4 CENTER FOR INTEGRATED FACILITY ENGINEERING

Deductive Synthesis
of
Concurrent Construction Plans

by

Zohar Manna,
Massimo Paltrinieri,
Richard Waldinger

TECHNICAL REPORT
Number 75

September, 1992

Stanford University

Copyright © 1992 by

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

clo CIFE, Civil Engineering,
Stanford University,
Terman Engineering Center
Mail Code: 4020
Stanford, CA 94305-4020

SUMMARY
CIFE TECHNICAL REPORT # 75

Title: Deductive Synthesis of Concurrent Construction Plans
Authors: Zohar Manna, Massimo Paltrinieri, Richard Waldinger
Publication Date: September 1992
Funding Sources: NSF, under grants CCR-89-11512 and CCR-89-13641
DARPA, under contract NAG2-703
CIFE, partial seed research grant

1. Abstract: In the deductive approach, the synthesis of a plan is regarded as a problem
in theorem proving. The goal state is described by a sentence in first-order logic and a
correct plan is extracted from a proof of the sentence. A deductive framework, obtained by
adapting a situational calculus for automated planning, is applied to the formation of
construction plans for civil engineering. Proofs of theorems for even simple construction
problems have required an expressive language to represent the structure of plans.
Desirable features include sequencing, parallelism, contingency, repetition and modularity.

2. Subject: This research investigates the use of first-order logic to construction-
planning problems. The choice of this framework is motivated by the high expressive
power required by these problems. For instance, when a condition on the construction
process, such as resource availability, is not known at planning time, the plan must account
for contingency; when the same pattern is contained several times in a structure, such as a
multi-story building, the plan must account for repetition.

3. Objectives/Benefits: Current construction-planning systems have limitations in
their expressive power that lead to the impossibility of including desirable features in the
derived plan. This report describes a framework that avoids these limitations and presents
examples on the use of this framework in the construction domain.

4. Methodology: The construction plan illustrated in this report was derived with the
Deductive Tableau System. Originally, the system was an interactive implementation of a
theorem prover for first-order logic. Then it was extended to allow the synthesis of
programs. Presently, we are testing a new version of the system that generates plans either
automatically or interactively. In the latter case, the user can control the derivation process
to introduce desired features into the plan.

5. Results:
» First-order logic is a suitable formalism for construction planning
« It allows the introduction of sequencing, parallelism, contingency, repetition and
modularity in the construction plans
» Much of the derivation process can be automated
* For this purpose, the Deductive Tableau System is a valuable support

6. Research Status: Deductive frameworks based on first-order logic seem appropriate
for the derivation of construction plans. Nevertheless, before the process can reach a high
level of automation, effective domain-dependent strategies must be developed to explore the
potentially huge search space produced by real-life applications. Also, to reduce the
fragmentation between the design and planning phases of the project, the planning system
should be integrated with CAD software to automatically extract the axioms describing the
structure of the facility to be constructed from purely geometrical information.

Deductive Synthesis
of
Concurrent Construction Plans *

Zohar Manna Massimo Paltrinieri Richard Waldinger
Department of Computer Science Department of Computer Science Artificial Intelligence Center
Stanford University Stanford University SRI International
Stanford, CA 94805 Stanford, CA 94305 Menlo Park, CA 94025
zm@cs.stanford.edu palmas@cs.stanford.edu waldinger@at.sri.com
Abstract

In the deductive approach, the synthesis of a plan is regarded as a problem in
theorem proving. The goal state is described by a sentence in first-order logic and a
correct plan is extracted from a proof of the sentence.

A deductive framework, obtained by adapting a situational calculus for automated
planning, is applied to the formation of construction plans for civil engineering. Proofs
of theorems for even simple construction problems have required an expressive lan-
guage to represent the structure of plans. Desirable features include sequencing, par-
allelism, contingency, repetition and modularity.

1 Introduction

Plan synthesis [FN71, Gre69, Ros81, Wal81] concerns the generation of some course of
actions to achieve a specified goal. A domain-independent framework for the deductive
synthesis of plans is proposed in [MW87b].

In this approach, the generation of a plan is regarded as a task in theorem proving;
that is, the plan is extracted from the proof of a theorem that extablishes the existence of
a final state in which the goal condition is true. The proof is restricted to be sufficiently
constructive, in that it must describe a computational method for finding the final state.

"This research was supported in part by the National Science Foundation under grants CCR-89-11512
and CCR-89-13641, by the Defense Advanced Research Projects Agency under contract NAG2-703 and by
a partial seed research grant from the Center for Integrated Facility Engineering, Stanford University.

This method becomes the basis for the plan extracted from the proof. The structure
of the proof determines the structure of the plan, which is guaranteed to be correct by the
soundness of the deduction rules.

Research on applying symbolic approaches to comstruction-planning problems has
been conducted only recently (for a comprehensive review see [Kar89]). The system
CONSTRUCTION PLANEX [HZGR™87] generates project networks defining precedence
among and duration of activities. GHOST [NSL88] reasons about objects in the construc-
tion domain to define project activities and precedence relations. OARPLAN [DLHRR89]
takes as its input a description of the facility to be constructed and generates a hierarchical
project plan for construction of the facility. The use of SIPE-2 to generate hierarchical
plans for the construction of a single-family house is discussed in [KLW91].

As pointed out in [Geo87], a plan usually has a definite structure that depends on how
it has been composed from more primitive components. The standard ways of composing
plans include sequencing (resulting in sequential plans), parallelism (concurrent plans),
contingency (conditional plans), repetition (repetitive plans) and modularity (hierarchical
plans). Most of the planning systems to date have been oriented towards the generation
of plans which are fully or partially ordered sequences of primitive actions (for a review of
AT planning techniques see [THD90]). Less research has concentrated on the generation of
plans which contain contingency and repetition, and the problem has not been addressed
in the construction domain yet.

We believe that this is an important limitation, for instance, when a condition on the
construction process, such as resource availability, is not known at planning time (con-
tingency) or when the same pattern is contained several times in a structure, such as a
multi-story building (repetition). Our logical framework allows for all of the mentioned
features to be introduced into synthesized plans from structural and topological descrip-
tions of the facility to be constructed.

In the next section, the logical framework developed [MW87b, MW8Ta] for the de-
ductive synthesis of plans is outlined. A theory for the construction domain is developed
within this framework in Section 3. The introduction of relevant features in construction
plans is illustrated in Sections 4-8. A complete proof, from which a high-level construction
plan for a multi-story building is extracted, is finally presented in the Appendix. The plan
employs all the mentioned features. The proof is split into two parts: the first part gener-
ates the top-level plan construct(bd) to construct a multi-story building b; the second part
extracts a more detailed subplan constr(story) to construct a single story of the building.

2 Derivation Process

In our deductive approach, the construction of a plan is regarded as the proof of a theorem
In a variant of situational calculus [MH69]. In this framework, there are three classes of
terms: state terms, object terms and plan terms. Plan terms are also called fluent terms.
A fluent may be thought of as a function ranging over states: evaluating a fluent in a
given state returns an object and produces a new state. If s is a state term and e is a
fluent term, then s:e is the object returned by evaluating e in state s and s;e is the state
produced by evaluating e in state s.

Example (term evaluation). Given a state term sg, a fluent term b denoting a building,
and the fluent terms constructed(b) and construct(b), with the intuitive meaning, we have
that

® s0:b is the object returned by evaluating b in state sg, that is, the building denoted
by b

e so-constructed(d) is the truth-value returned by evaluating constructed(b) in so,
depending on whether b is constructed or not in state sg

e so;construct(d) is the state produced by evaluating construct(b) in so, that is, the
state that results from the construction of b. O

If e is such that s;e=s for any state s, i.e., the evaluation of e in a given state never
produces a new state, then e is said to be an applicative designator. On the other hand, if
s:e=e for any state s, i.e., the evaluation of e returns the same value in every state, then
e is said to be a rigid designator.

Example (applicative and rigid designators). Consider the fluent terms introduced
in the previous example.

e bis applicative, since its evaluation does not change the state

e construct(b) is not applicative, since its evaluation may change the state

e b is also a rigid designator, since its value is the same in any state

e constructed(d) is not rigid, since its value may change from state to state. [
For every plan term flui,.., u,), where ui,.., u, are fluent terms, we shall introduce
a corresponding state term ;f(zi,.., &, s), where uy,..,u, and z,..,z, are object terms,
while s is a state term. Their correspondence is given by the following plan linkage axiom
schema

siflu,.., wn) = fsur,.., siup, s)

Example (plan linkage axiom). The plan term place(u), where u is applicative, has a
corresponding object term ;place(z,s). Such a correspondence is determined by the place
linkage axiom

s;place(u) = ;place(s:u, s)

an appropriate instance of the plan linkage axiom schema. Also the plan term construct(u),
where u is applicative, has a corresponding object term ;construct(z,s). The appropiate
instance of the plan linkage axiom schema this time is

s;construct(u) = ;construct(s:u, s)

referred to as the construct linkage axiom. O

To derive a plan for achieving a condition Q[sq, a, s¢], where s is the initial state, a
the input object, and sy the final state, we prove the theorem

(Va)(321)(Ys0)Qls0, s0:a, s0;21].

In other words, we prove, for any input object a, the existence of a plan z such that, for
any initial state s, if we are in sy and execute plan 2, we obtain a state sg;z in Whlch
the goal condition Q is true.

For example, the plan to construct a building b, that is, to achieve the condition

:constructed(b, sy)
is derived by proving the theorem
(V0)(321)(Vs0):constructed(so b, sp;21).
In skolemizing this formula, we obtain the sentence
:constructed(so:b, so;z)

where so and b are skolem functions and constants respectively and z is a variable. Because
b is a rigid designator, this is equivalent to the sentence

:constructed(b, sp;z1).

To prove this theorem, we establish the goal

Assertion Goal 5o, construct(b)
:constructed(b, sg,z1) 80,721

that specifies the condition that b is constructed by the execution of the plan 2 from the
initial state so. Henceforth, we will refer to such a condition as the goal condition. In our
notation [MW90], each row contains a sentence, either an assertion or a goal, and a term,
the plan entry, for each output of the desired plan. In the example above, the sentence
is the goal :constructed(b, so;z;) and the plan entry for the desired plan sg;construct(b)
is the term s9,z;. The deduction process proceeds by the application of sound deduction
rules, which add new rows to the initial one. As a side effect, variable z in the plan entry
is instantiated to different terms. The structure of such terms, and how it is determined
by the deduction process, is the subject of Sections 4-8. The proof terminates when
the propositional constant true is derived as a goal, or the propositional constant false is
derived as an assertion. The plan extracted from the proof is the plan entry associated
with the final row.

To simplify the presentation, in the following sections we will only apply the resolution
rule to derive combined plans. We illustrate the application of the resolution rule in plan
theory with a simple example from the blocks world.

Example (resolution rule in plan theory). Consider the axiom

if :clear(z, s)

then | :on(z, table, ;put(z, table, s))

asserting that after a block z has been put on the table, the block will indeed be on the
table, provided that it was clear beforehand. The goal that we want to establish is

ron(a, table, so;z) [t 50;21

In other words we look for a plan 2z; such that after its execution the block a is on
the table. The positive and negative signs of boxed subsentences indicate their polarity.
In particular, negative polarity means that the subsentence is within the scope of an
odd number of implicit or explicit negations, while positive polarity indicates that the
subsentence is within the scope of an even number of implicit or explicit negations. Non-
negated goals have positive polarity, while non-negated assertions have negative polarity,
because we could push them into the goal column by negating them. For the resolution
rule to be applicable, two subsentences must be unifiable and of opposite polarity. The
boxed subsentences are unifiable, with a most general unifier

{z— a, s — 50, 21 — put(a, table)}.

The equivalence of the boxed subsentences is obtained by the equatioanal-unification al-
gorithm [Fay79], that invokes certain of the equations and equivalences of a theory, such
as linkage and rigidity axioms, so they need not be included among the assertions. In the
above case, the equational-unification algorithm invokes the property

so,put(a, table) = ;pui(sq;a, so;a:table, s0,a;table)

which is an instance of the plan linkage axiom schema, and the rigidity and applicability
of the constants a and table. In this case, the resolution rule consists of applying the most
general unifier to the two sentences, replacing the negative-polarity subsentence with false
and the positive-polarity subsentence with true, and introducing a new row in which the
conjunction of the resulting sentences is stated as a goal. Applying the resolution rule and
simplifying, we obtain the new row :

l] :clear{a, so) | I so;put(a, table) |

meaning that the specified goal to have block a on the table is achieved by executing the
plan put(a, table) in state sy, provided that a is clear in sg. O

3 A Construction Theory

The deductive techniques cutlined in the previous section are applied to construction plan-
ning, a fundamental activity in the management and execution of construction projects.
The construction planning problem can be defined as the selection of a course of ac-
tions whose execution results in the construction of a building. Consider, for instance, the
single-story building of Fig. 1, composed of two columns and a beam. A possible plan to
construct this building is

(mmmu)
constr(story) < place(cz) ’
place(beam)

Fig. 1. A single-story building.

meaning that to construct the single-story building story, first column ¢; and column
cz are placed in parallel and then beam is placed. The function “||” denotes parallel
composition while “;” denotes sequential composition.

A simple construction theory to express facts about the construction domain can be
developed. Type predicates are omitted for brevity. Instead, a convention on variable
names is introduced: z, y range over buildings, u, v over stories, s over states and z, 2z, 23
over plans. For example, the fact that the place action has two preconditions is expressed

by the axiom

if :placed(support(z), s) and not :placed(z, s)
then :placed(z, ;place(z, s))

meaning that for z to be placed in state s, the support of z must be placed in s, but
z must not. The function support, applied to an object z, returns the complete set of ob-
Jects that are needed by z as a support. For instance, the support of beam in Fig. 1 is the
set containing columns ¢; and ¢s. The following conventions are introduced on constants:
so denotes the intial state, b the input building, ¢ the empty building and A the empty
plan. :

We can think of a building z as a composite structure. The function lower({z) returns
the first story of z, and the function upper(z) returns the rest of z, i.e., the subbuilding
made of all the stories except the first one. Every nonempty building is then composed of
a lower and an upper part. This is expressed by the building decomposition axiom

if not (z =¢)
then z = (lower(z) o upper(z))

where “c” is the empty building and “o” is a function that composes a given story and
part of a building to obtain a new building such that the given story is the first floor of
the new building and the given part is the rest of the new building. Next, we assume that
actions are not destructive, with the frame axiom

if :constructed(u, s)
then :constructed(u, s;z)

meaning that if u is constructed in state s, then it is also constructed after the execu-
tion in state s of any plan z Finally, the upper axiom

if not (z = ¢)
then upper(z) < syiia

states that the upper part of a nonempty building is properly included in the building
itself, where < ,,us denotes proper building inclusion.

These are examples of axioms for a possible construction theory. Other axioms are
given in the derivation steps presented in the following sections and in the Appendix,
which shows the derivation of a plan to construct the multi-story building of Fig. 2. The
plan extracted from that proof is

Upper < °
if (b - E) Building @
construct(b) < then A
else constr(lower(b));
construct(upper(b))
[]
Lower -
Building

Fig. 2. A multi-story building.

meaning that if b is the empty building, the empty plan A will work; otherwise, first
construct the story given by the lower part of b and then construct the upper part of b.
We are now ready to demonstrate how the derivation process determines the structure
of synthesized plans in the domain of construction planning. Some familiarity with the
deductive techniques described in [MW87b, MW90] is assumed.

4 Sequencing

We can combine two plans in several ways. For instance, one plan could be executed first
and the other one next. In such a case, we talk of sequential composition of plans and
represent it with the operator “; ”. Given two plan terms p; and p;, the plan term p;;p;
denotes the sequential execution of p; and p;. Executing plan p;;ps is the same as exe-
cuting first plan p; and then plan p;. This is expressed by the sequential composition axiom

s;(p1,;2) = (s;71)ip2

for all states s and plans p; and p;. Note that we use the semicolon to stand for both the
state produced by evaluating a plan term and the composition of two plan terms. Due to
the previous axiom, this should not generate confusion.

To illustrate the introduction of sequential composition in a derived plan, consider the
axiom (Al in the constr{story) plan)

if :placed(support(z), s) and
not :placed(z, s)

then | :placed(z, ;place(z, s))|~

asserting that z is placed after the place action is executed in state s, provided that it was
not placed in s but its support was. Also, assume that we have derived the goal

placed(c, s5;21) [F s0,21 ;place(beam)

meaning that if, after the execution of plan z; column c is placed, then placing beam after
the execution of z; achieves the goal condition. The boxed subsentences are unifiable, with
a most general unifier

{2 — ¢, s« so;22, z1 «— z;place(c)}.
The equational-unification algorithm invokes the place linkage axiom
so,z2;place(c) = ;place(sg;z3:c, s9;2,¢)

and the rigidity and applicativity of the constant c. Applying the resolution rule, we
obtain

:placed(support(c), so;z3) and 0,22, place(cz);
not :placed(c, sp;27) place(beam)

In other words, the goal condition is achieved by the execution of the plan step z followed
by placing c and beam, provided that the support of c is placed after the execution of
23, whereas c is not. The three plan steps z, place(c) and place(beam) are sequentially
composed in the plan entry of the new goal. They will be so combined also in the final
plan, provided that we establish this goal.

5 Parallelism

As we introduced the operator “; ” for sequential composition of plans, we now introduce
the operator “||” for parallel composition. Given two plan terms p; and p,, their parallel
composition py || py is also a plan term, denoting the plan in which p; and p, are executed
in parallel. If s is a state term, 5;(p1 || p2) denotes the state obtained by the parallel
execution of p; and p, in state s.

Parallelism can be introduced in a plan through the use of parallelism axioms such as (A2
in the constr(story) proof)

if (:placed(suppori(z), s) and
:placed(support(y), s) and

not :placed(z, s) and not :placed(y, s)
and :available(teams, 2, s)) then

:plzced(sz, s;(place(z)||place(y)))

:placed(s:y, s;(place(z)]||place(y)))

asserting that if the support of the objects z and y has been placed, while the two objects
have not been placed yet and two construction teams are available, then both z and y
will be placed as a result of placing them in parallel. Now consider the goal (G30 in the
constr(story) proof)

not :placed(beam, so;z2) and 50,22, place(beam)
:placed(cy, s0;23) and L
:placed(cy, sp;2)

meaning that if, after the execution of some plan step z, the beam is not placed but ¢; and
¢z are, then we can achieve our goal condition by first executing plan z and then placing
the beam. The boxed subsentences are unifiable, with a most general unifier

{z— 1,y c2, 58— s, 2 « place(c;)||place(cy)}.

The equational-unification algorithm invokes the rigidity and applicativity of ¢; and c,.
Applying the resolution rule, we obtain (G31 in the constr(story) proof)

not :placed(beam, so;(place(c,)||place(cz)))| so;

and :placed(suppori(c;), so) (place(cy)||place(cy));
and :placed(support(cs), so) place(beam)

and not :placed(c;, sg)

and not :placed(cy, so)

and :available(teams, 2, so)

In other words, if after the execution of the plan place(c;)||place(cy) the beam is not placed,
and if in the initial state sp the two columns ¢; and ce are not placed but their supports
are and two construction teams are available, then, to achieve the goal condition, we can
execute the plan place(c;)||place(c,) followed by the plan place(beam). As we see, the
parallel composition operator “||” appears now in the plan entry of the new goal. This
will lead to the final plan for the building in Fig. 1 presented in Sect. 3.

10

6 Contingency

The nonclausal resolution principle presented for program synthesis in [MW85} accounts
for the introduction of conditionals whenever it is applied between two rows both having
plan entries. Consider two goal rows (similarly for two assertions or for an assertion and a
goal) in which a matching proposition P occurs in state S with opposite polarity and having
S as a common initial segment in the plan entries. When the resolution rule is applied as
explained in Section 2, the plan entry of the new goal has S as its initial segment; its final
segment is a conditional such that the test is the matched proposition P, the then-clause
is the final segment of the row in which P occurs positively and the else-clause is the final
segment of the row in which P occurs negatively.

The rationale behind the rule is a case analysis on the truth of P.If P is true, the goal
in which P occurs positively is also true, and hence the associated plan entry satisfies the
specified condition. Similarly, if P is false, the goal in which P occurs negatively is true,
and hence the associated plan entry satisfies the goal condition.

Consider, for instance, the problem of generating a plan for placing the two columns
c1 and c; of the single-story building in Fig. 1, in the case in which the human-resource
availabilty is not known at planning time, i.e., we do not know whether one or two con-
struction teams will be available for the task. The proof is carried out along two branches,
one for each hypothesis. In one case, the goal

:available(teams, 2, so) [t so;(place(cr)l|place(co))

is derived, meaning that if two construction teams are available in the initial state S0, the
goal condition is achieved by placing ¢; and ¢, in parallel. In the other case, the goal

e

not | :available(teams, 2, so) |~ s0,;place(cy);place(cs)

is obtained, stating that the goal condition is achieved by placing first column ¢; and then
column ¢y, provided that two construction teams are not available.

The common initial segment S of the two output entries is so and the matching propo-
sition P occurring in s with opposite polarity is :available(teams, 2, so). Applying the
resolution rule with empty most general unifier, we obtain the final goal

true S,

if :available(teams, 2)
then place(c;)||place(cy)
else place(cy);place(cy)

11

where a conditional is introduced into the plan entry, which is also the final plan. Its
meaning is that the two columns ¢; and ¢, can be placed in parallel if two construction
teams are available, but they have to be placed sequentially if there is only one team.

The proof to derive the constr(story) plan in the Appendix presents a different case
in which the information on the team availability is known at planning time. The axiom
(A1l in the constr(story) proof)

L ‘available(teams, 2, s)] ' j

states that two construction teams are available in every state s of the construction process.
This information is exploited in the proof (resolution rule between A1l and G33) to
introduce the parallel composition place(cr)||place(cy) in the final plan without need to
conduct a case analysis on the resource availability.

Another example of contingency is introduced in the recursive plan construct(d) to
distinguish the base case from the induction step.

7 Repetition

As soon as a task reaches a considerable degree of complexity, it is likely to contain
repetitions, i.e., sequences of actions that must be performed several times. Consider the
proof to derive a plan to construct the building b in Fig. 2. The initial goal is (G1 in the
comstruct(b) proof)

L I :constructed(b, sg;21)] 80,21]

By application of the induction rule [MW87b] we obtain the new row (A6 in the construct(d)
proof)

if <s:x, §> <o <b, 50> then
‘constructed(z, s;construct(z))|

The induction rule, beyond the scope of this paper, introduces automatically the induction
hypothesis on the plan being derived. In other words, it assumes inductively that the plan
construct(z) that we are computing satisfies the goal condition constructed for any input z
in any state s, provided that the pair <s:z, s> is less then the pair <b, so> with respect
to some well-founded relation <, not yet determined (a well-founded relation is one that
allows no infinite decreasing sequences; the less-than relation < over the nonnegative
integers is a typical example).

Assume that in the derivation we have obtained the goal (G5 in the construct(b) proof)

12

not (b = ¢) and 50,21
rconstructed(lower(b), so;z) and

sconstructed(upper(b), so;z)|+

meaning that if b is not the empty building and if after the execution of plan z both
the lower and upper parts of b are constructed, then the execution of z; achieves the goal
condition. The boxed subsentences of the last two rows are unifiable, with a most general
unifier

{z — upper(b), s — sg;2z5, 21 — 23 ;construct(upper(b))}.
The equational-unification algorithm invokes the construct linkage axiom
S0/ ;construct(upper(b)) = ;construct(sy;z;upper b, so;z2)

and the rigidity of upper(b). Applying the resolution rule we obtain the goal (G7 in the
construct(b) proof)

<So;z2 upper(b), so;zp> <o <b, 50> 50,22, construct(upper(b))
and not (b = ¢)

and :constructed(lower(b),
0,22, construct(upper(b)))

that introduces in the plan entry a recursive call construct(upper(d)) of the plan construct
that we are computing on the part upper(b) of b. The condition <0,z :upper(b), so;z2>
<a <b, 50> and the fact that <, is well-founded guarantee that the recursive call will
not lead to a nonterminating computation. The relation <«, Will be instantiated to the
proper subbuilding relation <p,;4 described in Section 3.

Repetition can also be obtained through iteration. For a discussion on how to generate
an iterative plan from the transformation of a recursive one see [BD77).

8 Modularity

It is a well-established principle of software engineering that the modular design of pro-
grams improves modifiability, understandability and reliability. The same principle applies
to plans [Sac73]. Furthermore, the search space can be significantly reduced by first plan-
ning at abstract level and then expanding the abstract plans into more detailed plans.

Once we have derived a plan, we can use it as a subplan in future derivations. We do this
by including an assertion stating that the derived plan does indeed meet its specification.
Suppose we have derived a plan constr, to constuct a single-story building u that meets the
specification :constructed(u, so;constr(u)). Then, in the derivation of a new plan construct

13

to construct a multi-story building, we may include the assertion (A10 in the construct(b)
proof)

:constructed(u, s;constr(u))

stating that constr does satisfy its specification. Such an assertion can then be used in
the proof. Assume we have derived the goal (G9 in the construct(b) proof)

<So;22 ‘upper(b), sg;25> <o <b, so> S0,22; construct(upper(b))
and not (b = ¢) and
l :constructed(lower(b), so;25)) [T

meaning that to construct b we must first execute some plan step z; and then construct the
uppper part of b, provided that the pair <sg;2 supper(b), so;z3> is less than the pair <b,
s> with respect to some well-founded relation <a, that b is not the empty building and
that the lower part of b is constructed after the execution of zy. The boxed subsentences
of these two rows are unifiable, with a most general unifier

{u — lower(d), s «— sg, zp constr{lower(b))}.

Applying the resolution rule, we obtain (G11 in the construct(b) proof)

<So;22upper(b), so;zm> <4 <b, 50> s0,; constr(lower(b));
and not (b = ¢) construct(upper(b))

In other words, to construct b, first construct the story lower(b) and then construct the
building uppper(b), provided that the pair <so;z:upper(b), so;z> is less then the pair
<b, 50> with respect to some well-founded relation <, and that b is not the empty
building. As we see, the subplan constr is introduced in the plan entry, and in the final
plan, provided that we can establish this goal.

9 Discussion

The deductive steps that introduce relevant features in construction plans have been illus-
trated with examples taken from a proof for a multi-story building. The logical framework,
an adaptation of situational calculus for automated planning, is domain-independent and
not committed to any specific vocabulary. In the field of civil engineering, it allows us to
synthesize construction plans containing desirable features such as sequencing, parallelism,
contingency, repetition and modularity. In particular, such powerful constructs as contin-
gency and repetition enable the system to account for conditions not known at planning

14

time and to return a compact representation of repetitive patterns. Such an expressive
power is not achieved by other construction planning systems.

The plan illustrated in this paper was derived with the Deductive Tableau System
[BMWQ0]. Originally, the system was an interactive implementation of the theorem-
proving framework described in [MW90, MW85]. Then, it was extended to allow the
synthesis of programs. Presently, we are testing a new version of the system that generates
plans either automatically or interactively. In the latter case, the user can control the
derivation process to introduce desired features into the plan.

Fragmentation between different phases of a project, such as design and planning, has
a relevant impact on the construction industry [HLP*89]. For this reason, considerable
research in civil engineering is now concentrating on the automatic generation of symbolic
description from architectural drawings. Encouraging results [[ULD8&9, CLS91] indicate
that it should be possible to integrate Deductive Tableau with a 3-D CAD system to
automatically extract the axioms describing the structure of the facility to be constructed
from purely geometrical information.

15

Appendix

Plan: construct(d)

and not (b = ¢)

construct upper(b))

No | Asrt Goal s, construct(b) Explanation
G1 .'constructed(@, s0;21) [T 50,21 initial goal
A2 | if not (z = ¢) then building
lx = lower(z) o upper(z) |~ decomposition
axiom
G3 not (b = ¢) and S0,21 eq G1,A2
:constructed(lower(b)oupper(b),
SO;ZI)
:constructed(uoz, s) =
A4 :constructed(u, s) and |~ constructed
:constructed(z, s) distribution
axiom
G5 not (b = ¢) and S0;21 eqv G3,A4
:constructed(lower(d), so;z) and
:constructed(upper(b), so;z) [t
A6 | if <six, s> <, <b, so> then induction G1
:constructed(z, s;construct(z)) |~
GT7 <80;22:upper(b), so;za> <o <b, 59> 80,22, construct(upper(b)) | res G5,A6
and not (b = ¢) and
:constructed(lower(b), |,
So, 23, constructupper(b)))
A8 | if :constructed(u, s) then frame axiom
:constructed(u, s;z) |~
G9 <$g;22 ‘upper(b), sg;23> <o <b, 50> 80,22, construct(upper(b)) | res G7,A8
and not (b = ¢) and
:constructed(lower(b), sq;2;)) [t
A10 | | :constructed(u, s;constr(u)) [constr specifi-
cation axiom
G11 <so;22:upper(b), so;z> <o <b, 59> so;constr({lower(b)) res G9,A10

16

<(L'1, 81> -<H1(ﬁ><332, 83>

else constr(lower(d));

construct(upper(b))

Al2 _ - second-
=N projection
axiom
G13 Lupper(b) <o b[" and not (b = ¢) so;constr{lower(d)); eqv G11,A12
construct(upper(b))
Al4 | if not (z = ¢) then upper axiom
uppen(z) <puuq T
G15 not| (b =¢)” so, constr(lower(d)); res G13,A14
construct(upper(b))
G16 L:constructed(e, S0,21) So; eq G1,G15
if (b =)
then z
else constr(lower(b));
construct(upper(b))
Al7 || :constructed(e, s;A) | empty building
axiom
G18 true So; res G16,A17
if (b =c¢)
then A

The final plan is:

construct(b) <

if (b =¢)

then A

else constr(lower(b));

construct(upper(d)

17

Plan: constr{story)
No | Assertion Goal | sg,constr(story) Explanation
Al | if :placed(support(z), s) and sequencing
not :placed(z, s) then
:placed(z, ;place(z, s)) |~
A2 | of (:placed(support(z), s) and parallelism
:placed(support(y), s) and
not :placed(z, s) and not :placed(y, s)
and :available(teams, 2, s)) then
(:placed(s:z, s;(place(z)||place(y))) and |
:placed(s:y, s;(place(z)||place(y))))
A3 | if (not z=y) then sequencing
‘placed(z, s) = :placed(z, ;place(y, s))| frame axiom
A4 | of (not z=y and not z=2) then parallel
:placed(z, s) = n frame axiom
:placed(z, ;place(y, s)||place(z, s))
A5 . ;placed([mg},. sl) Edl _ list
(:placed(z, s) and :placed(l, s)) distribution
A6 || :placed([], s)|” empty list
AT || support(c,)=[ground] |~ column 1
A8 support(cy) =[ground] [~ column 2
A9 | | support(beam)=[c;,cq]|" beam
A10 || :placed(ground, s)|~ ground
All | not| :available(teams, 2, s) [t initial state
A12 | not | :placed(c;, so)[* initial state
A13 | not| :placed(cy, so) |+ initial state
Al4 | not| :placed(beam, so)|* initial state
Al5 | | story = [c1,c,beam] |~ story definition

18

not :placed(beam, so;z) and
‘placed(c1, so,2) and :placed(cy, so;2,)

G16 :placed() story/|, so;z) 5021 initial goal
G17 I :placed([c,cy,beam], sp,2;) $0:21 eq A15,G16
G18 :placed(cy, sq;z) and 80,21 eqv A5.G17
:placed([cy,beam], 55,2)
G19 :placed(c;, so,z1) and :placed(cy, s0;21) and | sg;zq eqv A5,G18
:placed({beam), sp,;2)
G20 :placed(cy, sp,z1) and :placed(c,, 50,21) $0;21 eqv A5,G19
and :placed(beam, so;21)
and | :placed([], so;z) [T
G21 ‘placed(ci, so;21) and :placed(c,, S0,21) $0;21 res A6,G20
and | :placed(beam, so;2;) |t
G22 :placed(support(beam), sp;2,) and 80,22, place(beam) res A1,G21
not :placed(beam, sy;z) and
[‘placed(cy, so;z;place(beam))| and
:placed(cy, o,z ;place(beam))
G23 :placed(support(beam), sp;2,) and So;22;place(beam) eqv A3,G22
not :placed(beam, s5,2) and
not _ and :placed(cy, so;z)
and :placed(cz, so;z;place(beamn))
G24 ‘placed(support(beam), sp;z) and $0;22,place(beam) res
not :placed(beam, sy;z) and not (c;=beam),
:placed(c;, sy;z) and G23
:placed(cy, so;2;place(beam))
G25 ‘placed(support(beam), sq;2,) and 50,22, place(beam) eqv A3,G24
not :placed(beam, sy;z0) and
not “ and :placed(cy, so;2)
and :placed(cy, s9,25)
G26 ‘placed(] support(beam)|, so;2:) and 50,22, place(beam) res
not :placed(beam, sy;2,) and not (cz=beam),
:placed(ci, so;2,) and ‘placed(cy, so;2) G25
G27 :placed([cy,c2], s0;22) | and 80,22 ;place(beam) eq A9,G26

19

G28 :placed([cz], so;22) | and 50,22, place(beam) eqv A5,G27
not :placed(beam, sq;zp) and
:placed(ci, so,2) and :placed(cy, so;25)
G29 :placed([], so;z) [t and 50,22 ;place(beam) eqv A5,G28
not :placed(beam, s5;z) and
:placed(cy, so;2) and :placed(c,, S0;22)
G30 not :placed(beam, sy;z) and S0,z ;place(beam) res A6,G29
:placed(cy, so;2) and :placed(cs, s0;22) [T
G31 not :placed(beam, so;(place(c;)||place(cz))) So; res A2,G30
and :placed(support(cy), sp) (place(cy)l|place(cy));
and :placed(support(c,), so) and place(beam)
not l :placed(c1, so)|” and not :placed(cy, so)
and :available(teams, 2, sq)
G32 not :placed(beam, so;(place(ci)||place(cs))) So0; res A12,G31
and :placed(support(c;), so) (place(cy)||place(cy));
and :placed(support(c,), so) place(beam)
and not | :placed(cy, o) |~
and :available(teams, 2, s)
G33 not :placed(beam, so,(place(c;)||place(cz))) S0, res A13,G32
and :placed(support(ci), so) (place(cy)||place(cy));
and :placed(support(c,), so) place(beam)
and | :available(teams, 2, sq) |~
G34 not :placed(beam, so,;(place(c;)||place(cy))) So; res A11,G33
and L:placed(support(cy), so) (place(c1)||place(c2));
and :placed(support(cy), so) place(beam)
G35 not :placed(beam, so;(place(c;)|place(cs))) So; eq A7,G34
and :placed([ground], so) (place(cy)||place(cz));
and | :placed(suppori(c,), s) place(beam)
G36 not :placed(beam, sy;(place(c;)||place(c;))) So; eq A8,G35
and | :placed([ground], s,) (place(cy)||place(c2));
- place(beam)
G37 not :placed(beam, so;(place(c;)||place(cy))) So; eqv A5,G36
and | :placed(ground, so)[* and :placed([], so)| (place(ci)||place(cs));
place(beam)

20

G38 not :placed(beam, so,(place(c;)|place(cy))) So; res A10,G37
and | :placed([], so)|* (place(c)||place(c,));
place(beam)
G39 not [.’placed(beam, so;{place(cr)||place(c2))) | | so; res A6,G38
(place(cy)||place(cy));
place(beam)
G40 not | beam=cy |~ and not beam=c, and So; eqv A4,G39
not :placed(beam, sp) (place(cy)llplace(cz));
place(beam)
G41 not| beam=c, |~ and not :placed(beam, S0) S0; res
(place(c;)|place(c,));| not (beam=c;),
place(beam) G40
G42 not | :placed(beam, so) |~ So; res
(place(ct)||place(cz));| not (beam=c,),
place(beam) G41
G43 true So; res A14,G42
(place(cy)||place(cy));
place(beam)

The final plan is:

constr(story) < (

place(cy) ||
place(cy)

place(beam)

21

)

?

References

[BD77]
[BMW90]
[CLS91]

[DLHRS9)

[Fay79]
[FNT1]

[Geo87]
[Gre69]

[HLP+89]

[HZGR*87]

[TULDS8Y]

[Kar89]

R. M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24:44-67, 1977.

R. Burback, Z. Manna, and R. Waldinger. Using the Deductive Tableau
System. Chariot Software Group, 1990.

J. Cherneff, R. Logcher, and D Sriram. Integrating CAD with construction-
schedule generation. Journal of Computing in Civil Engineering, 5, 1991.

A. Darwiche, R. Levitt, and B. Hayes-Roth. Oarplan: Generating project
plans in a blackboard system by reasoning about objects, actions and re-
sources. Journal of Artificial Intelligence in Engineering Design, Analysis
and Manufacturing, 3, 1989.

M. Fay. First-order unification in an equational theory. Proceedings of the
Fourth Workshop on Automated Deduction, pages 161-167, 1979.

R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

M. Georgeff. Planning. Annual Review of Computer Science, 2, 1987.

C. C. Green. Application of theorem proving to problem solving. Proceedings
of the International Joint Conference on Artificial Intelligence, pages 219—
239, 1969.

H. C. Howard, R. E. Levitt, B. C. Paulson, J. G. Pohl, and C. B. Tatum.
Computer integration: Reducing fragmentation in AEC industry. Journal of
Computing in Civil Engineering, 3, 1989.

C. Hendrickson, C. Zozaya-Gorostiza, D. Rehak, E. Baracco-Miller, and
P. Lim. Expert systems for construction planning. Journal of Computing
in Civil Engineering, 1, 1987.

K. Ito, Y. Ueno, R. Levitt, and A. Darwiche. Linking knowledge-based sys-
tems to CAD design data with an object-oriented model. Technical Report 17,
Center for Integrated Facility Engineering, Stanford University, 1989.

N. Kartam. Investigating the Utility of Artificial Intelligence Techniques for
the Automatic Generation of Construction Projects Plans. PhD thesis, Dept.
of Civil Engineering, Stanford University, 1989.

22

KLW91]

[MH69)

MW85]

(MW87a]

[MW87b]

[MW90]

[NSL88)

[Ros81]

[Sac73]

[THDS0]

[Wal81]

N. A. Kartam, R. E. Levitt, and D. E. Wilkins. Extending artificial intel-
ligence techniques for hierarchical planning. Journal of Computing in Civil
Engineering, 5, 1991.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4, 1969.

Z. Manna and R. Waldinger. The Logical Basis for Computer Programming,
volume 1. Addison Wesley, 1985.

Z. Manna and R. Waldinger. The deductive synthesis of imperative LISP
programs. Sicth AAAI National Conference on Artificial Intelligence, 1987.

Z. Manna and R. Waldinger. How to clear a block: a theory of plans. Journal
of Automated Reasoning, 1987.

Z. Manna and R. Waldinger. The Logical Basis for Computer Programming,
volume 2. Addison Wesley, 1990.

D. Navinchandra, D. Sriram, and R. Logcher. Ghost: A project network
generator. Journal of Computing in Civil Engineering, 2, 1988.

S. Rosenschein. Plan synthesis: a logical perspective. Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, pages 331-337, 1981.

E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Proceedings of
the International Joint Conference on Artificial Intelligence, pages 115-135,
1973.

A. Tate, J. Hendler, and M. Drummond. A review of ai planning techniques.
In J. Allen, J. Hendler, and A. Tate, editors, Readings in Planning, pages
36-53. Morgan Kaufmann, 1990.

R. Waldinger. Achieving several goals simultaneously. In N. Nilsson and
B. Webber, editors, Readings in Artificial Intelligence, pages 250-271. Tioga,
Palo Alto, 1981.

23

