C I F E CENTER FOR INTEGRATED FACILITY ENGINEERING

The System for Knowledge-based Layout
(SKY) Project

by
Masaru Tamaki

and
Dr. John Kunz

TECHNICAL REPORT
Number 76

October, 1992

Stanford University

The System for Knowledge-based Layout
(SKY) Project

Masaru Tamaki, Visiting Fellow from TAISEI Corp.

Dr. John Kunz, Senior research associate at CIFE,
Stanford University

1992.10

SUMMARY
CIFE TECHNICAL REPORT #76

Header:
Title: The System for Knowledge-based Layout (SKY) Project
Authors: Masaru Tamaki

Dr. John Kunz

Publication Date: October 1992
Funding Sources: Masaru Tamaki was supported by Taisei Corp. Japan.

1.

Abstract:

This report is about the system for knowledge-based layout which focuses on
industrial facilities' conceptual layout. Layout is very important in industrial facilities
such as a factory, a warchouse, a distribution center and so on.

Layout used to be made usually according to the designers' experiences.
Experience may produce preconception that can obstruct the designers to reach the best
solution. This system explores every possibility to look for the best solution under very
basic constraint such as site conditions and facility requirements.

This system consists of three parts. They are adjacency definition component,
layout generation component and evaluation component. The adjacency component
defines departmental adjacencies according to their requirements. The layout generation
component generates all possible layout by search technique with pruning by some
rules. The evaluation component evaluates alternative layouts according to the
preference factors entered by the user.

This report describes the background of the system and the details of the system
which includes the algorithm of reasoning, knowledge representation, computer source
code and so on.

Subject:

This system addresses the conceptual layout of industrial facilities. The knowledge
to make a conceptual layout is implemented in the computer using some basic Al
techniques. By using this system, the users can explore every possibility without any
preconception and make clear the requirements for the layout. The users can easily
customize the system according to their own knowledge.

Objectives/Benefits:

The goal of this study is to develop a prototype layout system which has a potential
for the real use.

Methodology:

The system is developed by an object-oriented programming environment called
ProKappa. A Macintosh computer is also used to make the from/to chart which
describes an information about a material flow in the facility. The data is transformed
by a network.

5. Results:

The output of this study is an application software by ProKappa named SKY and a
video which shows the concept and the basic operation of the system.

6. Research Status:

The system is successfully finished as a prototype system. There remained several
problems for the real use. The main problem is the execution time. In order to reduce
the execution time, the more powerful machine is desired. A new search pruning
knowledge is also desired to reduce the execution time. The system is carefully
designed to allow the users to add a new knowledge.

This system is so flexible that there are many potential future developments for it
such as integration with facility management, addition of 3D features, addition of
dimensional information, suggestion of material handling routes and handling methods,
and so on.

The System for Knowledge-based Layout

SKY Project

Contents

1. Goal and Scope of the research
A. Final Goal of the research
B. Scope of the research and importance of layout study
1. Background of the research and problem definition
A. Conventional way of designers' thinking
III. System configuration
A. Process analysis to get From/To Chart by HyperCard
B. Data transfer from a Macintosh to a SUN workstation
C. A SUN workstation and ProKappa
IV. Modeling
A. Modeling and objects
B. Modeling of process
V. Knowledge implementation
A. Adjacency definition
B. Search logic
C. Evaluation
VI. Conclusion, benefits of the system
VII. Future effort
VIII. Source code
A. Adjacency.ptk
B. LayoutMethods.ptk
C. LayoutRules.ptk
D. Evaluation.ptk
E. Interface.ptk

N N B bW e

=

0
13
14
14
17
18
18
25
42

54

55
56

The SKY Project i

I. Goal and Scope of the research
A. Final goal of the research
The final goal of the research is to utilize computer technology to make rational decisions in each
step of the facility engineering process. Facility engineering includes the following components.

1 Programming:
In this phase the following issues are determined.
- What to build, What to invest (Decision making about investment)
- Where to build (Site selection)
- How large it should be (Market research, Future prediction)

2 Planning:
In this phase conceptual through detailed design is performed, including;
- Layout ’
- Architectural Planning (Structure, Utilities, Materials)
- Machine, equipment planning (Handling system, Production system)

3 Project Execution:
In this phase the project is executed in practice and the following things are involved.
- Project Management
- Construction
- Procurement

4 Maintenance:
The last stage of facility engineering is the maintenance.
- Facility management

- (the data acquainted in this process should be input data of Programming process)

Computer technology can be applied to deal with information to make decisions rationally. There
is much room for computer application in this process.

This research demonstrates a system named the System for Knowledge-Based Layout (SKY) as an
example of computer usage for layout analysis and of industrial factories and warehouses.

Fig. 1-1 shows the concept of the total facility engineering and the scope of this research.

The SKY Project 1

Fig. 1-1

Systeﬁé Scope

System Definition

CAD System

i ok e 1o AR 5. OV 34 518 D540 St w2 e e e SN

The SKY Project I

B. Scope of the research and importance of layout study
The SKY project addresses the conceptual layout of industrial facilities such as a factory or
warehouse or distribution center in which engineering issues are more important than aesthetic issues.
This project is related to the work of Chinowsky 1 which considers architectural layout using "bubble

diagrams".
In these facilities, layout study is very important. There are several reasons for this.

First a poor layout is a source of constant loss to the company because of additional material
handling, poor stock locations and other inefficiencies. These losses accumulate day after day, month
after month, year after year. The cost of changing the layout once it has been made is too great. So the
losses continue, as a constant drain on the business. Profits which could have been secured at little or no
extra cost when the layout was originally made are lost forever.

Second, a poor layout causes danger such as cross traffic of workers and machinery.

Third, bad conditions caused by a poor layout reduces workers’ motivation and effectiveness.

These losses and dangers can be minimized by making a good layout.

SKY focuses on conceptual layout, the first step in the layout process. Effective and clear
conceptual layout makes the later detailed layout steps relatively quick and simple. SKY also makes
layout requirements explicit and easy to change. Since layout is fast, clients can do repeated what-if
studies to clarify their requirements and to do much higher quality layouts than if they can try only a small

number of layouts. SKY also allows evaluates layout alternatives.

SKY is an attempt to rationalize this conceptual layout by using computer technology such as

object oriented programming.

1paul Scott Chinowsky "The CAADIE Project", CIFE Technical report #54, May 1991

. 3

The SKY Project 11

II. Background of the research and problem definition
A. Conventional way of designers’ thinking
In the conceptual planning phase, designers consider mainly two things:
“Site condition” and “facility requirements”.

Site condition includes the following issues as fig. 2-1 shows.
Property lines,
Street locations,
Compass direction,
and Landscape features including existing vegetation and so on.

< Street location

&
.I\R:

TR
N &

Property lines

-

Landscape features

Compass direction

“~

Fig.2-1

Attributes of the site considered in facility design

Factories are organized by departments or major functions. Facility requirements designers must

also know:

Number of departments and their names;

These departments’ functions and special requirements; (such as needsAccess; useFire)

Their size;

Their shape; (Block type or Linear type)

The flow of materials from department to department

Location for delivering and shipping of product.

The SKY Project 11

And the relationships among departments (such as preferred adjacencies and preferred negative
adjacencies ;)
There are several conventional ways to express these departmental requirements (Fig. 2-2).

Department-| Department-I

4

Department-I1l

a Department-1il
@ | ‘ Department-1U
\\\ @ Department-U

A\

Fig.2-2

Examples of departmental requirement's description

Fig. 2-3 summarizes the department requirements in SK'Y.

Department name Material Flow Area [Special usage |Requirements
to D1 to D2 to D3 to D4 to D5|(sqm)
D1 98 3 12 8| 150|Receiving needs access
D2 4 g8 21 12 50}juse fire
D3 11 15 56 11} 100]human space
D4 2 5 8 87| 200|store Explosive
1 S) 45 12 23 22 150|Shipping needs access
Fig.2-3

Department attributes used in SKY

" First column shows the names of departments. In this case there are five department to be laid out.
Second column shows the relative amount of material flow from one department to another.
Third column shows the department size.

The SKY Project 11

Forth column shows the department function, and fifth column shows special requirements to
enable each department to perform its function. For example, a shipping department needs access to a
street to perform its function.

Considering these conditions and requirements, designers generate several alternative layouts, i.e.,
arrangements of departments.

After generating layout alternatives, designers evaluate alternative plans to select the best one.

To evaluate the alternatives, they consider if the alternative fits the requirements such as adjacency

requirements, view requirements, access requirements and so on.
After selection of the departmental layout, designers develop a detailed floor plan.

So the process of human layout planning is as Fig. 2-4 shows.

Get Conditions & Requirements

Generate Layout

Choose

___T———-J

Design Development
\W

Fig.2-4

Human layout planning process

SKY attempts to transfer this human layout-planning process to the computer.

The SKY Project 111

III. System configuration
A. Process analysis to get From/To Chart by HyperCard

Material flow is one of big issue which affects the layout of industrial facilities. A from/to chart
(Fig. 3-1) expresses the material flow; that is, each cell of the matrix shows the number of material
handling trips per unit time from each department to every other department. The numbers suggest the
cost or difficulty of material handling, and they imply the required adjacencies among departments. The
bigger the number is, the harder it is to carry materials between two departments. Department pairs with
the largest numbers, e.g. D1 and D2, should be allocated adjacent to each other to facilitate material flow.

Department name Material Flow

to D1 to D2 to D3 to D4 to DS
D1 98 3 12 8
D2 4 88 21 12
D3 i1 15 56 it
D4 2 5 8 87
D5 45 12 23 22

Fig. 3-1

Example of a from/to chart

Each number in this matrix must be normalized by the same standard. As Fig. 3-2 ~ Fig. 3-4
show, in this process analysis system we can set the type of material, handling method and terms to
normalize the difficulty of handling different materials by different methods.

The SKY Project

CRAFT.test-case

=

MEAESE

col 479 oS> BEHE. PR.
ok yrotms. BNEFRUREE

IEMosshEstET
3 r ENMBPmOTBIEE
b 5 TELH TR
SHENGVET,
I - Bifil) fBEIF
fREAND L, TBHE)
Ao, E 1
LB S i HES:
AhLET,

Dy - kRTeh-
VILAIEEHLET .

Type of Load

Palett
Box

ATIH

[Tien || ares |[(me om | rere | EEREDR

&7

%8
filt

Fig.3-2 : Normalize load type

B

CRAFT test-case FIg|

MHyESE

CoLA79 toPTESEETFRINSE

I X TR DR

Handling Mthoadt Convert Ratio=

WECIEHE(CRRTE
w3 ke, (REEERGE
TILERHOET .
TROEFER) HEFER
EANL, TEEU 18
[CRREFCITT SR
(REWEVAEX
EANDLET,
Us—-oRipFEeh-
YNLRIBEHLET .

AN

Conveyor i
AGY 10
Human Handling

[T8er |81

[~
oo

IR T r. &t |

BRERT

Fig.3-3 : Normalize handling method

. The SKY Project 11l

HIE

CRAFT.test-case

miEsse ETBcol) BOS o ALFSEE oBRERY
£ THETOMEZOA | Unit time Convert Ratio
WA A th— LT B ,
BB TIRD T DIR 5
HEARELET. 20

resfEIEar) AR IFA
EANL. NREE)
TREeBorynd %1
(ZMEBY) (CEREL
RIS OREERAN
LFET..
Uy - EBTrh-

AT
[(Teen | Brve |(fz om |[(mere | ECHETE | ST

Fig.3-4

Normalization of unit term

For example, fig. 3-2 says that it is as 10 times more difficult to carry one pallet than to carry one
box. Fig.3-3 says human handling should have higher weight rather than any other method.

These weighting factors are used to calculate the numbers of a From/To Chart. Fig. 3-5 shows
how the numbers are normalized.

B

The SKY Project 181

CRAFT.test-case EIE]
TA2%EE
its
TEHE TENo. 002
Processing
Tis4ae BRI -7 4971 24
GCDepartment| Material No. | Product , Type | Gtty [Method | term| Value 1
'ﬁfj Sasage-1 Mot esiat-1 00101 |Cher Pdett 10] AQY Day 1000.00 |{>
Sasge-1 Metetih2 00102 | Table Pelett 10| AGY Dey 1000.00
L
= O
Assembing | Pats-1 00201 |Char Peleit 10] AGY Day 1000.00 |
1& Assembing | Pats-2 00202 | Teble Peelt 10| AGY Day 1000.00
Saage-1 Defedlives 00203 | Cthers Bax 1| HunenHanq Day 20.00
Frishing Pets-3 00204 |Cher Pelett S| AGY Day 500.00
I Fristing Pats4 00205 | Table Pelett 5| AGY Dey 500.00
= A
B I I 5
L THEm%ER | (ETIEEE <:] ECGi CI) & Ti2dPR l l T3E7 Uub l

Fig.3-5

Normalization of flow value

As the output of this process analysis system we can get the From/To Chart such as fig. 3-1.

10

The SKY Project

[I

B. Data transfer from a Macintosh to a SUN workstation

The From/To Chart form should be transformed to the form such as fig. 3-6 so that ProKappa? can

read and create instance objects for each departments with parents, slots and slot facets as shown in the

figure. A macro program by Excel does this transformation. This program is shown in fig. 3-7.

Application sky

Instance D1

Parent -> Departments

Slot MaterialFlow > ?
Facet D1 ->
Facet D2 ->
Facet D3 ->
Facet D4 ->
Facet D5 ->

Instance D2

Parent -> Departments

Slot MaterialFlow > ?
Facet D1 >
Facet D2 ->
Facet D3 >
Facet D4 ->
Facet D5 ->

Instance D3

Parent -> Departments

Slot MaterialFlow -> ?
Facet D1 ->
Facet D2 ->
Facet D3 ->
Facet D4 ->
Facet D5 ->

Instance D4

Parent -> Departments

Slot MaterialFlow -> 7
Facet D1 ->
Facet D2 ->
Facet D3 ->
Facet D4 ->
Facet D5 ->

Instance D5

Parent -> Departments

Slot MaterialFlow -> ?
Facet D1 ->
Facet D2 ->
Facet D3 >
Facet D4 ->
Facet D5 ->

11
15

56
11

o0 O 0o Lh b

2 proKappa is an expert system shell that implements the object oriented environment. It is developed by Intelli Corp.

Fig. 3-6 : Data format for ProKappa

11

The SKY Project 111

- convertMacro

"=FOPEN(""TextFile"",3)"

Application sky " FWRITE(B3,A4&CHAR(13)&CHAR(13))"
"=SET.NAME(""Site"",SELECTION())"

5 "~SET.VALUE(A6,ROWS(SELECTION())-1)"

5 "_SET.VALUE(A7,COLUMNS(SELECTION())-1)"
“=FOR(""y"",1,A6)"
“=SELECT(""R[1]C")"

Instance »_FWRITE(B3,A11&CHAR(32)& ACTIVE.CELL()&CHAR(13))"

Parent -> Departments “=FWRITE(B3,CHAR(9)&A12&CHAR(13))"

Slot MaterialFlow ->? "~FWRITE(B3,CHAR(9)&A13&CHAR(13))"
"=FOR(""x"",1,A7)"
“=SELECT(""RC[1]"")"

0 "_IF(ACTIVE.CELL()="""" SET.VALUE(A17,0),SET.VALUE(A17,ACTIVE.CELL))"

" FWRITE(B3,CHAR(9)&CHAR(9)&""Facet ""&INDEX(Site, 1 x+1)&""
>"&CHAR(9)&A17&CHAR(13))"

=NEXT()

"~FWRITE(B3,CHAR(13))"
"-SELECT(OFFSET(ACTIVE.CELL(),0,1-x))"

=NEXT()

=FCLOSE(B3)

=RETURN()
Fig. 3-7 : Convert Macro by Excel - S

The text file transformed as fig. 3-6 can be used as an input data to ProKappa. We can transfer the
text file from a Macintosh to a SUN workstation by MaclIP and MacTCP. Fig. 3-8 shows the process of
data transfer from the Mac to a SUN.

ki

SUN Workstation

ProKappa

Process Analysis PrkLoadAsciiApp(file)

by Hyper Card T
Tent File ——— FTP —_ Teut File

by MaclP

Fig.3-8

The SKY Project ' | 11

C. A SUN workstation and ProKappa
The system configuration of SKY is shown in fig. 3-9.

Application == SKY

y,
)

C-To || Active Dialog || Data-Base || Monitor
ols Image Box Interface

—< ProKappa

Objects ProTalk

MOTIF

_
(’
C X Window
X y
4 3
UNIX (OS)
2\ y,
<
Hardware ’

(Sun Sparc Station)

Fig.3-9
SKY is built using ProKappa, runnig on a SUN with
UNIH, C, H and Motif

13

The SKY Project I\

IV. Modeling

A. Modeling and objects
SKY attempts to transfer the human Jayout-planning process which was discussed in chapter 2 to

the computer. To let the computer perform these design and analysis tasks, we need to make a model of

the real problem inside the computer.

Site condition is represented by a grid. (Fig. 4-1) We call the grid elements "rooms". The size of

the site is determined by the number of rooms.

LI, i
SV e

Degetation

Departments

i

Z
1
55

3
3

e 53

,
t
33
‘t’ g 2y
RS
NR)
B6E
~:~:~:
~

Nt
s >
2 T
ittt
AR
RRARARIERIMERY

Fig.4-1
SKY represents the site by a grid

W

The street location and the landscape features are represented by pre-occupation of rooms.
The upper direction is always considered to be North.

Departments to be allocated are represented by occupants of rooms.

In the modeling of SKY, rooms and occupants are two major objects.

The attributes of these two objects are shown in fig. 4-2 and fig. 4-3.

The SKY Project

1\

Fig.

4-2

The attributes of the "Room" object.

Object Browsser

B

' T(I';ol View
[#pp Edit View instrument | Object Edit View Instrument

"R DistogBoxspp sky App

'l Actvebnagesspp rpre62 Ié}ﬁoomss
GetData rpres3 W

r

| stot Edit View inatrument

Rooms Room33 Room54
Assignt *?Rooms.Assign! *?Roomrs Assign! *7Rooms.Assign!
countNeighbors! ‘?Rooms.countNeighborst *‘?Rooms.countNeighbors! “?7Rooms.countheighborst
East 7 Room&3@sky RoomG4@sky
FindNelghbort “?Rooms.FindNaighbor! ‘T Rooms . FAndNalghbort *7Roomes. Find Naighbort
mage 7 rooms3 @sky room54@sKy
inltaiiral ‘?Rooms.Intinitzal ‘?7Rooms. ntalrel ‘TRooms.ntlakzel)
InitializeAl! ‘TRooms.intalzeAR! '7Rooms.inlalzeAlll ‘?7Rooms. ntiakzed!

'] LookAround! “TRooms.LookAround! ‘7Rooms. LookAround! ‘7Rooms. LookAround!
LookEast! ‘?Rooms.LookEast! *?Rooms.LookEast! *‘?Rooms.LookEast!
LookNorth! *?Rooms.LookNorth! ‘T Rooms.LookNorth! *7Rooms.Look North!
Look Southt ‘?Rooms. Look South! ‘T Rooms.Look 3outht ‘?Rooms.LookSouth!
LookWest! ‘7Rooms.Lookwest! ‘7TRooms. LookWest! *7Rooms.LookWes{!
Nelghbors(mv) ? Room43@sky, RoomE3@3ky ... Room44@sky, Roomb4@sky ...
North ? Room52@sky RoomS53@sky
numberOfNeighbors § 4 4
Occupant ? ke 7
Preoccupant 7 1 ?

PreoccupantColor ? Btack Black

Preoccupy! ‘?Rooms.Preoccupy! ‘?Rooms.Preoccupy! ‘7Rooms.Preoccupy!
South 7 Room$54@sky RoomSS @sky

west ? Room43@sky Roomd4@sky

X ? § S

Y ? 3 4

15

The SKY Project

IV

Fig. 4-3

The attributes of the "Department" object

4.
|

Ohjact Browsser

1

Tool View

[Ppp Edit View Istrument | Object Edit View mstrument

DialogBaxApp sky App —_—
ActivelmagasApp Occupants ,m
sky | oz |
GetData) epartments (K]
r
[S0t Edit View Instrument
Departments D1 D2
Adjacency 7 7 1
AverageFlowl ‘TDapartments.AveragaAow! ‘tDepartments.AverageFlowl ‘TDepartments. AveragaFlow!
CaiDIst ‘tDepartments.CaiDist ‘TDepariments.CalDIs! ‘TDepartments.CalDist
Color ? Aed Yelow
DeskedHeighbors(mv) ? 7 7
feasibility 7 ? 1
Features(mv) ? needsAccess@sky usePre @sky
FindEastViewRoom! ‘Departments.FindEastView Room! ‘IDepartments.FindEastView Room! ‘TDepartments.FAndErs View Rod
AndGoodViaw Rooml ‘TDepartments. FindGoodViewRoom! ‘TDeparimonts.FindGoodViawRooml ‘7 Departments.Find GoodViaw Rof
findNegativel ‘TDepartments.findNegativel ‘TDepartments.findNegativel ‘1Departments.find Hegative!
FindNorthViewRooml ‘7Dapartments.findNorthViewRoom! ‘TDepartments.FindHorthViewRoom! “7Departrnents. FindHorthView Rd
findPositive! ‘?Depariments.findPosilive! ‘TDepariments.findPositival ‘1Departments.find Positive!
Find SouthView Room! ‘IDepartments.FindSouthViewRoom! ‘1Depariments.FindSouthViewRoom! ‘?Departments.Find SouthView Rg
FAnd Suniight Room! ‘TDepartments.Find SunlightRooml ‘tDepartments.Fliod SurdightRoom! ‘1 Departments. Fnd Sunlight Roon
FindWesiViewRoom! ‘TDepariments.FindWestViewRoom! ‘IDepariments.FindWestViewRoom! *TDepartments.FndWestView Ros
FirstRoom ? Room33@sky Room34@sky
Friends(mv) 7 ? h
GalRidOrMe! ‘?Depariments.GelRklOfMel ‘1Depariments.GalRidOfMel ‘1Departments.GelRidOfMel
LastRoom ? Room32@sky RoomE1@sky
MaleraFlow ? 7 K
Matarial HowAverage ? 24 25
needsficcess 1 YES HO
needs Suniight 7 HO HO
needsView 1 NO HO
negativeAdfacencles(mv) T ? DAQsky
NoOfRooms 7 4 - 4
NoOfStranger ? 0 3
HoOfwaiting ? 4 4
Occupants{mv) 7
positiveAdjacencies(mv) 7 D2@sky, D5@sky Dig@sky
PreAssignRoom ? 1 7
SetAdjl:rot *?Departments.SetAdjinfol *7Depariments.SatAd|infol ‘?Departments. SetAd|infol
SetFeaturelnfol ‘?Departments.SelFeaturein{o! ‘Departments. SetFeatureinfo! ‘7Departments.SetFeatureinfo!
Strangers(mv) ? 1 D1 @sky, DS@sKY ...
Test ‘IDepartments_Test ‘tDepartments_Test ‘IDepartments_Test
Type 7 Block 1

16

The SKY Project 1\Y

B. Modeling of process
The human layout-planning process which is discussed in chapter 2 is represented by the flow
diagram shown on the left and implemented in the control panel shown on the right in fig. 4-4. The
numbers indicate the correspondence between the human process and computer process.

= SKYControler e
%2

Shaw LasettFane]

Conditions & Requirements

Y

Layout Generation G

Evaluate Resylt

l Show Result!

Start Lavont!

REesef Resultl

Reset Lavout!?

*3

setie] Mode

Choice —
m Lantast
Y »

Design Development =1

Fig.4-4
Each black button on the SKY control panel
performs a procedure. The first set (*1)
allows the user to input data. The second and
third sets invoke SKY procedures.

17

The SKY Project V

V. Knowledge Representation
There are several kinds of knowledge and procedures which are needed to make a layout. They

include,

knowledge about how to set adjacency of each department

procedures to generate layout alternatives

knowledge about when to backtrack in the process of layout generation

knowledge about how to evaluate alternatives

knowledge about evaluation criteria accordidg to the situation of a project.

They are implemented in SKY as follows;

1) Adjacency---> OODB in object features

2) Layout generation ---> Exhaustive search

3) Search pruning ---> Rules

4) Evaluations ---> Several parameters

5) Recognition of criteria ---> Preference factor

The details of the implementation are discussed in the following sections.

A. Adjacency definition
How to set departments’ adjacencies according to their features is a very important part of layout

study. SKY stores this knowledge as objects’ attributes and rules.

1. Features and their compatibility
SKY has an object named “Features” and that object has attributes named “incompatible
features” and “compatible features”. For instance, a feature “hateNoise” is compatible with a feature
“humanSpace”, because these features do not disturb each other even if they are allocated near each other.
On the other hand, a feature “useFire” is incompatible with a feature “storeExplosive”, because these two

features adjacent can be very dangerous.
Fig. 5-1. shows the values of each feature. This table itself represents adjacency knowledge.

18

The SKY Project

Fig. 5-1

Object hierarchy of "Features” and attributes of them

A

—-— T
— | Muil-vaie Ust Probe | -1
T4 Objact Browser Tool View
1] Toot View
[Vele Edit View tnstrument
P’«pp Edit View Instrument I?b;ect Edit View Instrument humanSpace.incompatibleF saturas
DlalogBaxApp sky App nolsy Machina@sky
ActiveimagesApp :::ss::::ss shakingMachine @sky
| Er— A sarEhsivesy
1|l cetvata -'.
i RJuseFire |
! Features ;: -
; ¥ shalingMachine
R . marSpace . .
[Siot Eatt View mstrumant *
compatibleFeatures(mv) IncompatibleFeatures(mv)
needsACCess ? needs Gaan @sky
hatsShaks Iwaman Space @sky shakingMachine @3ky
hatlaNoise human Space @sKy notsy Machine @sky
usefire noisy Machine @3ky storeExplosive @3ky
storeExplosive 1 humanSpace @sky, usaFira @sky
noisy Machine useFire @sky human Space @sky, hateHoise @sky
shakingMachine 7 aman Space @3ky, hataShaks @3Ky
humanSpace hateShaka@sky, hateNoise@sky notsyMachine@sky, shakingMachine @sky ...
needs Clean 7 needshccess@sky

—Yre

19

The SKY Project v

2. Procedure of setting adjacency

The rules which define adjacencies are as follows:

First, a department has a negative adjacency with a department which has an incompatible feature
with it.

Second, a department has a positive adjacency with a department which has same or compatible
feature with it and has no negative adjacency with it. (Usually a department may have more than two
features.)

Third, a department can have a positive adjacency with another department if there is a large
amount of material flow between them and they have no a negative adjacency.

The details are as follows;

a) Negative Adjacency
Negative adjacency is set between two departments which have incompatible features. For
instance, negative adjacency is set between a department which has a feature “useFire” and a department

which has a feature “storeExplosive”.
usefire

@ \‘ == ms - Negative adjacency
|}
needsAccess \‘ 4! humanSpace
)

needsfAccess storekExplosive
Fig.5-2

The code to set negative adjacency is as follows;

method Departments.findNegative! ()

{

ClearValues(?self,negativeAdjacencies);

for 7D2 = find [adjacencyRules] ?self.negativeAdjacencies; /* invoke rules */
do;

return Null;

20

The SKY Project \Y

}

berule ad_rulel in adjacencyRules
{if:
7D2 == instanceof Departments;
D2 1= 7D1;
?f1 = 7D1.Features;
72 = 7D2.Features;
?fl.incompatibleFeatures == 7f2;
then:
7D1.negativeAdjacencies +== 7D2;
Print ("\n", 7D1, "negativeAdjacencies:", 7D2);

Positive Adjacency i fterwar
Two departments which have a negative adjacency can never have a positive adjacency.
Positive adjacency is set between two department which have compatible features and do not
have a negative adjacency. For instance, a positive adjacency is set between a department which has a
feature “hateNoise” and a department which has a feature “humanSpace” if they have no negative
adjacency. The same feature is considered compatible, so a positive adjacency is set between two
departments which have the same feature if they do not have a negative adjacency.

usefFire
(R)
“ = w e Negative adjacency
needsfAcces) i humanSpace
“ =P Positive adjacency
needsAccess storeExplosive
Fig.5-3

The code to set positive adjacency is as follows;

method Departments.findPositive! ()

{

ClearValues(?self,positiveAdjacencies);
/* find [positiveAdRules] 7D2 = ?self.positiveAdjacencies; **
---This code can get only one solution. */

21

The SKY Project \

for 7D2 = find [positiveAdRules] ?self.positive Adjacencies; [* invoke rules */
do;

return Null;
}

berule po_rulel in positiveAdRules
{if:
7D2 == instanceof Departments;
D1 1= 7D2;
7f1 = 7D1.Features;
72 = 7D2.Features;
M1 == 2;
7D1.negativeAdjacencies 1= 7D2;
then:
7D1.positiveAdjacencies +== 7D2;
Print ("\\n", 7D1, "positiveAdjacencies:", 7D2);
}

berule po_rule2 in positiveAdRules
{if:
7D2 == instanceof Departments;
D1 1=7D2;
?f1 = ?7D1.Features;
2712 = 7D2 Features;
7f1.compatibleFeatures == 7f2;
?D1.negativeAdjacencies 1= ?7D2;
then:
7D1 positiveAdjacencies +== 7D2;
Print ("\n", 7D1, "positiveAdjacencies:", 7D2);

Adding positive adjacency accordin he material flow
At this point we can draw a directed graph in which vertices represent departments and

branches represent positive adjacencies.
If every department is included in that graph, the adjacency setting is done. If some
departments are isolated, the following procedure is executed to connect every department in one graph.
1) First, we look for the dominant department which has the greatest number of successors.

Please see fig. 5-4. In this case, the dominant department is Dal.

o e
P - POSitive
Da3® Dij * Adjacency
o

22

The SKY Project \%

2) Second, we look for the orphan departments which are not connected in the graph which
includes the dominant department. In the case of fig. 5-4., Dd1, Dbj and Dij are the orphan departments.

3) Third, we look for the dominant department in the orphan departments. In case of fig. 5-4.,
Dbl is the dominant orphan.

4) Forth, we look for a department X (in this case it is Da3) from which a great number of
material flows to the orphan dominant department B(in this case Db1), and set a positive adjacency from
Xto B.

Dal ® Dbl

Da2 @ / ® Positive

/ @ Adjacency
o e

Newly added
@ positive
adjacency
Fig.5-5
5) At this point we draw the adjacency graph again and if every department is included in that

graph, the adjacency setting is done. If not we follow the same procedure from 1).

The code to add positive adjacencies is as follows;

method DeptControler.look Adjacency! ()

{
for 7D = find direct instanceof Departments;

do SendMsg(?D,AverageFlow!);

for 7D = find direct instanceof Departments;
do SendMsg(?D,findNegative!);
for 7D = find direct instanceof Departments;
do SendMsg(?D,findPositivel);

7dD = SendMsg(?self, Dominant!);
?self.DominantDept = 7dD;
?self.NumberOfOrphans = 72dD.NoOfStranger;

while 2dD.NoOfStranger >0;
do {
2orphanList = GetValues(?dD, Strangers);
70D = DominantD(?orphanList);
?oDnegativeList = GetValues(?oD,negativeAdjacencies);
for 7dept = find direct instanceof Departments;
do {
?dept 1= 70D;
?dept.MaterialFlow..70D > ?dept.MaterialFlowAverage;
?judge = Member_of(?dept,?0DnegativeList);
7judge 1= -1;

?dept.positiveAdjacencies +== ?0D;

23

S 3 L KR R 51 R e e oo e 3 41D e 4 P S e

The SKY Project

7dD = SendMsg(?self, Dominant!);

if ?self. NumberOfOrphans == 7dD.NoOfStranger;

then
SendMsg(CantGoAnyMoreDialogBox,PutOnScreenAndWait!);
return Null;

}

?self.DominantDept = 7dD;
?self. NumberOfOrphans = 7dD.NoOfStranger;

return Null;

}

mpletion of adjacen e
As the search to layout department is done along the graph of positive adjacency, every
department should be included in the graph like fig 5-6. If one is not, we must connect it manually.

Otherwise the unconnected department will not appear in the final layout.
usefire

= mm - Negative adjacency

needsAcces humanS$pace

- Poysitive adjacency

needsAccess storeExplosive

Fig.5-6

Example adjacency graph

24

The SKY Project : N4

B. Search logic
The main part of the reasoning of this system is Search. Human problem solving involves search.
The layout generating process is represented by a state-action tree in which the root vertex represents the
initial state which shows the starting room and starting department; branches represent alternative
operations which may be performed; internal vertices represent partially-specified states; and terminal

vertices represent fully-specified states.

Let’s see a very simple example which has 4 rooms and 2 departments which need 2 rooms each.
The whole search tree is like fig. 5-7

Fig.5-7

Simple example of search tree to layout 2 departments each with 2 rooms

Every room has a method slot that tells a room to assign itself to a given department.
The method says as follows; l
1) When you receive a message, let the department be your occupant.
2) If the department is not fully assigned, then look for your unoccupied neighbor and send a
message to it.
3) If the department is fully assigned, then look for the department which has positive adjacency
with the current one, and look for an unoccupied room which is a neighbor of one of the rooms occupied
with the previous department and send a message to the next room and ask it to assign itself to the next

department.

25

The SKY Project \Y

1. Backtrack and exhaustive search

ProKappa is very powerful to do this kind of search, because it can backtrack automatically after
fully exploring a possibility.
The code for search by ProTalk is as follows;

method Rooms.Assign! ()

{

JHemmmeeeee Assign to the current department. */
?RoomsInDept = generalControler.CurrentDept. NoOfRooms;

?CurrentD = generalControler.CurrentDept; /* Remember current Dept */

7self Occupant = ?CurrentD; /* Record current occupant */

generalControler.CurrentRoom = ?self;

?CurrentD.Occupants +== ?self;

roomControler.OccupiedRooms +== 7self;

?CurrentD.NoOfWaiting = ?CurrentD.NoOfWaiting - 1;

?self.image.Background = ?CurrentD.Color;

e End of assignment.--- */

fHememeee If the department is fully assigned */
if find count ?CurrentD.Occupants >= ?RoomsInDept;
/* Done with this department */
{

[*Feasibility Check */
/* Feasibility Check by Rules. ¥/
if SendMsg(DeptTest, checkAlll) == NO;
then

{
SendMsg(?self, Initialize!);
fail;}
else
/* End of Feasibility Check */

for find 7R = roomControler.OccupiedRooms;

do {
MextD = find 7R.Occupant.positive Adjacencies;
MnextD.NoOfWaiting > 0;
TnextD.NoOfRooms > 0; /* Next dept must need rooms */
?NextR = find 7R Neighbors; /* NextR = Find neighbor */
7NextR.Occupant == Null; /* Neighbor must be available */
if 7NextR.Preoccupant != Null; /* PreAssignCheck */
then ?NextR.Preoccupant == nextD;
generalControler.CurrentDept = TnextD;
I* Get ready to do next dept */
?CurrentD.LastRoom = ?self;
7nextD.FirstRoom = 7NextR;
if generalControler.Mode != DONE;
then SendMsg(?NextR, Assign!); /* Go assign next room, dept */
generalControler.CurrentDept = ?CurrentD;
/* Reset on return */
}
[*--- Evaluation of this alternative. */
(Omit. Please refer tp the original for the detail.)
f*---End Of Evaluation. */

SendMsg(?self, Initialize!);
return Null;

26

The SKY Project \

F End if "If the department is fully assigned. */

forfind { ?NextR = ?self.Neighbors; /* Get all remaining neighbors */
}
do { ?NextR.Occupant == Null; /* Next must be available */
if ?NextR.Preoccupant != Null; /* preAssign Check for Next */
then 7NextR.Preoccupant == generalControler.CurrentDept;

SendMsg(?NextR, Assign!);

1
SendMsg(?self, Initializel);
fail; /¥ Backtrack */
return Null;

)

Fig 5-8 on the next 3 pages shows how the message is sent and the backtrack occurs, and how all
possible alternatives can be explored. .

In this simple case, first the “Assign!” message is sent to the starting room which is assigned by
the planner (In this case the starting room is R11). Then the room looks for an empty neighbor, and
sends "Assign!" message to it.

After receiving a message, the second room lets the department be its occupant, and changes the
current department to D2 which has a positive adjacency with the previous fully assigned department D1.
Then it looks for an empty room which is a neighbor of D1’s room, and it sends a message to it.

These procedures are continued till there comes to a dead end, i.e., there is no room to send a
message or there is no more department to be assigned. When a room cannot find any room to send a
message to, it remembers where it got the message and sends a message back. The room which received a

message back to it looks for another possibility.

This is one example of exhaustive search in which all layout options are tried.

27

The SKY Project \%

Fig. 5-8 (1)
1: The message is sent to "R11". “R11" assigns "D1" to itself. 2: "R11" sends a message to its one of empty neighbors, "R12".
3: "D1" is fully allocated. The current department is changed to "D2". After that "R12" sends a message to its empty neighbor "R22",
4: "R22" sends a message to its empty neighbor "R21". 5: There is no more department, no more room. “R21" send back a message to

"R22" from which it received a message previously. §; "R22" looks for another possibility but in vain. It sends back a message to "R12"
from which it received a message previously.

e e B D

X
[Ra!] mit | R
[73]
| Search Logic | EH o iz | a2
] 0
=] [721]
m HERP BN
@ =03 & D 3
Saarch Spacs Roomy Oepl.
[R12] [R12]
ﬂﬂ Rt | Rt m& [Rat] Rit | Rt
m m § L1}
me | w2 | [T BEH wa | | D)
[rii]
(2
[#21]
[R17] (R3]
[r22] = (=] —
@ o a @] 4
[R12]
R | mns },m:a T3] [Rai]
wr | 2 | R]
...... m &
3 7]
iy &)
=) [Riz]
[Rai]
2 1 @ Q 3
[7iz]
Rit Rt m Rt R
m2 | r2 :iiﬁi k i B Eﬁi

e i 0 Rl

The SKY Project \'

Fig. 5-8 (2)
Z: "R12" looks for another possibility. The rooms assigned to "D1" have another empty neighbor, "R21". "R12" sends a message to "R21"
8: "R21" sends a message to its empty neighbor "R22". 9: Backtrack begins because it comes to an dead end. 10: A message is sent back to
"R12". 11: "R12" cannot find any altemnative, so it sends a message back to "R11". 12: "R11" looks for another empty neighbor "R21".
13~: The same procedure is done until every possibility is explored. : -

(2] [iz]
3. Wl m V. 4
) = [Rai] Ru | Rat m_‘ﬁ m mi | R o F
Riz | Rz m \[Ll Hoz]
= T S Rl Rl
= Ll]
i e
Ð o i [Fai] e o
[72] - [~2] —
=) o 7 @ =
[Ri2] [R12]
Rit | rat Hels = (2]
[R12] [Ri7]
(=] - niz | rz2 :Iﬁi 2]
[Riz] [Riz]
”,] oy T m
il (751 ”;’i;_!‘i A 1]
. r{®?] 9 :; (Fis]
32y [EMS Y 1)
= o 8 @ o 12
[riz] [7iZ]
" [Ri1] Py ey
= E mit | R ?m =) RIL | R21 a@xﬁ
[R22] Rz | re 'nﬁg - Rz | Rz gﬁs
=] = R
- [Fz] iang L L HHH
[] 21l =]
o g @ © 13
i) [riz]
) [l rit | e ri | rn
23 2 ri2 | Rz a2 | Rz E!ﬁi
= [Ri2]
Ay : i
=2 [o
@ > D 14

B

The SKY Project

Fig. 5-8(3)

ity
oz

ey

Rr2i
RrR22

Rt
Ri2

15

R

RrR22

IR
.‘iMM'—

R

Ri2

i

P

nyH

d

boad
L5

1

16

[Al Alternatives |

Ay H EH-

30

R B RIS AN S 9 1 B b A TPt SN g s L o s s

The SKY Project \%

2. Search pruning
If we do not have any limitation of the search, the search space size is enormous. One of the

most significant abilities of human beings is to recognize a dead end from which no satisfactory solution
can result, to stop searching, and to go back to the previous state to restart the search along an alternative

branch.

SKY does the same thing to identify and eliminate infeasible alternatives.

SKY has several tests to check whether a partial layout is feasible or not. These tests are Pre-
assign test, Block test, Access test, Negative adjacency test, View test and Sunlight test.

Rules are invoked after each department is allocated. If allocation of a department is infeasible,
further elaboration of this layout option is stopped, and the search routine backs up to try another layout
options.

The ProTalk code for pruning is as follows;

JHomeem e in Assign! method */
/* Feasibility Check by Rules.
if SendMsg(DeptTest, checkAlll) == NO;
then

{
SendMsg(?self,Initialize!);
fail;}
else
*/
/* */

method Test.checkAll! ()

/* Methods must always have all their inputs bound: */
bound inputs;

if for 7test = find instanceof 7self;
always SendMsg(?test,checkFeasibility!) == YES;

then return YES;
else return NO;

method Test.checkFeasibility! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("nMethod:",
"\ object ", 7self,
"\n slot ", 7slot,
a");
7D = generalControler.CurrentDept;
7D feasibility = Null;
if ?self.Active == NO; retum YES;

Tobject = GetValues(?self, Depts);
?judge = Member_of(?D, ?object);
if 7judge I=-1; return YES;

31

The SKY Project V

if { find [?self.Rules] 7x = 7D feasibility;
/* need step below to invoke rules */
7x == NO;}

then return NO;

else return YES;

Sample of a rule.
/* sunlightTest
* This Dept needs empty neighbor to get sunlight.

* Also this room may not block neighbor's sunlight.
%

* */
berule sunlightrulel in sunlightTestRules priority 0
{if:

7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;
?D.needsSunlight == YES;
Zempty = SendMsg(?R, LookAround!);
Tempty == 0;

then:

}

7D feasibility = NO;

berule sunlightrule2 in sunlightTestRules

{if:
7D = generalControler.CurrentDept;

7R = generalControler.CurrentRoom;

Tneighbor = 7R.Neighbors;
D = neighbor.Occupant;
7nD.needsSunlight == YES;
DR = SendMsg(nD, FindSunlightRoom!);
DR == 0;

then:
7D.feasibility = NO;

The logic for search pruning is very important to reach good solutions effectively. Pruning rules
are an important part of layout knowledge. So the system should be open to new pruning rules. SKY is
open. That means we can easily add a new rule or knowledge. All we have to do is add a new instance of
TEST-object and to write a rule in its method slot as fig. 5-9 shows.

This modularity is a very important feature of this system to enable it to grow.

32

The SKY Project

EM] Object Browser [ig|
Tool View
{ App Edit View Instrument | Object Edit View Instrument
DialogBoxApp sky App
i ActivelmagesApp ‘,PreAssignTest
sky '{, viewTest
GetData DeptTest ¢ - blockTest
controler ‘:\:\accessTest
Test
,.vlewB!ockTest
i RoomTest «¢- negativeAdjacencyTest
— \‘-sunlightTest
, -
! §Slot Edit View Instrument .
Active check! checkall! checkFeasibility! Rules
newTest ? ‘1PrkDefauitMethod ‘?Test.checkAll! ‘?Test.checkFeasibility! ? ;
i
Fig.5-9

New test can be easily added as a new instance of Test object.

33

The SKY Project \4

a) Pre-assign Test
Some spaces may be pre-assigned to specified departments, to reflect prior design decisions.
In those cases, a planner can assign a room to the special department before starting layout. This test
checks if the department includes the room which is pre-assigned to that depanmeni.
As fig. 5-10 shows, when a pre-assigned room is a member of the rooms which are assigned to

the department, then it is OK.
Pre-assign Test

Preassigned room.
/

Every allocation of D3 fails if
the allocation does not include
preassigned room.

By preassign the planner can
direct the place of D3, and can
make search efficient.

Fig.5-18@

The code to check this test is as follows;

method PreAssignTest.check! ()
{

if ?self.Active == NO, return YES;

7D = generalControler.CurrentDept;
Ttarget = 7D.PreAssignRoom;

if target == Null;

then return YES;

else {
st = GetValues(?D, Occupants);
7judge = Member_of(?target, ?list);
if 2judge ==-1;

then return YES;

else return NO;

}

34

The SKY Project

b) Block Test
The size of a department is represented by the number of rooms it needs.

The shape of a department is represented either as a Block-type or a Linear-type. As fig. 5-11

shows, a block-type department needs to be allocated as a cluster, on the other hand a linear type

department can be allocated as a stripe also.

Linear type

- =T 14

RN
Q

3

Block type

[0P [0

Fig.5-11

The type can be checked by the following algorithm. (see fig. 5-12)
If there is at least one room which has only one neighbor occupied with the same department,

that allocation is not block type. In block type, every room has at least two neighbors who are occupied
with the same department. Thus minimum number of rooms for a block type is 4. A 3 room department

could only be linear.

35

The SKY Project

AT L SR RS AT AL AT e humaba o e o oA £

This roomjhas only one

neighbor which is
assigned to the same
department. That

indicates this is linear

type allocation.

in block type, every
room has at least two

neighbors assigned to
the same department.

Fig.5-12

The code to check this test is as follows;

method blockTest.check! ()

{

if ?self.Active == NO; return YES;

if generalControler.CurrentDept.Type == Block;
then
{
?rooms = GetV alues(generalControler.CurrentDept, Occupants);
for Troom inlist ?7rooms;
do {

neighbors = GetValues(?room, Neighbors);

m=0;

for Tneighbor inlist 7neighbors;

do {

if Mneighbor.Occupant == ?room.Occupant;
then 7n = Tn+1;

if 7n == 1; return NO;
}
return YES;

}
else retum YES;

36

The SKY Project

¢) Access Test
This test is about special allocation related to the road.
Some departments such as a receiving department and a shipping department must be allocated

next to the road, otherwise the function of those departments cannot be accomplished.
This test checks whether a department which needs access is allocated next to the road or not.

If one of the rooms which were assigned to the department has a neighbor which is assigned to the road,

then it is OK.
AVAVNG NN/ VNN NN 1NN, NN
At least one of the [YIMISPV IS e oV T

rooms has to share a 4
border with the road. ’
2
3
5
Fig.5-13

The code to check this test is as follows;

method accessTest.check! ()
if ?self.Active = YES; return YES;

7D = generalControler.CurrentDept;
if ?D.needsAccess != YES; return YES;
?rooms = GetValues(?D, Occupants);

for Troom inlist ?7rooms;
Tneighbors = GetValues(?room, Neighbors);

dof{
for Tneighbor inlist ?neighbors;
do {
if Tneighbor.Occupant == ROAD@; return YES;
fail;
}

]
return NO;

37

D A N KB e a8 N8 b i

The SKY Project \

d) Negative Adjacency Test
Departments which have a negative adjacency with each other cannot share a border.
For the neighbor of every room which was assigned to the department, this test checks whether
the neighbor's occupant department has a negative adjacency with the department. If it has, then it fails
and backtracks.

The sequence of allocation WAVAVR VNN VNN (NN NONONIN VOGN,

follows a positive adjacency. AR AAAY VAAA AAVAY VAA Ay I

But still we need to check the

. : 2 Sequence of

negative adjacency. A I H

In this case if departmentl1 aliocation

and department 3 have a - L\’-.‘\\\. 3

negative adjacency with each 1 AN

other, then this allocation :

cannot be allowed. negatnve
adjacency
test

Fig.5-14

The code to check this test is as follows;

method negativeAdjacencyTest.check! ()
{
7d = generalControler.CurrentDept;
Trooms = GetV alues(?d, Occupants);
for 7room inlist 7rooms;
do {
Tneighbors = GetValues(?room, Neighbors);
for Mneighbor inlist Tneighbors;
do {
D = neighbor.Occupant;
D == find direct instanceof Departments;
if 2d.Adjacency..”TnD < 0; return NO;
}
]
return YES;

38

The SKY Project \Y

e) View Test
In SKY, the good view requirement is implemented as requirement for visibility of GREEN.
When there is no obstacle between a room and GREEN, we think the room has a good view.
This test is a good example of a recursive definition.

- In order to check the visibility every room should know what is seen from its four cardinal
points. SKY has the method slots named “lookSouth!”, “lookNorth!”, “lookEast!”, and “lookWest!” to
let a room know what is seen.

For example, a room can know what is seen from its south window by the following method.

1) If the value of “south” slot of the room is Null (i.e., the room has no neighbor in its south
direction), the method returns “DEAD” which means nothing can be seen.

2) If the value of “south” slot of the room is not Null (i.e., the room has a neighbor in its
south direction), and the south neighbor is occupied with something, then the method
returns the occupant of the south room.

3) If the value of “south” slot of the roorh is not Null (i.e., the room has a neighbor in its south
direction), and the south neighbor is not occupied, then the method returns the neighbor’s
“lookSouth!” value. '

iDhat is the value of lookSouth? The value is GREEN.

iDhat is the value of lookSouth? The value is GREEN.

What is the value of lookSouth? The value is GREEN.

WWhat is the value of lookSouth? The value is GREEN.

Fig.5-15

By this recursive function, every room can know what is seen from its four directions.

When a department which needs a good view has at least one room from which GREEN
can be seen in any direction, this test is successful.

This test is applied not only to the current department, but also to the departments which
were allocated already because we need to check if the current department blocks the previously allocated

departments' view or not.

39

The SKY Project \

The code to check this test is as follows;

method viewTest.check! ()
if 7self. Active 1= YES; return YES;

/* View Test for the Current Department. */

7D = generalControler.CurrentDept;

if 7D.needsView == YES;

then {
7judge = SendMsg(?D, FindGoodViewRooml);
if 7judge == 0.0;
then return NO;
)

/* View Test for previously allocated Departments. */
7pD = find direct instanceof Departments;
7pD 1= 7D;
7pD.needsView == YES;
7pDo = GetValues(?pD, Occupants);
7pDo !=Null;
?pDo 1=7();
2judge2 = SendMsg(?pD, FindGoodViewRoom!);

{

if ?judge2 == 0.0;
then retum NO;
else fail;

)
return YES;
return Null;

)
method Rooms.LookSouth! ()

if ?self.South == Null;

then return DEAD;

else
if 7self.South.Occupant == Nuli;
then return SendMsg(?self.South, LookSouthl);
else return ?self.South.Occupant;

f) Sunlight Test

Some departments such as a cafeteria need to be adjacent to outer space to get sunlight or to
have a window.

If at least one of the rooms which are assigned to the department has an empty neighbor, or
neighbor which is pre-occupied with GREEN or ROAD , then this test is successful. This test is applied
not only to the current department but also to the previously allocated departments to check if the current
department does not block the other's outer window.

The code to check this test is as follows;

method sunlightTest.check! ()
{

40

The SKY Project

if ?self.Active != YES; return YES;

/* Sunlight Test for the Current Department. */
7D = generalControler.CurrentDept;
if 7D.needsSunlight == YES;
then {
?judge = SendMsg(?D, FindSunlightRoom!);
if 2judge == 0.0; return NO;

/* Sunlight Test for the previously allocated departments. */
7pD = find direct instanceof Departments;
7pD 1= 1D;
7pD.needsSunlight == YES;
7pDo = GetValues(?pD, Occupants);
7pDo = Null;
?pDo 1=7();
7judge2 = SendMsg(?pD, FindSunlightRooml);

{

if 2judge? == 0.0;
then return NO;
else fail;

)
return YES;

method Departments.FindSunlightRoom! ()
{
?sunlightRoom = 0.0;
Trooms = GetValues(?self, Occupants);
for 7room inlist 7rooms;

do {
?empty = SendMsg(?room, LookAround!);
if 7empty >0;

then ?sunlightRoom = 7sunlightRoom +1.0;
]

return 7sunlightRoom;

}

method Rooms.LookAround! ()
{
Tneighbors = GetValues(?self, Neighbors);
2empty = 0.0;
for neighbor inlist 7neighbors;
do {
if Ineighbor.Occupant == Null;
then ?empty = Tempty + 1.0;
else if Ineighbor.Preoccupant != Null;
then ?empty = ?empty +1.0;
)

return 7empty;

41

The SKY Project \

C. Evaluation

Evaluation provides a measure of the quality of a layout. There are two important parts in how to
make an evaluation.

1. Choosing parameters to consider in evaluation. When we think a layout is good, what features
of the layout make us think so? It is very important for good evaluation to set appropriate parameters. In
SKY, 6 parameters can be set to measure the value of alternatives. They are "Material handling cost”,
"Construction cost", "Flexibility", "The number of sunlight rooms", "The number of rooms with access to
the road" and "The number of rooms with good view".

2. Weight for each factor. In some cases material handling cost is most important, and in some
other cases construction cost is most important, and so on. Human planners judge the situation of the
project to decide the weight of each evaluation criteria. SKY calculates the total value of an alternative
according to the user's preference weights .

1. Criteria

a) Material handling cost

The From/To chart shows the information about the material flow from a department to another
department. As it is discussed in chapter 3, the numbers in table of Fig. 5-16 show the quantity of the
flow and difficulty of the handling. The bigger a number is, the more frequently materials are carried and
the more difficult it is to carry them. So a big number indicates a greater positive adjacency between two

departments.
| Department name Material Flow

toD1 to D2 to D3 to D4 to DS
Department-1 98 3 12 8
Department-2 4 88 21 12
Department-3 11 15 56 11
Department-4 2 5 8 87
Department-5 45 12 23 22

Fig.5-16

After generating a layout, a distance chart can be made. The table in fig 5-17 shows the
information about the distances between each department. The distance is measured from an exit of a
department to the entrance of another department as a rectilinear distance. For example the distance from
A department to B department is given by the formula

Dis(A,B) =abs((X of A’s Exit)-(X of B’s Entrance)) + abs((Y of A’s Exit)-(Y of B’s Entrance))

42

The SKY Project

N\/\awmwmw

aVaVa¥a aYaVaXa CaYaYaX WYaYaYa
\\\!\\\ LN, .S’\\g\- 4-
AR

Plain arrow shows the
—= distance between two
departments.

Dashed arrows indicate
> jnner flow of each
departments

Department name

Distance

to D! to D2 to D3 to D4 to DS

Department-1 3 3 5 2

Department-2 3 1 1 4

Department-3 4 3 1 4

Department-4 6 5 3 6

Department-5 N 1 3)
Fig.5-17

The reason why this chart is not symmetric is that we consider the entrance and the exit. The
entrance is the room which was allocated first to the department. The exit is the room allocated last. The
order of allocation during the search procedure indicates the material flow inside the department.

When the two figures in the same cell of these two charts (Material flow chart and distance chart)
are multiplied and the results of all cells are summed up, we can get a number which represents a handling

COst.

The code to calculate this value is as follows;

method MaterialHandling.Evaluate! ()

{
?Eval = 0.0;
?Evaluation = 0.0;

for 7D1 = find direct instanceof Departments;

do {
7D1.NoOfRooms > 0;

find count ?D1.0Occupants >0 ;
sum 7Evaluation into ?Eval;

for 7D2 = find direct instanceof Departments;

do {
D2 1= 7D1;

7D2.NoOfRooms >0;

find count 7D2.0Occupants >0;
7re = ?7D1.MaterialFlow..?D2;

The SKY Project

7e = CalDis!(?D1, 7D2)* ?re;
sumn ?e into ?7Evaluation;

}

?Eval = ?7Eval+7Evaluation;
?self.Value = 7Eval;
return Null;

}

function CalDis!(?D1, 7D2)
{
bound inputs;

?x1 = ?7D1.LastRoom.X;

7yl = ?D1.LastRoom.Y;

7x2 = 7D2.FirstRoom.X;

?y2 = 7D2.FirstRoom.Y;

7Distance = Abs(?x1-7x2) + Abs(?y1-7y2);
return ?Distance;

}

44

The SKY Project \

b) Construction Cost (Length of external walls)
Construction cost is approximated by the length of the external walls.
If the total areas are same, a square ié most cost effective layout. The more complicated a layout
is, the longer the external wall will be and the more expensive it is to build the building.
The length of the external walls can be calculated by counting how many empty neighbors each
room has.

The construction cost of the left plan is more expensive
than that of the right plan because the left plan has
longer external wall.

Fig.5-18

The code to calculate this value is as follows;

method LengthOfWalls Evaluate! ()

?eval = 0.0;
for 7r = find direct instanceof Rooms;
do {
7r.Preoccupant = ROAD@;
7r.Preoccupant = GREEN@;
7r.Occupant != Null;
Ivalue = SendMsg(?r,LookAround!)+ 4 - Ir.numberOfNeighbors;
sum ?value into 7eval;

}

?self.Value = 7eval;
return Null;

}

45

The SKY Project

¢) Flexibility (The number of empty rooms adjacent to the road)
It is very difficult to evaluate the flexibility of a layout. SKY evaluates the flexibility using a
simple initial measure of flexibility. (See Fig. 5-19)

T hoad AN AT

VALY, MAVAVA AVAVAY, WAAVA AVAVAY, VAVAVA VAATA MAA AATAY MATAA AAAY MAAA

s e A o

The right plan has more flesibility than the
left plan because it has more free space
which can access the road.

Fig.5-19

The code to calculate this value is as follows;

method LengthOfFreeRoad.Evaluate! ()

?eval = 0.0;
for 7r = find direct instanceof Rooms;
do {
if 71.0ccupant 1= ROAD@; then fail;
M = GetValues(r, Neighbors);
for Tnei inlist 7n;
do {
if Mei.Occupant == Null;
then 7eval = ?eval + 1.0;
else {
if Tnei.Occupant == GREEN@;
then ?eval = 7eval +1.0;
else fail;
}
}

}
?self.Value = ?eval;
return Null;

}

46

The SKY Project \

d) The number of sunlight rooms
Usually we want as many rooms with windows as possible.
SKY lists the departments which need sunlight and measures the length of external walls of rooms
occupied by those departments.
The code to calculate this value is as follows;

method NoOfSunlightRooms.Evaluate! ()
{
?eval = 0.0;
for 7D = find direct instanceof Departments;
do {
if 7D.needsSunlight != YES; then fail;
Trooms = GetValues(?D, Occupants);
for 7r inlist ?rooms;
do {
7e = SendMsg(7r, LookAround!);
sum ?e into ?eval;

}

?self.Value = Teval;
return Null;

e) The number of rooms with Access to the road
SKY picks up the departments which need access to the road and measures the length of external

walls of rooms which share a border with the road.

The bigger the number is, the more freely we can make inside detailed plans so the layout seems to
be good.

The code to calculate this value is as follows;

method NoOfAccessRooms.Evaluate! ()

Zeval = 0.0; .
for 7D = find direct instanceof Departments;
do {

if ?7D.needsAccess != YES; then fail;

else

7rooms = GetValues(?D, Occupants);
for 7room inlist 7rooms;
do{ Mneighbors = GetValues(?room, Neighbors);
for Ineighbor inlist 7neighbors;
do {
. if neighbor.Occupant == ROAD@;
then ?eval = 7eval + 1.0;
fail;
}
}

?self.Value = 7eval;
return Null;

47

The SKY Project

f) The number of rooms with good view .
SKY picks up the departments which need good view and counts the number of rooms which
have a good view in those departments.
The bigger the number is, the better the layout is.
The code to calculate this value is as follows;

method NoOfGoodViewRooms.Evaluate! ()

2eval = 0.0;
for 7d = find direct instanceof Departments;
do {

if 2d.needsView != YES; then fail;

else

?value = SendMsg(?d,FindGoodViewRoom!);
sum ?value into ?eval;

?self.Value = ?eval;
return Null;

}

method Departments.FindGoodViewRoom! ()

{
?goodView = 0.0;
?e = SendMsg(?self, FindEastViewRoom!);
Mn = SendMsg(?self, FindNorthViewRoom!);
?s = SendMsg(?self, FindSouthViewRoom!);
?Tw = SendMsg(?self, FindWestViewRoom!);
7goodView = 7e + Tn + 75 + 7w;
return ?goodView;

}

method Departments.FindSouthViewRoom! ()

view = 0.0;
rooms = GetValues(?self, Occupants);
for 7room inlist 7rooms;
do {
Zeast = SendMsg(?room, LookSouth!);
if 2east == GREEN@;
then ?view = ?view + 1.0;
}
return Tview;
return Null;

}

48

The SKY Project V

g) Modularity of the criteria
As modularity of evaluation criteria is very important, the system should be open to a new
evaluation criterion. When we find a new parameter to evaluate a layout, this factor should be added
easily to the system. SKY accept a new criterion very easily. All we have to do is to add a new instance
of a class object named "Evaluation" as fig. 5-20 shows.

Object Browser mmee—e—ue—0 5|

]
Tool View
§App Edit View Instrument r Object Edit View Instrument
DialogBoxApp sky App
ActivelmagesApp DeptsColorACMon ,LengthOfFreeRoad
1 MaterialHandling
GetData ,',": LengthOfWalls
Evaluation ;’: TotalValue
*~ NoOfGoodViewRooms
:,':‘NoorAccessF&ooms
“."NoOISunlightRooms
™ " nesyFactor
] r
! Slot Edit View Instrument ‘
Active BestValue Evaluats! IHaveNew Initialize! R§
newFactor 7 ? ‘iPrkDefaultMethod 7 ‘?Evaluation.Initialize! ?%
i
]
Fig.5-20

A new criteria can be easily added

49

The SKY Project Vv

2. Total value

In order to calculate the total value of each alternative, we have two problems to solve. The first
thing is value normalization and the second one is setting weights of criteria.

a) Normalization of the value

The values which are discussed in the former part of this chapter have two types. For the
ascending type, the smaller the number is the better it is. For the descending type, the bigger the number
is the better it is. For instance the material handling cost is ascending type and the number of sunlight
rooms is descending type.

Normalization of the values is done as fig. 5-20. For every criteria, the best value becomes 100,

worst value becomes 0, and every value ranges from 0 to 100.

Ascending type factor Descending type factor
Raw yalue Raw, value
Worst Value : Best Value
Best Value Worst Value
v .
100 Normalized Normalized
100
0 value 0 value
Fig.5-21

Normalization of the value

The code to calculate the total value is as follows;

method General.CalculateValue! ()
{
J¥--- Measure range for normalization--------------mceeeu */
TotalValue.Weight =0;
for ?e = find instanceof Evaluation;
do {
7e.Active == NO;
7e.Weight = 0;

for 7e = find instanceof Evaluation;
do{
7e = TotalValue;
7e.Active == YES;
TotalValue.Weight = Total Value. Weight + 7e.Weight;

50

The SKY Project

if 7e.Type == A,
then{
?e.Range = 7e.WorstValue - 7e.BestValue;

}
if 7e.Type == D;
then {

}

}
J*¥--- End of Mcasure */

7e.Range = 7e.BestValue - 7e.WorstValue;

[*--- Calculate Value.-~-------—---oeeeee */
for 7r = find direct instanceof Results;
do SendMsg(?r, EvaluateMel);

return Null;

}
method Results.EvaluateMe! ()

[*--- Transfer to normalized value. */
for ?e = find instanceof Evaluation;
do {

7e 1= TotalValue;

7e.Active == YES;

if 7e.Type == A;

then {

if 7e.Range 1= 0; then
?self.Evaluation..?e = (2e.WorstValue-7self.?e)/?e.Range * 100;
else 7self.Evaluation..?e =50;

if 7e.Range !=0; then
?self Evaluation..?e = (?self.?e-7e.WorstValue)/7e.Range *100;
else ?self.Evaluation..?e =50;

}

f*--- End of Value Normalization */

[*--- Calculate Final Value considering preference factor. ------ */
?value = 0;
for ?e = find dircct instanceof Evaluation;
do {
?e !=TotalValue;
?e.Active == YES;
7v = ?self.Evaluation..?e * 7e.Weight;
sum ?v into ?value;

}
?self.FinalValue = ?value/Total Value.Weight;
/*--- End of Calculation. */
return Null;

}

b) Preference factor and total value

"The total value is calculated as a weighted average by the formula

oo Y (normalizedValue * weight)

Total valu .
z weight

51

The SKY Project \"

By this formula total value has the value between 0 and 100. The weight represents the preference
of the planner, and is entered by him. The planner can get the best result according to his preferences.

Fig. 5-22 shows an example of normalized value for each alternative.

Alternative-A Alternative-B Alternative-C
Material Handling Cost S0 50 60
Construction Cost 50 90 20
Flexibility 20 60 30
Number of Sunlight rooms 50 80 80
Number of Good Yiew rooms 30 60 70
Number of Access rooms 50 50 60

Fig. 5-22

Example of normalized values for each alternative

Fig. 5-22 says that Alternative-A is very good at material handling and Alternative-B is good at
construction cost. How can we decide which one is the best solution? Shall we sum up these values?
Absolutely no. In order to choose the best solution, weight for each evaluation criteria is needed. Fig. 5-

23 is an example of weights setting.

Case-1 Case~-2 Case-3
Material Handling Cost 95 10 10
Construction Cost 10 95 10
Flexibility 0 0 10
Number of Sunlight rooms 10 10 95
Number of Good Yiew rooms 50 10 80
Number of Access rooms 10 10 50
Fig. 5-23

Example of weights for evaluation criteria

Cases in Fig. 5-23 represent situation of a project. For instance, in Case-1 material handling cost
is crucial for the project and in Case-2 construction cost is most important. The value of an alternative
should be decided according to these weights. Fig. 5-24 shows the results of calculation of final value.

Alternative-A Alternative-B Alternative-C
Case- 1 66.00 56.86 61.71
Case-2 51.48 81.11 34.07
Case-3 . 4412 66.27 67.84
Fig. 5-24

Example of final values accbrding to the preference factors

52

The SKY Project \

As you can see, in Case-1 Alternative-A is the best result and in Case-2 Alternative-B is best.

¢) How to make records of the results
After generating an alternative layout, we must decide if the result is worth recording or not. In
SKY the best 10 results for every evaluation factor are recorded.

resylt-a result-b result-c resuit-d

Material handling cost 1 2

Construction cost 1 6 4
Flexibility 2 1

Sunlight rooms 3 4
Access rooms 3 1
Good view rooms 1 2
Total 1 2

When a result is included in best 10 of at least
one evaluation factor, the result is recorded.

Fig.5-25

At this stage we cannot calculate the total value because we do not know the préference factor nor
the best and worst value of each evaluation factor. But we need to evaluate the total value tentatively in
order to ensure that every good result is recorded. Tentative total value is calculated assuming the

preferences are all same

result-i result-j result-k result-l

Material handling cost 100 0 0 80
Construction cost 0 100 0 80
Flexibility 0 0 100 80
Sunlight rooms 0 0 0 80
Access rooms 0 0 0 80
Good view rooms 0 0 0 80

Totsl

We must consider the tentative total value,
otherwise we will miss a result like result-I.

Fig.5-26

53

The SKY Project Vi

VI. Conclusion, Benefit of this system

SKY has three significant features.

First, it is complete. All layout options are tried and evaluated by exhaustive search.
Completeness is one of the significant features that the computer allows. The computer can find some
solution alternatives that will never occur to a human designer.

Second, it is modular and extensible. New knowledge, such as new search pruning knowledge, a
new evaluation criteria and new adjacency knowledge etc. , is easily added to SKY. The benefit of the
modularity is that we can apply SKY to another kind of facility. For example, a hospital operating room
has a requirement "needsClean", and a reception room has a requirement "needsAccess". Because
"needsClean" is an incompatible feature of "needsAccess”, an operating room and a reception room
should have negative adjacency. When we implement this kind of knowledge about a hospital layout,
SKY can be a layout system for a hospital.

Third, it is clear. Itis very clear for the user to see what SKY does and does not do. The SKY
user interface is designed to make it clear what is needed to make an effective layout. The SKY output is
also very clear. SKY identifies real requirements to help separate important ones from those that are less

important or even wrong, as well as it gives a high quality layout.

54

The SKY Project VII

VII. Further Effort

As SKY is a very flexible system, there are many potential future developments for it.

A. Integration with Facility Management
Each department has its equipment to accomplish its function. By adding functions to infer the
departments’ features from their equipment, SKY can become a more sophisticated system. Functions to
infer the necessary space of each department from its equipment list, and functions to infer the type
(Block or Linear) from equipment are also desirable. The information about each department's
equipment is stored by a database through the whole life time of a facility. Integration with this database

is strongly desired.

B. Addition of 3D features

The concept of adjacency in 2D can be extended to top and bottom relationships in 3D. It can be
called "vertical adjacency". When the production process uses gravity, the sequence of the production
implies top and bottom relationships (vertical adjacency). The load of each department also implies top
and bottom relationships. A requirement of a department whose ceiling needs to be high can be
implemented as the number of vertical rooms it needs. There are many clues to discuss about 3D layout
problem. Rooms in SKY have only planar information about their neighbors right now. By adding slots
named “Above”, "Below" to the room object, we can implement 3D features in SKY. And then SKY can

be applied to a multi-floor factory.

C. Addition of dimensional information
Some building code requires that some material should be stored in a proper distance from other
operations. A grid in SKY does not now have any information about dimension. If SKY knows how
long one grid is, then we can solve the dimension requirement of building code.

D. Suggestion of material handling route and handling method
This suggestion is a sort of diagnosis . The purpose of this diagnosis is to minimize the traffic
crossing and to select the best handling method according to the length of the route and the frequency of

handling.

E. Development of several types of adjacency definition package
House version, Hospital version, Furniture plant version, etc.
F. Refine evaluation parameter
There may be other evaluation criteria and criteria may have non-linear interactions.

55

The SKY Project

VIII

VIII. Appendix -- Source code by ProTalk

A. Adjacency.ptk

B. LayoutMethods.ptk
C. LayoutRules.ptk

D. Evaluation.ptk

E. Interface.ptk

A-16
A-37
A-42
A-54

S6

Adjacency.ptk

The SKY Project
/*
%k
* ProTalk method source file
3
*/
#include <prk/lib.pth>
bcrule ad_rulel in adjacencyRules
{if:
7D2 == instanceof Departments;
D2 =171,
?f1 = 7D1.Features;
2 = 7D2.Features;
7f1.incompatibleFeatures == 7f2;
then:
?D1.negativeAdjacencies +== ?D2,;
Print ("\n", ?7D1, "negativeAdjacencies:", 7D2);
}
becrule po_rulel in positiveAdRules
{if:
7D2 == instanceof Departments;
D1 1= 7D2;
?f1 = 7D1.Features;
2 = 7D2.Features;
M1 == 72;
?D1.negativeAdjacencies != 7D2;
then:
7D1.positiveAdjacencies +== 7D2;
Print ("\n", ?7D1, "positiveAdjacencies:", 7D2);
}
berule po_rule2 in positiveAdRules
{if:

D2 == instanceof Departments;
D1 1=7D2;
71 = 7D1 . Features;
2 = 7D2.Features;
f1.compatibleFeatures == ?{2;
7D1.negativeAdjacencies != 7D2;
then:
?D1.positiveAdjacencies +== 7D2;
Print ("\n", 7D1, "positiveAdjacencies:", 7D2);

function DominantD (?list)

newList = SortBySlot(?list, NoOfStranger, ">");
7dD = ListFirst(?newList);
return 7dD;

The SKY Project Adjacency.ptk

/¥ e —

*

* ProTalk method -- Departments.setAdjacency!

* Note: This method should be called from the class object, since it
* maps down all Departments.

*

*/

method Departments.setAdjacency! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
”\rl”);
find [adjacencyRules] 7D2 = ?self.negativeAdjacencies;

find [positiveAdRules] ?D2 = ?self.positiveAdjacencies;

return Null;

}

O — —

* ProTalk method -- DeptControler.lookAdjacency!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method DeptControler.lookAdjacency! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,
“\rl”);

for 7D = find direct instanceof Departments;
do SendMsg(?D,AverageFlow!);

for 7D = find direct instanceof Departments;
do SendMsg(?D,findNegative!);

for 7D = find direct instanceof Departments;
do SendMsg(7D,findPositive!);

A-2

The SKY Project Adjacency.ptk

7dD = SendMsg(?self, Dominant!);
?7self. DominantDept = 7dD;
?self.NumberOfOrphans = ?dD.NoOfStranger;

" if ?self.Mode == StepByStep; then return Null;

while 7dD.NoOfStranger >0;
do {
?orphanList = GetValues(?dD, Strangers);
?0D = DominantD(?orphanList);
?o0DnegativeList = GetValues(?oD,negativeAdjacencies);
for 7dept = find direct instanceof Departments;
do {
?dept = 70D;
?dept.MaterialFlow..70D > ?dept.MaterialFlowAverage;
7judge = Member_of(?dept,?0DnegativeList);
7judge !=-1;

?dept.positiveAdjacencies +== 70D;

}
7dD = SendMsg(?self, Dominant!);

if ?7self.NumberOfOrphans == 7dD.NoOfStranger;
then {
SendMsg(CantGoAnmyMoreDialogBox,PutOnScreenAndWait!);

return Null;

}

?self. DominantDept = 7dD;
?self. NumberOfOrphans = ?dD.NoOfStranger;

return Null;

}

* ProTalk method -- Departments.findNegative!

*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
3

*/
method Departments.findNegative! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
H\n");

The SKY Project Adjacency.ptk

ClearValues(?self,negativeAdjacencies);
/* find [adjacencyRules] 7D2 = ?self.negativeAdjacencies; **
---by this code we can get only one solution.

*/
for 7D2 = find [adjacencyRules] ?self.negativeAdjacencies;
do;
return Null;
}
S -
*
* ProTalk method -- Departments.findPositive!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/

method Departments.findPositive! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",

"\n object ", ?self,
"\n slot ", 7slot,
"“\n");

ClearValues(?self,positiveAdjacencies);

/* find [positiveAdRules] 7D2 = ?self. posmveAdjacencms ol
---This code can get only one solution.
for 7D2 = find [positiveAdRules] ?self.positiveAdjacencies;

do;
return Null;
}
U e
*
* ProTalk method -- DeptControler.JookForOrphan!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/

method DeptControler.lookForOrphan! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",

The SKY Project Adjacency.ptk

"\n object ", 7self,
"\n slot ", 7slot,
”\rl");

/*
?self. AllDepts = all direct instanceof Departments;
————— this expression makes list=(value,value,,) not MultiValue.

for 7D = find direct instanceof Departments;
do {

?self. AllDepts +== 7D;
ClearValues(?D,Strangers);

}
for 7D = find direct instanceof Departments;
do {
/* initialize of orphans. */
7DeptsList = GetValues(?self,AllDepts);
for ?dept inlist ?DeptsList;
do{
?self.OrphanDepts +== 7dept;
}
SendMsg(?D,GetRidOfMe!);
7D.NoOfStranger = find count ?self.OrphanDepts;
?0rphanList = GetValues(?self,OrphanDepts);
for ?orphan inlist ?OrphanList;
dof
7D.Strangers +== ?orphan;
}
}
return Null;
}
e e e

E3

* ProTalk method -- Departments.GetRidOfMe!

* .

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.

E3

*/

method Departments.GetRidOfMe! ()

/¥ Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",

The SKY Project Adjacency.ptk

"\n object ", ?self,
"\n slot ", 7slot,
N\Il");

if GetValues(deptControler,OrphanDepts) == Null; return Null;
deptControler.OrphanDepts -== 7self;

D = find ?self.positiveAdjacencies;

D == find deptControler.OrphanDepts;
SendMsg(nD,GetRidOfMe!);

fail;
return Null;
}
e -
*
* ProTalk method -- DeptControler.Dominant!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/

method DeptControler.Dominant! ()

/* Methods must always have all their inputs bound: *
bound inputs; -

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
H\rlﬂ);
SendMsg(?self,lookForOrphan!);

MNist = all instanceof Departments;

MewList = SortBySlot(?list, NoOfStranger, ">");
7dD = ListFirst(?newList);

return 7dD;

* ProTalk method -- Departments.SetDeptFeatures!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.

S
*/
method DeptControler.SetDeptFeatures! ()

/* Methods must always have all their inputs bound: */

A-6

The SKY Project Adjacency.ptk

bound inputs;

Print ("\\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
ﬂ\rlﬂ);
ClearValues(FeaturesInDialogBox,Selectionltems);
for eature = find direct instanceof Features;

do {
FeaturesInDialogBox.Selectionltems +== ?feature;
}

for 7d = find direct instanceof Departments;

do {

DeptsInDialogBox.Selectionltems +== 7d;

SendMsg(SetDeptFeatureDialogBox,PutOnScreen AndWait!);

return Null;

}
method adjacency_CommandRow_19.React! (?button)

/* Methods must always have all their inputs bound: */
bound inputs;
?dialog_box = ?self.DialogBox;

MDeptNames_value =

GetControlValue (?dialog_box, “DeptNames);
?FeatureNames_values =

GetControlValues (?dialog_box, “FeatureNames);
?DnFeatures = GetControl Values(?dialog_box, “DnFeatures);

select {
case: 7button == "Show";

ClearValues(DnFeatureInDialogBox,SelectionItems);
s = GetValues(?DeptNames_value,Features);
if ?fs == Null; 7fs =();
for 7f inlist 7fs;
do {
DnFeatureInDialogBox.Selectionltems +== 7f;

}

case: 7button == "Set";

{
Print (?button, "\n");
for 7f inlist ?7FeatureNames_values;
do {
?DeptNames_value.Features +== 7f;

ClearValues(DnFeatureInDialogBox,SelectionItems);
s = GetValues(?DeptNames_value,Features);

A-7

The SKY Project Adjacency.ptk

if 7fs == Null; 2fs ="();
for ?f inlist 7fs;

do {
DnFeatureInDialogBox.Selectionltems +== f;
}
case: ?button == "Remove";

{
Print (?button, ™n");
if 7DnFeatures != Null; then

for ?dnf inlist ?DnFeatures;
do {
?DeptNames_value.Features -== ?dnf;

ClearValues(DnFeatureInDialogBox,Selectionltems);
s = GetValues(?DeptNames_value,Features);
if 7fs == Null; ?fs =();

for ?f inlist ?fs;

do {
DnFeatureInDialogBox.Selectionltems +== 2f;
}
}
case: ?button == "Done";

{

Print (?button, \n");
SendMsg (?dialog_box, TakeOffScreen!);
}

case: ?button == "Reset";
{
ClearValues(?DeptNames_value,Features);
ClearValues(DnFeatureInDialogBox,SelectionItems);
s = GetValues(?DeptNames_value, Features);
if ?fs == Null; s ="();
for ?f inlist fs;

do {
DnFeatureInDialogBox.Selectionltems +== 7f;
}
}
}
return Null;
}
e e
>3
* ProTalk method -- DeptControler.ShowResult!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

A-8

The SKY Project Adjacency.ptk

*/
method DeptControler.ShowResult! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",

"\n object ", ?self,

"\n slot ", 7slot,

“\n");
ClearValues(DeptsInAdjDialogBox,Selectionltems);
ClearValues(TargetDepts,Selectionltems);
ClearValues(NegativeList,Selectionltems);
ClearValues(PositiveList,Selectionltems);

for 7d = find direct instanceof Departments;
do {
DeptsInAdjDialogBox.Selectionltems +== 7d;
TargetDepts.Selectionltems +== 7d;

SendMsg(AdjacencyListDialogBox,PutOnScreenAndWait!);

return Null;

}

method adjacency_CommandRow_22.React! (?button)

{
/* Methods must always have all their inputs bound: */
bound inputs;
?dialog_box = ?self.DialogBox;

?NegativeLists_values =

GetControlValues (?dialog_box, “NegativeLists);
?DeptsNames_value =

GetControlValue (?dialog_box, “DeptsNames);
?PositiveLists_values =

GetControlValues (?dialog_box, “PositiveLists);
TTargetDepts_value =

GetControlValue (?dialog_box, *TargetDepts);

select {
case: 7button == "ShowAdjacency";
{ Print (?button, "\n");
if 7DeptsNames_value != Null; then

ClearValues(NegativeList,Selectionltems);

7ds = GetValues(?DeptsNames_value,negative Adjacencies);
if 7ds != Null;

then {

for 7d inlist 7ds;

do NegativeList.Selectionltems +== ?d;

A-9

The SKY Project Adjacency.ptk

ClearValues(PositiveList,SelectionItems);

?ds = GetValues(?DeptsNames_value,positiveAdjacencies);
if ?2ds != Null;

then {

for 7d inlist ?ds;

do PositiveList.Selectionltems +== 7d;

}

ClearValues(DnsStrangerList,Selectionltems);
7ds = GetValues(?DeptsNames_value,Strangers);
if ?7ds '= Null;
then {

for ?d inlist ?ds;

do DnsStrangerList.Selectionltems +== 7d;

}
}

case: 7button == "SetNegative";
{ Print (?button, "\n");

if 7DeptsNames_value != Null; then
{
?DeptsNames_value.negativeAdjacencies +== ?TargetDepts_value;
ClearValues(NegativeList,Selectionltems);

?ds = GetValues(?DeptsNames_value,negative Adjacencies);

if 7ds '= Null;

then {

for ?d inlist ?ds;

do NegativeList.Selectionltems +== ?7d;

}
}

case: ?button == "DeleteNegative";
{ Print (?button, "\n");
if 7DeptsNames_value != Null; then

if 7NegativeLists_values != Null; then

for 7tD inlist 7NegativeLists_values;
do {
?DeptsNames_value.negativeAdjacencies -== 2tD;

ClearValues(NegativeList,Selectionltems);
?ds = GetValues(?DeptsNames_value,negative Adjacencies);
if 7ds = Null;
then {
for ?d inlist 7ds;
do NegativeList.Selectionltems +== 7d;

)

A-10

The SKY Project Adjacency.ptk

case: 7button == "SetPositive";
{ Print (?button, "\n");
if 7DeptsNames_value != Null; then

MDeptsNames_value.positiveAdjacencies +== ?TargetDepts_value;

ClearValues(PositiveList,SelectionItems);
1ds = GetValues(?DeptsNames_value,positiveAdjacencies);
if 7ds != Null;
then {
for 7d inlist ?ds;
do PositiveList.Selectionltems +== 7d;

}
}
}

case: 7button == "DeltePositive";
{ Print (?button, "\n");
if ?DeptsNames_value != Null; then

if ?Positivelists_values = Null;
then{
for ?tD inlist ?Positivelists_values;
do {
?DeptsNames_value.positiveAdjacencies -== 1D;

ClearValues(PositiveList,Selectionltems);
7ds = GetValues(?DeptsNames_value,positive Adjacencies);
if 7ds != Null;
then {
for 7d inlist ?7ds;
do PositiveList.SelectionItems +== 7d;

}
}

case: ?button == "Done";
{ Print (?button, "\n");
SendMsg (?dialog_box, TakeOffScreen!);

}
return Null;
}
e S
E
* ProTalk method -- DeptControler.Datalmport!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/

A-11

The SKY Project Adjacency.ptk

method DeptControler.Datalmport! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
”\rl”);

SendMsg(DatalmportDialogBox,PutOnScreenAndWait!);

return Null;

* ProTalk method -- DeptControler.AddPositive!
*
* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
E S

*/
method DeptControler.AddPositive! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
H\rlll);
if ?self. NumberOfOrphans <= 0; then return Null;

?orphanList = GetValues(?self.DominantDept, Strangers);
70D = DominantD(?orphanList);
?oDnegativeList = GetValues(?oD,negativeAdjacencies);

for ?dept = find direct instanceof Departments;
do {
7dept != 70D;
7dept.MaterialFlow..?0D > 7dept.MaterialFlowAverage;
?judge = Member_of(?dept,?o0DnegativeList);
Nudge !=-1;
?dept.positiveAdjacencies +== 70D;

7dD = SendMsg(7self, Dominant!);

if ?self. NumberOfOrphans == 7dD.NoOfStranger;
then { SendMsg(CantGoAnyMoreDialogBox,PutOnScreenAndWait!);

A-12

The SKY Project Adjacency.ptk

return Null;

}

?self.DominantDept = 7dD;
7self.NumberOfOrphans = 7dD.NoOfStranger;

return Null;

}

¥ e ——- e
* ProTalk method -- DeptControler.
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
k3

*/

method DeptControler.DataExport! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
"\rl“);

SendMsg(DataExportDialogBox,PutOnScreenAndWait!);

return Null;

* ProTalk method -- Departments.AverageFlow!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

*/
method Departments.AverageFlow! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
”\rl“);

A-13

The SKY Project

Adjacency.ptk

?n = find count direct instanceof Departments;
Hlow =0;
for ?d = find direct instanceof Departments;
do {

2d 1= ?self;

7 = ?self.MaterialFlow..?d;

sum ?f into ?flow;

?self.MaterialFlowAverage = ?flow/?n;

return Null;

}

* ProTalk method -- DeptControler.AdjToLayout!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

*/
method DeptControler.AdjToLayout! ()
{

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
lu\nli);
/*---This Method transfers data from Adjacency to Layout.
/*---Transfer of Dept Features.------------rmmmmmeeueee

for 7d = find direct instanceof Departments;
do SendMsg(?d,SetFeatureInfo!);

/*---End of Feature Transfer ----==s-mcmmmmmmmmmameo */

/*---Transfer of Adjacency----------====msomemmmmmmes

for 7d = find direct instanceof Departments;
do SendMsg(?d,SetAdjInfo!);
/*---End of Adjacency Transfer.-

SendMsg(AdjacencyDefinePanel, TakeOffScreen!);

return Null;

}

* ProTalk method -- DeptControler.GetInfoFromAd,!

*

A-14

The SKY Project Adjacency.ptk

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method DeptControler.GetInfoFromAdj! ()

{

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
”\rl“);
SendMsg(DidYouChangeDeptNo,PutOnScreenAndWait!);

return Null;

A-15

The SKY Project LayoutMethods.ptk
#include <prk/lib.pth>
function Member_of(?Target, ?List)
{
bound inputs;
if 7Target == Null; return 0;
if 7List == Null; return O;
if 7List =="() ; return O;
if ?Target == ListFirst(?List); return -1;
return Member_of(7Target, ListRest(?List));
}

function CalDis!(?D1, ?7D2)

bound inputs;

7x1 = 7D1.LastRoom.X;

7yl = 7D1.LastRoom.Y;

7x2 = 7D2 FirstRoom.X;

7y2 = ?D2.FirstRoom.Y;

?Distance = Abs(?7x1-7x2) + Abs(7y1-?y2);
return ?Distance;

* ProTalk method -- Rooms.Intialize!
>k
* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method Rooms.Intialize! ()

/* Methods must always have all their inputs bound: */
bound inputs;

/* Print ("nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
), g
Print (".");
ClearValues(?self,Occupant);
?self.image.Background = ?self.PreoccupantColor;
roomControler.OccupiedRooms -== ?self;
generalControler.CurrentDept.Occupants -== ?self;
generalControler.CurrentDept. NoOf Waiting =
generalControler.CurrentDept. NoOfWaiting + 1;
return Null;

}

/* ___

The SKY Project LayoutMethods.ptk

*

* ProTalk method -- Rooms.Intialize All!
*
* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method Rooms.Intialize All! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:", "™\n object ", ?self, "\n slot ", ?slot,
H‘\rlﬂ);
for find ?room = direct instanceof Rooms;
do
SendMsg(?room, Initialize!);
generalControler.TotalRoomsToAllocate = 0;
generalControler.ResultNo = 0;
for find ?dept = direct instanceof Departments;
do
{7dept.NoOfWaiting = 7dept. NoOfRooms;
?dept.Occupants = Null;
?dept.LastRoom = Null;
?dept.FirstRoom = Null;
sum ?dept.NoOfRooms into ?total,;

generalControler.NoOfDeptsWaiting = generalControler.NoOfDepts;
for find ?result = direct instanceof Results;
do DeleteObject(?result);
return Null;

* This is the main method.

5k

*/

method Rooms. Assign! ()

{

bound inputs;

7RoomsInDept = general Controler.CurrentDept. NoOfRooms;

?CurrentD = generalControler.CurrentDept; /* Remember current Dept */
?self.Occupant = ?CurrentD; /* Record current occupant */
generalControler.CurrentRoom = ?self;

?CurrentD.Occupants +== ?self;
roomControler.OccupiedRooms +== ?self;

?CurrentD.NoOfWaiting = ?CurrentD.NoOfWaiting - 1;
?self.image.Background = ?CurrentD.Color;

if find count ?CurrentD.Occupants >= ?RoomsInDept;
/* Done with this department */
{

A-17

The SKY Project LayoutMethods.ptk

[*Feasibility Check */
/¥ Feasibility Check by Rules.
if SendMsg(DeptTest, checkAll!l) == NO;
then

{
SendMsg(7self,Initialize!);
fail; }
else
*/
?judge = SendMsg(PreAssignTest, check!);
if 2judge == NO;
then {
SendMsg(?self,Initialize!);
fail;

}
?judge = SendMsg(blockTest, check!);
if 7judge == NO;
then
{SendMsg(?self,Initialize!);
fail;
}
else
?judge = SendMsg(accessTest, check!);
if 2judge == NO;
then {
SendMsg(?self, Initialize!);
fail;
}
else
?udge = SendMsg(negativeAdjacencyTest, check!);
if 7judge == NO;
then {
SendMsg(?self,Initialize!);
fail;
}
else
?judge = SendMsg(viewTest, check!);
if 2judge == NO;
then {
SendMsg(?self, Initialize!);
fail;
}
else
?udge = SendMsg(sunlightTest, check!);
if 2judge == NO;
then {
SendMsg(?self, Initialize!);
fail;
}

else
/* End of Feasibility Check */

for find 7R = roomControler.OccupiedRooms;

A-18

The SKY Project LayoutMethods.ptk

do {
nextD = find 7R.Occupant.positiveAdjacencies;

nextD.NoOfWaiting > 0;
MextD.NoOfRooms > 0; /* Next dept must need rooms */
7R.Occupant.Adjacency..TnextD >=0;

/* Next dept must have positive

adjacency with Current Dept. */

?NextR = find 7R.Neighbors; /* NextR = Find neighbor */
MNextR.Occupant == Null; /* Neighbor must be available */
if 7NextR.Preoccupant != Null; /* PreAssignCheck */

then ?NextR.Preoccupant == TnextD;

generalControler.CurrentDept = TnextD;

/* Get ready to do next dept */
?CurrentD.LastRoom = ?self;
7nextD.FirstRoom = ?7NextR;
if generalControler.Mode != DONE;
then SendMsg(?NextR, Assign!); /* Go assign next room, dept */
generalControler.CurrentDept = ?CurrentD;

/* Reset on return */

}

/*--- Evaluation of this alternative. =----====smsememmmrmmeooe o */

if for 7d == find direct instanceof Departments;

always find count 7d.Occupants >= ?d.NoOfRooms;
then {

?CurrentD.LastRoom = ?self;

generalControler.ResultNo = generalControler.ResultNo + 1;

for ?E = find instanceof Evaluation;
do {
7E t= TotalValue;
7E.Active == YES;
SendMsg(?E, Evaluate!);
?7E.SumUpValue = 7E.SumUpValue + 7E.Value;
?ave = 7TE.SumUpValue/generalControler.ResultNo;
?point = 7E.Value/?ave;
if 7E. Type == A;
then 7E.ValueForTotal = 7point;
else 7E.ValueForTotal = 1/?point;

}
SendMsg(TotalValue,Evaluate!);

/*--- reset the Best & Worst record -----——----mmmmmmmmmmmmam - Y
for 7e = find instanceof Evaluation;
do {
select{
case: Te. Type == A;
{(if 7e.Value <= ?e.BestValue; ?e.BestValue = ?e.Value;

A-19

The SKY Project LayoutMethods.ptk

if 7e.Value >= 7e.WorstValue; 7e.WorstValue = ?e.Value;

case: 7e.Type ==D;

{if ?e.Value >= ?e.BestValue; ?e.BestValue = ?e.Value;
if 7e.Value <= ?e.WorstValue; ?e.WorstValue = ?e.Value;

}
} }
/*---End of reset the Best & Worst Record ------=-=-===snmeeemeee */
/*---Make records for best 10 --- GG */
if generalControler.ResultNo <= 10;

then {
SendMsg(Results, MakeRecord!);
if generalControler.ResultNo == 10;
then{
SendMsg(Results, FindWorst!);
}

else {

generalControler.NewResult = 0;
for 7e = find instanceof Evaluation;
dof

7e.Active == YES;

?e.IHaveNew = (;

select{

case: 7e.Type == A;

if 7e.Value <= 7e.WorstResult.?e;
then{
generalControler.NewResult =1;
7e.IHaveNew =1;
7e.Results -== ?e.WorstResult;

}
} /* end of Case-1 */
case: 7e.Type == D;

if 7e.Value >= 7e.WorstResult.%¢;
then{
generalControler.NewResult =1;
7e.IHaveNew = 1;
?e.Results -== ?e.WorstResult;

}
} /* end of Case-2 */
} /* end of select */
} /* end of for_do loop */

/*---Delete Result if it is not contained in any Evaluation.-----*/
for 7r = find direct instanceof Results;
do {

?judge = SendMsg(7r,DeleteResults!);

if 2judge == OK; DeleteObject(?r);

fail;

}

A-20

The SKY Project LayoutMethods.ptk

/#---End of Delete Result.----=mmmmmmmmm oo */

SendMsg(Results, DeleteResults!);
if generalControler.NewResult ==1; SendMsg(Results,MakeRecord!);
SendMsg(Results, FindWorst!);

} /¥ end of else */
/¥---End of Making best 10 Records -------======mmemomoemeee. */
} /* end of then */
/*---End Of Evaluation. --------------- e et R */

SendMsg(?self, Initialize!);
return Null;

}

for find { MNextR = 7self.Neighbors; /* Get all remaining neighbors */

do{ ?NextR.Occupant == Null; /* Next must be available */
if 7NextR.Preoccupant != Null; /* preAssign Check for Next */
then ?NextR.Preoccupant == generalControler.CurrentDept;

if generalControler.Mode != DONE;
then SendMsg(7NextR, Assign!);

SendMsg(7self, Initialize!);

Print("\nBacktrack", 7self);

if generalControler.Mode != DONE;

then fail; /* Backtrack */
Print("\n We Should never get here.");

return Null;

}

* ProTalk method -- RoomControler.Start!
£

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

*/
method RoomControler.Start! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
“\rl“);

A-21

The SKY Project LayoutMethods.ptk

find ?firstRoom = direct instanceof Rooms;
irstRoom.Preoccupant == Null;
irstRoom.Occupant != Null;

7self.StartRoom = ?firstRoom;
generalControler.StartDept = ?firstRoom.Occupant;

return Null;
}

* ProTalk method -- General . FindAlternativeLayouts!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method General.FindAlternativeLayouts! ()

/* Top level methods to find all layouts */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,
H\n’l);
/* Initialize before Starting Layout */

for find 7d = direct instanceof Departments;

do {
7d.NoOfWaiting = 7d.NoOfRooms;

for find ?e = instanceof Evaluation;
do SendMsg(7e,Initialize!);

generalControler.ResultNo = 0;

/* End of Initialize */
SendMsg(roomControler, Start!);
?self.CurrentDept = ?self.StartDept;

?self.StartDept.FirstRoom = roomControler.StartRoom;
SendMsg(roomControler.StartRoom, Assign!);

return Null;

}

The SKY Project LayoutMethods.ptk

*
* ProTalk method -- blockTest.check!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
£

*/

method blockTest.check! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
”\rl“);

if 7self. Active == NO; return YES;

if generalControler.CurrentDept. Type == Block;
then

{

rooms = GetValues(generalControler.CurrentDept, Occupants);
for ?room inlist 7rooms;

do {
neighbors = GetValues(?room, Neighbors);
=0
for Tneighbor inlist 7neighbors;
do {

if 7neighbor.Occupant == 7room.Occupant;
then 7n = 7n+1;

if 7n == 1; return NO;
}
return YES;

else return YES;

* ProTalk method -- Test.checkAll!
%

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method Test.checkAll! ()

/* Methods must always have all their inputs bound: */
bound inputs;

A-23

The SKY Project

LayoutMethods.ptk

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,
"\rl");
if for ?test = find instanceof ?self;

always SendMsg(Mtest,checkFeasibility!) == YES;

then return YES;
else return NO;

* ProTalk method -- Test.checkFeasibility!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method Test.checkFeasibility! ()

/* Methods must always have all their inputs bound: */

bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
“\n");
7D = generalControler.CurrentDept;
7D.feasibility = Null;
if ?self. Active == NO; return YES;

?object = GetValues(?self, Depts);
?judge = Member_of(?D, ?object);
if 2judge !=-1; return YES;

if { tind [?self.Rules] 7x = 7D.feasibility;
' /* need step below to invoke rules */

7x == NO;}
then return NO;
else return YES;

}
e e
*
* ProTalk method -- Rooms.LookAround!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.

A-24

The SKY Project LayoutMethods.ptk

ES

*/
method Rooms.LookAround! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
“\rl”);

?neighbors = GetValues(?self, Neighbors);
7empty = 0.0;
for Mneighbor inlist 7neighbors;
do {
if Mneighbor.Occupant == Null;
then 7empty = ?empty + 1.0;
else if 7neighbor.Preoccupant != Null;
then 7empty = 7empty +1.0;
}

return 7empty;

}
e -
*
* ProTalk method -- Rooms.LookSouth!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/

method Rooms.LookSouth! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,
H\rlﬂ);

if ?self.South == Null;
then return DEAD;
else
if 7self.South.Occupant == Null;
then return SendMsg(?self.South, LookSouth!);
else return ?self.South.Occupant;

A-25

The SKY Project LayoutMethods.ptk

* ProTalk method -- Rooms.LookNorth!
E

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method Rooms.LookNorth! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("mMethod:",
"\n object ", 7self,
"\n slot ", ?slot,

“\rl");
if 7self North == Null;
then return DEAD;
else

if 7self.North.Occupant == Null;
then return SendMsg(?self. North, LookNorth!);
else return ?self.North.Occupant;

* ProTalk method -- Rooms.LookEast!

*

* This 1s the default method, a simple tracer.

* It prints the name of the object and method slot.
E 3

*/
method Rooms.LookEast! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
”\Il");

if ?self.East == Null;
then return DEAD;
else
if ?self.East.Occupant == Null;
then return SendMsg(?self.East, LookEast!);

A-26

The SKY Project LayoutMethods.ptk

else return ?self.East.Occupant;

return Null;

}

* ProTalk method -- Rooms.LookWest!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method Rooms.LookWest! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
”\rl");

if 7self. West == Null;
then return DEAD;
else
if ?self.West.Occupant == Null;
then return SendMsg(?self. West, LookWest!);
else return ?self.West.Occupant;

return Null;

}

* ProTalk method -- Departments.FindSunlightRoom!
*
* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method Departments.FindSunlightRoom! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
"\n");

A-27

The SKY Project

LayoutMethods.ptk

?sunlightRoom = 0.0;
?rooms = GetValues(?self, Occupants);
for 7room inlist 7rooms;

do {
?empty = SendMsg(?room, LookAround!);
if ?empty >0;
then ?sunlightRoom = 7sunlightRoom +1.0;

return ?sunlightRoom,;

* ProTalk method -- Departments.FindEastViewRoom!

*
*
E3
*

*/

This is the default method, a simple tracer.
It prints the name of the object and method slot.

method Departments.FindEastViewRoom! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",

* ProTalk method -- Departments.FindNorthViewRoom!

*
ES
*

*/

"\n object ", ?self,
"\n slot ", ?slot,
"“\n");
Tview = 0.0;
rooms = GetValues(?self, Occupants);
for ?7room inlist 7rooms;
do {
?east = SendMsg(?room, LookEast!);
if 7east == GREEN@;
then ?view = ?view + 1.0;

}

return 7view;

This is the default method, a simple tracer.
It prints the name of the object and method slot.

method Departments.FindNorthViewRoom! ()

A-28

The SKY Project LayoutMethods.ptk

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
\n");
Tview = 0.0;
?rooms = GetValues(?self, Occupants);
for 7room inlist ?rooms;
do {
2east = SendMsg(?room, LookNorth!);
if 7east == GREEN@;
then ?view = ?view + 1.0;

}

return ?view:

return Null;

}

* ProTalk method -- Departments.FindSouthViewRoom!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.

*

*/
method Departments.FindSouthViewRoom! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
"\n");
Mview = 0.0;
Trooms = GetValues(?self, Occupants);
for 7room inlist 7rooms;
do {
?east = SendMsg(?room, LookSouth!);
if 7east == GREEN@;
then 7view = 7view + 1.0;
}

return ?view;

return Null;

}

The SKY Project

LayoutMethods.ptk

*

* ProTalk method -- Departments.FindWestViewRoom!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method Departments.FindWestViewRoom! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
"\n");
?view = 0.0;
7rooms = GetValues(?self, Occupants);
for ?room inlist ?rooms;
do {
?east = SendMsg(?room, LookWest!);
if ?east == GREEN@;
then ?view = ?view + 1.0;

}

return 7view;

return Null;

}

* ProTalk method -- PreAssignTest.check!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method PreAssignTest.check! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
H\rll!);

if ?self.Active == NO; return YES;

7D = generalControler.CurrentDept;
MNarget = 7D .PreAssignRoom;

A-30

The SKY Project LayoutMethods.ptk

if 7target == Null;

then return YES;

else {
MNist = GetValues(?D, Occupants);
7judge = Member_of(?target, ?list);
if 7judge == -1;

then return YES;

else return NO;

S el e

* ProTalk method -- viewTest.check!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
3

*/

method viewTest.check! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
“\r]“);

if 7self. Active != YES; return YES;
/* View Test for the Current Department. */

7D = generalControler.CurrentDept;

if 7D.needsView == YES;

then {
?judge = SendMsg(?D, FindGoodViewRoom!);
if 2judge == 0.0;
then return NO;

}

/* View Test for previously allocated Departments. */

7pD = find direct instanceof Departments;
7D 1= 7D;
7pD.needsView == YES;
7pDo = GetValues(7pD, Occupants);
7pDo != Null;
7pDo ="();
7udge2 = SendMsg(?7pD, FindGoodViewRoom!);
{

A-31

The SKY Project LayoutMethods.ptk

if 7judge2 == 0.0;
then return NO;
else fail;

}

return YES;
return Null;

}

e —

* ProTalk method -- Departments.FindGoodViewRoom!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.

*k

*/
method Departments.FindGoodViewRoom! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
H\Ilﬂ);

?goodView = 0.0;

7e = SendMsg(?self, FindEastViewRoom!);
n = SendMsg(?self, FindNorthViewRoom!);
7s = SendMsg(7self, FindSouthViewRoom!);
7w = SendMsg(?self, FindWestViewRoom!);
?goodView = 7¢ + Mn + 7s + ?w;

return 7goodView;

* ProTalk method -- sunlightTest.check!
k

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
K

*/
method sunlightTest.check! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",

A-32

The SKY Project LayoutMethods.ptk

"\n object ", ?self,
"\n slot ", 7slot,
”\Il“);
if 7self.Active != YES; return YES;

/* Sunlight Test for the Current Department. */
7D = generalControler.CurrentDept;
if 7D.needsSunlight == YES;
then {
?udge = SendMsg(?D, FindSunlightRoom!);
if 7judge == 0.0; return NO;

/* Sunlight Test for the previously allocated departments. */
?pD = find direct instanceof Departments;
7pD = 7D; :
7pD.needsSunlight == YES;
Do = GetValues(?pD, Occupants);
?pDo != Null;
?pDo 1="();
7judge2 = SendMsg(?pD, FindSunlightRoom!);

{
if 7judge?2 == 0.0;
then return NO;

else fail;
}
return YES;
}
e e
*
* ProTalk method -- accessTest.check!
*
* . This is the default method, a simple tracer.
* It prints the name of the object and method slot.
ES
*/

method accessTest.check! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
I'\rlli);

if ?self.Active != YES; return YES;

7D = generalControler.CurrentDept;
if 7D.needsAccess '= YES; return YES;

A-33

The SKY Project LayoutMethods.ptk

frooms = GetValues(?D, Occupants);

for ?7room inlist 7rooms;
do{ neighbors = GetValues(?room, Neighbors);
for Meighbor inlist 7neighbors;

do {
if 7neighbor.Occupant == ROAD@; return YES;
fail;
}
}
return NO;
}
e e
*
* ProTalk method -- negativeAdjacencyTest.check!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/

method negativeAdjacencyTest.check! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,
"\I]“);
if 7self. Active == NO; return YES;

?d = generalControler.CurrentDept;
rooms = GetValues(?d, Occupants);
for 7room inlist ?rooms;
do {
?neighbors = GetValues(?room, Neighbors);
for neighbor inlist Ineighbors;
do {
D = ?neighbor.Occupant;
nD == find direct instanceof Departments;
if 7d.Adjacency..?7nD < 0; return NO;
}

}
return YES;
}

method feasibilityCheck.React! (?button)

/* Methods must always have all their inputs bound: */

A-34

The SKY Project LayoutMethods.ptk

bound inputs;
?dialog_box = 7self.DialogBox;
SendMsg (?dialog_box, TakeOffScreen!);

/* If named objects are used and the dialog box WILL NEVER be
* converted to a blueprint, GetValue(s) can be used instead of
* GetControlValue(s).

*/
select {
case: 7button == "Continue";
Print (?button, \n");
case: 7button == "Stop";
Print (?button, ™\n");
}
return Null;
}
e
ES

* ProTalk method -- Results.MakeRecord!
ES

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method Results.MakeRecord! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
H\nH);

bound inputs;

mumber = generalControler.ResultNo;

Tresult =
Makelnstance(ConvertToSymbol(AppendStrings(“result”,ConvertToString(?number))),
sky, Results);

for ?e = find instanceof Evaluation;
do {

7e.Active == YES;

Tresult.?7e = 7e.Value;

}

A-35

The SKY Project

LayoutMethods.ptk

for 7d = find instanceof Departments;
do {
?Occupants = GetValues (?d, Occupants);
if 70ccupants != Null;
then for 7o inlist 7?Occupants;
do {
?Slot = ConvertToSymbol(?d);
Tresult.?Slot +== 70,

}
}
if ITnumber <= 10;
then {
for 7e = find instanceof Evaluation;
do { ?e.Active == YES;
7e.Results +== Tresult;
}
}
else {
for ?e = find instanceof Evaluation;
do {
7e.Active == YES;
if 7e.JHaveNew == 1;
then 7e.Results +== 7result;
}
}

return Null;

A-36

The SKY Project LayoutRules.ptk

#include <prk/lib.pth>

/* sunlightTest ~----=n-meoemcmmom e
* This Dept needs empty neighbor to geet sunlight.
* Also this room may not block neighbor's sunlight.

*
B e e e e e e e e e e et e e e e */
berule sunlightrulel in sunlightTestRules priority 0
{if:
7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;
7D.needsSunlight == YES;
?empty = SendMsg(?R, LookAround!);
lempty == 0,

then:
7D feasibility = NO;

}
bcrule sunlightrule2 in sunlightTestRules
{if:

7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;
Meighbor = 7R.Neighbors;
D = 7neighbor.Occupant;
MD.needsSunlight == YES;
DR = SendMsg(7nD, FindSunlightRoom!);
DR == (;
then:
7D feasibility = NO;
}

/% viewTest —--mmem oo
* This Dept must have at least one room with good view.
* viewBlockTest tests if this room blocks neighbor's good view.

berule viewrulel in viewTestRules

{if:
7D = generalControler.CurrentDept;
7D.needsView == YES;
7sView = SendMsg(?D, FindSouthViewRoom!);
MmView = SendMsg(?D, FindNorthViewRoom!);
7eView = SendMsg(?D, FindEastViewRoom!);
MwView = SendMsg(?D, FindWestViewRoom!);
7sView == 0;
MmView == 0;
7eView == (;
TwView == (;

then:
1D.feasibility = NO;

/*

A-37

The SKY Project

LayoutRules.ptk

becrule viewrules] in viewTestRules

{if:
7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom,;
7s = SendMsg(?R, LookSouth!);
Mn = SendMsg(?R, LookNorth!);
?e = SendMsg(?R, LookEast!);
?w = SendMsg(7R, LookWest!);
7D.NoOfWaiting <= 0;

7s = GREEN@;

n != GREEN@;

7e '= GREEN@;

7w != GREEN@;
then:

D .feasibility = NO;
}

berule viewrules2 in viewTestRules

{if:
7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom,;
7S = SendMsg(?R, LookWest!);
7S == GREEN@;

then:
7D.feasibility = YES;

}

berule viewrules3 in viewTestRules

{if:
7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;
7S = SendMsg(7R, LookNorth!);
7S == GREEN@;

then:
?D.feasibility = YES;

}

bcrule viewrules4 in viewTestRules

{if:
7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;
7S = SendMsg(?R, LookEast!);
7S == GREEN@;

then:
7D feasibility = YES;

}

*/

bcrule viewrules5 in viewTestRules priority 100 -

{if:
7D = generalControler.CurrentDept;
7D.needsView != YES;

then:
7D .feasibility = YES;

A-38

The SKY Project LayoutRules.ptk

/* viewBlockTest ---------mmmmomom oo
* This room may not block neighbor's good view.

)
R e e e e e e e e e e */
bcrule viewBlockrulel in viewBlockTestRules
{if:
7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;
nR = 7R.North;
D = 7nR.Occupant;
D 1= 7D;
nD.needsView == YES;
nDv = SendMsg("nD, FindSouthViewRoom!);
mDv == 0;
then:
7D.feasibility = NO;
}
berule viewBlockrule2 in viewBlockTestRules
{if:
7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;
7sR = 7R.South;
7sD = 7sR.Occupant;
7sD 1= 7D;
7sD.needsView == YES;
7sDv = SendMsg(?sD, FindNorthViewRoom!);
7sDv == 0;
then:
7D.feasibility = NO;
}
bcrule viewBlockrule3 in viewBlockTestRules
{if:

7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;
?7eR = 7R.East;
?eD = ?eR.Occupant;
7eD 1= 7D;
?7eD.needsView == YES;
7eDv = SendMsg(7eD, FindWestViewRoom!);

leDv == ()
then:
D.feasibility =NO;
}
becrule viewBlockruled in viewBlockTestRules
{if:

7D = generalControler.CurrentDept;
7R = generalControler.CurrentRoom;

A-39

The SKY Project LayoutRules.ptk

?7WR = 7R West;
TwD = ?7wR.Occupant;
7wD 1= 7D:
7wD.needsView == YES;
?wDv = SendMsg(?wD, FindEastViewRoom!);
TwDv == (;
then:

}

/* BlOCKTESt ==
* This Dept must be allocated as a block.

7D feasibility = NO;

/*

berule rulel in blockTestRules

{if:
generalControler.CurrentDept. NoOfRooms != 2;
generalControler.CurrentDept. NoOfRooms != 3;
generalControler.CurrentDept. NoOfRooms != 3;
generalControler.CurrentDept. NoOfRooms !=7;

then:
sItBlock = YES:
}
berule rule2 in blockTestRules
{if:

?rooms == GetValues(generalControler.CurrentDept, Occupants);
7room == inlist ?rooms;
find count ?room.Neighbors <= 3;
then:
NsItPeripheral = YES;
}

berule rule3 in blockTestRules
{if:
sltBlock != YES;
generalControler.CurrentDept. Type == Block;
NsltPeripheral == Yes;
then:
generalControler.CurrentDept.feasibility = NO;

}
*/

/¥ accessTest ~—-mmmemmom e

* This Dept needs access to exterior.

* So, this Dept must have at least one room whose neighbor is ROAD.
room in peripheral.

berule rulel in accessTestRules
/* YES if any Room in Dept has access */

A-40

The SKY Project

LayoutRules.ptk

{if:
7D = generalControler.CurrentDept;
Troom = 7D.Occupants;
N = 7room.Neighbors;
N.Occupant == ROAD,;

then:
7D .feasibility = YES;

}

berule rule2 in accessTestRules

{if:
7D = generalControler.CurrentDept;
?room = 7D.Occupants;
room.numberOfNeighbors <=3;

then:
D feasibility = YES;

}

bcrule rule3 in accessTestRules

{if:
7D = generalControler.CurrentDept;
7D.needsAccess == YES;
7D .feasibility != YES;

then:
D.feasibility = NO;

}

A-41

The SKY Project Evaluation.ptk

/*

*

* ProTalk method source file
*

*/

#include <prk/lib.pth>

* ProTalk method -- MaterialHandling.Evaluate!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
%k

*/
method MaterialHandling. Evaluate! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
”\rl”);

7Eval =0.0;
?Evaluation = 0.0;
for 7D1 = find direct instanceof Departments;
do {
7D1.NoOfRooms > 0;
find count 7D1.0Occupants >0 ;
sum ?Evaluation into ?Eval;
for 7D2 = find direct instanceof Departments;
do {
D2 '=7D1;
7D2.NoOfRooms >0;
find count 7D2.Occupants >0;
re = 7D1.MaterialFlow..7D2;
7e = CalDis!(7D1, 7D2)* re;
sum 7e into ?Evaluation;

}

?Eval = ?Eval+?Evaluation;
?self.Value = 7Eval;

return Null;

A-42

The SKY Project Evaluation.ptk

* ProTalk method -- LengthOfWalls.Evaluate!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
E

*/
method LengthOfWalls.Evaluate! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,

”\rl");
?eval = 0.0;
for ?r = find direct instanceof Rooms;
do {

?r.Preoccupant != ROAD@;

7r.Preoccupant != GREEN@;

71.0Occupant != Null;

?value = SendMsg(?r,LookAround!)+ 4 - 7r.numberOfNeighbors;
sum ?value into ?eval;

}

7self.Value = ?eval;
return Null;

}

~* ProTalk method -- LengthOfFreeRoad.Evaluate!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

*/
method LengthOfFreeRoad. Evaluate! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
”\rl”);

A-43

The SKY Project

Evaluation.ptk

Zeval = 0.0;
for ?r = find direct instanceof Rooms;
do {

if 7r.Occupant != ROAD@; then fail;
n = GetValues(?r, Neighbors);
for "nei inlist n;
do {
if 7nei.Occupant == Null;
then 7eval = ?eval + 1.0;
else {
if 7nei.Occupant == GREEN@;
then ?eval = ?eval +1.0;
else fail;
}
!
}

7self.Value = ?eval;

return Null;

}

* ProTalk method -- NoOfGoodViewRooms.Evaluate!

ES
* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method NoOfGoodViewRooms.Evaluate! ()

/* Methods must always have all their inputs bound: */

bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
"\I]”);

7eval = 0.0;
for 7d = find direct instanceof Departments;
do {

if ?2d.needsView != YES; then fail;

else

?value = SendMsg(?d,FindGoodViewRoom!)

sum ?value into ?eval;

}

7self.Value = 7eval;

A-44

The SKY Project Evaluation.ptk

return Null;

}

* ProTalk method -- NoOfAccessRooms.Evaluate!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
K

*/
method NoOfAccessRooms.Evaluate! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,

”\rl”);
?eval = 0.0;
for 7D = find direct instanceof Departments;
do {
if 7D.needsAccess != YES; then fail;
else

Trooms = GetValues(?D, Occupants);
for ?room inlist 7rooms;
do{ Mneighbors = GetValues(?room, Neighbors);
for MTneighbor inlist Tneighbors;
do {
if 7neighbor.Occupant == ROAD@;
then 7eval = ?eval + 1.0;
fail;
}
}
}

7self. Value = Yeval;

return Null;

}

* ProTalk method -- NoOfSunlightRooms.Evaluate!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*

A-45

The SKY Project Evaluation.ptk

method NoOfSunlightRooms.Evaluate! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,

H\nll);
7eval = 0.0;
for 7D = find direct instanceof Departments;
do {

if 7D.needsSunlight != YES; then fail;

?rooms = GetValues(?D, Occupants);

for ?r inlist ?rooms;

do {
7e = SendMsg(?r, LookAround!);
sum ?e into ?eval;

}
}

7self. Value = ?eval;
return Null;

}

* ProTalk method -- NumberOfProperRooms.Evaluate!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
kS

*/
method NumberOfProperRooms.Evaluate! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
"\rl");

Teval = 0.0;

/* Advanced Version will be as follows;
Tweight = 0
for ?7subEvaluation = find direct instanceof ?self;
do {
sum ?subEvaluation.Weight into ?weight;

A-46

The SKY Project Evaluation.ptk

?value = 7subEvaluation.Weight * ?subEvaluation.Value;
*4% But........ */

for 7subEvaluation = find direct instanceof ?self;

do {
sum ?subEvaluation.Value into ?eval;
}

?self.Value = 7eval;

return Null;

}

* ProTalk method -- TotalValue.Evaluate!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

*/
method TotalValue.Evaluate! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
H\r)“);

7value = 0.0;

for ?7E = find instanceof Evaluation;
do {

7E 1= 7self;

7E.Active == YES:

sum 7E.ValueForTotal into ?value;

7self. Value = ?value;

return Null;

}

* ProTalk method -- Results.FindWorst!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.

A-47

The SKY Project Evaluation.ptk

*

*/
method Results. FindWorst! ()
{

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", self,
"\n slot ", ?slot,
“\rl”);

for ?e = find instanceof Evaluation;
do {
7e.Active == YES;
Mist = GetValues(?e, Results);
if Nist =="();
then {
SendMsg(NoResult, PutOnScreenAndWait!);
return Null;

select {
case: 7e.Type == A;
?Nist = SortBySlot(?list, 7e, "<");
case: 7e.Type ==D;
Nist = SortBySlot(?list, 7e, ">");

7e.WorstResult = ListFirst(?list);

}
return Null;

}
P e
*

* ProTalk method -- Results.DeleteResults!

*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
&

*/

method Results.DeleteResults! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
" "\n object ", 7self,
"\n slot ", 7slot,
“\rl”);

A-48

The SKY Project Evaluation.ptk

/*--if the result is not contained in any Evaluation, it should be deleted.--*/

for 7e = find instanceof Evaluation;

do {
MNist = GetValues(?e, Results);
?judge = Member_of(?self,?list);
if 7judge == -1; return NO;
fail;
return OK;
}
e e
*
* ProTalk method -- Results.SearchRange!
*
* This 1s the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/

method Results.SearchRange! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\\nMethod:",
“\n object ", Iself,
"\n slot ", 7slot,

H\nﬂ);
return Null;

}
e e
*

* ProTalk method -- Evaluation.Initialize!

*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method Evaluation.Initialize! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
”\Il“); -

A-49

The SKY Project

Evaluation.ptk

7self.IHaveNew = O;
?self.SumUpValue = 0;
ClearValues(?self,Results);
ClearValues(7self,WorstResult);
if ?self. Type == A,
then {
7self BestValue = 99999999;
7self. WorstValue = -99999999.

]

if 7self. Type == D;

then {
7self.BestValue = -99999999;
7self. WorstValue = 99999999,

}
return Null;

}
e e
ES

* ProTalk method -- General.CalculateValue!

*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
b3

*/

method General.CalculateValue! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
"\n");
/*--- Unification of values for evaluation --------------- */
TotalValue.Weight =0;
for ?e = find instanceof Evaluation;
do {
7e.Active == NO;
7e.Weight = 0;

for ?e = find instanceof Evaluation;
do{
7e 1= TotalValue;
7e.Active == YES;
TotalValue.Weight = TotalValue.Weight + 7e.Weight;
if 7e.Type == A;
then{
7e.Range = 7e.WorstValue - 7e.BestValue;

}

A-50

The SKY Project

Evaluation.ptk

if 7e.Type == D;

then {
?e.Range = 7e.BestValue - 7e.WorstValue;
}
J e
/*--- End of Unification -=---====memmmmmmomee */
[*--- Initialize Value-----------=-mcmeuee- */

shownResult.Rank = 0;
for ?r = find direct instanceof Results;
dof{
?r.FinalValue = 0;
ClearValues(7r,Shown);

/*--- End of Initialize.------------------- */
/¥---Panel On Off.----mremmecmmemem e */

SendMsg(StartEvaluation, TakeOffScreen!);
SendMsg(ResultValueGraph,PutOnScreen!);

/*--- Calculate Value.------------mevememnv */
for 7r = find direct instanceof Results;
do SendMsg(7r, EvaluateMel);

return Null;

}

* ProTalk method -- Results.EvaluateMe!
%

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
%k

*/

method Results.EvaluateMe! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,
“\rl“);

/*--- Transfer to standard value. -----------cmrmemmmmeemeeen

for ?e = find instanceof Evaluation;
do {

7e !=TotalValue;

7e.Active == YES;

if 7e. Type == A;

A-51

The SKY Project Evaluation.ptk

then {
if 7e.Range !=0; then
7self.Evaluation..?e = (7e.WorstValue-?self.?e)/?e.Range * 100;
else 7self.Evaluation..?e =50;

)
if ?e.Type == D;
then {
if 7e.Range !=0; then
7self. Evaluation..?e = (7self.?7e-?e.WorstValue)/?e.Range *100;
else ?self.Evaluation..?e =50;

}
/*--- End of Value Standardization. - - ----%/
/*--- Calculate Final Value considering preference factor. ------ */

?value = 0;
for ?e = find direct instanceof Evaluation;
do {
7e = TotalValue;
7e.Active == YES;
7v = 7self. Evaluation..?7e * 7e.Weight;
sum ?v into ?value;

?self FinalValue = 7value;
/*--- End of Calculation. -----==mmmmmmm oo */

return Null;

}

method sky_CommandRow_186.React! (?button)
{
/* Methods must always have all their inputs bound: */
bound inputs;
?dialog_box = 7self.DialogBox;
SendMsg (?dialog_box, TakeOffScreen!);

/* If named objects are used and the dialog box WILL NEVER be
* converted to a blueprint, GetValue(s) can be used instead of

* GetControlValue(s).

*/

select {
case: ?button == "OK";
Print (?button, ™\n");
SendMsg (?dialog_box, TakeOffScreen!);
SendMsg(AdjacencyListDialogBox,PutOnScreen!);

case: ?button == "Cancel";
Print (?button, \n");
SendMsg (?dialog_box, TakeOffScreen!);

A-52

The SKY Project Evaluation.ptk

return Null;

}

A-53

The SKY Project Interface.ptk

#include <prk/lib.pth>

function FindNextResult(?list)

{
for 71 inlist ?list;
do {
?r.Shown != DONE;
return ?r;
return Null;
}
K e e
*
* ProTalk method -- Rooms.FindNeighbor!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/

method Rooms.FindNeighbor! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
”\rl");

for find ?candidate = direct instanceof Rooms;
do {
?candidate. X == ?self. X;
?2dy = ?candidate.Y - ?self.Y;
if 1dy == 1;
then {
7self.South = ?candidate;
?self.Neighbors +== ?candidate;

if 2dy == -1,
then {
7self North = ?candidate;
?self.Neighbors +== ?candidate;

_ }
fail;
}
for find ?candidate = direct instanceof Rooms;

do {
7candidate.Y == 7self.Y;
7dx = ?candidate.X - ?self.X;
if 2dx == 1;
then {

A-54

The SKY Project Interface.ptk

7self East = 7candidate;
?self.Neighbors +== ?candidate;

if 2dx == -1;
then {
?self.West = ?candidate;
?self.Neighbors +== ?candidate;

fail;
}
return Null;
}
e - -
%
* ProTalk method -- General .Reset!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*/
method General.Reset! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
N\IIN);

ClearValues(generalControler, StartDept);
ClearValues(roomControler, StartRoom);

&
g

eneralControler.BestEval = 99999999;
eneralControler.WorstEval = 0;

for find 7room = direct instanceof Rooms;

/*

do

SendMsg(?room, Initialize!);
generalControler. TotalRoomsToAllocate = 0;
generalControler.ResultNo = 0;
for find ?dept = direct instanceof Departments;
do

{7dept.NoOfWaiting = ?dept. NoOfRooms;

?dept.Occupants = Null;

?dept.LastRoom = Null;

?dept.FirstRoom = Null;

?dept.feasibility = Null;
sum ?dept. NoOfRooms into 7total;

generalControler. TotalRoomsToAllocate = ?total; Probably not needed. */

A-55

The SKY Project Interface.ptk

generalControler.NoOfDeptsWaiting = generalControler.NoOfDepts;
for find 7result = direct instanceof Results;
do DeleteObject(?result);

/* SendMsg(InputPanel, Iconify!); */
return Null;

}

* ProTalk method -- General.ShowResult!
%

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

*/
method General.ShowResult! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\aMethod:",
"\n object ", 7self,
"\n slot ", ?slot,

||\n|1);
/*---ReDraw of Layout Panel.---------omoomommo oo */
for 9rm = find instanceof Rooms;
do {

if 2rm.Preoccupant == Null;
SendMsg(?rm, Initialize!);

[*---End Of ReDraw.—-----=cmmm oo */

?list = all direct instanceof Results;
if ist == "();
then {
SendMsg(NoResult, PutOnScreenAndWait!);
return Null;

MnewList = SortBySlot(?ist, FinalValue, "<");

r = FindNextResult(?newList);

if 7r == Null;

then {
SendMsg(shownResultReset,PutOnScreen!);
return Null;

}
else
if shownResult.Rank == 0;
then { shownResult.BestValue = 7r.FinalValue/TotalValue.Weight;}

A-56

The SKY Project Interface.ptk

shownResult.Rank = shownResult.Rank + 1;
for ?e¢ = find instanceof Evaluation;
do {

7e.Active == YES;

7e != TotalValue;

shownResult.?e = 7r Evaluation..?e;

shownResult. TotalValue = 7r.FinalValue/Total Value. Weight;

for 7d = find instanceof Departments;
do {
7room = GetValues(?r, ConvertToString(?d));
for 7rm inlist ?room;
do {
7rm.Occupant = 7d;
?rm.image.Background = 7d.Color;

}
]
7r.Shown = DONE;

return Null;

}

* ProTalk method -- General.Quit!
E S

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method General.Quit! ()

/* Methods must always have all their inputs bound: */
bound inputs;
for 7panel = find instanceof Panel@ ActivelmageApp;
do SendMsg(?panel, TakeOffScreen!);

[*---0ld Codes---------===mmmmm e */
SendMsg(ArrangeDeptFeaturePanel, TakeOffScreen!);
SendMsg(LayoutPanel, TakeOffScreen!);
SendMsg(InputPanel, TakeOffScreen!);
SendMsg(EvaluationGraph, TakeOffScreen!);
/*---End of ole codes------~----mmmmmmmmmmmee */

C:{exit(0);}

return Null;

}

The SKY Project Interface.ptk

*/
function AbsoluteStart (?App, ?Argv)
{

/* Methods must always have all their inputs bound: */
bound inputs;

SendMsg(SKY Controler, PutOnScreen!);

return Null;

* ProTalk method -- Rooms.countNeighbors!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

*/
method Rooms.countNeighbors! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
|l\r1||);

?self.numberOfNeighbors = find count ?self.Neighbors;

return Null;

}

e S

* ProTalk method -- RoomControler.InitializeRooms!
ES

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method RoomControler.InitializeRooms! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""nMethod:",
“\n object ", ?self,

A-58

The SKY Project Interface.ptk

"\n slot ", 7slot,
"\n");
/*
SendMsg(generalControler, ResetLayout!);
SendMsg(generalControler, ResetResult!);
SendMsg(LayoutPanel, TakeOffScreen!);
*/

/*---ClearValue before Delete Object.----=-===mmmmmmmmmmommee e */
ClearValues(generalControler,CurrentRoom);
ClearValues(roomControler,CurrentRoom);
ClearValues(roomControler,NextRoom);
for 7d = find direct instanceof Departments;
do ClearValues(?d,Pre AssignRoom);

/*---End of Clear Values.-----------mrmeeeuev - --*/

/* Delete the previous objects */
for find ?room = direct instanceof Rooms;
do DeleteObject(?room);

/* Delete image objects */
for find 7r_image = direct instanceof StringEditor@ ActivelmagesApp;
do { if 7r_image.Panel == LayoutPanel@sky;
then DeleteObject(?r_image);

for find ?r = direct instanceof MessageButton@ ActiveImagesApp;
do { if ?r.Panel == RoomPreoccupation;
then DeleteObject(?r);
}

/* Create Rooms instances */
for 71 from 1 to roomControler.numberOfX;
do {
for 7j from 1 to roomControler.numberOfY;
do {

Troom =
Makelnstance(ConvertToSymbol(AppendStrings("Room",ConvertToString(?i),ConvertTo
String(?)))), sky, Rooms);

Troom.X = 7i;
room.Y = 7j;
?room.PreoccupantColor = Black;

/* Create images of rooms in LayoutPanel & PreOccupationPanel */
7r_image =

Makelnstance(ConvertToSymbol(AppendStrings("room",ConvertToString(?i),ConvertToS
tring(?]))), sky, StringEditor@ ActivelmagesApp);

?r_image.Panel = LayoutPanel@sky;

" 7r_image.MonitoredSlot = Occupant@ ?room@sky;

7r_image.Height = 900;

r_image.Width = 900;

?r_image.Title = AppendStrings("R",ConvertToString(?1),ConvertToString(?j));

7r_image.PositionX = 500 + 900*(?i-1);

?r_image.PositionY = 500 + 900*(?j-1);

room.image = 7r_image;

A-59

The SKY Project Interface.ptk

7r_image2 =

MakelInstance(ConvertToSymbol(AppendStrings("rpre”,ConvertToString(?1),ConvertToStr
1ng(‘7_]))) sky, MessageButton@ ActivelmagesApp);

7r_image2.Panel = RoomPreoccupation@sky;

?r_image2.MonitoredSlot = Preoccupy!@ ?room@sky;

Ir_image2.Height = 900;

r_image2.Width = 900;

Ir_image2.PositionX = 500 + 900*(?i-1);

?r_image2.PositionY = 500 + 900*(?j-1);

}
}

/* Set Neighbors for edach room and cout the nomber */
for find ?room = direct instanceof Rooms;
do { SendMsg(?room, FindNeighbor!);
SendMsg(?room, countNeighbors!);
} .

/* Remove the Panel #/
SendMsg(ArrangeRoomPanel, TakeOffScreen!);

SendMsg(LayoutPanel, PutOnScreent);

return Null;

}

* ProTalk method -- RoomControler.ArrangeRooms!
*
* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method RoomControler.ArrangeRooms! ()

/* Methods must always have all their inputs bound: */
bound inputs;

- Print (""\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
"\rl”);
SendMsg(generalControler, ResetResult!);
SendMsg(ArrangeRoomPanel, PutOnScreen!);
return Null;

}

The SKY Project Interface.ptk

&
* ProTalk method -- DeptControler.ArrangeDeptNumber!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method DeptControler. ArrangeDeptNumber! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
H\nll);

/* We must delete the Result Slot before reset the number of Dept */
for 71 from 1 to deptControler.NumberOfDept;
do DeleteSlot(Results,
(ConvertToSymbol(AppendStrings("D",ConvertToString(?1)))));

SendMsg(ArrangeDeptNumberPanel, PutOnScreen!);
return Null;

}

* ProTalk method -- DeptControler.InitializeDeptNumber!
sk

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.

*

*/
method DeptControler.InitializeDeptNumber! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
"\n object ", 7selt,
"\n slot ", ?slot,

”\rl”);
[*--- Delete image objects ---------=-=---comun */
for find 7d_image = direct instanceof HorizontalSlider@ ActiveImagesApp;
do {

if 7d_image.Panel == ArrangeDeptFeaturePanel@;
then DeleteObject(?d_image);
}

A-61

The SKY Project Interface.ptk

for find 7d_image = direct instanceof StringEditor@ ActivelmagesApp;
do {

if 7d_image.Panel == ArrangeDeptFeaturePanel@;

then DeleteObject(?d_image);

}
/*---End of Image Delete------ --- -emn ¥/
/*--- Create Departments instances ------------- */

?height = 7000/deptControler.NumberOfDept;

for 7d= find direct instanceof Departments;
do {
[* d =
Makelnstance(ConvertToSymbol(AppendStrings("D",ConvertToString(1))), sky,
Departments);

?1=ConvertToNumber(Substring(?d, 1));

/* Create images of Departments in ArrangeDeptFeaturePanel for input */
?d_image = Makelnstance(AppendStrings(ConvertToString(?d),"Rooms"), sky,
HorizontalSlider@ ActivelmagesApp);
?d_image.MonitoredSlot = NoOfRooms@?d@sky;
?d_image.ValueType = PrkFixnum;
?d_image.RangeMaximum = 10;
?d_image.Panel = ArrangeDeptFeaturePanel@sky;
7d_image.Height = ?height;
7d_image.Width = 900;
?d_image.Title = AppendStrings("D",ConvertToString(?i));
?d_image.PositionX = 500;
?d_image.PositionY = 2100 + ?height*(?i-1);

?d_color = Makelnstance(AppendStrings(ConvertToString(?d),"Color"), sky,
StringEditor@ActivelmagesApp);

?d_color.MonitoredSlot = Color@?d@sky;

?d_color.Panel = ArrangeDeptFeaturePanel@sky;

7d_color.Height = ?height;

7d_color.Width = 900;

?d_color.Title = "Color";

7d_color.PositionX = 1500;

?d_color.PositionY = 2100 + ?height*(?i-1);

?d_type = Makelnstance(AppendStrings(ConvertToString(?d), Type"), sky,
StringEditor@ActivelmagesApp);

?d_type.MonitoredSlot = Type@?d@sky;

?d_type.Panel = ArrangeDeptFeaturePanel@sky;

7d_type.Height = ?height;

7d_type.Width = 900);

7d_type.Title = "Type";

?d_type.PositionX = 2500;

7d_type.PositionY = 2100 + ?height*(?i-1);

?d_negative = Makelnstance(AppendStrings(ConvertToString(?d), "Negative"),
sky, StringEditor@ ActivelmagesApp);

A-62

The SKY Project Interface.ptk

?d_negative.MonitoredSlot = negativeAdjacencies@ ?d@sky;
7d_negative.Panel = ArrangeDeptFeaturePanel@sky;
?d_negative.Height = ?height;

7d_negative.Width = 1900;

?d_negative.Title = "Negaitve";

?d_negative.PositionX = 3500;

?d_negative.PositionY = 2100 + ?height*(?i-1);

?d_access = MakelInstance(AppendStrings(ConvertToString(?d),"Access"), sky,
StringEditor@ ActivelmagesApp);

?d_access.MonitoredSlot = needsAccess@ ?2d@sky;

7d_access.Panel = ArrangeDeptFeaturePanel@sky;

7d_access.Height = ?height;

7d_access. Width = 900;

?d_access.Title = "Access";

?d_access.PositionX = 5500;

?d_access.PositionY = 2100 + ?height*(?i-1);

?d_view = Makelnstance(AppendStrings(ConvertToString(?d),"View"), sky,
StringEditor@ ActivelmagesApp);

?d_view.MonitoredSlot = needsView@ ?d@sky;

7d_view.Panel = ArrangeDeptFeaturePanel@sky;

7d_view.Height = 7height;

7d_view.Width = 900;

7d_view.Title = "View";

1d_view.PositionX = 6500;

7d_view.PositionY = 2100 + ?height*(?i-1);

?d_sunlight = MakelInstance(AppendStrings(ConvertToString(?d),"Sunlight"),
sky, StringEditor@ ActiveImagesApp);

?d_sunlight.MonitoredSlot = needsSunlight@?d@sky;

?d_sunlight.Panel = ArrangeDeptFeaturePanel@sky;

7d_sunlight.Height = ?height;

?d_sunlight. Width = 900,

7d_sunlight.Title = "Sunlight";

7d_sunlight.PositionX = 7500;

7d_sunlight.PositionY = 2100 + ?height*(?i-1);

/* Reset the Result Slot #/
MakeMultiValueSlot(Results,?d);

/* !
SendMsg(ArrangeDeptNumberPanel, TakeOffScreen!);
SendMsg(ArrangeDeptFeaturePanel, PutOnScreen!);
*/
return Null;
}
e e
*
* ProTalk method -- DeptControler.ArrangeDeptFeature!
*
* This is the default method, a simple tracer.

A-63

The SKY Project

Interface.ptk

* It prints the name of the object and method slot.
*

*/

method DeptControler.ArrangeDeptFeature! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,
ll\nﬂ);
SendMsg(ArrangeDeptFeaturePanel, PutOnScreen!);
return Null;

* ProTalk method -- General.ShowLayoutPanel!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
%

*/

method General.ShowLayoutPanel! ()

{

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
H\nll);
SendMsg(LayoutPanel, PutOnScreen!);
return Null;

* ProTalk method -- General.ResetResult!
*

* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*

*/
method General.ResetResult! ()

/* Methods must always have all their inputs bound: */

A-64

The SKY Project Interface.ptk

bound inputs;

Print ("\nMethod:",
“\n object ", 7self,
"\n slot ", ?slot,
"“\n");
/*
for 7e = find instanceof Evaluation;
do {
ClearValues(?e,BestResult);
ClearValues(?e,WorstResult);
if 7e.Type == A;
then {
7e.BestValue = 99999999;
?e.WorstValue = 0;

else {
7e.BestValue = 0;
?e.WorstValue = 9999999;

}

*/

/*
7self.BestEval = 9999999;
?self. WorstEval = 0;
7self.BestResult = Null;
7self.ResultNo = 0;
7self.WorstResult = Null;

*/

/*---ClearVlaues before Delete Results instance ----------==vwe-- */
for 7e = find instanceof Evaluation;
do {
ClearValues(?e,Results);
ClearValues(?e,WorstResult);
)
/*--these should be done by ResetLayout.------=----zemen—-
for 71 = find direct instanceof Rooms;
do ClearValues(?r,Occupant); */
/*---End of ClearValues.-------=--mmccemmm oo */

for find ?result = direct instanceof Results;
do DeleteObject(Tresult);

generalControler.ResultNo = 0;

return Null;

}

* ProTalk method -- General.ResetLayout!
*

A-65

Interface.ptk

The SKY Project
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
E
*/

method General.ResetLayout! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\\nMethod:", -
"\n object ", ?self,
"\n slot ", ?slot,
H\nll);

ClearValues(generalControler, StartDept);
ClearValues(roomControler, StartRoom);

for find ?room = direct instanceof Rooms;

dof
if 7room.Preoccupant != Null;

then {
?preo = 7room.Preoccupant;
if ?preo == find direct instanceof Preoccupants;
then ;
else SendMsg(7room, Initialize!);

else SendMsg(?room, Initialize!);

for find ?dept = direct instanceof Departments;

do
{7dept. NoOfWaiting = ?dept.NoOfRooms;
?dept.Occupants = Null;
?dept.LastRoom = Null;
?dept.FirstRoom = Null;
?dept.feasibility = Null;
-}
return Null;

}

e e

*

* ProTalk method -- DeptControler.ResetDeptFeature!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method DeptControler.ResetDeptFeature! ()

/* Methods must always have all their inputs bound: */

A-66

The SKY Project Interface.ptk

bound inputs;

Print (""\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
ll\rlll);

for find ?dept = direct instanceof Departments;
do
{?dept. NoOfWaiting = ?dept. NoOfRooms;
?dept.Occupants = Null;
?dept.LastRoom = Null;
?dept.FirstRoom = Null;
?dept.feasibility = Null;

7icolor =
ConvertToSymbol(AppendStrings(ConvertToString(?dept),"Color"));
?icolor.Background = ?dept.Color;

21 Type =
ConvertToSymbol(AppendStrings(ConvertToString(?dept), "Type"));
?1Access =
ConvertToSymbol(AppendStrings(ConvertToString(?dept)," Access"));
?1View = ConvertToSymbol(AppendStrings(ConvertToString(?dept),"View"));
?Sunlight =
ConvertToSymbol(AppendStrings(ConvertToString(?dept),"Sunlight™));

71 Type.Background = Black;
if ?dept. Type == Block;
then ?iType.Background = Red;

?Access.Background = Black;
if 7dept.needsAccess == YES;
then ?iAccess.Background =Red;

?1View.Background = Black; -
if 7dept.needsView == YES;
then 7iView.Background = Red;

?1Sunlight.Background = Black;
if 7dept.needsSunlight == YES;
then ?iSunlight.Background =Red,;

[Femmmmee the following codes may not be necessary. ---------------=-=---
if ?dept.needsSunlight == YES;
then sunlightTest.Depts +== 7dept;
if 7dept.needsAccess == YES;
then accessTest.Depts +== ?dept;
if ?dept. Type == Block;
then blockTest.Depts +== ?dept;
if 7dept.needsView == YES;
then viewTest.Depts +== ?dept;

A-67

The SKY Project Interface.ptk

return Null;

}

* ProTalk method -- Rooms.Preoccupy!

*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method Rooms.Preoccupy! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"“\n slot ", 7slot,
\n");
?preo = roomControler.Preoccupation;
if 7preo != Reset;
then {
7self.Preoccupant = ?preo;
?self.PreoccupantColor = ?preo.Color;
?self.Occupant = ?self.Preoccupant;
?self.image.Background = ?self.PreoccupantColor;
if 7preo == find direct instanceof Departments;
then {
?preo.PreAssignRoom = ?self;
ClearValues(?self, Occupant);

}

else

7D = ?self.Preoccupant;
ClearValues(?self, Occupant);
ClearValues(?self, Preoccupant);
?self . PreoccupantColor = Black;
?self.image.Background = ?self.PreoccupantColor;
if 7D == find direct instanceof Departments;
then {
ClearValues(?7D, PreAssignRoom);
}
}

return Null;

A-68

The SKY Project Interface.ptk

e
K
* ProTalk method -- RoomControler.SetPreoccupation!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*/
method RoomControler.SetPreoccupation! ()
{
/* Methods must always have all their inputs bound: */
bound inputs;
Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", 7slot,
“\I]”);
SendMsg(RoomPreoccupation, PutOnScreent);
return Null;
}
e e e e e e
*
* ProTalk AfterChanged monitor method -- D1ColorACMon_MonitorMethod
*
* This is the default monitor method, a simple tracer.
* It prints the name of the monitor, the object and slot that
* were changed, and the new and old value arguments.
*
* Note: Only the "function” syntax is allowed for ProTalk monitor methods.
*/

function D1ColorACMon_MonitorMethod (?new_value, ?0ld_value, ?info)

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nAfterChanged method:",
"\n monitor ", MonInfoMonitor (?info),
"\n object ", MonInfoObject (?info),
"\n slot ", MonInfoSlotName (?info),
"\n new value ", 7new_value,
"\n old value ", 70ld_value,
n\nn);

Dlcolor@.Background = D1@.Color;

The SKY Project Interface.ptk

*

* ProTalk AfterChanged monitor method -- DeptsColorACMon_MonitorMethod
ES

* This is the default monitor method, a simple tracer.

* It prints the name of the monitor, the object and slot that

* were changed, and the new and old value arguments.

K

* Note: Only the "function” syntax is allowed for ProTalk monitor methods.
*/

function DeptsColorACMon_MonitorMethod (?7new_value, ?old_value, ?info)

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nAfterChanged method:",
"\n monitor ", MonInfoMonitor (?info),
"\n object ", MonInfoObject (?info),
"\n slot ", MonInfoSlotName (?info),
"\n new value ", 7Tnew_value,
"\n old value ", ?o0ld_value,
"\n");
for 7d = find direct instanceof Departments;
do {
?dColor = ConvertToSymbol(AppendStrings(ConvertToString(?d),"Color"));
?7dColor.Background = ?d.Color;
}

method OKToFirstResult.React! (?button)

{

/* Methods must always have all their inputs bound: */
bound inputs;

?dialog_box = ?self.DialogBox;

SendMsg (?dialog_box, TakeOffScreen!);

/* If named objects are used and the dialog box WILL NEVER be
* converted to a blueprint, GetValue(s) can be used instead of
* GetControlValue(s).
*/

select {
case: 7button == "OK";
Print (7button, \n");
for ?result = find direct instanceof Results;
dof
ClearValue(?result, Shown);

case: 7button == "Cancel";
Print (?button, "\n");

return Null;

A-70

The SKY Project

Interface.ptk

* ProTalk method -- General.SetDeptInfo!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
E

*/

method General.SetDeptInfo! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\nMethod:",
“\n object ", 7self,
"\n slot ", 7slot,
H\nﬂ);

SendMsg(Deptlnfo, PutOnScreen!);
return Null;

}

* ProTalk method -- General.SetSpacelInfo!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method General.SetSpacelnfo! ()

{

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"“\n object ", ?self,
"\n slot ", ?slot,
!I\nll);

SendMsg(RoomInfo, PutOnScreen!);
return Null;

}

method PreAssignRadioButton.React! (?moused_item, ?old_item)

/* Methods must always have all their inputs bound: */
bound inputs;

A-71

The SKY Project Interface.ptk

select {
case: Tmoused_item == "YES;
Print (?moused_item, ™\n");
PreAssignTest. Active = YES;
case: ?moused_item == "NO;
Print (?moused_item, "\n");
PreAssignTest. Active = NO;
}

return Null;

}

method BlockTestRadioButton.React! (?moused_item, ?old_item)
{

/* Methods must always have all their inputs bound: */
bound inputs;

select {
case: Tmoused_item =="YES;
Print (?moused_item, "\n");
blockTest. Active = YES;
case: ?moused_item == "NO;
Print (?moused_item, "\n");
blockTest. Active = NO:;
}

return Null;

method AccessTestRadioButton.React! (?moused_item, ?0ld_item)
{

/* Methods must always have all their inputs bound: */
bound inputs;

select {
case: ?moused_item == "YES:;
Print (?moused_item, "\n");
accessTest. Active = YES;
case: Tmoused_item == "NO;
Print (?moused_item, "\n");
accessTest. Active = NO;

}

return Null;

method NegativeAdjTestRadioButton.React! (?moused_item, ?0ld_item)

A-72

The SKY Project Interface.ptk

/* Methods must always have all their inputs bound: */
bound inputs;

select {
case: 7moused_item == "YES;
Print (?moused_item, "\n");
negativeAdjacencyTest. Active = YES;
case: Tmoused_item == "NO;
Print (?moused_item, "\n");
negativeAdjacencyTest. Active = NO;

}

return Null;

method ViewTestRadioButton.React! (?moused_item, ?0ld_item)
{

/* Methods must always have all their inputs bound: */
bound inputs;

select {
case: ?moused_item == "YES;
- Print (?moused_item, "\n");
viewTest. Active = YES;
case: Tmoused_item == "NO;
Print (?moused_item, "\n");
viewTest. Active = NO:;

}

return Null;

method SunlightTestRadioButton.React! (?moused_item, ?0ld_item)

/* Methods must always have all their inputs bound: */
bound inputs;

select
case: ?moused_item == "YES;
Print (?moused_item, "\n");
sunlightTest.Active = YES;
case: 7moused_item == "NO:;
Print (?moused_item, "\n");
sunlightTest. Active = NO;
}

return Null;

A-73

The SKY Project Interface.ptk

method FlowEvalRadioButton.React! (?moused_item, ?0ld_item)
{

/* Methods must always have all their inputs bound: */
bound inputs;

select {
case: Tmoused_item == "YES;
Print ("moused_item, "\n");
MaterialHandling.Active = YES;
case: Ymoused_item == "NO;
Print (moused_item, "\n");
MaterialHandling.Active = NO;
}

return Null;

method CostEvalRadioButton.React! (?moused_item, ?old_item)
{

/* Methods must always have all their inputs bound: */

bound inputs;

select {
case: ?moused_item == "YES;
Print (moused_item, "\n");
LengthOfWalls.Active = YES;
case: 7moused_item == "NO;
Print (moused_item, "\n");
LengthOfWalls.Active = NO;
!

return Null;

method RoomEvalRadioButton.React! (?moused_item, ?0ld_item)

/* Methods must always have all their inputs bound: */
bound inputs;

select {
case: Tmoused_item =="YES;
Print (Tmoused_item, "\n");
NumberOfProperRooms.Active = YES;
case: moused_item == "NO;
Print (?moused_item, "\n");
NumberOfProperRooms. Active = NO;

A-74

The SKY Project Interface.ptk

}

return Null;

method RoadEvalRadioButton.React! (?moused_item, ?old_item)

{

/* Methods must always have all their inputs bound: */
bound inputs;

select {
case: ?moused_item == "YES;
Print (?moused_item, ™\n");
LengthOfFreeRoad.Active = YES;
case: moused_item == "NQO;
Print (moused_item, "\n");
LengthOfFreeRoad.Active = NO;
}

return Null;

method StrategyCommandRow.React! (?button)

{

/* Methods must always have all their inputs bound: */
bound inputs;

2dialog_box = 7self.DialogBox;

SendMsg (?dialog_box, TakeOffScreen!);

/* If named objects are used and the dialog box WILL NEVER be
* converted to a blueprint, GetValue(s) can be used instead of

* GetControlValue(s).

*/

7PreAssignTest_value =

GetControlValue (?dialog_box, "PreAssignTest);
?BlockTest_value =

GetControlValue (?dialog_box, “BlockTest);
7AccessTest_value =

GetControlValue (?dialog_box, *AccessTest);
INegativeAdjacencyTest_value =

GetControlValue (?dialog_box, “NegativeAdjacencyTest);
?MViewTest_value =

GetControlValue (?dialog_box, “ViewTest);
?SunlightTest_value =

GetControlValue (?dialog_box, *SunlightTest);
MaterialFlowEval value =

GetControlValue (?dialog_box, “MaterialFlowEval);
?ConstructionCostEval_value =

GetControlValue (?dialog_box, “ConstructionCostEval);
ProperRoomEval_value =

GetControlValue (?dialog_box, “ProperRoomEval);

A-75

The SKY Project

Interface.ptk

7FreeRoadEval value =
GetControl Value (?dialog_box, “FreeRoadEval);

select {
case: ?button == "OK";
Print (?button, \n");
SendMsg(LayoutStrategy, TakeOffScreen!);
case: ?button == "Cancel";
Print (?button, "\n");
SendMsg(LayoutStrategy, TakeOffScreen!);

}
return Null;
}
e e
*
* ProTalk method -- General.SetStrategy!
*
* This is the default method, a simple tracer.
* It prints the name of the object and method slot.
*
*/
method General.SetStrategy! ()
{

/* Methods must always have all their inputs bound: */
bound inputs;

Print (""\\nMethod:",
"\n object ", 7self,
"\n slot ", ?slot,
n\nn);

SendMsg(LayoutStrategy, PutOnScreenAndWait!);
return Null;

* ProTalk method -- General.SetPreference!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/

method General SetPreference! ()

/* Methods must always have all their inputs bound: */
bound inputs;

A-76

The SKY Project Interface.ptk

Print (""\\nMethod:",
"\n object ", 7self,
"\n slot ", 7slot,
||\I_lll>;

SendMsg(StartEvaluation, PutOnScreen!);
return Null;

}

method DatalmportCommandRow.React! (?button)
{
/* Methods must always have all their inputs bound: */
bound inputs;
?dialog_box = 7self.DialogBox;
SendMsg (?dialog_box, TakeOffScreen!);

/* If named objects are used and the dialog box WILL NEVER be
* converted to a blueprint, GetValue(s) can be used instead of

* GetControlValue(s).

*/

MDatalmport_value =
GetControlValue (?dialog_box, “Datalmport);

select {
case: ?button == "OK";

Print (?button, "\n");
SendMsg(generalControler, Initialize!);
SendMsg(7self, TakeOffScreen!);

case: 7button == "Cancel";

Print (?button, ™n");

SendMsg(7self, TakeOffScreen!);
}

return Null;

* ProTalk method -- Departments.SetFeaturelnfo!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method Departments.SetFeatureInfo! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", 7self,

A-77

The SKY Project Interface.ptk

"\n slot ", ?slot,
”\Il“);
[*---Data Initialize.-----mee oo */
?self.needsSunlight = NO;
7self.needsView = NO;
7self.needsAccess = NO;
/*---End of Initialize .-~ e

/*---Arrange Features between Adjacency and Layout,--------------n-mmemmeenv */
MNist = GetValues(?self Features);
?judge = Member_of(humanSpace@,?list);
if 7judge == -1;
then{
?self.needsSunlight = YES;
7self.needsView = YES;

7judge = Member_of(needsAccess@,Nist);
if 2judge == -1; 7?self.needsAccess = YES;

return Null;

}

* ProTalk method -- Departments.SetAdjInfo!

*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
*

*/
method Departments.SetAdjInfo! ()

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
“\n object ", 7self,
"\n slot ", 7slot,
\n");
[*---Data Initialize.----=-mmmom oo */

for 7d = find direct instanceof Departments;

do {
?self.Adjacency..?d = 0;
}

/*---End of Initialize. === e */

/*---Data Transfer for Adjacency.--~=-==--m-mmmmmm e */
?pList = GetValues(?self,positiveAdjacencies);
MList = GetValues(?self,negative Adjacencies);

for 7d = find direct instanceof Departments;
do {
?pjudge = Member_of(7d,?pList);

A-78

The SKY Project Interface.ptk

if ?pjudge == -1; 7self.Adjacency..?d = 1;
Mjudge = Member_of(?d,?nList);
if 7njudge == -1; ?self.Adjacency..?d = -1;

/*---End of Transfer.--------m=smeom_ i

return Null;

}

method GoodViewRoomButton.React! (?moused_item, ?0ld_item)
{

/* Methods must always have all their inputs bound: */

bound inputs;

select {
case: Tmoused_item == "YES;
Print (?moused_item, "\n");
NoOfGoodViewRooms.Active = YES;
case: ?moused_item == "NO;
Print (?moused_item, "\n");
NoOfGoodViewRooms.Active = NO;
}

return Null;

method AccessRoomButton.React! (?moused_item, ?0ld_item)

/* Methods must always have all their inputs bound: */
bound inputs;

select {
case: 7moused_item == "YES;
Print (?moused_item, ™\n");
NoOfAccessRooms.Active = YES:
case: Tmoused_item == "NO;
Print (?moused_item, "\n");
NoOfAccessRooms.Active = NO;
1

return Null;
}
method SunlightRoomRadioButton.React! (?moused_item, ?0ld_item)

/* Methods must always have all their inputs bound: */
bound inputs;

A-79

The SKY Project Interface.ptk

select {
case: Tmoused_item == "YES;
Print (?moused_item, "\n");
NoOfSunlightRooms.Active = YES;
case: Tmoused_item == "NO;
Print (?moused_item, "\n");
NoOfSunlightRooms.Active = NO;
}

return Null;

}

method DeptNoChCommandRow.React! (?button)

/* Methods must always have all their inputs bound: */
bound inputs;

?dialog_box = ?self.DialogBox;

/* SendMsg (?dialog_box, TakeOffScreent!); */

/* If named objects are used and the dialog box WILL NEVER be
* converted to a blueprint, GetValue(s) can be used instead of

* GetControlValue(s).

*/

MDeptNoChangeRadioButton_value =
GetControlValue (?dialog_box, *DeptNoChangeRadioButton);

select {
case: 7button == "OK";
Print (?button, "\n");
if 7DeptNoChangeRadioButton_value == YES;
then{
M =0;
for ?d= find direct instanceof Departments;
do{MTm="M"+1;}
deptControler. NumberOfDept = n;
generalControler.NoOfDepts = 7n;
SendMsg(DeptControler,AdjToLayout!);
SendMsg(DeptControler,InitializeDeptNumber!);
}

else SendMsg(DeptControler,AdjToLayout!);
SendMsg (?dialog_box, TakeOffScreen!);

case: 7button == "Cancel";
Print (?button, "\n");
SendMsg (?dialog_box, TakeOffScreen!);
1

return Null;

}

A-80

The SKY Project Interface.ptk

* ProTalk method -- DeptControler.CallAdjApp!
*

* This is the default method, a simple tracer.

* It prints the name of the object and method slot.
¥

*/

method DeptControler.CallAdjApp! ()
{

/* Methods must always have all their inputs bound: */
bound inputs;

Print ("\nMethod:",
"\n object ", ?self,
"\n slot ", ?slot,
H\nﬂ);

SendMsg(AdjacencyDefinePanel, PutOnScreen!);

return Null;

-}

method FromScratchCommandRow.React! (?button)
{

/* Methods must always have all their inputs bound: */
bound inputs;

?dialog_box = ?self.DialogBox;

/* SendMsg (?dialog_box, TakeOffScreen!); */

/* If named objects are used and the dialog box WILL NEVER be
* converted to a blueprint, GetValue(s) can be used instead of

* GetControlValue(s).

*/

select {
case: ?button == "OK";
Print (?button, "\n");
/*---initialize every information about Departments.--------- */
[*---ClearValues before Delete Objects.---=-=-mrmmmmmmmmmmo oo */

ClearValues(DeptsInAdjDialogBox,Selectionltems);
ClearValues(DeptsInDialogBox,Selectionltems);
ClearValues(TargetDepts,Selectionltems);
ClearValues(DnsStrangerList,Selectionltems);
ClearValues(PositiveList,Selectionltems);

ClearValues(deptControler,AllDepts);
ClearValues(deptControler,DominantDept);
ClearValues(deptControler,Pre AssignedDepts);

A-81

The SKY Project Interface.ptk

ClearValues(deptControler,CurrentDept);
ClearValues(generalControler,StartDept);
ClearValues(generalControler,CurrentDept);
ClearValues(deptControler,OrphanDepts);

for froom = find direct instanceof Rooms;
do ClearValues(?room,Occupant);
for 7evaluation = find instanceof Evaluation;
do ClearValues(?evaluation,Results);
/*---End of ClearValues-----=-===mmmm e */

SendMsg (?dialog_box, TakeOffScreen!);

/* Delete the previous 0bjects=--====m==nmmmmm e */
for find ?dept = direct instanceof Departments;
do { DeleteObject(?dept);

DeleteSlot(Results,?dept);

for find 7result = direct instanceof Results;
do DeleteObject(?result);

/* Delete image objects */
for find ?d_image = direct instanceof HorizontalSlider@ ActivelmagesApp;
do {
if 7d_image.Panel == ArrangeDeptFeaturePanel@;
then DeleteObject(?d_image);

)
for find ?d_image = direct instanceof StringEditor@ ActivelmagesApp;
do {

if 7d_image.Panel == ArrangeDeptFeaturePanel@;
then DeleteObject(?d_image);

}
[F---End of initialize.----==mommmmm o */
SendMsg(FileNameEntry@GetData,PutOnScreenAndWait!);
case: 7button == "Cancel";

Print (?button, "\n");
SendMsg (?dialog_box, TakeOffScreen!);
}

return Null;

}

method sky_CommandRow_134.React! (?button)
/* Methods must always have all their inputs bound: */
bound inputs;

?dialog_box = 7self.DialogBox;

/* If named objects are used and the dialog box WILL NEVER be

A-82

The SKY Project Interface.ptk

* converted to a blueprint, GetValue(s) can be used instead of
* GetControlValue(s).
*/

select {
case: 7button == "OK";
Print (7button, "n");
for Ir = find direct instanceof Results;
do {
ClearValues(?r,Shown);

shownResult.Rank = 0;
SendMsg (?dialog_box, TakeOffScreen!);

case: ?button == "Cancel";
Print (?button, "\n");
SendMsg (?dialog_box, TakeOffScreen!);
}

return Null;

}

A-83

