489641808453
To calculate B2_y, use (1l)translation deflection,
or (2)sum of axial loads*in columms. 1 or 2:2
B2_y 1.0599252814229708757
Mu_y 880.83780284957876744
Equation Value = 0.787370284904902989

B2_X

o

req _medium compact_ha_short_y_sp fc_mem is SATISFIED.

Do you want to read the provisions? (y/n) : ¥y
Please change to HyperCard by clicking the Apple menu.
Then, click the #4 button of “Show Provisions.®

* k% RESULT * % %
*hxkk wldx90 is the design *****
Nel ID = wldx90

Figure 6-34 The Session of Conformance Checking of Designing
“Beam_column_45” (Continued from Figure 6-32)



CHAPTER 6  DESIGN APPLICATIONS 126

1. Problem Description

Task: component design
Member Name: beam column_45

Attribute value Unit
elastic_modulus . is 29000. ksi
shear_modulus is 11000. ksi
vield stress is 36. ksi
load_tension is 0. k
load comp is 200. k
load_shear_ x is 0. k
load_shear y is 0. k
load_moment_nt_x is 360 k-in
load moment_nt_y is 360 k-in
load_moment_1lt_ x is 720 k-in
load _moment_1t_vy is 480 k-in
ml_x is 180 k-in
m2_x is 360 k-in
ml_vy is 180 k-in
m2_y is 360 k-in
unbraced_length_x is 168. in
unbraced_length vy is 168. in
effective_length_factor x nt is 1.
effective_length factor y nt is 1.
effective_length factor x 1t is 1.2.
effective_length factor y 1t is 1.2.
sum_load_conmp is 800. k
translation_deflection_x is 0.336. in
translation _deflection_y is 0.336. in

(The rest is omitted.)
2. Design Strategy

Detailed design

3. Result
Designation: wl4x90
Requirement Result
req medium conmpact_ha_ short_y sp_fc_mem satisfied

(requirement for a compact high axial compression symmétric prismatic
flexural compression member which y-axis inelastic buckling governs)

Figure 6-35 Design Report for the Member “Beam_column_45”



CHAPTER 6 ~ DESIGN APPLICATIONS 127

6.6 Summary

In this chapter the two modules of the Object-Logic model for conformance checking and
component design were described. A few illustrative examples were provided to
demonstrate the Hyper-Object-Logic model to conformance checking and component
design. The first example was to perform preliminary design of a column. The heuristics
for selecting a plausible W shape section candidate for a column was described in detail.
The second example was to perform a detailed checking on the column designed in the first
example. This example showed how the user can utilize provisions, explanations,
background information, and external programs in the HyperDocument system to facilitate
the re-design process. The third example was to check a flexural member in the detailed
design phase. The fourth example was to design a beam-column in the detailed design
phase. The heuristics of selecting a plausible W shape section candidate for a beam-column
was described in detail. These examples of using HyperLRFD++ have shown the
feasibility and practicality of the Hyper-Object-Logic model for conformance checking and
component design applications.






CHAPTER 7  STANDARDS ANALYSIS 128

Chapter 7
Standards Analysis

In this chapter, the Standards Analysis Module is described. The Standards Analysis
Module checks the completeness, uniqueness, and correctness of the standard at the
provision level and the organization level. It also checks whether the dependenéy network
representing the relationships among the Method Objects is connected and acyclic. Section
7.1 explains how the module checks the rules representing an individual provision.
Section 7.2 describes how the standards organization can be checked by the module. In
Section 7.3, the procedure for checking the relations among provisions is described. For
each section, examples are given to illustrate the analysis module.

7.1 Analysis of Individual Provisions

The Method Object consists of a set of Object-Logic sentences for determining its
corresponding data item. Analysis of a set of sentences of the Method Object consists of
checking the provisions of completeness, uniqueness, and correctness. The first two are
syntactic properties, while correctness is a semantic property. Completeness of a set of
rules in the Method Object ensures that all possible conditions are covered. Uniqueness
ensures that only one rule is applicable for any given condition. Uniqueness is composed
of lack of redundancy and lack of contradiction. A set of rules is said to be redundant if
more than one rule in the same rule group is applicable for a given condition. A set of rules
is said to be in contradiction if different actions are suggested by multiple rules in the same
rule group that are applicable for a given condition. Correctness ensures that a set of



CHAPTER 7  STANDARDS ANALYSIS 129

sentences in the Method Object represents the meaning, intentions, and implications of the
corresponding provision correctly. Checking these properties of requirement and
determinant Method Objects is performed at the provision level.

For checking syntactic completeness and uniqueness, this thesis adopts, modifies, and
implements the approach proposed by Jain et al. [Jain 89]. The semantic correctness of the
Method Object can be checked by comparing the rules in the Method Object and its
corresponding provision stored in the Document Base of the HyperDocument system. The
pointers between Method Objects and provision documents facilitate comparing these two
types of documents. This procedure is discussed in Section 7.1.5.

The basic procedure for checking the completeness and uniqueness of a provision stored as
Method Object is shown in Figure 7-1. The Standards Analysis Module parses the Object-
Logic sentences of the Method Object and formulates them as sentences. These sentences
are then proved for completeness and uniqueness (lack of reduﬁdancy and lack of
contradiction) using the resolution principle.

Each Method Object is represented as a group of Object-Logic sentences written in the
form:

A; - Ci.
where

n = total number of sentences in a group,
A; : action or conclusion part of the sentence,

- :equivalent to logical «
C; : conjunction of conditions, i.e., C; = Cj1, Ci2, Ci3,........ , City»
k; = 0.

The conditions Cj;’s are divided into two groups:
* conditions which represent the logic of the provision, and
* conditions which are not directly related to the provision, such as “write(Fy)” and
“input_attr(Mem, yield_strength, 36).”
During the parsing of the Object-Logic sentences, the latter type conditions are ignored and
removed since they are not related to the checking of completeness and uniqueness.



CHAPTER 7  STANDARDS ANALYSIS 130

(' Method Object )

1

| Legend i

Method Object Parser ! I
: Program :

Condltlon List & ' '

I : Data |

Action Llst I O |

Testing Sentence Generator

Completeness
Testing
Sentence y

Contradiction
Testing
Sentence

Redundancy
Testing
Sentence

Clasual Form Converter

Clauses for
Testing
Contradiction

Clauses for
Testing
Completeness

Clauses for
Testing
Redundancy

Resolution Program

Figure 7-1 The Basic Procedure for Checking Individual Provisions

Completeness, lack of redundancy, and lack of contradiction can be verified by proving the
validity of the following sentences of each Method Object [Jain 89]:

1. Completeness:
n

v C;
i=1



CHAPTER 7  STANDARDS ANALYSIS 131

2.

3.

Lack of redundancy:

i=n-1, j=n
A (=Ci v—=Ci)
i=1, j=i+l

Lack of Contradiction:

i=n-1, j=n
A [RCiv=Civ (A =Aj)]
i=1, j=i+1

The procedure that proves the validity of each of above sentences consists of the following

steps: -

1.

2
3.
4

Negate the testing sentence,

. Convert it to the clausal form,

Perform resolution on the resulting clauses to deduce the empty clause {}.

. If the empty clause is deduced, the sentence is proved to be valid; otherwise, the

sentence is not valid.

Since checking the three properties does not require the unification of variables appearing in
the sentences, the three sentences above can be treated as propositional logic sentences
although the sentences may contain variables. For example, a condition:

Mem: :gross_area<-gross_area(Mem,Ag, ID)

is treated as a one-word condition in propositional logic. Resolution in propositional logic

is deterministic. That is, one can tell whether the empty clause can be deduced or not by

exhaustive search. In propositional logic, the basic procedure in converting a propositional

logic sentence to clausal form is as follows:

1.

Eliminate implication by converting a form of A :- Cinto A V = C,

2. Distribute negations over the other logical operators by De Morgan’s laws,

XV Y)s-=XA-Y



CHAPTER 7  STANDARDS ANALYSIS 132

3. Put the sentence into conjunctive normal form, i.e., a conjunction of disjunctions of
conditions by the distributivity law,
XANVZ=XVIOAXYV D

4. Write the conjunction obtained in the above step as a set of clauses.
The procedures for checking completeness, lack of redundancy, and lack of contradiction

are described in the following subsections.
7.1.1 Checking Completeness

As noted earlier, the completeness of the rules in a Method Object can be checked by the
following sentence:

n

v C;
i=1

By negating the sentence, we have:

n

— ( \4 Cl)
i=1
n
= A '—ICi
i=1
2 = (CliACI2A . ACLE ) A= (CauACo A A Coky ) A
.................... A= (Cri ACn2 A e A Cpkq)
= (=Ci1iv=Cia2Vv ... VAl )A (021 V=0 Vo V =C2k, ) A
.................... A (—|Cn1 Vv —lan Voiiiveeeee V —1an1 )

This sentence can be converted into the clausal form as:

....................



CHAPTER 7  STANDARDS ANALYSIS 133

{—1Cn1,—1Cn2, ............. ,—-:ann }
The approach for checking completeness is to deduce an empty clause from the above

clauses by resolution [Jain 89].

Unfortunately, unless the sentences are directly translated from a limited-entry decision
table, the procedure described above is not sufficient. For example, the following three

sentences about a section’s property:

section(X) :- singly symmetric(X).
section(X) :- doubly_symmetric(X).
section(X) :- unsymmetric(X).

are a complete set. Applying the procedure in checking for completeness gives:
singly_symmetric(X) Vv doubly_symmetric(X) V unsyrrme_tric (X).
Negating this sentence, we get:
- singly_ symmetric(X) A — doubly_symmetric(X) A — unsymmetric(X).
This sentence can be converted into the clausal form as:
{= singly symmetric(X), — doubly_symmetric(X), — unsymmetric(X)} (i)
The above clause cannot be deduced to the empty clause by resolution although the three

sentences about a section property are complete.

This ambiguous problem can be resolved by adding a dictionary of complete combinations
to the set of clauses before performing the resolution procedure. The dictionary contains,
for example, the following sentence:

singly_symmetric(X) Vv doubly_symmetric(X) V unsymmetric(X).

This sentence is converted into the clausal form of:

{singly symmetric (X)} (ii)
{doubly_symmetric (X)} (1i1)
{unsymmetric(X)}. {iv)

Resolution on the clauses from (i) through (iv) now deduces an empty clause.

Let us now consider an example provision from Section F1.3 for flexural members of the
AISC LRFD specification [AISC 86], which describes the coefficient Cp, a factor to
account for moment gradient in beam strength [Salmon 90]. The provision is shown in



CHAPTER 7  STANDARDS ANALYSIS 134

Cp = 1.75+ 1.05 (M1/ M) + 0.3 (M1 / M3)? < 2.3 where M is the smaller
and M3 is the larger end moment in the unbraced segment of the beam;
My / My is positive when the moments cause reverse curvature and

negative when bent in single curvature.

Cp = 1.0 for unbraced cantilevers and for members where the moment within
a significant portion of the unbraced segment is greater than or equal to
the larger of the segment end moments.
Figure 7-2 The Provision about the Coefficient Cp
cb(Mem, 1, Id) : -

self<-input_attr (Mem, unbraced_cantilever_y,no),
Mem: :unbraced_cantilever_y = vyes.

cb(Mem, 1, Id) : -
self<-input_attr(Mem, greater_moment_x,no),
Mem: :greater_moment_x = yes.

cb (Mem, Cb, 1d) : ~
not (Mem: :unbraced _cantilever_y = vyes),
not (Mem: :greater _moment_x = yes),
Ch t is 1.75 + 1.05 * Mem::ml_x / Mem::m2_x + 0.3 * (Mem::ml_x /
Mem: :m2_x) "2,
self<-min(Cb_t,2.3,Cb).

Figure 7-3 Object-Logic Sentences in the Method Object “Cb”

Figure 7-2. The Method Object “cb” represents the provision about Cp and is shown in
- Figure 7-3. To check the completeness of a specific provision in HyperLRFD++, the
system first parses the Method Object and obtains the condition and action lists. The
Standards Analysis Module eliminates the unrelated conditions such as procedures for input
attribute values and arithmetic expressions.%ln this example, the condition and action lists,

after elimination of the unrelated sentences, are:



CHAPTER 7  STANDARDS ANALYSIS 135

ConditionList =
[ [Mem: :unbraced_cantilever_y=yes],
[Mem: :greater_moment_x=ves],
[not (Mem::unbraced cantilever_y=yes),
not (Mem::greater_moment_x=ves)]]

ActionlList =
[cb(Mem, 1,Id), cb(Mem,1,Id), cb(Mem,Cb 1,Id)]

The resulting conditions are:
C1: Mem::unbraced_cantilever_x = yes,
Cz: Mem::greater_moment_y = yes,
Cs: not(Mem::unbraced_cantilever_x = yes),
not(Mem::greater_moment_y = yes).
Let us denote the conditions as:
Ci: U,
Co: G,
Cs: - U, -G
By substituting the conditions into the testing sentence for completeness, we have:
UVvGV(=UA-QG)
Then, the system automatically negates the sentence:
-“[UVGV(=UA-G)]

By converting this sentence into clausal form, we obtain:

{=U} (a)
{-G} y (b)
{U,G} | ©

By performing resolution on these clauses, we obtain:
{G} from (a) and (c) (d
{} from (b) and (d) e

which is an empty clause. Therefore, the rules in the Method Object “cb” are complete.
The session of checking completeness of the Method Object “cb” using HyperLRFD++ is
shown in Figure 7-4.



CHAPTER 7  STANDARDS ANALYSIS 136

:~- completeness

ConditionList =

[[_1412: :unbraced cantilever_y=yes], [_1412::greater_moment_x=yes],
[not (_1412: :unbraced_cantilever_y=yes),
not (_1412::greater_moment_x=yes)]]

NegatedTestingSentence =

not (_1747::unbraced_cantilever y=yes v _1747::greater_moment_x=yes Vv
not (_1747::unbraced _cantilever_y=ves)&

not (_1747::greater_moment_x=yes))

CLAUSES
¥** clause2 (not (_1747::unbraced_cantilever_y=yes))
*** clause2 (not (_1747::greater_moment_x=yes))
**% clause2(_1747: :unbraced_cantilever_y=yes v
_1747: :greater_moment_x=yes)

PERFORMING RESOLUTION

_1747: :greater_moment_x=yes

[1 : BEmpty clause found

GOOD! The given rules are COMPLETE.
Nel ves

where & :logical “and”
v : logical *“or”
clause?2 : a predicate to indicate an asserted clause
four digit number following “_"" such as “_1412" indicates
a variable ID in Prolog.

Figure 7-4 The Session of Checking Completeness

7.1.2 Checking Lack of Redundancy

The redundancy among the rules in a Method Object can be checked by the following

sentence:

i=n-1, j=n
A (=C; v —.C])
i=1, j=i+1

By negating the sentence, we have:

i=n-1, j=n

i=1, j=it+l



CHAPTER 7  STANDARDS ANALYSIS 137

i=n-1, j=n
= VvV (CinG))
i=1, j=itl
E(C1LACIIVICIACI)V e V(I C1ACy)V
OV (CIACE)V e, V(CoACy)V
V(Cp1 VECy)
=[(C11ACI2A ..., ACig )N (Coaa ACp A A Coy )1 Vv
VI[(Cn-1,1 A Cpe12 A e A Chn-1ky1 )N (Cni A Cpa A ... A Cnky, )]

The above sentence can be converted into conjunctive normal form by the distributivity
law, and furthermore, converted into a set of clauses. The converted clauses can be tested

for redundancy using the resolution principle.

Let us now consider the set of rules for the Method Object “cb” demonstrated in the
completeness checking in the previous section. The negated sentence for these rules is:
UAGVIUAGUAAGIVIGAGUAAG)]

Converting this sentence into clausal form, we have:

{U,G} (a)

{U,-G} (b)

{G-U} ‘ ©
By performing resolution on these clauses, we obtain

(U} from (a) and (b) (d)

{G} from (b) and (c¢) (e)

which is not an empty clause. Thus, the rules in the Method Object “cb” are redundant.
The reason that the rules are redundant is that if both U and G are true, i.e., the member
has the attribute values:

Mem: :unbraced_cantilever y = yes, and

Mem: :greater_moment_x = ves,
both first and second rules are applicable. However, in the ordinary unbraced cantilever, it
is unlikely that the moment within a significant portion of the unbraced segment is greater
than the end moment. Thus, in practical point of view, this redundancy is not a problem.



CHAPTER 7  STANDARDS ANALYSIS 138

: - redundancy

ConditionList =
[[_1133: :unbraced_cantilever vy=yes], [_1133::greater_moment_x=yes],
[not (_1133::unbraced_cantilever y=yes),

not (_1133::greater _moment_x=yes)]]

NegatedTestingSentence =

_1614: :unbraced _cantilever y=yes& 1614::greater_moment_x=yes v

_1614: :unbraced_cantilever_y=yes&not (_1614::unbraced_cantilever_y=yes)&
not (_1614::greater_moment_ x=yes)v _1614::greater_moment_x=yes&

not (_1614::unbraced_cantilever_y=yes)&

not (_1614::greater moment_ x=yes)v _1614::greater_moment_x=yes&

not (_1614::unbraced_cantilever y=yes)&not (_1614::greater_moment_x=yes)

CLAUSES
#*% clause? (_1614: :unbraced_cantilever y=yes v
_1614: :greater_moment_x=yes)
*** clause2(_1614: :unbraced_cantilever_y=yes v
not (_1614::greater_moment_x=ves))
***% clause2(_1614: :greater_moment_x=yes v
not (_1614::unbraced_cantilever_y=yes))

PERFORMING RESOLUTION

_3647: :greater moment_x=yes v _3647::greater_moment_x=yes

_4355: ;unbraced_cantilever_y=yes

_4655: ;unbraced_cantilever_y=ves v _4655: unbraced_cantilever_y=yes
not (_5492::greater_moment_x=ves)v _5492: :greater_moment_x=yes

not (_5825: :unbraced_cantilever y=yes)v _5825: :unbraced_cantilever_ y=yes
_6158: :greater_moment_x=yes v _6158: :unbraced_cantilever_y=ves

not (_6485: ::greater moment_x=yes)v _6485: :unbraced_cantilever_y=ves
_6815: :unbraced_cantilever_y=yes v _6815: :unbraced_cantilever_y=yes
not (_7976::unbraced cantilever_y=yes)v _7976: :greater_moment_x=yes
_8306: :greater moment_x=yes v _8306: :greater _moment_x=yes

_9575: :unbraced_cantilever_y=yes v _9575: :unbraced_cantilever_y=yes
_10892: :unbraced_cantilever_y=yes v _10892: :unbraced_cantilever_ y=ves
_12245: :greater _moment_x=yes v _12245: :greater_moment_x=yes

_13646: :greater_moment_x=yes v _13646: :greater_moment_x=yes

Empty clause NOT found

NOT GOOD! The given rules are REDUNDANT.
Nel ves

Figure 7-5 The Session of Checking Lack of Redundancy

The session of checking lack of redundancy of the Method Object “cb” using
HyperLRFD++ is shown in Figure 7-5.



CHAPTER 7  STANDARDS ANALYSIS 139

7.1.3 Checking Lack of Contradiction

Contradictory rules which produce multiple different actions for a given set of conditions

can be checked using the following sentence:

i=n-1, j=n
A [RCGV =GV (A= Aj)]

i=1, j=i+l

By negating the sentence, we have:

i=n-1, j=n
(A [-CiV G VIA=4)D

i=1, j=i+l

i=n-1, j=n
vV [GAC A—=(Aij=Aj)]

i=1, j=i+l

IfA; = Ajis true:
[Ci ACiA—(Aj=A))]
=(C; A Cj A false) /
= false
That is we can remove (C; A Cj A —=(A; = A;j)) if A; = Aj is true since false v X =X. If
Aj#A;j, we have:
(Ci ACGiA—(Aj=4j))
= (Ci A Cj A true)
=(GiAG )
Thus, the sentence for checking contradiction has the same form as the sentence for
checking redundancy except where Aj = Aj. The negated testing sentence can be converted

into clausal form. The converted clauses can be tested for contradiction using the

resolution principle.



CHAPTER 7  STANDARDS ANALYSIS 140

Let us now consider the same set of rules for the Method Object “cb” used in the previous
sections. The resulting clauses converted from the negated testing sentence by the

procedure described in this section are:

{U,G} @
{-U,G} (b)
{-U} (©
{—-G} (d)
{-U -G} ()
By performing resolution on these clauses, we obtain
{G} from (a) and (¢) (f)
{} from (d) and (f) (&)

which is an empty clause. Thus, the rules are not in contradiction. Although the first and
second rules are judged as redundant, they do not contradict because the two redundant
rules have the same action (conclusion) parts. Therefore, these rules do not have a
contradiction problem. The session of checking lack of contradiction of the Method Object
“cb” using HyperLRFD++ is shown in Figure 7-6.

7.1.4 Compressing Multiple Method Objects

In the preceding sections, syntactic checking of an individual Method Object that does not
depend on other Method Objects is described. A rule in a Method Object may contain other
Method Objects in its condition part. Since the logic of the rule depends on the logic of
these referenced Method Objects, the referenced Method Objects must be incorporated in
order to check the syntactic properties of the Method Object. This section describes a
procedure for checking Method Objects that depend on other Method Objects.

If the Standards Analysis Module finds a referenced Method Object in the condition part, it
parses the rules of the referenced Method Object and substitutes the condition with the
conditions of the referenced Method Object. This procedure is recursively called until all
the conditions are found to be independent of other Method Objects. Then, the module
removes conditions which are not directly related to logic of the provision, such as “self<-
respond_satisfied” and “self<-input_attr(Mem, load_comp, 1000).” Once the condition list
is made, the checking procedure of completeness and uniqueness is the same as described
in the preceding sections.



CHAPTER 7  STANDARDS ANALYSIS 141

:— contradiction

ConditionList =
[{_1133::unbraced_cantilever_y=yes], [_1133::greater moment_x=yes],
[not (_1133::unbraced_cantilever_y=yes),
not (_1133::greater _moment_x=yes)]]
ActionList =

[cb(_1133,1,_1153), cb(_1133,1,_1153), cb(_1133,_1167,_1153)]

NegatedTestingSentence =

1606 ;unbraced_cantilever y=yes&not (_1606: :unbraced_cantilever y=ves)&
not (_1606: :greater_moment_x=ves)v _1606::greater_moment_x=yes&not
(_1606: :unbraced_cantilever_y=yes)&not (_1606::greater_moment_x=yes)v
1606: :greater_moment_x=yves&not (_1606: :unbraced_cantilever_y=yes)&

not (_1606: :greater_moment_x=ves)

CLAUSES
*#**% clause2(_1606: :greater_moment_x=yes v
_1606: :unbraced_cantilever_y=yes)
***% clause2(_1606: :greater_moment_x=yes v
not {_1606: :unbraced_cantilever_y=yes))
*#*% clause2 (not (_1606: :unbraced_cantilever_y=yes))
*#**% clause2 (not (_1606: :greater_moment_x=yes))
***% clause2(not (_1606: :greater moment_x=yes)v
_1606: :unbraced_cantilever y=yes)
*** clause2 (not (_1606::greater_moment_x=yes)v
not (_1606: :unbraced_cantilever_y=yes))

PERFORMING RESOLUTION

_3308: :greater_moment_x=yes

[] : Empty clause found

GOOD! The given rules do NOT CONTRADICT.
Nel ves

Figure 7-6 The Session of Checking Lack of Contradiction

Let us consider an example of a requirement Method Object “req_short_non_slender_
prism_y_comp_mem’” shown in Figure 7-7. The condition list for this Method Object is

[ [Mem: :pn_short_y <- pn_short_y (Mem, Pn, Id),
DS is 0.85 * pn,
self <- input_attr(Mem, load_conp,1000),
self <- egless(Mem: :locad_comp,DS),
self <- respond_satisfied],
[Mem: :pnn_short_y <- pn_short_y (Mem, Pni, Id),
DS is 0.85 * Pn,
not (self <- egless(Mem: :load_comp,DS)),
self <- respond_violated]].




CHAPTER 7  STANDARDS ANALYSIS 142

open_object req short_non_slender prism_y_comp_mem.

super = requirements.
class = short_non_slender prism y_CONp_Imem.
provision = 'E2'.
reference = [pn_short_y,
attr(load_comp)l.
meaning = 'requirement for a non-slender prismatic compression
member which y-axis inelastic buckling governs'.

req_short_non_slender prism_y_ comp_mem(Mem, satisfied, Id) : -
Mem: :pnn_short_y <- pn_short_y(Mem, Pn, Id),
DS is 0.85 * Pn,
self <- input_attr(Mem, load _comp, 1000),
self <~ egless(Mem::load_comp,DS),
self <- respond satisfied.

reqg_short_non_slender prism_y_comp_mem(Mem, violated, Id) : -
Mem: :pn_short_y <- pn_short_y (Mem, Pn, Id),
DS is 0.85 * Pn,
not (self <- egless(Mem: :load_comp,DS) ),
self <- respond_violated.

close_object reqg_short_non_slender prism y_COnp_mem.

Figure 7-7 An Example of Requirement Method Objects

Since “pn_short_y” in the first item of the list is a referenced Method Object, the module
substitutes the first item in the condition list with the conditions of the rules in the Method
Object “pn_short_y.” The condition list now becomes

[ [Mem: :gross_area <- gross_area(Mem,Aqg, Id),
Mem: : fcry_short<-fcry_ short (Mem, Fcry, Id),
Pn is Ag * Fcry,

DS is 0.85 * Pn,

self <- input_attr(Mem, load_conp,1000),
self <- egless(Mem: :load comp,DS),

self <- respond_satisfied],

[Mem: :pn_short_y <- pn_short_y (Mem, Pn, Id),
DS is 0.85 * Pn,

not (self <~ egless(Mem: :load_comp,DS)),
self <- respond violated]].

Again, the first item of the condition list has a referenced Method Object “gross_area.”
Thus, the module substitutes it with the conditions of the rule in the Method Object
“gross_area.” The condition list is transformed as



CHAPTER 7  STANDARDS ANALYSIS 143

[ [Mem<-area(Id,Aqg),
Mem: : fcry_short<-fcry short (Mem, Fcry, Id),
Pn is Ag * Fcry,
DS is 0.85 * Pn,
self <- input_attr(Mem, load_comp, 1000),
self <~ egless(Mem::load comp,DS),
self <- respond_satisfied],

[Mem: :pn_short_vy <- pn_short_y (Mem, Pn, Id),
DS is 0.85 * Pn,
not (self <- egless (Mem: :load_comp,DS)),
self <- respond_violated]].

By iterating this procedure, the system finally obtains the condition list as:

[ [Mem<-area(Id,Aqg),
Mem<-ry (Id,Ry),
Lambda_c_y is Mem::effective_length_ y * Mem: :unbraced_length v /
pi / Ry * sqgrt(Mem::yield_stress / Mem::elastic_modulus),
Fy = Mem::vield_stress,
Fcry is 0.658 ~ (Lambda_c vy ™~ 2) * Fy,
Pn is Ag * Fcry,
DS is 0.85 * Pn,
self <- input_attr{(Mem, load_comp,1000),
self <- egless(Mem::load comp,DS),
self <- respond_satisfied],
[Mem<-~area(Id,Aq),
MeHK‘IY(Id/RY) ’ :
Lambda_c_y is Mem::effective_length v * Mem::unbraced length y /
pi / Ry * sqgrt(Mem::yield stress / Mem::elastic_modulus),
Fy = Mem::yield stress,
Fcry is 0.658 ~ (Lambda_c_y ~ 2) * Fy,
Pn is Ag * Fcry,
DS is 0.85 * Pn,
not (self <~ egless(Mem::load comp,DS)),
self <- respond vioclated]].

By removing unrelated condition items, the final condition list is obtained as follows:

[[self <- eqless(Mem::1oad‘comp,DS)],
[not (self <- egless(Mem: :load _comp,DS))1].

The action list is

[req_short_non_slender_ prism y_comp_mem(Mem, satisfied, Id),
req _short_non_slender_prism y_comp_mem(Mem,violated, Id)].

These condition and action lists are then used to check completeness, lack of redundancy,
and lack of contradiction as described in the preceding sections.

7.1.5 Semantic Checking of Individual Provisions

As noted in Chapter 1, current standards processing models lack of mappings between
design provisions and program code representing the provisions. Thus, it is difficult to



CHAPTER 7  STANDARDS ANALYSIS 144

check whether the program code correctly represents the corresponding provision. As
described in Chapter 5, both provisions and program code are represented as
HyperDocument and have pointers to each other. Thus, the user can read the program code
(the Method Object) of a specific provision by triggering the pointers to the Method Objects
representing that provision. Both the provision and the program code then a;;pear on the
terminal screen simultaneously as shown in Figure 7-8. This capability provides the
programmer or the user a means to check the program code against the semantic content of
the provision as to whether the intention of the provision is correctly reflected in Object-

Logic sentences.

| & File Edit Search Windows Fonts Eval Objects 1so:2me (2) @
E= r:req_medium_compact_ich_flex_mem EE[]E‘I w:ma_medium
req.medium_compact_icb_fiex_mem(Mem,satisfied, Id): {} mn_medium(Mem,Mn, 1d):-

sel f<~input_attritem), self¢= mput_attr(ﬂem)

Mem: :mn_medium<-mn_medium(Memn,n, Id), Mem: :cb<-cb(Mem,Cb, I1d?,

DS is 0.90 * Mn, Hem::mp_x<—mp.x(ﬁem Hp, Id),

Mem: :eqless<-eqless(Mem: : | oad_moment_x,DS), 2 Mem: :mr_| tb<-mr_I tb(Mem, M, 1d),

sel f<-respond.satisfied. . Lb = Mem::unbraced_length_x,

Mem::lIr<-Ir{Mem,Lr,Id),

req-medium.compact_icb._flex_mem(Mem,violated, [d>:~ Mem::Ip<—Ip{Mem,Lp, 1d),
Mem: :mn.medium<-mn_medium(Mem,Mn, i1d), Mn_t is Cb*(Mp=(Mp=Mr 2*((Lb-Lp3/CLr-Lp)>»
DS is 0.90 * Mn, ((Mem::eqless<-eqless(tin.t, lp),
not(Mem: :eqless<-eqless(Mem:: oad.moment.x,DS)>, Hn = Mn_t)
sel f<-respond_viclated. E ;
E (not(ﬁem :eqless<-eqless(Mn_t,Mp)), -

= Mp)).
Nobu hLRFD++ LRFD spec

(GoMarkup) HyperLRFD++ & l](}:: u@\

Fi (req_medium_compact_ich_fleX_mem) go back go starter go first

1. Compucl Section Members with Ly = 4,
Fot laterally unsupported compact section members bent about the major axis:

M= c,,[ - (M, M,)( "‘_ T H =M, - (F1-3)
(4

where

Cp = L5 + LOS(M, /M) + 0.3(My/M;)* = 2.3 where M, is the amaller and M,
the lurger end mument in the unbraced segment of the beam; M, /M, ia
positive when the moments cause reverse curvalure and neg stive when bent
in single curvature,

C,, = 1.0 for unbraced cantilevers and for members where the moment within a
significant portion of the unbraced seginent is greater than or equal to the
farger of the segment end momerm.|* |

Figure 7-8 A Computer Screen Showing Method Objects and a Provision



CHAPTER 7  STANDARDS ANALYSIS 145

7.2 Analysis of the Standards Organization

The Standards Analysis Module also examines whether the standard is appropriately
organized by checking the completeness, uniqueness, and correctness of sentences of each
classification Method Object and by showing the Member Class Hierarchy to the user.
Each classification Method Object is associated with its corresponding OR node in the
Member Class Hierarchy. At the OR node of the Member Class Hierarchy, the system
classifies a design member into a single specific child node class by executing the
classification method. Thus, the rules of the classification Method Object must cover all the
possible conditions and a unique rule must be applicable for any condition. Completeness
of the classification Method Objects ensures that the organization of the standard is
collectively exhaustive at every OR node level, and uniqueness ensures that the
organization is mutually exclusive at every OR node to guarantee that each requirement is
uniquely described by a single path in the Member Class Hierarchy. Correctness ensures
that the provision is correctly represented as the rules in the classification Method Object.
The method of checking the completeness and uniqueness of classification Method Objects
is the same as the one described in the previous section.

In this section, the procedures for checking these properties of the classification Method
Object are described by checking a sample classification Method Object. Suppose that a
OR node class “steel_mem,” denoting steel member, is divided into three subclasses
“comp_mem,” “flex_mem,” and “flex_comp_mem,” denoting compression member,
flexural member, and flexural compression member, respectively, according to the two
limited stress states, i.e., compression and flexure by the simplified classification Method
Object “clas_steel_mem” as shown in Figure 7-9. In the following subsections, this

sample classification Method Object is used.



CHAPTER 7  STANDARDS ANALYSIS 146

classify (Mem, comp_mem, ID) : -
self<-greater (Mem: :load _conmp,0),
not (self<-greater (Mem: : load_moment,0)) .
classify (Mem, flex_mem, ID) : -
self<-greater (Mem: : load_moment, 0) ,
not (self<-greater (Mem: :load_comp, 0) ).
classify (Mem, flex_comp_mem, ID) : -
self<-greater (Mem: : load comp,0),
self<-greater (Mem: : load_moment, 0) .

where greater(A,B): A > B,
load_comp: required compressive strength based on the factored nominal loads,
load_moment: required flexural strength based on the factored nominal loads.
Note: both 1oad_comp and 1oad_moment attributes reject values less than zero.

Figure 7-9 Rules in the Method Object “clas_steel_mem”

7.2.1 Checking Completeness of the Classification Method
Object

To check the completeness of a set of classification rules in the Method Object, the system
first parses the rules and obtains the condition and action lists. The lists for the
classification Method Object “clas_steel_mem” are:

ConditionList =
[ [self<-greater (Mem: :load comp,0),
not (self<-greater (Mem: : load_moment,0) )1,
[self<-greater (Mem: : load_moment, 0),
not (self<-greater (Mem: : load_comp, 0) )],
[self<-greater (Mem: : load_comp, 0),
self<-greater (Mem: : load_moment,0)11.

ActionList = [classify (Mem, comp_mem, ID),
classify (Mem, flex _mem, ID),
classify (Mem, flex_comp_mem, ID)].

The system automatically negates the sentence for checking completeness corresponding to
the condition list and converts it into clausal form:
{not self<-greater (Mem: :load _comp,0),
self<-greater (Mem: : load_moment, 0) }
{not self<-greater (Mem: :load _moment,0),

self<-greater (Mem: : load_comp, 0) }



'CHAPTER 7  STANDARDS ANALYSIS 147

{not self<-greater (Mem: :load moment,0),
not self<-greater (Mem: :load_comp, 0)}
By performing resolution on these clauses, we obtain:
{not self<-greater (Mem: :load _comp,0),
self<-greater (Mem: : load_comp, 0)}
{not self<-greater (Mem: :load comp,0)}
{not self<-greater (Mam: :load moment,0)}
{not self<-greater (Mem: : load_moment, 0),
self<-greater (Mem: : load_moment, 0)
{not self<-greater (Mem: :load_moment,0),
not self<-greater (Mem: :load_comp,0)}
Since the empty clause cannot be obtained from the above clauses, the rule set is not

complete. The reason that the rules are not complete is that if the member’s stress state is
~not compression nor flexure, no rules are applicable in that rule set. A rule with the
condition:
not self<-greater (Mem: :load_moment,0),
not self<-greater (Mem: :load_comp, 0)
which would classify the member as a tension member or a flexural compression member
is necessary. The session of checking completeness by using HyperLRFD++ is shown in

Figure 7-10.

7.2.2 Checking Lack of Redundancy of the Classification
Method Object

To check the lack of redundancy using HyperLRFD++, the system generates the negated

testing sentence from the same condition list generated in the previous section. The system

automatically converts the testing sentence into clausal form:
{self<-greater (Mem: :load_comp,0),
self<-greater (Mem: : load_moment., 0) }
{self<-greater (Mem: : load_comp,0)}
{self<-greater (Mem: : load_comp,0),

not self<-greater (Mem: :load_moment, 0)}

{not self<-greater (Mem: :load_moment,0)}

{self<-greater (Mem: : load _moment, 0) }



CHAPTER 7  STANDARDS ANALYSIS 148

:— completeness

ConditionList =
[[self<—greater(_1273::load_comp, 0),
not (self<~greater(_1273::1load moment, 0))1,
[self<-greater(_1273::1load_moment, 0),
not (self<-greatexr(_1273::1locad _comp, 0))],
[self<~-greater(_1273::load_comp, 0),
self<-greater(_1273::1lo0ad moment, 0)]]

NegatedTestingSentence = not (self<-greater(_1841::1lcad_comp, 0)&

not (self<-greater(_1841::locad_moment, 0))v
self<~greater(_1841::load _moment, 0)&

not (self<-greater(_1841::load_comp, 0))v
self<-greater(_1841::load_comp, 0)&self<«-greater(_1841::load_moment, 0))

CLAUSES
*** clause? (not (self<-greater(_1841::load_comp, 0))v
self<-greater(_1841::load_moment, 0))
*** clause2 (not (self<-greater(_1841::load_moment, 0))v
self<~greater(_1841::1lcad_comp, 0))
*¥** clause2(not (self<-greater{_1841::1load_comp, 0))v
not (self<-greater(_1841::load moment, 0)))

PERFORMING RESOLUTION
not (self<-greater(_2788::load_comp, 0))v
self<-greater(_2788::1load_comp, 0)
not (self<-greater(_3165::1load_comp, 0))v
not (self<-greater(_3165::1lo0ad_comp, 0))
not (self<«-greater(_4110::load_moment, 0))
not (self<-greater{_4455::1locad_moment, 0))v
self<~-greater(_4455::1load_moment, 0)
not (self<-greater(_4832::1locad moment, 0))v
not (self<-greater(_4832::1lcad moment, 0))
not (self<-greater(_6020::1locad moment, 0))v
not (self<-greater(_6020::1o0ad_comp, 0))
not (self<-greater(_6406::1cad _comp, 0))v
not (self<-greater(_6406::1load _comp, 0))
not (self<-greater(_7744::load moment, 0))v
not (self<-greater(_7744::1locad_moment, 0))
Empty clause NOT found
NOT GOOD! The given rules are NOT COMPLETE.
N2l ves

Figure 7-10 The Session of Checking Completeness

{self<-greater (Mem: : load_moment, 0),

not self<-greater (Mem::load_comp,0)}
By performing resolution on these clauses, we obtain an empty clause. Thus, the given
rules are not redundant. Figure 7-11 shows the session of this process.



CHAPTER 7  STANDARDS ANALYSIS 149

:~ redundancy

ConditionList =
[[self<-greater(_1003::1load _comp, 0),
not (self<-greater(_1003::load moment, 0))],
[self<-greater(_1003::load_moment, 0),
not (self<-greater(_1003::1load_comp, 0))]1,
[self<-greater(_1003::1lo0ad comp, 0),
self<-greater(_1003::locad moment, 0)]]

NegatedTestingSentence = (self<-greater(_1810::load_comp, 0)&
not (self<-greater( _1810::load_moment, 0)))&
self<-greater(_1810::1load _moment, 0)&

not (self<-greater(_1810::load_comp, 0))v
(self<-greater(_1810::1lcad_comp, 0)&

not (self<-greater(_1810::load moment, 0)))&
self<-greater(_1810::1load _comp, 0)&
self<-greater(_1810::load_moment, 0)v
{self<-greater(_1810::1locad_moment, 0)&

not (self<-greater(_1810::1load comp, 0)))&
self<-greater(_1810::1load_comp, 0)&
self<-greater(_1810::1locad moment, 0)v
(self<-greater(_1810::load_moment, 0)&

not (self<-greater(_1810::1lcad comp, 0)))&
self<-greater(_1810::1cad_comp, 0)&
self<-greater(_1810::load_moment, 0)

CLAUSES
**%x clauseZ (self<-greater(_1810::1lcad_comp, 0)v
self«<-greater(_1810::1lcad_moment, 0))
*¥** clause2 (self<-greater(_1810::1locad_conp, 0))
*** clause2(self<-greater(_1810::1cad_comp, 0)v
not (self<-greater(_1810::lcad_moment, 0)))
*** clause2 (not (self<-greater(_1810::load moment, 0)))
*** clause2(self<-greater(_1810::1locad moment, 0))
*** clause?2 (self<-greater(_1810::load _moment, 0)v
not (self<«-greater(_1810::1load _comp, 0)))

PERFORMING RESOLUTION

[l : Empty clause found

GOOD! The given rules are NOT REDUNDANT.
Nel ves

Figure 7-11 The Session of Checking Lack of Redundancy



CHAPTER 7  STANDARDS ANALYSIS 150

7.2.3 Checking Lack of Contradiction of the Classification
Method

To check the lack of contradiction using HyperLRFD++, the system generates the negated
testing sentence from the same condition and action lists generated earlier. In this case,
since the items in the action list are mutually different, the result of checking the lack of
redundancy is the same as checking the lack of contradiction. Figure 7-12 shows the
session of this process. Since the empty clause is found in this case, the module declares
that the given rules do not contradict.

7.2.4 Checking Correctness of the Standards Organization

As described in Section 7.1.5, semantic correctness of the Method Object is checked by
comparing the program code and the corresponding provision. As for the classification
Method Object, more than one provision may correspond to the classification method. For
example, the classification Method Object “clas_steel_mem” corresponds to the three
provisions as shown in Figure 7-13, which can be found in AISC LRFD specification
[AISC 86]. By comparing these provisions and the rules of the classification Method
Object, the user can check the correctness of Method Object.

A Member Class Hierarchy that is represented graphically, as shown in Figure 7-14, can
serve as a means to check whether the organization is correctly implemented in the design
software. Prolog++ provides a graphical user interface, where the user can develop a
program by creating a class hierarchy on a computer screen (Figure 7-14). This feature is
used in the implementation of HyperLRFD++.



CHAPTER 7  STANDARDS ANALYSIS

:- contradiction

ConditionList =

[[self<-greater{_1003::1lo0ad _comp, 0),
not (self<-greater(_1003::load_moment, 0))],
[self<~greater(_1003::load_moment, 0),
not (self<-greater(_1003::1lo0ad_comp, 0))1,
[self<-greater(_1003::1lcad_comp, 0),
self<-greater(_1003::1load_moment, 0)1]1]

ActionList = :

[classify (_1003,comp_mem,_1267), classify( 1003, flex mem,_1267),
classify{_1003, flex comp_mem,_1267)]

NegatedTestingSentence = (self<-greater{_1845::lcad_comp, 0)&
not (self<-greater(_1845::1load moment, 0)))&
self<-greater(_1845::1oad _moment, 0)&

not (self<-greater(_1845::1cad_comp, 0))v
(self<-greater(_1845::1lo0ad_comp, 0)&

not (self<-greater(_1845::1load moment, 0)))&
self<-greater(_1845::1ocad comp, 0)&
self<~-greater(_1845::1ocad moment, 0)v
(self<-greater(_1845::1load_moment, 0)&

not (self<-greater(_1845::1o0ad _comp, 0)))&
self«-greater(_1845::1ocad_comp, 0)&
self<-greater(_1845::load _moment, 0)v
(self<-greater(_1845::1load _moment, 0)&

not (self<-greater(_1845::1cad_comp, 0)))&
self<-greater(_1845::1load _comp, 0)&
self<«~greater(_1845::1load_moment, 0)

CLAUSES
*** clause? (self<-greater(_1845::load comp, 0)v
self<-greater(_1845::1locad moment, 0))
*** clause? (self<-greater(_1845::1load _comp, 0))
**% clause?2(self<-greater(_1845::1load_comp, 0)v
not (self<-greater(_1845::1load moment, 0)))
*** clause? (not (self<-greater(_1845::1locad_moment, 0)))
*** clause? (self<-greater(_1845::1locad _moment, 0))
***% clause2 (self<-greater(_1845::1load_moment, 0)v
not (self<-greater(_1845::1locad_comp, 0)))

PERFORMING RESOLUTION

[] : Empty clause found

GOOD! The given rules do NOT CONTRADICT.
Nel ves

Figure 7-12 The Session of Checking the Lack of Contradiction

151



CHAPTER 7  STANDARDS ANALYSIS 152

CHAPTER E. COLUMNS AND OTHER COMPRESSION MEMBERS

This section applies to prismatic members subject to axial compression through the
centroidal axis. For members subject to combined axial compression and flexure, see
Chap. H. For tapered members, see Appendix F4.

CHAPTER F. BEAMS AND OTHER FLEXURAL MEMBERS

This section applies to singly or doubly symmetric beams including hybrid beams and
girders loaded in the plane of symmetry. It also applies to channels loaded in a plane
passing through the shear center parallel to the web or restrained against twisting at
the load points and points of support. For design flexural strength for members not
covered in Sect. F1, see Appendix F1.7. For members subject to combined flexural and
axial force, see Sect. H1. For unsymmetric beams and beams subject to torsion combined

with flexure, see Sect H2.

CHAPTER H. MEMBERS UNDER TORSION AND COMBINED FORCES

This section applies to prismatic members subjected to axial force and flexure about one
or both axes of symmetry, with or without torsion, and torsion only. For web-tapered
members, see Appendix F4.

Figure 7-13 Provisions Corresponding to the Classification Method
“clas_steel_mem” [AISC 86]

r N - . . "
& File Edit Search Windows Fonts Eval Ob jects 1:16:11 A @\
HyperL RFD++ [EO====—=== Member Class Hierarchy =——5
\ (D
_- z
AA o
tlember Class Hierarchy ~
'\‘ZUD# ledl(
Pl ¥
lcomp_men ] l.flex_mem l | flex_comp_mem |
by
ios o
[ ot )
Cﬁ) Ix__comp_meml ly__comp_meml ]moment_mem] Ishear__mem
~
200M
"

Figure 7-14 Graphical User Interface to Create a Member Class Hierarchy



CHAPTER 7  STANDARDS ANALYSIS 153

7.3 Checking Relations Among Provisions

The Standards Analysis Module checks whether provisions are connected and acyclic by
examining the dependency network of Method Objects based on their relationships. Each
Method Object has a <reference> attribute. The <reference> attribute value is obtained by
parsing the Object-Logic sentences of the method and collecting the Method Objects’ names
in the condition part. For example, the <reference> attribute value of the Method Object
“req_short_non_slender_prism_y_comp_mem’” shown in Figure 7-15 is:
[pn_short_vy, attr(load_comp)].

The procedure to generate a <reference> attribute value is to identify “Mem::” in the
condition part, then determine if the term after “Mem::” is a Method Object or an attribute
based on the existence of “<-” after the term (if “<-” exists, it is a Method Object). If itis
an attribute, “attr( )” is attached to the term. Note that the module ignores unrelated
conditions such as “eqless,” “input_attr,” and “respond_satisfied” so that they are not
included in the <reference> attribute. For each requirement a dependency network can be
drawn by calling <reference> attributes recursively. For example, dependency network of
the requirement Method Object "req_shoanon__slender_prism_y_comp_mem" is shown in
Figure 7-15.

The module checks the following two cases for connectedness:

* A Method Object has a non-existing referencing Method Object. For example, if the
Method Object “pn_short_y” in Figure 7-16 does not exist, the network is
disconnected. _

* A leaf node of the dependency network is not a basic data item, i.e., an attribute of
design member objects. This situation occurs when the leaf node Method Object of
the dependency network has no conditions in the rules. All the leaf nodes of the
dependency network in Figure 7-16 are attributes of design member objects.

The module can also generate another dependency network replacing the Method Object
name with its meaning, which is stored in the <meaning> attribute of each Method Object.
For example, the dependency network shown in Figure 7-17 can be converted as shown in
Figure 7-17. This network can be used to check semantic correctness of the Method
Objects dependency.



CHAPTER 7  STANDARDS ANALYSIS 154

open_object req short_non_slender prism y_conmp_mem.

super = requirements.
class = short_non_slender prism y_comp_mem.

provision = 'E2'.
reference = [pn_short_y,
attr(load_comp)].
meaning = 'requirement for a non-slender prismatic compression

member which y-axis inelastic buckling governs'.

req _short_non_slender_prism y_ comp_mem(Mem, satisfied, Id) : -
Mem: :pni_short_y <- pn_short_y (Mem, Pn, Id),
DS is 0.85 * Pn,
self <- input_attr(Mem, load_comp,1000),
self <~ egless(Mem: :load_comp,DS),
self <~ respond_satisfied.

req short_non_slender prism y_ comp_mem(Mem, violated, Id) : ~
Mem: :pn_short_y <- pn_short_y (Mem, Pn, Id),
DS is 0.85 * Pn,
not (self <- eqgless(Mem: :load_comp,DS)),
self <- respond_violated.

close_object req short_non_slender prism y_comp_mem.

Figure 7-15 An Example of Requirement Method Objects

req short_non_slender_ prism_ y_ comp_mem

|~ pn_short_vy
|- gross_area
I |- attr(area)
| - fcry short
- lambda_c_y
|- radius_gyration_y

I
I
|
! I
! I
f | ! |- attr(ry)

| | |- attr(effective_length factor_y)
| I |~ attr(unbraced length y)

| J |- attr(yield _stress)

! I |- attr(elastic_modulus)

| |- attr(yield_stress)

|- attr(load_comp)

Figure 7-16 Dependency Network of the Requirement Method Object



CHAPTER 7  STANDARDS ANALYSIS 155

requirement for a non-slender prismatic compression member which y-axis
inelastic buckling governs

|
|- nominal compressive strength for a compression member which y-axis

|  inelastic buckling governs

I

|- gross area of a section
! |- attr(area)

!
|- critical stress of a conpression member which y-axis

inelastic buckling governs

[
|- column slenderness parameter for the y-axis

I
|- radius of gyration of the y-axis
|- attr(ry)

!
I
|- attr(effective_length factor_vy)
| |- attr(effective_length_ factor_y)
| |- attr (unbraced_length_y)
! |- attr(yield_stress)
I |- attr(elastic_modulus)
|- attr(yield_stress)
- attr(load_comp)

[
I
I
I
I
I
I
I
I
I
I
[
|
I
I
I
I
I
[
Figure 7-17 Dependency Network of the Requirement Method Object with
Meaning

If a network contains a branch that the same Method Object appears more than twice in one
path, the network is cyclic. For example, if in case the Method Object “fcry_short”
happens to have a referencing Method Object “pn_short_y,” the network is cyclic as shown
in Figure 7-18. If the network has a cyclic branch, the system warns the user.

7.4 Summary

This chapter described the methodologies for standards analysis, employed in the Hyper-
Object-Logic model. First, the checking of individual provisions was described. Then, the
checking of standards organization was discussed. Finally, checking of relationships
among provisions was described. Illustrative examples were shown for each checking task
by using the prototype system, HyperLRFD++.



CHAPTER 7  STANDARDS ANALYSIS 156

req_short_non_slender_prism_y_comp_mem
Cyclic Network )

Cattr(load_compD

I

attr(yield_stress)

radius_gyration_y attr(effective_length_) Cattr(unbraced__

_ attr(elastic_
factor_y) length_y)

modulus)

Figure 7-18 A Cyclic Network (A Hypothetical Example)






CHAPTER 8. SUMMARY AND DISCUSSION 157

Chapter 8

Summary and Discussion

The objective of this thesis is to develop a model that can perform both conformance
checking and component design, store background information of design standards, and
analyze design codes in an intelligent CAD environment. This thesis proposed and
demonstrated an integrated Hyper-Object-Logic model for the representation, processing,
and documentation of design standards. This chapter provides a brief summary and
discusses contributions of this thesis. Furthermore, directions for future work are
discussed.

8.1 Summary and Contributions

This thesis proposed and demonstrated an Object-Logic model for design standards
processing. This model combines object-oriented and logic programming paradigms to
provide a unified framework for the representation and processing of the design standard.
This thesis has shown that the object-oriented paradigm is suitable for representing the
organization and data items of the design standard. In addition, the logic programming
paradigm is well-suited for representing and processing design provisions both for design
and conformance checking, as well as checking syntactic completeness and uniqueness of
the design standard. In addition to the Object-Logic model, this thesis described and
demonstrated a HyperDocument model, which is based on the current development of
HyperFile. This model serves as a large heterogeneous document storage and manipulation



CHAPTER 8  SUMMARY AND DISCUSSION 158

system useful for code developers and design engineers. The Object-Logic and the
HyperDocument models were integrated into a unified Hyper-Object-Logic model.

For more than two decades, researchers and engineers have attempted to automate design
standards processing. In this thesis, the SASE model and several recently proposed
Artificial Intelligence-based approaches were examined. The Object-Logic model is
partially based on the previous development of the SASE model [Fenves 87], the frame-
based and object-oriented representation of design standards [Garrett 86] [Garrett 89], and
the logic-based approach [Chan 86] [Jain 89].

In the Object-Logic model, the organization of the standard is represented as an object-
oriented AND-OR class hierarchy (Member Class Hierarchy) and design provisions are
represented declaratively as Object-Logic sentences in the Method Objects. Since the
provisions are separately implemented from the inference mechanism of logic
programming, future revision of the provisions will require modifying the corresponding
Method Objects only.

Once the organization and provisioné of the design standard are implemented in the Object-
Logic model, the user can perform both conformance checking and component design
within the same design environment. Conformance checking involves identifying and
executing all the applicable requirements of a given design member object. The system
identifies all the applicable requirements by traversing the Member Class Hierarchy, based
on the attribute values of the design member object. The system executes the applicable
requirements by the resolution principle of logic and message passing among Method
Objects. To automate component design using design standards, a heuristics-based
generate-and-test method was used. To define a design member, an Object Model, which
facilitates creating an object and entering attribute values, was defined. To retrieve data not
included in the standard, such as dimensions and properties of structural standard shapes, a
relational database system has been integrated with the system. Since relational calculus is
a subset of predicate calculus, a seamless integration between the Object-Logic model and
the relational database system can be achieved. This model could also be integrated with
other design application programs such as drafting systems, analysis programs, and system
design programs, by sharing design member object data through appropriate interfaces.



CHAPTER 8  SUMMARY AND DISCUSSION 159

The HyperDocument model consists of a Document Base and a Navigation system. Each
document is composed of the content, which is a file, and its HyperTag, which contains
information about the document and pointers to the referenced and related documents. The
idea is to provide a generic heterogeneous document storage and manipulation system.
When developing a design standard, the background information and data about the
provisions can be stored in the system and retrieved when necessary. Furthermore, the
background information stored in the system can be used to help engineers understand
implications of the provisions. This information is especially helpful for the re-design
purpose when a design member object violates a requirement. One feature of the
HyperDocument model is the inclusion of external programs to compute design data that
require processing of charts, tables, or complex equations.

The Hyper-Object-Logic model includes a facility to analyze design standards. The system
can check completeness, uniqueness, and correctness at the individual provision and at the
organizational levels. The method for syntactic checking of completeness and uniqueness
is based on the procedure proposed by Jain et al. [Jain 89]. Semantic correctness checking
involves comparing design provision documents and the corresponding program codes by
the mappings between these documents in the HyperDocument model. The system can
also check whether the dependency network of provisions is acyclic, connected, and
semantically correct. Checking these properties can ensure correctness of both the design
standard and the design program representing the standard.

To demonstrate the feasibility and practicality of the Hyper-Object-Logic model, a
prototype system, HyperLRFD++, was implemented for a part of the AISC LRFD
specification [AISC 86]. A number of examples have been provided to demonstrate the
capabilities of the Hyper-Object-Logic model described in this thesis.

The results of this thesis can be summarized as follows:
* A new representation scheme for design standards processing through a combination
of object-oriented and logic programming paradigms was developed. |
* A methodology to perform both conformance checking and component design within
the same design environment was established using the Object-Logic scheme.



CHAPTER 8  SUMMARY AND DISCUSSION 160

° A model for storing and utilizing heterogeneous documents of background
information and knowledge was developed and integrated with the design standards
processing model.

* A framework for checking completeness, uniqueness, and correctness of design
standards was developed.

* A framework for integrating a design standards processing system with other design
applications was developed.

The contributions of this thesis can be summarized as follows:

e Demonstrates the combination of the object-oriented and logic programming
paradigms is suitable for representing the organization and data items of the design
standard and for representing and processing design provisions both for component
design and conformance checking.

e Demonstrates the capabilities of the hypertext and HyperFile technologies for storing
and utilizing heterogeneous documents of design standards and their background
information and knowledge.

e Introduces and demonstrates the importance of storing and utilizing background
information both for code developers and design engineers.

* Demonstrates the importance and effects of integrating the model for the
representation and processing of design standards with the model for the
documentation of design standards and their background information and
knowledge.

* Demonstrates and implements the framework for checking completeness,
uniqueness, and correctness of design standards.

* Introduces the potential for integrating the design standards processing system with
other design applications such as analysis, system design, and drawing,

In the next section, limitations of this research and directions for future work are discussed.



CHAPTER 8  SUMMARY AND DISCUSSION 161

8.2 Limitations of the Research and Future Work

Since HyperLRFD++ has been developed as a demonstration system for the feasibility
study of the Hyper-Object-Logic model, it contains limitations in several areas. In this
section, limitations of the prototype system and the model are discussed and directions for

future work are introduced.

One of the limitations is partial coverage of the AISC LRFD specification, i.e., it includes
the member types of compression, flexural, and flexural-compression steel members. One
extension will include the design provisions concerning tension members and connections
in HyperLRFD++. For these types of components, a graphical user interface representing
the layout of bolts or welds should be incorporated. Other external programs such as
calculating the effective net area for tension members should also be included. The object-
oriented paradigm can play an effective role in dealing with the interactions between the
connections and the connected member objects.

Second limitation is that HyperLRFD++ deals with only standard wide flange W shape
sections. Thus, other standard shape sections and arbitrary shapes such as built-up
members should also be implemented. Although checking an arbitrary shape member is
not a difficult task, generating an arbitrary shape will require high level heuristic
knowledge, which may not be found in books or papers but are based on engineers’
experience. From the structural engineering point of view, however, a systematic
methodology for design needs to be addressed instead of merely implementing an
engineer’s ad-hoc procedures for generating an arbitrary shape. The design methodology
should be based on fundamental principles of structural engineering.

One shortcoming of HyperLRFD++ is its slow performance. This inefficiency is partially
due to Prolog’s linear, top-down, and depth-first search method to deduce a conclusion.
To improve the efficiency of the system, parallel processing seems promising for future
implementation. In parallel logic programming, for example, two logic sentences
representing results of “satisfied” and “violated” for a requirement are processed
simultaneously, and conditions of each sentence are also processed in parallel instead of the
top-bottom approach. Parallel execution of logic sentences would greatly enhance the
performance of the system.



CHAPTER 8  SUMMARY AND DISCUSSION 162

Another efficiency problem lies in the query processing in the HyperDocument model. The
prototype HyperLRFD++ relies on a linear search method, i.e., the system searches from
the first HyperTag to the desired cell one at a time. Query optimization should be
addressed as a future work to enhance its performance. Query optimization is among the
current research areas in HyperFile and hypertext technology [Clifton 90].

Although HyperTags in the HyperDocument model are hardware- and software-
independent, contents of documents are hardware- and software-dependent. As noted in
Section 2.2.2, SGML and HyTime are promising vehicles to make documents
interchangeable among document processing systems. These new standards should be
investigated in the future.

A limitation of the representation of design standards in the Object-Logic model is that if the
- organization of a design standard is unclear and ambiguous, the formulation of the Member
Class Hierarchy depends on the developer of the system. In addition, design standards
may contain a vague provision that could have multiple interpretations. This kind of
provisions typically includes the modal auxiliary “may,” such as “Second order effects may
be considered in the determination of My, for use in Formula H1-a and H1-b [AISC 86].”
It may be interesting to apply many-valued logic [Ackerman 67] and modal logic [Moore
85] to this kind of information. Furthermore, there could exist a situation that the user may
not be able to give an exact value to a data item but may be able to provide a fuzzy
description such as “heavy,” “tall,” or “medium.” A methodology to handle such

“ambiguous” information is needed for design standards processing.

While the AISC specification is useful for designing components, there are other types of
design standards that are needed for system design, such as the Uniform Building Code
(UBC) [ICBO 91]. This type of standard is typically used to provide loads for a given
system such as a building or a dam. Future research may include the integration of system
design standards processing and system analysis systems to provide a structural system
design model.

Last but not least, since the purpose of HyperLRFD++ is to demonstrate the viability of the
model, its validation is limited to several textbook sample problems of structural steel



CHAPTER 8  SUMMARY AND DISCUSSION 163

design. Further evaluation should be performed for component design and conformance

checking of structural members of a building structure.



REFERENCES

[Ackerman 67]

[AISC 86]

[AISC 89]

[Amble 87]

[Apple 90]

[Bourdeau 91]

[Ceri 90]

[Chan 86]

[Clifton 90]

[Conklin 87]

[Cornick 91]

164

References

Ackerman, R. J., An Introduction to Many-Valued Logics, Dover
Publications, 1967.

Manual of Steel Construction — Load & Resistance Factor Design, First
Edition, American Institute of Steel Construction, Inc., 1986.

Manual of Steel Construction — Allowable Stress Design, Ninth Edition,
American Institute of Steel Construction, Inc., 1989.

Amble, T., Logic Programming and Knowledge Engineering, Addison-
Wesley, 1987.

HyperCard Basics, Apple Computer Inc., 1990.

Bourdeau, M., “The CD-REEF: The French Building Technical Rules on
CD-ROM,” VTT Symposium 125, Computers and Building Regulations,
Espoo, Finland, Kahkonen, K. and Bjork, B. (eds.), pp.117-133, 1991.
Ceri, S, Gottlob, G., and Tanca, L., Logic Programniing and Databases,
Springer-Verlag, 1990.

Chan, W. T., Logic Programming for Managing Constraint-Based
Engineering Design, Ph.D. Thesis, Department of Civil Engineering,
Stanford University, 1986.

Clifton, C. and Garcia-Molina, H., Distributed Processing of Filtering
Queries in HyperFile, Technical Report No. CS-TR-295-90, Department
of Computer Science, Princeton University, 1990.

Conklin, J., “Hypertext: An Introduction and Survey,” Computer, Vol.
20, No. 9, pp.17-41, 1987. |

Cornick, S. M., “HyperCode: The Building Code as a Hyperdocument,”
Engineering with Computers, Vol. 7, No. 1, pp.37-46, 1991.



REFERENCES

[Cragun 87]

[Deville 90]
[Dym 88]

[Elam 88]

[Fenves 66]

[Fenves 76]

[Fenves 77]

[Fenves 85]

[Fenves 87]

[Fischer 90]

[Garrett 86]

165

Cragun, B. J. and Steudel, H. J., “A Decision-Table-Based Processor for
Checking Completeness and Consistency in Rule-Based Expert Systems,”
International Journal of Man-Machine Studies, Vol. 26, No. 5, pp.633-
648, 1987. '

Deville, Y., Logic Programming, Addison-Wesley, 1990.

Dym, C. L., Henchey, R. P., Delis, E. A., and Gonick, S., “A
Knowledge-based System for Automated Architectural Code Checking,”
Computer-Aided Design, Vol. 20, No. 3, pp.137-145, 1988. |

Elam, S. L. and Lopez, L. A., Knowledge Based Approach to Checking
Designs for Conformance with Standards, Civil Engineering Systems
Laboratory Research Series No. 9, University of Illinois at Urbana-
Champaign, 1988.

Fenves, S. J., “Tabular Decision Logic for Structural Design,” Journal of
the Structural Division, Proceedings of ASCE, Vol. 92, No. ST6, 1966.
Fenves, S. J., Rankin, K., and Tejuja, H. K., The Structure of Building
Specifications, National Bureau of Standards, Report No. NBSBSS-90,
1976.

Fenves, S. J. and Wright, R. N., The Representation and Use of Design
Specifications, National Bureau of Standards, Report No. NBSTN 940,
1977. |

Fenves, S. J. and Rasdorf, W. J., “Treatment of Engineering Design
Constraints in a Relational Data Base,” Engineering with Computers, Vol.
1, No. 1, pp.27-37, 1985.

Fenves, S. J., Wright, R. N., Stahl, F,I, and Reed,K. A., Introduction
to SASE: Standards Analysis, Synthesis, and Expression, National
Bureau of Standards, Report No. NBSIR 87-3513, 1987.

Fischer, G. and Nielsen, J., “Introduction to Hypertext and
Hypermedia,” Tutorial Text, The Eighth National Conference on Artificial
Intelligence, Boston, MA, 1990.

Garrett, Jr., J. H. and Fenves, S. J., A Knowledge-Based Structural
Component Design, Report No. R-86-157, Department of Civil
Engineering, Carnegie-Mellon University, 1986.



REFERENCES

[Garrett 89]

166

Garrett, Jr., J. H., “An Object-Oriented Representation of Design
Standards,” Proceedings of the Sixth Conference on Computing in Civil
Engineering, Atlanta, GA, pp.267-274, 1989.

[Genesereth 85] Genesereth, M. R. and Ginsberg, M. L., “Logic Programming,”

Communication of the ACM, Vol. 28, No. 9. pp.933-941, 1985.

[Genesereth 87] Genesereth, M. R. and Nilsson, N. S., Logical Foundations of Artificial

[Goldfarb 90]
[Harris 81]

[Holtz 82]

[ICBO 88]

[ICBO 91]

[Jain 89]

[Korson 90]

[Kumar 89]

Intelligence, Morgan Kaufmann, 1987.

Goldfarb, C. F., The SGML Handbook, Oxford University Press, 1990.
Harris, J. R. and Wright, R. N., Organization of Building Standards:
Systematic Techniques for Scope and Arrangement, National Bureau of
Standards, Report No. NBSBSS 136, 1981.

Holtz, N. M., Symbolic Manipulation of Design Constraints, Ph.D.
Thesis, Department of Civil Engineering, Carnegie-Mellon University,
1982.

Uniform Building Code, 1988 Edition, International Conference of
Building Officials, 1988.

Uniform Building Code, 1991 Edition, International Conference of
Building Officials, 1991.

Jain, D., Law, K. H., and Krawinkler, H., “On Processing Standards
With Predicate Calculus,” Proceedings of the Sixth Conference on
Computing in Civil Engineering, Atlanta, GA, pp.259-266, 1989.
Korson, T. and McGregor, J. D., “Understanding Object-Oriented: A
Unifying Paradigm,” Communications of the ACM, Vol. 33, No.9,
pp-40-60, 1990.

Kumar, B., Knowledge Processing for Structural Design, Ph.D. Thesis,
Department of Civil Engineering and Building Science, University of
Edinburgh, 1989.

[Lakmazaheri 90] Lakmazaheri, S., A Study on the Constraint Logic Approach for

[Malasri 91]

[Microsoft 91]

Structural Design Automation, Ph.D. Thesis, Department of Civil
Engineering, North Carolina State University, 1990.

Malasri, S., Olabe, J. C., and Olabe, M. A., “A Prototype of the Uniform
Building Code Using Hypertext,” Proceedings of the Tenth Conference
on Electronic Computation, Indianapolis, IN, pp.36-43, 1991.

Microsoft Excel 3.0 Reference, Microsoft Corporation, 1991.



REFERENCES

[Mitusch 91]

[Moore 85]

[Newcomb 91]

[Nguyen 87]

[Oracle 89]
[Ow1 90]
[Page 89]
[Parsaye 89]
[Quintus 90]

[Quintus 91]

[Rasdorf 88]

[Rasdorf 90-a]

[Rasdorf 90-b]

167

Mitusch, P. D., “Expert System for the Norwegian Building Regulations
— A New Approach,” VIT Symposium 125, Computers and Building
Regulations, Espoo, Finland, Kahkonen, K. and Bjork, B. (eds.), pp.
36-42, 1991.

Moore, R. C., “Semantical Considerations of Nonmonotonic logic,”
Artificial Intelligence, Vol. 25, No. 1, pp.75-94, 1985.

Newcomb, S. R., Kipp, N. A., and Newcomb, V. T., “The ‘HyTime’
Hypermedia/Time-based Document Structuring Language,”
Communications of the ACM, Vol. 34, No. 11, pp.67-83, 1991.
Nguyen, T. A., Perkins, W. A., Laffey, T. J., and Pecora, D,
“Knowledge Base Verification,” AI Magazine, Vol. 8, No. 2, pp.69-75,
1987.

ORACLE for Macintosh Reference, Oracle Corporation, 1989.

GUIDE, OWL International, 1990.

Page, T. W., An Object-Oriented Logic Programming Environment for
Modeling, Ph.D. Thesis, University of Califomia at Los Angeles, 1989.
Parsaye, K., Chignell, M., Khoshafian, S., and Wong, H., Intelligent
Databases, John Wiley & Sons, Inc., 1989.

Quintus Prolog++ Reference Manual, Quintus Computer Systems, Inc.,
1990. :

MacDBI for Oracle Reference Manual, Quintus Computer Systems, Inc.,
1991.

Rasdorf, W. J. and Wang, T. E., “Generic Design Standards Processing
in an Expert System Environment,” Journal of Computing in Civil
Engineering, Vol. 2, No. 1, pp.68-87, 1988.

Rasdorf, W. J. and Lakmazaheri, S., “Logic-Based Approach for
Modeling Organization of Design Standards,” Journal of Computing in
Civil Engineering, Vol. 4, No.2, pp.102-123, 1990.

Rasdorf, W. J. and Lakmazaheri, S., “A Logic Based Approach for
Processing Design Standards,” International Journal of Artificial
Intelligence for Engineering Design, Analysis, and Manufacturing, Vol.
4, No. 3, pp.179-192, 1990.



REFERENCES 168

[Rokach 91] Rokach, A. J., Theory and Problems of Structural Steel Design (Load and
Resistance Factor Method), Schaum’s Outline Series, McGraw-Hill,
1991.

[Rosenman 85] Rosenman, M. A. and Gero, J. S., “Design Codes as Expert Systems,”
Computer-Aided Design, Vol. 17, No. 9, pp.399-409, 1985.

[Rosenman 86] Rosenman, M. A., Gero, J. S., and Oxman, R., “An Expert System for
Design Codes and Design Rules,” Applications of Artificial Intelligence in
Engineering Problems, Vol. II, Sriram, D and Adey, R (eds.), Springer-
Verlag, pp.745-758, 1986.

[Salmon 90] Salmon, C. G. and Johnson, J. E., Steel Structures: Design and
Behaviors, Third Edition, Harper & Row, 1990.

[Stone 87] Stone, D. and Wilcox, D. A., “Intelligent Systems for the Formulation of
Building Regulations,” Proceedings of the Fourth International
Symposium on Robotics and Artificial Intelligence in Building
Construction, Haifa, Israel, pp.740-761, 1987.

[Suwa 82] Suwa, M., Scott, A. C., and Shortliffe, E. H., “An Approach to
Verifying Completeness and Consistency in Rule-Based Expert System,”
Al Magazine, Vol. 3, No. 4, pp.16-21, 1982.

[Swartout 83] Swartout, W. R., “XPLAIN: a System for Creating and Explaining
Expert Consulting Programs,” Artificial Intelligence, Vol. 21, No. 3,
pp-285-325, 1983

[Van Herwijnen 90] Van Herwijnen, E., Practical SGML, Kluwer Academic Publishers,
1990.

[Yura 71] Yura, J. A., “The Effective Length of Columns in Unbraced Frames,”
Engineering Journal, Vol. 8, No. 2, pp.37-42, 1971.



