C I F E CENTER FOR INTEGRATED FACILITY ENGINEERING

The Primitive-Composite (P-C) Approach-
A Methodology for Developing Sharable
Object-Oriented Data Representations
For Facility Engineering Integration

by
Dr. D. H. Douglas Phan

Dr. H. Craig Howard

TECHNICAL REPORT
Number 85A

August, 1993

Stanford University

The Primitive-Composite (P-C) Approach

© Copyright by Dung Huu Douglas Phan 1993

All Rights Reserved

page ii Phan & Howard

The Primitive-Composite (P-C) Approach

Summary

1. Abstract

This research proposes a new approach for modeling facility engineering processes
and data to achieve integration. The so-called Primitive-Composite (or P-C) Approach is
a structured methododology that can be used to design an integrated information
management system for a given facility engineering domain. With this methodology,
designers can analyze the domain of interest and design an object-oriented schema that
can be shared among multiple users across the life-cycle phases in that domain. The P-C
Approach was applied to the domain of electrical utility transmission towers and tested
for that domain. A database for one specific tower was implemented using a commercial
object-oriented database management system (ONTOS).

2. Subject

This report describes the Primitive-Composite (or P-C) Approach, a methodology
for analyzing a given facility engineering domain and designing a common object-
oriented schema for that domain (called a domain primitive schema or primitive schema,).
This approach includes four phases: (1) Preliminary Domain Study, (2) Functional
Analysis, (3) Domain Entities Analysis and (4) Domain Schema Design. It also
incorporates the requirements of sharability and the criteria of cohesion and reusability
for designing the schema. In addition, this approach offers the modeling tools used in the
phases that lead to the development of the schema. In this approach, the domain primitive
schema consists of primitive object classes (or primitive classes) that represent the data
shared by users throughout the life-cycle phases. Each primitive class is a module that is
designed to have maximum cohesion and reusability. On the other hand, composite object
classes (or composite classes) represent the complex user views of the underlying facility
data. Using primitive classes, individual users can assemble any number of composite
classes customized to their own needs.

3. Objectives/Benefits

The objectives of this research were to better understand what is required to model
complex facility data for the purpose of integration and to develop modeling tools that
aid modelers. The P-C Approach is the resulting methodology that uniquely combines the
power of object-oriented data modeling with the notions of primitives and composites to
enable data sharing and facilitate data exchange. Indeed, primitive classes represent the
fundamental data representations that are shared by multiple users throughout the life-
cycle phases in the domain. Composite classes can be assembled by individual users from
primitive classes to represent complex user views. One advantage here over other
modeling approaches is that composite classes need not be defined a priori and are not
limited in number. Moreover, the primitive schema can be extended by adding primitive
classes, and as a result, more composite classes can be defined from primitive classes,
both old and new. This extension of the schema can accommodate evolving life-cycle
phases. In addition, the schema is rich in content, representing the physical descriptions
(or form), engineering functions and behavioral states of the design objects in the domain,

Phan & Howard page il

The Prinutive-Composite (P-C) Approach

and the design process itself. Finally, the primitive schema provides a natural common
ground for exchanging data (via primitive instances) between the different applications.

4. Methodology

The project was divided into three parts: (1) the development of the P-C Approach,
(2) the application of the approach to the transmission tower domain, and (3) the testing
of the approach in the tower domain. The first two parts were pursued concurrently and
the third part (testing) was conducted last. The results are presented in the next section.

5. Results

The primary result of the research was a comprehensive and coherent methodology,
the P-C Approach, that encompasses the steps, requirements, criteria and tools for
modeling facility data to support integration. Computer-Aided Software Engineering
(CASE) tools automating this approach can assist database designers with process
modeling and object-oriented data modeling.

The in-depth application of this approach to a real-life tower domain resulted in a
detailed set of functional schemata describing the tower engineering process, as well as a
comprehensive primitive schema of the domain. This schema includes more than two
hundreds primitive object classes that are organized into thirty different class hierarchies.
These hierarchies depict form, function, and behavior of design objects in the domain.
This schema can be used as a convenient starting point for modeling other facility
engineering domains. In addition, a database for one specific tower was implemented
using a commercial object-oriented database management system (ONTOS). The sample
data from this database can be used in other projects at CIFE.

The P-C Approach was also tested in the tower domain. As a result, the scope of
applicability, strengths and limitations of the approach were defined. More importantly,
the three measurements of the primitive schema’s performance (i.e., schema
completeness, efficiency, and sharing) introduced here is an important step toward
operationalizing the testing and acceptance of data standards or schemata developed for
the purpose of integration.

6. Research Status

The Primitive-Composite Approach has been tested and carefully documented (in
this report and in CIFE report #77, which described how to use PANDA for functional
analysis). The four phases use formal methods for domain analysis and/or schema
design, including rules and guidelines for users.

Two main areas are open for future development:

1. Computer-Aided Software Engineering (CASE) tools developed after the P-C
Approach can help automate the modeling effort by assisting modelers in analyzing
processes and data, in designing database schemata, and in building information
systems to support collaborative facility engineering work.

2. Automated data integration tools can use the notion of primitives to drive data
exchange between different applications. Algorithms need to be developed to
perform mappings on data to translate it from the context of a composite schema
and to the context of the primitive schema. The P-C Approach can provide a much
simpler and more powerful basis for data exchange than data exchanges based on a
complex global schema.

page iv Phan & Howard

The Primitive-Composite (P-C) Approach

Extended Abstract

A facility engineering process typically involves participants from different
disciplines, several life-cycle phases, and many computer applications. Large amounts of
data must be communicated among these participants and applications during these
evolving phases. However, communicating this data is often difficult. Users (i.e.,
participants or computer applications) have different needs for the facility data and thus
use different data representations. Data in different representations cannot be
communicated directly between these users. This research addresses the incompatibility
or, put differently, the lack of “integration” of various data representations. In particular,
data integration focuses on improving the compatibility of data and data representations
within the same process. Scholars have proposed different approaches to data integration.
Direct data translation tools have been used for this purpose, but they do not provide an
economical long-term solution. Current international efforts such as the STandard for the
Exchange of Product model data (STEP) involve developing a more economical solution
to this problem. Their goal is to develop machine-readable data representations that can
be shared within a domain and across domains. Data modeling is a major undertaking in
those standards development efforts. The research described here shares that goal.

In this project, we studied the modeling of data in facility engineering for the
purpose of supporting data integration. More specifically, we developed a methodology,
the Primitive-Composite (or P-C) Approach, with which a designer of a database or
information system (or modeler for short) can analyze a given facility engineering
domain and can design an integrated, object-oriented schema representing that domain.
In this approach, the domain primitive schema consists of “primitive object classes” that
represent the data shared by users throughout the life-cycle phases. Using these primitive
classes, individual users can assemble any number of “composite object classes”
customized to their own needs. One advantage of this schema is that composite classes
representing complex user views need not be defined a priori and are not limited in
number. In addition, primitive classes can be added incrementally to the schema, and as a
result, more composite classes can be defined from primitive classes, both old and new.
This extension of the schema can accommodate evolving life-cycle phases. Moreover, the
schema is rich in content, representing the physical descriptions (or form), engineering
functions and behavioral states of the design objects in the domain, and the design
process itself.

The result of this research, the P-C Approach, includes the following:

. Four phases for analyzing the given domain and designing a schema, namely (1)
Preliminary Domain Study, (2) Functional Analysis, (3) Domain Entities Analysis
and (4) Domain Schema Design. The first three analysis phases lead to the schema
design phase. The resulting schema must enable multiple users to share data
representations across life-cycle phases in the domain. Specifically, it must support
multiple user views and must be extensible.

. The modeling tools used in these phases, which lead to the development of a
schema meeting the requirements mentioned above. Specifically, these modeling
tools directly incorporate the criteria of cohesion and reusability to design primitive

Phan & Howard page v

The Primitive-Composite (P-C) Approach

classes of the schema. These modeling tools also provide the elements (i.e.,
concepts, graphical representations, operations, rules, etc.) necessary for building
Computer-Aided Sofware Engineering (CASE) tools with which a modeler can
represent facility data using the P-C Approach.

The modeling tools are:

° The PArtitioned eNgineering DAta flow model (or PANDA) is an extension of the
Data Flow model. A modeler uses PANDA in Phase 2 to analyze the facility
engineering process in the domain in order to understand how data is used in that
process. The resulting functional schema of the process provides the information
that is used directly in the subsequent phase. PANDA provides the concepts needed
to represent complicated facility engineering processes, as well as those needed to
represent the participants, their participation, and complex flows of data, material,
and products. In addition, PANDA provides graphical representations, syntactic and
semantic rules, schema transformation operations, a customized method, and
modeling guidelines. Moreover, PANDA has a partitioned architecture that helps
the modeler organize thoughts about complicated engineering processes.

° The Domain Entities AnaLysis method (or DEAL) analyzes data-intensive objects
such as beams, columns, tower panels, etc. that experts in the domain design. A
beam, for instance, may be described by geometry, material, fabrication features,
load-resisting functions, bending stresses, etc. Entities representing these design
objects are called “domain entities.” A modeler uses DEAL in Phase 3 to identify
the primitive entities that are building blocks of the domain entities. These primitive
entities are used in Phase 4 to design the domain primitive schema. DEAL provides
concepts, terms, assumptions, graphical representations, procedures, operations, and
rules needed for decomposing domain entities into (conceptual) primitive entities
using the criteria of cohesion and reusability. Cohesion is defined here as a
measurement that indicates how closely the data items of an entity relate to one
another. Specifically, DEAL considers five principal dimensions when evaluating
the cohesion of the domain entities: (1) how the data is organized and thus how it
can be accessed by humans in the work environment, (2) to which concepts the data
relates, (3) at what time the data is created, (4) from which computational sources
the data is derived, and (5) how the data is used in activities of the engineering
process. Reusability is another measurement that indicates the extent to which an
entity can be reused (i.e., used without modifications) in describing other domain
entities. DEAL uses five levels of reusability: reusable (1) for more than one
domain entity of a common type, (2) for a single domain, (3) for a single industry
(i.e., for more than one domain), (4) for more than one industry of a common type,
and (5) for more than one industry type.

. The Primitive-Composite (or P-C) Data Model and Method are used in Phase 4 to
design the domain primitive schema. This schema includes primitive classes that
come from primitive entities identified in the domain entity analysis. Therefore, the
design of this schema is optimized using the criteria of cohesion and reusability:
Each primitive class is a module of attributes designed to have maximum cohesion
and reusability. The P-C Data Model provides the concepts of primitive and
composite classes and instances, generalization, aggregation, association, and
derivation relationship types. The accompanying method includes the steps, rules,
and guidelines necessary to refine and transform the primitive entities into primitive
classes based on the concepts of the model.

page vi Phan & Howard

The Primitive-Composite (P-C) Approach

We applied the P-C Approach to the domain of electrical utility transmission
towers. We first studied the information collected about the tower engineering process.
Using PANDA, we then created a detailed set of graphical functional schemata
describing that process [Phan 92]. As the final result, we developed a domain primitive
schema of the tower domain. This schema shows that form, function, and behavior of the
design objects in such a domain, and the design itself, can all be represented in a coherent
fashion. First, form, function, behavior, and design are represented in separate primitive
class hierarchies in the domain primitive schema. Indeed, geometric curves, topological
elements, material properties, fabrication features, functions, requirements, strength
behavior (i.e., response forces and stresses), serviceability behavior (i.e., displacements
and strains), design description primitives, etc., are represented in these primitive class
hierarchies. In particular, design description primitive classes represent important
elements of a design such as design artifacts, features, parameters, constraints, versions,
and alternatives. Using this schema, a tower can be decomposed hierarchically in two
ways: by the functions that it provides and by the design artifacts created by the facility
engineers. The schema includes primitive classes needed to support both types of
decomposition. We also tested the P-C Approach in the tower domain and built a
database for a selected tower (using an object-oriented database management system).

The immediate contribution of this research is a methodology, the P-C Approach,
for modeling facility data to support data integration. In the long run, this research will
have the following impacts on data modeling and data exchange: First, the P-C Approach
will aid the modeling of large complex facility engineering domains. The schema for the
tower domain can be used as a starting point for the development of schemata for those
domains. Second, CASE tools automating the approach will assist modelers in many
aspects of modeling such as analyzing processes and data and designing object-oriented
database schemata. These CASE tools will also make communication between modelers
and domain experts more effective. Third, the P-C Approach suggests a new data
exchange paradigm, under which application developers will no longer have to build
special-purpose translators. Each application essentially carries the descriptive knowledge
needed to support data exchange with any other application. By the same token,
application developers will no longer need to build complex product models to support
data exchange. Applications will share only the common primitive classes and will
exchange only data that they really need.

Future research is needed to enhance the P-C Approach through application in other
engineering domains, to study distributed data management issues in collaborative
facility engineering work environment, to implement CASE tools automating the
approach and supporting data exchange using the approach, and to further develop
measures for the validation of data standards or schemata supporting data integration.

Phan & Howard page vii

The Primitive-Composite (P-C) Approach

Acknowledgments

This technical report is based on the doctoral thesis of Dr. Dung Huu Douglas Phan.
The research project was supported by the National Science Foundation through grant
MSM-8958315 ("Integrating Databases and Knowledge Bases for Life-Cycle Facilities
Engineering") and the Stanford Center for Integrated Facility Engineering (CIFE) through
grants DB9201 ("Conceptual Development and Database Applications of the Primitive
Composite Data Model in Structural Engineering") and FP8902 ("Linking Design Data
with Knowledge-Based Construction Systems").

We gratefully acknowledge the contributions of many individuals from both the
academic community and industries, without whom this research would not be possible:

e Dr. Martin Fischer, Dr. Kincho Law and Dr. Gio Wiederhold (dissertation
committee members who guided the research);

o Dr. Gamaleldin Abubakr Abdalla, Tanya Do, Dr. Thomas Froese, Dr. Renate
Fruchter, Dr. Thomas Gruber, Asish Gupta, Cynthia Howard, Glenn Katz, Dr.
Arthur Keller, Dr. Raymond Levitt, Jared Nedzel, Dr. William Rasdorf, Dr. Paul
Teicholz, Sanjay Tiwari and Julie Wald (research mentors and collaborators who
provided intellectual inputs to the work); and

° Mike Cheung and William Mills (domain experts who offered their valuable time
and expertise to the research).

page viii Phan & Howard

The Primitive-Compasite (P-C) Approach

Contents

SUMMIARY .ottt ettt st e e st e s sn e e e iii

EXTENDED ABSTRAC T ...ttt e e cmeseessse s sane s \Y
ACKNOWLEDGMENTS ...ttt e eesestessssnassnes e e viii

PART I: PROBLEM DEFINITION AND BACKGROUND 1
Chapter 1—Introduction.........cccciiisciicccniicnnicnnisnnersnensniisssessssssssnssssesssssessssnssans 1
1.1 Research Problemccociieiriieinieeeeeccecetceicei e 2
1.1.1 The Facility Data Integration Challengecccoeveinniinninnniccinnnne 2
1.1.2 Facility Data Modeling Difficultiescceccemeernnecennennieceneeieeenee 6
1.2 Research Idea Underlying the Proposed Solution..........ccccocerecrrniiiininiiinnnnnn. 8

1.3 Research ObBJECHVES ...cecceieiieeiir ettt et e ee e et s 10

1.4 Reader’s GUIAE.......ocoiiiiieiiieiee ettt et e e e s e e 10

Chapter 2—Field of Studycvvivverisenincisencsnmnnneniicininsnnnsenincssnnasnesseserasnsesses 13

2.1 Background on Data MOdelingcccoeceevermenneennmenece it 14

2.1.1 Terminology: From "datum" to "data modeling"......cccccovuiriinnnnnnns 14

2.1.2 Historical Development of Data Modelsccccooeieeecenciiiiiiiiie 14

2.1.3 Object-Oriented Data Modeling Paradigm: Models and Concepts 17

2.1.3.1 Object-Oriented Data Models........coeveeoreciiciiiiiniineiiieenne 17

2.1.3.2 Key Object-Oriented CONCEPLS......ceecveereereeerruecrseerenenaeenneennes 17

2.1.3.3 Why Object-Oriented Data Modeling in this Research? 18

2.2 Background on Data Modeling for Facility Engineering..........ccccccccocceiinnnnn. 19

2.2.1 Existing Work in Facility Data Modelingcc.cccoecevneriiicnnnnnnnnennn. 19

2.2.1.1 Hierarchical Models with Distinct Levels of Aggregation....... 19

2.2.1.2 Models with Multiple Linked Aggregation Hierarchies........... 20

2.2.1.3 Models for A/E/C Product Data Exchange..........cccccecrinnnnne. 20

2.2.2 Difficulties in Facility Data Modelingccoccevviicviiiiiniiniineeeee 22

2.3 Background on Data INtegrationccceeeeoieeerireertieeieeeneececrereecsaee e sanes 26

2.4 Chapter SUIMIMATLY ...ccccceeieeireereeeeeeeeeseeeesteseeesne e eesseeseneserneesneassassssnssnsesneeens 27

Phan & Howard page ix

The Primitive-Composite (P-C) Approach

PART II: THE PROPOSED SOLUTIONccccceeeererrcarssrnrasessssssrssnssnes 29

Chapter 3—The Primitive-Composite Approachccceceecenccrcencsnsnesesansacssesnnas 29

3.1 A Perspective on the Development of the P-C Approach.........cocceeeeviceccnen. 30

3.2 Overview Of the P-C APProachi.........cceceeeeeveeenreeeresireereeereeeeeeeeeesseeseeennas 32

3.2.1 Requirements and Criteriaccceceeereeeesreeriieesieeeeeece e creseeeeseeesaesseeens 33

3.2.2 Phases and Modeling TOOIScc.eooveeeieeeeeeieeeeeree et e 34

3.3 Evaluation of the P-C APProachcccoueveeeerereeecereeseeeenenee e eeeesesceeenens 37

3.3.1 Scope of Applicability of the Approachccccceeemeimecrecereeeeeeienenne 37

3.3.2 Strengths of the Approach..........ceceeeeieniieneeiinceeece e 39

3.3.3 Limitations of the APProachcecceceeveeuieceecieceecenieeeceeee e eeeeeees 40

3.4 Chapter SUMIMATYociiieieieee ettt e et ee st ae st e e eaee e e e ese s s e e saeens 41

Chapter 4—Functional Analysis Using PANDA.ccccinvinnncnnncnncsnnssecssnssscssances 43

4.1 Introduction to Functional Analysis in the P-C Approach.........cccccecervurnnncn. 44

4.2 Development PErSPECLIVE.........ccuvecuieeiieceieceeeceteeeeeeeeecnneeseeeaeesnesesasesnseennens 44

4.2.1 Required Capabilities and Properties..........cceeeeeeeeeeremreerecesereenceenen. 44

4.2.2 Background Studyccccoeeieeieiiereeeeeieeieeiee ettt es e en e 46

4.2.3 Evaluation of Selected Modelsccooceevieoieeoieeieerieceee e 47

4.3 The Extended Model: PANDAcoooiiiieeeeeieeceeteeeteeteee et e 47

4.3.1 Overview Of PANDA ...ttt e 47

4.3.2 Key Concepts and Graphical Representationscccecceeeeerereenceenee. 49

4.3.3 Syntactic and Semantic Rulescccceverieriiieireienieiecnnece e 55

4.3.4 Schema Transformation OpPerations.........ceeceeeceeeeereereierrereeeee e 57

4.4 UsINg PANDA ...t et s et e e se s e esne s e e naeernesaneen 59

4.4.1 Method for Using PANDA ...t 59

4.4.2 Additional Guidelines for Using PANDAccoooieeieeiceeieeceeceeeiene 61

4.4.3 Tllustrative Example in Transmission Tower Engineering 63

4.5 Chapter SUMMATYcoecuveiieeieerieeecectieeeee e eeeessee e s e e e s esesaesssessesssessessnenses 69

Chapter 5S—Domain Entities Analysis Using DEALccooccrcrinnmcsnssensssersssesses 71
5.1 “What Should An Entity Be?”: The Domain Entities Analysis in the

P-C APPIoachottt et 72

5.2 An Overview of the Domain Entities AnaLysis methodccccoveeeneeneene. 72

5.3 A Formal View of DEAL........ccooiiiooiiieeeeeetee ettt sn e et 75

5.3.1 Basic Concepts and TErms........cccceeeeeeeeeerierieeereeeeseceeeesee e eeee e seeeaees 75

5.3.1.1 Entity, Instance, and Data Item...........ccceeveereeereeereeereeeereennen. 75

page x Phan & Howard

The Primitive-Composite (P-C) Approach

5.3.1.2 Conceptual CatEEOTIESccueeeeuererreereeierteeceieeseaeeeseeeseeneeseeeeenens 75

5.3.1.3 Domains and Their Classifications...........cecoeevveveevuereerrneeenens 76

5.3.1.4 CONESIONoomeieriecreieeei ettt ettt e 76

5.3.1.5 Reusabilitycccevieeieeieeeieceee et e 79

5.3.1.6 Domain Entity and Primitive Entityccccocoevvieccninincannne 79

5.3.2 ASSUMPLIONS c...eeerreeereeeteeieeeerreeeeeeseeeseeesesaeeseeessasseeaseesssesarasesaseesseens 80
5.3.3 Graphical Representation: Domain Entity Decomposition Tree 81
5.3.4 Procedures and Operations in DEAL-1 and DEAL-2 Versions 82
5.3.4.1 The Basic Version, DEAL-1......cccoiiiienieinirceeee e 82

5.3.4.2 The Improved Version, DEAL-2ccooveeeeerecieceeeeeeeee 86

5.3.5 RUIES et stecee ettt e vecae e saee e sas e saa e en e e ss b sa e sa e eaeane 88
5.4 Example of Using DEAL-1....ccooiiiiiiiieeeeeieeeee et ese e eeenes 88
5.5 DEAL as a Medium for Mediating Data Representationsc.cccceeeeeenne. 96
5.6 Chapter SUMMATYcceovvoiirieieieeeetceeetee et eese e e s sa e sase e ses e s s e eseene 98

Chapter 6—Domain Schema Design Using the P-C Data Model and Method ... 99

6.1 INIrOQUCTION ...cueeniiece ettt ettt ettt e e es e encnees 100
6.2 The P-C Data MOlcouieeieieeeeeeeeecte ettt et 100
6.2.1 Building Blocks of the Model........ccceeeeeieemieieeece e 100
6.2.2 Direct Extensions to Object-Oriented CONCeptsoeeveeueeeeeeeeneeccnnnnne 101
6.2.3 Relationships and Relationship TYPESc.coeveeeeieciecieericienieeeereeeeenene 105
6.2.3.1 Definition of Relationships.......cceceeveevecvervenreeiecnniceesceeececnes 105

6.2.3.2 Types of Relationshipsc.ceceeceeererieninseniene e 106

6.2.3.3 Semantics of Relationships......cceeeeveereeierieerereenersineeeieeeereneeae 107

6.2.3.4 Permissible Relationship Types Among Primitive and Composite

Classes and INSTANCEScc.eoverueereruerreeiertee st seee st e eece e e enesrennens 108

6.3 The P-C Data Modeling Method...........cooveemmeiiieeieeeeeeeeeeceeeeee e 108
6.3.1 Overview of the Methodc.ooioireiiiiie e 108
6.3.1.1 Steps for the Design of a Domain Primitive Schema................ 108

6.3.1.2 Rules and Guidelines of the Methodcceeeevieeeecennennee. 110

- 6.3.2 Entity Dependencies and Dependency TYPES ...coeeveeeeeeeveeecereereceeeene 112
6.3.3 Designing A Domain Primitive Schemacoooeeeeieeiniiicieeeieeene 113
6.3.4 Designing A Composite SChemaccoceeeeeieeiinceieeieeee e 118
6.4 Chapter SUMIMATYccoooiieeerieeeee et e eee s esr e e e eneeeseeeneennn 119

Phan & Howard page xi

The Primitive-Composite (P-C) Approach

Chapter 7—Form, Function, and Behavior Representations in the P-C Approach 121

T1 OVEIVIEW .ttt et et s s s emae st s e e s s aas e e nnes 122
7.2 Form, Function, and Behavior Representations.........ccceceeeeceeeenneerecrerenceninnens 122
7.2.1 Form ReEpresentationccoecuceeceeeeerieeeneteeneseeresenececnseesessenseeesarsesannes 122
7.2.2 Function and Behavior in addition to FOrmccoccceeeineiiiiiiinnnn, 124
7.2.3 Function Representationcocceeceeeccreceeeerneneeenncensneisnse e ssnsesssneenns 126
7.2.3.1 Description of FUNCHONS........ccovvereirrereeeeeeeceeeceseenecere e 126

7.2.3.2 Description of Requirementscc.cceeeeeceeriiinneirrnnseeneenieene 128

7.2.3.3 Description of DESIZN ...ccceeviiiriiinrieeeecrceciie et 131

7.2.4 Behavior Representationecceeecerecicceeneeeneneeeecenreeeesaseesssae e evaeeene 134
7.3 Hierarchical Facility Decomposition by Functions or by Artifacts 137
7.3.1 Decomposition by FUNCHONScccoeiriiniieiniece e 137
7.3.2 Decomposition by Design Artifacts.......ccocceveerveemrmreceesececieiiececeinenens 140
7.3.3 Mappings Between Functions and Artifactscc.cceeveeeiiiiencncnenn. 141
7.4 Chapter SUIMMATYc.ccerreereireererreeieeeessete e sssecesnneeeseresssesssansesssassesasesesses 143

PART III: TESTING, CONTRIBUTIONS, AND CONCLUSIONS 145

Chapter 8—Testing of the P-C Approachcueervnincesnncsirncnnncnessssenseasssannans 145
8.1 INtrOAUCHION ...ttt ete e e e e e s ae e e s e 146

8.2 Testing of the P-C ApProachccccoeeeeimeeiiiniiiececcenreeeeeeeee e 146
8.2.1 Research QUESHONuueeeeeeeeeeeririeeeeeceeieeeeeeeeeeeeeese e emeancneeeeeesessasenns 146

8.2.2 Rescarch Hypothesisc.oeeruiieeiiiiece et 146

8.2.3 Independent and Intermediate Variables and Their Measurements....... 147

8.2.4 Key Dependent Variable and Its Measurements............cccccocceevvinennennne. 148

8.2.5 TESLCASES wueeeeureeerrrrrereereerireeerrseree it eesee et essnaeessner s sbessssaraesranne s srananns 151

8.2.5.1 Description of the Main Test Problem and Cases 151

8.2.5.2 Selection of Data Uses ... 152

8.2.6 Test Procedure.........ccecovvieeeceiieiinireeeeeeceee e e e eec s e e 153

8.2.7 TESLRESUILSeeeeeeeiieeeeee et c s e e s e s 154

8.3 Chapter SUMIMATYccceeoieeeeeeeeeee et seeee et e seee et e e sese s e e e s s sranenes 159
Chapter 9—Contributions, Conclusions, and Future Research.........cceecevrcuarnenn. 161
0.1 CONIIDULIONScoeiiierieeeiieeeecreeeeeaesee s ste e st et eesseaessseesenneessnas s sassesensnsssnns 162
9.1.1 Definition of the Modeling Requirements and Criteriac.ccocoveeunen. 162

9.1.2 Development of the P-C Approach........coccceeeeoieeveninccinnniiiniineccrennne 162

9.1.3 Development of the Modeling ToOISccccoeeeoiiieriiiiiecee e 163

page xii Phan & Howard

The Primitive-Composite (P-C) Approach

9.1.4 Development of the Test Domain Schema ... 163

0.2 CONCIUSIONSoviietieeeeieerrestre e e sete e e et s srr e s s e e s e s e s nasee st e 164

9.3 Impacts of the Research on Data Modeling and Data Exchange 166

9.4 Directions for Future ReSearchcccccooverviminiiiniinneeteeieee e 167

0.5 FINal REMATKSccvveieveeeeeeeeieeeetesieeeeee e tescceernesesssane s saessassne s s aesssssnnsnesane 169
REFERENCEScccoinieieicsscessnssnissnssssnsssncssnsssssssssssossessassrssesssssssssssssssssssns sssssssssssess 171

Phan & Howard page xiii

The Primitive-Composite (P-C) Approach

List of Tables

TABLE 4.1: Concepts and Graphical Representations in Partition I ... 52
TABLE 4.2: Concepts and Graphical Representations in Partition ILccccoccoeieeeee. 53
TABLE 4.3: Concepts and Graphical Representations in Partition IILc............ 54
TABLE 4.4: Matrix of Permissible Node Linkages in PANDA Using the Appropriate
LANK TYPES. eieeeiiiiiieciceieseeesee st ee st ee e st e e s eee st ee s st s esbs s sanssann s snneersnseansnaeessnannses 56
TABLE 8.1: The Selected Data Uses Selected in the Six Test Cases.cccooeeeveeneee. 152
TABLE 8.2: Measurements for P-1 and P-2 of the Tower Primitive Schema. 154
TABLE 8.3: Measurements for P-3 of the Tower Primitive Schema.cccccccoceet. 155
TABLE 8.4: Customization of Composite Classes for Data Uses Considered in the Teslt.56

...

page xiv Phan & Howard

The Primitive-Composite (P-C) Approach

List of Figures

FIGURE 1.1:Six Phases of the Tower Engineering Process.cccceervviinniennnnenne 3

FIGURE 1.2: A Sample Electrical Utility Transmission Tower.cccccocemrinnen 4

FIGURE 1.3: Customizing Composite Classes from a Primitive Schema. 9

FIGURE 2.1: Historical Development of Data Models. ... 15
I;(I)?URE 2.2: Aggregation Levels in the Structural Steel Framing Data Model [Lavaka;g
FIGURE 2.3: A Sample Non-Homogeneous Class Hierarchy.c..ccoccniviiiincinnnnn. 24
FIGURE 2.4: A Sample Large Object CIUSLET.ccccceeeeneernemritinieriiieieinrie e 25
FIGURE 3.1: Research Methodology and Results. ... 31
FIGURE 3.2: Overview of the Primitive-Composite Approach. ..o, 33
FIGURE 3.3: Phases, Modeling Tools, and Outputs of the P-C Approach. 35
FIGURE 4.1: A Sample Partitioned Data Flow Diagram Using PANDA. 48
FIGURE 4.2: Legend for the Partitioned Data Flow Diagrams that follow. 64

FIGURE 4.3: Diagram Notes for the Partitioned Data Flow Diagrams that follow. 65
FIGURE 4.4: Intermediate Skeleton of Phase IV, Tower Construction Planning. 66

FIGURE 4.5: Function IV.S1, Dimensioning Members and Laying out Connections,
and Function IV.S2, Detailing Fabirication Parts, of Phase IV (Tower Construction
PIANNINgG). oottt ettt et et s e b e e e e 67

FIGURE 4.6: Function IV.S3, Generating Detailed Drawing, and Function IV.S4,
Compiling Erection Bill of Material and Bundling List, of Phase IV (Tower Construction

PIANNINE). « oottt et te et e et es e e st e st e s e saee st e n e s ar e s saas e e n e s 68
FIGURE 5.1: Analysis of A Given Domain Entity Using DEAL.cccccccceeieinne 74
FIGURE 5.2: Vertex Intension and EXtENSion.coccoeeceeveeenieciiiiinnininie e 82
FIGURE 5.3: Step 1 of DEAL-1 Considering Access-Cohesion.ccccccveveeinnnns 89
FIGURE 5.4: Repeating Step 1 of DEAL-1 Using Direct and Specific Logical Access
Pathis. ettt e et s ae e e ann e 90
FIGURE 5.5: Conceptual Categories Assigned to the Leaves of the Tree during the
ASSIGN Operation 1N StEP 2. ..neiiiieiiee it eeee e et cr e er e e sesn e e e s b e ae e eannenes 91

FIGURE 5.6: Decomposition Tree at the End of Step 2 Considering Concept-Cohesion. 92
FIGURE 5.7: Logical Times Assigned to the Leaves of the Tree during the ASSIGN

Operation i STEP 3. .ottt e e s s s s s ern s 93
FIGURE 5.8: Time-Ordered Decomposition Tree at the End of Step 3 Considering
TIME-CONESION. .eeieeeiieieiiieeeeeeeeeeece e eeretseeesre s e eeesee et e e et ee s e re e enneseeass e s sassensneannns 94

FIGURE 5.9: Vertices Decomposed at the End of Step 4 Considering Source-Cohesion. 95
FIGURE 5.10: Decomposition Tree at the End of Step 5 Considering Use-Cohesion. 97

Phan & Howard page xv

The Primitive-Composite (P-C) Approach

FIGURE 6.1: Building Blocks of the Primitive-Composite Data Model. 101
FIGURE 6.2: A Sample Primitive Characterization Hierarchy.c.ccocoeiininencn. 102
FIGURE 6.3: Customization of a Composite Class.ccccoeveviriiicrniriinnnneerie e 104
FIGURE 6.4: Overview of the Design of a Domain Primitive Schema.cc..c....... 109

FIGURE 6.5: Summary of Rules and Guidelines of the P-C Data Modeling Method. . 111
FIGURE 7.1: Legend for the Graphical Representations of Sample Primitive

Characterization HIerarchi€s.coceecceevmrvceerrnnnnciiiiircenie e s 123
FIGURE 7.2: Sample Primitive Classes Representing Material Properties. 125
FIGURE 7.3: What Should Be Communicated About A Facility Design? 126
FIGURE 7.4: Sample Primitive Classes Representing Structural Engineering Function

| D ICTYed w10] 5) o S O U O OO U OO ROURRPOTPPO 127
FIGURE 7.5: Sample Primitive Classes Representing Specifications of Load Conditions
And L.0ad SOUICES. ..ottt er e e e e ss s s 128
FIGURE 7.6: Sample Primitive Classes Representing Specifications of Load Cases and
L0ad Pathis. ...ttt s s e 129

FIGURE 7.7: Sample Primitive Classes Representing External Load Specifications. .. 130

FIGURE 7.8: Sample Primitive Classes Representing External Load Application
SPECIICALIONS. ..eeeniereiietieitce ettt et e e c e e e e cs e sr et sane s s e e e en e s e sn e eane 130

FIGURE 7.9: Sample Primitive Classes Representing Requirement Specifications...... 131
FIGURE 7.10: Three Principal Dimensions of a Facility Design Supported by the P-C

APPIOACH. ettt b e e s et e 132
FIGURE 7.11: Sample Design Description Primitive Classes.coooeeeiiiieiieneinnene 134
FIGURE 7.12: Sample Primitive Classes Representing Descriptions of Structural
Analysis Elements and NOAES.cccooereirriiiieimeineiicceieciie st e 135
FIGURE 7.13: Sample Strength Behavior Primitive Classes.c.cccovrimnmeeinecnenene 136
FIGURE 7.14: Sample Serviceability Behavior Primitive Classes.ccococeieiieneenens 136
FIGURE 7.15: A Sample Transmission Tower’ s Function Hierarchy.cc.......... 138
FIGURE 7.16: A Sample Transmission Tower’ s Functions and Requirements. 139
FIGURE 7.17: A Sample Transmission Tower’ s Artifact Hierarchy.ccocoeeeenceee 140
FIGURE 7.18: Sample Function-Artifact Mapping Primitive Classes.cccoeeumecee. 141
FIGURE 7.19: Dual Artifact and Function Hierarchies of A Transmission Tower. 142
FIGURE 8.1: All Test Variables.ccccceceeriieiniiiiiiincieiie e 147
FIGURE 8.2: An Illustration of Generation of User-Specific Schemata from a Common
DOomain SChEMIA. c..cuuiriiiiiieeiree ettt s e s e ss s s se e 149
FIGURE 8.3: Three Components of the Schema Performance Variable. 150
FIGURE 8.4: The Main Test Problem.cccccovvviiniinmiiiiiiieieceeciee e 151

page xvi Phan & Howard

Chapter 1: Introduction

PART I:

PROBLEM DEFINITION AND
BACKGROUND

Chapter 1

Intr&duction

Chapter Abstract:

The research described in this dissertation involves the development of a
methodology, called the Primitive-Composite (P-C) Approach, for modeling data in
facility engineering to support data integration. In introducing this research, this
chapter first presents the research problem, which involves both facility data
integration and modeling. It then explains the idea underlying the P-C Approach. it
also states the objectives in the development of this idea into a working solution. It
ends with a reader’s guide to the remainder of this dissertation.

Organization:

1.1 Research Problem
1.1.1 The Facility Data integration Challenge
1.1.2 Facility Data Modeling Difficulties
1.2 Research Idea Underlying the Proposed Solution
1.3 Research Objectives
1.4 Reader’s Guide

Phan & Howard page 1

Chapter 1: Introduction

The design and construction of a facility—whether it is a building, bridge,
transmission tower or space station—involves a complex engineering process. This
process requires close coordination among owners, architects, engineers, and contractors
in all phases of the project. The goals are to maintain efficiency and minimize costs while
ensuring high engineering quality. Effective communication of facility data among the
principal players throughout the phases is vital to the achievement of these goals. In
recent years, integration has been recognized as one viable project management strategy
for establishing such communication [Howard 89a). Integration means coordinating all
phases and aspects of a project through the cooperative use of information from database
and knowledge-base systems [Tatum 90]. However, even with increasingly affordable
hardware and powerful software, designing and implementing information systems
capable of supporting integration still poses an important and challenging research area.
Data modeling plays a central role in developing these information systems.

This dissertation reports on research in modeling facility data for the purpose of
supporting integration. The goal of the research described here is to better understand
how to model facility data to support integration and to develop modeling tools that aid
modelers in handling this task. This research verifies the hypothesis that a methodology
for modeling data in a given facility engineering domain can produce a schema that can
be shared among multiple users across the life-cycle phases in that domain. In
developing such a methodology, this research synthesizes ideas from fields such as data
modeling, knowledge representation in artificial intelligence, software engineering, and
information systems design. The research also closely relates to emerging object-oriented
database technology. Specifically, this research involves the development of a
methodology called the “Primitive-Composite” (or P-C) Approach. This approach
incorporates the steps needed to analyze a given domain and develop an object-oriented
database schema of the domain, the requirements and criteria for designing the schema,
and the modeling tools used in the steps that lead to the development of the schema
meeting the requirements. The P-C Approach was also applied to the domain of electrical
utility transmission towers. In the course of testing the approach in the tower domain, the
scope of applicability, strengths and limitations of the approach were defined. In addition,
a proof-of-concept software demonstration of the research concept was built.

This chapter first explains the research problem that involves both facility data
integration and modeling. It then describes the goal and objectives of the research.
Finally, it provides a reader’s guide to the remainder of this dissertation.

1.1 Research Problem

In this research, I studied data integration and data modeling in facility engineering.
The following sections describe the challenges and difficulties concerning these areas.

1.1.1 The Facility Data Integration Challenge

In a typical facility engineering process, large amounts of data must be
communicated among participants and computer applications during evolving life-cycle
phases. However, communicating this data is often difficult: users (i.e., participants or
applications) have different needs for the facility data and thus use different data
representations. Data integration aims at improving the compatibility and reusability of
data and data representations within the same process. The following paragraphs describe
the need for data integration in facility engineering and then briefly review existing data
integration approaches.

page 2 Phan & Howard

Chapter 1: Introduction

An Engineering Perspective: Need for Communicating Data Facility
engineering involves the design and construction of a facility such as a building, bridge,
transmission tower, space station, etc. In this research, I studied the domain of electrical
utility transmission towers. A facility engineering process typically involves a myriad of
skilled individuals from different disciplines, who may be in one organization, in multiple
industries, or even at various geographic locations. Designing and constructing
transmission towers for instance, involves electrical engineers, structural engineers,
foundation engineers, structure detailers, fabricators, construction contractors and crews.
As a result, the process is highly fragmented. “Horizontal fragmentation” refers to
division of the process according to the specialization of participants involved; “vertical
fragmentation” refers to division of the process into phases and into smaller functional
units [Howard 89a). Indeed, the engineering process extends throughout a very long life-
cycle and includes several phases of development. Figure 1.1 shows the six phases of the
tower engineering process: (1) Transmission Line Analysis and Design, (2) Tower
Structural Conceptual Design, (3) Tower Structural Detailed Design, (4) Tower
Construction Planning, (5) Tower Construction Execution and (6) Tower Facility
Management. These phases are further divided into several functions (or subprocesses),
each of which consist of many activities. Figure 1.2 illustrates a sample transmission
tower.

Tov;ler
Facility

Transmission
Line
Analysis &

Execuﬁon

Facility
Life

Erection
Bill of
Material
& Bundling
List

Generating
Detalled

Detaiiing

4. Fabrication Detailed
Tower . Members &
Construction Laying out
Planning Connections

FIGURE 1.1: Six Phases of the Tower Engineering Process.
The heavy lines mark the beginning and end of each phase. The four functions
(or subprocesses) of the Tower Construction Planning phase are also shown to
exemplify the next level of decomposition of a phase.

Phan & Howard page 3

Chapter 1: Introduction

M3IA 3AIS M3IA LNOHA

.................. L 9 A@C_Jucmm

............... - 2 C ®>OQ.QV .
— . - obes) Mo ;

FIGURE 1.2: A Sample Electrical Utility Transmission Tower.

Phan & Howard

page 4

Chapter 1: Introduction

Large amounts of data are generated during a typical facility engineering process.
Different participants and applications use this data to carry out a variety of activities.
Data generated by one activity is used in many downstream activities. Therefore, this data
must be communicated among several different “users” (i.e., participants and
applications) during the various phases. Failure to communicate this data can cause
delays, errors, cost overruns, accidents, structural catastrophes, etc. In short, effective
communication of facility data in any given project is vital to maintaining work
productivity, minimizing costs, and ensuring high engineering quality.

The Challenge: Difficulty in Communicating Data and Need for Integrating
Data The inherent fragmentation, both vertical and horizontal, of the facility
engineering process makes the communication of data between participants and
applications difficult. First, participants have different views of the underlying facility
data. (A view corresponds to a subset of data that is defined to serve a particular user
need.) Second, participants use computer applications that assist them in various
engineering tasks. Examples of these computer applications are architectural layout,
design loads computation, geometry configuration, structural analysis, member design,
computer-aided drafting, construction project scheduling, etc. These applications are
usually stand-alone programs that are not designed to exchange data. These applications
often run on different computers and use varying representation paradigms, programming
languages, development tools and environments, etc. Moreover, data used in different
applications may be syntactically and semantically incompatible. To exchange data
among applications, the engineer normally either enters data for each application
manually or builds computer programs that translate data between pairs of applications.
These alternatives are neither expedient nor efficient. Third, as the life-cycle phases
evolve, new property values are defined for the facility design objects, or these design
objects are decomposed into physical or functional components [Eastman 78]. The
engineer usually represents these design objects in an ad hoc manner in different phases.
This results in duplicate efforts and incompatible data representations. Consequently, data
in different representations cannot be communicated directly between users. This project
addresses these incompatibilities, which can also be seen as lack of “integration” of
various data representations. Data integration seeks solutions to improve the
compatibility of data and data representations used in the same process.

Data Integration Approaches The need for data integration in engineering domains
has motivated research and development in different areas. Scholars have proposed
different approaches to data integration, two of which are of interest to this research.
These two approaches are explained in [Abdalla 89]. The first of these, the “direct
translator approach,” involves writing a translator that directly translates the output of
application A to the input format required by application B. This approach is not
economical because of the large number of translators required to support data exchange
among applications (i.e., N * (N -1) translators for N applications). The second approach,
the “standard exchange format approach,” aims at providing a more economical solution
to this problem. It involves developing machine-readable data representations that are
used as standards for data exchange among all applications. These data representations
can then be shared within a domain and across domains. This approach is efficient
because it eliminates the need to write a separate translator for each pair of distinct
applications. However, this approach requires time, effort, and suitable methods for
developing the standard for a given discipline, as well as the communal agreement and
commitment to use such a standard. The research described here has a similar motivation
of sharing data representations, but focuses on the modeling of facility data to produce
sharable data representations. Chapter 2 discusses other data integration approaches.

Phan & Howard page 5

Chapter 1: Introduction

1.1.2 Facility Data Modeling Difficulties

Data modeling plays a significant role in data integration approaches such as the
standard exchange format approach described above. In fact, data modeling is a major
undertaking in many national and international efforts to develop product data exchange
standards. This research focuses on modeling of facility data to support data integration.
Data modeling involves observing the real world, abstracting the objects of interest and
their properties, and building data representations that can be processed by computers.
Data modeling is often difficult: Real-world objects are complicated, and modeling them
requires suitable methods and tools. The following paragraphs emphasize three important
difficulties that must be overcome in modeling facility data.

Inherent Complexity of Facility Data Modeling facility data is difficult because of
the inherent complexity of the data. Many past research studies focused on modeling data
in engineering domains in general [Batory 76], [Lorie 83], [Johnson 83], [Wiederhold
85], [Ketabchi 86], [Kersten 86], [Wiederhold 88], [Barsalou 90], etc., and in facility
engineering domains [Law 86], [Eastman 87], [Gielingh 83], [Gerardi 88], [Abdalla 89],
[Bjork 89a], [Lavakare 89], [Law 89], [Rasdorf 90], [Abudayyeh 91], [Eastman 91],
[Luiten 91b], [Eastman 92], [Froese 92], [Garrett 92], [Law 92], [Sause 92], etc. Like
data in other engineering domains, facility data is more complex than data in traditional
business applications (e.g., payroll, accounting, inventory control). Indeed, facility data
describes complicated design objects with many levels of detail. This data can have
complex types rather than simple types such as integers, real numbers, and strings. It can
involve nested data structures and intricate object relationships. Representing this data
usually requires many types of data structures and results in very large schemata. Finally,
facility data describes the physical properties (or “form”), engineering functions, and
behavioral states of the design objects. Form, function and behavior must be represented
as distinct, yet tightly coupled, elements of a schema to describe facility design objects
completely and to support reasoning about these objects. Representation of form,
function, and behavior is still an important topic of research.

Issues in Representing Facility Data Inappropriate techniques of modeling facility
data can lead to poor representations. Such representations can be ill-suited to the project
or difficult to maintain, reuse and share among different applications. The major issues
that must be addressed in representing facility data include:

. Limited Ability to Support Multiple User Views: Existing facility data
representations such as the Structural Steel Framing Data Model [Lavakare 89], the
Ratas Building Product Model [Bjork 88], and the Component-Connection
Abstraction Model [Powell 88] tend to predefine a number of descriptions of the
facility and lack the ability to allow users to customize their own views.

. Lack of Support for Schema Evolution: Once defined, current facility data
representations such as those listed in the first item cannot be extended once
defined, to accommodate evolving facility life-cycle phases.

. Lack of Form, Function, and Behavior Representation: Existing data
representations (e.g., those listed in the first item) include mainly form descriptions
and do not distinguish form, function, and behavior.

. Common Facility Data Representation Traps: A study of existing data models and
application schemata proposed for facility engineering [Phan 91b] revealed a

page 6 Phan & Howard

Chapter I: Introduction

number of common representation traps. Chapter 2 explains these representation
traps in detail. The three most critical are:

— Misuse of Aggregation: counterproductive misuse of the ubiquitous “part-
of” relationship by imposing hierarchical levels of aggregation such as
building, systems, subsystems, components, analysis elements, parts, and
connections in describing a facility. These levels are rigid and may not apply
to a given facility.

— Non-homogeneous Class Hierarchies: using many different criteria in
defining subclasses at different levels of the class hierarchy. This is an
undesirable feature for two reasons. First, different views and semantics are
mixed in an indiscriminate manner in the class hierarchy. This hierarchy
lacks the clean separation between the different description aspects (i.e.,
form, function, and behavior) of the facility design objects. Second, the
modeler must anticipate all possible combinations of subclasses. This can
lead to what is called the "cross product phenomenon.”

— “Large Object Clusters”: creating highly complex object class definitions
that include multiple aspects of description in order to satisfy all user needs.
The resulting object classes are inefficient and difficult to extend or reuse.
Creating and managing instances from these classes is also a problem.

The Task of Modeling Facility Engineering Domains From a broader
perspective, modeling real-life facility engineering domains is a technically challenging
and time-consuming task that deserves special attention in research and development. In
the beginning, a modeler! is overwhelmed by the size and complexity of the domain. In
fact, the first challenge is to organize and analyze the plethora of information collected
about the facility engineering. The modeler may not understand how the engineering
process works and how data is used to support that process. However, she must have that
understanding to model the data. The next critical challenge is the conceptual modeling
of the domain. The Entity-Relationship (or E-R) model [Chen 76] is commonly used for
conceptual modeling. This is explained in detail in [Batini 92]. In the E-R model, entities
represent distinctive things, abstract or concrete, in the domain of interest. However, as
we learned in this research project, identifying and defining the proper entities for a large
complex engineering domain is not a trivial task, and the E-R model does not provide any
criteria for doing this. This task becomes even more difficult when the goal is to build
data representations to support data integration. Moreover, experts in the domain
typically design data-intensive objects such as beams, columns, floors, and tower panels.
A beam, for instance, may be described by geometry, material, fabrication features, load-
resisting functions, bending stresses, etc. The representations of these design objects vary
according to the engineering tasks or applications being considered. Schemata of existing
applications can provide a starting point for the conceptual modeling, but they present
only views that are specific to those applications. Moreover, these schemata often have
the representational limitations described in the previous paragraph. In short, methods for
modeling large complex engineering domains need to be developed, as Wimmer and
Wimmer [92] point out. Currently, there is no suitable method for doing this.
Consequently, this deficiency has limited the formal modeling of facility data to trivial
academic exercises or, at most, to small and simple real-life domains.

1 A person or team who is designing a database or information system.

Phan & Howard page 7

Chapter 1: Introduction

1.2 Research Idea Underlying the Proposed Solution

This research proposes the P-C Approach as a solution to the problem described
previously. This approach evolved from the intuitive idea of using the notions of
primitives and composites with object-oriented concepts? (e.g., class, instance, attribute,
method). The approach was named after this idea. A “primitive class” (or primitive object
class) represents one simple concept such as curves, material properties, fabrication
features, functions, or behavior stresses. It serves as an atomic description about form,
function, or behavior in a schema of the domain. On the other hand, a “composite class”
(or composite object class) describes a complex concept in terms of many atomic
concepts in the domain for a particular user. For example, a beam may be described using
combinations of specific forms, functions, and behaviors that provide different users with
the views to which they have become accustomed [Howard 92].

To further explain this research idea, Howard et al. [92] has drawn the following
analogy to human language. Since many different users contribute to and draw from the
same overlapping set of data objects, the natural tendency in modeling facility data is to
add more and more description to these objects to satisfy all users. As a result, extremely
complex object definitions are created, and no one specialist completely understands
them all. The schema that consists of these object definitions is like a “phrase book™ that
contains a limited number of predigested ideas. As long as the phrase that the user needs
is in the book, she can use it and communicate with others. However, the user is out of
luck if she needs to communicate about something not in the book or even a subtle
variation on a defined phrase. By contrast, with the vocabulary of a language (along with
the syntax), any phrase or sentence can be constructed, not just the limited set in the
phrase book. The P-C Approach can be compared to a methodology for creating a data
“vocabulary” for a domain—formally, a “domain primitive schema” (or primitive schema
for short). From words—primitive classes—and syntax—rules belonging to the P-C
Approach, users can customize the complex phrases—composite classes—that they need
and still communicate data by sharing the same vocabulary. Thus, such a word-based
vocabulary is far more powerful than a book containing a limited set of phrases. The
power of the vocabulary is that complex phrases need not be defined a priori and thus
need not be limited in number.

Similarly, in the P-C Approach, the domain primitive schema consists of primitive
classes that represent the data shared by users throughout the life-cycle phases. Primitive
classes are organized into several separate “primitive characterization hierarchies,” each
of which involves one simple concept about form, function, or behavior. Examples of
these hierarchies are geometric curves, basic topological elements, shape cross-section
properties, material properties, fabrication features, functions, requirements, strength
behavior, etc. By selecting the appropriate primitive classes from these hierarchies,
individual users have the flexibility to assemble any number of “composite object
classes” customized to their own needs. Figure 1.3 illustrates the customization of four
different user views from the underlying primitive schema. A composite class is a
subclass, aggregation, or association of two or more primitive classes. In addition,
primitive classes can be added incrementally to the schema, and as a result, more
composite classes can be defined from primitive classes, both old and new. This
extension of the schema can accommodate evolving life-cycle phases. By the same token,
a computer application can be described by a “composite schema” that includes

2 Chapter 2 explains the fundamental object-oriented concepts and the reasons for adopting the
object-oriented paradigm in this research.

page 8 Phan & Howard

Chapter 1: Introduction

composite classes customized for it. Applications do not share composite classes. They
need only share primitive classes from which their composite classes are formed. A
comparison of the composite schemata of two applications immediately reveals the data
to be exchanged, since it is that belonging to the primitive classes referenced by both
composite schemata.

Nevertheless, when applying this idea to a facility engineering domain, we faced
three fundamental questions: “How is data actually used in a real-life facility engineering
domain?,” “How can primitive entities be identified in a given domain?,” and then “How
can these primitive entities be designed as object classes, from which composite classes
can be defined?” These issues must be resolved to produce a working solution. As a
result, we developed the P-C Approach as a structured methodology to answer these
issues. This approach incorporates the steps, requirements, design criteria, and modeling
tools that can be used to analyze a given facility engineering domain and to design a
primitive schema representing that domain.

Complex Domain
User Primitive
Views Schema
(" To_Resist_) function
Load
"Beams_ — ..
As-Designed" D Applications } .
. - Behavior_ behavior
Design Stresses }
Bolt_
u Hole_Patterns form
Beams_
As_Detailed" O Material_
r Strength
Structure Detailing Properties
"Beams Fabrication_
As_Checked" Lengths
Constructibility AISC_
Checking Shape_
Descriptions
O nEDR
LEGEND . Y,
Composite @® Shared ® Unshared
O classes primitive primitive
classes classes

FIGURE 1.3: Customizing Composite Classes from a Primitive Schema.

Phan & Howard page 9

Chapter 1: Introduction

1.3 Research Objectives

To produce a working solution, this research has three specific objectives:

1. To develop the P-C Approach fully: This objective involves developing the P-C
Approach by defining the requirements for designing a schema representing a given
domain, identifying the analysis and design steps of the approach, and developing
the modeling tools used in the steps that lead to the development of the schema
meeting those requirements.

2. To apply the P-C Approach to a real-life facility engineering domain: This
objective involves applying the P-C Approach to a real-life facility engineering
domain and thereby demonstrating its usefulness. This application includes the
development of a functional schema of the engineering process in the selected
domain, as well as a database schema of the domain. It also entails investigating the
form, function, and behavior of engineering design objects in the domain, and the
incorporation of these representations into the database schema. In addition, this
application includes building a database of a selected tower in the domain using the
database schema.

3. To test the P-C Approach: This objective involves defining a method for testing the
approach, conducting the test in the transmission tower domain, obtaining test
results, and drawing conclusions about the approach’s scope of applicability,
strengths, and limitations.

1.4 Reader’s Guide

To provide readers with the options of reading in sequence or by selected topics, we
organized the remainder of this dissertation as follows:

. Readers can consult Chapter 2 to gain more insight into the current state of
knowledge in the fields of data modeling and data integration. This chapter
describes the historical development of data models and explains the object-oriented
data modeling paradigm that closely relates to this research. It also reviews existing
work in facility data modeling and discusses the difficulties in this area. Finally, it
presents current data integration approaches and system architectures proposed to
achieve better data integration.

. Those interested in the P-C Approach will find explanation of the approach in
Chapter 3. This chapter begins with a perspective on the development of the P-C
Approach, including a description of the research methodology used. The chapter
then explains the way the approach can be executed as a structured and coherent
methodology for modeling facility data.

. Practitioners who share the goal of modeling facility data to support data integration
can read Chapters 4, 5, and 6 to understand the modeling tools used in this
approach. Chapter 4 describes the PArtitioned eNgineering DAta flow model (or
PANDA), an extension of the Data Flow model developed for modeling facility
engineering processes. This chapter explains PANDA’s concepts, graphical
representations, syntactic and semantic rules, and schema transformation operations,
as well as a customized method and guidelines for using the model. Appendix A
describes the domain of electrical utility transmission towers to which we applied

page 10 Phan & Howard

Chapter 1: Introduction

the P-C Approach and then shows the graphical functional schemata of the tower
engineering process using PANDA.

Chapter 5 presents the Domain Entities AnaLysis method (or DEAL). This
methodology was developed for decomposing entities used by experts in a given
domain into primitive entities based on the criteria of cohesion and reusability. This
chapter explains the concepts and terms, assumptions, graphical representations,
rules, procedures and operations included in DEAL. Appendix B shows a detailed
analysis of the “Transmission Tower Members” entity.

Chapter 6 describes the Primitive-Composite (or P-C) Data Model and Method,
both of which are used to design the common object-oriented schema of the domain
being modeled, called the domain primitive schema. This chapter explains the
concepts and relationship types included in the model. It also presents the steps,
rules, and guidelines of the accompanying method, which are necessary to design
the domain primitive schema based on the concepts of the model. Appendix C
provides the full documentation for the rules and guidelines of the method.

Those who are interested in data representation should refer to Chapter 7. This
chapter discusses how form, function, and behavior are represented in the domain
primitive schema of transmission towers. Appendix D contains the documentation
of the primitive classes of that schema.

The test method in Chapter 8 should prove useful to those who wish to develop
operational measures for testing and accepting data standards or schemata
supporting data integration. This chapter explains how the P-C Approach was tested
in the transmission tower domain. It also presents the test results. Appendix E
provides the documentation of the composite classes defined as a result of the
testing.

Chapter 9 presents the contributions, conclusions, and implications of this research
for data modeling and data exchange, as well as future research directions.

Phan & Howard page 11

Chapter I: Introduction

page 12 Phan & Howard

Chanpter 2. Field of Study

Chapter 2
Field of Study

Chapter Abstract:

This chapter describes the two subjects studied in this research: data modeling and
data integration. The aim of this chapter is to explain this research’s point of
departure. This chapter first introduces the data modeling terminology that will be
used hereafter, and describes the historical development of data models. It also
explains object-oriented data modeling, which closely relates to this research, and
defines some fundamental object-oriented concepts. It then reviews existing work in
data modeling for facility engineering and discusses the difficulties in this area.
Finally, it presents different approaches to data integration. '

Organization:

2.1 Background on Data Modeling
2.1.1 Terminology: From "datum" to "data modeling"
2.1.2 Historical Development of Data Models
2.1.3 Object-Oriented Data Modeling Paradigm: Models and Concepts
2.2 Background on Data Modeling for Facility Engineering
2.2.1 Existing Work in Facility Data Modeling
2.2.2 Difficulties in Facility Data Modeling
2.3 Background on Data Integration
2.4 Chapter Summary

Phan & Howard page 13

Chanpter 2: Field of Study

2.1 Background on Data Modeling

According to Parsaye et al. [89], programmers in the early days of computer usage
were dissatisfied with the limited data storage capability of computers and wanted their
programs to have better means of handling data. In some applications, the need to handle
data was so crucial that special programs were developed for this purpose. Databases
were then created. Data structures in early programs involved simple data types such as
integers, real numbers, and character strings. Then came more complex structures such as
stacks, queues, arrays, lists, and files. In addition, the advancement in computer
technology offered more economic means of electronic data storage. Consequently, data
management had to evolve in order to keep up with these improvements. Better tools to
represent and manage data have been introduced, leading to the establishment of the field
of data modeling.

2.1.1 Terminology: From "datum"” to "data modeling"

A “datum” is a unit of information that corresponds to a discrete fact. Since data
relate to specific instances of recorded factual information, they include much detail and
change rapidly over time. In addition, they are numerous in quantity and may be stored in
database systems [Wiederhold 86a].

A “data model” is a collection of conceptual tools for describing data semantics,
relationships among data, constraints on the data definition, and operations on the data
[Tsichritzis 82]. A “database schema” is a logical set of data structures and their
properties, constraints, and relationships that is well-defined for a certain application
using a particular data model.

A “database” is a formal collection of related data organized according to a pre-
defined schema [Tsichritzis 82]. Databases often serve the needs of a large community of
users. This function imposes a number of requirements on the development of the
database: an external view level to support distinct types of users or processes that share
the data; a conceptual schema level that integrates these different view models; a logical
schema level that includes computer-processable specifications of conceptual schemata;
and an internal physical level for persistent data storage [Brodie 84a].

A ““database management system” (abbreviated as DBMS) provides facilities and
tools for defining, manipulating, and controlling information in the database, including a
protection mechanism for data and users. Aspects of the database control include
semantic integrity maintenance, security in terms of user authorization, concurrency for
multiple users, and recovery in the event of a failure.

2.1.2 Historical Development of Data Models

The following material is based on the literature on the data models’ development,
which can be found in [Tsichritzis 82], [Brodie 84a], [Wiederhold 83], [Wiederhold 84],
[Parsaye 89], [Cardenas 90], [Date 90], [Kim 90], [Navathe 92], [Kim 93], [Hurson 93],
etc.

File Models As illustrated in Figure 2.1, the “file models” date back to the earliest
work in data modeling. These models correspond to files that contain organized data
records. Data operations are limited to read and write operations over records [Brodie
84a]. In addition, there is little separation among the external view level, the conceptual
schema level, the logical schema level, and the internal physical level of the file model.
These limitations motivated the development of the latter data models. The “inverted list

page 14 Phan & Howard

Chanpter 2: Field of Study

model” was the most recognized model in this category. It had a commercial product
implementation from Computer Associates for IBM mainframes (CA-DACOM/DB).

Classical Data Models The so-called “classical” or “traditional data models,” which
started in the sixties, have prevailed for almost three decades. These models include the
“hierarchical” data model [Tsichritzis 76], the “network” data model [CODASYL 71],
and the “relational” data model [Codd 70]. In the sixties, many business applications
were written in hierarchical database systems. Commercial products of hierarchical
DBMS include the INTEL/MRL SYSTEM 2000 [Tsichritzis 76] and the IBM
Information Management System (IMS) [McGee 77]. In the seventies, the network data
model became popular. General Electric's Integrated Data Store (IDS) was the first
implementation of a network DBMS [Parsaye 89]. According to Date [90], the Integrated
Database Management System (IDMS) is the best known commercial product from
Computer Associates for IBM mainframes. In 1970, Codd introduced the relational data
model in a series of seminal papers [Codd 70], [Codd 71a], [Codd 71b], [Codd 72a],
[Codd 72b]. This model became the data model of choice for business applications in the
eighties. After starting from a number of early research systems such as System R
[Astrahan 76] and INGRES [Stonebraker 76], commercial relational database
management systems continue to proliferate and greatly dominate the marketplace.

4 Simplicity

MODEL

CLASSICAL DATA
MODELS

Relational
Hierarchical

ly

SEMANTIC DATA

MODELS
OBJECT-ORIENTED
DATA MODELS
Power . SPECIAL-PURPOSE
v (Data Representation) DATA MODELS

i 1] | 1]
+

1
50's 60's 70's 80's

Data Models with commercial software
products

FIGURE 2.1: Historical Development of Data Models. This taxonomy of the file,

classical, semantic, object-oriented, and special-purpose data models is based on the one
presented in [Brodie 84a].

Phan & Howard page 15

Chanpter 2: Field of Study

Semantic Data Models Paralleling the introduction of the relational model, a
different research direction in data modeling emerged with the development of “semantic
data models” [Brodie 84a]. This development was motivated by the need to facilitate the
design of database schemata and to develop more semantically accurate data models
[Zdonik 90]. Examples of these semantics include general factual information about the
world (e.g., all columns are in a vertical position, the subpart relationship is transitive,
etc.), events and their sequencing and times of occurrence, and generalization hierarchies
which enable inheritance of properties and behavior from superclasses to subclasses
[Reiter 84]. These semantics are not easily expressed in terms of records or relations. In
fact, the semantic data models reacted against the simplicity of the earlier models whose
representational limitation lay in the use of simple data structures. This limitation reduces
the expressive power of the data model and creates the risk of losing information. In
addition, the semantic data modeling movement complemented the work on knowledge
representation in Al, particularly the semantic network and frame-based representation
schemes [Zdonik 90]. According to Hull and King [90], the first published model was the
Semantic Binary data model [Abrial 74]. Thereafter, scholars proposed a large number of
semantic data models: the Infological data model [Sundgren 74], the Entity-Relationship
(E-R) data model [Chen 76], the Extended RM/T data model [Codd 79], the Structural
data model [Wiederhold 80], TAXIS [Mylopoulos 80], DAPLEX [Shipman 81], SDM
[Hammer 81], the Event data model [King 84], SHM* [Brodie 84b], etc. Although none
of these data models have been commercially implemented, they established an important
framework for the later development of object-oriented data models.

Object-Oriented Data Models Starting in the eighties, the increasing number of
computer-aided design, engineering, software engineering, and manufacturing
applications revealed the shortcomings of the relational and earlier database technology
[Kim 90]. “Object-oriented data models” emerged as a new breed of models that could
overcome the shortcomings of their predecessors. The driving force behind their
development was the motivation to respond to the data needs of new types of applications
and to incorporate more semantics into the data model (as in the case of semantic data
models). Today, commercially object-oriented database management systems (e.g.,
Gemstone [Maier 86], Versant [Loomis 87], ONTOS [Andrews 90], ITASCA [Itasca 90],
Objectivity [Objectivity 91], ObjectStore [Object Design 91]) have steadily increased in
number and in database market share. These particular systems have been developed
from object-oriented programming languages. Other systems with object-oriented
features (e.g., POSTGRES [Stonebraker 86a], [Stonebraker 86b], [Rowe 87], Sembase
[King 86], Rose [Spooner 86], [Hardwick 89], PROBE [Dayal 87], IRIS [Fishman 87],
EXTRA/EXCESS [Carey 88], PENGUIN [Law 89], Semantic Information Manager
system (SIM) [Fritchman 90]) have been developed using a relational DBMS as the data
storage subsystem. Since this research makes use of object-oriented data modeling, the
next section will discuss this category in greater detail. Reviews of object-oriented
DBMS can be found in [Ahmed 90] and [Hurson 93].

Special-Purpose Data Models To date, the field of data modeling has experienced
an increasing need for more “special-purpose” data models. As opposed to the general-
purpose data models in the above categories, these models are dedicated to specific
domain areas (particularly in engineering), or to particular application types such as CAE,
CAD, CAM, VLSI design, office automation, geographic information systems, etc.
Section 2.2.1 will introduce existing data models for facility engineering.

page 16 Phan & Howard

Chanpter 2: Field of Study

2.1.3 Object-Oriented Data Modeling Paradigm: Models and Concepts

2.1.3.1 Object-Oriented Data Models

The development of object-oriented data models combines important concepts from
many areas. First, the influence of programming languages is evident. Key concepts from
pioneering object-oriented programming languages such as Alphard [Wulf 76], Simula-
67 [Dahl 70], and Smalltalk [Goldberg 85] greatly influence this model. Second, powerful
knowledge representation techniques from Al are utilized in object-oriented data
modeling. These techniques include frame representation, classification hierarchies,
delegation of behavior, and dynamic binding of messages to methods. Third, the
preceding semantic data models strongly influenced the development of these data
models.

Although there is no universal consensus on what the object-oriented data model is,
object-oriented programming languages, knowledge representation languages, and
semantic data models share a number of key object-oriented concepts. References on
these concepts can be found in [Booch 86], [Cox 86], [Meyer 88], [Stefik 88],
[Stroustrup 88], [Abdalla 89], [Atkinson 89], [Rettig 89], [Thomas 89], [Kim 90], [Meng
90], [Booch 91], and [Rumbaugh 91]. The next section introduces these concepts.

2.1.3.2 Key Object-Oriented Concepts

The key object-oriented concepts include:

Class (or Object Class)—A “class” is a set of similar objects that exhibit some common
properties and behavior. The formal definition of a class specifies the descriptive features
that are shared by the members (or “instances™) of the class. Properties of a class are
defined in terms of “attributes,” while behavior is defined in terms of “methods.”
“Encapsulation” refers to the method of enclosing properties and behavior of the object
class within its boundary. Further, a class can have several “subclasses” that inherit its
properties and behavior. It is then called a “superclass.” This method of “inheritance” is
implemented by using the ubiquitous is a relationship. There are two kinds of inheritance:
“single inheritance” and “multiple inheritance.” In the former, a class has at most one
superclass; in the latter, a class can have more than one superclass. Classes that are
related to one another by the is a relationship form a “class hierarchy.” Examples of
common classes in facility engineering are "Beams," "Walls," and "Loads."

Instance (or Object)—An “instance” is a unique occurrence of an object class. For
example, "beam23" is an instance of the class "Beams.” An instance has an “identity” that
uniquely distinguishes it from all other instances. It exhibits all attributes and access
methods of its class. At any time, the instance has a “state” that is described by its
attributes and their current values.

Attribute—An “attribute” is a formal property of an object class. The attribute definition
in the object class specifies a static property true for all instances of that class, while the
“attribute value” of a particular instance describes a dynamic property in the current state
of that instance. For example, the class "Beams" might have attributes such as depth,
maximum-moment, and stiffeners-required. The attribute values of the instance "beam23”
are: depth of 14.0 inch, maximum-moment of 50 kip-inches, and stiffeners-required of
TRUE.

Each attribute value is associated with a data type. Data types can be basic types
(e.g., integers, real numbers, characters, character strings) or more complex types such as

Phan & Howard page 17

Chanpter 2: Field of Study

arrays, bags, sets, lists, or user-defined abstract data types. Useful abstract data types
include three-dimensional coordinates (a triple of coordinate values), direction,
orientation, date, or time. An attribute value can also be a reference pointer to another
object. In this case, the attribute is called a “relationship attribute.” A “default attribute™
has a predefined attribute value used for every instance where the user does not specify a
value.

Two other types of attributes are of interest. “Independent attributes” are stored and
defined independent of any other attributes. Most attributes of the object class are of this
type. On the other hand, “derived attributes” are dependent on other attributes; a method
is usually defined to compute the dependent attribute, which is derived on demand.

Method— “Methods” are operations defined on the object class in order to exhibit the
behavior of a class. They are also the only means of modifying an object state [Abdalla
89]. Objects communicate with one another through “messages,” which are sent in order
to provide data, request data, or trigger certain actions. The message receiver responds to
a message by triggering the corresponding method.

2.1.3.3 Why Objeci-Oriented Data Modeling in this Research?

The application of the P-C Approach to a domain results in an object-oriented
primitive schema of the domain. This schema contains hierarchies of primitive object
classes, from which primitive instances can be created. The following are reasons for
adopting the object-oriented paradigm in this research:

e Advantages in Representing Engineering Data: An object class definition can
include not only simple data types such as integers, real numbers, etc., but also
complex, nested data structures such as lists, arrays, sets, bags, abstract data types,
and logical pointers to other objects. In addition, each object class can encapsulate
all the properties and behavior of the real-life object that it represents.

. Explicit Incorporation of Powerful Semantic Modeling Concepts: These concepts
include generalization, classification, inheritance, encapsulation, typing,
polymorphism, etc. They originated from the work on object-oriented programming
languages and on knowledge representation in Al and from the development of the
semantic data models.

. Support of Object Identity: Each instance can be distinctly identified in the database
by its own identity. This identity is globally unique to the instance, independent of
the physical location of the instance, and created and maintained by the system
[Khoshafian 86]. Consequently, users are not forced to associate every instance with
some fictitious identifier.

. Support of Distinguishable Semantic-Rich Relationships: Relationships such as
aggregation and association among instances carry their own unique semantics and
are recognized as integral, but distinguishable parts of an object-oriented data
model.

° Object Uniformity: All data, including meta-level data, are represented as objects in
the database [Cardenas 90]. Therefore, information about the schema-level
definitions and management of object classes can be stored in the database.

. Data Access Convenience: Data access from instances to instances can directly
follow the predefined link paths among the instances. Consequently, access to data
along these paths is easy to specify and efficient to perform. (This is an advantage

page 18 Phan & Howard

Chanpter 2: Field of Study

when these existing access paths are so desired, but also a drawback when other
access paths are preferred.)

As documented in literature on engineering data modeling [Batory 76], [Lorie 83], ,
[Kersten 86], [Wiederhold 86b], [Ketabchi 88], [Abdalla 89], [Barsalou 90], [Abdalla
92], [Froese 92], [Kim 93], the above features are beneficial to the representation of
engineering design objects and to the later implementation of engineering databases.

2.2 Background on Data Modeling for Facility Engineering

2.2.1 Existing Work in Facility Data Modeling

Over the years, a number of models and schemata have been proposed for facility
engineering. These models are based on or influenced by general-purpose data models
such as the Entity-Relationship model, semantic data models, and object-oriented data
models, each of which have their own flavor. There are three observable categories of
models: models with distinct hierarchical levels of aggregation, models with multiple
linked hierarchies, and models for A/E/C product data exchange.!l

The following sections present the three categories and their general characteristics.
These sections also review the data models in each category by describing their salient
features and providing a summary statement about the model at the end.

2.2.1.1 Hierarchical Models with Distinct Levels of Aggregation

These models articulate distinct levels of aggregation within a single hierarchy in
order to organize facility engineering data. The part of relationship and its inverse are the
primary relationships defined among the entities in these levels. This is probably the most
obvious approach to modeling. Two data models that are typical of this category are the
Structural Steel Framing Data Model [Lavakare 89] and the Ratas Building Product
Model [Bjork 88], [Bjork 89a], [Bjork 89a].

Structural Steel Framing Data Model (SSFDM) This model [Lavakare 89] is an
object-oriented data model for steel-framed structures. The model employs object-
oriented concepts as well as extensions to the Entity-Relationship data model [Chen 76].
First, it utilizes a taxonomy of “generic entities” (equivalent to object classes),
“instantiated entities” (equivalent to object instances), and “typical entities” (which
function as an intermediate entity level between generic and instantiated entities).
Second, relationships such as “is-a,” “instance,” “part-of,” “connected-to,” and
“associated-with” are defined in order to represent the various ways in which entities of
the model can be related to one another. The entire model is structured according to eight
hierarchical levels of aggregation from the highest level of “Buildings” to the most
detailed levels of “Parts” and “Connections.” Each level includes a number of entity
definitions. In short, this is a detailed model that can be used for steel-framed structures.

Ratas Building Product Model This model [Bjork 88], [Bjork 89a], [Bjork 89a] is
also an object-oriented data model for building product design. It has evolved from a
national cooperative study known as the Ratas project sponsored by professional
organizations in the building industry in Finland. The model reiterates the idea of a

11 Not all of these models fit into the formal definition of a "data model” as presented in Section
2.1.1

Phan & Howard page 19

Chanpter 2: Field of Study

“product model” as the database description of a product. It also makes use of the concept
of “abstraction hierarchies” and follows a similar approach by defining five hierarchical
levels of aggregation from the “Building” level to the “Parts” and “Details” levels. In
short, this model includes a number of high level entities common to general building
product design.

Others Another model in this category is the Component-Connection Abstraction
Model [Powell 88]. Its main building block is the component hierarchy, which consists of
basic components (e.g., column, footing, and girder) and connections. Overall, it is a
general conceptual model for representing facility engineering objects. However, it does
not articulate a clear framework within which the component hierarchy can be
implemented.

2.2.1.2 Models with Multiple Linked Aggregation Hierarchies

The unique characteristics of these models lie in their use of multiple distinct
aggregation hierarchies to support different engineering views about the data and the
unification of these aggregation hierarchies into a single hierarchy. Two prominent data
models in this category are the Data Model for Building Design [Law 86] and Eastman's
1978 model [Eastman 78].

Data Model For Building Design This model [Law 86] is based on the so-called
"abstract" data model [Smith 77], which advocates using “abstract objects” as primitives
in the database design. The model employs the aggregation and generalization abstraction
methods. The relationships used in the model include the part of relationship and the is a
relationship. The model consists of three hierarchies, each of which is constructed using
the aggregation method. First, the topological hierarchy describes the spatial
characteristics of the building in terms of the connectivities among its elements. Second,
the structural hierarchy includes common structural components of a building. Third, the
architectural hierarchy corresponds to the architectural designer's view of the building in
terms of spatial divisions and architectural functions. These three view-related hierarchies
are unified into a single hierarchy with the “Building” entity as the root node. Overall,
this is a general data model used for building design that supports separation between the
spatial, structural engineering, and architectural views.

Eastman's 1978 Model This is the model proposed by Eastman in 1978 [Eastman 78]
for building design. This model contains two abstraction hierarchies. The spatial
hierarchy starts with floor levels that are divided into spaces, interior walls, and exterior
walls. The latter are further decomposed at the lower levels into more detailed
components. An example of a detailed component is a concrete block, metal stud, or even
a construction method. In the functional hierarchy, frames can be aggregated into bays,
aisles, joints, etc. The two hierarchies are unified with the “Building” entity at the root
node. In short, the model is very abstract and biased toward the architectural view of the
building. It does not articulate the structural engineering view.

2.2.1.3 Models for A/E/C Product Data Exchange

In the area of data exchange standards, the STandard for the Exchange of Product
model data (STEP) was the first international standard under the sponsorship of the the
International Standards Organization (ISO). Today, the STEP development involves
organizations, agencies, and companies throughout Europe and in the United States. The

page 20 Phan & Howard

Chanpter 2: Field of Study

Product Data Exchange using STEP (PDES) is the major contributor to STEP from the
United States (see [Warthen 88] and [Warthen 90] for background). Formerly the Product
Data Exchange Specification, PDES was an outgrowth of the Initial Graphics Exchange
Specification (IGES) standard [IGES 90] in the United States. In 1988, the ISO STEP
Committee adopted the first version of the PDES standard as an initial draft of STEP. The
PDES/STEP joint effort for an international standard was then initiated. The work of the
PDES/STEP members has contributed toward the Information Product Integration Model
(IPIM) [Wilson 88]. The current PDES/STEP goal is to develop standards for exchanging
data to support integration of database, CAD, and knowledge base systems. These
evolving standards follow the standard exchange format approach described in Chapter 1
and rely heavily on defining complex product models [Howard 89b].

PDES/STEP is the prime contributor of models for product data exchange in the
Architecture/Engineering/Construction (A/E/C) industry. These models include the
following submodels: building systems, ship structures, ship outfitting, plant design,
distribution systems, and general A/E/C reference. The subsequent subsections review the
A/E/C product data exchange submodels of building systems and ship structures.

General A/E/C Reference Model (GARM) This model [Gielingh 88] provides a
general reference for modeling engineering products to support their design, production,
and life cycle maintenance. The model introduces a number of important concepts for
A/E/C product data modeling. The most fundamental building block of the model is the
entity “Product-Definition-Unit” (PDU). A PDU can represent a design product, a
system, a subsystem, a part, a part feature, etc. It includes properties that describe
different aspects of the product. A PDU has different life cycle stages: as-required, as-
designed, as-planned, as-built, as-used, as-altered, and as-demolished. Second, the
product definition has three levels: generic, specific, and occurrence. Also, the model
identifies three fundamental abstraction methods: generalization, aggregation, and
characterization. Overall, this model establishes an important conceptual framework for
developing more specific A/E/C data exchange models.

NIDDESC Ship Structural Information Model This model [Gerardi 88] is a more
detailed data model used exclusively for ship structures. The Navy/Industry Digital Data
Exchange Standards Committee (NIDDESC) is a cooperative effort between the Navy
Sea Systems Command and the Marine Industry in the National Shipbuilding Research
Program. This model includes many detailed entity definitions for ship structures. Those
definitions include the following: the high-level descriptions of ship structures; the ship’s
construction project and site; the ship’s breakdown into systems, assemblies and
subassemblies; and the detailed description of parts, structural joints, openings, and other
part features. In particular, the model includes entity definitions for ship geometry,
topology, and material. In short, this model contributes detailed entity definitions that
apply to ship structures, but that can also be used for other types of structures.

Others The A/E/C Building System Model [Turner 88] is a high-level model for general
building systems. However, it does not present a coherent conceptual framework and is
predominantly influenced by the architectural view of a building. The Logical Product
Model for Structural Steelwork [LPM 90] is another product data exchange model for
computer-integrated manufacturing applications of construction steel work. The model is
still in an early stage of development. The Shared Object Libraries (SOL) developed by
Froese [92] aims at establishing standard data representations for construction and project
management. The SOL data model includes concepts such as object, attribute,
relationship, attribute set, relationship set, etc. Froese contributed to the area of data
integration by showing the object-oriented paradigm’s usefulness in the development of

Phan & Howard page 21

Chanpter 2: Field of Study

integrated computer-aided project management applications. Indeed, he built a database
system, the SOL OODBMS, and defined a domain-specific schema for project
management and construction. He demonstrated a prototype construction project
planning system, the Object-model-based Project Information System (OPIS), that
consists of applications supporting a variety of planning tasks.

2.2.2 Difficulties in Facility Data Modeling

The previous review of existing data models for facility engineering reveals the

following difficulties of modeling facility engineering data:

Limited Ability to Support Multiple User Views: Existing models tend to predefine a
number of expected descriptions of the facility and do not allow users to customize
their own views. Rigid, pre-defined hierarchical levels of aggregation (as in the first
category of data models presented earlier) further limit that ability.

Lack of Support for Schema Evolution: The majority of existing models are
schemata that, once defined, cannot be extended gracefully to accommodate the
evolving phases of the facility life cycle. By “gracefully,” we mean extension of the
schema without abandonment of previously defined data representations.

Lack of Form, Function, and Behavior Representations: Existing models include
mainly form descriptions and do not distinguish form, function, and behavior. The
inclusion and distinction of form, function, and behavior are essential to describing
the facility design objects and to modeling the way in which facility engineers come
up with their designs [Gruber 90a], [Jain 90], [Kuffner 91], [Luth 91], [Ullman
91a].

Lack of Support for Data Integration: Existing models do not fully respond to the
need of data integration. Only PDES/STEP A/E/C product data exchange models
are currently contributing to the data integration effort; however, they were
developed primarily as standardized schemata for the purpose of exchanging data,
as formal data models. Moreover, the future usefulness of the PDES/STEP data
exchange standard remains to be proven. Reed [88] also raised the following
challenges in the PDES/STEP data exchange standard development: (1) the
accommodation of multiple representations of building product data as well as
canonical transformations among these representations; (2) principles to ensure
minimal redundancy in exchanged data sets; (3) a mechanism to define explicitly
and to exchange data constraints and methods; (4) guidelines to vendors for
implementing translators for these models; and (5) guidelines and time frames for
completing a global building product model.

Lack of Object-Oriented Modeling Methods: The object-oriented paradigm provides
useful concepts and techniques for modeling data in the real world. However, it
leaves up to the modeler the task of deciding how to represent the problem domain
in terms of object classes; how to organize object classes into class hierarchies; how
to determine the attributes, number of attributes, and methods of each class; and so
on. While some rules for making these decisions are imposed by the nature of the
modeling problem at hand, others are dictated by the available constructs in the
programming language or system in use. Unlike the relational data model that
provides normalization techniques, object-oriented data models lack rigorous and
accepted methods to guide the modeler in developing a good database schema
design. Similarly, the existing facility engineering data models that are based on
object-oriented data models do not provide such a method.

page 22 Phan & Howard

Chanpter 2: Field of Study

e Lack of Requirements, Criteria, and Measures to Test and Evaluate Data Models
and Database Schemata: Little work has been done in the area of defining
requirements, criteria, and measures to test and evaluate data models, database
schemata, and data standards. Acceptance of a particular model has been primarily
based on experience in using it. Database schemata and systems have either been
accepted or rejected by users after they were developed. To our knowledge, no
rigorous measures have been defined for testing how effectively a data standard can
be shared within a domain and across domains and thus, for accepting that standard.

. Common Facility Data Representation Traps: A study of existing data models and
application schemata proposed for facility engineering [Phan 91b] revealed a
number of common representation traps. The three most critical traps are: misuse of
aggregation, non-homogeneous class hierarchies, and large object clusters. The
following section explains these representation traps.

Misuse of Aggregation “Aggregation” is a common method for constructing
complex engineering objects from their components. Inversely, “decomposition” breaks
down complex engineering objects into their components. The part of relationship and its
inverse subpart relationship are used for these methods respectively. Aggregation is
commonly used in engineering data modeling since engineering data tends to be
hierarchical in nature [Ketabchi 86]. In fact, the first category of facility engineering data
models discussed earlier advocates the use of clearly defined levels of aggregation. For
instance, Figure 2.2 illustrates the aggregation levels of the Structural Steel Framing Data
Model [Lavakare 89]. Although the importance of aggregation cannot be overlooked, it
can also be easily misused. For example, part of relates two objects "structural-member-
3" and "structural-element-3" whose relationship type is not aggregation. In actuality,
these objects represent different aspects (i.e., functional aspect and structural analysis
aspect) of the same object "beam3." Their relationship should be an association.

Buildings

Structural Systems

Structural
Subsystems

Frames
Members

Elements

Parts subpart
relationship

Connections

FIGURE 2.2: Aggregation Levels in the Structural Steel Framing Data Model
[Lavakare 90]. (Adapted from Howard et al. [92])

Phan & Howard page 23

Chanpter 2: Field of Study

Non-homogeneous Class Hierarchies This phenomenon occurs when many
different criteria are used to define subclasses at different levels of the class hierarchy, as
shown in Figure 2.3. This is an undesirable feature for two reasons. First, since different
views and semantics are mixed in an indiscriminate manner in the construction of the
class hierarchy, this leads to a poor representation with minimal separation between the
different aspects (i.e., form, function, and behavior) of the object class description.
Second, the use of such non-homogeneous hierarchies requires the modeler to anticipate
all possible combinations of subclasses. This can lead to what is called the "cross product
phenomenon": when the number of criteria used in a single hierarchy increases, the
resulting model grows exponentially larger, and the modeler must supply the expertise to
eliminate subclasses that represent invalid combinations (and possibly some valid
combinations as well) [Howard 92].

Components

orientation

Columns

material

Reinforced
Concrete

fabrication

shape method

Rectan- T- I- Built-
{ I gular Il Sectionll Section” up !| Rolled I }
LEGEND
Bolted J{Welded }| Riveted
l subclass

relationship connection
method

............................

FIGURE 2.3: A Sample Non-Homogeneous Class Hierarchy.

page 24 Phan & Howard

Chanpter 2: Field of Study

Large Object Clusters The need to accommodate many users and the convenience of
putting many attributes into one object class presents another common trap. “Large object
clusters” are defined here as highly complex object class definitions that include multiple
aspects of description in order to satisfy all user needs. As an example, consider an object
class "Columns" as shown in Figure 2.4. These large object clusters create a number of
problems:

° First, these object clusters are inefficient from a designer’s point of view. As

Minsky put it:

" .. in such a complex problem, one can never cope with many details at once. At
each moment one must work within a reasonably simple framework... any problem
that a person can solve at all is worked out at each moment in a small context and
that the key operations in problem-solving are concerned with finding or
constructing these working environments." [Minsky 75]

° Second, it is difficult to create or modify instances of these large object classes, and
to manage their versions. Instantiating such an object class demands attribute values
that are not all defined at the same time. Update and version management of such
instantiated objects are difficult since each instance involves a large cluster of
attributes that are not all modified.

° Third, a schema with only a few large objects is too rigid and cannot accommodate
future evolution of the schema as the design progresses. In addition, such a schema
is difficult to reuse such a schema in other applications.

Class "Columns”

Attributes:
topology
spatial
orientation: connected_members:
center_line:
y_gridline_number: material
material_designation:
geometry yield_strength:
height:
width: structural
gross_area: x_unbraced_length: analysis
axial_stress:
cross-section
moment_inertia_Ix: .
torsional_rigidity: cutout_hole: fabrication
NC_mark:

FIGURE 2.4: A Sample Large Object Cluster.

Phan & Howard page 25

Chanpter 2: Field of Study

. Fourth, exchanging large objects among applications requires parsing out the
needed data, which can be highly inefficient and computationally costly.

° Finally, the semantic composition of such large objects becomes incoherent and,
thus, poorly defined. In some cases, it remains unclear whether certain attributes
truly belong to the object, or merely describe some properties that should belong to
other object definitions.

2.3 Background on Data Integration

In recent years, integration has received much attention in manufacturing and
engineering domains and has attracted research and development from many areas.
Integration refers to the coordination of all phases and aspects of a given process through
the cooperative use of information from computer-based systems. More recently, research
and development on “Enterprise Integration” in the field of Artificial Intelligence (AI)
has focused on acquiring an understanding of how an enterprise operates and how
information plays a role in supporting the enterprise’s operation. Work in this area is
under way at several universities [Fox 92], [Jagannathan 92], [Srinivasan 92] and
industry-funded research centers [Billmers 92], [Bradshaw 92], [Grosof 92], [Gruber 92]
across the country. The general direction here is to explore advanced Al techniques to
support enterprise modeling, automation and integration.

In particular, data integration focuses on improving the compatibility and
reusability of data and data representations used in computer-based systems. Among
different data integration approaches that have been suggested [Abdalla 89], the
following has been pursued:

° Direct Translator: In this approach, a translator is written to directly translate the
output of an application A to the input format required by another application B.
The translation requires multiple output files from different modules within
application A to generate a single input file to application B. The main disadvantage
of this approach is the large number of translators (i.e., N * (N -1) translators for N
applications) required to support data exchange among various applications.

° Standard Exchange Format: This approach uses neutral files specified according to
a common standard for data exchange among all applications in the environment.
These applications read input from and write output to files in the same standard
format. Examples of these standards include the Initial Graphics Exchange
Specification (IGES) [IGES 90], the STandard for the Exchange of Product model
data (STEP) [Wilson 88], and the Electronic Data Interchange File (EDIF)
[Andrews 88]. This approach has two major advantages over the first one. First, it
eliminates the need to write a separate translator for each pair of distinct
applications. Second, addition or removal of an application program has minimal
effect on other programs in the environment. However, this approach also has some
disadvantages. The major disadvantage is both the time and effort required to
develop the standard for a given discipline as well as the communal agreement and
commitment to such a standard. In addition, criteria for testing and accepting a new
standard are hard to define and measure. Finally, in the case of STEP, the data
exchange standard is defined in terms of a comprehensive “product data model.” All
applications in the environment must understand the product data model in order to
generate their own views. To exchange data among applications, the entire product
data model must be transferred through a neutral file format. Each application then
holds a copy of the same neutral file regardless of whether some or all of its data are
appropriate to the application.

page 26 Phan & Howard

Chanpter 2: Field of Study

° Central database: In this approach, a central database serves as the data repository
for all applications in the environment. A database management systcim manages
data access to the central database. A strong advantage of this approach is that all
applications in the environment share the same data access utility from the central
database. In addition, the data base design can be administered in order to provide
data views that closely match the application need. The difficulty in this approach
lies in the design and implementation of such a central database that requires
integrating all user views from different organizations, disciplines, and tasks. This
approach also requires the applications to work with the central database. In this
case, performance issues in data retrieval among several client applications and a
central data server can be critical.

° Multiple databases: Different approaches have been proposed to manage multiple
autonomous and possibly heterogeneous databases in distributed computing
environments. The more notable approaches are Knowledge Aided Database
Management (KADBASE) [Howard 86], [Howard 89c], database systems with
mediators [Wiederhold 89], [Wiederhold 91], federated database systems [Sheth
90], distributed database systems [Thomas 90], and interoperable autonomous
database systems [Litwin 90].

2.4 Chapter Summary

This chapter described the two subjects studied in this research: data modeling and
data integration. The aim of this chapter was to explain this research’s point of departure.
First, different approaches to data integration have been proposed. In particular, the
“standard exchange format approach” aims at providing an economical solution to this
problem. This approach involves the development of standards for data exchange among
computer applications. The advantage here is that experts and modelers need only
collaborate once in defining these standards, but users can use them many times and in
many domains. However, a number of issues face this approach. Among them is the need
for suitable methods for the development of the standard for a given discipline. The first
point of departure is that this research has a similar motivation for sharing data
representations, but concentrates on how to model facility data and particularly on how to
develop sharable data representations.

On the subject of data modeling, the relational model, which was introduced in
1970, became the data model of choice for business applications in the eighties.
However, literature pointed out that this model has yet proven its effectiveness in
supporting other types of applications such as those in engineering [Kersten 86].
Meanwhile, the development of semantic data models aimed at overcoming the
limitations of the relational data model. An outgrowth of this development was object-
oriented data models, which provide more powerful concepts to represent complex
engineering data. The second point of departure is that this research uses object-oriented
concepts to model facility data.

Finally, this research’s third point of departure comes the work done in facility data
modeling, mainly: the Structural Steel Framing Data Model [Lavakare 90], the General
A/E/C Reference Model [Gielingh 88], the Data Model for Building Design [Law 86],
and the SOL Data Model [Froese 92]. The review and evaluation of this work helped
identify issues facing facility data modeling. The P-C Approach’s development has been
an attempt to address these issues. The second part of this dissertation presents this
approach and its components. In particular, Chapter 3 provides an insight into the
development of the approach. It also explains how the approach can be applied to a
facility engineering domain to model data in support of data integration.

Phan & Howard page 27

Chanpter 2: Field of Study

page 28 Phan & Howard

Chapter 3: The Primitive-Composite Approach

PART Ii:
THE PROPOSED SOLUTION

__ Chapter 3

The Primitive-Composite Approach

Chapter Abstract:

The Primitive-Composite (P-C) Approach is a structured and coherent methodology
for analyzing a given facility engineering domain and for designing an object-oriented

database schema of that domain to support data integration. This chapter provides a
development perspective on the research project and an overview of this approach,
and thereby sets the stage for the subsequent chapters. It begins by describing the
research project that resutted in the development of the approach. At the same time,
it describes the research methodology used in the project. Next, the chapter presents
the approach. Finally, it explains the requirements, criteria, phases, and modeling

tools included in the approach.

Organization:

3.1 A Perspective on the Development of the P-C Approach
3.2 Overview of the P-C Approach
3.2.1 Requirements and Criteria
3.2.2 Phases and Modeling Tools
3.3 Evaluation of the P-C Approach
3.3.1 Scope of Applicability of the Approach
3.3.2 Strengths of the Approach
3.3.3 Limitations of the Approach
3.4 Chapter Summary

Phan & Howard page 29

Chapter 3: The Primitive-Composite Approach

3.1 A Perspective on the Development of the P-C Approach

The following paragraphs describe the chronological progression of the research
project that resulted in the development of the P-C Approach. At the same time, they
describe the research methodology used in this project. These descriptions help the reader
understand the factors leading to the approach’s development and provide useful
information to those who are pursuing similar goals. The titles given to the paragraphs
reflect our own recollections of the drawn-out, but eye-opening research journey.

“Getting Drafted: The Early Experimental Years” The original motivation
behind the research project was to develop facility database schemata that could be used
in a related project on facility data exchange (i.e., KADBASE [Howard 89c]). The
earliest attempt in this project was Lavakare and Howard’s development of an object-
oriented data model for steel framed structures, the Structural Steel Framing Data Model
(SSFDM) [Lavakare 89]. We then applied the model to electrical utility transmission
poles and wrote a detailed evaluation of the model [Phan 90]. Moreover, Jamal Abdalla,
Jared Nedzel and we experimented with the modeling of facility data. In many brain-
storming sessions, we discussed the issues involved in modeling facility data and
exchanged ideas for potential solutions to these issues. Meanwhile, we reviewed
extensively existing work in this research area. Later, we made an inventory of data
representations used in eight different research projects at the Center For Integrated
Facility Engineering (CIFE) at Stanford University. Using this inventory, we reported our
findings concerning the problems of facility data modeling and integration in [Phan 91b].
All this experience provided the basis for defining the research problem presented in
Chapter 1.

“Understanding The Mission: The Research Problem” One important idea that
evolved from the early brain-storming sessions was the use of primitives and composites
to model facility data. The objective was to support data integration. This idea provided
the basis for the early definition of the P-C Approach described in our first publication
[Howard 92]. This idea was also presented in Chapter 1. However, in developing this
approach, we faced three fundamental questions: “How is data actually used in a real-life
facility engineering domain?,” “How can primitive entities be identified in a given
domain?,” and then “How can these primitive entities be designed as object classes, from
which composite classes can be defined?” The remainder of the research project
comprised a tenacious attempt to provide answers to these questions.

“Aiming High: The Research Methodology” With clear objectives in mind (see
Chapter 1), we pursued three areas of development: (1) the development of the P-C
Approach, (2) the application of the approach to a real-life tower engineering domain,
and (3) the testing of the P-C Approach in the tower domain. In fact, these three areas
constituted the research methodology used in this project. Figure 3.1 summarizes these
areas and their interaction and results. We pursued the first two areas concurrently and
worked on the third area when results from the first two became available. The next
paragraph explains in more detail what has been done in each of these areas.

“Down in the Trenches: The Making of the P-C Approach” To understand data
use in facility engineering (i.e., the first question), we studied the domain of electrical
utility transmission towers. we selected this domain for a number of reasons. First, the
domain has all the characteristics of an engineering process described in Chapter 1:

page 30 Phan & Howard

Chapter 3: The Primitive-Composite Approach

multiple participants, a long facility life cycle, use of computer applications, complicated
engineering processes, complex data, and above all, a critical need for data
communication. In addition, transmission towers come in a wide range of sizes and levels
of physical and engineering complexities. The large range of towers allowed us to choose
a prototype structure that has the appropriate level of complexity for this research. My
previous work experience in the field of utility structures design was another motivation.
We interviewed engineers at a utility company who served as our domain experts. We
collected and studied a large amount of documentation on transmission tower engineering
processes.

From this study, we recognized the need for understanding complex engineering
processes before modeling the data. We reviewed existing tools for functional analysis of
processes that would give us that understanding. As a result, we selected the Data Flow
model [Gane 79], [Yourdon 79], [De Marco 82], [Batini 92], which was simple and easy
to use. Using this model, we began to model the tower engineering process. However, the
sheer complexity of engineering processes put additional requirements on the model.
Consequently, we developed an extension of the model for facility engineering, named
the PArtitioned eNgineering DAta flow model (or PANDA). we applied PANDA to the
tower domain and created a detailed set of functional schemata describing the tower
engineering process.

Research
Methodology

Development ' Testing of

of the P-C
Approach he Approach

Application
of the
Approach

 The P-C Approach (methodology): A DD A

— Four Phases (three analysisandonedesign) | |- - >~~~ """

— Modeling tools: ﬁa; PANDA, (b) DEAL, A R A A,
¢) P-C Data Model & Method). '

...

» Graphical functional schemata of the tower engineering process| [© = . . .~

» A domain primitive schema of transmission towers I S
» A databasae for a selected tower (implemented using ONTOS) |-}t - - - . . -

. -+ | * A method for testing the P-C Approach
: ResearCh © ° | # Test results on the tower domain primitive schema's sharability

. ReSUItS . . | * Evaluated scope of applicability, strengths, limitations of the approach

FIGURE 3.1: Research Methodology and Results.

Phan & Howard page 31

Chapter 3: The Primitive-Composite Approach

Using the information in these schemata, we analyzed data-intensive design objects
such as tower leg members in the domain. We called the entities representing these
design objects “domain entities.” Through studying data of these domain entities, we
recognized the criteria of cohesion and reusability, with which we decomposed the
domain entities into primitive entities. We then developed a method called DEAL to
carry out the decomposition in a systematic manner. Finally, we developed the P-C Data
Model and Method for refining and transforming those primitive entities into logical
object classes. Using this model and method, we developed a primitive schema of the
tower domain. Moreover, we reviewed literature on engineering form, function, and
behavior representation, and identified the issues involved in this task. We then defined
the positions taken and solutions used in the P-C Approach regarding these issues.
Finally, we implemented a database of a selected tower using a commercial object-
oriented database management system (ONTOS).

Moving to the third area of development, we defined a method for testing the P-C
Approach in the tower domain and tested the approach. In the course of testing it, we
recognized the scope of applicability, strengths, and limitations of the approach. We also
identified future extensions of this research, including improvements of the approach.

“Homecoming: The Final Package” The final “package,” the P-C Approach, is
more than just an object-oriented data model. This approach is a structured methodology
for analyzing a given domain (i.e., both the engineering process and data used by domain
experts) and for designing a primitive schema representing the domain. The next section
describes the approach.

3.2 Overview of the P-C Approach

As a methodology, the P-C Approach includes the following:

. Four phases for analyzing the given domain and designing a schema, namely (1)
Preliminary Domain Study, (2) Functional Analysis, (3) Domain Entities Analysis
and (4) Domain Schema Design. The first three analysis phases lead to the schema
design phase. The resulting schema must enable multiple users to share data
representations across life-cycle phases in the domain. Specifically, it must support
multiple user views and must be extensible.

. The modeling tools used in these phases, which lead to the development of a
schema meeting the requirements mentioned above. Specifically, these modeling
tools directly incorporate the criteria of cohesion and reusability to design primitive
classes of the schema. These modeling tools also provide the elements (i.e.,
concepts, graphical representations, operations, rules, etc.) necessary for building
Computer-Aided Sofware Engineering (CASE) tools with which a modeler can
represent facility data using the P-C Approach.

Figure 3.2 illustrates the overall approach. The following sections explain the
requirement and criteria for designing a domain primitive schema and describe the phases
and modeling tools of the P-C Approach.

page 32 Phan & Howard

Chapter 3: The Primitive-Composite Approach

W\W&W@W\Wms
N Phase 1 Phase 2 Phase 3 Phase 4

. Functional.
Analysis

Domain

Domain - -
Schema

Entities - -

Preliminary-
Domain

. Analysis - Design

A A A A

%

A R A Yy

Modeling PArtitioned Domain Primitive-
Tools: eNgineering Entities Composite
DAta flow Analysis (P-C)
model method Data
(PANDA) (DEAL) Model &
Method

Analysis phases

‘ T is used in
Design phases

FIGURE 3.2: Overview of the Primitive-Composite Approach.

3.2.1 Requirements and Criteria

Sharability as Schema-Level Requirement In the P-C Approach, sharability is
the essential requirement for the development of a domain primitive schema to support
data integration. Sharability can be separated into two other component requirements:
(sharability) among multiple users and across life-cycle phases. First, the primitive
schema must support multiple user views. Using this schema, different users must be able
to customize composite classes to represent their own views of complex design objects.
Second, the primitive schema must be extensible throughout evolving life-cycle phases.
In this case, a modeler must be able to add new primitive classes incrementally to the
primitive schema as these phases unfold, without discarding previously defined primitive
classes. Moreover, operational measures are defined to test the resulting primitive schema
against the sharability requirements. These measures include test variables,
measurements, cases and a test procedure and are described in Chapter 8. In short, a
domain primitive schema that is designed and tested for this requirement will provide the
basis for sharing data representations among multiple users during the various life-cycle
phases.

Cohesion and Reusability as Design Criteria for Primitive Classes Ina
facility engineering domain, experts typically design data-intensive objects such as
beams, columns, floors, tower panels, etc. A beam, for instance, can be described by its
geometry, material, fabrication features, load-resisting functions, bending stresses, etc.
Entities representing these design objects are here called “domain entities.” (A domain

Phan & Howard page 33

Chapter 3: The Primitive-Composite Approach

entity is a conceptual-level representation of all the data describing a design object. At the
next logical level, a composite class represents a view of a design object, which includes
only a subset of that data.) The P-C Approach uses cohesion and reusability as the two
direct criteria for analyzing those domain entities. The domain entities’ analysis leads to
the design of a domain primitive schema. In fact, it involves top-down decomposition of
the domain entities into basic building blocks called the “primitive entities.” The concepts
of cohesion and reusability were first introduced in software engineering [Yourdon 79].
Cohesion is defined here as a measurement that indicates how closely the data items of an
entity relate to one another. In particular, the P-C Approach identifies five principal
dimensions of cohesion: (1) organization/access (how the data is organized and thus how
it can be accessed by humans in the work environment), (2) concept (to which concepts
the data relates), (3) time (at what time the data is created), (4) source (from which
computational sources the data is derived), and (5) use (how the data is used in activities
of the engineering process). These dimensions are called “access-cohesion,” “concept-
cohesion,” “time-cohesion,” ‘“source-cohesion,” and “use-cohesion” respectively.
Reusability is another measurement that indicates the extent to which an entity can be
reused (i.e., used without modifications) in describing other domain entities. The P-C
Approach defines five levels of reusability: reusable (1) for more than one domain entity
of a common type, (2) for a single domain, (3) for a single industry, which includes more
than one domain, (4) for more than one industry of a common type, and (5) for more than
one industry type. These levels are called “domain-entity-type reusability,” “domain
reusability,” “industry (or domain-type) reusability,” “industry-type reusability,” and
“universal reusability” respectively.

The primitive entities identified from the domain entities are conceptual
representations that can be implemented at the next logical level using relational tables or
object classes. In this approach, these primitive entities are refined and transformed into
primitive object classes that constitute the domain primitive schema. Primitive classes are
also organized into class hierarchies called “primitive characterization hierarchies.”
Therefore, each primitive class is a module of attributes that is “designed” (i.e., first
identified, and then refined and transformed) to have maximum cohesion and reusability.

In short, while sharability is the requirement of the domain primitive schema,
cohesion and reusability are criteria used directly in the design of primitive classes of the
schema. These criteria are directly incorporated into DEAL, a modeling tool provided by
the approach. Cohesion and reusability measure the qualities of the resulting primitive
classes that ensure sharability of the overall domain primitive schema.

3.2.2 Phases and Modeling Tools

Figure 3.3 summarizes the phases of the P-C Approach, the modeling tools used in
these phases, the output of each phase, and the interactions between the phases.

Phase 1—Preliminary Domain Study In this phase, a modeler interviews domain
experts and collects and organizes relevant information about the domain. Batini et al.
[92] discusses this topic in detail and also provides references to background reading
material. The P-C Approach assumes that the modeler will consult this wealth of existing
work on field study techniques in carrying out Phase 1. By the end of this phase, the
modeler must provide the following: general description of the key participants, phases,
and computer applications involved in the domain; definition of the terms used in the
domain; identification of the objects designed by experts in the domain and the
conceptual categories such as geometry, topology, material, fabrication, behavior, etc. of
data describing these objects.

page 34 Phan & Howard

Chapter 3: The Primitive-Composite Approach

POYIB N 8 [9PON Bleq dusodwiog-aanuild (“"eqQ O-d)
| v3Q 10 UoisIaA (8Aleu-iwas Jo) panosdwl| (g-1v3Q)
01 Joeq sdooj M ____E_.. ubiseq v3Q Jo uoisiaA (aAleu 1o) diseqg (L-1v3QA)
...... poylew sisAeuy senpu3z urewoq (1v3Q)
0} spes9| Io @ SISABUY _ [epolN moy) ey BuuesuibNe pauoniiyd (VANVd)
sepadald :seseyd :s100] Buljspo
Areuonoiq ereq qe ejep Jo
smoj) [eaisAyd B ‘sjonpoid ‘jeusieiy — sslobayen
suonelado uonesoush jemdasuod
Q ‘SIUIS ‘S82IN0S pue sjoslqo ubisep
eWayos sAnwd ‘smoj) ‘swa)l ‘saloysodal eleq — JO uonesunuap| "o}
UIBWIOP BY} JO sdiysuoneol aouspadeld — swiia) Jo uoniuye(‘qi
" selyoresaly (seal) sishleue SSOUBIBUSIUI B ‘SUOISIOBP ‘SOIMANOY — suofjeoljdde
uoRBZIBIORIBYD Anus urewop suopounj @ seseyd — Jeyndwod B ‘seseyd
" aanwud ug 10 SOAES)| SB) uonedionued @ sjuedoiyed — ‘sjuediofued
sosselo oAUl ‘¥ Solus aAmwld e -MOUsIeul m_mmwwn_v“%cw_ﬂ MM_ mmmsmcom fa jo uonduoseq e
I iydels) 'eg
:ubiseq :sishjeuy :Apnis
ewsyos uiewoq ¥ ssiu3 urewoq ‘g :sisAjeuy feuonoung g ulrewoq Aeuiwipid “|
ndino

asnal (z-1vaa)
oly

Y
. s1sfjeuy. -

oL 0 gk

(poyropw
» [opoyy ejeq
J-d)

(1-1vaa) (vanvd)

isennua- -l 0 E SRR o} auljal
.u.u g1 . B 0l qe

Tools, and Outputs of the P-C Approach.

ing

4

: Phases, Model

FIGURE 3.3

page 35

Phan & Howard

Chapter 3: The Primitive-Composite Approach

Phase 2—Functional Analysis Having an initial understanding of the domain, the
modeler further studies the facility engineering process in the domain and the data used in
that process. This is commonly known as “functional analysis.” First, she defines the
scope of the functional analysis. The modeler then uses the PArtitioned eNgineering
DAta flow model (or PANDA) to analyze that process. PANDA is an extension of the
Data Flow model [Gane 79], [Yourdon 79], [De Marco 82], [Batini 92]. PANDA
provides the concepts needed to represent complicated facility engineering processes. In
addition, PANDA offers graphical representations, syntactic and semantic rules, schema
transformation operations, and a customized method and guidelines for using the model.
Moreover, PANDA has a partitioned architecture that helps the modeler organize
thoughts about complicated engineering processes. At this point, the modeler can refine
the conceptual categories of data identified in Phase 1 or continue with Phase 3.

The functional analysis using PANDA results in graphical functional schemata of
the process that shows the following: the participants and their roles in activities of the
process; the decomposition of the process into subprocesses and activities, including the
precedence relationships among activities, the design synthesis loops, the decisions and
alternatives, and the process interferences; and the data, material and product flow
networks. In addition, the modeler builds a data dictionary that includes the definitions of
all data items used in the domain. This dictionary must document all existing variations in
the naming and representation of data items in the environment. More importantly, this
dictionary must also document agreements between the modeler and the domain experts
about how those data items will be named and represented in the domain primitive
schema. Gane, Sarson [79] and De Marco [79] show how to build a data dictionary based
on the Data Flow model.

Phase 3—Domain Entities Analysis Once she has acquired a better understanding
of the facility engineering process, the modeler can either refine the conceptual categories
identified in Phase 1 or proceed to Phase 3. In Phase 3, the modeler uses the Domain
Entities AnaLysis method (or DEAL) to analyze the domain entities, which represent the
design objects identified in Phase 1. DEAL provides the concepts and terms, graphical
representations, rules, procedures, and operations needed for decomposing domain
entities into primitive entities using the criteria of cohesion and reusability. The modeler
also makes use of the information available from Phase 1 and the output of Phase 2. This
analysis using DEAL results in the primitive entities that are building blocks of the
domain entities.

Phase 4—Domain Schema Design In this phase, the modeler designs the domain
primitive schema using the Primitive-Composite (or P-C) Data Model and Method. This
model provides the concepts of primitive and composite classes and instances, and
several relationship types such as generalization, aggregation, and association. The
accompanying method includes the steps, rules, and guidelines necessary to design the
primitive classes of the primitive schema with the primitive entities from Phase 3 based
on the concepts of the model. Chapter 6 explains these steps, rules, and guidelines in
detail.

The modeler can iterate between Phases 3 and 4. When analyzing the domain
entities for the first time, the modeler must use DEAL-1, a basic version of DEAL, that
uses only cohesion to decompose domain entities. After analyzing one or a few domain
entities, the modeler can go to Phase 4 (Domain Schema Design) and design some
primitive classes. With those primitive classes in hand, the modeler can go back to Phase
3 to analyze other domain entities. The modeler can now use DEAL-2, an improved

page 36 Phan & Howard

Chapter 3: The Primitive-Composite Approach

version of DEAL that considers both cohesion and reusability. This version recalls and
reuses when applicable, the primitive classes available from Phase 4. This modeling
option is highly recommended.

As Figure 3.3 shows, feedback loops exist between Phase 1 and Phase 2, and
between Phase 3 and Phase 4. However, there are no feedback loops between the tasks of
functional analysis and schema design in the P-C Approach since these two tasks are
quite involved and need to be handled separately. Future CASE tools automating the
approach may enable the modeler to carry out these tasks jointly.

3.3 Evaluation of the P-C Approach

3.3.1 Scope of Applicability of the Approach

Summary of the Characteristics of Applicable Domains The P-C Approach is
a structured methodology that tightly integrates the requirements for sharing a schema
within a given domain with the phases and modeling tools that lead to the development of
a sharable schema. Because of the number of phases involved and the extent of the work
required, this approach should be used mainly for engineering domains that exhibit the
following characteristics:

. The engineering process requires collaboration of multiple participants from
different disciplines. These participants play different roles in the project and,
therefore, have different needs and views of the underlying product data.

. The product life cycle is long, spanning several major phases of development. Each
phase includes a number of functions that, in turn, are divided into several activities.

. Large amounts of data are generated in an incremental fashion during the life-cycle
phases, and this data needs to be communicated among the different participants in
all phases. Moreover, the cooperative use and effective communication of this data
among members of the project team is critical to the successful completion of the
project.

. The engineering process involves some level of computer automation. Computer
applications have been used to assist various participants with routine or
computation-intensive tasks. These applications need to exchange data.

. The overall product itself is complicated and consists of several data-intensive
design objects. The data involved delineate various aspects of the design objects,
including their physical properties, engineering functions and behavior.

Further Conditions In the domains described above, the following conditions must
also hold true for the P-C Approach to work properly:

. The P-C Approach is applied in its entirety (i.e. all four phases are required and all
modeling tools are used) to the domain of interest. This assumption insures that the
resulting domain primitive schema can be shared within the domain.

. In applying this approach, the modeler provides the knowledge about the domain
necessary to develop the domain primitive schema. The P-C Approach provides
steps and modeling tools for analyzing the domain and for developing a primitive
schema of that domain. However, it lacks the domain knowledge necessary to

Phan & Howard page 37

Chapter 3: The Primitive-Composite Approach

generate that schema automatically. In applying this approach, the modeler needs to
provide that knowledge. For example, under the successive cohesion criteria
considered in the DEAL procedures in Phase 3, the modeler must interactively
provide knowledge about the logical access paths, conceptual categories, logical
times, computational sources, and primary data uses to which the individual data
items relate. The procedures provide the steps, operations and rules that guide the
decomposition of entities. In most cases, the modeler has to acquire this knowledge
from experts in the domain. The next condition elaborates on this point.

° Knowledge about the domain can be acquired from the domain experts and can be
verified for correcmess. This assumption insures that the modeler can successfully
carry out the preliminary domain study (Phase 1) in the P-C Approach. It implies
that domain experts must be available for interview during this study and for
follow-up consultation in the later phases. It also implies that relevant project
documentation (including project design folders, design manuals, engineering
drawings, samples of computer applications’ input and output files, etc.) must be
collected for the purpose of analysis. Specifically, by working with the experts and
studying the information collected, the modeler is able to identify the participants,
phases, and applications involved in the engineering process in the domain. The
modeler is also able to define the terms and domain entities used by the experts and
to identify the different categories of data describing the design objects.

° The engineering process in the domain is correctly modeled in terms of a finite
number of related functional units. These units represent functional areas and
activities into which the process is decomposed. In addition, the participants
involved and data used in each activity can be modeled. This assumption insures
that the modeler can successfully carry out the functional analysis phase in the P-C
Approach. This assumption also insures that the resulting schema can represent
information used in the engineering process and therefore, can be accepted and used
by the domain experts. The resulting model of the process represents the way in
which the product is typically planned, designed, and built in the domain. The
domain experts can agree upon this model and can verify it. If a single model is not
feasible, a fixed number of models representing various scenarios in which the
process could occur can be constructed. For example, the tower engineering process
can have a scenario in which prototype towers are built and tested before the actual
towers are constructed in the field.

o In the given domain, there exists a fixed number of domain entities. Each domain
entity represents a unified view of a design object created by the domain experts
and is described by a finite set of unique data items. This assumption insures that
the modeler can complete the domain entities analysis using the P-C Approach. It
means that a fixed number of domain entities are analyzed for a given domain. Each
entity represents a design object created by experts in the domain. Further, this
assumption implies a form of view integration. If two or more domain entities have
the same name (e.g., “Transmission Tower Members”) but represent different
experts’ views of the same design object (e.g., “Transmission Tower Members as
Designed” and “Transmission Tower Members as Fabricated”), then all the
descriptions of those domain entities are integrated into one domain entity
description in the analysis. If those entities also have different names (e.g., “Tower
Members” and “Transmission Tower Members”), then only one entity name is
selected for use (e.g., “Transmission Tower Members”). By the same token, if two
or more data items have different names (e.g., “shape size designation” and “shape
size identifier”) but represent the same property, only one data item is selected for
use in the analysis (e.g., “shape size designation”). If two or more data items have

page 38 Phan & Howard

Chapter 3: The Primitive-Composite Approach

the same name (e.g., “tower member length”) but represent different properties
(e.g., “tower member schematic length” and “tower member fabrication length™),
they are included in the analysis under distinct names. In fact, the modeler must be
able to clearly define the domain entities in Phase 1 of the P-C Approach and to
build a data dictionary containing the data items’ definitions in Phase 2.

3.3.2 Strengths of the Approach

The P-C Approach has the following strengths:

. This approach combines the advantages of object-oriented data modeling with the
functionality of primitives and composites in modeling facility data to support data
integration. The object-oriented paradigm offers useful concepts such as classes,
attributes, methods, instances, and relationships, as well as powerful abstraction
methods such as inheritance, generalization, encapsulation, classification,
aggregation, association, etc. These concepts and abstraction methods provide the
modeler with convenient tools to represent complex facility data. The notions of
primitives and composites enhance this paradigm in the following way: The
modeler can define primitive classes to represent the data shared within the domain.
Different users can customize composite classes from those primitive classes to
define their own views of the shared data.

o Users sharing a domain primitive schema have the flexibility of defining many
complex views of the facility design objects. Primitive classes defined for a given
domain constitute a domain primitive schema. Users sharing this schema are not
limited to a fixed number of predefined views of the design objects in the domain.
On the other hand, they have the flexibility to define a wide array of complex views
of the design objects. Indeed, they can customize a large number of composite
classes as combinations of the primitive classes available in the schema. Further,
these composite classes need not be defined a priori. Similarly, an application
developer can produce highly customized applications from those primitive classes.

. The modeler can extend a domain primitive schema to accommodate evolving life-
cycle phases. The modeler can do this by adding new primitive classes, from which
new composite classes can be defined. As a result, users can define new composite
classes as combinations of the primitive classes, both new and old. This
extensibility is a strong advantage in supporting design schema evolution and in
building large engineering databases.

. Clean and modular data representations about form, function, and behavior are
maintained. In the P-C Approach, form, function, and behavior are separated into
primitive characterization hierarchies. Each hierarchy uses only a single criterion to
define the primitive classes and thus provides a clean, homogeneous description of
one specific aspect of complex design objects. This enables a modeler to
concentrate on representing one aspect of the object at a time and also allows
different modelers to work on different aspects simultaneously. This also eliminates
the problem of non-homogeneous class hierarchies explained in Chapter 2.

. Users of a domain primitive schema have complete control over the hierarchical
decomposition of a given facility. The P-C Approach argues that this decomposition
should closely reflect the opportunistic way in which facility engineers come up
with their designs. In fact, this approach does not impose predefined hierarchical
levels (e.g. building, systems, members, and components) by which the user must
abide. The user can decompose a facility in two ways: by the functions that it

Phan & Howard page 39

Chapter 3: The Primitive-Composite Approach

performs, or by the design artifacts created by the designers. The domain primitive
schema provides primitive classes needed to support both types of decomposition.

e Data modeled following the P-C Approach can be readily exchanged. First,
application developers will no longer have to build special purpose translators. Each
application essentially carries the descriptive knowledge needed to support the
exchange of common data with other applications. To exchange data between two
applications, the data from the first application is transferred into a primitive
database that contains only instances of primitive classes, and is then composed into
the composite database of the second application. Applications share only the
common primitive classes from which their composite classes are assembled.
Therefore, in any given domain, a model for data exchange will be the set of
primitive classes of that domain, rather than a complex product model that
anticipates every possible combination of data in use. Finally, only the data necded
by the application is exchanged.

3.3.3 Limitations of the Approach

The P-C Approach has the following limitations:

. This approach requires that all four phases involved (including three analysis
phases and a design phase) are applied to the given domain and that the P-C
modeling tools are used in those phases. Applying all four phases may involve a
significant amount of work. However, all these phases are necessary to develop a
schema that can be shared by different users throughout the facility life cycle. Each
phase needs the results from the previous phases and thus, depends on those phases.
In addition, the modeling tools provided by the approach are intended to work
together as a set. Although a modeler may use each tool separately, its concepts
build on those underlying the tools that were used in the preceding phases. For
example, the concept of primitive classes in the P-C Data Model draws heavily
upon the concept of primitive entities in DEAL.

° This approach is currently a manual methodology. Due to the number of phases
involved and the extent of work required, CASE tools are definitely needed to
automate the approach and expedite the modeling effort.

. This approach does not provide yet tools that directly translate data representations
between heterogeneous databases and computer applications that already existed in
the computing environment. Unlike the direct data translator approach (explained in
Chapter 1 and Chapter 2), this approach is essentially a methodology that can be
used to analyze a given domain and to design a common object-oriented schema of
that domain. The resulting schema can be used to build new databases and computer
applications sharing the same schema.

° This approach does not offer specific mechanisms for exchanging data between
applications. Like the standard exchange format approach (explained in Chapter 1
and Chapter 2), this approach leads to the development of a domain schema that can
also be used as a medium for exchanging data among computer applications.
However, specific mechanisms for data exchange between applications using this
approach need to be developed. This is recognized to be outside of the scope of the
research project but among the future extensions of the project.

page 40 Phan & Howard

Chapter 3: The Primitive-Composite Approach

° This approach lacks solutions for the management of data in distributed
environments of collaborative facility engineering work. While research projects
such as DICE [Sriram 89] and CEDB [Ullman 91b], [Tiwari 93] are actively
seeking new solutions to the facility data management problem, this research
project has chosen to focus on the data modeling issues. Without a solution to the
modeling of facility data, managing this data is an abstract question. Nevertheless, a
logical extension of this research in the future would involve examining issues such
as data ownership, integrity, consistency, and concurrency, leading to
recommendations of solutions for managing data using this approach in distributed
facility engineering work environments.

3.4 Chapter Summary

The Primitive-Composite (P-C) Approach is a structured and coherent methodology
that can be used to analyze a given facility engineering domain and to design an
object-oriented schema of that domain to support data integration. This approach includes
the steps, requirements, and criteria that are necessary to design the schema. It also
provides the modeling tools used in those steps that lead to the development of the
schema meeting the requirements. The following chapters present these modeling tools.
Chapter 4 describes the PArtitioned eNgineering DAta flow model (PANDA), Chapter 5
discusses the Domain Entities AnaLysis method (DEAL), and Chapter 6 presents the
Primitive-Composite (P-C) Data Model and Method.

The P-C Approach should be used mainly for engineering domains that involve
multiple participants, a long product life cycle, computer applications, complicated
engineering processes, complex data describing engineering design objects, and a critical
need for data communication. This approach offers advantages in modeling complex
facility data. The modeler can build a domain primitive schema that includes primitive
classes representing the data shared within the domain. Different users have the flexibility
to represent their own complex views of the facility design objects. To accommodate
evolving life-cycle phases, the modeler can extend the schema by adding new primitive
classes, from which new composite classes can be defined. Therefore, the schema
flexibility and extensibility help the modeler overcome the deficiencies of existing
facility engineering data models that were pointed out in Chapters 1 and 2. Clean and
modular data representations about form, function, and behavior are maintained.
Moreover, users of the schema have complete control over the hierarchical decomposition
of a facility. Data modeled following this approach can be readily exchanged between
applications. The P-C Approach also has limitations. Applying all of its four phases may
involve a significant amount of work. However, these phases are necessary to develop a
schema that can be shared within the domain. CASE tools automating this approach do
not exist at the present time. Further, this approach does not provide yet tools that directly
translate data representations between heterogeneous databases and computer
applications. Currently, it does not include specific mechanisms for data exchange
between applications. Finally, it needs solutions for the management of data in distributed
environments of collaborative facility engineering work.

Phan & Howard page 41

Chapter 3: The Primitive-Composite Approach

page 42 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

Chapter 4

Functional Analysis Using PANDA

Chapter Abstract:

The PArtitioned eNgineering DAta flow model (or PANDA) is an extension of the Data
Flow model. It is used for functional analysis of facility engineering processes in the
P-C Approach. This chapter first describes the development of PANDA: the
requirements we defined, the background study we conducted, and the reasons we
selected the Data Flow model. It then provides an overview of PANDA and describes
the concepts, graphical representations, syntactic and semantic rules, and schema
transformation operations of PANDA. Next, this chapter explains how to apply
PANDA to a domain and gives an example from transmission tower engineering. It
ends with a summary of and lessons leamed from this development work.

Organization:

4.1 Introduction to Functional Analysis in the P-C Approach
4.2 Development Perspective
4.2.1 Required Capabilities and Properties
4.2.2 Background Study
4.2.3 Evaluation of Selected Models
4.3 The Extended Model: PANDA
4.3.1 Overview of PANDA
4.3.2 Key Concepts and Graphical Representations
4.3.3 Syntactic and Semantic Rules
4.3.4 Schema Transformation Operations
4.4 Using PANDA
4.4.1 Method for Using PANDA
4.4.2 Additional Guidelines for Using PANDA
4.4.3 lllustrative Example in Transmission Tower Engineeting

4.5 Chapter Summary

Phan & Howard page 43

Chapter 4: Functional Analysis Using PANDA

4.1 Introduction to Functional Analysis in the P-C Approach

Functional analysis plays a significant role in developing databases and applications
that operate on those databases. Functional analysis is the study of information flow
among the activities of a process or processes in an enterprise. Its purpose is to
understand what information is used in each activity and how that information is
exchanged among the activities [Batini 92]. Functional analysis does not consider the
social, economic or environmental impacts of the process, the duration and coordination
of activities, the allocation of resources, or the costs or quality of products that result
from the process. For this reason, functional analysis clearly differs from the process
modeling that has been studied in other fields. For this reason, we specifically use the
term “functional analysis” instead of “process modeling.”

Generally speaking, functional analysis is important to any effort that requires an
understanding of how an enterprise operates and how information is used to support the
enterprise’s operation. In the P-C Approach, functional analysis must be undertaken prior
to the modeling of data. By focusing on the activities and information flow of the process,
functional analysis helps the modeler understand what information is needed by the
activities, how it is used, and who the users are. This understanding is critical to
designing a domain primitive schema that will be accepted and shared by all users. The
P-C Approach provides a modeling tool, the PArtitioned eNgineering DAta flow model
(PANDA), for functional analysis of complex facility engnineering processes. Functional
analysis using PANDA vyields “functional schemata” of the process that are used in the
subsequent domain entities analysis. This analysis in turn leads to the identification of the
domain’s primitive entities and the design of the domain primitive schema.

In the development of PANDA, my objective was to build a reference model
suitable for functional analysis of facility engineering processes. By “reference model,”
we mean a set of concepts, rules and operations needed to do the analysis, as well as the
method and the guidelines needed to use those concepts, rules and operations. The next
section provides a perspective on the development of such a reference model.

4.2 Development Perspective

4.2.1 Required Capabilities and Properties

Capabilities The reference model should have the following abilities:

° It should be capable of representing the participants and their roles (i.e., the
capacities in which they are involved) explicitly in the functional schema. In a
typical facility engineering process, multiple participants from various disciplines
are involved in different capacities. The reference model must be capable of
representing these participants, which are as important to the process’ description as
the activities or the data.

. It should be capable of representing complex, non-linear facility engineering
processes. A facility engineering process is typically complex. During the facility
life-cycle, the engineering process consists of several subprocesses, which in turn
include several activities. Moreover, the process is not linear. Subprocesses can take
place concurrently since multiple participants are involved. At different times,
subprocesses can be activated, suspended, resumed or terminated. In addition,
design synthesis involves the typical “Propose-Evaluate-and-Revise” loop. The

page 44 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

more accurately the reference model represents such a process, the more effective
the design of the domain primitive schema will be.

It should be capable of representing complex data and flow of material and
products within the process as well as be able to represent relationships among
data as it is generated in the process. In the facility engineering process, data is
actually stored in and retrieved from repositories such as vendors’ standard-part
catalogs, companies’ design manuals and program input and output files. This data
can be used in activities, which in turn produce new data. A single activity can use
data items from more than one source. Consequently, the flow of data among
activities in the process is complex. As the process evolves, the amount and
complexity of the data increases over time. New data is generated from existing
data drawn from several sources. In addition, real-life processes utilize material and
products to build the facility. Thus, the physical flow of material and products is an
important part of the process, especially for construction, operations, and
maintenance. In short, the reference model must be able to represent complicated
data and physical flows that are an essential part of the process. Data generation is
also very important: The way in which data is actually generated in the process
should directly affect the way in which it is represented in the domain primitive
schema.

Required Properties The reference model should also have the following properties:

It should be more formal than natural languages. The model should include a finite
set of concepts that have clear and precise definitions. Without this property, the
modeler might produce process descriptions or specifications that are ambiguous,
verbose or inaccurate.

It should be graphical. The model should have graphical representations that can be
used to create drawings of the process functional schemata. These drawings provide
a pictorial, highly descriptive and concise way to depict the process. They are called
“graphical functional schemata.” As Ceri [86] points out, the popularity of models
such as the Data Flow model attests to the importance of graphical representations.

It should be capable of producing highly readable graphical functional schemata.
The model should have built-in features that automatically yield highly readable
graphical functional schemata. The schema readability is measured not only by the
ease with which users can interpret it (“graphical readability”), but also the extent to
which they can comprehend it (“conceptual readability”) [Batini 92]. Without this
property, the modeler would have the freedom to draw schemata in any way he or
she chooses, but could produce graphical functional schemata for complex
processes that would be very difficult to read and comprehend.

It should be as simple and easy to use as possible. The model should be designed so
that a novice modeler, with minimal learning, could apply its basic features. An
experienced modeler would use the more advanced features to be more skillful and
efficient. According to Ceri [86], many suggested models have not been used
because they are complicated and difficult to learn.

Phan & Howard page 45

Chapter 4: Functional Analysis Using PANDA

4.2.2 Background Study

General Process Models We first looked at existing models that could be applied to
several domains for all process modeling purposes. We called these “general process
models.” A large number of these models have been proposed. Those that are relevant to
this study came from many areas of research and development:

° Software engineering: This area has contributed the popular Data Flow model
[Gane 79], [Yourdon 79], [De Marco 82], [Batini 92] and the Structured Analysis
Design Technique (SADT) [Ross 77a], [Ross 77b].

° Information System Design: Work done in this area includes the Information
Systems Work and Change Analysis (ISAC) approach [Lundeberg 82], the
Conceptual Information Analysis Methodology (CIAM) [Gustavsson 82] and the
Integrated Computer Aided Manufacturing Definition (IDEF) methodologies
[Bravoco 85a], [Bravoco 85b], [Mayer 92], including IDEFO and IDEF3, to name a
few.

e Database Design in the Field of Databases: Models developed in this area include
the DATAID Database Design Methodology [Ceri 86], Nijssen’s Information
Analysis Method (NIAM) [Verheijen 82] and the Active and Passive Component
Modelling (ACM/PCM) [Brodie 82] to name a few. In addition, a number of so-
called Conceptual Modeling Languages (CML), defined in [Borgida 85], are
primarily used for conceptual database design, but also make possible the formal
specifications of processes. These specifications can be automatically interpreted
and verified. These languages include TAXIS [Mylopoulos 80], Galileo [Albano
85] and Requirements Modeling Language (RML) [Greenspan 86].

° Theory of Nets: This theory has resulted in process models such as Petri Nets
[Peterson 77], Information Control Nets (ICN) [Ellis 79] and the Information
Management Language Inscribed High-Levels Petri Nets (IML) [Richter 82]. These
models have a firm mathematical underpinning and are commonly used to model
asynchronous process events.

o “Enterprise Integration” in the Field of Artificial Intelligence (Al): More recently,
research and development on “Enterprise Integration” in the field of Artificial
Intelligence (AI) has focused on acquiring an understanding of how an enterprise
operates and how information plays a role in supporting the enterprise’s operation.
Work in this area is under way at several universities [Fox 92], [Jagannathan 92],
[Srinivasan 92] and industry-funded research centers [Billmers 92], [Bradshaw
92b], [Grosof 92], [Gruber 92] across the country. The general direction here is to
explore advanced Al techniques to support enterprise modeling, automation and
integration.

In short, the general process models differ vastly in origin, development objectives
and emphases, underlying concepts, representational means, method, degree of
formalization and software support tools. They also address various analysis and design
tasks and phases in the information system life-cycle.

In Facility Engineering Less work has been done in facility engineering. What has
been proposed can be found in [Sanvido 84], [EPRI 87], [Vanegas 871, [Sanvido 90],
[Luiten 91a], and [Luth 91]. Most of what has been done emphasized the accurate
depiction of the process itself rather than the development of a reference model for

page 46 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

analyzing and representing the process. The majority of this work consists of functional
schemata or verbal descriptions of facility engineering processes and not reference
models as we defined them earlier. In other words, no “reference model” has been
developed for facility engineering processes.

4.2.3 Evaluation of Selected Models

Based on the background study, we selected five models for evaluation: the Data
Flow modelt [Gane 79], [Yourdon 79], [De Marco 82], [Batini 92], the Structured
Analysis Design Technique (SADT) [Ross 77], the Information Systems Work and
Change Analysis (ISAC) [Lundeberg 82], Petri Nets [Peterson 77] and Information
Control Nets [Ellis 79]. There were three reasons for this decision. First, all five models
were suggested in earlier reviews by Ceri [86] and Batini et al. [92]. Second, these five
models are representative of the first three categories of general process models discussed
above. Finally, we believed them to be the strongest candidates for this study.

We evaluated these models using four criteria drawn from the required capabilities
and properties stated earlier. The criteria are listed here in order of importance: (1)
supporting the features of the required capabilities, (2) having graphical representations,
(3) graphical readability and conceptual readability of functional schemata and (4)
simplicity and ease of use. The reader can refer to [Phan 92] for more detailed
information about this evaluation. The evaluation showed that all five models have
advantages and shortcomings. However, the Data Flow model is the best all-around
performer. It provides the basic features of process, data flow, data repository, and data
source or sink. It also has graphical representations and is simple to learn and use.
Therefore, we selected this model and extended it to meet the requirements stated earlier.
The extension, the “PArtitioned eNgineering DAta flow model” (abbreviated PANDA), is
presented next.

4.3 The Extended Model: PANDA

4.3.1 Overview of PANDA

PANDA has a multi-leveled partitioned architecture. With PANDA, the modeler
can functionally decompose a process into several subprocesses, which in turn include
many activities. Therefore, a process may have many hierarchical description levels. As
Figure 4.1 shows, the data flow diagram at the detailed level has three major partitions:

° Participants: This partition presents the people involved in the process in different
capacities. These capacities are clearly annotated on the diagram.

. Process: This partition presents the process and its subprocesses and activities.
Boundary nodes clearly delimit subprocesses and depict their states as “activated,”
“suspended,” “resumed” or “terminated.” Decisions and alternatives are part of the
process description. Interferences are special occurrences that disrupt the smooth
execution of the process. Activities, decisions, interferences and boundaries can
have precedence relationships to each other.

T The Data Flow model has at least three variations: [Gane 79], [Yourdon 79] and [De Marco 82]. The one
considered here comes from [Gane 79] and used by [Batini 92] for conceptual data modeling.

Phan & Howard page 47

Chapter 4: Functional Analysis Using PANDA

Structure

1. Participants

Detailer

2. Process

.-.Y executes
IV.S1.1 2

§ executes

¥ executes
Establish g

f Structure's
~ quklng Pomts

TIV.S12

Function
IV.S2
activated

Calculate

3. Data,

Material 77
&Products /Go/bal/148r \/kng /,Lengths&:: 14“" %on{{n/o/é

» Geometric , / Points' ,, Slopes & / / Frammg , Layout Data #

7/////

Structura
LEGEND:

~ NODES Data fterm LINKS Participation link
Participant I executes _ (with annotation
node describing the

participation)

Activity Data repository (Activity)
node 7/, hode —_— Precedence link
Boundary node Data ————— Datafiow link
(whose name source or sink Data generation
describes node ey, [Nk
the state of the A (A stands for the
subprocess or Flow merge node ‘Abstraction”
subprocesses (for showing flow data generation
at the boundary) networks) operation.)

FIGURE 4.1: A Sample Partitioned Data Flow Diagram Using PANDA.

. Data-Material-Products (abbreviated DMP): This partition presents the data items,
data repositories and data flow. It also shows the material and products and their
physical flow. The data flow and physical flow are graphically represented as
networks of data, material and products circulating in and out of activities. This
partition shows the relationships (e.g., is-derivation-of, is-previous-version-of, is-
stored-into) among data items and data repositories as they are generated in the
process. The partition also presents the people or things that are originators or
receivers of data items or data repositories.

page 48 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

This partitioned architecture serves two main purposes. It helps the modeler
organize his or her thinking about a complicated engineering process by focusing
attention on different aspects of the process during the functional analysis. In addition,
the architecture enhances both the conceptual and graphical readability of the process’
functional schema. Each partition encloses only the concepts that are relevant to it. With
these partitions built into the schema, users can easily review different aspects of the
process: the participants; subprocesses and activities; or data, material and products.

PANDA also provides graphical representations of its concepts. As a result, the
modeler can draw graphical functional schemata of a process. Due to the three built-in
partitions, such a schema is also called a “Partitioned Data Flow diagram” (or “P-
diagram”). Figure 4.1 is a sample P-diagram. In this example involving transmission
tower engineering, the structure detailer establishes the working points (i.e., the reference
points on the tower structure used in the next step to calculate the member dimensions),
determines the member lengths, slopes and bevels, and lays out the connections. The
input and output data for each activity is shown in the diagram. In addition to the
concepts and graphical representations, PANDA provides syntactic and semantic rules
that govern the use of its concepts. The modeler can use several basic schema
transformation operations in PANDA to develop a functional schema incrementally. A
method accompanying the model guides the modeler in applying the concepts to his or
her problem domain. Moreover, PANDA provides additional guidelines for using specific
concepts of the model and for drawing Partitioned Data Flow diagrams. [Phan 92]
provides a detailed description of PANDA.

4.3.2 Key Concepts and Graphical Representations

The concepts of PANDA are arranged according to the three major partitions. These
concepts are explained next. Tables 4.1 to 4.3 at the end of this section show the
graphical representations of these concepts.

Partition I: Participants The two concepts in this partition were not included in the
original Data Flow model [Batini 92] and are part of my extension. They are:

1. Participant—A participant represents a class of personnel that takes part in
activities of a process. Each participant can be involved in more than one activity in the
process. For instance, the structure detailer, structural engineer and electrical engineer are
three different participants in the tower engineering process. The graphical representation
of this concept is the “participant node.” In Figure 4.1, there is one participant node
labeled “Structure Detailer.”

2. Participation—The concept of participation represents the capacity in which a
participant is involved in an activity of a process. There are two possible pre-defined
roles for the participant: carrying out an activity and being directly responsible for its
successful completion (executive role), or being involved in other indirect capacities and
having no direct responsibility or authority (supporting role). In the example shown in
Figure 4.1, the structural detailer carries out three activities and plays the executive role
in each case. Each participation is represented graphically by a “participation link” from a
participant node to an activity node in the next partition. The link is annotated with a
clear description of the capacity in which the participant is involved.

Partition lI: Process Only the first concept in this partition was included in the Data
Flow model. The others are part of my extension. The concepts here are:

Phan & Howard page 49

Chapter 4: Functional Analysis Using PANDA

1. Activity—An activity is defined as “an organizational unit of a process for
performing a specific task” [Webster 86]. Figure 4.1 shows three different activities. A
process actually includes many activities. The graphical representation of an activity is
the “activity node.”

2. Precedence Relationship— Activities have precedence relationships. These
relationships place temporal constraints on the execution of the activities. An activity, A,
precedes (or has precedence over) another activity, B, if B cannot be started until A is
finished. The graphical representation is the directed “precedence link.” Each link
connects a pair of activity nodes. Its arrow goes from the predecessor activity to the
successor activity. For example, as Figure 4.1 shows, the activity of establishing the
structure’s working points precedes that of calculating member dimensions.

3. Decision and Alternative—A decision is a special activity that involves answering
an important question by considering one or more alternatives and choosing among
them. Each “alternative” leads to a unique solution. A decision is graphically represented
as a “decision node.” The alternatives are represented as annotations to the precedence
links coming out of the decision nodes. Each link points to an activity node representing
the action that needs to be carried out when choosing that alternative. A decision node
can be connected to an activity node by precedence links.

4. Interference—An interference is a special occurrence that interrupts the
successful execution of the process. An interference can lead to activities required to
remedy the situation. It can also put the current process into a “suspended” or
“terminated” state. It can create a loop that takes the process back to some earlier activity.
An interference is graphically represented as an “interference node.” Interference nodes
can be connected to activity nodes and even decision nodes by precedence links.

5. Subprocess—A subprocess is a fixed set of activities, decisions, interferences and
delimiting boundaries, which have precedence relationships to each other. A subprocess
can include other child subprocesses. Thus, the definition of a subprocess covers the
intermediate functional units of a process as well as the process itself. A process is the
overall set of functional units that has no parent. A subprocess is graphically represented
by its components: activities, decisions, interferences and boundaries. The subprocess in
Figure 4.1 represents the subprocess of dimensioning members and laying out
connections in the tower engineering process.

6. Boundary—A boundary marks the beginning or end of a subprocess or the
borderline between a subprocess and another activity or subprocess, as shown in Figure
4.1. Each subprocess has at least two boundaries. Boundaries actually serve three
purposes: (1) they delimit subprocesses; (2) they connect subprocesses; and (2) they
allow subprocesses to be mapped back to their parent process. Boundaries are graphically
represented as “boundary nodes.” The name of the boundary node describes the state of
the subprocess or subprocesses at the boundary. The possible states are: “activated” (or
“started”), “suspended,” “resumed” and “terminated” (or “ended”).

7. Process Non-Linearity—Each node in this partition can have more than one
outgoing precedence link with other nodes. This allows the modeler to represent parallel
activities or subprocesses of non-linear processes. Moreover, by naming its boundary
nodes, the modeler can designate a subprocess as “activated,” “suspended,” “resumed” or
“terminated.” Subprocesses that are suspended during the execution of other subprocesses
can be represented. As a result, multiple concurrent subprocesses and activities conducted
by different participants can be delineated. Reciprocally, any node can have more than
one incoming precedence link from other nodes. This allows the modeler to represent
loops and thus, iterative subprocesses such as the common “Propose-Evaluate-and-
Revise” loop in design synthesis.

page 50 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

Partition lli: Data-Material-Products (DMP) This partition includes many
concepts. Of these, only data repository, data flow, and data source or sink were included
in the original Data Flow model [Batini 92]. The others are parts of my extension. The
concepts are:

1. Data Repository—A data repository is a permanent storage of data in paper or
electronic format. Examples include files, permanent records, paper or electronic forms,
electronic databases, vendors’ standard parts catalogs, standard design codes, companies’
design manuals, engineering drawings, and program input and output printouts. The
corresponding graphical representation is the “data repository node.” In Figure 4.1, the
“Tower Schematic Drawing” node represents a data repository.

2. Data Item—A data item represents a single piece of data or a collection of data
that is created by activities of the process and used as input by other activities. A data
item may or may not later be stored into a data repository. This concept was not included
in the original Data Flow model. In that model, data items can be shown only as
annotations (of data flow links) in the data flow diagram. By contrast, data items are
represented explicitly in PANDA and have their own graphical representation, the “data
item node.” Figure 4.1 shows several data items such as global tower geometry data,
working points’ coordinates, and connection layout data.

3. Data Flow—The concept of data flow indicates that a data item or data
repository flows into or out of an activity. Data flow is graphically represented by the
directed “data flow link” between a data item node or data repository node and an activity
node. The direction of the arrow indicates whether the data item or data repository serves
as input to or output from the activity. In Figure 4.1, data flow links show how data is
used in and exchanged between the three consecutive activities of dimensioning members
and laying out connections.

4. Data Source or Sink—A data source or sink represents the person or thing that is
the prime originator or receiver of data repositories or data items. The graphical
representation is the “data source or sink node.” In Figure 4.1, the data source is the
structural engineer who provides the tower schematic drawing. Data source or sink nodes
can be connected to data source nodes or data item nodes by data flow links.

5. Data Generation—During the life-cycle phases of the facility, new data is
generated from existing data from several sources. The concept of data generation
captures the special relationships that exist between data items or repositories as the
process unfolds. This concept enables the modeler to show better how data is actually
generated and is evolved in the process. Data generation is graphically represented as
directed “data generation links.” These are special links that exist only among data items
and data repositories. The direction of the arrow goes from the source data to the resulting
data. The link is also annotated with an abbreviation showing the type of data generation
relationship involved. The six main types of data generation relationships are:

— “is-abstracted-to” (Type A): A relationship of this type indicates that a
source data item or repository is used to abstract a certain data item or
repository of interest (and suppress others). This usually involves reducing
the volume of the source data. In Figure 4.1, the global tower geometry data
and member framing notes are abstracted from the tower schematic drawing.

— “is-derivation-of” (Type D): A relationship of this type indicates that an
existing data item or repository is used to derive or compute a new data item
or repository.

— “is-previous-version-of’ (Type V): A relationship of this type indicates that
an existing data item or repository is modified to create a new version.

Phan & Howard page 51

Chapter 4: Functional Analysis Using PANDA

— “is-stored-into” (Type S§): A relationship of this type indicates that an
existing data item is placed into permanent storage (i.e., into a data
repository).

— “is-combined-into” (Type C): A relationship of this type indicates that an
existing data item or repository is put together with other data items or
repositories to form a new data item or repository.

— “is-presented-in” (Type P): A relationship of this type indicates that an
existing data item or repository is presented under a different format in
another data item or repository.

6. Material or Product—The concept of material or product represents the
resources, as well as intermediate or final results, of the process. Its graphical
representation is the “physical node.”

7. Physical Flow—The concept of physical flow here indicates that a material or
product flows into or out of an activity. Physical flow is graphically represented by the
directed “physical flow link” between a physical node and an activity node. The direction
of the arrow indicates whether the material or product is a resource for or result of the
activity. For example, raw steel material is a resource used in the fabrication of the tower
parts, the result of which are the galvanized tower parts.

8. Mixed Flow—In the facility construction stage, an activity can use not only data,
but also material and products. For example, the fabrication of the tower parts needs raw
steel material and the data describing the fabrication features from the tower detailed
drawing. The concept of mixed flow indicates that a data item or repository and a
material or product flow together into or out of an activity. The graphical representation
is the directed “mixed flow link.” (The terms “physical flow” and “mixed flow” were
introduced in the ISAC model [Lundeberg 82].)

9. Flow Network—The concept of a flow network represents an aggregated way of
showing complex data flow among activities: Several different data items and data
repositories can be used in a single activity in order to generate more data. This concept
applies to physical and mixed flow. A flow network can be shown graphically using
“flow merge nodes.” Each node represents a point where the data flow, physical flow, or
mixed flow among activities merge. The flow merge node in Figure 4.1 shows the
combination of two data items that are used in the third activity.

The following tables 4.1 to 4.3 summarize the concepts and their graphical
representations.

TABLE 4.1: Concepts and Graphical Representations in Partition I.

CONCEPTS GRAPHICAL REPRESENTATIONS

Participant Participant Node

Structure

Detailer

Participation Participation Link executes

page 52 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

TABLE 4.2: Concepts and Graphical Representations in Partition II.

CONCEPTS GRAPHICAL REPRESENTATIONS

Activity Activity Node IV.S1.1

Establish
Structure's
Working Points

Precedence Precedence Link —_’

Relationships

Decision Decision Node

111.83.1

Is the tower
geometry
acceptable?

Interference Interference Node

Some tower
members or panels
not fitted together

Subprocess The graphical representation of a
subprocess includes those of the activities,
decisions, interferences and boundaries
that make up the subprocess.

Boundary Boundary Node

Function IV.S!
terminated &
Function IV.S2
activated

Process * Any of the nodes in Partition II can have

Non-linearity more than one outgoing or incoming links.
» By naming its boundary nodes, a
subprocess can be designated as
“activated” (or “started”), “suspended,”
“resumed,” and “terminated” (or “ended”).

Phan & Howard page 53

Chapter 4: Functional Analysis Using PANDA

TABLE 4.3: Concepts and Graphical Representations in Partition Ill.

CONCEPTS GRAPHICAL REPRESENTATIONS
Data Repository Data Repository
Node Tower
Schematic
Drawing
Data Item Data Item Node
Global
Tower
Geometric
Data
L
Data Flow Directed -
Data Flow Link
Data Source or Sink Data
Source or Sink Node Structural
Engineer
Data Generation Directed, Annotated A .
Data Generation . .
Link (Annotation is the abbreviation of the type

of data generation operation involved.)

Material or Product Physical Node

Raw
Steel
Material

Physical Flow Directed
Physical Flow Link
Mixed Flow Directed
Mixed Flow Link
Flow Network Flow Merge Node O

page 54 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

4.3.3 Syntactic and Semantic Rules

PANDA provides a number of syntactic and semantic rules. The syntactic rules
insure that the nodes are connected properly, that the links are used in the right places,
and consequently, that the resulting schema conforms to my definition of the model.
These rules form the underlying grammar of the model. However, a syntactically valid
schema may represent a process that would not make sense in real life. Thus, the
semantic rules further constrain the use of the elements so that they produce meaningful
schemata.

Syntactic Rules The matrix shown in Table 4.4 summarizes the syntactic rules for
nodes and links. The column headings across the table designate the types of nodes from
which a directed link can originate. The row headings on the left hand side of the table
designate the types of nodes to which a directed link can go. A filled cell in the matrix
indicates that a node of type designated by the column heading can be linked to a node of
the type designated by the row heading. The types of link that may be used are designated
by the cell entry. An empty cell indicates that no linkage is permissible. Due to space
constraints, we use the following abbreviations: Repository for data repository, Item for
data item, participation for a participation link, precedence for a precedence link, data
flow for a data flow link, generation for a data generation link, physical for a physical
flow link, and flolphylmix for a data flow or physical flow or mixed flow link. All of
these links are directed links.

Semantic Rules The first two rules given below apply to all nodes in Partition II. In
these rules, the so-called “process event” refers to an activity, decision, interference, or a
boundary node that marks the initiation of a subprocess. The semantic rules are:

° Conjunctive Precedence Rule—A process event cannot occur unless all its
precedent events are completed. This rule elaborates the precedence relationships for
those nodes that have more than one incoming precedence link.

® Disjunctive Precedence Rule—If the node representing a process event is marked
with the special symbol “+” enclosed in a circle, then the event can occur as soon as one
of its precedent events has been completed. This rule presents an exception to the
conjunctive precedence rule. For example, an activity can have two incoming precedence
links, one of which loops back from an activity that happens downstream. In this case, the
activity can begin as soon as one of its precedent events has been finished.

o Bounded Subprocess Rule—Each subprocess must contain at least one activity
and must be delimited by at least two distinct boundary nodes. One of the boundary
nodes must have an activated state and another must have a terminated state. This rule
insures that each subprocess is defined properly and has a beginning and an end. As a
result, the overall process always has a beginning and an end.

° State Closure Rule—A subprocess that enters an “activated” or “resumed” state
must eventually reach a “terminated” or “suspended” state; similarly, a subprocess that
enters a “suspended” state must eventually reach a “resumed” or “terminated” state.
This rule extends the previous rule by specifying the possible states that can occur in
between the beginning and the end of a subprocess. It also insures that no subprocess has
open ends in the schema.

Phan & Howard page 55

Chapter 4: Functional Analysis Using PANDA

yus
©JEp RIED 20410§
eorsAyd eorsAyd o154y d
eoisdyd | xmumdydioy | mop eiep MO[J BIRD xrudydjoyy | xmuAudjoyy 2819 Mo]]
Mol Blep uonerouad | uomersuad Mo[j ejep MO[J eep wajr
MO[J BIRD uorneiduad | uoperouad Mo[j ®Iep MO[J B1Ep &ionsoday
douspasard | souepacerd | eouspeoerd Lippunog
souepasard | souspacerd | souspeocerd | uonedionred || aouasafiaguy
[eorsAud xrunAydiory elRp BlEp souapeoard | eouspeserd | souspacerd | uonedronred || wuo1s122(7
eotsAud xrurAgdjoy vEp :41:04) souapecald | souapacard | souopeserd | uonedronsed Ananoy
Juvdiondg
oL
yuis 81
20amog | 1021584 Moyd wayy | Lionsoday soussafionyy | worswaq | oy | wodionwg || "PON M
I I uoynted

ing the

kages in PANDA Us

n

ible Node L
Phan & Howard

ISS

f Perm

iX 0

Matri

Appropriate Link Types.

TABLE 4.4

page 56

Chapter 4: Functional Analysis Using PANDA

4.3.4 Schema Transformation Operations

PANDA provides several basic operations to support incremental transformations
of a functional schema. (They are actually “types” of operations, for the purpose of
generality and conciseness. A type can have many variations.) The definition of these
operations closely follows the syntactic and semantic rules stated earlier. Therefore, the
modeler can produce valid and meaningful functional schemata using these operations.
These operations are incorporated into the method accompanying the model, which is
presented next. They are labeled for future reference. The label consists of a roman
numeral such as I, I, III indicating the applicable partition and an abbreviation such as C
for Creation (i.e., creating new nodes) and M for Modification (i.e., modifying the way in
which the nodes are connected). The abbreviation is followed by an integer indicating the
ordering of the operation. The basic schema transformation operations are:

I-C1 Creating a Participant—This operation creates a participant node in
Partition I. It draws the new node and links it to an existing activity,
decision or interference node in Partition IT using a participation link. The
link’s annotation describes the participation (i.e., capacity in which the
participant is involved).

I-M1 Adding a Participation Link—This operation adds a participation link
connecting an existing participant node in Partition I to another activity,
decision or interference node in Partition II.

I-M2 Modifying a Participant—This operation changes the name or the
participation’s description of an existing participant node in Partition I, or
reconnects that node to a different activity, decision or interference node in
Partition II using a new participation link. This operation has three
variations: modifying name, modifying participation, and modifying an
existing node connectivity.

II-C1 Creating a Subprocess—This operation creates a subprocess in Partition
II. It draws one activating boundary node, one activity node, and one
terminating boundary node and connects them in that order using
precedence links.

II-C2 Creating a Functional Unit (i.e., activity, decision, interference, or a
child subprocess) in an Existing Subprocess—This operation creates a
functional unit and adds it to a subprocess already defined. The unit can be
an activity, decision, interference, or even a child subprocess. The
corresponding new node (or nodes in the case of a subprocess) is drawn
and then connected to one existing node in Partition II. The connection is
done using precedence links and following the appropriate syntactic rules
for activity, decision, interference and boundary nodes.

II-M1 Doing Functional Decomposition—This operation spawns an existing
activity node at one level of functional decomposition, say Level A, into a
child subprocess at the next lower level, Level B. The subprocess at Level
B is created in the same way as the one described in Rule II-C1. The
decomposed activity at Level A is also changed to a subprocess by adding
boundary nodes that delimit the subprocess. (Both subprocesses have
boundary nodes with identical names for later reconnection.)

H-M2 Modifying a Functional Unit—This operation changes the name of a node
(i.e., activity, decision, interference or boundary) in Partition II or
reconnects that node to a different node using a new link. The appropriate
syntactic rules for nodes in Partition II and links apply. This operation has

Phan & Howard page 57

nI-ci1

ni-mi

nI-M2:

I1-C3

II1-M3:

HnI-c4

HI-M4:

hnI-cs

HI-M5

Chapter 4: Functional Analysis Using PANDA

two main variations: modifying a name and modifying an existing node
connectivity.

Creating a Data Repository or Data Item—This operation creates a data
repository or data item node in Partition IIL It draws the new node and
connects it to one activity or decision node in Partition II or to a flow
merge node in Partition IIT using a data flow link.

Adding a Data Flow Link from a Data Item or Repository to a Process
Node—This operation adds a data flow link connecting an existing data
item or data repository node in Partition III to an activity or decision node
in Partition II or to another flow merge node in Partition IIL

Adding a Data Generation Link—This operation adds a data generation
link connecting an existing data item or data repository node in Partition
IIT to another data item or data repository node. The operation has two
variations: generating a data repository or a data item.

Creating a Data Source or Sink—This operation creates a data source or
sink node in Partition III. It draws the new node and connects it to one
data item or data repository node in Partition III using a data flow link.

Adding a Data Flow Link from a Data Source or Sink to a Data Item or
Repository—This operation adds a data flow link connecting an existing
data source or sink node in Partition III to another data item or data
repository node.

Creating a Material or Product—This operation creates a physical node
in Partition III. It draws the new node and connects it to one activity or
decision node in Partition II or to one flow merge node in Partition III
using a physical flow link.

Adding a Physical Flow Link—This operation adds a physical flow link
connecting an existing physical node in Partition III to an activity or
decision node in Partition IT or to another flow merge node.

Creating a New Flow Network—This operation creates a new network
from several existing flows that have a common destination. It has three
variations: creating a data flow network, a physical flow network, or a
mixed flow network. By adding a flow merge node and a data flow link,
the first variation combines flows into a network from data item or data
repository nodes. The new flow merge node is connected to the data item
or repository nodes. The new data flow link goes from the flow merge
node to the destination node. Similarly, the second variation combines
flows into a network from physical nodes by adding a flow merge node
and a physical flow link. The third variation combines several flows, some
from data item or data repository nodes and others from physical nodes, by
adding a flow merge node and a mixed flow link.

Merging with an Existing Flow Network—This operation merges an
existing flow or flow network with another existing flow network. It
differs from the above operation in that no new flow network is created
here. This operation has three variations. In the first variation, a data flow
from a data item or data repository node is merged with a flow merge node
by connecting the first node to the latter node. The second variation is
similar to the first, except that it involves a physical node and a flow
merge node. The third variation is again identical, except that it involves
two flow merge nodes. These variations can be used over and over again

page 58

Phan & Howard

Chapter 4: Functional Analysis Using PANDA

to build elaborate flow networks. In all three cases, the type of link coming
out of the flow merge node must be checked using the syntactic rules for
links.

II-M6 Modifying a Node in Partition III—This operation changes the name of a
node (i.e., data item, data repository, data source or sink, or flow merge
node) in Partition III or reconnects that node to a different node using a
new link. The appropriate syntactic rules for nodes in Partition III and for
links apply. This operation has two variations: modifying a name and
modifying an existing node connectivity.

4.4 Using PANDA

4.4.1 Method for Using PANDA

Scope Definition Before Functional Analysis Before functional analysis of the
process begins, the scope of the analysis must be defined. This is crucial to ensure
satisfactory results. Defining the scope involves:

° Stating the breadth of the analysis effort: Making general statements about which
disciplines, participants, phases, data and data sources and sinks are to be included
in and excluded from the analysis.

. Stating the depth of the analysis effort. Specifying as much as possible the extent to
which the modeler should carry out the analysis of the above categories. As a result,
the modeler can put different emphases on different parts of the analysis.

The resulting specifications will guide the modeler throughout the entire effort.

Mixed Two-Pass Method This method guides the modeler in applying PANDA to
different facility engineering processes. The method uses a mixed two-pass strategy,
which involves top-down functional decomposition and bottom-up functional refinement
in two successive passes. This method also takes advantage of PANDA’s partitioned
architecture by giving different priorities to the partitions at different stages of analysis.
The resulting set of functional schemata describes the engineering process in several
hierarchical levels. The top-level functional schema shows the overall process’
decomposition into phases. This schema is also called a “skeletal functional schema.” A
phase is a subprocess of the overall process, which corresponds to a major identifiable
stage of development in the facility life-cycle. The functional schemata at the next level
depict the phases’ breakdown into functions. Each function is a group of coherent
activities that together help achieve a distinct objective or short-term purpose. The low-
level functional schema shows the activities of the functions. The method is as follows:

PASS 1: TOP-DOWN FUNCTIONAL DECOMPOSITION WITH PROCESS-PARTICIPANTS-DMP
PRIORITY The first pass involves top-down functional decomposition of the process,
with the following order of priority: (1) process, (2) participants, and (3) data, material
and products. It includes the following steps:

1.1 Produce the top-level skeletal functional schemata of the phases and functions of
the facility engineering process: First, identify the major phases of the process and
then the functions of which they are constituted. (Guidelines for doing this are given
in the next section.) Next, using the graphical representations in PANDA, produce

Phan & Howard page 59

Chapter 4: Functional Analysis Using PANDA

the “skeletal functional schemata” for those phases and functions. At this top level,
represent the phases using the concept of subprocess. Model functions as activities
of the subprocesses representing the phases. Use mainly the schema transformation
operations II-C1 and II-C2 to create subprocesses and add functional units (i.e., an
activity, decision, interference, or even child subprocess) to those subprocesses.

1.2 Perform top-down functional decomposition using the skeletal functional schemata
with highest priority on Partition II (Process): Using the above skeletal functional
schemata, decompose the functions into their component activities. (The modeler
has complete control over the total number of functional decomposition levels.) Use
the schema transformation operations II-C1 and II-C2 to create subprocesses and to
add functional units, and especially operation II-M1 for functional decomposition.
Because of the potentially overwhelming complexity of the overall engineering
process, concentrate at this point mainly on the process. Identify the key
participants when possible. The modeler does not have to be very specific about or
thorough with the elements of Partition III. The order of priority here is Partition II,
Partition I and Partition III.

1.3 Stop functional decomposition at the level of activities and augment the other
partitions: Stop functional decomposition at the level of individual activities. (A
rule of thumb for doing this is given in the next section.) Augment Partition I
(Participants) and Partition III (Data-Material-Products) as much as possible by
specifying the details to be included in those partitions. For instance, be more
specific about the participants and their participation, the input and output data of
the activities, the data repositories used, the potential flow networks, the data
generation operation performed, and the data sources and sinks needed. Use mainly
the schema transformation operations I-C1 and III-C1 to C5.

In this pass, the modeler does not have to complete Partitions I and IIIL.

PASS 2: BOTTOM-UP FUNCTIONAL REFINEMENT WITH DMP-PARTICIPANTS-PROCESS
PRIORITY The second pass involves bottom-up functional refinement of the process,
with the priority placed on: (1) data, material and products, (2) process and (3)
participants in that order. It includes the following steps:

2.1 Revise low-level functional schemata and complete Partition III (Data-Material-
Products) and Partition I (Participants): Revise each functional schema by first
reviewing Partition III, making any necessary changes, and then completing this
partition. Then, using (the nodes and links shown) in Partition III, revise Partition II
by reviewing and modifying it if necessary. Go back and forth between these two
partitions until no more changes are needed. Using Partition II, review, modify and
complete Partition 1. Use the schema transformation operations II-C1 to C2, I-C1,
and III-C1 to C5 to add new nodes to the three partitions, and especially I-M1 and
I1I-M1 to M5 to modify Partitions I and III.

2.2 Take an inventory of the important data sources and sinks, data repositories and
data items involved in the process and represented in Partition I1I, and trace them:
First, step back and take an inventory of all key elements that are involved in the
process. Those elements include data sources and sinks, data repositories, and data
items that are represented in Partition III. Then, see where those elements are
represented in the functional schemata produced from the previous pass. If they
have not already been included, revise the appropriate functional schemata to
include them in Partition III. This may involve revising Partitions II and I of those
functional schemata.

page 60 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

2.3 Take an inventory of the participants involved in the process and trace them: First,
take an inventory of all participants involved in the process. Then, see where those
participants are represented in Partition I of the functional schemata. If they have
not already been included, revise the appropriate functional schemata to include
them in Partition I. This may involve revising Partitions II and III of those
functional schemata.

2.4 Revise the higher level functional schemata using a bottom-up refinement
approach: Use the functional schemata modified in the previous step to revise the
functional schemata of higher levels, including those skeletal schemata produced in
Step 1.1. The objective here is to integrate the low-level functional schemata with
higher level schemata and produce consistent functional schemata at all levels.

All three partitions should be completed by the end of this second pass. The
modeler must then build a data dictionary that includes the definitions of all data items
used in the domain and considered in this functional analysis. This dictionary must
document all existing variations in the naming and representation of data items in the
environment, and more importantly, agreements between the modeler and the domain
experts about how those data items will be named and represented in the domain
primitive schema. Gane [79] and De Marco [79] show how to build a data dictionary
based on the Data Flow model.

4.4.2 Additional Guidelines for Using PANDA

Guidelines for Identifying Phases of a Facility Engineering Process A phase
is a subprocess that corresponds to a major identifiable stage of development in the
facility life cycle. Use the following guidelines to identify the phases of a process:

° As a short cut, consult a domain expert. A domain expert can usually identify a
phase in terms of the following: time, people involved, place, work involved, goal,
important decisions made and end results.

. Otherwise, look for major milestones in the process where a transfer of
responsibilities and important deliverables between participants from two major
disciplines takes place. The phases can be separated at these turning points.

° Consider the informational differences between various periods in the process. The
informational differences between the phases normally lie in the amount and
granularity of detail of the facility description. For example, the structural
conceptual design phase produces the global geometric data of a structure and the
general geometric data of the systems and members. By contrast, the structural
detailed design phase adds more detailed design data, including member sizes,
cross-sectional properties, stresses and deflections, and connection data.

° Finally, consult existing work on standard process description for different facility
types. This work includes: [Vanegas 87] for the early phases of general building
design, [Sanvido 84] for the later construction process, [EPRI 87] for electrical
power plants, [Sanvido 91] for buildings in general, [Luth 91] for high-rise
commercial office buildings, and [Phan 92] for electrical utility transmission
towers.

Phan & Howard page 61

Chapter 4: Functional Analysis Using PANDA

Guidelines for Identifying Functions of a Phase A function is a group of
coherent activities that together help achieve a distinct objective or short-term purpose.
Figure 4.4 in the next section shows the functions of the Tower Construction Planning
phase. A phase can be decomposed into several functions using the following guidelines:

Identify and define functions as groups of coherent activities that together help
achieve a distinct objective or short-term purpose.

Divide the major functions of the phase according to the discipline involved. A
function is normally carried out by experts of one discipline.

Examine the project control hierarchy. Luth [91] suggests that divisions of a
process are subprocesses that interact, communicate and also impose constraints on
one another. A project control hierarchy is needed to anticipate and coordinate these
subprocesses. Such a hierarchy exists at three levels: global, regional and local. At
the global level, Luth [91] classifies functions into three general categories: owner,
design and construction. The breakdown in the control structure at the next lower
levels may help identify the functions of the process.

Finally, keep each function small—no larger than the single sheet on which the
schema is drawn. Larger functions that span several sheets of paper drawing need to
be re-examined and possibly decomposed further.

Guidelines for Identifying Activities of A Function A function in turn can be
decomposed into several activities. Figure 4.5 in the next section shows the activities of
the first function of the Tower Construction Planning phase. As rules of thumb, stop the
functional decomposition when one of the following becomes true:

Further decomposition would require specific domain knowledge about the design.

Further decomposition would not reveal new information of interest about the
participants involved or data used.

A single software module can be built to handle the activity.

Other Guidelines Examples of these guidelines are:

No annotation is needed for the executive role. By default, a link from a participant
node to an activity node without annotation means that the participant is carrying
out the activity. However, for the supporting role, the link must be annotated with a
clear description of the capacity in which the participant is involved. In addition,
any link between a participant node in Partition I and an activity node in Partition
II always assumes a downward direction. Both of these defaulting guidelines reduce
the amount of work a modeler has to do and improve the graphical readability of the
resulting P-diagram.

The modeler can duplicate participant nodes in the P-diagram to minimize the
number of link crossings and improve the graphical readability of the diagram.
Duplicated nodes should be clearly denoted using the standardized graphical
notations that come from Gane’s version of the Data Flow model [Gane 79].

page 62 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

Phan and Howard [92] describe additional guidelines of PANDA such as those for
using the concepts of decision, boundary, data item, and flow network; for drawing the
partitioned data flow diagrams; and for validating the resulting functional schemata.

4.4.3 lllustrative Example in Transmission Tower Engineering

In this section, we give an example of applying PANDA to the domain of
transmission tower engineering. Transmission towers are large lattice structures
supporting wires that transmit electrical power. As Figure 1.2 in Chapter 1 illustrates, the
tower engineering process can be decomposed into six phases: (I) Transmission Line
Analysis and Design, (II) Tower Structural Conceptual Design, (III) Tower Structural
Detailed Design, (IV) Tower Construction Planning, (V) Tower Construction Execution
and (VI) Tower Facility Management. In this example, we focus on the Tower
Construction Planning phase. We first describe the phase in terms of its time occurrence,
participants, work involved, goal, functional decomposition, and end results. We then
show the Partitioned Data flow diagrams of this phase that result from using PANDA.

Description of the Tower Construction Planning Phase This phase occurs
once a tower schematic drawing had been finished and can be used to work out all the
necessary construction details. The key participants are structure detailers, which can be
either company or contract employees. This phase involves the development of the
fabrication and erection details in preparation for tower construction. The goal is to plan
the construction phase in order to minimize errors and maximize efficiency. This phase
consists of four functions:

. Determining the Dimensions of Members and Laying out Connections: The main
objective of this function is to calculate the overall length, slope and bevel of all
members and determine the shape and size of the connection plates, their hole
patterns, and required ringfills and bolt lengths.

° Detailing Fabrication Parts: The detailer determines the number of fabrication
parts needed and details each part by specifying its fabrication features, such as
fabrication dimensions, gage lines, hole patterns, hole diameters, edge clippings,
etc.

° Generating Detailed Drawing: The detailed drawing of the tower includes the
information necessary to fabricate and construct the structure: detailed sketches of
the tower structure, foundation setting plan, a bolt schedule listing all the hardware
(e.g., bolts, nuts, ringfills) needed, the raw and galvanized weights of the tower
structure, and all details of the fabrication parts.

° Compiling Erection Bill of Material and Bundling List: The detailer compiles a
detailed list of all fabrication parts and groups them into separate bundles according
to their mark number, size, length, quantity and weight. The purpose of this
function is to facilitate shipment from the fabrication shop to the site, as well as to
aid site handling by the construction crew.

All detailed design data for the tower is generated by the end of this phase. The
deliverables are the detailed drawing and the erection bill of material and bundling list.

Partitioned Data Flow Diagrams of the Construction Planning Phase Due to
space constraints, Figures 4.2 and 4.3 first show the legend and diagram notes for all the
P-diagrams that follow. The legend includes the graphical symbols for the concepts of
PANDA. Diagram notes are general notes that apply to an entire diagram. Figures 4.4 to

Phan & Howard page 63

4.6 then show the partitioned data flow diagrams. The first diagram is the phase’s skeletal
functional schema. The remaining diagrams are the detailed schemata of the functions.

Chapter 4. Functional Analysis Using PANDA

NODES Participant Data Repository
Node Node
Activity Data Item
Node Node
ko]
Decision .
Physical
Interference Data Source or Sink
Node Node
Boundary Flow Merge
Node O Node
Duplicated Duplicated
Participant Data Item
Node { Node
Duplicated
Data Source or Sink
Node
LINKS Participation Link
{an annotation describes a supporting role of participation;
no annotation assumes an executive role of participation)
Precedence Link
> Data Flow Link
Data Generation Link
—— A ——p (annotation is the abbreviation of a type of
A data generation operation. A: Abstracting; D: Deriving;
V: Versioning; S: Storing; C: Combining; P: Presenting)
Physical Flow Link
Mixed Flow Link

FIGURE 4.2: Legend for the Partitioned Data Flow Diagrams that folld
graphical representations of duplicated nodes were inspired by Gane’s and Sarson’s
version of the Data Flow model [Gane 79].

page 64 Phan & Howard

Chapter 4: Functional Analysis Using PANDA

DIAGRAM NOTES

A. This diagram is an intermediate skeletal graphical functional
schema of a phase. It illustrates mainly the breakdown of a
phase into several functions. This schema results from the first
step, 1.1, of the method presented in Section 4.4.1. At this level,
the three partitions do not reveal all the details about the
participants, activities, data, material and products. The diagrams
that follow will reveal those details for the individual functions of
this phase.

B. This diagram is a detailed skeletal graphical functional schema of
one or more functions. It illustrates the breakdown of the function
or functions into several activities. It shows all the details in three
partitions: (1) Participants, (2) Process and (3) Data, Material and
Products. This schema results from completing all the steps in
the two passes of the method described in Section 4.4.1.

FIGURE 4.3: Diagram Notes for the Partitioned Data Flow Diagrams that
follow.

Phan & Howard page 65

99 ‘d ‘VANVd SUis(] SISKIpuy [Duonsung i 133doy?)

(V 910N weideyq 98)
‘Bujuueld UONINIISUOD Joma] ‘Al OSEld JO [elejeXs ojeipaulislul bt JHNDIH

polBAjE
A 8seUd
¥ pejBUILLe)}
Al 8seyd

157 Bujipung
pue |elB)el jO

[11g uooai3 aydwo

pejeujwIa;
¥S°Al uojouny

¥S'Al

Bumeig
pejlejaq ejeleuen

pejeAjoe
¥SAl uojiaung
9 pajeu|uLa)

£S°Al Uofiouny es’l

pajeAoe
E£S°Al uofioung
¥ pajeuiwIe)
S°Al Uojiound

}
sued
uolieatiqeS (leled

SS'Al

pajeAjjoe
€S° Al uojjoung
Q pajeujwia}
S"Al uofjound

SUOHDBULCY
o Ae pue
slaquepy uojsuaulg

LS'Al

pajeAje
IS'AI
uojouny

peieAjjoR
Al Bseyd

$S320Hd ‘It NOILLLEVYd

19 'd ‘VONVd Suis)) Sisiouy [ouonouns 'y 123dvy)

(g 10N wreidei(q 29S) ‘(Buiuueld uoljoniisuo) 1omoy) Al eseyd jo ‘sued

uonesliged m:.:\NNQQ ‘Z2S°Al] Uoljoun4 pue ‘suofosuuo) jno Q:.S.Nd pue sioquispy m:.‘:O.‘m:QE.‘Q ‘18°Al uonound ¢y JHNSDI4

yiBusgj Jog pue ybuy ‘weyjed sjoy
‘az;s pue adeys ajeid ,suojjoeUUO) .,

*S3LON JON3IHI43H

N {n q an
aseyd woyj)] oseud wouy)
Buime.q lsauibuy
<F v v v olewayosg feinjonig
SUoHOBUUDY sisquom
¥ _M“m M—HME sezs (seouasepoiul {SUOlBUUCO o ainpnig aimpnis
oo saperiy lod ' pioAE o) 10 sedfy sjenag 1Mo ey} Jomoj
" sy °4 [eLIRIe N B sozl§ Bieq inoke seoueiealy "'l Buwely g sadojs uosujod ouljo weibeiq
o weﬂwu& jeals Jaquay _Mﬁwﬂ‘ uojpauU0D Jequiepy lequisy inoqe § g syiua Buppiops ofjewsyog
uojjeouge- g sajou [epadg [IZET e
JoquunN Ylew
I 1 |] sjonpold
— * ' [BUOIEN
i ‘ejeq Il NOILILHYd
sUoRaauURD o Ae

{BAJL

£S°Al Uogouny
» pajeulLLa)}
2SN

uojjoung

sped
uojjedliqed |lejeQ

Fes'Al

pajeajoe

E1S°Al

uogouny 2

suojsuawiq
laquiei 9je|nojen

IS’

sjujod pajenjoe
Bupjiop sRINPNIS IS'Al
8y} usiiqels3 uofpun paEoe
VIS'Al
88930.d || NOILILHVd
sindyy
apjrosd

19)ie1aq

ainpnig

19ye}8Qg

JEENIE] 2inRniig

|einyonlig

sjuedioied 3 NOILILHYd

99 'd ‘VaNVvd Suisy) sisjpuy jpuonouny ¢ 123doy)

(g 10N weagey(q 39S) (buruueld uonaniisuo) 1emol) Al eseyd
Jo ‘Is17 Bulpung pue [eueieyy Jo jjig uoljoel3 buljidwo) ‘vS Al uonound pue ‘buimelq pejiejeq bunelsusd ‘eS°A| uolduUNS 9y JHNDIH

/ ln _\ i

s e—] oz
Bumelq T . o_aM__%m._o {feimonng

1e6euepy pefeleq s'd . s‘d‘D S$'d‘0 Heweues

UORONNSUOD S S'd’D

v i

o 15— 1t

\ suoisuepy A_o_saccoo \ sozg \
pue i

 S1eqUIe} 10}
(.0 \Bu Yed 0he
Buipun: 10M0] diseq yioue syeq Uoneouqey eeqin
«w...um _m.r_hw.“mm Buimelq 10 SWBiOM MMH_%? mon_mm_MMH_mz uolleoliqe 4 einpeyds yog ogjosamizes (oo __mSEmz uoiIeUU0Y
o I voroe:3 eediees pezuENed seeur] Siequen uogeatiged eoidAL
o % swbiom : 12 JeqUINN SEW !
3oeig

T I I Ar | |
Nu " sianpoud ¥ euelei ‘wieq
{J* HI NOLLILHVYd

Bumel(peteq

oyely
pejeulwle} - —
PS'Al st pejeAloe EES'Al SUOISUe!
! ! L
uenoung Butpung g jeuere | Mo uonouny oL aon

1o 118 uosoes3

pue Jemo] diseq jo
dojeaeq

' pojeulie} siyblepy eindwosn

€S°Al
uonouny

-,

elnpeyds iog
ejeleues) .

pelenioe
€8°Al uotioung
' peleulws}
ZS'Al
uojiouny

2ES'Al

L'YS'Al

” pelenoe
§ Aeseud
L 9 peleuwie)
"\ Aleseud

VES'A

§8890.d || NQILILHYd

Jejieyeq

einjonng sjuediolped i NOILILHVd

Chapter 4: Functional Analysis Using PANDA

4.5 Chapter Summary

The P-C Approach provides the PArtitioned eNgineering DAta flow model (or
PANDA), an extension of the Data Flow model. PANDA can assist the modeler in the
functional analysis of the complex facility engineering process in the domain. This
chapter described the development of PANDA. It also presented the concepts, graphical
representations, syntactic and semantic rules, and schema transformation operations of
PANDA. The graphical functional schemata that result from using PANDA shows the
participants and their roles in activities of the process; the decomposition of the process
into subprocesses and activities, including the precedence relationships among activities,
the design synthesis loops, the decisions and alternatives, and the process interferences;
and the data, material and product flow networks. Having a better understanding of the
engineering process, the modeler analyzes data used by domain experts in the next phase.
This analysis, the “domain entities analysis,” makes use of the information from the
process functional schemata. The next chapter describes the analysis and the Domain
Entities AnaLysis method (or DEAL) provided by the P-C Approach to carry out the
analysis.

Phan & Howard page 69

Chapter 4: Functional Analysis Using PANDA

page 70 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

Chapter 5

Domain Entities Analysis Using DEAL

Chapter Abstract:

In the P-C Approach, domain entities analysis involves decomposing entities used by
experts in a given domain (or “domain entities”) into conceptual “primitive entities”
based on the criteria of cohesion and reusability. Cohesion measures how closely
data items of an entity relate to one another. Reusability measures the extent to
which an entity can be reused in describing domain entities. The evaluation of
cohesion is based on the information of how data is generated and used in the
engineering process modeled in the previous functional analysis using PANDA. The
primitive entities are later used to design the domain primitive schema. This chapter
first explains the need for doing domain entities analysis prior to schema design. It
then gives an overview of the Domain Entities AnaLysis method (or DEAL) for doing
the analysis. It also presents DEAL'’s concepts, terms, assumptions, graphical
representation, procedures (in two versions, DEAL-1 and DEAL-2), operations, and
rules. Next, this chapter gives an example of using DEAL. Finally, it summarizes
DEAL.

Organization:

5.1 “What Should An Entity Be?”: The Domain Entities Analysis in the P-C
Approach

5.2 An Overview of the Domain Entities AnaLysis method (or DEAL)

5.3 A Formal View of DEAL
5.3.1 Basic Concepts and Terms
5.3.2 Assumptions
5.3.3 Graphical Representation: Domain Entity Decomposition Tree
5.3.4 Procedures and Operations in DEAL-1 and DEAL-2 Versions
5.3.5 Rules

5.4 Example of Using DEAL-1

5.5 DEAL as a Medium for Mediating Data Representations

5.6 Chapter Summary

Phan & Howard page 71

Chapter 5: Domain Entities Analysis Using DEAL

5.1 “What Should An Entity Be?”:
The Domain Entities Analysis in the P-C Approach

Conceptual data modeling in general, and conceptual database design in particular,
involves describing the content of the database or information system being developed.
The resulting “conceptual schema” provides a high-level description of that content for
use in the later implementation of the database or information system. According to
Batini et al. [92], the Entity-Relationship (or E-R) model described in [Chen 76] has been
the leading model for conceptual data modeling. In the E-R model, entities represent
distinct “things,” abstract or concrete, in the domain of interest. Relationships define the
ways in which the entities are associated with one another in that domain. Attributes
represent properties of entities and relationships. However, what should an entity be? Or
to be specific, how should the modeler go about identifying entities in the given domain?
Which attributes should be included in an entity definition? Indeed, identifying and
defining the proper entities in facility engineering domains is not a trivial task, as we
learned in this research project. This task becomes even more difficult when the goal is to
build a schema supporting data integration. First, the modeler can be overwhelmed with
the size and complexity of the domain and particularly, with the large amount of data that
is generated during the facility life-cycle and exchanged among activities. Second,
experts in the domain typically design objects such as beams, columns, and floors that are
highly data-intensive. A beam, for instance, may be described by geometry, material,
fabrication features, load-resisting functions, bending stresses, etc. Entities representing
these data-intensive design objects are called “domain entities.” In short, as Wimmer and
Wimmer [92] point out, methods clearly need to be developed to aid the modeler with the
conceptual data modeling of large complex engineering domains.

To respond to this need, the P-C Approach incorporates an analysis phase, the
Domain Entities Analysis, prior to the schema design phase. This analysis involves
decomposing the domain entities into “primitive entities” using the criteria of cohesion
and reusability. The input domain entities can be easily identified by interviewing domain
experts. Cohesion then helps the modeler decide which attributes should be included in
an entity definition. By evaluating an entity’s cohesion, the modeler must consider five
principal dimensions: (1) how the data is organized and thus how it can be accessed by
humans in the work environment, (2) to which concepts the data relates, (3) at what time
the data is created, (4) from which computational sources the data is derived, and (5) how
the data is used in activities of the engineering process. The evaluation of cohesion is
based on the information of how data is generated and used in the engineering process of
the domain. This information comes from the process functional schemata that result
from the previous functional analysis (Phase 2) using PANDA. Reusability ensures that
each entity will be reused as much as possible and thereby improves modeling efficiency.
The resulting primitive entities are designed into object classes of the domain primitive
schema in the subsequent phase. The P-C Approach also provides a method for doing the
analysis, the Domain Entities AnaLysis method (or DEAL). This method can aid the
modeler with the complex conceptual modeling task described in Chapter 1.

5.2 An Overview of the Domain Entities AnalLysis method
(or DEAL)

We first need to introduce some basic terminology. An “entity” here represents
either an abstract concept or a group of similar objects in the real world. Each entity is
described by several “data items.” A data item (a simpler term for “attribute”)
corresponds to a piece of data that delineates a single property of an entity. Cohesion and

page 72 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

reusability are familiar concepts in software engineering [Yourdon 79]. These concepts
are applied here to facility data modeling, and each of them is given a new definition.
“Cohesion” is defined as a measurement that indicates how closely the data items of an
entity relate to one another. The P-C Approach considers five principal dimensions of
cohesion: (1) organization/access (how the data is organized and thus accessed by
humans in the work environment), (2) concept (to which concepts the data relates), (3)
time (at what time the data is created), (4) source (from which computational sources the
data is derived), and (5) use (how the data is used in activities of the engineering process).
We call these dimensions “access-cohesion,” “concept-cohesion,” “time-cohesion,”
“source-cohesion,” and “use-cohesion” respectively. “Reusability” is another
measurement that indicates the extent to which an entity can be reused (i.e., used without
modifications) in describing other domain entities. The P-C Approach incorporates five
levels of reusability: reusable (1) for more than one domain entity of a common type, (2)
for a single domain, (3) for a single industry, which includes more than one domain, (4)
for more than one industry of a common type, and (5) for more than one industry type.
We name these five levels: “domain-entity-type reusability,” “domain reusability,”
“industry (or domain-type) reusability,” “industry-type reusability,” and “universal
reusability.”

As mentioned before, domain entities represent complex facility design objects in
the domain. These domain entities are typically described by a large set of data items.
However, these entities are not cohesive or reusable. For instance, the data items of a
“Transmission Tower Members” domain entity relate to various conceptual categories
concerning form, function, and behavior. Thus, by definition, this entity is not concept-
cohesive. These data items are also instantiated at different times in the facility life-cycle
and, therefore, the entity is not time-cohesive either. The entire entity description cannot
be reused in describing another domain entity. Thus, cohesion and reusability provide the
main criteria for analyzing domain entities and decomposing them into cohesive and
reusable entities: Entities that are not cohesive will be decomposed in the domain entities
analysis. The end result is the primitive entities. Reusability is taken into account when
more than one domain entity is analyzed and several primitive entities are identified.

In short, as Figure 5.1 illustrates, the domain entities analysis using DEAL involves
a step-by-step, top-down decomposition of domain entities into increasingly cohesive and
reusable entities, ultimately resulting in the primitive entities of the domain. Section 5.4
will explain the analysis shown in this figure.

DEAL includes concepts, terms, assumptions, graphical representation, procedures,
operations, and rules. The DEAL procedures correspond to two versions:

DEAL-1—a basic version that considers only cohesion. This version successively
examines the five cohesion criteria. Under each criterion, it carries out four operations.
When an operation is carried out, the appropriate rules are also checked. This version is
primarily used when the modeler has no previous experience with decomposing domain
entities. In addition, it employs an elaboration technique that allows the inexperienced
modeler to introduce gradually data items that are necessary to describe the domain entity
being analyzed. For these reasons, this version is also called the “naive” version.

DEAL-2—an improved (or semi-naive) version that takes full advantage of the previous
decomposition of domain entities and the primitive entities thus produced. This version
considers both cohesion and reusability. It is similar to, but more efficient than its basic
counterpart since the original operations are modified in order to enable the modeler to
reuse the available primitive entities as much as possible. DEAL-2 also includes new
operations that give the experienced modeler maximum control over where and when the
entities’ decomposition terminate.

Phan & Howard page 73

¥/ d Ty Suisn S1SAipuy sauug utwo(i 121dny)

“1v3q Buisn Au3 urewoq uaAId v jo sisAjeuy :1°s 3HNOIH

Anuz eAnwng WO Auz urewoq
pasodwoosp, UsAID

Bunjnsay

aN3o3a1

uoljeoyoed
sploqguad uolipuod
uolossg ; L Buipeo

uojoes
edeys
laquep

suonduoseq
Bujwel§
lequiely

lajsuel]
ol

suolje}

suofduoseq suoie} suon

Buireleq -ussaidey -dussaq -uesaidey

laquiap edeys |euonoun JjeWeYog
laquisiy lequisy J18qUIBN

slequisy
jeinonlis
Arewud

sued
uol9eI3
juonestqe
pajieleq

slaquiapy

Chapter 5: Domain Entities Analysis Using DEAL

DEAL also provides a medium with which a modeler can gradually elicit
knowledge about the data used in the domain from a domain expert. In return, the
modeler can incrementally show the domain expert what the representations of that data
will look like.

5.3 A Formal View of DEAL

5.3.1 Basic Concepts and Terms

5.3.1.1 Entity, Instance, and Data Item

Entity—An entity represents either an abstract concept or a group of similar objects in
the real world.

Example: In Figure 5.1, “To Transfer Load Applications” represents an abstract concept,
whereas “Transmission Tower Members” represents a group of real-world objects.

Instance—An instance corresponds to a unique occurrence of an entity.
Example: “leg member 23” is an instance of the “Transmission Tower Members” entity.

Entity Description & Data Item—An entity is “described” in terms of data items. Each
data item corresponds to a single piece of data that delineates a property of the abstract
concept or real-world objects represented by the entity, or a relationship to another
entity. (“Data item” is a simpler term for “attribute.” We use the former for entities in the
analysis phases, including the previous functional analysis, and the latter for classes in the
schema design phase.)

Example: “fabrication length,” “material yield strength,” “approximate weight,” and
“derived section properties” are among the data items that form a description of the
“Transmission Tower Members” entity.

Data Item Value—Each data item of an instance has a specific value.

Example: The “fabrication length” data item of the “leg member 23” instance has a value
of 6.5 feet.

Data Item Value Type—Each data item value is associated with a data type. This data
type can be scalar (i.e., integer and real numbers), character (single characters or
character strings), Boolean (i.e., true and false), enumeration, user-defined data structures
or “abstract data types” (e.g., “Coordinate,” “Direction,” “Date,” “Time”), aggregate
(e.g., arrays, lists, bags, sets), or reference (i.e., logical pointers to other entities). '

5.3.1.2 Conceptual Categories

Conceptual Category—Conceptual categories constitute a taxonomy for classifying
- entities’ data items to evaluate their concept-cohesion. The conceptual categories of an
entity are the superset of the conceptual categories of its data items.

Example: From the preliminary study of the transmission tower domain, we identified
conceptual categories such as Spatial Reference Form, Geometry Form, Topology Form,
Shape Representation Form, Material Form, Part Detailing/Fabrication Form, Strength
Behavior, Serviceability Behavior, Functions, Requirements, etc. We will explain these
categories in detail in Chapter 7.

Phan & Howard page 75

Chapter 5: Domain Entities Analysis Using DEAL

5.3.1.3 Domains and Their Classifications

(The following definitions will be used later to define levels of reusability.)

Domain—A domain corresponds to a particular product that provides an intended use or
service.

Example: Electrical Utility Transmission Towers, Steel-Framed Warehouses,
Reinforced-Concrete Buildings, and Cable-Suspended Steel Bridges.

Domain Type (or Industry)—A domain can be classified into “domain types.” The term
“industry” is also used interchangeably with domain types. An industry represents a
group of profit-making enterprises that produce and supply a particular product type
[Webster 86].

Example: Buildings, Bridges, Roads, Process Plants, Ships, and Utilities.

Industry Type —Industries can be further classified into “industry types.” The
classifications of domains into domain types and industry types are designed to be
compatible with the three STEP layers of entities (i.e., Product-type layer, Industry-type
layer and General STEP layer) [Geilingh 88].

Example: A/E/C, Mechanical Products, Electrical and Electronic Products, Computer
Software/Hardware Products, Aerospace, and Automobile (as identified by STEP
[Geilingh 88]).

5.3.1.4 Cohesion

Cohesion—Cohesion is a measurement that indicates how closely the data items of an
entity relate to one another. This (composite) measurement consists of five dimensions:
“access-cohesion,” ‘“‘concept-cohesion,” “time-cohesion,” “source-cohesion,” and
“use-cohesion.” All these dimensions have nominal values of yes or no. DEAL uses
cohesion as a criterion for analyzing domain entities such as “Transmission Tower
Members.”

Access-cohesion—This dimension is useful and most evident to consider in the domain
entities analysis. The way in which people organize and gain access to information in the
work environment suggest ways in which data should be represented. A primitive entity
should not include data items that are organized in different places (e.g., project design
files, structure drawings, program input files, program output files) and that therefore,
must be accessed in different ways. Formally, an entity is access-cohesive if all its data
items can be accessed by the same logical access path. A “logical access path” specifies a
way to access the data and not a physical path. Each specification includes a sequence of
items: a data repository name, and a key identifier, or a keyword, separated by a dot. Data
repository names are shown in brackets and keywords are shown in quotes. The
information needed to define a logical access path and to evaluate access-cohesion
comes from the process functional schemata using PANDA. Access-cohesion can be
evaluated by reviewing the repositories from which the data items under consideration are
abstracted. In the domain entities analysis, if an entity is not access-cohesive, it is
decomposed.

Example: In Figure 5.1, the “AISC L-Shape Descriptions” entity, whose description
consists of “dimension d1,” “dimension d2,” and “thickness t” data items, is access-
cohesive. Its logical access path is [AISC Manual]. “Angles.” Designation. This path
includes a data repository name followed by a keyword and an identifier.

page 76 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

Counterexample: “Transmission Tower Members” is not access-cohesive since its data
items are organized in various places in the tower engineering work environment and
thus, must be accessed in many different ways.

Concept-cohesion—Concept-cohesion is the next important dimension to consider.
Minsky [75] emphasizes that in solving a complex problem, people generally work with a
chunk of the problem at a time. Moreover, a designer typically deals with different
concepts at different times in the design process. For example, during the tower
conceptual design, a structural engineer considers engineering functions, geometry and
topology. Analysis element types, section properties, material properties, and element
behavior are concepts essential to the structural components’ analysis and design during
the tower detailed design. Therefore, a primitive entity should not include data items that
pertain to different conceptual categories (defined earlier in Section 5.3.2.1). Formally, an
entity is concept-cohesive if all its data items relate to the same conceptual categories.
The conceptual categories of the data were identified in the previous preliminary domain
study (Phase 1). However, the modeler must provide additional knowledge about the
categories to which the data items under consideration relate. In the domain entities
analysis, if an entity is not concept-cohesive, it is decomposed.

Example: The “AISC L-Shape Descriptions” entity described above is concept-cohesive.
All of its data items relate to the Shape Representation Form conceptual category.

Counterexample: The “Tower Member Schematic Representations” entity is not concept-
cohesive since its description into edges (topology) and lines (geometry) encompasses
two conceptual categories: Topology Form and Geometry Form.

Time-cohesion—This dimension is essential to the domain entities analysis. The
representation of data in a given domain should reflect the way in which activities of the
engineering process in the domain generate data. A primitive entity should not include
data items that are instantiated at different times in that process. By “instantiated,” we
mean that the value of the data item is specified. Formally, an entity is time-cohesive if all
its data items are instantiated at the same logical time. A logical time is not a physical
clock time. Instead, each logical time is defined in two parts:

. a “time reference”: a time symbol that refers to a particular activity of the
engineering process in which the data item is instantiated. A time reference can also
be another logical time.

. a “relative time”: an integer that indicates the order in which the data item is
instantiated relative to other data items that have the same time reference. For
instance, both geometric data items (points and lines) and topological data (edges)
are instantiated in the same activity of configuring the tower geometry. Both have
the same time reference. However, the geometric data can be instantiated before the
topological data and thus, can be given an earlier relative time.

The logical time is specified using this format: Time reference | Relative time. For
instance, t111, where tl refers to Activity “Determine Load Paths and Structural Systems”
(labeled I1.S2.3 in Appendix A). The information needed to define a logical time comes
from the process functional schemata using PANDA. Time-cohesion can be evaluated by
reviewing the activities that generate as output the data items under consideration. In the
domain entities analysis, if an entity is not time-cohesive, it is decomposed.

Example: “AISC L-Shape Descriptions” is time-cohesive: All four data items have values
specified when an instance is created.

Phan & Howard page 77

Chapter 5: Domain Entities Analysis Using DEAL

Counterexample: The “Tower Member Loading Specifications” entity is not
time-cohesive since its data items describing the loading conditions, load cases, loads,
and load trees are instantiated in four separate activities of the tower engineering process
(labeled 11.S1.4.B, 11.S1.4.C, 11.S1.5 and I1.S1.6 respectively in Appendix A).

Source-cohesion—This dimension helps separate representations of data whose value is
derived from other data. The derivation normally takes time. The derived data is typically
generated after the source data. Therefore, a primitive entity should not combine the
derived data with the source data. Formally, an entity is source-cohesive if all its data
items are computed using sources outside of the entity, or simply if no data item of the
entity can be used to compute other data items of the entity. A subset of the entity’s data
items that can be used to compute other data items of the entity is called an “internal
computation source.” The information about how the data is computed in the engineering
process comes from the process functional schemata using PANDA. Source-cohesion can
be evaluated by reviewing the data repositories or other data items from which the data
items under consideration are derived. In the domain entities analysis, if an entity is not
source-cohesive, it is decomposed.

Example: “AISC L-Shape Descriptions,” whose description consists of “dimension d1,”
“dimension d2,” and “thickness t” data items, is source-cohesive since none of its data
item can be a computation source for other data items of the entity.

Counterexample: The “Rectangle Dimensions and Properties” entity, whose description
consists of “length,” “width,” “area,” “moment of inertia,” and “centroid,” is not source-
cohesive since the first two data items can be used to compute the last three data items. In
this example, “length” and “width” form an internal computational source of this entity.

Use-cohesion—Data should be represented according to the way in which activities of
the engineering process in the domain use data. For a given activity, a data representation
is considered to be efficient if it does not include additional data items that are not used
by that activity. In the domain entities analysis, such an entity is not “use-cohesive” and
therefore, is decomposed. Formally, an entity is use-cohesive if all or none of its data
items are used in the primary data uses of the domain. A data use is defined here as an
occurrence in which data items of one or more entities are used in an activity. In fact,
each data use corresponds to a single activity of the engineering process modeled in
Phase 2. As an example, analyzing the tower structure (activity labeled I1.S1.4 in
Appendix A) uses data describing the analysis elements’ types, boundary conditions,
lengths, cross-sectional areas, material properties, etc. The modeler can select a set of
data uses in the domain, called the “primary data uses,” with which she optimizes the
entities considered in the domain entities analysis. The information about how the data is
used in the engineering process comes fhe process functional schemata using PANDA.
Use-cohesion can be evaluated by reviewing the activities that use as input the data items
under consideration.

Example: “AISC L-Shape Descriptions” is use-cohesive in the domain of transmission
towers since the primary data uses that we selected in the domain need all three data
items describing the L-shape’s parametric dimensions.

Counterexample: The “Tower Member Shape Section Properties” entity, whose
description includes “area,” “moment of inertia Ix,” “moment of inertia Iy,” “x-centroid,”
“y-centroid,” “shear center,” etc. is not use-cohesive in the domain of transmission towers
since structural analysis of the tower members does not need the data about the centroids
and shear center. :

page 78 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

5.3.1.5 Reusability

Reusability—Reusability is a measurement that indicates the extent to which an entity
can be reused (i.e., used without modifications) in the description of domain entities. This
(ordinal) measurement is based on the five levels defined below. These levels are based
on the definition and classifications of domains given earlier. DEAL uses reusability as
another criterion for analyzing entities.

Domain-entity-type-reusable—An entity is domain-entity-type-reusable if it can be
reused for more than one domain entity of a common type.

Example: “AISC L-Shape Descriptions” is domain-entity-type-reusable since it can be
reused in the description of “Transmission Tower Members,” “Transmission Tower Stub
Angles,” and “Transmission Tower Base Shoes” domain entities, all of which are of the
same “Tower Components” type. (We keep using “AISC L-Shape Descriptions” as
example to conclude later that it is a primitive entity.)

Domain-reusable—An entity is domain-reusable if it can be reused for more than one
domain entity type in a single domain. '

Example: For the transmission tower domain, another domain entity type is “Tower
Systems.” The “Edge Descriptions” entity is domain-reusable for that domain since it can
be reused in the description of domain entities of both “Tower Components” and “Tower
Systems” types.

Industry-reusable (or domain-type-reusable)—An entity is industry-reusable if it can be
reused for a single industry that includes more than one domain.

Example: The “Line Segments” entity is industry-reusable since it can be reused for the
Utilities industry, which includes the domains of Electrical Utility Transmission Towers
and Electrical Utility Substations.

Industry-type-reusable—An entity is industry-type-reusable if it can be reused for more
than one industry of a common type.

Example: The “Material Strength Properties” entity is industry-type-reusable since it can
be reused for industries such as Buildings, Bridges, Ships, and Utilities of a common
A/E/C type.

Universe-reusable—An entity is universe-reusable if it can be reused for more than one
industry type.

Example: The “Cartesian Points” entity is universe-reusable since it can be reused for
industry types such as A/E/C, Mechanical Products, Aerospace, and Automobile.

5.3.1.6 Domain Entity and Primitive Entity

Domain Entity—A domain entity represents a facility design object created by experts in
a domain. The description of a facility design object typically includes a large number of
data items pertinent to several conceptual categories. To distinguish, a composite class
represents a single user view about a facility design object. Thus, a composite class
includes only the subset of data items that are of interest to that user. A domain entity can
be seen as the union of all user views (or a unified view) about a facility design object.

Example: For transmission towers, domain entities include “Transmission Tower
Members,” “Transmission Tower Connections,” “Transmission Tower Base Shoes,” and
“Tension-Compression Panel Systems.” Composite classes that correspond to the
“Transmission Tower Members” domain entity can be “Transmission Tower Members

Phan & Howard page 79

Chapter 5: Domain Entities Analysis Using DEAL

As Analyzed,” “Transmission Tower Members as Designed,” “Transmission Tower
Members As Delivered,” and “Transmission Tower Members As Assembled” to name a
few.

Primitive Entity—A primitive entity is a cohesive set of related data items that is
reusable in the description of domain entities. Each primitive entity must be at least
access-cohesive, concept-cohesive, time cohesive, source-cohesive, and domain-entity-
type-reusable. In fact, access-cohesion, concept-cohesion, time-cohesion, and source-
cohesion are necessary requirements of primitive entities. On the other hand, use-
cohesion allows the modeler to further optimize primitive entities in terms of how they
will be used. Such optimization can improve efficiency in certain cases, but it can also
reduce the efficiency in others. Therefore, it is up to the modeler to decide for which
primary data uses primitive entities are optimized.

Example: The entity “AISC L-Shape Descriptions* as described previously is a primitive
entity.

Counterexample: Domain entities are not primitive. Also, the entities used in the previous
counterexamples (i.e., “Tower Member Schematic Representations,” “Tower Member
Loading Specifications,” and “Tower Member Shape Section Properties”) are not
primitive.

5.3.2 Assumptions

The following assumptions are necessary for DEAL to work properly:

Bounded Domain Assumption—In the given domain, there exists a fixed number of
domain entities.

Implication: In a given domain, a fixed number of domain entities will be analyzed.
These are domain entities that interest the users of the database or information system
being developed and, thus, the modeler. The modeler must identify those domain entities
in the preliminary domain study (Phase 1) prior to the domain entities analysis.

Finite Domain Entity Assumption—Each domain entity is described by a finite,
non-empty set of data items. (An entity description is only a simplified picture of the
concept or objects that the entity represents.)

Implication: The analysis of a given domain entity will terminate.
Unique Data Items Assumption—All data items considered in the analysis are unique.

Implication: If two or more data items have different names but represent the same
property, only one data item name will be selected for use in the analysis. If two or more
data items have the same name but represent different properties, they will be included in
the analysis under distinct names. The modeler must clearly define all data items in the
data dictionary that is built during the functional analysis (Phase 2) preceding the domain
entities analysis.

Unified Domain Entities Assumption—Each domain entity represents a unified view of
a concept or of real-world objects as seen by all experts in the domain.

Implication: This assumption implies a form of view integration. If two or more domain
entities have the same name but represent different experts’ views of the same facility
design object, then all the descriptions of those domain entities will be integrated into one
domain entity description in the analysis. If those entities also have different names, then
only one entity name will be selected for use. Literature on view integration can be found
in [Yao 78], [Ozsu 91], and [Gotthard 92]. In the course of identifying domain entities in

page 80 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

Phase 1 and building the data dictionary in Phase 2, the modeler must identify and
resolve any conflicting domain entity definitions prior to the domain entities analysis.

No-Knowledge Procedures Assumption—The modeler provides the knowledge
necessary to complete the DEAL procedures. '

Implication: The procedures (in both DEAL-1 and DEAL-2 versions as presented later in
Section 5.3.4) require a modeler’s interaction and cooperation. Under the successive
cohesion criteria considered in the analysis, the modeler must provide knowledge about
the logical access paths, conceptual categories, logical times, computational sources, and
primary data uses to which the individual data items relate. (The modeler either has this
knowledge herself or acquires it from domain experts.) The procedures provide the steps,
operations, and rules necessary to decompose entities.

5.3.3 Graphical Representation: Domain Entity Decomposition Tree

DEAL uses a graphical representation, the “domain entity decomposition tree,” to
carry out the analysis of a given domain entity. This section defines this tree and its
elements, all of which will be used later to define the procedures and operations of
DEAL. These definitions are also necessary for the development of a CASE tool
automating DEAL.

Tree Definition A “domain entity decomposition tree” of a given domain entity ed,
noted as DT(e(), is a directed tree [Flores 70], where:

e the root (i.e., the vertex with no entering arcs) graphically represents the entity ed;
. other vertices graphically represent entities into which ed is decomposed,;

. an arc (or directed edge) from a vertex vj to a vertex vj denotes a "decomposition”
relationship between the entity ej represented by vj and] the entity ej represented by
Vj. The vertex vj is a “child” of the vertex vj.

Figure 5.1 earlier shows a sample domain entity decomposition tree.

Decomposition Relation The decomposition relation among entities in a domain
entity decomposition tree, noted as Rp:-E -> E, where E is the set of all entities in

DT(ed), is defined as follows:

An entity ej is decomposed into an entity ej if the description of ej requires and
includes the description of ej.

Notation: ej->¢€j:€jis “decomposed into” ej.

This relation is a partial ordering: It is reflexive, asymmetric and transitive.

Vertex Definitions Each vertex of a tree, which graphically represents an entity, can
be defined in two ways:

o Vertex Extension—An extension of a vertex v; is the fixed set of data items of the
entity that vj represents.
EXT(vi) = { dj | d belongs to € and vj represents ¢ }

Phan & Howard ' page 81

Chapter 5: Domain Entities Analysis Using DEAL

INTENSION:
({fé\ll_isA%l\;l,].“Angles.“ Designation},
Et}s 11},
AISC {DU2, DU3, DU4}
L-Shape)
Descriptions
EXTENSION:

{dimension_d1,
dimension_d2,

thickness_t
. }
FIGURE 5. 2: Vertex Intension and Extension.

SHAP is an abbreviation of the Shape Representation Form conceptual category. DU2,
DU3 and DU4 are symbols representing primary data uses. :

® Vertex Intension—An intension of a vertex v; is the tuple of elements (A, C, T, §,
U) pertinent to the entity that vi represents, where A is a set of logical access paths, C is
a set of conceptual categories, T is a set of logical times, S is a set of internal
computation sources, and U is a set of data uses. Logical access paths, conceptual
categories, logical times, internal computation sources, and data uses were already
explained in Section 5.3.1.4 on Cohesion.

INT(vi) =(A,C, T, S, U)

Figure 5.2 shows the intension and extension of a vertex representing the
“AISC L-Shape Descriptions” entity. As a convention, the vertex intension is shown
above the vertex extension in the decomposition tree.

5.3.4 Procedures and Operations in DEAL-1 and DEAL-2 Versions

5.3.4.1 The Basic Version, DEAL-1

DEAL-1 successively considers the access-cohesion, concept-cohesion, time-
cohesion, and use-cohesion criteria. Under each criterion, four consecutive operations are
performed: ELABORATE, ASSIGN, COHERE, and DECOMPOSE. The first operation
is optional, whereas the others are required. These operations correspond to four steps of
the procedure as shown below. The procedure is as follows:

INPUT: A domain entity ed, which is initially described as a set of data items. ed
is the root and only vertex of the decomposition tree DT(ed) at this point.

OUTPUT: Prmitive entities ep-

page 82 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

PROCEDURE:
Step 1—Access-cohesion Criterion

1.1 ELABORATE: For each leaf vj of the tree, “elaborate” the entity ej represented by
vi by replacing the current data items with many more data items that are also more
specific than the current ones. Elaboration is an important problem-solving
technique in which the problem solver can add new assertions about the problem
[VanLehn 89]. These assertions reflect the problem solver’s current understanding
of the problem. DEAL-1, the “naive” version, uses this technique to enable the
modeler to “elaborate” gradually all the data items necessary to describe the domain
entity being analyzed. (Check the safe elaboration rule.)

1.2 ASSIGN: For each leaf vj of the tree, determine the unique logical access paths or
combinations of paths for accessing the data items contained in vj. The separate

paths or path combinations to which data items are assigned are generically called
“binders.” Assign each data item to its proper binder.

1.3 COHERE: For each leaf vj of the tree, find the subsets of ej in which all data items
“cohere” to the same binder (i.e., can be accessed by the same logical access paths).
These subsets, called “cohesive sets,” partition the entity ei.

1.4 DECOMPOSE: For each leaf vj of the tree, decompose vj into child vertices vj,
each of which corresponds to a single cohesive set. Also check the non-loss, disjoint
decomposition rule.

(optional) If new logical access paths that are either more specific or more direct
than those of ej can be determined for the newly created entities ej, repeat Steps 1.1
to 1.4.

At the end of this step, the leaves of the tree represent access-cohesive entities.
Step 2—Concept-cohesion Criterion

2.1-4 Repeat the same operations as in 1.1 to 1.4, except using the concept-cohesion
criterion. The ELABORATE operation has a restriction: The resulting entity must
still be access-cohesive. In the elaboration technique, the problem-solver cannot
invalidate any previous assertion when introducing a new one. The ASSIGN
operation must be based on the pre-defined conceptual categories to which the data
items relate.

At the end of this step, the leaves of the tree represent access-cohesive and concept-
cohesive entities.

Step 3—Time-cohesion Criterion

3.1-4 Repeat the same operations as in 1.1 to 1.4, except using the time-cohesion
criterion. The ELABORATE operation has a restriction: The resulting entity must
still be access-cohesive and concept-cohesive. The ASSIGN operation must be
based on the logical times at which the data items are instantiated.

Phan & Howard page 83

Chapter 5: Domain Entities Analysis Using DEAL

Alternatively, the tree can be “time-ordered.” Given two logical times ta and tp,
ta < tp if:

° tq refers to an activity that precedes the one that tp refers, or

° ta and ty refer to the same activity, but ta’s relative time is less than tp’s
relative time.

As an example, ty < tp since t; refers to the activity of configuring the tower
geometry, and tp refers to a later activity of the tower’s structural analysis.
To time-order a tree, arrange the leaves from left to right in the increasing time
order as defined above. Arrange non-leaf vertices in a similar fashion using their
children’s smallest logical time for each vertex.

At the end of this step, the leaves of the tree represent access-cohesive, concept-
cohesive and time-cohesive entities.

Step 4—Source-cohesion Criterion

4.1-4 Repeat the same operations as in 1.1 to 1.4, except using the source-cohesion
criterion. The ELABORATE operation has a restriction: The resulting entity must
still be access-cohesive, concept-cohesive and time-cohesive. The ASSIGN
operation must be based on the computational sources from which the data items
are derived.

At the end of this step, the leaves of the tree represent access-cohesive, concept-
cohesive, time-cohesive and source-cohesive entities.

Step 5—Use-cohesion Criterion

5.1-4 Repeat the same operations as in 1.1 to 1.4, except using the use-cohesion criterion.
This final step also requires all the leaves of the tree to be elaborated fully. The
ELABORATE operation has one restriction: The resulting entity must still be
access-cohesive, concept-cohesive, time-cohesive and source-cohesive. The
ASSIGN operation must be based on the primary data uses for which the data items

of e are used.

At the end of this step, the leaves of the tree represent access-cohesive, concept-
cohesive, time-cohesive, source-cohesive and use-cohesive entities.

page 84 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

PSEUDO-CODE: The following pseudo-code shown below summarizes this procedure.
Appendix B contains the pseudo-codes for the four operations.

procedure DEAL-1(vertex ed)

// This version only considers cohesion. CRIT is the set of
criteria considered. The criterion A in CRIT stands for
access-cohesion criterion, C for concept-cohesion, T for
time-cohesion, S for source-cohesion, and U for use-

cohesion.
begin

for each criterion I im CRIT = { A, C, T, S, U} do
begin

Ll:

I.1 for each leaf vi im DT(ed) do
optional ELABORATE(vi)

’
I.2 for each leaf vi in DT(ed) do ASSIGN(vi, I):
I.3 for each leaf vi in DT(ed) do COHERE(vi, I):

I.4 for each leaf vi in DT(ed) do DECOMPOSE(vi, I);

// {optional) If the current criterion is access-
cohesion, choose the option to repeat steps I.l1 to
I.4, this time using more specific and direct logical

~access paths.
if I == A then optional goto L1;
end

end

Phan & Howard , page 85

Chapter 5: Domain Entities Analysis Using DEAL

5.3.4.2 The Improved Version, DEAL-2

INPUT: A domain entity ed, which is initially described as a set of data items dk.

Previously analyzed domain entities ed’ and their domain entity
decomposition trees DT(ed’).
Previously identified primitive entities ep’.

OUTPUT: Primitive entities ep-
PROCEDURE:

DEAL-2 follows the same procedure as DEAL-1, except for the following:

A new optional operation, RESTART_AT, can restart the procedure at one of the
earlier steps. This operation allows the modeler to repeat an earlier step upon
discovering that he or she has done something incorrectly. It is designed to give the
modeler maximum control over the procedure.

An operation, SAVE_TREE_VERSION, is automatically triggered at the end of
each step to save the version of the tree that results from that step. This tree version
will be retrieved for use if the modeler decides to RESTART_AT the end of that
step.

A new optional operation, TERMINATE, allows the user to declare a node
terminated. A terminated node will no longer be considered in the remaining steps
of the procedure and will remain as a leaf. This operation gives the modeler more
control over where and when the procedure terminates. For instance, after Step 4 of
the procedure, the modeler may decide that an entity meets the requirements to be
considered primitive (i.e., access-cohesion, concept-cohesion, time-cohesion, and
source-cohesion) and needs no further analysis. The modeler can then declare the
corresponding vertex as terminated.

A new optional operation, RECALL, takes advantage of the previously analyzed
domain entities ed’ by enabling the modeler to recall any vertices of the existing
decomposition trees DT(ed’). Therefore, when the modeler identifies that a vertex
vi of the tree under consideration is the same as a vertex vj of a previously analyzed
tree DT(ed’), she can recall vj to replace vj. In that case, vj and all its descendants
vk in DT(ed’) will replace vj. Those vk that are leaves are automatically terminated

since they need not be considered in the remaining steps of the procedure. RECALL
is designed to improve the efficiency of the procedure.

The ELABORATE, ASSIGN, COHERE, and DECOMPOSE operations are
modified to enable the modeler to reuse previously identified primitive entities
(ep’). This is where DEAL-2 takes reusability into account. When those primitive
entities are reused, their vertices are also automatically declared to be terminated.

A new optional operation, UNDO, allows the user to roll back what has been done
to a vertex. In that case, the extension and intension of the vertex will be reset to the
ones that existed at the end of the previous step. (UNDO is a special case of
RESTART_AT, which enables the user to restart the procedure at any one of the
earlier steps.)

page 86 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

PSEUDO-CODE: The pseudo-code shown on the next page summarizes the DEAL-2
procedure. Pseudo-codes for ELABORATE-2, ASSIGN-2, COHERE-2, and
DECOMPOSE-2 are shown in Appendix B.

procedure DEAL-2(vertex eg, trees D', entities ep’)

//This version considers both cohesion and reusability. The
criterion A in CRIT stands for access-cohesion,
T for time-cohesion,

cohesion,
use-cohesion.

begin

LO:

end

C for concept-
and U for

S for source-cohesion,

for each criterion I im CRIT = {A, C, T, S, U} do begin

end

for each non-terminated leaf vi in DT(eg) do begin

if (RECALLABLE (vj, Dp’)) then RECALL(VJ,

end

Li:

I.0 for each non-terminated leaf vi im DT(eq)
optional ELABORATE-2(vji).

I.1 for each non-terminated leaf vi in DT(eg)
ASSIGN-2(vi, I);

I.2 for each non-terminated leaf vi in DT(eg)
COHERE-2(vi, I):

I.3 for each non-terminated leaf vi in

DECOMPOSE-2(vi , 1):

DT (eg)

vi);

do

do

// (optional) If the current criterion is access-
choose the option to repeat steps I.1l to
I.4, this time using more specific and direct logical
access paths.

cohesion,

if I == A then optional goto LI1;

optional UNDO() ;

if (user-input restart_procedure?) RESTART AT (usexr-

input I);

Phan & Howard

page 87

Chapter 5: Domain Entities Analysis Using DEAL

5.3.5 Rules

The DEAL procedures are governed by two rules:

Non-Loss, Disjoint Decomposition Rule—If an entity ej is decomposed into 7 entities ej,
then each non-key data item dj of ej also belongs to the extension of one and only one of
the entities ej. On the other hand, key data items with which users in the domain identify
instances can be kept in more than one ¢;j in order to preserve information.

Purpose: As in normalization [Codd 71a], [Ozsu 91], this important rule insures that no
data items will be lost during decomposition. It also insures that each entity is
decomposed into other disjoint entities. In addition, it enables the reconstruction of
entities represented in the tree: The extension and intension of a vertex vi can be directly

composed from those of its children vj using the set union operator U. Consequently, this
rule enables each step of the DEAL procedures to consider only the leaves of the tree.
This rule is checked after each decomposition of an entity.

Safe Elaboration Rule—If two leaves v; and vj of the tree are elaborated and as a result,
contain duplicate data items, they must be decomposed into three other child vertices,
each of which has a distinct extension. One of those children gets the duplicate data
items.

Purpose: The elaboration of entities in DEAL may introduce duplicate data items in
different leaves of the tree. Therefore, this rule insures that no two leaves of the tree will
contain duplicate data items. This rule is checked after each elaboration. '

5.4 Example of Using DEAL-1

This section illustrates the use of DEAL-1 by giving a brief analysis of a domain
entity called “Transmission Tower Members.” In this analysis, the domain entity is
initially described by one data item, tower_data. Also, the intensions of the vertices are
shown above their extensions in the decomposition trees, and data items whose name
ends in “_data” will be elaborated in a later step. A more detailed analysis is given in
Appendix B.

page 88 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

Step 1: Considering Access-Cohesion Figure 5.3 illustrates the first step that
considers the access-cohesion criterion and involves the four operations (i.e.,
ELABORATE, ASSIGN, COHERE, and DECOMPOSE).

» ELABORATE: Replace

ransmission { detailed_fabrication_data,

tower_data ” Tower design_data}
with two more specific Members B
data items.

(.
{ [Project-Folder].Member_ID, g

e ASSIGN: Determine
the logical access paths ransmission
& assign each data item Tower)

to the proper paths. Members { detailed_fabrication_data,

[Detailed-Drawing].Mark_No

design_data}

o COHERE: Find the
cohesive sets.

(In this case, there are
two.)

ransmission 1. { detailed_ fabrication_data }

Tower

Members 2. { design_data }

e DECOMPOSE:
Decompose

the non-cohesive vertex
into child vertices,

each corresponding

to a single cohesive set.

Members

Detailed ({ [Detailed- Structural ({ [Project-
Fabnchtxon/ Drawing]. Design Folder].
El;jec't;on Mark_No}) Members Member_ID})
arts .
{ detailed_ { design_data }

fabrication_data }

FIGURE 5.3: Step 1 of DEAL-1 Considering Access-Cohesion.
The shaded vertex in the last operation is the non-access-cohesive one that gets
decomposed.

Phan & Howard - page 89

Chapter 5: Domain Entities Analysis Using DEAL

The first step is repeated, this time using logical access paths that are either more
specific or more direct than those shown in the previous figure. The newly introduced
logical access paths are shown as part of the intension of the new leaves in Figure 5.4.
Due to space constraints, this figure shows only the decomposition tree that results from
this repetition. In addition, many new data items describing the transmission tower
members appear in the extension of those leaves as the result of repeating the
ELABORATE operation. These data items may come from the process functional

schemata that result from the functional analysis in Phase 2.

STEP 1 (repeated):
ACCESS-COHESION

using direct and specific
logical access paths

ransmission
Tower
Members

Detailed
Fabrication/
Erection
Parts

({ [Detailed-
Drawing].
Mark_No})
{ member_
detailing_data, Member Member Member
fabrication _ Shape Schematic Functional
features_ Represen- Represen- Descriptions
data tations tations
}
({[AISCM]. ({[Project- ({[Project-
"Angles". Folder- Folder-
Designation}) Structure- Design-Section].
Schematic Member_ID})
Representation].
Member_ID})
{shape_ { member_ { load_transferring_
dimensions_ topological_ function_data,
data, data, loading_conditions_
shape_ memberr_ data,
properties_ geometric_ load_cases_data,
data data external_loads_data

} } }

FIGURE 5.4: Repeating Step 1 of DEAL-1 Using Direct and Specific

Logical Access Paths. The shaded vertices are the non-access-cohesive ones
that get decomposed.

page 90 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

Step 2: Considering Concept-Cohesion This step involves the same sequence of
operations as the previous step. Figure 5.5 shows the conceptual categories assigned to
the leaves of the decomposition tree during the ASSIGN operation. Again, new data
items shown in the extension of the leaves were introduced as a result of the earlier

ELABORATE operation in this step.

STEP 2:
CONCEPT-COHESION

ransmission
Tower
Members

Detailed
Fabrication/

Erection
Parts

DFAB

Structural
Design
Members

{ member_layout_
data,
(fjr:tr; ng— Member Member Member
fabri,cati on Shape Schematic Functional
features Represen- Represen- Descrip-
data. tations tations tions
)
SHAP TOPO, FUNC,
GEO REQ
{shape_ {start_vertex, { purpose,
dimensions_ end_vertex, perceived_need,
data, point_1, load_applications,
shape_ point_2 destination,
properties_ } loading_conditions_data,
data load_cases_data,
) external_loads_data
LEGEND !

Geometry Form (GEO)

Topology Form (TOPO)

Shape Representation Form (SHAP)
Part Detailing/Fabrication Form (DFAB)

Functions (FUNC)
Requirements (REQ)

FIGURE 5.5: Conceptual Categories Assigned to the Leaves of the

Tree during the ASSIGN Operation in Step 2.

Phan & Howard

page 91

Chapter 5: Domain Entities Analysis Using DEAL

Figure 5.6 illustrates the tree after the DECOMPOSE operation based on the

concept-cohesive criterion.

STEP 2:
CONCEPT-COHESION

ransmission
Tower
Members

Detailed
Fabrication/
Erection
Parts

Structural
Design
Members

DFAB
{member_layout_
data,
framing_
data, Member
fabrication _ Shape
features_ Represen-
data tations
}
SHAP
{shape_
dimensions_
data,
shape_ Edge Line
propetties_ Descriptions Segments
data
}
TOPO GEO
{start_vertex, {point_1,
end_venrtex point_2
LEGEND } }

Geometry Form (GEQ) Functions (FUNC)

Topology Form (TOPO) Requirements (REQ)
Shape Representation Form (SHAP)
Part Detailing/Fabrication Form (DFAB)

To
Transfer

Load
Applications,

FUNC

{ purpose,
perceived_
need,

load_
applications,
destination

}

Specifications,

Member
Loading

REQ

{ loading_
conditions__
data,
load_cases_
data,
external_loads_
data

}

FIGURE 5.6: Decomposition Tree at the End of Step 2 Considering
Concept-Cohesion. The shaded vertices are the non-concept-cohesive ones

that get decomposed.

page 92 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

Step 3: Considering Time-Cohesion This step carries out the same successive
operations as the previous two steps. Figure 5.7 shows the logical times assigned to the
leaves of the decomposition tree determined during the ASSIGN operation. These logical
times refer to tower engineering activities as shown in graphical functional schemata in
Appendix A. Again, new data items shown in the extension of the leaves were introduced
as a result of the earlier ELABORATE operation in this step.

STEP 3:
TIME-COHESION

ransmission
Tower
Members

Detailed
Fabrication/
Erection
Parts

Structural
Design
Members

t7 11,18 11

{member_layout_

Member Member

data, Shape Schematic
framing_data, Represen- Represen-
fabrication _ tations tations
features_data,
} t6 11
{shape_
dimensions_
data, Edge Line
shape_ Descriptions Segments
properties__
data
}
t111 t112
{start_vertex, {point_1,
end_vertex point_2
LEGEND } }

t1 — Activity 11.51.2: Assume a Preliminary Geometry (see Appendix A.)
t2 — Activity 11.S1.4B: Determine Loading Conditions

t3 — Activity 11.51.4C: Determine Load Cases

t4 — Activity 11.51.5: Determine Loads

t5 — Activity 11.52.3: Determine Load Paths and Structural Systems

6 — Activity 111.51.2: Select Member Sizes & Analysis Elements

17 — Activity IV.S51.3: Lay Out Connections

t8 — Activity 1V.S2.1: Detail Fabrication Parts

Member
Functional
Descrip-
tions

To
Transfer
Load
Application

t511

{ purpose,
perceived_
need,

load_
applications,
destination

}

Member
Loading
Specifications

t211,1311,
t4 11
{ loading_condition_
description,

look_up_references,
referred_
load_sources,
load_case_description,
load_factor,
load_case_parameters,
load_category,
magnitude,
direction

}

FIGURE 5.7: Logical Times Assigned to the Leaves of the Tree during

the ASSIGN Operation in Step 3.

Figure 5.8 shows the decomposition tree resulting from this step. This tree is also

time-ordered.

Phan & Howard

page 93

Chapter 5: Domain Entities Analysis Using DEAL

STEP 3:
TIME-COHESION

Structural
Design
Members

Member

Member

Member

Member

X o Fabrication
ggg?;:;c Functional ReShape b Detailing Features
. . resen- escriptions
tations Descrip- R P

tions tations

611 t7 11 1811
{shape_ {member_ { fabrication _
dimensions_ layout_ features_data
data, data,
shape_ framing_data

properties_data }
}

To
Transfer

Edge Line
Descriptions Segments

Load
Applications
11 tHi2
{start_vertex, {point_1, t511
end_vertex point_2
} } { purpose,
Loading perceived_
Condition eed,
Specifications, load_
applications,
destination
211 311 i1
{ loading_ {load_case_ {load_category,
condition_ description, magnitude,
description, load_factor, direction
look_up_ load_case_ }
references, parameters
referred_
load_sources
}

FIGURE 5.8: Time-Ordered Decomposition Tree at the End of Step 3
Considering Time-Cohesian The shaded vertices are the
non-time-cohesive ones that get decomposed.

page 94 Phan & Howard

Chapter 5: Domain Entities Analysis Using DEAL

Step 4: Considering Source-Cohesion Due to space constraints, Figure 5.9 shows
only the two non-source-cohesive vertices that are decomposed in Step 4. Both vertices
contain data items that are derived from other data items in the same vertex. For instance,
shape section properties are derived from shape dimensions. New data items appear due
to the ELABORATE operation carried out in this step.

Detailing
ot

tations

Member
Memb Member AISC
Layout Framing L-Shape Shape
Features Descriptions Descriptions Properties

{overall_ {clearance_distance, {dimension_ {shape_
length, clearance_direction, d1, propenrties_
slope_drop, clearance_point, dimension_ data}
bevel_drop number_of_ringfills, dz,

bolt_length_ thickness_t

required, }

framing_point

FIGURE 5.9: Vertices Decomposed at the End of Step 4 Considering
Source-Cohesion. The shaded vertices are the non-source-cohesive ones that
get decomposed.

Phan & Howard page 95

Chapter 5: Domain Entities Analysis Using DEAL

Step 5: Considering Use-Cohesion To keep the example simple, let us consider
four selected primary data uses that involve the following activities: (1) the structural
engineer doing structural analysis of the tower (Activity II1.S1.4), (2) the structure
detailer laying out connections (Activity IV.S1.3), (3) the fabricator fabricating the tower
parts (Activity V.F1.4), and (4) the construction crews assembling the tower systems on
the ground (Activity V.C3.1). If these primary data uses are considered, the “Member
Framing Descriptions” vertex will be decomposed since not all of its data items are used
in the second and fourth primary data uses. Figure 5.10 shows the final tree that results
from this decomposition.

5.5 DEAL as a Medium for Mediating Data Representations

One important value of DEAL is that it provides a medium with which modelers
and domain experts can “mediate” data representations. The notion of “mediating
representations” is explained in [Bradshaw 92a). In fact, modelers and domain experts
can use DEAL to define a conceptual schema collaboratively without dealing with low-
level implementation codes. With DEAL, the modeler can gradually elicit knowledge
about the data used in the domain from the domain expert. In return, the modeler can
incrementally show the domain expert what the representations of that data will look like.
Using a CASE tool automating DEAL, the modeler can quickly develop a prototype of
these representations, and the domain expert can instantly review them for correctness
and accuracy. This type of communication is vital to the development of a schema that
will be used by domain experts. A similar CASE tool that is enhanced with a knowledge-
assisted, interactive user interface could be used directly by domain experts. In that case,
the expert could create his or her own data representations with the help of this CASE
tool. Different experts could use this tool to explore different data representations and can
discuss among themselves about the sharability of those representations. Finally, with the
criteria of cohesion and reusability, DEAL provides a basis for explaining and justifying
a database schema design.

page 96 Phan & Howard

{

16 'd “Tvaq Swisp) sisjpuy sauquy wiwo(:§ 121dvy)

“Uo0 0§ pue ‘osn eviep Arewid puodsds Y} 10J Spuels
zNd ‘osn vep Arewrid puodas oy} 103 spuels [} "Pasodwoosp 193 18y} SSUO JAISIYOI-SN-UOU 3y} I8 SINIGA POPeYS Y[,
‘uoisayoo-asn buriapisuo) s dejs 4o pu3 ay} je 8l uonisodwodaq :0L°s 3HNDIH

E_oalmc_E%: wio ntmo:ﬂmw_nm {sixe~ploJued
_ .um:m_ al _ 'HunTpjoJiuad {nun"eale
_ zmmcw_ Hoq | uojiRallp BOUBIESID ‘anjeA” pjoJjued ‘anfeA esse uo ¢
‘siybup o sequnu} OOUEISIP eoue.es|o) ‘aweu”plosjusd) ‘aureu eaJe} ‘op :."Wmﬂﬁ
1
{rna ‘ena} {ena} {zna} {tna} ‘fioBorespeo)
sainjee seinjeo " ({
Bujwely EeLTLT To) spioJlusn sealy ~cso uoleunsep
19qWBy Joquep uooes uojpes ¥ :xn.v_%m ‘suofjeoyidde
- peol
_ uojsuewp ‘peau
A.MMHVW%MM -u w:mE:w l._uwzwo._mn
‘iBus| feienc) cIsusuip esodind)

seinjea
1noke
lsquep

{ souejsip
~oul—abeb
‘aoueS|pT19S}0
‘B payound
‘Jojoweipajoy)

suopduoseq
Buyrereq
Jequiapy

seinjeaq
uojjeouqe

sped
uojpaig
/uoliesiqe
pajielaq

suojie}

-uasaidey
adeys

lequiay

sIequispy
1amo]
uojssiwisuel

suo|idusseq

edeys-]
osIv

suoljesyiddy
peo

lejsues|

ol

{

$80IN0S~peo|

{ “peuejel

siejsweled ‘saouslejel
~“@sed peoj ~dn™o0|
‘10loe) peo) ‘uonduosep
‘uodussep ~uojipuod
~osed peo}) “Bujpeo }

suol}

-dusseq
leuojiaun
laquiepy

slequiep
ubiseq
leanonig

'suofjesyjjoeds

uopuoy
Bupeon

{ {

2 wjod XeleA pue
'L wiod) 'XoUOA Le)s)
sweuibog suonduoseq
aun sbp3g

suofie}
-uesaidey
opewesyos
Jsquisiy

NOIS3IHOO-3SN
‘G d3a1S

Chapter 5: Domain Entities Analysis Using DEAL

5.6 Chapter Summary

DEAL is a method that aids the modeler in the conceptual modeling of a given
facility engineering domain as mentioned in Chapter 1. DEAL’s key idea is the
decomposition of domain entities using the criteria of cohesion and reusability to obtain
primitive entities. DEAL provides the terms and concepts, assumptions, graphical
representation, procedure, operations, and rules.

In the P-C Approach, the domain entities analysis using DEAL follows the
preliminary domain study and functional analysis phases and makes use of the results
from those phases. Using the basic DEAL-1 version of the procedure, the modeler can
decompose domain entities by considering how their data items can be accessed, to which
conceptual categories they relate, at which logical time they are instantiated, from which
source they are derived, and how they are used in activities of the engineering process.
These five dimensions (i.e., access-cohesion, concept-cohesion, time-cohesion, source-
cohesion, and use-cohesion) indicate how well the data items of an entity relate to one
another. Using the improved version, DEAL-2, the modeler can take advantage of
previously analyzed domain entities and can reuse primitive entities identified from those
domain entities. Reusability measures the extent to which an entity can be reused (i.e.
used without modifications) in the description of other domain entities. The P-C
Approach defines five levels of reusability: domain-entity-type reusability, domain
reusability, industry reusability, industry-type reusability, and universe reusability. In
both versions, a CASE tool automating the procedure is needed to assist the modeler in
analyzing highly data-intensive domain entities in real life.

The conceptual primitive entities resulting from the domain entities analysis are
designed into logical object classes of the subsequent design of the domain primitive
schema in Phase 4. To aid the modeler with this design, the P-C Approach provides an
object-oriented data model, the Primitive-Composite (P-C) Data Model, and an
accompanying method, the P-C Data Modeling Method, for using this model. The next
chapter describes the domain schema design using both the model and method.

Finally, DEAL provides a medium with which a modeler can gradually elicit
knowledge about the data used in the domain from a domain expert. In return, the
modeler can incrementally show the domain expert what the representations of that data
will look like.

page 98 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

Chapter 6

Domain Schema Design Using
the P-C Data Model and Method

Chapter Abstract:

' Inthe P-C Approach, the design of a domain primitive schema involves refining those
primitive entities identified in the preceding domain entities analysis, transforming
them into primitive classes, and building primitive characterization hierarchies with
these classes. To aid the modeler with this design, the P-C Approach provides an
object-oriented data model, the Primitive-Composite (P-C) Data Model, and an
accompanying method, the P-C Data Modeling Method, for using this model. The
model includes concepts such as primitive and composite classes and instances, and
several relationship types such as generalization, instantiation, aggregation,
association, and derivation. The method provides the steps for the design of a
domain primitive schema and a composite schema based on the concepts of the
model. In addition, the method provides rules and guidelines for the design of domain
primitive schemata or composite schemata. This chapter describes both the model
and method in detail.

Organization:

6.1 Introduction
6.2 The P-C Data Model
6.2.1 Building Blocks of the Model
6.2.2 Direct Extensions to Object-Oriented Concepts
6.2.3 Relationships and Relationship Types
6.3 The P-C Data Modeling Method
6.3.1 Overview of the Method
6.3.2 Entity Dependencies and Dependency Types
6.3.3 Designing a Domain Primitive Schema
6.3.4 Designing a Composite Schema
6.4 Chapter Summary

Phan & Howard page 99

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

6.1 Introduction

The object-oriented paradigm provides useful concepts and techniques for
representing entities in the real world. However, it leaves up to the modeler the task of
deciding how to represent the problem domain in terms of object classes; how to organize
object classes into class hierarchies; how to determine the attributes, number of attributes,
and methods of each class; and so on. While some rules for making these decisions are
imposed by the nature of the modeling problem at hand, others are dictated by the
available constructs in the programming language or system in use. In any case,
additional requirements and methods that can assist the modeler in meeting these
requirements and thus insuring good design are clearly needed. Without them, the
resulting object schema may be poorly defined and, consequently, difficult to maintain
and upgrade.

In the P-C Approach, the domain primitive schema includes primitive classes that
come from primitive entities identified in the domain entity analysis. Therefore, the
design of this schema is optimized using the criteria of cohesion and reusability: Each
primitive class is a module of attributes designed to have maximum cohesion and
reusability. Moreover, primitive classes are organized into separate class hierarchies
called “primitive characterization hierarchies.” Each hierarchy involves a single concept
about form, function, or behavior. This separation yields clean and modular data
representations for describing facility design objects. Users can combine primitive classes
from these hierarchies to customize composite classes representing their own views about
the facility design objects. In addition, primitive classes can be added incrementally to the
schema and, as a result, more composite classes can be defined from primitive classes,
both old and new. This graceful extension of the schema can accommodate evolving
life-cycle phases.

To aid the modeler in designing the domain primitive schema, the P-C Approach
provides an object-oriented data model, the Primitive-Composite (P-C) Data Model, and
an accompanying method for using this model. The model includes concepts (such as
primitive and composite classes and instances) and several relationship types (such as
generalization, aggregation, and association). The method provides the steps for the
design of a domain primitive schema and a composite schema based on the concepts of
the model. In addition, the method provides detailed rules and guidelines for the design of
domain primitive schemata or composite schemata. Both the model and method were
applied to the domain of transmission towers, the result of which will be presented in the
next chapter.

6.2 The P-C Data Model
6.2.1 Building Blocks of the Model

The key object-oriented concepts (i.e., classes, attributes, methods, and instances)
serve as the core of the P-C Data Model. (Before continuing, the reader may wish to
review Section 2.1.3.2 of Chapter 2, which explains these concepts.) As Figure 6.1
shows, this model incorporates two sets of extensions to those concepts:

. The first set includes direct extensions to the key object-oriented concepts such as
“primitive classes,” “primitive characterization hierarchies,” “‘composite classes,”
“primitive instances,” “typical class,” etc. This set also includes concepts that
support data modeling and data exchange using the P-C Approach: “domain
primitive schema,” “primitive database,” “composite schema,” and “composite
database.”

page 100 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Dala Model and Method ~ —

e Direct Extensions
1. Primitive Class

2. Primitive Characterization Hierarchy
3. Domain Primitive Schema

4. Primitive Instance

Key O-O
5. Primitive Database Concepts

6. Composite Class
— Class

7. Composite Schema

8. Composite Instance — Instance

— Attribute
— Method

9. Composite Database

PRI & & Sddd e g S e

10. Typical Class

”””””””””””””

11. Required Attribute
Optional Attribute

Default Attribute

Delayed Atiribute

e Other Extensions
Formalized Relationship Types:

1. Generalization
2. Instantiation
3. Aggregation
4. Assocation

5. Derivation

FIGURE 6.1: Building Blocks of the Primitive-Composite Data Model.

. The second set of extensions consists of a number of formalized relationship types

(i.e., generalization, instantiation, aggregation, association, and derivation) that are
based on the key abstraction methods (or modeling techniques) used in the model.

6.2.2 Direct Extensions to Object-Oriented Concepts

The concepts presented below constitute the first set of extensions to the key object-
oriented concepts in the P-C Data Model.

1. Primitive Class—A primitive class is a module of attributes that is designed to
have maximum cohesion and reusability. Each primitive class belongs to a primitive
characterization hierarchy of a domain primitive schema.

Explanation: Primitive classes share the following design properties: Each primitive

entity identified from the preceding domain entities analysis is refined and transformed
into a primitive class during the domain schema design. Therefore, cohesion and
reusability determine which attributes belong to the primitive class. Cohesion measures
how closely the attributes relate to one another, while reusability measures the extent to

which the object class as a whole can later be reused. Each primitive class is designed to

Phan & Howard page 101

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

be as cohesive and reusable as possible. In addition, each primitive class is rooted in only
one primitive characterization hierarchy in a domain primitive schema. This property
ensures the conceptual simplicity of primitive classes.

Example: The entity, «AISC L-Shape Descriptions,” introduced in the previous chapter is
designed as a primitive class. The class definition includes five attributes: “shape size
designation,” “dimension unit,” «“dimension d1,” “dimension d2,” and “thickness t.” The
last three attributes come directly from the domain entity analysis, whereas the first two
attributes are part of the refinement that completes the entity description.

2. Primitive Characterization Hierarchy—A primitive characterization hierarchy is
a hierarchy of primitive classes that represent increasing degrees of specialization of a
single concept pertinent to one conceptual category.

Explanation: The modeler can design a primitive class hierarchy that moves from the
more general classes to the more specialized ones, as long as the hierarchy depicts one
concept. This design property eliminates the problem of non-homogeneous class
hierarchies described in Chapter 2 and produces clean, highly modular data
representations that can later be assembled to describe complex facility design objects.

Example: Figure 6.2 shows a sample primitive characterization hierarchy in the domain
-primitive schema for transmission towers, which involves the concept of AISC-standard
shape descriptions.

AISC
Shape
Descriptions
AISC AISC AISC AISC AISC
Combined Rolled Shape Pipe Tubing Bar
Shape Descriptions Descriptions Descriptions Descriptions
Descriptions
AISC AISC
Symmetric L-Shape
Rolled Shape Descriptions
Descriptions
AlS/ ‘\A|SC AISC T subclass-of
I-Shape C-Shape T-Shape relationship
Descriptions Descriptions Descriptions

FIGURE 6.2: A Sample Primitive Characterization Hierarchy.

page 102 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

3. Domain Primitive Schema—A domain primitive schema (or “primitive schema’)
is a set of primitive characterization hierarchies that define the basic concepts used by
experts in a domain. (This schema is the end result of the modeler’s work using the P-C
Approach).

Example: In Chapter 7, the domain primitive schema for transmission towers includes
several primitive characterization hierarchies that define the basic concepts of the
domain. These concepts belong to different conceptual categories concerning form,
function, and behavior in that domain.

4. Primitive Instance —A primitive instance is an instance of a primitive class.

5. Primitive Database—A primitive database contains instances of primitive classes
from a domain primitive schema. Those primitive classes are necessary to describe a
facility design object or a set of design objects.

6. Composite Class —A composite class is a subclass, aggregation, or association
of several primitive classes (or even of other composite classes) that a user! of the
domain primitive schema customizes. To customize a composite class, the user first
selects primitive classes from different primitive characterization hierarchies and then
determines the relationships (of generalization, aggregation, and association types)
between those primitive classes and the composite class under construction.

Explanation: A composite class provides a construct for formalizing an abstraction of
several concepts that a single primitive class cannot represent. Composite classes exhibit
the following design properties, which distinguish them from primitive classes: First,
users of the domain primitive schema create these classes to represent their own complex
abstractions about the facility design objects. As a result, composite classes typically
contain a large number of attributes depicting various aspects of the design objects.
Composite classes and class hierarchies need not be predefined because users can always
assemble their own at any time. Composite classes typically are not access-cohesive,
concept-cohesive, time-cohesive or source-cohesive.

Example: Figure 6.3 shows the customization of a composite class called “Transmission
Tower Legs As Analyzed.” This composite class represents one specific abstraction of
the transmission tower legs when they are subjected to structural analysis during the
Tower Structural Detailed Design phase.

7. Composite Schema—A composite schema includes a subset of the primitive
schema and a set of composite classes that represent a user’s view of the underlying
facility data and therefore, suits the particular needs of that user.

8. Composite Instance—A composite instance is an instance of a composite class.

9. Composite Database—A composite database is a database that contains
instances of composite and primitive classes from a composite schema.

10. Typical Class—A class whose instances share some specific common attribute
values. A typical class does not add new attributes to those inherited from its superclass;
however, it must have at least one default attribute whose value is predefined. Either a
primitive class or a composite class can be a typical class.

1 A user here means anyone who uses a domain primitive schema to customize a view, to build a
primitive or composite database, to formulate a query on such a database, or to build a new computer
application sharing the data representations of the primitive schema. On the other hand, a modeler strictly
means the person who designs the domain primitive schema.

Phan & Howard page 103

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

Explanation: Typical classes provide useful and efficient constructs for representing real-
life facility design objects. With typical classes, the modeler can create class templates
for prototypical facility design such as the floor layout design described in the following
example. (Typical classes correspond to the typical entity definitions in the SSFDM
model [Lavakare 89] and to the “specific level” of Product Definition Unit in the GARM
model [Gielingh 88].) Default attributes are explained next.

Example: In a building floor layout design, the same prototypical design is used for all
floor levels. In this case, typical classes can capture the data common to the floor levels
(e.g., outer beam sizes, girder lengths, column locations, etc.). Instances of these classes
then include the detailed data particular to each floor level.

Material LC‘;‘?SZ—
Moduil Specifications
) Static_
Section_ Concentrated._
Areas Load_ 7

y Specifications .y

Structural_ T At Joint

Analysis_ Load_

Node_ Application_
Descriptions Specifications
Two_Node_
Analysis_
Element _ -y .
Descriptions Tower_
Members_
As_
Analyzed
LEGEND

Primitive Primitive - Ssubclass relationship
class selected Characterization (generalization)
from a Hierarchy part-of relationship
hierarchy (aggregation)

Composite
class

" referred-by relationship
(referential association)

FIGURE 6.3: Customization of a Composite Class.

page 104

Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

11. Required, Optional, Unique, Default, and Delayed Attributes— A “‘required
attribute” must always have a known value that the user specifies. By contrast, an
“optional attribute” can have an unknown value at any time. These two types of attributes
are mutually exclusive. A “unique attribute” has a distinct value for each instance. A
“default attribute” has a predefined value used for every instance where the user does not
specify a value. A “delayed attribute” of a new instance has an unknown value until the
end of the delay time specified by the user.

Explanation: All of these attribute types must be considered in the design of classes, both
primitive and composite. They directly affect the implementation of the classes. Data
items of primitive entities from the domain entities analysis are converted into required
attributes of primitive classes during the domain schema design. Optional attributes
enable the modeler to add desirable but non-essential information to a class definition.
Unique attributes apply mainly to user-defined object identifiers. Delayed attributes are
primarily used for relationship attributes of the derivation type, which will be explained

later. Delayed attributes provide users with the flexibility of delaying the creation of
derived instances.

Example: The “AISC L-Shape Descriptions” primitive class defined earlier has a required
and unique “shape size designation” attribute, three required attributes (i.e., “dimension
d1,” “dimension d2,” and “thickness t”), a “dimension unit” attribute defaulted to “inch,”
and a delayed “derived section properties” attribute. Here, the user can delay the
computation of the section properties until a later time.

Discussion: The modeler must declare the attribute types for each attribute and the default
value in the case of a default attribute. The user must specify the delay type for each
delayed attribute of a new instance. The Structural Data Model [Wiederhold 80] defines
three possible delay types: delaying until the execution of a certain transaction, delaying
until a specific time, and delaying until the end of a specific interval. Although optional
attributes are desirable in some cases, they adversely affect the time-cohesion and use-
cohesion of a class. Therefore, rules and guidelines of the modeling method closely
monitor and direct the use of this attribute type.

6.2.3 Relationships and Relationship Types

Relationships between objects play an important role in the object-oriented
paradigm. They augment the description of object states and establish direct links
between objects [Abdalla 89]. However, the object-oriented paradigm supports
relationships only in terms of logical pointers from one object to others. These pointers
do not capture semantics nor do they enforce any integrity constraints. Formalized
relationship types are an integral part of the P-C Data Model since they provide the
mechanism for explicitly representing the way in which facility design objects are
interrelated, for capturing the semantics of these relationships (thereby reducing the
complexity of embedding such semantics elsewhere), and for relating primitive classes
and instances to composite classes and instances.

6.2.3.1 Definition of Relationships
Relationship—A relationship represents an explicit directed link between two or more

classes, between two or more instances, or between two or more classes and instances.

Explanation: A relationship can also be seen as a logical pointer with built-in semantics.
The elements at the origin of the relationship link are called “source.” Those at the other
end are called “destination.”

Phan & Howard page 105

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

Example: "leg23" is part of "panel2," and "leg23" is referred to "A36 steel material yield
strength,” where part of and referred to are relationships between the indicated instances.

Inverse Relationship— Relationships are usually defined in pairs: A relationship
represents a link in one direction, and its inverse relationship describes a link in the
opposite direction.

Example: "leg23" is part of "panel2," and "panel2" has subpart "leg23."

Relationship Attribute—Within a class definition, a relationship attribute 1s a
place-holder for a relationship to another class. The specification of the relationship
attribute declares the expected destination class.

Cardinality—The “cardinality” of a relationship (e.g., one-to-one, many-to-many, many-
to-one, etc.) specifies the expected number of elements (classes or instances) at each end
of the relationship.

6.2.3.2 Types of Relationships

The P-C Data Model supports five relationship types that are based on the key
abstraction methods used in the model. They are: “generalization,” “instantiation,”
“aggregation,” “referential association” and “derivation.” These relationship types are

consistent with those found in the literature on data modeling.

Generalization—The abstraction method of “generalization” [Smith 77] is used to relate
a subclass to a superclass. Generalization makes use of inheritance. Relationships of this
type are called subclass of and have inverse relationships called subclass. A class can
have zero or more superclasses. A class can also have zero or more subclasses.

Instantiation—The abstraction method of “instantiation” enables us to define instances
from a class or a typical class. Relationships of this type are called instance and have
inverse relationships called instance of. A class can have zero or more instances;
however, each instance can be instantiated from only one class.

Aggregation—The abstraction method of “aggregation” [Smith 77] is used to construct
an instance representing a complex design object from instances representing components
of that object. Relationships of this type are called part of and have inverse relationships
called subpart . For convenience, we call the source of a part of relationship “component
instance” and its destination “aggregate instance.” An aggregate instance can have several
component instances. A component instance can be part of one or more aggregate
instances.

Referential Association—The abstraction method of “referential association” allows us
to define a reference from one instance to another. Relationships of this type are called
referred to and have inverse relationships called referred by. For convenience, we call the
source of a referred to relationship “referring instance” and its destination “referred
instance.” A referring instance can have zero or more referred instances. A referred
instance can be referred by zero or more referring instances.

Derivation—The abstraction method of “derivation” enables us to compute or derive the
attribute values of an instance from those of another instance. Relationships of this type
are called derived from and have inverse relationships called derives. For convenience,
we call the source of a derived from relationship “derived instance” and its destination
“deriving instance.” An instance can be derived from only one instance of another class.
Similarly, a deriving instance can derive only one instance of another class. (However, an
instance can derive one or more instances of different classes.)

page 106 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

6.2.3.3 Semantics of Relationships

A relationship of a type has certain implications for the existence and integrity of its
source and destination elements. The “semantic rules” for the relationship type formalize
these implications. These rules govern the creation, storage, modification, and deletion of
the elements linked by the relationships. These rules are important to the definition of the
P-C Data Model, as well as to the implementation of a primitive or composite schema
and to the semantic integrity maintenance of a primitive or composite database.

Semantic Rules of the Generalization Relationship Type:
1. A class cannot be deleted from the schema unless it has no subclasses.

2 A class definition in the schema cannot be modified unless it has no subclasses or
its subclasses have no instances.

Semantic Rules of the Instantiation Relationship Type:

1. The attribute values of an instance can be modified, but the behavior defined by the
class methods cannot.

2. Aninstance with no relationships to other instances can always be deleted from the
database. An instance with relationships can be deleted only if the semantic rules of
those relationships allow the deletion.

3. A class can be deleted from the schema only if all its instances are first deleted from
the database. (This rule goes together with the first rule of the generalization
relationship type.)

4. A class definition in the schema cannot be modified unless it has no instances. (This
rule goes together with the second rule of the generalization relationship type.)

Semantic Rules of the Aggregation Relationship Type:

1. An aggregate instance can be stored in the database with zero or more component
instances, but a component instance cannot be stored unless it is owned by an
aggregate instance.

2. The deletion of an aggregate instance from the database at any time triggers the
deletion of all its component instances, providing that no other aggregate instance
or instances jointly own these component instances. A component instance can be
deleted only if it is no longer part of some aggregate instance or instances.

3. The modification of an aggregate instance does not affect its component instances,
and vice versa.

Semantic Rules of the Association Relationship Type:

1. A referred instance can be stored in the database independently of all other
instances. A referring instance can be stored in the database with or without referred
instances, depending on the type of its relationship attribute (i.e., required or
optional).

2. The deletion of a referring instance from the database at any time does not affect the
existence of all its referred instances. However, a referred instance can be deleted
only if it is no longer referred by other instances.

Phan & Howard page 107

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

3. The modification of a referring instance does not affect its referred instances, and
vice versa.

Semantic Rules of the Derivation Relationship Type:

1. A deriving instance can be stored in the database with or without its derived
instance (or instances of different classes) as long as the delay type is specified. A
derived instance cannot be stored without a source instance.

2. The deletion of a deriving instance from the database at any time triggers the
deletion of all its derived instances (since derived instances are meaningful only if
their deriving instance exist). A derived instance can be deleted only if its deriving
instance is first deleted.

3. The modification of a deriving instance requires the modification of the derived
instances. This is the only condition under which a derived instance can be
modified.

6.2.3.4 Permissible Relationship Types Among Primitive and
Composite Classes and Instances

The permissible relationship types among primitive and composite classes and
instances can be summarized as follows:

. The relationships between primitive classes of any two consecutive levels in a
primitive characterization hierarchy are of the generalization type. The definition of
primitive classes can never use multiple inheritance.

e The relationships between primitive classes from different primitive
characterization hierarchies are of the aggregation, association, or derivation type.

. The relationships between primitive classes and composite classes and between two
composite classes are of the generalization, aggregation or association type. The
definition of composite classes can take advantage of multiple inheritance. (The
derivation relationship type is inappropriate in relating a primitive class to a
composite class.)

. The relationships between primitive instances and their primitive classes, or
composite instances and their composite classes, are of the instantiation type.

6.3 The P-C Data Modeling Method

6.3.1 Overview of the Method

6.3.1.1 Steps for the Design of a Domain Primitive Schema

The P-C Data Modeling Method provides the steps for the design of a domain
primitive schema (i.e., Phase 4 of the P-C Approach) based on the concepts of the P-C
Data Model. Figure 6.4 shows three major steps for doing this:

. Refining Primitive Entities: This step involves adding to primitive entities any data
items necessary to complete their description and representing the dependencies
between these entities. The representation of entity dependencies is an important

page 108 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method ~— ——

part of the design. Section 6.3.2 will explain entity dependencies and discuss the
different types.

° Transforming Refined Primitive Entities into Primitive Classes: This step involves
converting entities into object classes, converting data items into attributes, and
adding methods for computing derived attribute values and for setting and
retrieving independent attribute values.

e Building Primitive Characterization Hierarchies with the New Primitive Classes:
This step involves identifying the appropriate characterization hierarchies for the
new primitive classes, creating new hierarchies if necessary, adding primitive
classes into the appropriate hierarchies, and expanding the hierarchies.

Section 6.3.3 goes over these steps in more detail. Section 6.3.4 then shows the
steps for the design of a composite schema, which are included in this modeling method.

RULES &
STEPS GUIDELINES

—1. REFINEMENT:

1.1 Check entity descriptions' completeness.

1.2 Review & represent all dependencies
between entities.

—2. TRANSFORMATION:
2.1 Convert entities to classes, data items to attributes.

2.2 Review class definitions.
2.3 Check attributes.
2.4 Add methods.

_3. BUILDING PRIMITIVE CHARACTERIZATION
HIERARCHIES:

esign
ules &
uidelines
r

3.1 Identify or create appropriate hierarchies.

3.2 Add primitive classes to the appropriate hierarchies
& expand these hierarchies.

FIGURE 6.4: Overview of the Design of a Domain Primitive Schema.

Phan & Howard page 109

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

6.3.1.2 Rules an& Guidelines of the Method

Figure 6.5 summarizes the rules and guidelines of the method, which can assist the
modeler in designing domain primitive schemata and composite schemata. These rules
and guidelines also ensure desirable qualities such as minimality, expressiveness,
efficiency, and self-explanation of the resulting schema [Batini 92].

Usage Modelers should use these rules and guidelines when they design a domain
primitive schema as described in the previous section, or a composite schema.
Alternatively, experienced modelers can use these rules and guidelines as a check list to
verify the qualities of the resulting schema after they have completed their design. In
either case, modelers should view rules as specifications that they must follow in order to
achieve good results and also, save time and effort. They should consider guidelines to be
potentially useful suggestions in addition to the rules.

Organization The rules and guidelines are divided into two major groups: (1) those
for the refinement of entities and (2) those for the design of object classes, attributes,
methods, and class hierarchies. Within each group, rules and guidelines can have other
component rules and guidelines. They are also listed in the order in which the modeler
should consider them while designing a schema.

Label of Rules and Guidelines The following conventions are adopted here to label
the rules and guidelines for later reference:

o R for rules and G for guidelines,

° REFI for entity refinement (i.e., the first category of rules and guidelines) and DESI
for design (i.e., the second category), and

° O for the design of object classes, A for the design of class attributes, M for the
design of class methods, and H for the design of object class hierarchies.

Component rules and guidelines within each group are labeled using subscripts such
as.l, .2, .3, etc.

Full Documentation of Rules and Guidelines A consistent format is adopted here
to document the rules and guidelines fully. Whenever possible, documentation includes
the following items: label and name (e.g., “R-REFL1” and “Complete Entity
Descriptions™), statement, explanation, example(s), exception(s), counterexample(s),
discussion (i.e., applicability, advantages, tradeoffs, and other comments) of the rule or
guideline; and references to other relevant rules and guidelines. Appendix C contains the
full documentation of all rules and guidelines of the P-C Data Modeling Method.

page 110 Phan & Howard

Chapterv 6: Domain Schema Design Using the P-C Data Model and Method

REFI R-REFI1.1 Complete entity descriptions Entity

-REFI.2 Addition of necessary data items Refinement
Rules &
-REFI.3 Addition of optional data items Guidelines

-REFi.5.1.2 Option 2
-REF1.5 How to represent entity dependencies? R-REF1.5.1.3 Option 3

R-REF1.5.1 Dependencies by derivation# _R-REF|.5.2.1 Option 1
R-REF1.5.2 Dependencies by definition / R-REFI5.2.2 Option 2

R-REF1.5.3 Dependencies by referencqu‘ggi:-g-g-; 88{:82 ;

//
DESI.O G-DESI-0.1 Explicit class names. Design

DESIF— (Design G-DESI-0.2 Cl i i
Obiject - -O. asses with few attributes Rules &
Classes) G.DESI-A.1 Explicit attribute names. Guidelines
DESILA G-DESI-A.2 User-defined object identifiers
Design G-DESI-A.3 Redundant relationship attributes

-REFI.4 Include all dependencies in entity descriptionsZ';:'REF‘-5-1-1 Option 1

Attributes)
G-DESI-A.4 No New Attributes in Composite Classes

ESILM G-DESI-M.1 Explicit method names.
ﬁ;ﬁ‘ggs) SR-DESI-M.z Methods for derived attributes
R-DESI-M.3 Methods for independent attributes
ESLH R-DESI-H.1 Do not misuse relationships of generalization type.
gsssfn R-DESI-H.2 Define a common superclass.

Hierarchies\ \\G-DESI-H.3 Define a typical class.
G-DESI-H.4 Guidelines for new subclass in a hierarchy

G-DESI-H.4.1 No subclass without attributes
G-DESI-H.4.2 No subclass when a relationship will do.

G-DESI-H.4.3 No level when a discriminating attribute
will do.

-DESI-H.5 Shallow primitive characterization hierarchies

LEGEND -DESI-H.6 No composite class hierarchies

G- Guideline ——Component rule
R- Rule or guideline

FIGURE 6.5: Summary of Rules and Guidelines of the P-C Data Modeling
Method. The names of the rules and guidelines are shortened here due to space
constraints.

Phan & Howard page 111

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

6.3.2 Entity Dependencies and Dependency Types

The domain entities analysis in Chapter 5 deals with decomposing large sets of data
items describing domain entities into more manageable, cohesive, and reusable modules
called “conceptual primitive entities.” The domain schema design in this chapter involves
building an object-oriented schema from those primitive entities. Ideally, these cohesive
and reusable primitive entities should also be self-descriptive and independent modules.
In reality, they are not independent of one another. The following are examples of entities
that depend on other entities: “Cartesian Vector Direction Cosines” on “Cartesian
Vectors,” “Line Segments” on “Points,” “Loading Condition Specifications” on “Load
Source Specifications,” and “Design Decision Descriptions” on “Design Alternative
Descriptions.” Therefore, “entity dependencies” (or “entity coupling”) are another
important dimension that must be considered in the schema design.

Entity Dependencies Entity dependencies are primarily concerned with how much
must be known about other entities in the schema to describe an entity. An entity, X, is
dependent on another entity, Y, if the description of X requires some description of Y.
That degree of dependency is determined by the type of entity dependency, which will
soon be explained. An entity dependency is not exactly the same as a relationship
(defined earlier in Section 6.2.3.1). An entity dependency conceptualizes a way in which
one entity is dependent upon another, whereas a relationship can represent that
dependency using a logical pointer between two classes or instances. In fact, considering
dependencies between entities in the domain schema design precedes transforming these
entities into classes and defining relationships between those classes. We need to consider
entity dependencies for two reasons:

1. The notion of entity dependency is consistent with that of entity cohesion: The entity
cohesion’s evaluation in the domain entity analysis complements the entity
dependencies’ consideration in the domain schema design in order to produce a
modular schema design in the end. While the former measures the properties inside
the entities, the latter examines the dependencies outside the entities.

2. Entities and entity dependencies provide an implementation-independent level of
abstraction above the logical level of classes and relationships: This level of
abstraction enables the modeler to think about how one entity is dependent on other
entities in the schema. The modeler can then decide how to represent that
dependency using relationships or other means at the next logical level. Not every
dependency type must be represented using relationships. In fact, the rules and
guidelines in Section 6.3.3 will show ways to represent entity dependencies without
using relationships.

Entity Dependency Types Like cohesion and reusability, entity dependency can be
operationalized by distinguishing the following three types:

Entity Dependencies by Derivation—An entity, X, is dependent by derivation on another
entity, Y, if some data item values of every instance of X are derived from those of some
instance of Y.

Notation: X I>py-derivation Y-

page 112 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

Example:
e “Cartesian Vector Direction Cosines” [>by-derivation Cartesian Vectors”
e “Path Connectivities” I>by-derivation Path Descriptions”

o “Load Case Specifications” [>py-derivation ‘L.oading Condition Specifications”

Entity Dependencies by Definition—An entity, X, is dependent by definition on another
entity, Y, if X is defined, according to our knowledge and experience, in terms of Y. In
other words, an occurrence of X includes occurrences of Y as part of its description.

Notation: X [>by-definition Y-

Example:

e “Line Segments” I>by-definition ‘‘Points”

e “Structural Analysis Node Descriptions” [>py-definition *Cartesian Coordinates”
e “Surfaces of Revolution” I>by-definition *‘Curves”

Entity Dependencies by Reference—An entity, X, is dependent by reference on another
entity, Y, if Y contains further information pertinent to X.

Notation: X I>py-reference Y-

Example:

» “Loading Condition Specifications” |>by-reference ‘Load Source Specifications,”
e “Design Decision Descriptions” |>py-reference ‘Design Alternative Descriptions”
e “Design Artifact Descriptions” I>by-reference *‘General Requirements”

6.3.3 Designing A Domain Primitive Schema

This section describes in detail the steps involved in the design of a domain
primitive schema (i.e., Phase 4 of the P-C Approach). Due to space constraints, this
section describes only briefly all the rules and guidelines used in the design. Each
description includes a label (e.g., “R-REFL.17), name (e.g., “Complete Entity
Descriptions”), statement (shown in italics), explanation and example of the rule or
guideline. Appendix C contains the full documentation of the rules and guidelines.

The design of a domain primitive schema involves:

1. Refining Primitive Entities For each primitive entity identified from the domain
entities analysis:

1.1 Check the entity description’s completeness in accordance with Rule R-REFI.1 and
add new data items using Rules R-REFI.2 and R-REFI.3 if the description is
incomplete.

R-REFL1 (Complete entity descriptions): An entity description must include all the data
items that the entity needs. This rule ensures that all entity descriptions are complete and
self-sufficient in terms of their data items. For example, an “AISC L-Shape Descriptions”
entity description (which includes “dimension d1,” “dimension d2,” and “thickness t”
data items) needs another data item, “dimension unit,” to complement the data items
already included.

Phan & Howard page 113

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

R-REFL2 (Safe addition of necessary data items to a primitive entity description): An
incomplete primitive entity description can include necessary new data items only if they
do not affect its cohesion. Otherwise, the modeler must re-evaluate the entity’s cohesion
(and possibly decompose the entity as in Phase 3). For example, the modeler can “safely”
add the dimension unit data item to “AISC L-Shape Descriptions” in the previous rule.
Descriptive data items are items such as units, names, verbose descriptions, notes,
references, user-defined identifiers, etc. that further enhance an entity description.
“Dimension unit” is such an item. Adding such data items will not affect the cohesion of
primitive entities.

R-REFL3 (Addition of optional data items to an entity description): An entity description
can include optional data items, which will be converted into optional attributes in the
equivalent class definition. However, these data items must be limited to few (or even
one) per primitive entity. This rule provides the modeler with the flexibility of adding
information to an entity description. However, optional data items affect the
time-cohesion of primitive entities since the optional data item values need not be
assigned at any time. (By definition, a primitive entity is time-cohesive if all its data item
values must be specified at the same time.) They also affect the entities’ use-cohesion
since they may not always be used with the existing data items of the entity. (By
definition, an entity is use-cohesive if all or none its data items are used in the “primary
data uses” of the domain.) Therefore, optional data items must be limited to few (or even
one) per primitive entity. For example, the description of a primitive entity, “Behavior
Response Forces,” includes one optional data item, “optional name,” whose values can be
~designations such as “Fp,” “Mp”, “Tg,” etc.

1.2 Review all the dependencies of the primitive entity on other entities in the schema
using Rule R-REFL.4 and represent each of these dependencies in the entity
description using the rule set R-REFI.S.

R-REFIL4 (Include all dependencies in the entity description.): An entity description must
capture all the dependencies of the entity on other entities in the schema. The next rule
and its components specify different representations for various types of entity
dependencies. For example, a “Design History Descriptions” entity has two
dependencies: a dependency by reference on “Design Artifact Descriptions” and another
by definition on “Design Operation Descriptions.”

R-REFI-5 (Representing entity dependencies): This rule includes the following
component rules.

R-REFI-5.1 (Options for representing entity dependencies by derivation): If a primitive
entity, X, is dependent by derivation on another primitive entity, Y, the modeler can
choose one of the following options to represent the dependency: She can (1) incorporate
a “derives” relationship of derivation type into the description of Y and include a user-
defined object identifier in the descriptions of both X and Y, (2) incorporate a “derives”
relationship of derivation type into the description of Y and a “derived-from” inverse
relationship into the description of X, or (3) eliminate X by incorporating its data items
as “derived data items” into the description of Y. No single rule applies to all cases of
entity dependencies by derivation. Instead, three different options are available. Rules R-
REFI-5.1.1 t0 5.1.3 in Appendix C explain the representations, advantages, and tradeoffs
of these options. They also show examples for each of these options.

R-REFI-5.2 (Options for representing entity dependencies by definition): If a primitive
entity, X, is dependent by definition on another primitive entity, Y, the modeler can
choose between the following options to represent the dependency: (1) representing Y as
an abstract data type and using this data type in the description of X, or (2) incorporating
a “subpart” relationship of aggregation type into the description of X. Rules R-REFI-

page 114 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

5.2.1 to 5.2.2 in Appendix C explain the representations, advantages, and tradeoffs of
these options. They also show examples for each of these options.

R-REFI-5.3 (Options for representing entity dependencies by reference): If a primitive
entity, X, is dependent by reference on another primitive entity, Y, the modeler can
choose between the following options to represent the dependency: (1) incorporating a
“referred-to” relationship of referential association type into the description of X, or (2)
including user-defined object identifiers in the descriptions of both X and Y to associate
their instances. Rules R-REFI-5.3.1 to 5.3.2 in Appendix C explain the representations,
advantages, and tradeoffs of these options. They also show examples for each of these
options.

2. Transforming Refined Primitive Entities into Primitive Classes For each
primitive entity refined in the previous step:

2.1 Convert the entity description into a class definition, each reference data item in the
description into a relationship attribute, each derived data item into a derived
attribute, and each of the remaining data items into an independent attribute.

2.2 Review the class definition using Guidelines G-DESI-O.1 to O.2.

G-DESI-0.1 (Use explicit class names.): The name of a class should explicitly articulate
what the class represents. This guideline is designed to enhance the self-explanation and
expressiveness of the resulting schema. For example, “Square Shape Descriptions,”
“Solid Rectangle Shape Descriptions,” “Triangle Shape Descriptions,” and “Solid Circle
Shape Descriptions” classes represent four common geometric shapes. In cases where the
class name is long and inconvenient to the implementation (e.g., “Cross-Section Modulus
of Elasticity Properties”), the modeler can shorten it while making it as explicit as
possible (e.g., “Section Elastic Moduli”).

G-DESI-0O.2 (Reconsider classes with few attributes.): A class with one or a few
attributes should be considered for possible elimination using Guidelines G-DESI-H.2 to
H.4. This guideline is intended to enhance the efficiency of the resulting schema and to
make sure that a class is only introduced when it is needed (and thus meaningful to the
resulting schema). The complementary guidelines G-DESI-H.2 to H.4 show when to
include a class in a class hierarchy and discuss the special case of abstract superclasses
with no attributes. For example, a “Structural Analysis Element Descriptions” class that
has only one attribute, “element identifier,” was reconsidered but not eliminated because
it provides a place-holder for adding subclasses representing more specific types of
analysis elements.

2.3 Review each attribute in the class definition using Guidelines G-DESI-A.I to A.3.

G-DESI-A.1 (Use explicit attribute names.): The name of an attribute should explicitly

articulate the object property that the attribute represents. This guideline is designed to
enhance the expressiveness and self-explanation of the resulting schema. For example,
the name of a relationship attribute can include a prefix such as “derived,” “own,” or
“referred,” which clearly denotes the relationship type. Examples are “derived load
cases,” “own load parameters,” and “referred load sources.” In cases where the attribute
name (e.g., “standard derived cross section properties”) becomes long and inconvenient
to the implementation, the modeler can shorten it (e.g., “derived section properties”)
while making it as explicit as possible.

Phan & Howard page 115

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

G-DESI-A.2 (When to include a user-defined object identifier): A class does not need a
user-defined object identifier unless the user uses such an identifier. In that case, such an
identifier must be a required and unique attribute. In the object-oriented paradigm, the
object identity of each instance is globally unique and is created and maintained by the
system. However, if the user chooses to define an explicit attribute as her own identifier
of object instances, then that attribute must be given a unique value in each instance. For
example, “shape size designation,” “material designation” and “requirement identifier”
are user-defined object identifiers for “AISC Shape Descriptions,” “Material Properties,”
and “General Requirements” classes respectively.

G-DESI-A.3 (Remove redundant relationship attributes.): Redundant relationship
attributes should be removed. This rule ensures minimality of the resulting schema.
Redundant relationship attributes occur when different paths that follow the relationship
links go from one source class to the same destination class and produce the same effect.
This rule applies to relationships of any type. In particular, cycles of relationships must
be completely eliminated. For example, a “Load Condition Specifications” class has
relationships with two other classes, “Load Source Specifications” and “Load Case
Specifications.” “Load Case Specifications,” in turn, has a relationship with “Load
Source Specifications.” In this case, the last relationship creates a cycle and can be
removed.

2.4 Add to the class definition a “compute” method for each derived attribute using
Rule R-DESI-M.2 and a pair of “get” and “set” methods for each of the remaining
attributes using Rule R-DESI-M.3. Name each method using Guideline G-DESI-
M.1.

G-DESI-M.1 (Use explicit method names.): The name of a class method should explicitly
articulate what the method performs. This guideline is designed to enhance the
expressiveness and self-explanation of the resulting schema. For instance, the name of a
method for setting an attribute value includes a prefix such as “set” to denote the
operation of the method clearly. Similarly, the name of a method for retrieving an
attribute value includes a prefix such as “get.” As an example, the “distance d1” attribute
of the “AISC Angle Shape Description” class corresponds to two methods, “set distance
d1” and “get distance d1.”

R-DESI-M.2 (Define methods for computing derived attribute values.): A class method
must be defined for each derived attribute in order to compute its value on demand. A
derived attribute is dependent on other attributes; a method is defined to compute that
attribute, which is derived on demand. (By contrast, an independent attribute is stored in
the database.) For example, the three derived attributes of a “Cartesian Vectors” class,
which represent x, y, and z directional cosines, yield three corresponding methods:
“compute cosine x,” “compute cosine y,” and “compute cosine z.”

R-DESI-M.3 (Define methods to update and retrieve independent attribute values.): A
pair of class methods must be defined for each independent attribute to set and retrieve
its value. “Set” methods must have at least one argument, while “get” methods must
return at least one response value. Attributes are typically private to their object class.
This rule ensures that a class has access to its attributes via methods. In fact, these
methods set the object state or provide the means to inquire about the object state. “Set”
methods may not return any response, while “get” methods may not have any argument.
For example, the two independent attributes of the “Cartesian Vectors” class in the
previous rule, which represent the magnitude and direction, yield four methods: “set
magnitude,” “get magnitude,” “set direction,” and “get direction.”

page 116 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method ~ ————

3. Building Primitive Characterization Hierarchies with the New Primitive
Classes For each primitive class resulting from the preceding step:

3.1 Identify the primitive characterization hierarchy to which the primitive class
belongs. If no such hierarchy exists, create a new hierarchy whose root class is the
most general class representing the concept pertinent to the primitive class.

3.2 Add the primitive class to the identified or newly created hierarchy and expand that
hierarchy using Rules R-DESI-H.1 to H.2 and Guidelines G-DESI-H3 to H.5.

R-DESI-H.1 (Do not misuse relationships of generalization type in class hierarchies.):
Two classes belong to the same class hierarchy only if one represents a more specialized
definition of the concept represented by the other. For example, a “Structural Members”
class should not be a subclass of “Buildings.”

R-DESI-H.2 (Define a common superclass.): If two or more classes have one or more
attributes in common, these classes must have a new common superclass in the class
hierarchy. This rule is designed to remind the modeler to take advantage of
generalization. However, the modeler must weigh the tradeoffs between introducing a
superclass and implementing the code of the common attributes in all classes sharing
those attributes. For example, “AISC I-Shape Descriptions,” “AISC T-Shape
Descriptions,” and “AISC C-Shape Descriptions” classes can share a common superclass,
“AISC Symmetric Rolled Shape Descriptions,” which includes four attributes common to
these classes.

G-DESI-H.3 (Define a typical class.): If several instances share two or more common
attribute values, they should be instances of a new typical class in the class hierarchy.
This guideline is designed to remind the modeler to take advantage of typical classes,
which are very beneficial in representing data of facility design objects. The new typical
class has default attributes whose values are the commonly used values. For example, a
“Tower Leg Analysis Element Descriptions” typical class is a subclass of a “Two-Node
Analysis Element Descriptions” class. The typical class attributes “element type,” “start
support type,” “end support type,” and “length unit” have the default values of “truss
element,” “hinged,” “hinged,” and “feet” respectively.

G-DESI-H.4 (When to introduce a new subclass in a class hierarchy): This guideline
includes the following component guidelines.

G-DESI-H.4.1 (Do not invent a subclass with no attributes.): A new subclass in a class
hierarchy should add at least one new attribute to the set inherited from its superclass.
This guideline ensures that a new subclass is added only when the subclass has a distinct
identity in its hierarchy. For example, three new subclasses, “AISC I-Shape
Descriptions,” “AISC T-Shape Descriptions,” and “AISC C-Shape Descriptions,” are
added to the class hierarchy representing AISC standard shape descriptions. Each
subclass has at least one new attribute. By contrast, superclasses with few (or even one)
attribute are useful where they provide a place-holder for: (1) adding more specialized
subclasses later, or (2) defining relationship attributes of other classes, which can be
linked to any subclasses of the superclass. These superclasses are called “abstract
superclasses.” The example given in Guideline G-DESI-O.2 demonstrates the first case.
An illustration of the second case is the abstract superclass, “AISC Rolled Shape
Descriptions.” This superclass provides a convenient place-holder for an instance of
“AISC Combination Shape Descriptions” that can later be linked to instances of
subclasses of the superclass (e.g., “AISC L-Shape Descriptions,” “AISC I-Shape
Descriptions,” “AISC C-Shape Descriptions”).

Phan & Howard page 117

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

G-DESI-H.4.2 (Do not invent a subclass when a relationship will do.): A new subclass
should not be introduced if its only additional feature can be represented by a
relationship in its superclass. For example, “Gravity Load Resisting Frames” class
should not be introduced as a new subclass of “Frames” since its only new feature can be
represented by a relationship to the appropriate load types supported by those frames.

G-DESI-H.4.3 (Do not add a level when a discriminating attribute will do.): Another level
in the class hierarchy should not be introduced if a single attribute in the superclass can
distinguish the different subclasses. This guideline is designed to enhance the minimality
and efficiency of the resulting schema. For example, a “AISC Combination Shape
Descriptions” class includes an attribute to distinguish different types of shape
combinations (i.e., “combination shape type”), thereby eliminating the need for another
unnecessary level of subclasses such as “S-C Combination Shape Descriptions,” “C-L
Combination Shape Descriptions,” “C-C Combination Shape Descriptions,” etc.

G-DESI-H.5 (Shallow Primitive Characterization Hierarchies): Primitive
characterization hierarchies should be kept shallow. Several shallow primitive class
hierarchies are preferred to a few deep hierarchies. As a rule of thumb, a primitive
characterization hierarchy must contain at most three levels. Otherwise, the modeler
should first review the hierarchy using Rule R-DESI-H.1 and the preceding set of
guidelines. She should consider eliminating classes at the intermediate levels if possible.
In addition, the modeler should review the overall concept that was used to build the class
hierarchy. A deep primitive characterization hierarchy is indicative of a concept that is
not sufficiently distinctive. In that case, the concept should be refined into several
subconcepts, each of which will lead to a more shallow primitive class hierarchy. For
example, a deep primitive characterization hierarchy on shape descriptions was broken up
into two separate hierarchies: one on geometric shape descriptions and the other on AISC
standard shape descriptions.

6.3.4 Designing A Composite Schema

As explained earlier, a composite schema includes a subset of a domain primitive
schema and a set of composite classes that represent a user’s view of the underlying
facility data. Therefore, a composite schema can be defined to formulate a complex query
of facility design objects on a primitive database or build a new application that will
operate on this database. The steps in defining a composite schema are:

1. Determine all the data items needed in that composite schema.

2. Divide the data items into three sets: those that can be represented using primitive
classes from the given primitive schema, those that can be represented using
combinations of primitive classes, and those that cannot be represented using the
primitive schema.

3. For the first set of data items, select the appropriate primitive classes from the
primitive schema and include them in the composite schema.

4. For the second set of data items, define composite classes as necessary
combinations of primitive classes selected from the schema. Include these primitive
classes in the composite schema and determine the relationships (of the
generalization, aggregation, or association type) between them and the new
composite classes. If necessary, define new composite classes using those that were
just created. Guideline G-DESI-H.6 suggests that composite class hierarchies are
not needed.

page 118 Phan & Howard

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

G-DESI-H.6 (No Composite Class Hierarchies): Composite class hierarchies should not
be necessary. Although by definition, a composite class can be a subclass of another
composite class, composite class hierarchies are not recommended here for the following
reason: The flexibility of the P-C Approach comes from allowing the user to define any
composite class when needed from a given primitive schema. At any time, the user can
instantly customize a composite class by selecting primitive classes from primitive
characterization of this schema. Therefore, both predefined composite classes and
composite class hierarchies should not be necessary. An exception to this guideline is
when a typical class (e.g., “Tower Cage Members As Designed”) that is a subclass of a
composiie class (e.g., “Tower Members As Designed”) is needed to capture the common
values shared by instances of the composite class (e.g., length, member size, material
designation).

5. For the third set of data items, define new classes of the composite schema to
represent those data items. Guideline G-DESI-A.4 recommends that only as the last
resort should a composite class add attributes other than those of the primitive or
composite classes from which it is defined.

G-DESI-A.4 (No new attributes in composite classes): The introduction of new attributes
in composite classes should be minimized. A composite class should not introduce any
attributes other than those of the primitive or composite classes from which it is defined.
This guideline implies that the domain primitive schema should if possible, provide all
the primitive classes necessary to support different user views in the domain. For
example, the definition of the composite class, “Tower Members As Analyzed,” uses the
following primitive classes: “Two-Node Analysis Element Descriptions,” “Section
Areas,” “Material Moduli,” “Load Application Specifications,” and “Cartesian
Coordinate Systems.” It does not add any new attributes.

6.4 Chapter Summary

This chapter describes the design of a domain primitive schema using an
object-oriented data model, the Primitive-Composite (P-C) Data Model, and an
accompanying method, the P-C Data Modeling Method. The development of this method
(in addition to the model’s development) was an attempt to fulfill the need for
object-oriented modeling methods that was pointed out in Chapter 2.

With the primitive entities identified in the domain entity analysis, a modeler
designs a domain primitive schema (or “primitive schema”) in Phase 4 of the P-C
Approach. This schema includes hierarchies of primitive classes that define the basic
concepts used by experts in a domain. The schema design involves three steps: refining
those primitive entities, transforming them into primitive classes, and building primitive
characterization hierarchies with these classes. To aid the modeler with this design, the P-
C Approach provides an object-oriented data model, the P-C Data Model, and an
accompanying method, the P-C Data Modeling Method, for using this model. The model
includes key object-oriented concepts such as classes, attributes, methods, and instances.
It incorporates two other sets of extensions: (1) extensions to the key object-oriented
concepts such as “primitive classes,” “primitive characterization hierarchies,” “composite
classes,” “primitive instances,” “typical class,” etc., and (2) a number of formalized
relationship types such as generalization, instantiation, aggregation, association, and
derivation. The method provides the steps for the design of a domain primitive schema
based on the concepts of the model. In addition, the method provides rules and guidelines
for the design of the primitive schema. With the resulting primitive schema, composite
schemata can be defined to formulate complex queries of facility design objects on the
primitive database or build new applications that will operate on this database. Composite

Phan & Howard page 119

Chapter 6: Domain Schema Design Using the P-C Data Model and Method

schemata include subsets of the primitive schema, as well as their own composite classes
representing specific views of the underlying facility data. The method also provides the
steps and guidelines for defining a composite schema.

The next chapter presents the domain primitive schema that we developed for
transmission towers. It explains the form, function, and behavior representations included
as primitive classes in the tower primitive schema. It also shows different ways to
describe a tower facility’s hierarchical decomposition using this schema.

page 120 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-CApproach ——

Chapter 7

_

Form, Function, and Behavior
Representations in the P-C Approach

Chapter Abstract:

The previous chapters described the methodology and modeling tools a modeler can
use to develop a domain primitive schema following the P-C Approach. This chapter
focuses on the content of such a schema, namely the representation elements that
the schema should include. The examples shown in the chapter come from the
schema for the transmission tower domain. First, form, function, and behavior are
represented in separate primitive class hierarchies of the schema. Geometric curves,
topological elements, material properties, fabrication features, functions,
requirements, strength behavior (i.e., response forces and stresses), serviceability
behavior (i.e., displacements and strains), design description primitives, etc., are
represented in these primitive class hierarchies. In addition, the schema includes
design description primitive classes such as design artifacts, features, parameters,
versions, and alternatives. These primitive classes represent important elements
used in describing a design. With the schema, a facility can be decomposed
hierarchically in two ways: by the functions that it provides or by the design artifacts
created by the designers. The schema includes primitive classes needed to support
both decomposition types, as well as the mappings between functions and artifacts.

Organization:

7.1 Overview
7.2 Form, Function, and Behavior Representations
7.2.1 Form Representation
7.2.2 Function and Behavior in addition to Form
7.2.3 Function Representation
7.2.4 Behavior Representation
7.3 Hierarchical Facility Decomposition by Functions or by Artifacts
7.3.1 Decomposition by Functions
7.3.2 Decomposition by Design Artifacts
7.3.3 Mappings Between Functions and Artifacts
7.4 Chapter Summary

Phan & Howard page 121

—————— Chapter7: Form, F unction, Behavior Representations in the P-C Approach ———

7.1 Overview

The P-C Approach advocates the representation of the function and behavior of
facility design objects in a domain primitive schema, in addition to their form. The
inclusion of these representations can help in: (1) answering useful queries about the
purpose of facility design objects and the states for which these objects were analyzed
and designed; (2) improving communication about the design among the participants in
collaborative facility engineering work; (3) assisting design-related tasks such as what-if
analysis, facility retrofitting/rehabilitation, design reuse across projects, and design
tutoring; and (4) preserving corporate knowledge about constructed facilities’ design and
operations. In the P-C Approach, form, function, and behavior are represented explicitly
as classes in several separate primitive characterization hierarchies. Examples of these
hierarchies are geometric curves, topological elements, material properties, fabrication
features, functions, requirements, strength behavior, serviceability behavior, etc. The
separation of these hierarchies results in clean and modular facility data representations.
In fact, each hierarchy uscs a single criterion to define the primitive classes and thus
provides a homogeneous view about one specific aspect of the facility design objects. In
addition, the domain primitive schema includes design description primitive classes such
as design artifacts, features, parameters, constraints, versions, alternatives, etc. These
primitive classes represent important clements used in describing a design. Together,
form, function, behavior and design primitive classes of the schema support three
principal dimensions of a facility design: (1) design characterization (i.e., form, function,
behavior), (2) design decomposition and recomposition, and (3) design versioning and
alternative selection. Finally, with this schema, a facility can be decomposed
hierarchically in two ways: by the functions that it provides or by the design artifacts
created by the designers. The schema includes primitive classes needed to support the two

decomposition types, as well as the mappings between functions and artifacts.

We applied the P-C Approach to the transmission tower domain. Figure 1.1 in
Chapter 1 illustrates a sample transmission tower. The resulting domain primitive schema
includes 216 primitive classes. These classes are necessary to describe the facility design
objects in the tower domain. Although there is a large number of primitive classes in this
case, these classes arc organized into 30 primitive characterization hierarchies. Each
primitive characterization hierarchy describes only one concept about either form,
function, or behavior. In addition, we implemenied this schema using a commercial
object-oriented database management system (ONTOS) and built a database of a selected

tower to demonstrate the research concept.
All classes of the tower domain primitive schema are fully documented in Appendix

D. Only sample hierarchies of these classes are illustrated in this chapter. Graphical
representations that are used to illustrate the hierarchies are based on those presented in
[Batini 92] for conceptual data modeling. Due to space constraints, Figure 7.1 provides a
legend for the graphical representations that apply to all the primitive characterization

hierarchies shown in this chapter.

72 Form, Function, and Behavior Representations

721 Form Representation

A domain primitive schema should include primitive classes that represent the
physical characteristics of the facility design objects. These classes can be divided into
the following categories:

page 122 Phan & Howard

Chapter 7: Form, F unction, Behavior Representations in the P-C Approach ——

e CLASS s CLASS HIERARCHY

C] Primitive T subclass-of
class relationship

o ATTRIBUTE

Shape:

Attribute of simple data types

O (integers, real numbers, characters,
strings, booleans)

Attribute of aggregate data types
(arrays, lists, sets, bags, etc.)

() Attribute whose type is abstract data
type

<>, ., Relationship attribute with max & min
.0 cardinalities in parentheses

V Derived attribute

Shading:

Required attribute
Required & unique attribute
Optional attribute

Default attribute

Iy In

FIGURE 7.1: Legend for the Graphical Representations of Sample Primitive
Characterization Hierarchies.

Spatial Reference Form—Primitive classes in this category are used to describe where
and how a physical object is located and oriented in three-dimensional space. They can
also represent the spatial enclosure of the object and the enclosure’s location and
orientation with respect to a global coordinate system OF relative to other objects in the
same environment.

Example: “position Forms,” “QOrientation Forms,” «General Coordinate Systems,”
“Spatial Enclosure Shapes,” and “Spatial Enclosure References” are spatial form
primitive classes.

Geometry Form—Primitive classes in this category represent fundamental geometric
elements such as points, curves, and surfaces, and many specialized types of these
elements.

Phan & Howard page 123

Chapter 7: Form, Function, Behavior Representations in the P-C Approach ——

Example: “Cartesians Points,” “Cylindrical Points,” “Line Segments,” “Conic Curves,”
“Arcs,” “Planes,” “Conical Surfaces,” and “Surfaces of Linear Extrusion” are primitive

classes representing specialized types of geometric elements.

Topology F orm—Primitive classes in this category are used to describe the connectivity
of a physical object in its constructed environment. These classes correspond to the
topological entities that are defined in the PDES/STEP IPIM [Wilson 88] and the GARM
[Gielingh 88].

Example: “Vertex Descriptions,” “Edge Descriptions,” “Face Descriptions,” “Path
Descriptions,” “Wire Shell Descriptions,” and “Region Descriptions” are topological
form primitive classes.

Shape Representation Form—Primitive classes in this category are used to describe the
shape of a physical object, including its dimensions and section properties. Physical
objects are three-dimensional, and their shapes are commonly represented using
parametric descriptions or solid modeling elements [Mortensen 85].

Example: “Geometric Shape Parametric Descriptions,” “General Shape Section
Properties,” “AISC Standard Shape Descriptions,” “Shape Parametric Projections,”
“Right Solid Cylinders,” and “Solids of Revolution” are shape representation primitive

classes.

Material Form—Primitive classes in this category represent properties of the material
from which the physical object is built. The materials used in civil engineering include
steel, reinforced concrete, asphalt, mortar, timber, etc. In general, materials can be
classified into types such as homogeneous, isotropic, orthotropic, anisotropic, and
composite [Wilson 88]. They can have structural, thermal, and thermal expansion
properties.

Example: The primitive classes, “Mass Densities,” “Material Moduli,” “Material Strength
Properties,”’and “Thermal Expansion Coefficients” represent different material properties.

Part Detailing/Fabrication Form—Primitive classes in this category represent features
of a fabrication part that a designer specifies for fabrication purpose. A number of
standard fabrication features are defined in the PDES Integrated Product Information
Model [Wilson 88] and the NIDDESC Ship Structural Model [Gerardi 88].

Example: “Fabrication Dimensions,” «“NC Mark Features,” “Bolt Hole Features,” “Edge
Clipping Features,” and “Bend Features” belong to a large set of primitive classes
representing fabrication features.

Figure 7.2 shows sample primitive classes representing material properties.
7.2.2 Function and Behavior in addition to Form

The P-C Approach advocates the representation and storage of function and
behavior data in addition to form data. This can provide benefits in the following four
areas:

. Explanation—Answering queries about the purpose (function) of the facility or a
system or component, and the state (behavior) for which the object of interest was
analyzed and designed: The study about information requested by engineers in
[Kuffner 91] and [Ullman 91a] emphasizes the need for representing and storing
function and behavior data for later use. Form cannot explain why the facility was
designed and operates a certain way. But form, function and behavior can produce a

well-founded explanation of the facility’s design and operations.

page 124 Phan & Howard

— —————— Chapter 7: Form, F unction, Behavior Representations in the P-C Approach. ——

material_designation

General
property_.na.me Material_
description Properties

Mass_ Structural_ Material _ Poisson_ Material_

Densities Damping_ Moduli Ratio Strength_
Coefficients Properties

55 'y o Ye)

density damping_ modulus ratio strength_value

density_unit coefficient modulus_unit strength_unit

FIGURE 7.2: Sample Primitive Classes Representing Material Properties.

. Design communication—Improving design communication in collaborative facility
engineering work: Since storing function and behavior data enhances the
explanation of the design, it also improves the communication about the design
among different participants of a facility engineering project. In the past,
engineering drawings have been the most common way to communicate
information about a facility design product. Generally speaking, these drawings
specify how the parts must be fabricated and how the facility must be constructed.
They mainly show the physical description or “form” of the facility that results
from the design, but do not capture the designer’s intent. Such drawings can be
ineffective in design communication. The catastrophic structural failure at the Hyatt
Regency Hotel in Kansas City showed how miscommunication of the designer’s
intention can lead to loss of human life. The participants must be able to convey (0
one another the purpose of the design as well as the behavioral responses for which
the facility was analyzed and designed. Design communication of this nature can
help the participants resolve and even prevent errors, delays, cost overruns, low
quality, and other problems [Howard 9la]. As Figure 7.3 emphasizes, in the
communication of information about a design product, the “design intent,” which
includes function and behavior, is as important as the design result, which includes

form.

. Design—Improving facility engineering design: The available function and
behavior information can assist designers in performing the following tasks:
re-specification [Shema 90], [Dixon 86], what-if analysis[Boy 91], retrofit and
rehabilitation [Rafig 90], design reuse across projects [Franke 91], and design

tutoring [Gruber 91]}.

. Design knowledge capture—Helping companies to preserve knowledge about their
facility design work for both immediate and long-term use. Design knowledge

capture is the process of “eliciting, recording and organizing design knowledge”
[Gruber 90b].

Phan & Howard page 125

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

SUBSTANCES OF
DESIGN
COMMUNICATION

FIGURE 7.3: What Should Be Communicated About A Facility Design?

Design knowledge encompasses the physical description of the design product
(form), the assumptions about the context in which the product should be used
(function), and the understanding of the state for which the product was analyzed
and designed (behavior) [Gruber 90a]. Design knowledge capture involves an active
area of research [Baudin 89], [Fischer 89], [Schema 90], [Rafig 90], [Boy 91],
[Conklin 911, [Gruber 91], [Garcia 92].

7.2.3 Function Representation

In the P-C Approach, the complete function representation of a facility design
object includes three components: (1) the description of the object’s purpose (or
purposes), (2) the description of the requirements for achieving that purpose, and (3) the
description of the artifact designed for that purpose and of other important elements such
as features, parameters, constraints, versions, alternatives, etc., of the design. The

following sections present the primitive classes that represent these descriptions.
7.2.3.1 Description of Functions

A function corresponds to a purpose or intended role of a design object in its
constructed environment. A design object can perform several functions. For example, a
wall resists loading (structural function) and provides a partition (architectural function).
Even within the structural engineering view, the same wall may perform several functions
such as resisting applied loads (gravity or lateral), supporting another object such as a
floor slab, and transferring the applied loads to a destination such as a foundation. The
representation of a function includes the function name, the perceived need, the purpose
that the function describes, the requirements for achieving that purpose, the design
solution (i.e., design artifacts or artifacts) that satisfies the function, and the component
functions into which the function is decomposed.

The following functions are represented as function primitive classes:

Functions of facility structures and structural systems—One of the most important
goals in designing a facility structure is to prevent failures. To accomplish this goal, the
facility structure must provide two key functions: (1) resisting loadings from the

page 126 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

environment, and (2) transferring loadings to the ground. For example, a transmission
tower must resist loading that comes from wind, ice, and gravity. Structural engineers
often designs systems that carry out these functions. These systems perform another
important function: implementing gravity and lateral load paths. For example, tower arm
systems provide gravity load paths from the attached electrical equipment to the main
body of the tower. The first subclasses of the “General Function Descriptions” class
shown in Figure 7.4 represent these functions of facility structures and structural systems.
In addition, the facility structure may perform functions involving other requirements
such as owner, architectural, mechanical, physical, cost, and constructibility
requirements. These requirements influence the facility’s structural design and are often
reviewed by more than one project participant. The next section discusses the
representation of requirements.

own_ (O,n)
subfunctions
mapping_ (0,1)
to_artifacts

function_identifier @— General_

purpose O— Function_
Descriptions

To To_ To_
Resist Transfer_ Implement _
Loadings Loadings Load_Paths
referred_ (1,n) destination (1,1) referred_(1,n)
loading_conditions referred (1,n) load_paths

loading_conditions

function_identifier @— General own_ (o,n)
purpose O—| Function_ subfur.wctlons
Descriptions mapping_ (0,1)
to_artifacts

To_Resist_ To_Transfer_ To_ To_ To_
Load_ Load_ Support_ Connect_ Stiffen_
Applications Applications Objects Objects Objects

O SO

referred_ (1.n) destination (1,1) supported__(1,n) connected_(1,n) stiffened_ (1,n)
load_ referred_ (1,n) objects objects objects

applications |oad_applications connectors (1,n)

FIGURE 7.4: Sample Primitive Classes Representing Structural Engineering
Function Descriptions.

Phan & Howard page 127

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

Functions of structural components (i.e., members and connections)—Structural
components are the next level of detail in a facility design. As Figure 7.4 shows, the
functions that these components perform include: (1) resisting a load application, (2)
transferring a load application to another component, (3) supporting other components,
(4) connecting other components, and (5) adding stiffness to other components. For
example, a tower’s leg member resists external wind loads applied to it and transfers
them to the leg member below it. A tower’s redundant members add stiffness to leg and
lacing members. A tower’s gusset plate connects a leg member, a lacing member, and a
horizontal girt member using nuts and bolts.

7.2.3.2 Description of Requirements

The performance of a function can be measured by verifying the function’s
requirements. The following are represented as requirement primitive classes:

Principal loading conditions for which the facility structure, including systems and
components, is analyzed and designed—This information is very important to the
analysis and design of a facility structure. It includes the parameters that are necessary to
calculate the external loads that the structure must resist. The concept of a “loading
condition” represents a scenario in which a facility structure is subjected to loadings from
the environment. For example, transmission towers’ loading conditions include extreme
hurricane winds and heavy ice, as well as normal wind and ice conditions. Each loading
condition can involve one or more load sources. A load source can be gravity, wind,
snow, high or low temperatures, an earthquake, an impact, efc. Figure 7.5 illustrates
primitive classes representing these requirements.

a | requirement_identifier
eneral_ o

. R Requirements description
loading_condition_identifier look_up_

own_ (o,n) references

condition_parameters

ggéveci_ses (tn) Loading_ Load_

- 0 Condition_ Source_
referred_ (0.n) Specifications Specifications
load_sources 5

Tower_ b

Loading_ temperature load_source_type
Condition_ temperature_unit own_source_ (0,n)
Specifications parameters

ANSI_ Heavy_lce_ NESC_

Extreme_Wind_ Loading_ Wind_lce_
Specifications Specifications Specifications

0000
exposure_category radial_ice_thickness loading_district
structure_category thickness_unit radial_ice_thickness
extreme_wind_speed wind_pressure
speed_unit thickness_ unit

pressure_unit

FIGURE 7.5: Sample Primitive Classes Representing Specifications of Load
Conditions and Load Sources.

page 128 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

Principal load cases for which the facility structure, including systems and
components, is analyzed and designed—A “load case” is a particular way in which a
loading condition may occur. For example, an extreme hurricane wind loading condition
can produce several load cases, each corresponding to a different wind direction:
perpendicular to the transverse face of the tower, perpendicular to the conductor wires, at
45 degrees to the conductor wires, etc. Figure 7.6 illustrates primitive classes representing
these requirements.

Primary gravity and lateral load paths that structural systems implement—There are
two ways to represent a load path. As Luth [91] suggested, the first uses an instance of
the “To Implement Load Paths.” This instance then refers to an instance of “Load Path
Specifications” that directly records the successive points along the load path. The second
uses an instance of the “To Support Objects” class for each member that belongs to the
system. It defines the chain of load-resisting members along which loads are transferred.
This second method applies to cases where a geometric configuration of the structure is
already assumed when the load path is conceived. Figure 7.6 illustrates primitive classes
representing these requirements.

External loads applied on structural members or at joints in the aforementioned load
cases—The concept of a “load application” represents a particular way in which an
external load from the environment is applied to a member or joint of the structure and
causes structural responses. Loads from “controlling load cases” should be stored. These
load cases produce critical structural responses that govern the design of the members and
connections. Figures 7.7 and 7.8 illustrate primitive classes representing these
requirements.

requirement_identifier @

description O Geperal_
look_up_ ©A Requirements

references

Load Case_ Load Case_ Load Path_
Specifications Combination_ Specifications

Specifications

oo

load_case_ combination_ point_coordinates_
identifier factors on_path
loading_condition_ referred_ (1,n) referred_load_(1,1)
identifier load_cases case -
load_factor
own_case_ (0,n)
parameters

derived_ (1,n)
external_loads

FIGURE 7.6: Sample Primitive Classes Representing Specifications of Load
Cases and Load Paths.

Phan & Howard page 129

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

requirement_identifier @—
description ~ ©—{ _ GeneraL
look_up Requirements
references T

load_case_identifier ©
external_load_identifier ©— E)[t(c)e;:;al_

external_load_category ©— Speaas
derived_ (1,n) < Specifications

load_applications *
magnitude O Static_
o External_Load_
direction O Specifications
Static_ Static_ Static_
Concentrated_ Line_Load_ Area_Load_
Loaad_ Specifications Specifications
Specifications
o0 560
concentrated_ line_length area_length
load_unit line_load_unit area_width

area_load_unit

FIGURE 7.7: Sample Primitive Classes Representing External Load

Specifications.
requirement_identifier @—
description ©—

look_up_ ©—
references

General_
Requirements

Load external_load_identifier

Application_
Specifications

t Joint_Load_ Off Joint_Load_ On_Member_
Application_ Application_ Load_Application_
Specifications Specifications Specifications

joint_coordinates joint_coordinates applied_
offset_direction center_coordinates

offset_distance

FIGURE 7.8: Sample Primitive Classes Representing External Load
Application Specifications.

page 130 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

Other requirements that govern the design of a facility structure— A transmission
tower design must meet strength, serviceability, physical, and cost requirements.
Specification of these requirements involves recording the predefined values of hard
constraints such as minimum safety factors, maximum deflection ratios, tower heights,
electrical clearances, and a cost threshold. In general, requirements can be specified in
building codes, company design manuals, engineering drawings, organization-sponsored
design standards, etc. Requirement specifications can be textual, graphical, or
parameterized. The first type includes written specifications such as fabrication notes,
erection notes, etc. The second type includes drawing specifications for the fabrication of
parts, connection of members, erection of the structure, etc. The third type of
specifications are defined in terms of specific design parameters that need to be
determined and satisfied during the design. Figure 7.9 shows primitive classes
representing the three types of requirement specifications.

7.2.3.3 Description of Design

Design is important to the representation of facility design objects. For instance, the
description of functions discussed earlier would not be complete without that of design
artifacts. Therefore, a domain primitive schema should include primitive classes used to
describe a facility design. “Design description primitive classes” represent important
elements such as design artifacts, features, parameters, constraints, versions, and
alternatives that are usually considered during a design. The definitions of these classes
come from a review of the following work: [Mittal 86], [Dixon 86], [Dixon 88], [Meunier
88], [Geiling 88], [Zweben 89], [Sause 89], [Gruber 90b], [Luth 91], [Jain 91], etc. All
the primitive classes, including the design description primitive classes and those
describing form, function, and behavior, support three principal dimensions of a facility
design as illustrated in Figure 7.10: “design characterization,” “design
decomposition/recomposition,” and “design versioning and alternative selection.” The
General A/E/C Reference Model (GARM) advocates three analogous principles of
abstraction: “characterization,” “aggregation/decomposition,” and “product life cycle.”
However, GARM does not include behavior, decisions, and alternatives.

requirement_identifier
description

look_up_
references

General_
Requirements

Textual_ Graphical_ "Parameterized_
Requirement_ Requirement_ Requirement_
Specifications Specifications Specifications

specification_ specification_ own_ (1,n)
text graphics specification_
parameters

FIGURE 7.9: Sample Primitive Classes Representing Requirement
Specifications.

Phan & Howard page 131

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

1. CHARACTERIZATION

specification
r respecification

N\ | response |-
: N\, N\ | analysis |
. design NN
validation |- N Q11T

structural
recomposition

structural
decomposition

decision

version

generation]
{ alternatives
{ generation
l Types of design operations

LEGEND

FIGURE 7.10: Three Principal Dimensions of a Facility Design Supported by
the P-C Approach.

page 132 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

Design Description Primitives As Figure 7.11 shows, design description primitive
classes represent descriptions of design artifacts, features, parameters, constraints,
versions, alternatives, objective functions, design notes, and design graphics.

Design Artifact—A physical or abstract object created by a designer that can be realized
from a formal specifications to provide an intended functionality or service. Examples of
design artifacts are a transmission tower, a tower arm system, a tower leg member, a
tower failure-safe mechanism, etc. A description of an artifact here involves stating what
the designer is creating, namely its:

o classification (i.e., structure, system, assembly, member, or connection),
. design characteristic (i.e., standard, custom, or configuration) [Dixon 86],

° design components (i.e., other design artifact instances that constitute the design
artifact’s hierarchy), and

° mapping to the function or functions that the artifact performs.

Design Feature—An abstract or physical aspect of a design artifact that captures an
important result from the process of creating the artifact. A feature can be defined using
several design parameters. For example, leg members of a tower have an “interval step
bolts” design feature that enables a construction worker to climb the tower. A design
feature can be mapped into a form feature (or features) that is chosen to be the design
solution.

Design Parameter—A variable considered during the design of an artifact. Its value can
be defined a priori or set during the design according to some hard or soft constraints. For
example, a design of tower leg members involves setting the “Unbraced Lengths” design
parameter. A design parameter can be a data item whose value can keep changing until
the design is finalized.

Design Constraint—A condition that must hold for a set of design variables for a given
artifact . A design variable can have several constraints that are considered during the
design. The recording of constraints helps in the documentation of the design. This class
definition is based on the work described in [Mittal 86] and [Zweben 89]. For example,
the “Unbraced Lengths” design parameter of tower leg members must result in
slenderness ratios of less than 200 to prevent column buckling.

Design Alternative—A proposed description of a design artifact that competes with other
candidate descriptions for the same design goal and under the same design criteria. The
designer may accept or reject a design alternative. The definition of the primitive class
“Design Alternatives” is based on those given in [Abdalla 89] and [Gruber 90b]. For
example, “butt-spliced members” and “lap-spliced members” are two alternatives for
designing leg members of a tower.

Design Version—An accepted description of a design artifact that is either a
modification, improvement, or elaboration of an earlier description. The designer may
keep the current version or roll back an older version. The definition of the primitive class
“Design Versions” is based on those given in [Abdalla 89] and [Gruber 90b].

Objective Function— “A function that evaluates the utility of alternatives with respect to
some set of criteria” [Gruber 90b]. Indeed, objective functions can be used to measure
the goodness of a design solution and to evaluate design alternatives that compete under a
given set of criteria. Examples of objective functions for a tower design are the tower
weight and cost functions.

Phan & Howard page 133

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

descripton ©— _ Design_
Description_

Primitives

Design_ Design_ Design_ Design_ parameter_

Artifact_ Feature_ Constraint_ Parameter_ name
Descriptions Descriptions Descriptions Descriptions
artifact_identifier feature_identifier constraint_type Numerical Constrained
classification : indexed 1,n neal onstrained._
design own_design(0.n) referred—variagles) Design_ Design_

gn_ parameters - Parameters Variables
characteristic status
mapping_ (0,1) oo Seoaldd>
to_functions numerical_ value_type
own_ (O,n) value value_unit
components unit current_value

status
referred_ (1.,n)
constraints

FIGURE 7.11: Sample Design Description Primitive Classes.

Design Note and Design Graphic—A design note is a textual annotation of a design. On
the other hand, a design graphic is a sketch or a formal illustration of a design or some
aspect of it. Both design notes and design graphics enhance the documentation of the
design and thus the ability to explain the design later. A design note or graphic can be
attached to any of the design description elements mentioned earlier. In addition, the user
can nest a design note or graphic within another note or graphic and, as a result, can
create an elaborate documentation, both textual and graphical, of a design.

7.2.4 Behavior Representation

The behavior of a design object is the object’s response to environmental stimuli.
Since a design object may perform several functions, it may exhibit different behaviors,
each corresponding to a particular function. For example, in resisting gravity loads, a wall
object may develop internal axial stresses; in resisting lateral loads, it exhibits shear and
bending stresses. In structural engineering, internal forces, stresses, displacements,
strains, vibrations, etc., characterize the behavior of a system or component under the
influence of external loading.

Structural engineering design often involves performance criteria that impose
certain limits on the behavior of the design objects. These criteria specify how effectively
the structure can prevent different failure modes. They also ensure that the design objects
perform according to professional standards. These criteria include: strength (i.e., stresses
and internal forces), serviceability (e.g., deflection, cracking, vibration, etc.), reliability,
stability, etc. In particular, strength ensures that the structure can sustain loading without
failure. Serviceability ensures that the deformed structure under applied loading is both
functional and acceptable. Since data describing behavioral responses is used to measure
a design against such criteria, the representation of this data can be organized according
to those criteria.

page 134 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

Structural_
description ©— Analysis_
Primitives

Structural Structural_ S
Analysis_ Analysis._ element_identifier
Node_ Element_
Descriptions Descriptions

node_identifier
boundary_condition

Two_Node _ support_1_type

f Analysis_ support_2_type
de(gjrees_o (;fretedom Element _ referred_node_1 (1,1)
node_coordinates Descriptions referred_node_2 (1,1)

length_unit

element_type
element_length

FIGURE 7.12: Sample Primitive Classes Representing Descriptions of
Structural Analysis Elements and Nodes.

The following descriptions are represented as behavior primitive classes:

Descriptions of the structural analysis elements and nodes, including their boundary
conditions (i.e., input to the structural analysis)—These descriptions are assumptions
made in the structural analysis about the way structural components would behave. The
information involved is usually encoded as input to a finite-element analysis program.
Structural engineers review these assumptions when they designs the members and
connections. In particular, they examine these assumptions closely when structural
failures occur. Figure 7.12 shows primitive classes describing structural analysis elements
and nodes.

Descriptions of the structure’s behavioral responses to the applied loads (i.e., output
from the structural analysis)—According to [Hsieh 82] and [Wang 83], the types of
behavior responses of a structure subject to loads include: (1) internal element forces, (2)
support reactions (i.e., external “reactive” forces at the boundaries of the elements
[Meriam 86]), (3) stresses, (4) linear or rotational displacements (for short, translations
and rotations), (5) deformations (i.e., elongations, shortenings, elastic bending curves,
and twistings), and (6) strains. The first three types constitute the structure’s “force
responses” and deal with the strength performance criterion. The rest comprise the
structure’s “displacement responses” and pertain to the serviceability criterion. Figures
7.13 and 7.14 show strength and serviceability behavior primitive classes respectively.

Phan & Howard page 135

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

description Strength_
optional_name Behavior_
Primitives

response_force_type

response_force_category Behavior_ Behavior._
Response_ Stresses
Forces
magnitude - !)
direction 8 A Static_ !)!)
center_ esponse._
coordinates % Forces stress_type

stress_category
normal_direction
reference_direction

dimension_unit

Static._ Static_ Static_ scalar_intensity
Concentrated. Line_ Area_ location_coordinates
Response._ Response._ Response._ stress_unit
Forces Forces Forces
) 56 0066
concentrated_ line_length area_length
force_unit line_force_unit area_width

area_force_unit
FIGURE 7.13: Sample Strength Behavior Primitive Classes.

description
optional_name

Serviceability._
Behavior_
Primitives

- displacement_ Behavior Behavior
type Displacements Strains
Behavior_ Behavior_ Axial_ Behavior_ !)l)!)l)!)!‘)b
Translations Rotations _Element_ Angles_of_ strain_type
Displacements Twist strain_category
d) b b b A) J) é) é) normal_direction
reference_
translation_ rotation_direction axial_ twisting_angle direction
direction rotation_angle displacement_ twisting_direction scalgr_int_ensity
istance _ Jocation magnitude location_ location_
translation_unit = o0 Soo displacement_ coordinates coordinates
location_ unit

coordinates
identifier

referred_element_

FIGURE 7.14: Sample Serviceability Behavior Primitive Classes.

page 136 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

7.3 Hierarchical Facility Decomposition by Functions or by
Artifacts

Studies on decomposition of complex products have been reported in literature on
general design theory [Newell 72], [Goel 89a], VLSI design [Steinberg 87], mechanical
engineering design [Dixon 86], [Mittal 86], [Meunier 88], and facility engineering design
[Gielingh 88], [Sriram 89], [Sause 90]. In fact, scholars have proposed the following
approaches for decomposing an engineering device: a single “functional hierarchy”
[LaRota 90], a network of “functional units” and “technical solutions” [Geilingh 88], a
“structure-substructure” hierarchy and a “function-behavior” hierarchy [Goel 89b], a
“requirements model” and an “artifact model” [Mark 90], a functional hierarchy
connected to a network of “behavioral views” [Umeda 90], and a “physical organization”
and “functional organization” [Davis 85]. Other approaches focus on the decomposition
of a facility: a single “abstraction hierarchy” with multiple levels of aggregation (e.g.,
building, systems, subsystems, members, elements, etc.), each containing a number of
predefined entities [Maher 85], [Sriram 84], [Bjork 88], [Lavakare 90]; a “component
hierarchy” of basic components and connections [Powell 88]; a “spatial hierarchy” and a
“functional hierarchy” (including frames, bays, aisles, joints) [Eastman 78]; and three
linked hierarchies such as “topological hierarchy,” “structural hierarchy,” and
“architectural hierarchy” [Law 86].

The P-C Approach advocates that users of a domain primitive schema should have
complete control over the hierarchical decomposition of a given facility. This
decomposition should also closely reflect the opportunistic way in which facility
designers come up with their design. In fact, the approach does not impose any
predefined aggregation levels by which the user must abide (e.g., the levels of building,
systems, subsystems, members, elements, parts, connections, and connection methods
described in the Structural Steel Framing Data Model [Lavakare 89]). The user can
decompose a facility in two ways: by the functions that it performs, or by the design
artifacts created by the engineers. The domain primitive schema provides primitive
classes needed to support both types of decomposition. The following sections explain
the two decomposition types using the example of transmission towers.

7.3.1 Decomposition by Functions

A facility can be seen as a hierarchy of the functions that it performs. Each function
can include other supporting functions. Figure 7.15 shows the “function hierarchy” of the
sample transmission tower illustrated in Figure 1.1 of Chapter 1.

This decomposition type provides a hierarchical view that is important to the design
of a facility. In fact, designing a facility is about defining, planning, implementing and
validating its functions. In other words, the designer reasons about the functions the
facility must perform and how the functions of its systems and components can be
aggregated to achieve the overall functions of the facility.

In addition, a function hierarchy provides a framework for defining and organizing
the requirements for designing and constructing the facility. The modeler can associate
each function with a set of requirements for achieving it. Figures 7.16 show the
requirements associated with the sample tower’s functions in Figure 7.15.

Phan & Howard page 137

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

to_ transmit_ A TRANSMISSION TOWER
electrical_power FUNCTION HIERARCHY

to_provide_a_tower_type_
for_holding_the_transmission_line

to_attach _?e(to_provide_a_support__

conducting_parts ‘/structui\
to_carry_ to_cary_ to_carry_ to_transfer_ to_resist_ to_provide_
conductor_ static_ _hardware_ loadin environmental_ structural_
wires wires and_insulators loading_conditions reliability

to_transfer_
loading_from_
tower_body_
to_foundation

to_transfer_
loading_

from_wires_

to_tower_bod

to_transter_

loading_from_
foundation_

to_ground

to_resist_
load_
cases

to_implement
gravity_
load_paths

to_implement
lateral_
load_paths

R | A to_resist_
L subpart relationship load_
I Multiple instances. L(Aggregation type) applications

FIGURE 7.15: A Sample Transmission Tower’ s Function Hierarchy.

page 138 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

to_transmit_ rrnndi®
eloctrical_power %

electrical_powsr._
transmission_

X specification

% line_

* direction_setting_
specification

line_

¥ towers_layout_
specification

to_provide_a tOWSI(Ff}’l?_G_
tower_type_ specification
for_holding_the._ tower_elsctrical_

transmission_line specification

conductor-to-ground_

sClearance_parameter
to_attach_ tower_ “ conductor-sag._
electricity- .,,be/ectrica/_ Y parameter
conducting_ ~ ¢learances_ S, phase-to-phase_
parts specification clearance_parameter
% phase-to-structure_
X% ' clearance_parameter
¥¢ tower-to-tower
\ clearance_parameter
¥ right-of-way._
clearance_parameter
to_resist_ load
a_load_ i I

application_
specification

application

LEGEND

function remeecigge requirement

refers to relationship
(Referential Association)

- l Multiple instances.

FIGURE 7.16: A Sample Transmission Tower’s Functions

Requirements.

conductor_wire_

to_carry_ specification
conductor._ static_wire_
wires sag-tension_
specification
tatic_wire_
to_carry_ specification
static_ conductor_wire_
wires sag-tension_
specification
to_carry_ tower_
hardware_ m“&’attachments_
and_insulators specification

to_provide_
support_ &
structure

slower
¥ fail-safe_

specification

B tower_

serviceability_

specification

% tower_

heights_
specification

%9 cost_

to_resist_
environmental_
loadings

to_resist_
load_
cases

ol

threshold_
requirement

¥ maximum_

total-weight_
requirement

o ANSI-

extreme-wind._

W, specification
“& Extreme-ice_

loading_

specification
NESC_

combined-
wind-ice_
specification
load_
case_

specification

and

Phan & Howard

page 139

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

7.3.2 Decomposition by Design Artifacts

This decomposition type yields a hierarchical view of a facility in terms of the
objects created by the designer, the “artifacts.” Figure 7.17 shows a sample “artifact
hierarchy” of the transmission tower seen in the previous section. An artifact hierarchy is
similar to a solution hierarchy that parallels a function hierarchy.

The reader must make the following distinctions:

e Design artifacts vs. physical objects: As mentioned earlier, design artifacts can be
abstract. They are not all physical objects with well-defined boundaries or made
from certain material. A facility decomposition by design artifacts can yield a result
different from that of a decomposition based on bounded physical objects of the

facility.
. A TRANSMISSION TOWER
traﬂirxlsrslon_ ARTIFACT HIERARCHY
Stnicturg \
arms_ tower_ tower_body_ tower m
sysgtem cage below_ anchoring_ foundation_
cage system system
top_ middle_ bottom_ Tension- Tension- K-panels base-shoe_
arm_ arm_ arm_ Compression_ Compression_ be?ow - and_anchor-bolt_
sub- sub- sub- cage_ panels_ cage assemblies

systems systems systems papels below_
A r/\

cage_ cage_ cage_ primary_ primary_ redundant_ base_ anchor_

rimary_ primary_redund._ leg_ lacing_ sub- shoes bolts
eg_ lacing_ sub- sub- sub- systems_
sub- sub- systems systems_ systems_ below_

below_ below_ cage
cage

systems systems

'

top_ middle_ bottom_ arm_

primary_cage_ cage_cage_ crossed_ girt_ redund._girt_

arm_ arm_ arm_ redund._leg_ crossed_girt_ redund._jacing_ mem._ mem._ support_
mem. mem. mem. mem. mem. lacing_ mem. mem. mem. below_ below_ mem.
mem. below_ cage cage

subpartrelationship
(Aggregation type)

cage

FIGURE 7.17: A Transmission Tower’s Artifact Hierarchy.

The elements shown in this hierarchy have more than one instance, except those at the
two highest levels. Each element has its unique design characteristics, functions, and
requirements. The arrows indicate “subpart” relationships of the Aggregation type. For
the purpose of simplicity, this figure does not show tower extensions, the tower
foundation branch, connection assemblies, connections, and parts.

page 140 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

Function_
Artifact_
Mappings

Artifact_ Function_
To_Functions_ To_Attifacts
Mappings Mappings

Artifact_ Artifact_ Function_ Function_
To_Functions_} |To_Functions_ To_Artifacts_ | To_Antifacts_
Association_ Aggregation_ Association_ §| Aggregation_

Mappings Mappings Mappings Mappings

referred_ (1,n) own_ (1,n) referred_(1.n) own_ (1,n)
functions functions artifacts artifacts

FIGURE 7.18: Sample Function-Artifact Mapping Primitive Classes.

° Decomposition by artifacts vs. decomposition by functions: Figures 7.15 and 7.17
show that the application of the two decomposition types to the same transmission
tower can yield completely different results. A design artifact obviously is not a
function. However, an artifact can be seen as a design solution to functions in a
function hierarchy.

7.3.3 Mappings Between Functions and Artifacts

A domain primitive schema should provide primitive classes that support mappings
between a function hierarchy and an artifact hierarchy. The user of the schema can use
these classes to define her own mapping instances for a given facility to represent closely
the way in which designers come up with the design of that facility. Figure 7.18 shows
the “function-artifact mapping” primitive classes. These classes present the user with
three alternatives for creating facility hierarchies: creating dual artifact and function
hierarchies, creating an aggregated artifact-function hierarchy, and creating mixed
artifact-function hierarchies.

First Alternative—Dual Artifact and Function Hierarchies Using the “Artifact-
to-Function Association Mappings” and “Function-to-Artifact Association Mappings”
primitive classes in Figure 7.18, the user can create dual hierarchies with the following
characteristics: The user can decompose a facility by its functions independent of its
physical characteristics and design artifacts. Alternatively, she can decompose it by its
design artifacts independent of its functional aspects. The resulting function hierarchy and
artifact hierarchy do not have to be identical or correspond to each other in a one-to-one
fashion. The mappings between the two hierarchies can go in either direction (i.e., from
the artifact hierarchy to the function hierarchy or vice versa) to closely represent the way
in which the design has occurred. Since these mappings use relationships of the
Referential Association type, changes made to one hierarchy (i.e., additions,
modifications, and deletions of elements in the hierarchy) do not affect the other
hierarchy. However, when a function or artifact is deleted, it is the user’s responsibility to

Phan & Howard page 141

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

clean up the hanging references that are associated with the deleted instance. Figure 7. 19
shows an example of such hierarchies for a transmission tower.

TOWer i omission -+ | MaPDINgS
::Artifacts o ower L
. .Hierarchy . . structure

a_design-artifact_
to_function_
mappin

. . -tower_body_ . .
below_
cage

a_function_to_

Tension- W - gadesign-artifact_
Compression_{l} mapping
pane]s_
below_cage Jif ... T a_design-artifact_

to_function_
mapping

Primary_ Th R -« « -« - oo e
]eg_

' jsub-systems rimary. W . .
below_cage p‘acm;y__ R
AN || sub-systems }ift © © ©
AR below_cage||l

_design-artifact _
to_function_
mappin

primary_
leg_
members

a_design-artifact_
to_function_

..... crossed‘_ g . . » g - . .
| Yaeng s M mapping
...... members_ | girt_ _design-artifact_
------ below_cage ||| members_ to_function_
"""" |below_cage mapping

LEGEND

Tower
Functions

tower_type_
for_holding_the_
i i

environmental_
\ it

to_transter_
loading_

rom_tower_body

to_foundation

to_implement_

gravity_
load_path

to_implement_
lateral_
load_path

to_resist_
load_applications
on_leg

to_resist_
oad_applications_]
on_lacing

to_resist__
load_applications_]
on_girt

l Multiple instances.

—p- SUbpart relationship
" referred-to relationship

FIGURE 7.19: Dual Artifact and Function Hierarchies of A Transmission

Tower.

page 142 Phan & Howard

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

Second Alternative—Aggregated Artifact-Function Hierarchy Using the
“Artifact-to-Function Aggregation Mappings” and “Function-to-Artifact Aggregation
Mappings” primitive classes in Figure 7.18, the user can create a single hierarchy that
contains both artifacts and functions. This aggregated hierarchy has the following
characteristics: First, the hierarchy shows how functions of the facility break down and, at
the same time, describes what artifacts designers create. In this alternative, functions and
design artifacts are “cohorts” of the same hierarchy. More importantly, the hierarchy
captures a different semantic of the relationship between functions and design artifacts.
Artifacts and functions of the hierarchies are linked together using relationships of
aggregation type. Consequently, deletion of an object at one level of the hierarchy will
automatically trigger the deletion of all other component objects of the lower levels,
whether these objects are functions or artifacts. The advantage of this approach over the
first alternative is that when a function or artifact is deleted, the user does not have to
clean up any “hanging” references associated with the deleted instance (i.e., references
that point to nothing as a result of the deletion). Another advantage is that the user can
introduce new functions and design artifacts at any level of the hierarchy. This approach
is useful when a complete decomposition of the facility by either artifacts or functions is
not feasible or too complex to define, especially at the detail levels of the hierarchy. The
tradeoff is that the modeler gives up the clean separation between the functions and the
artifacts of the facility.

Third Alternative: Mixed Artifact-Function Network The third alternative is a
hybrid of the first two alternatives. It allows both aggregation and association mappings
between design artifacts and functions at any level of the hierarchy. Therefore, it provides
the modeler with a lot of flexibility in decomposing a facility. The trade-off is that since
both aggregation and association relationship types are used to create a highly complex
network, the modeler must be aware of what relationships exist between function and
design artifact instances and what effects these relationships entail when instances are
deleted.

7.4 Chapter Summary

This chapter focuses on the content of a domain primitive schema following the P-C
Approach, namely the representation elements that the schema should include. First,
form, function and behavior have been discussed in literature on knowledge
representation and design knowledge capture. In this research, form, function, and
behavior of design objects for transmission towers are all represented in a detailed
schema. The inclusion of form, function, and behavior representations in this schema was
an attempt to overcome the deficiencies of existing schemata in facility engineering that
were pointed out in Chapters 1 and 2. This schema includes 216 primitive classes that are
organized into 30 primitive characterization hierarchies. The sample hierarchies (e.g.,
material properties, functions, requirements, strength behavior, serviceability behavior)
shown in this chapter come from the schema for the transmission tower domain. The
separation of these hierarchies results in clean and modular facility data representations.
In fact, each hierarchy uses a single criterion to define the primitive classes and thus
provides a homogeneous view about one specific aspect of the facility design objects. In
addition, the schema provides primitive classes representing important elements of a
design such as design artifacts, features, parameters, constraints, versions, and
alternatives. Together, form, function, behavior and design primitive classes of the
schema support three principal dimensions of a facility design: (1) design characterization
(i.e., form, function, behavior), (2) design decomposition and recomposition, and (3)

Phan & Howard page 143

Chapter 7: Form, Function, Behavior Representations in the P-C Approach

design versioning and alternative selection. With this schema, a facility can be
decomposed hierarchically in two ways: by the functions that it provides and by the
design artifacts created by the designers. The schema also includes primitive classes
needed to support the two decomposition types, as well as the mappings between
functions and artifacts. Appendix D contains the documentation of all the classes of the
schema.

The last part of this dissertation describes the testing of the P-C Approach, the
contributions of this research, and the final conclusions. In particular, the next chapter
explains the testing of this approach in the transmission tower domain and presents the
findings from that testing. The next chapter also shows how the tower primitive schema
described here was used to represent different user views in a variety of tasks spanning
from the conceptual design to the facility management phase in the tower life-cycle.

page 144 Phan & Howard

Chapter 8: Testing of the P-C Approach

PART Ii:

TESTING, CONTRIBUTIONS,AND
CONCLUSIONS

Chapter 8

Testing =of the P-C A_pproach

Chapter Abstract:

This chapter explains the testing of the P-C Approach in the transmission tower
domain and presents the findings from that testing. The chapter first introduces the
main purpose and a complete definition of the testing. Next, it presents the research
question and hypothesis and describes the test variables, measurements, cases, and
procedure. Finally, it presents and discusses the test resduits.

Organization:

8.1 Introduction
8.2 Testing of the P-C Approach
8.2.1 Research Question
8.2.2 Research Hypothesis
8.2.3 Independent and Intermediate Variables and Their Measurements
8.2.4 Key Dependent Variable and Its Measurements
8.2.5 Test Cases
8.2.6 Test Procedure
8.2.7 Test Resuits
8.3 Chapter Summary

Phan & Howard page 145

Chapter 8: Testing of the P-C Approach

8.1 Introduction

The main purpose of the testing described here was to verify the hypothesis that the
application of the P-C Approach to a given facility engineering domain results in a
schema that can be shared within that domain. The testing was conducted in the
transmission tower domain using the schema already developed for this domain. The
testing was based on social science research methodology. This methodology provided
the basis to describe the research work, formalize the testing, and analyze the outcome of
the testing [Lave 75], [Eisenhardt 89], [Babbie 92]. Using this methodology, a complete
definition of the testing included:

° A general question that guided the research;
. A research hypothesis that the testing would verify or disprove;
. All test variables, including independent, dependent and intermediate variables;

. The test measurements, namely the values with which the test variables are
measured;

° The specific test cases that were conducted: A test case corresponds to a unique
combination of input variable values that is chosen prior to the test. All of the
possible combinations constitute the total “test space.” Each test case is a point
within that space.

. The test procedure, namely the steps for obtaining test results that are the measured
values of the dependent variables.

The testing also led to the evaluation of the scope of applicability, strengths, and
limitations of the P-C Approach. This evaluation was presented in Chapter 3.

8.2 Testing of the P-C Approach

8.2.1 Research Question

The general research question is:

What is needed to model data in a given facility engineering domain and
as a result, to build a schema that can be shared by multiple users during
the life-cycle phases in that domain (and thereby, can support data
integration)?

8.2.2 Research Hypothesis

The hypothesis that was tested here is:

A methodology for modeling data in a given facility engineering domain
can produce a schema that can be shared by multiple users across the life-
cycle phases in that domain.

This thesis already described such a methodology, the P-C Approach, and its
application to a tower domain that resulted in a schema. The testing described here
focuses on measuring how well this schema can be used to support data uses by multiple
users across the life-cycle phases and, thus, how well it can be shared within the domain.

page 146 Phan & Howard

Chapter 8: Testing of the P-C Approach

8.2.3 Independent and Intermediate Variables and Their Measurements

The above hypothesis suggests three obvious variables:

° “Facility Engineering Domain:” A facility engineering domain corresponds to a
product from the A/E/C industry. This independent variable has many possible
values: electrical utility transmission structures, steel-framed warehouses,
reinforced-concrete buildings, etc. These values are called “nominal” measurements
because they tend to be exhaustive and mutually exclusive [Babbie 92].

° “Data Modeling Methodology:” A data modeling methodology is a collection of
techniques and tools (including concepts, rules, guidelines, procedures, and
operations) that can be used to model data and that leads to the development of a
schema. A schema is a description of the way in which the data is structured. This
independent variable has many nominal values: the P-C Approach, the Nijssen’s
Information Analysis Method (NIAM) [Verheijen 82], [Williams 89], and the
Integrated Computer Aided Manufacturing Definition (IDEF) methodologies
[Bravoco 85a], [Bravoco 85b], [Mayer 92] to name a few.

° “Domain Schema:” The use of a methodology to model data in a domain yields a
schema for that domain or a “domain schema.” As Figure 8.1 shows, this
intermediate variable depends on both the domain and methodology under
consideration. Therefore, its value varies according to the input domain and
modeling approach.

Number
of Users
Phase
Adjacency

Facility
Engineering Data Uses
Domain

Schema
Performance

Data Domain
Modeling = Schema /
Methodology

LEGEND
A= B B is dependent on A

FIGURE 8.1: All Test Variables.

Phan & Howard page 147

Chapter 8: Testing of the P-C Approach

Figure 8.1 shows three other variables:

° “Data Uses:” A data use refers to a specific occurrence in which a fixed set of data
items are used by a user to carry out an activity. A user is defined here as a person
or computer application who carries out an activity and needs to use data. This
variable has the following nominal values in the transmission tower domain:
electrical design, conceptual structural design, structural analysis, detailed structural
design, structure detailing, fabrication, construction planning, construction
execution, facility management, and other. These nominal values are defined from
studying the different categories of activities in the tower facility life cycle
(described in Appendix A). The next two variables influence the selection of data
uses considered in the testing.

° “Number of Users:” This variable indicates whether a single user or multiple
distinct users are considered in a single test case. This variable has two values:
“single user” and “multiple users.” These are “ordinal” measurements, which are
ordered using some logical ranking.

. “Phase Adjacency:” This variable represents the closeness of the phases in which
the data uses being considered occur. This variable has three ordinal values: same
phase, consecutive phases, and non-consecutive phases.

8.2.4 Key Dependent Variable and Iis Measurements

As pointed out in Chapter 2, little work has been done in the area of defining
requirements, criteria, measures to test and evaluate data models, database schemata, and
data standards. To our knowledge, no rigorous measures have been defined for testing
how effectively a data standard or schema developed to support integration can be shared
within a domain and across domains and thus, for accepting that standard or schema. This
research takes the first step toward defining such measures by introducing a variable,
“Schema Performance,” and its three components: P-1 (or schema completeness), P-2 (or
schema efficiency), and P-3 (or schema sharing). Schema Performance, the key
dependent variable, depends on the individual domain schema and the data uses
considered in the testing. Schema Performance measures how well a domain schema can
be used and in this case, can be shared by multiple users and across life-cycle phases in
that domain. Specifically, Schema Performance measures the ability to generate specific
schemata from the given domain as they are needed by the individual users in various
life-cycle phases. This is illustrated in Figure 8.2.

page 148 Phan & Howard

Chapter 8: Testing of the P-C Approach

A .
common
domain
schema
User-
Specific A& —YL-
Schemata L. | ____ SSSesd
Data Data Data Data Data
Use Use Use Use Use
LEGEND A B C D E

[C1 Data representations included in the domain schema

A Different user-specific schemata
< for particular data uses

FIGURE 8.2: An lllustration of Generation of User-Specific Schemata from a
Common Domain Schema.

The Schema Performance includes three components, as Figure 8.3 illustrates:

. P-1 (or Schema Completeteness): The percentage of data items available from the
schema to generate user-specific schemata for different data uses. To measure P-1,
let X be a data use considered in the test. First, determine the number of data items
needed (or Ineeded) for each data use X. Then, determine the number of data items
available from the schema (or I,vailable). Calculate P-1 as the average ratio of
Iavailable Over Ineedeg for all the data uses considered in the test. For example, one
activity is considered in the test. That activity needs ten data items, and five are
available from the schema. Thus, P-1, the percentage of data available, is 50%. P-1
indicates how complete the schema is.

. P-2 (or Schema Efficiency): The percentage of attributes from the schema that are
actually used to support the data uses. To measure P-2, first determine the number
of attributes of primitive classes selected from the schema (Agelected) for each data
use X. Then, determine the number of attributes that are actually used to represent
X (Ayseq)- Calculate P-2 as the average ratio of Ayged over Agelected for all the data
uses considered in the test. For example, a primitive class with seven attributes is
selected, and five are needed for the composite object. In this case, P-2, the
percentage of attributes used, is 71%. P-2 indicates how efficient the schema is
(how efficiently attributes in the schema are grouped together to support the data
uses).

Phan & Howard page 149

Chapter 8: Testing of the P-C Approach

P-1
(% available)

Data ltems available %

Data ltems needed

P-2
(% used)

Attributes used @

Attributes selected %
\ 2 X

— P-3
(% sharing)

Data ltems available)

Data ltems common

FIGURE 8.3: Three Components of the Schema Performance Variable.

° P-3 (or Schema Sharing): P-3 captures the percentage of data shared by the data
uses that are available from the schema. To measure P-3, let X and Y be a pair of
distinct data uses considered in the test. First, determine the number of data items
common to X and Y (or I¢common) for each pair. Then, determine the number of data
available from the schema to represent those common data items (or Iavailable)-
Calculate P-3 as the average ratio of Iayailable Over Icommon for all the pairs of
distinct data uses considered in the test. For example, X and Y share eight data
items, four of which are available from the schema. In this case, P-3, the percentage
of shared data available, is 50%. P-3 indicates the extent to which the schema
promotes sharing of data among data uses.

This testing suggests the combination of the above three components as a way to
measure how well a schema can be used to support data uses by different users and across
life-cycle phases and, thus, how well it can be shared within the domain. Meanwhile,
other performance aspects of a schema such as flexibility, extensibility, accuracy, etc.
were considered. However, operational measurements for those aspects were found to be
very difficult to define. Additional research work is needed to further define all the
essential component measurements of schema performance.

page 150 Phan & Howard

Chapter 8: Testing of the P-C Approach

8.2.5 Test Cases

8.2.5.1 Description of the Main Test Problem and Cases

A test problem was defined through the selection of a facility engineering domain
and a data modeling methodology. Figure 8.4 illustrates the main test problem that is
considered here: The facility engineering domain is electrical utility transmission towers,
and the data modeling methodology is the P-C Approach. This approach was applied to
the tower domain to build a domain schema. In this test problem, test cases were selected
by varying the values of the data uses, number of users, and phase adjacency. Conducting
the selected test cases resulted in measurements of the Schema Performance variable.

Six test cases covered the test space defined by the two variables, Number of Users
and Phase Adjacency. As Table 8.1 shows, each of these cases corresponded to a unique
combination of values of those two variables. The resulting set of six cases tested the
schema performance from a single user to multiple users and from the same phase to non-
consecutive phases. This set considered the test subject of transmission tower members.
(A test subject is a topic to which the data uses specified in the test case relate.) In these
test cases, data uses were selected to cover a variety of activity types and, to as large a
degree as possible, the available test space. In fact, these data uses came from specific
activities of the tower engineering process that are described in Appendix A. The next
section describes the selected data uses in detail.

;Ad;f'::enc %
5:9//,%9/4\,

Schema
Performance

LEGEND
A——-p-B B is dependent on A
Variables that are kept 7// Variables whose value

constant to define the vary depending on the
test problem. test case.

Key dependent variable
to be measured.

FIGURE 8.4: The Main Test Problem.

Phan & Howard page 151

Chapter 8: Testing of the P-C Approach

TABLE 8.1: The Selected Data Uses Selected in the Six Test Cases.

Number Of Users Single User Rultiple Users
vs.
Phase Adjacency
Same Phase » Data Use 1-A: e Data Use 4:
Tower Members as Analyzed Tower Members as Anchored
(structural engineer, Phase III) (foundation engineer, Phase IIT)
e Data Use 1-B:
Tower Members as Designed
(structural engineer, Phase III)
» Data Use 1-C:
Tower Members as Bolted
(structural engineer, Phase III)
Consecutive Phases || - Data Use 2: ¢ Data Use 5-A:

Tower Members as Conceptualized

(structural engineer, Phase IT)

Tower Members as Detailed
(structural detailer, Phase IV)
¢ Data Use 5-B:

Tower Members as Delivered
(fabricator, Phase V)

e Data Use 5-C:
Tower Members as Assembled
(construction crews, Phase V)

Non-consecutive
Phases

» Data Use 3:
Tower Members as Redesigned
(structural engineer, Phase VI)

e Data Use 6:
Tower Members as Checked
(electrical engineer, Phase IV)

8.2.5.2 Selection of Data Uses

Considering Single User, Same Phase: Selecting the First Three Data Uses,
1-A to 1-C First, three uses of data describing the tower members were selected. These
data uses involve a single user, the structural engineer, in the same Phase III, Tower

Structural Detailed Design. However, they occur in three separate activities:

. preparing the input data to the structural analysis program (see Activity II1.S1.3 in

the graphical functional schemata in Appendix A),

. designing the members (see Activity IIL.S2.1) and

. designing the members’ end connectors (i.e., by determining the number, pattern
and diameter of bolt holes) (see Activity IT1.52.3).

These activities use the member data differently and provide three ways of viewing

the tower members: as analyzed, as designed, and as bolted.

page 152

Phan & Howard

Chapter 8: Testing of the P-C Approach

Considering Single User, Consecutive Phases: Selecting Data Use 2 This
data use by the same user, the structural engineer, occurs in Phase II, Tower Structural
Conceptual Design. Here, the structural engineer assumes a preliminary geometry for the
tower by arranging tower systems and configuring their members (see Activity I1.S1.2).
Only the members’ position, orientation and topology are determined at this point. The
new data use yields another view of the tower members: as conceptualized.

Considering Single User, Non-Consecutive Phases: Selecting Data Use 3
This data use by the same user occurs in Phase VI, Tower Facility Management. Here, the
structural engineer redesigns the tower members to add new electrical equipment to the
tower structure. This data use yields another view of the tower members: as redesigned.

Considering Multiple Users, Same Phase: Selecting Data Use 4 This data use
in the same Phase III involves a different user, the foundation engineer. Here, the
foundation engineer uses the data of selected members to design the tower anchoring
devices (see Activity II1.G4.2). (These anchoring devices are not part of the members.)
The new data use yields another view of the tower members (i.e., as anchored) by a
different user.

Considering Multiple Users, Consecutive Phases: Selecting Data Uses 5-A,
5-B and 5-C More data uses from other users were chosen. To cover the test space as
much as possible, three data uses (i.e., by the structure detailer, fabricator, and
construction crews) were selected. This time, the corresponding activities occur in
consecutive phases, Tower Construction Planning (Phase IV) and Tower Construction
Execution (Phase V). The two new activities are:

° the detailer detailing of the fabrication parts (see Activity IV.S2.1),

° the fabricator bundling and shipping of parts to the construction site (see Activity
V.F1.5), and

e the construction crew assembling the tower members on site (see Activity V.C3.1).

These provide views of the tower members by two other users: as detailed, as
fabricated, and as assembled.

Considering Multiple Users, Non-Consecutive Phases: Selecting Data Use 6
This data use by another user, the electrical engineer, occurs in Phase VI, Tower Facility
Management. Here, the electrical engineer checks the tower members for electrical
clearances (Phase VI). This provides another view of the tower members: as checked.

8.2.6 Test Procedure

We defined the test procedure and carried out the entire test using the tower domain
primitive schema already developed. The procedure was as follows:

1. We determined the data items needed in each of the selected data uses by reviewing
the relevant collected documentation. (The latter included project design folders,
design manuals, engineering drawings, bills of materials, program input and output
files, engineering drawings, etc.)

Phan & Howard page 153

Chapter 8: Testing of the P-C Approach

2. For each data use, we divided the data items into two sets: those that are available
from the given primitive schema and those that could not be represented using the
schema.

3. For the first set of data items of each data use, we selected the appropriate primitive
classes from the schema and defined a composite schema for the data use following
the standard steps provided by the P-C Data Modeling Method. (Those steps are
described in Section 6.3.4 of Chapter 6). In the primitive class definitions, we
eliminated any attributes that were not needed.

4. Finally, assuming that all data items are equally important, we measured the three
components of the Schema Performance variable that were defined in Section 8.2.4.

8.2.7 Test Results

Tables 8.2 and 8.3 summarize the measurements of the tower primitive schema’s
performance: 98% data available (P-1), 84% attributes used (P-2), and 83% schema
sharing (P-3). The composite classes that were defined for the tested data uses are
documented in Appendix E. Those composite classes represent the different user views of
the tower members such as “Tower Members As Analyzed,” “Tower Members As
Designed,” “Tower Members As Bolted,” etc. Table 8.4 shows the primitive classes that
were selected from the tower schema to customize those composite classes.

TABLE 8.2: Measurements for P-1 and P-2 of the Tower Primitive Schema.

Data Uses Views of Tower Ineeded | lavailable | Aselected | Adeleted
Members

1-A As Analyzed 39 38 48 10

1-B As Designed 54 53 65 12

1-C As Bolted 47 46 52 6
2 As Conceptualized 52 51 58 7
3 As Redesigned 103 102 115 13
4 As Anchored 50 49 59 10

5-A As Detailed 52 51 54 3

5-B As Delivered 18 16 21 5

5-C As Assembled 41 40 51 11
6 As Checked 48 47 50 3

P-1 (or % data available) = Average (lavailable/ Ineeded) = 97 %
P-2 (or % attributes used) = Average (Aused/ Aselected) = 85%

page 154 Phan & Howard

$¢1 d ‘yovouddy H-d ay1 fo Sunsay 1 1a1dvy)

%E8 = (UOWWOJ| / SIGENIEAE|) abelaAY = (BUlJeYS ewayds % J0) g-d

9
J-s
0 g 8-S
01 6 v-s
14
€
9[8uern ey I0MO[c
=l Jo asodsuen 91
=li)] St 9[3ueLn Ioddn SIY T, g-1
V-1
-5 8-s V- 14 € c bo o | 8- V-4 eleg

(woururod] 10) SUIN] BIB(T UOUNUO)) \Ao_nn__n AR] 10) O[QEIIEAY SWIN] B1e(]

"BWBYIS AW 1aMOL 8Y] JO g-d 10) Sjuawainsesyy :g°¢ 319V.1

96T “d ‘yovouddy H-g a1 Jo Sunsay ;g 1a1dvy)

__ $95S211S JOIARYSQ

suondrnsa(q 10eJnry usIsaq

sonradoi] PBusng PSR

SIgjouTered UIISa(T [ROLIaWNN

$3010,] 9SU0dSY "JUIIUO)) ONE)S

suonduosa(adeqs-1 DSIV

'Y "0adg uonedrddy peo IWoO[-1y

° *03dg peoT parenuaduo)) onels

PY suoneoy1oads ase)) peo|

o TNPOA [ELISIEI

° SEaIy UONJaS

° *059(J 9PON SISATeuy eamonng

° 1dLOSa(WO SISA[EUY SPON-T

PaYoaY)
se
SISQUIS]A]
I9MO],

TquIassy
se

SISQUISIA]
I9MO],

P3ISALA(T
se
SISQUISA
I9MO],

parreeq
se
SISQUIS]A[
I9MO,

PRIOYOUY
se
SISQUIS]A
oMoy,

uSISopoy
se
SIOQUIS][
oMoy,

“1dacuo)
e
SIOQUISIA
13MO],

pajjog se
SISQUISIA
Mo,

PausISa(
se
SIQUIdIA
J9MO],

se

SISQUISTA[
19MO],

PIzZATEUY +

PIs[) SISSB[D) AN
~@— PRUIR(sser) ansoduwo)

IA 958U

I'eD'A

STIA

1'CS°AlI

YOI

IA oseqgd

IS

£ ¢S

128

V xipuaddy ur
€ TSI || 'ON (35eUd 10) ANANOY 20UAIJY

9

o5

8-

V-

14

€

c

o-1

g-1

v-i __ esy) ejeqg

IS8 8y} Ul paispisuo) sas ejeq 40} sasse| ajsodwio) Jo uoeZIWoISNY p'g d|qeL

LST “d ‘yovoiddy)-q oy fo Sunsay 9 1a1dvy)

sannuen() uonesuqe,J

SUOTED0T UONEILIE,]

= SwIoNe 9101 10g

SUOISUWI(] UONEILIGE,]

SUOTBULIOJSUBL], URISILIE))

SUIR)SA S JNRUIPIOO)) UBISIUIR))

SO UBISIIR))

SONIANOAUUO)) XA A

Suondudsa(xaaA

SJUOWFIG AUl

suonduosa(q 28pg

suonednddy peo Is1say O,

SETIAU] UOFDIS

PR
se
SIOqUISIA
MO,

“TQUIISS Y
Se
SIOqUISTA]
IaMO],

PIDATIA(T
se
SIQqUISTA]
MO,

parreq
sB
SIAqUISTA]
I9MO],

paIoyOUy
se
SISQUISA]
IomO],

US1SopaY
se
SIAqUIDIA
MO,

"1doduo))
Se
SISQUISTA]
I9MO],

paog se
SIAQUID]A
IaMo],

PpausISa(]
se
SISQUIS]A
OMOT,

se
SISQUIAIA PIS[) SISSBID) dANUILL]
1OMOL, || g PRUYR(SSEID ANIs0dwO)

pazheuy +

IA 9seud

I'ED'A

STTA

1CS'AI

[A

IA 9seqd

CISTI

£ TSI

'S

V Xiptaddy ut
€ TSI || "ON (358Yd J0) A11AndY 2ouamayoy

9

-5

85

v-s

| 4

£

c

o

g1

v-i esf) ejeg

1581 9y} ul paiapIsuo) sos() ejeq o) sesse) ajsodwo Jo uoneziwoisny :(‘Juoa) g sjqey

8¢ “d ‘yovouddy -d ay1 fo Suisay g 131dvy)

SI0UAINJIY reneds

samsorouy reneds

SUOTIBIUSLIQ) UBISALIE))

SUONISO URISILIE))

SOIMIBI,] OUBILSD) JOQUISTA

SOIME,] INOAR T JOQqUISTA

sorqdean) udisaq

SAON USIsa(y

SIXaL, 3¥eJAl ON

Samiea YW DN

PIY3YY
se
SIAQUISIA
JOMO]T,

“[QUIDSS Y
se

SIOQUISIA
I9MO],

[EIEINIET
se
SIOQUISA
I9MO],

palreleg
se
SIOQUISA
I9MO],

paIOYOUY
se
SISQUIS]A[
Jomoj,

"USISIPIY
se
SIOqUIS]A]
IOMO],

1dasuo)
se
SIOqUIS]A]
I9MO],

pajog se
SISQUIS]A
IDMO],

PausIS(]
se
SISqUIAIA]
MO,

pozATRUy
se
SIOQUISIA
19M0],

)

PIS[] SOSSB[) QAN
-@— PPuUyR(ssep) asodwo)

IA 9seud

I'Ed'A

STIA

| AN

YOI

IA 3seud

CISTI

£CSTII

'eSTII

IS I

V XIpuaddy ur
"ON (95e(d J0) ANATIOY OUIJIY

9

9§

g-5

v-$

14

£

c

-1

g1

v-L

osn ejeq

"S8SeJ S8 9y} Ul palapIsuoY sas() ejeq 404 SaSSe[D ajsoduio) Jo uoneziuolsnd (- juod) p g ajqeL

Chapter 8: Testing of the P-C Approach

For the purpose of comparison, we ran the test again but used a composite schema.
To be conservative, we selected a composite schema that includes many primitive classes,
namely the one defined for the data use 1-B (Tower Members As Designed). Further, we
assumed that this schema has not been designed following the P-C Approach. Therefore,
it consists of a single object class that includes a large number of attributes. These
attributes represent all the data items needed in that data use. The results from this run
are: 46% data available (P-1), 43% attributes used (P-2), and 58% schema sharing (P-3).
The comparison between the two sets of results shows that a domain primitive schema
has improved performance over a schema that is not designed following the P-C
Approach.

In short, the testing described here shows that the tower domain primitive schema
can effectively support data uses from multiple users for a variety of activities spanning
from the tower conceptual design phase to the the tower facility management phase.
Consequently, this testing confirms that the schema can be shared within the tower
domain and helps in verifying the hypothesis stated earlier.

8.3 Chapter Summary

This chapter described the testing of the P-C Approach in the domain of
transmission towers. Three schema performance components and their measurements
were introduced: P-1 or schema completeness, P-2 or schema efficiency, and P-3 or
schema sharing. In the testing, measurements of these components were obtained for the
tower domain primitive schema. The test results showed that this schema supports a
variety of data uses by different users across the life-cycle phases. Therefore, this testing
verified that the application of the P-C Approach to a facility engineering domain
produces a schema sharable within that domain, and consequently, verified the research
hypothesis.

Phan & Howard page 159

Chapter 8: Testing of the P-C Approach

page 160 Phan & Howard

Chapter 9: Contributions, Conclusions, and Future Research

Chapter 9

Contributions, Conclusions,
and Future Research

Chapter Abstract:

The research described here focuses on the modeling of facility data to support data
integration. Its goal is to better understand what is needed to carry out this task and
to develop modeling tools that aid modelers. The immediate contribution of the
research is a methodology, the Primitive-Composite Approach, for conducting this
task in a given domain. Specifically, the research shows that the application of this
approach to a real-life tower domain leads to the development of a schema shared by
different users throughout the life-cycle phases in that domain. This schema itself
shows that form, function, and behavior of facility design objects are all represented
in a coherent fashion. This research also involves the testing of the P-C Approach in
the tower domain. As a result, the strengths and limitations of this approach are
clearly stated. This chapter presents the contributions, conclusions, and impacts of
this research on data modeling and data exchange, as well as future research
directions.

Organization:

9.1 Contributions
9.1.1 Definition of the Modeling Requirements and Criteria
9.1.2 Development of the P-C Approach
9.1.3 Development of the Modeling Tools
9.1.4 Development and Implementation of the Test Domain Schema
9.2 Conclusions
9.3 Impacts of the Research on Data Modeling and Data Exchange
9.4 Directions for Future Research
9.5 Final Remarks

Phan & Howard page 161

Chapter 9: Contributions, Conclusions, and Future Research

9.1 Contributions

In this research, we developed, applied, and tested a methodology for modeling
facility data to support data integration. The immediate contribution of this work is the
methodology, the Primitive-Composite (P-C) Approach. This contribution can be
explained in four parts:

(1) Definition of the requirements and criteria for modeling facility data to support data
integration,

(2) Development, application, and evaluation of a methodology that can be used to
analyze a given facility engineering domain and design a schema meeting those
requirements,

(3) Development of modeling tools that aid modelers in using this methodology, and

(4) Development, testing, and demonstration of a detailed schema, as a result of
applying this methodology to a test domain, that represents form, function, and
behavior of design objects in that domain.

The following sections elaborate on these parts.
9.1.1 Definition of the Modeling Requirements and Criteria

As pointed out in Chapters 1 and 2, the majority of existing schemata in facility
engineering lack the flexibility to support multiple user views. Once defined, they cannot
be extended to accommodate evolving life-cycle phases. In this research, we
incorporated sharability as requirements for the design of a primitive schema in a given
domain. In fact, we included two sharability requirements: user view support and schema
extensibility. To meet these requirements, we used cohesion and reusability to measure
the qualities of primitive classes. Although cohesion and reusability are rooted in
software engineering, we showed that they can be applied effectively to data modeling.
Further, we identified five principal dimensions of cohesion through studying data used
by experts in a real-life facility engineering domain. We also defined five levels of
reusability of primitive classes. More importantly, the realization of the cohesion
dimensions and reusability levels has changed the definition of primitive classes, which
was initially based on intuition [Howard 92], into an operational definition with fewer
and more measurable parameters than before. Indeed, we defined a primitive class as a
module that is “designed” to have maximum cohesion and reusability.

9.1.2 Development of the P-C Approach

The original research intention was to develop a data model, the P-C Data Model,
that supports data integration in facility engineering. However, the sheer complexity of
facility engineering domains raised many issues. These issues mandated an understanding
of the engineering process and the data describing the complex objects designed by
experts in the domain. That understanding is indispensable to any data modeling task.
Without it, any proposed data model has limited usefulness. These issues also pointed out
the need for developing modeling tools to acquire the requisite understanding.
Consequently, we developed the P-C Approach to resolve these issues. This approach
offers capabilities both to analyze a given domain and to design a schema that can be
shared by multiple users and across the life-cycle phases in that domain. We defined the
necessary steps and developed modeling tools that aid modelers in using this approach.

page 162 Phan & Howard

Chapter 9: Contributions, Conclusions, and Future Research

These modeling tools also include the originally intended P-C Data model. In short, the
development of the P-C Approach stemmed from a growing realization of what is needed
to model real-life facility data. The fact that we developed a methodology rather than
simply a data model makes this research a much more significant development work than
was initially planned. In addition, we applied this approach to a tower engineering
domain and evaluated its scope of applicability, strengths, and limitations.

9.1.3 Development of the Modeling Tools

PArtitioned eNgineering DAta flow model (or PANDA) The Data Flow model
has been a popular choice for functional analysis of a variety of processes. However,
additional requirements were needed to analyze complex facility engineering processes,
and no model had been developed specifically for doing this. We developed PANDA as a
solution. PANDA provides concepts, graphical representations, rules, schema
transformation operations, and a customized method and guidelines for using the model.
All these elements are necessary for the potential development of CASE tools that can
assist modelers in doing functional analysis using PANDA. We introduced a unique
partitioned architecture in PANDA, which helps modelers to organize their thinking
about complex engineering processes and which enhances both the conceptual readability
and graphical readability of the process’ functional schema. We also used PANDA to
model transmission tower engineering and produced a detailed set of functional schemata.

Domain Entities AnalLysis method (or DEAL) The Entity-Relationship model
[Chen 76] is the accepted model for conceptual data modeling. It advocates using entities
and relationships, but is deficient in providing criteria for entity definitions. This
deficiency becomes more critical when the modeler deals with large complex engineering
domains. As Wimmer and Wimmer [92] point out, few methods had been developed for
conceptual data modeling in engineering domains. We developed DEAL, a method that
uses cohesion and reusability as direct criteria for analyzing data used by experts in a
facility engineering domain and for doing conceptual modeling of that domain. DEAL
provides the terms and concepts, graphical representation, procedures, operations, and
rules for carrying out the analysis.

Primitive-Composite (or P-C) Data Model And Method Object-oriented models
and design methods are available today. However, we developed a unique combination of
an object-oriented data model and accompanying method: First, this model and method
work with the other modeling tools provided by the P-C Approach, namely PANDA and
DEAL. Second, the model combines the notions of primitives and composites with
object-oriented data modeling concepts, resulting in a stronger paradigm for modeling
facility data to support data integration than those concepts alone. Third, the method
provides a set of detailed rules and guidelines for designing a domain primitive schema or
composite schemata based on the concepts of the model.

9.1.4 Development of the Test Domain Schema

Existing schemata in facility engineering include mainly form descriptions and do
not distinguish form, function, and behavior. In this research, we showed that form,
function, and behavior of design objects can all be represented in a detailed schema for a
facility engineering domain. This schema also includes primitive classes representing
important elements such as design artifacts, features, parameters, constraints, versions,
alternatives, etc., of a design. Previous work in facility data modeling did not take into

Phan & Howard page 163

Chapter 9: Contributions, Conclusions, and Future Research

consideration this representation. Moreover, the modeling of facility data in the past has
been limited to trivial academic exercises or, at most, to small and simple real-life
domains. For the transmission tower domain, we defined approximately thirty primitive
class hierarchies and more than two hundred primitive classes. To our knowledge, no
such schema has previously been shown in facility engineering.

Previous facility data models impose hierarchical levels of aggregation such as
building, systems, subsystems, components, parts, and connections for the decomposition
of a facility. These levels are rigid and may not apply to a given facility. In this research,
we suggested two flexible ways to decompose a facility: by the functions that the facility
and components perform and by the design artifacts of the facility created by its
designers. As explained in Chapter 7, we defined primitive classes for both types of
decomposition. In addition, we showed three alternatives for creating facility hierarchies
using these classes: creating dual artifact and function hierarchies, creating a single
aggregated artifact-function hierarchy, and creating mixed artifact-function hierarchies.

As pointed out in Chapter 2, little work has been done in the area of defining
requirements, criteria, and measures to test and evaluate data models, database schemata,
and data standards. In this research, we tested the tower primitive schema against the
sharability requirements. First, with this schema, we defined composite classes for a
variety of data uses in activities across the tower life-cycle. In addition, we proposed
three test measures: P-1 or schema completeness, P-2 or schema efficiency, and P-3 or
schema sharing. In the testing, we obtained the P-1, P-2, and P-3 measurements for the
tower primitive schema. As a result, we showed that this primitive schema has improved
performance over a schema that was not designed following the P-C Approach. This
testing is an important step toward using operational measures for the validation and
acceptance of data exchange standards or schemata developed for the purpose of data
integration. Finally, we used the primitive schema to create a database for a selected
prototype tower and implemented the database using a commercial object-oriented
database system (ONTOS).

9.2 Conclusions

The following paragraphs present our conclusions on the development of sharable
object-oriented data representation for facility engineering integration.

Identification of and Testing against Design Requirements In building data
representations to support integration, the modeler must treat these representations as a
design artifact and must identify the design requirements at the beginning of the project.
She must also define operational measures for testing the result against those
requirements. These measures must include test variables with measurable values, and
test cases and procedures. In particular, the potential for sharing data representations in a
given domain depends on two critical factors: (1) the ability to support multiple
customized user views from the common representations, and (2) the ability to extend
these representations as the facility life-cycle evolves without abandoning previously
defined representations. These yield two important requirements for the development of
sharable data representations.

Possibility of Defining “Primitives” as Sharable Data Representations The
notions of primitives and composites combined with object-oriented concepts provide a
stronger paradigm for modeling facility data to support integration than the object-
oriented concepts alone. Primitive classes represent the data shared by multiple users
across the life-cycle phases. Composite classes customized by individual users represent
complex views about the facility design objects. This research shows the possibility of

page 164 Phan & Howard

Chapter 9: Contributions, Conclusions, and Future Research

defining primitive classes in a given domain. This is accomplished by providing an
operational definition of what they are and a methodology for designing them. In fact, the
P-C Approach anchors its operational definition of a primitive class in the concepts of
cohesion and reusability. Primitive classes need not be at the granularity of individual
attributes, but rather are designed and optimized using the cohesion and reusability
criteria. The P-C Approach essentially provides a structured methodology, including
phases and modeling tools, for analyzing a given domain and designing a schema that
includes primitive classes representing the domain.

Incorporation of Design Criteria into Tools for the Development of Sharable
Data Representations The modeler must define additional design criteria at the level
of individual conceptual entities and, in the case of object-oriented data modeling, of
logical object classes. He must incorporate these criteria directly into the tools used in the
design of those conceptual entities or logical classes. The enforcement of these design
criteria may help the modeler meet the requirements mentioned in the beginning. The P-C
Approach advocates using cohesion and reusability to optimize the design of primitive
classes, thereby increasing the sharability of the overall domain primitive schema.

Functional Analysis prior to the Modeling of Data Modeling data without prior
functional analysis of the process in which the data is used may be both arbitrary (i.e.,
difficult to justify) and problematic. It runs the risk of producing data representations that
are hard to reuse, maintain, and share. Functional analysis provides that understanding
and must be a prerequisite to the schema design. In addition, it helps the modeler improve
the design requirements and design of the schema, and verify and test the schema.

In developing PANDA for doing functional analysis of facility engineering
processes, we learned the following lessons: A proper model with graphical
representations is critical to the successful modeling of the process. By “proper,” we
mean that the model must be capable of representing multiple participants, non-linear
subprocesses, design synthesis loops, decisions, alternatives, and interferences, and
complicated data, material and product flow networks. These are essential characteristics
of facility engineering processes. In addition, this model must have built-in features that
will automatically produce highly readable graphical descriptions of the process. Without
these properties, the model may not be used. A method and guidelines for using a
suggested model also improves the likelihood that the model will be used effectively.
Finally, CASE tools that assist the modeler in doing functional analysis using a suggested
model are necessary and will make possible the successful use of the model.

Representation of Form, Function, and Behavior in Facility Engineering
Facility databases usually store data about physical properties of the facility design
objects. Conventional engineering drawings that are commonly used to communicate the
facility design show only the physical descriptions of the facility and its components.
These descriptions alone are inadequate to communicate the facility design. An object-
oriented schema supporting data integration in a domain must include object classes
representing form, function, and behavior of facility design objects. Their instances for a
given facility must be stored in a facility engineering project database or databases. The
explicit representation of form, function, and behavior in this schema enhances both the
description of the design objects and the explanation of their design. Moreover, form,
function, and behavior classes can be organized into separate class hierarchies in the
schema. This separation results in clean and modular representations that can easily be
reused and shared. In addition, the schema can include object classes that represent
important elements such as design artifacts, features, parameters, constraints, versions,

Phan & Howard page 165

Chapter 9: Contributions, Conclusions, and Future Research

and alternatives of a design. Finally, the schema can provide object classes that support
mappings between classes that represent form, function, behavior and design artifacts.

9.3 Impacts of the Research on Data Modeling and Data
Exchange

The following paragraphs discuss the impacts of this research on data modeling and
data exchange.

The working methodology that results from this research will aid in the
future modeling of large complex facility engineering domains. The P-C
Approach offers a methodology, including phases and modeling tools, for modeling
facility data to support integration in a given domain. This approach was applied the
transmission tower domain. The resulting primitive schema can provide a unified base to
integrate data within this domain: Many composite classes representing complex user
views can be customized from the same primitive schema. Those views correspond to a
variety of activities across the tower life-cycle. Further, applications could be built using
the underlying primitive schema, which provides a common language for the later data
exchange between these applications. In the future, this approach will aid the future
modeling of other facility engineering domains that are larger and more complex than
transmission towers. The tower domain schema can be used as a convenient starting point
for developing the schemata of other domains.

A methodology such as the P-C Approach will help modelers accomplish
their data modeling projects. From a project management point of view,
conducting a modeling project for a facility engineering domain requires planning and
coordination of different analysis and design activities, and management of the time and
resources involved. Experience in this research project shows that a well-defined
methodology is essential to conducting such a project. With the P-C Approach, modelers
will have clear guidance about which modeling activities need to be carried out, what
deliverables are expected by the end of each activity, and how those deliverables can be
used to aid subsequent activities. This approach will also help in the overall planning and
coordination of the project and in the estimation and allocation of the required time and
resources.

An integrated set of CASE tools automating the P-C Approach will assist
modelers in modeling processes and data and will improve work
productivity and design quality. Using the modeling tools of the P-C Approach,
CASE computer tools can be built to automate the approach. An integrated set of CASE
tools will assist modelers in designing, inspecting and verifying schemata that represent
processes and data in the domain being modeled. Design decisions can also be recorded
and documented for later review. With the assistance of CASE tools, modelers will have
more time to focus on critical design issues and to explore more design alternatives. This
is likely to expedite the modeling effort, improve the modelers’ productivity, and enhance
the quality of the final design. In addition, these CASE tools will make the
communication between modelers and domain experts more effective. For instance,
modelers will use CASE tools to quickly build prototypical representations of the
domain’s processes and data, and domain experts will instantly review these
representations for correctness and accuracy. This communication is vital to the
modelers’ development of a domain primitive schema that will be used by the domain
experts. CASE tools can also be design tools for the domain experts, depending on the

page 166 Phan & Howard

Chapter 9: Contributions, Conclusions, and Future Research

level of sophistication built into them. In that case, domain experts will assemble their
own data representations with the aid of the CASE tools, and will negotiate among
themselves regarding the sharability of those representations.

The P-C Approach provides a methodology for building information
systems for collaborative facility engineering work environments in the
future. First, the CASE tools automating the P-C Approach can be linked to a database
management system. These tools can be used to model processes and product data in a
domain of interest. Databases of facility engineering processes and products can then be
created and maintained. Computer-aided design applications in the environment can also
be integrated with these databases. The automated modeling tools, process and product
databases, and design applications constitute an information system in that domain. This
system enables the owner, architects, engineers, and other participants to retrieve
necessary information and make decisions in a given project. In this scenario, these users
inspect all planning, design and construction activities of the process, review roles of
various participants involved, and study the use and exchange of data throughout the life
cycle. They query the physical data as well as the function and behavior data of the
facility and its components, and ask why certain artifacts operate the way they do. They
inspect numerical data, textual specifications, as well as graphical displays depicting
facility building elements.

The P-C Approach suggests a new paradigm for data exchange. Under this
paradigm, application developers will no longer have to build special-purpose translators.
Each application has its own composite classes that are assembled from the primitive
classes of the underlying domain schema. Thus, each application essentially carries the
descriptive knowledge needed to support the exchange of common data with any other
application. To exchange data between two applications, the data from the first
application is transferred into a primitive database that contains only instances of
primitive classes and is then composed into the composite database of the second
application. In any given domain, a model for data exchange will only be the set of
primitive classes of that domain, rather than a complex product model that anticipates
every possible combination of data in use. Applications need not share the same
composite classes or the entire product model in order to exchange their common data.
They share primitive classes and exchange only data that they really need. The exchanged
data is the primitive instances needed to define composite instances in the application.

9.4 Directions for Future Research

To bring about the impacts described previously, the following paragraphs discuss
the areas on which future research should focus.

Enhancement of the P-C Approach through Application in other
Engineering Domains In this research, the P-C Approach was developed and applied
to a domain of transmission towers. A future extension of this work is the application of
the approach to other facility engineering domains such as reinforced-concrete buildings,
bridges, etc. The approach’s applicability to domains other than structural engineering
could also be examined. The experience gained from further validation will help enhance
the approach in the following respects:

Phan & Howard page 167

Chapter 9: Contributions, Conclusions, and Future Research

° Identification of additional requirements for the design of a domain primitive
schema to support integration, and definitions of operational measures for testing
the schema against these new requirements,

° Verification of the completeness and generality of the concepts included in PANDA
(for functional analysis of facility engineering processes) and, if needed, inclusion
of additional concepts,

. Study of entities used by experts in other facility engineering domains and, as a
result, enhancement of the five cohesion dimensions included in DEAL,

e Verification and improvement of the rules and guidelines of the P-C modeling
method for designing primitive classes,

. Identification and compilation of primitive class definitions that have high levels of
reusability and thus, can be shared across many facility engineering domains,

. Accumulation of more experience in representing form, function, and behavior in
facility engineering, leading to the recommendation of form, function, and behavior
primitive classes to be included in a domain primitive schema.

Management of Distributed Data in Collaborative Facility Engineering Work
Environments This research focused on data modeling rather than data management.
Unless a way can be found to model facility data, management of this data is just an
abstract question. As a future extension of this research, a study of facility data
management will deal with issues such as data ownership, integrity, consistency, and
concurrency. All of these issues are important and challenging for the management of
distributed data, both primitive and composite, in the work environment of real-life
facility engineering projects. This study will lead to recommendations of specific
solutions for dealing with these issues. A current project on engineering data integration
and concurrent design sponsored by the National Science Foundation [Ullman 91b] is
studying some of these issues.

Implementation of Case Tools Automating the Approach and Supporting
Data Exchange Using the Approach This research concentrated on the
development, application, and testing of the P-C Approach, rather than on large software
system implementation. In this research, a simple object-oriented database for a prototype
tower using a commercial system (ONTOS) was built to demonstrate the research
concept. In the future, CASE tools can be built for the following purposes:

* Assisting the modeler in applying the P-C Approach to a given domain: CASE tools
can automate the modeling tools of the approach in an integrated fashion and can
help expedite the modeling process using the approach. The previous section
already explained the impacts of having these tools. These CASE tools can also be
linked with commercial database management systems to implement a domain
primitive schema and to create project databases.

° Generating product entity definitions: To support the current PDES/STEP area of
product data exchange standards, CASE tools can help in the generation of entity
definitions directly from the domain primitive schema using standard specification
languages such as the PDES/STEP Express language.

° Supporting data exchange using the P-C Approach: Further, tools can be explored
to support data exchange under the paradigm (via the domain primitive schema)

page 168 Phan & Howard

Chapter 9: Contributions, Conclusions, and Future Research

based on this approach, which was discussed in the previous section. To do so,
additional work is needed to specify the data exchange mechanisms that need to be
implemented.

Further Development of Measures for the Validation of Data Standards or
Schemata supporting Data Integration This research took the first step toward
testing a schema designed for the purpose of data integration. It suggested three variables
for measuring the schema performance (i.e., P-1 or schema completeness, P-2 or schema
efficiency, and P-3 or schema sharing). Statistical methods can be used to improve the
measurements of these variables. In addition, more variables are needed to evaluate other
performance aspects of a schema: how accurately the schema represents the data used in
the domain, how effectively the schema enables a user to navigate through the database
(or how reachable a data item is from the way it is represented in the schema), how
relevant the data presented to the user in that navigation is to the context in which the
user is interested, etc.

9.5 Final Remarks

This dissertation reported on research in modeling facility data to support
integration. The contribution of the research described here is a methodology, the P-C
Approach, that can be used to analyze a given facility engineering domain and to design a
common object-oriented schema for that domain. With this methodology, the research
provided the groundwork for the modeling of large complex facility engineering domains
and the development of CASE tools automating the modeling effort. These CASE tools
can assist modelers in analyzing processes and data, designing database schemata, and
building information systems to support collaborative facility engineering work. Further,
this approach suggests a new data exchange paradigm that will be worth exploring.
Looking into the future, this research leads to a wide open field of interesting and
promising research ventures: enhancement of this approach through application in other
engineering domains, study of distributed data management issues in collaborative
facility engineering work environment, implementation of CASE tools automating the
approach and supporting data exchange using the approach, and further development of
measures for the validation of data standards or schemata supporting data integration.

Phan & Howard page 169

Chapter 9: Contributions, Conclusions, and Future Research

page 170 Phan & Howard

References

[AISC 89]

[ANSI 82]

[ASCE 71}

[Abdalla 89]

[Abdalla 92]

[Abrial 74]

[Abudayyeh 91]

[Ahmed 90]

[Albano 83]

[Andrews 88]

[Andrews 90]

[Astrahan 76]

[Atkinson 89}

[Babbie 92]

[Barsalou 90]

American Institue of Steel Construction (AISC), Inc., Manual of Steel
Construction — Allowable Stress Design, Ninth edition, Chicago, IL, 1989.

American National Standards Institute (ANSI), Inc., Minimum Design Loads for
Buildings and Other Structures, ANSI, New York, NY, 1982.

American Society of Civil Engineers (ASCE), Task Committee on Tower
Design of the Committee on Analysis and Design of Structures of the Structural
Division, Guide for Design of Steel Transmission Towers, Report No. 52, New
York, NY, 1971.

Abdalla, G. A., Object-Oriented Principles and Techniques for Computer
Integrated Design, Ph.D. Dissertation, Department of Civil Engineering,
University of California at Berkeley, Berkeley, CA, 1989.

Abdalla, G. A, and Yoon, J. C., “Object-Oriented Finite Element and Graphics
Data-Translation Facility,”Journal of Computing in Civil Engineering, Vol. 6,
No. 3, pp. 302-322, July, 1992.

Abrial, J. R., “Data semantics,” Data Base Management, edited by J. W.
Klimbie and Koffeman, K. L., pp. 1-59, North-Holland, Amsterdam, 1974.

Abudayyeh, O., and Rasdorff, W. J., “The Design of Construction Industry
Information Management Systems,” Journal of Construction Engineering and
Management, American Society of Civil Engineers (ASCE), Vol. 117, No. 4,
December, 1991.

Ahmed, S., Sriram, D., and Logcher, R., A Comparison of Object-Oriented
Database Management Systems for Engineering Applications, Technical Report
No. IESL-90-03, Intelligent Engineering Systems Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139.

Albano, A., Cardelli, L., and Orsini, R., Galileo: A Strongly Typed, Interactive
Conceptual Language, Report 83-11271-2, Bell Laboratories, Murray Hill, N. J.,
July 1983. (Also appears in [Borgida 85])

Andrews, J., “Electronics, Too, Gets A Design Interchange Standard,” Computer
Graphics Review, pp. 34-44, November/December, 1988.

Andrews, T.,”The VBASE Object Database Environment,” Research
Foundations in Object-Oriented and Semantic Database Systems, pp. 221-240,
edited by A. F. Cardenas and D. McLeod, Prentice Hall, 1990.

Astrahan, M. M., et al., “System R: Relational Approach to Database
Management,” ACM Transactions on Database Systems, pp. 97-137, 1976.

Atkinson, M., et al., “The Object-Oriented Database System Manifesto,” The
Fist International Conference on Deductive and Object-Oriented Databases,
Kyoto, Japan, December, 1989.

Babbie, E., The Practice of Social Research, 6th edition, Wadsworth Publication
Co., Belmont, CA, 1992,

Barsalou, T., View Objects for Relational Databases, Ph. D. Dissertation,
Department of Computer Science, Stanford University, Stanford, CA, 1990.

Phan & Howard page 171

[Batini 92]

[Batory 76]

[Baudin 89]

[Billmers 92]

[Bisseret 88]

[Bjork 88]

[Bjork 89a]

[Bjork 89b]

[Booch 86]

[Booch 91]

[Borgida 85]

[Boy 91]

[Bradshaw 92a]

[Bradshaw 92b]

[Bravoco 85a]

[Bravoco 85b]

[Brodie 82]

Batini, C., Ceri, S., and Navathe, S., Conceptual Database Design — An Entity-
Relationship Approach, The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA, 1992,

Batory, D. S., and Buchmann, A., “Molecular Objects, Abstract Data Types and
Data Models: A Framework,” Proceedings of Very Large Data Bases, pp. 9-36,
Vol. 1, No. 1, March, 1976.

Baudin, C., Sivard, C., and Zweben, M., “A model-based approach to design
rationale conservation.” IJCAI-89 Workshop on Model-based Reasoning, 1989.

Billmers, M., and Adler, M., “Micromodeling As A Tool for Enterprise
Integration,” Workshop Notes of the 1192 Workshop Program on Al in
Enterprise Integration, sponsored by the American Association for Artificial
Intelligence, San Jose, July, 1992,

Bisseret, A., Figeac-Letang, C. & Falzon, P., Modeling opportunistic reasoning:
the cognitive activity of traffic signal setting technicians, Research Report No.
898, INRIA, Roquencourt, France.

Bjork, BC., et al., “A Prototype Building Product Model Using a Relational Data
Base,” Technical Research Centre of Finland (VIT), Laboratory of Urban
Planning and Building Design, December, 1988.

Bjork, BC., “Product Models of Buildings and Their Relevance to Building
Simulation,” Building Simulation '89 Conference, International Building
Performance Simulation Association, Vancouver, Canada, June, 1989.

Bjork, BC., “Issues in the Development of a Building Product Model Standard,”
International Workshop on Computer Building Representation, LESO-PB,
Lausanne, Switzerland, October, 1989.

Booch, G., “Object-Oriented Development,” IEEE Transactions on Software
Engineering, Vol. SE-12, No. 2, February, 1986.

Booch, G., Object-Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc., 1991.

Borgida, A., “Features of Languages for the Development of Information
Systems at the Conceptual Level,” IEEE Software, Vol. 2, No. 1, January, 1985.

Boy, G. A., Is there Rationale for Storing and Retrieving, Technical Report,
NASA-Ames Research Center, 1991.

Bradshaw, J. M., and Boose, J. H., “Mediating Representations for Knowledge
Acquisition,” AAAI Spring Symposium on Reasoning with Diagrammatic
Representations, Stanford University, March 24-27, 1992,

Bradshaw, J. M., et al., “eQuality: A Knowledge Acquisition Approach to
Enterprise Integration,” Workshop Notes of the 1192 Workshop Program on Al
in Enterprise Integration, sponsored by the American Association for Artificial
Intelligence, San Jose, July, 1992.

Bravoco, R. R, and Yadav, Surya, B., “Requirement Definition Architecture—
An Overview,” Computer in Industry, Vol. 6., pp. 237-251, 1985. (Also appears
in [Chadha 91].)

Bravoco, R. R., and Yadav, Surya, B., “A Methodology to Model the
Information Structure of an Organization,” Computer in Industry, Vol. 6., pp.
345-361, 1985. (Also appears in [Chadha 91].)

Brodie, M. L., and Silva, E., “Active and Passive Component Modeling:
ACM/PCM,” In T.W. Olle, H. G. SOI and A. A. Verrijn-Stuart (editors),
Information Systems Design Methodologies: A Comparative Review,
Proceedings of the CRIS-1 Conference, North-Holland, pp. 93-142, 1982.

page 172

Phan & Howard

[Brodie 84a]

[Brodie 84b]

[CODASYL 71]

[Carey 88]

[Cardenas 90]

[Ceri 86]

[Chadha 91]

[Chen 76]

[Codd 70]

[Codd 71a]

[Codd 71b]

[Codd 72a]

[Codd 72b]

[Codd 79]

[Conklin 91]

Brodie, M. L., “On the Development of Data Models,” On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases, and
Programming Languages, pp. 19-47, edited by M. L. Brodie, J. Mylopoulos and
J. W. Schmidt, Springer-Verlag, NY, 1984.

Brodie, M. L., and Ridjanovic, D., Fundamental Concepts for Semantic
Modelling of Objects, October Report, Computer Corporation of America,
Cambridge, MA, 1984.

Data Base Task Group of the Programming Language Committee of the
“Conference on Data Systems Languages” (CODASYL), CODASYL Data Base
Task Group Report, Conference on Data Systems Languages, ACM, New York,
April, 1971.

Carey, M. J., et al.,, The EXODUS Extensible DBMS Project: an Overview,
University of Winsconsin, Madison, Computer Sciences, Technical Report No.
808, November 1988. (Also appears in Readings in Object-Oriented Database
Systems, edited by S. Zdonik and D. Maier, Morgan Kaufman, 1990.)

Cardenas, A. F., and McLeod, D.,”An Overview of Object-Oriented and
Semantic Database Systems,” Research Foundations in Object-Oriented and
Semantic Database Systems, pp. xvii-xxv, Prentice Hall, 1990.

Ceri, S., “Requirements Collection and Analysis in Information Systems
Design,” Proceedings of the IFIP Conference, edited by H. J. Kugler, North-
Holland, 1986.

Chadha, B, et al., “An Appraisal of Modeling Tools and Methodologies for
Integrated Manufacturing Information Systems,” Proceedings of the Fifth
Symposium on Engineering Databases: An Engineering Resource, 1991 ASME
International Computers in Engineering Conference, American Society of
Mechanical Engineers, Santa Clara, CA, August, 1991.

Chen, P. P. S., “The Entity-Relationship Model - Toward a Unified View of
Data,” ACM Transactions on Database Systems, Vol. 1, No. 1, pp. 9-36, March,
1976.

Codd, E. F., “A Relational Model for Large Shared Databanks,”
Communications of the ACM, Vol. 13, No. 6, pp. 377-390, June, 1970.

Codd, E. F., “Normalized Data Base Structure: A Brief Tutorial,” Proceedings
of ACM-SIGFIDET Workshop on Data Description, Access and Control, San
Diego, CA, pp. 35-68, November, 1971.

Codd, E. F., “A Data Base Sublanguage Founded on the Relational Calculus,”
Proceedings of ACM-SIGFIDET Workshop on Data Description, Access and
Control, San Diego, CA, pp. 35-68, November, 1971.

Codd, E. F., “Further Normalization of the Data Base Relational Model,” Data
Base Systems, Courant Computer Science Symposium 6th, edited by R. Rustin,
Pp. 33-64, Prentice-Hall, Englewood Cliffs, NJ, 1972.

Codd, E. F., “Relational completeness of data base sublanguages,” Data Base
Systems, Courant Computer Science Symposium 6th, edited by R. Rustin, pp. 65-
98, Prentice-Hall, Englewood Cliffs, NJ, 1972,

Codd, E. F., “Extending the Database Relational Model to Capture More
Meaning,” ACM Transactions on Database Systems, Vol 4, No. 4, pp. 397-434,
December, 1979.

Cornklin, J. E., and Yakemovic, B., A Process-Oriented Approach to Design
Rationale, Unpublished Report, Corporate Memory Systems, Inc., Austin, TX,
1991.

Phan & Howard page 173

[Cox 86]

[Dahl 70]

[Date 90]

[Davis 85]

[Dayal 87]

[de Kleer 84]

[De Marco 82]

[Dixon 86]

[Dixon 88]

[EPRI 87]

{Eastman 78]

[Eastman 91]

[Eastman 92]

[Eisenhardt 89]

[Ellis 79]

[Fenves 88]

[Fischer 89]

{Fishman 87]

Cox, B. 1., Object-Oriented Programming, An Evolutionary Approach, Addison-
Wesley Publishing Co., Reading, MA, 1986.

Dahl, O-J., Myhrhaug, B., and Nygaard, K., The SIMULA 67 Common Base
Language, Publication $22, Norwegian Computing Centre, Oslo, 1970.

Date, C. J., An Introduction to Database Systems - Volume I, 5th ed., Addison-
Wesley, 1990.

Davis, R., “Diagnostic Reasoning based on Structure and Function,” Qualitative
Reasoning about Physical Systems, edited by Bobrow, D., MIT Press,
Cambridge, MA, 1985.

Dayal, U, et. al., “Simplifying Complex Objects: The PROBE Approach to
Modelling and Querying Them,” Proceedings German Database Conference,
Burg Technik und Wissenschafts, Darmstadt, April 1987. (Also appears in
Readings in Object-Oriented Database Systems, edited by S. Zdonik and D.
Maier, Morgan Kaufman, 1990.)

de Kleer, J., and Brown, J. S. Brown, “Mental Models of Physical Mechanisms
and their Acquisition,” Cognitive Skills and their Acquisition, edited by
Anderson, J. R, pp. 285-309, 1980.

De Marco, T., Structured Analysis and System Specification, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1982.

Dixon, I., “Artificial Intelligence and Design: A Mechanical Engineering View,”
Proceedings of AAAI-86, pp. 872-877, 1986.

Dixon, J., et al., “A Proposed Taxonomy of Mechanical Design Problems,”
Proceedings of Computers in Engineering 1988, 1988, pp. 41-46.

Electric Power Research Institute (EPRI), Guidelines for Specifying Integrated
Computer-Aided Engineering Applications for Electric Power Plants, Final
Report No. EPRI NP-5259M, Project 2514-3, May, 1987.

Eastman, C. M., “The Representation of Design Problems and Maintenance of
their Structure,” Artificial Intelligence and Pattern Recognition in Computer-
Aided Design, North Holland, 1978.

Eastman, C. M., Bond, A. H., and Chase, S. C., “A data model for design
databases,” Artificial intelligence in design ‘91, edited by J. S. Gero,
Butterworth & Heinemann, pp. 339-365, 1991.

Eastman, C. M., “Modeling of buildings: evolution and concepts,” Automation
in Construction, pp. 99-109, 1992,

Eisenhardt, K. M., “Building Theories from Case Study Research,” Academy of
Management Review, Vol. 14, No. 4, pp. 532-550, 1989.

Ellis, C. A., “Information Control Nets: A Mathematical Model of Office
Information Flow,” Proceedings of ACM Conference on Simulation Modeling
and Measurement of Computer Systems, 1979.

Fenves, S. J., et al., “An Integrated Software Environment for Building Design
and Construction,” Proceedings of the Fifth ASCE Conference on Computing in
Civil Engineering: Microcomputers to Supercomputers, pp. 21-32, Alexandria,
VA, March, 1988.

Fischer, G., and McCall, R., “JANUS: Integrating hypertex with a knowledge-
based design environment,”Hypertext, 1989.

Fishman, D. H,, et al., “Iris: An Object-Oriented Database Management
System,” ACM Transactions on Office Information Systems, Vol. 5, No. 1, pp.
48-69, January, 1987.

page 174

Phan & Howard

[Flores 70]

[Fox 92]

[Franke 91]

[Fritchman 90]

[Froese 92]

[Gane 79]

[Garcia 92]

[Garrett 92]

[Gerardi 88]

[Gielingh 88]

[Goel 89a]

[Goel 89b]

[Goldberg 85]

[Gotthard 92]

[Greenspan 86]

[Grosof 92]

[Gruber 90a]

Flores, 1., Data Structure and Management, Prentice-Hall, Englewood Cliffs,
NI, 1970.

Fox, M., “The TOVE Project: Toward A Common-Sense Model of the
Enterprise,” Workshop Notes of the 1192 Workshop Program on Al in
Enterprise Integration, sponsored by the American Association for Artificial
Intelligence, San Jose, July, 1992,

Franke, D. W., “Deriving and Using Descriptions of Purpose,” IEEE Expert,
Vol. 2, No. 2, pp. 4147, April, 1991.

Fritchman, B. L., et al.,, “SIM: Design and Implementation of A Semantic
Database System,” Research Foundations in Object-Oriented and Semantic
Database Systems, pp. 242-265, edited by A. F. Cardenas and D. McLeod,
Prentice Hall, 1990.

Froese, T. M., Integrated Computer-Aided Project Management Through
Standard Object-Oriented Models, Ph. D. Dissertation, Department of Civil
Engineering, Stanford University, Stanford, CA, June, 1992.

Gane, C., and Sarson, T., Structured System Analysis, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1979.

Garcia, A.C., Active Design Documments: A New Approach for Supporting
Documentation in Preliminary Routine Design, Ph.D. Dissertation, Department
of Civil Engineering, Stanford University, Stanford, CA, August, 1992.

Garrett, J. H., and Hakim, M. M., “Object-Oriented Model of Engineering
Design Standards,”Journal of Computing in Civil Engineering, Vol. 6, No. 3, pp.
323-347, July, 1992.

Gerardi, M., et al., NIDDESC: The Navy/Industry Digital Data Exchange
Standards Committee, Reference Model For Ship Structural Systems, Version
3.0, ISO TC184/SC4/WG1 Document 3.2.2.5, October, 1988.

Gielingh, W., “General AEC Reference Model (GARM): an aid for the
integration of application specific product definition models,” Conceptual
Modelling of Buildings, CIB Proceedings, Publication 126, edited by P.
Christiansson and H. Karlsson, The Swedish Building Centre, October, 1988.

Goel, V., and Pirolli, P., “Motivation of the Notion of Generic Design within
Informatin-Processing Theory: The Design Problem Space,” Al Magazine,
Spring, 1989.

Goel, A., and Chandrasekaran, B., “Functional Representation of Designs and
Redesign Problem Solving,” Proceedings of the 11th International Joint
Conference on Al, Detroit, August, 1989.

Goldberg, A., and Robson, D., Smalltalk-80, the Language and its
Implementation, Addison-Wesley Publishing Co., Reading, MA, 1985.

Gotthard, W., Lockemann, P. C., and Neufeld, A., “System-Guided View
Integration for Object-Oriented Databases,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 4, No. 1, February, 1992.

Greenspan, S. J., Borgida, A., Mylopoulos, J., “A Requirements Modeling
Language and its Logic,” Information Systems, Vol. 11, No. 1, pp. 9-23, 1986.

Grosof, B., and Morgenstern, L., “Applications of Logicist Knowledge
Representation to Enterprise Modelling,” Workshop Notes of the 1192 Workshop
Program on Al in Enterprise Integration, sponsored by the American
Association for Artificial Intelligence, San Jose, July, 1992.

Gruber, T. R., Model-based Explanation of Design Rationale, Technical Report
KSL 90-33, Knowledge Systems Laboratory, Computer Science Department,
Stanford University, Stanford, CA, March, 1990.

Phan & Howard page 175

[Gruber 90b}

[Gruber 91}

[Gruber 92]

[Gustavsson 82]

[Hammer 81}

[Hardwick 89]

[Howard 86]

[Howard 88]

[Howard 89a]

[Howard 89b]

[Howard 89c]

[Howard 91a}

[Howard 91b]

[Howard 92]

[Hsieh 82]

Gruber, T. R., Design Knowledge and Design Rationale: A Framework for
Representation, Capture, and Use, Technical Report KSL 90-45, Knowledge
Systems Laboratory, Computer Science Department, Stanford University,
Stanford, CA, July, 1990.

Gruber, T. R., et al., “Design Rationale Capture as Knowledge Acquisition:
Tradeoffs in the Design of Interactive Tools.” Machine Learning: Proceedings
of the Eight International Workshop, Morgan Kaufmann, San Mateo, CA, pp. 3-
12, 1991.

Gruber, T., Tenenbaum, J., and Weber, J., “Toward a Knowledge Medium for
Collaborative Product Development,” Workshop Notes of the 1192 Workshop
Program on Al in Enterprise Integration, sponsored by the American
Association for Artificial Intelligence, San Jose, July, 1992.

Gustavsson, M. R., Karlsson, T., Bubenko, J. A., “A Declarative Approach to
Conceptual Information Modeling,” in T.W. Olle, H. G. SOl and A. A. Verrijn-
Stuart (editors), Information Systems Design Methodologies: A Comparative
Review, Proceedings of the CRIS-1 Conference, North-Holland, pp. 93-142,
1982.

Hammer, M., and McLeod, D., “Database Description with SDM: A Semantic
Database Model,” ACM Transactions on Database System, Vol. 6, No. 3, 1981.
(Also appears in Readings in Object-Oriented Database Systems, edited by S.
Zdonik and D. Maier, Morgan Kaufman, 1990.)

Hardwick, M., and Spooner, D. L., “The ROSE Data Manager: Using Object
Technology to Support Interactive Engineering Applications,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 1, No. 2, June, 1989.

Howard, H. C., and Rehak, D. R., Interfacing Databases and Knowledge Based
Systems for Structural Engineering Applications, Technical Report
EDRC-12-06-86, Engineering Design Research Center, Carnegie-Mellon
University, Pittsburgh, PA, November, 1986.

Howard, H. C., Reasoning about Multiple Views of AEC Data, CIFE Working
Paper, Center for Integrated Facility Engineering (CIFE), Stanford University,
Stanford, CA, October 1988.

Howard, H. C,, et al., “Computer-Integrated Design and Construction: Reducing
Fragmentation in the AEC Industry,” Journal of Computing in Civil
Engineering, ASCE, January, 1989.

Howard, H. C., and Levitt, R. E., “Linking Design Data with Knowledge-Based
Construction Systems,” A Flaship Project Proposal to CIFE, Center for
Integrated Facility Engineering (CIFE), Stanford University, Stanford, CA,
October 1989.

Howard, H. C., and Rehak, D. R., “KADBASE: A Prototype Expert System-
Database Interface for Engineering Systems,” IEEE Expert, 1989.

Howard, H. C., “Project-Specific Knowledge Bases in AEC Industry,” Journal
of Computing in Civil Engineering, Vol. 5, No. 1, pp. 2541, January, 1991.

Howard, H. C., and Abdalla, G. A., Object-Oriented Database Workshop
Tutorial, Symposium on Databases, Seventh ASCE Conference on Computing
in Civil Engineering, Washington, D. C., May 6-8, 1991.

Howard, H. C., Abdalla, G. A., and Phan, D. H., “A Primitive-Composite
Approach for Structural Data Modelling,” Journal of Computing in Civil
Engineering, Vol. 6, No. 1, January, 1992,

Hsieh, Y. Y., Elementary Theory of Structures, 2nd edition, Prentice Hall, Inc,,
Englewood Cliffs, New Jersey, 1982.

page 176

Phan & Howard

[Hull 90]

[Hurson 93]

[IGES 90]

[Itasca 90]

[Jain 90]

[Jagannathan 92]

[Johnson 83]

[Kersten 86]

[Ketabchi 88]

[Keuneke 91]

[Khoshafian 86]

[Kim 90]

[Kim 93]

[King 84]

[King 86]

[Kuffner 91]

Hull, R., and King, R., “A Tutorial on Semantic Database Modeling,” Research
Foundations in Object-Oriented and Semantic Database Systems, pp. Xvii-xxv,
Prentice Hall, 1990.

Hurson, A. R,, Pakzad, S. H,, and Cheng, J., “Object-Oriented Database
Management Systems: Evolution and Performance Issues,” IEEE Computer,
pp. 48-60, 1993.

IGES: Initial Graphics Exchange Specification, Version 5.0, U.S. Department of
Commerce, National Burean of Standards, National Engineering Laboratory,
Center for Manufacturing Engineering, Automated Production Technology
Division, Washington, D. C., 1990.

Itasca Systems, Inc., ITASCA Distributed Object-Oriented Database
Management System — Technical Summary, MN, 1990. (Also appears in
[Ahmed 901.)

Jain, D., Luth, G. P., Krawinkler, H., and Law, K., A Formal Approach to
Automating Conceptual Structural Design, CIFE Technical Report No. 31,
Center for Integrated Facility Engineering, Stanford University, Stanford, CA,
August, 1990.

Jagannathan, V., et al., “Information Sharing System,” Workshop Notes of the
1192 Workshop Program on Al in Enterprise Integration, sponsored by the
American Association for Artificial Intelligence, San Jose, July, 1992.

Johnson, H. R., Schweitzer, J. E., and Warkentine, E. R., “A DBMS Facility For
Handling Structured Engineering Entities,” ACM SIGMOD/IEEE, Engineering
Design Applications, 1983.

Kersten, M., and Schippers, F. H., “Towards an Object-Centered Database
Language,” IEEE, pp. 104-112, 1986.

Ketabchi,M., and Berzins,V., “Mathematical Model of Composite Objects and
Its Application for Organizing Engineering Databases,” IEEE, Vol. 14, No. 1,
pp. 71-83, January, 1988,

Keuneke, A. M., “Device Representation — The Significance of Functional
Knowledge,” IEEE Expert, April, pp. 22-25, 1991.

Khoshafian, S. N., and Copeland, G. P., “Object Identity,” ACM Proceedings of
the Conference on Object-Oriented Programming Systems, Langunages, and
Applications, Portland, OR, September, 1986. (Also appears in Readings in
Object-Oriented Database Systems, edited by S. Zdonik and D. Maier, Morgan
Kauofman, 1990.)

Kim,W., Introduction to Object-Oriented Databases, The MIT Press,
Cambridge, MA, 1990.

Kim, W., “Object-Oriented Databases: Definition and Research Directions,”
IEEE, pp. 327-341, 1993,

King, R., and McLeod, D., “A Unified Model and Methodology for Conceptual
Database Design,” On Conceptual Modelling: Perspectives from Artificial
Intelligence, Databases, and Programming Languages, pp. 313-331, edited by
M. L. Brodie, J. Mylopoulos and J. W. Schmidt, Springer-Verlag, NY, 1984.

King, R., “A Database Management System Based on an Object-Oriented
Model,” Expert Database Systems, Benjamin/Cummings, Menlo Park, CA, pp.
443-468, 1986.

Kuffner, T. A., and Ullman, D. G., “The information requests of mechanical
design engineers,” Design Studies, pp. 42-50, 1991.

Phan & Howard page 177

[LPM 90]

[La Rota 90]

[Lavakare 89]

[Lave 75]

[Law 86]

[Law 89]

[Law 92]

[Litwin 90]

[Loomis 87]

[Lorie 83]

[Luiten 91a]

[Luiten 91b]

[Lundeberg 82]

[Luth 91]

[McEliece 89]

[McGee 77]

LPM (LU, CTICM, IDDC) Working Group, Logical Product Model for
Structural Steelwork, Eureka Project EU130: CIMSTEEL, Version 2.1, Working
draft, January, 1990.

La Rota, J. L., Biswas, G., and Basu, P. K., “A Model-Based Approach to
Structural Design,” Applications of Artificial Intelligence in Engineering V,
Proceedings of the Fifth International Conference, Volume I, edited by J.S.
Gero, Boston, MA, pp. 3-22, 1990.

Lavakare, A., and Howard, H. C., Structural Steel Framing Data Model,
Technical Report No. 012, Center for Integrated Facility Engineering (CIFE),
Stanford University, Stanford, CA, June, 1989.

Lave, C. A., and March, J. G., An Introduction to Models in the Social Sciences,
Harper and Row, NY, 1975.

Law, K. H., and Jouaneh, M. K., “Data Modelling for Building Design,”
Computing in Civil Engineering, Proceedings of the Fourth Conference,
QOctober, 1986.

Law, K. H., Barsalow, T., and Wiederhold, G., Management of Complex
Structural Engineering Objects in a Relational Framework, Technical Report
No. 19, Center for Integrated Facility Engineering (CIFE), Stanford University,
Stanford, CA, September, 1989.

Law, K. H., Barsalow, T., and Wiederhold, G., Managing Design Information in
a Shareable Relational Framework, Technical Report No. 60, Center for
Integrated Facility Engineering (CIFE), Stanford University, Stanford, CA,
September, 1992.

Litwin, W., and Mark, L., “Interoperability of Multiple Autonomous Databases,”
ACM Computing Surveys, Vol. 22, No. 3, pp. 267-293, 1990.

Loomis, M. E., Shah, A. V., and Rumbaugh, J. E., “An Object Modeling
Technique for Conceptual Design,” European Conference on 0-0
Programming, pp. 192-202, 1987.

Lorie, R., and Plouff, W., “Complex Objects and Their Use in Design
Transactions,” Proceedings Engineering Design Applications Stream of ACM-
IEEE Data Base Week, San Jose, CA, May, 1983.

Luiten, B., et al., “Development and Implementation of Multi-Layered Project
Models,” Second International Workshop on Computer Building Representation
for Integration, Aix-les-Bains, France, June 1991.

Luiten, B., and Tolman, F., “Project Information Integration for the Building and
Construction Industries,” Proceedings of the 4th IFIP Conference on Computer
Applications in Production and Engineering, September 1991, Bordeaux,
France, ISBN 0-444-891-5, North Holland, The Netherlands, 1991.

Lundeberg, M., “The ISAC Approach to Specification of Information Systems
and its Application to the Organization of an IFIP Working Conference,” In
T.W. Olle, H. G. SOl and A. A. Verrijn-Stuart (editors), Information Systems
Design Methodologies: A Comparative Review, Proceedings of the CRIS-1
Conference, North-Holland, 1982.

Luth, G. P., Representation and Reasoning for Integrated Structural Design,
Ph.D. Dissertation, Department of Civil Engineering, Stanford University,
Stanford, CA, June, 1991.

McEliece, R. 1., Ash, R. B., and Ash, C., Introduction to Discrete Mathematics,
Random House, NY, 1989,

McGee, W. C., “the IMS/Vs System,” IBM Sys. J. 16, No. 2, June, 1977. (Also
appears in [Date 90].)

page 178

Phan & Howard

[Maher 85]

[Maier 86]

[Mayer 92]

[Meng 90]
[Meriam 86]

[Meunier 88]

[Meyer 88]

[Minsky 75]

[Mittal 86]

[Mortensen 85]
[Mostow 85]

[Mylopoulos 80]

[Navathe 92}
[Newell 72}
[Object Design 91]
[Objectivity 91]
[Ozsu 91]
[Parsaye 89]
[Peterson 77}

[Phan 90]

Maher, M. L., and Fenves, S. 1., HI-RISE: A knowledge-based expert system for
the preliminary structural design of high rise buildings, Technical Report
R-85-146, Department of Civil Engineering, Carnegie-Mellon University, 1985.

Maier, D., Stein, J., Otis, A., and Purdy, A., “Development and Implementation
of an Object-Oriented DBMS,” Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 472-482,
September, 1986. (Also appears in Readings in Object-Oriented Database
Systems, edited by S. Zdonik and D. Maier, Morgan Kaufman, 1990.)

Mayer, R. J., et al., Information Integration For Concurrent Engineering (1ICE)
IDEF3 Process Description Capture Method Report, Technical Report
AL-TR-1992-0057, Armstrong Laboratory, May, 1992.

Meng, B., “Object-Oriented Programming,” MacWorld Magazine, January,
1990.

Meriam, J. L., and Kraige, L. G., Engineering Mechanics, Volume 1: Statics,
2nd edition, John Wiley & Sons, New York, 1986.

Meunier, K. L., Dixon, J. R., “Interactive Respecification: a Computational
Model for Hierarchical Mechanical System Design,” Proceedings of Computers
in Engineering, pp. 25-32, 1988.

Meyer, B., “Object-Oriented Software Construction,” Interactive Software
Engineering, Santa Barbara, 1988.

Minsky, M. L., “A Framework for Representing Knowledge,” The Psychology
of Computer Vision, pp. 211-277, edited by P. Winston, McGraw-Hill, NY,
1975.

Mittal, S., Dym, C., and Morjaria, M., “PRIDE: An Expert System for the
Design of Paper Handling Systems,” Computer, July, 1986.

Mortensen, M., Geometric Modeling, John Wiley & Sons, NY, 1985.
Mostow, J., “Toward Better Models of the Design Process,” The AI Magazine,
pp. 44-57, Spring, 1985.

Mylopoulos, J., Bernstein, P. A., and Wong, H. K. T., “A Language Facility for
Designing Database-Intensive Applications,” ACM Transactions on Database
Systems, Vol. 5, No.2, pp. 185-207, June, 1980.

Navathe, S. B., “Evolution of Data Modeling for Databases,” Communications
of the ACM, Vol. 35, No. 9, September, 1992.

Newell, A., and Simon, H. A., Human Problem Solving. Englewood Cliffs,
Prentice Hall, NJ, 1972,

Object Design, Inc., ObjectStore — Technical Overview, Release 1.1, One New
England Executive Park, Burlington, MA 01803, 1991.

Objectivity, Inc., Objectivity/DB Product Data Sheet, 800 El Camino Real,
Menlo Park, CA 94025, 1991.

Ozsu, M. T., and Valduriez, P., Principles of Distributed Database Systems,
Prentice Hall, Inc., 1991.

Parsaye, K., et al., Intelligent Databases - Object-Oriented, Deductive,
Hypermedia Technologies, John Wiley & Sons, Inc., 1989,

Peterson, J. L., “Petri Nets,” Computing Surveys, Vol. 9, No. 3, pp. 223-252,
September, 1977.

Phan, D. H,, and Howard, H. C., Evaluation of the Structural Steel Framing
Data Model, Technical Report No. 41, Center for Integrated Facility
Engineering (CIFE), Stanford University, Stanford, CA, November, 1990.

Phan & Howard page 179

[Phan 91a]

[Phan 91b]

[Phan 92]

[Phan 93]

[Powell 88]

[Rafiq 90]

[Rasdorf 90]

[Reed 88]

[Reiter 84]

[Rettig 89]

[Richter 82]

[Ross 77a]

[Ross 77b]

[Rowe 87]

Phan, D. H., Conceptual Development and Database Applications of the
Primitive-Composite Data Model for Structural Engineering, Unpublished Ph.
D. Research Proposal, Department of Civil Engineering, Stanford University,
Stanford, CA, July, 1991.

Phan, D. H., Abdalla, J. A., and Howard, H. C., CIFE Data Inventory: A Report
on CIFE Data-Intensive Research Project, Technical Report No. 57, Center for
Integrated Facility Engineering (CIFE), Stanford University, Stanford, CA,
Qctober, 1991.

Phan, D. H., Functional Analysis for Facility Engineering Data Modeling using
the Partitioned eNgineering DAta flow model (PANDA), Technical Report No
77. Center For Integrated Facility Engineering (CIFE), Stanford University,
Stanford, CA, 1992,

Phan, D. H., and Howard, H. C., “Applying Constraint Satisfaction Neural
Networks to Multiple Views’ Data Partitioning in Building Engineering,”
Accepted to the Fifth International Conference on Computing in Civil and
Building Engineering, American Society of Civil Engineers, Anaheim, CA, June
7-9, 1993.

Powell, G., et al., “A Database Concept for Computer Integrated Structural
Engineering Design,” ASCE Fifth Conference on Computers, Alexandria,
March, 1988.

Rafiq, T., Project-Specific Knowledge for Facility Engineering, Unpublished
Ph.D. Research Proposal, Department of Civil Engineering, Stanford University,
Stanford, CA, April 1990.

Rasdorf, W. J., Lakmazaheri, S., and Abudayyeh, O., “The Development of a
Geometric Modeling/Database Management Interface,” International Journal of
Advances in Engineering Software, Computational Mechanics Institute, Vol. 2,
No. 2, pp. 84-98, April, 1990.

Reed, K. A., “Product Modelling of Buildings for Data Exchange Standards:
from IGES to PDES/STEP and Beyond, “ Conceptual Modelling of Buildings,
CIB Proceedings, Publication 126, edited by P. Christiansson and H. Karlsson,
The Swedish Building Centre, October, 1988.

Reiter, Raymond, “Towards a L.ogical Reconstruction of Relational Database
Theory,” On Conceptual Modelling: Perspectives from Artificial Intelligence,
Databases, and Programming Languages, pp. 191-238, edited by M. L. Brodie,
J. Mylopoulos and J. W, Schmidt, Springer-Verlag, NY, 1984.

Rettig, M., Morgan, T., Jascobs, J., and Winberly, D., “Object-Oriented
Programming in Al, New Choices,” Al Expert Magazine, January 1989.

Richter, G., and Durchholz, R., “IML-Inscribed High-Level Petri Nets,” In T.W.
Olle, H. G. SOl and A. A. Verrijn-Stuart (editors), Information Systems Design
Methodologies: A Comparative Review, Proceedings of the CRIS-1 Conference,
North-Holland, 1982.

Ross, D., and Shoman, K., “Structured Analysis for Requirements Definition,”
IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, pp. 6-15,
January, 1977.

Ross, D., “Structured Analysis (SA): A Language for Communicating Ideas,”
IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, pp. 16-34,
January, 1977.

Rowe, L., and Stonebraker, M. “The Postgres Data Model,” Proceedings of the
XIII International Conference on Very Large Databases, Brighton, England,
September 1987. (Also appears in Readings in Object-Oriented Database
Systems, edited by S. Zdonik and D. Maier, Morgan Kaufman, 1990.)

page 180

Phan & Howard

[Rumbaugh 91]

[SEA 88]

[SCPUC 69]

[Sanvido 84]

[Sanvido 90]

[Sause 89]

[Sause 92]

[Sembugamoorthy 86]

[Shema 90]

[Sheth 90]

[Shipman 81]

{Smith 77]

[Spooner 86]

[Srinivasan 92]

[Sriram 84]

[Sriram 89]

Rumbaugh, J., et al., Object-Oriented Modeling and Desgin, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1191.

Structural Engineers Association of California, Recommended Lateral Force
Requirements and Tentative Commentary, Seismology Committee, San
Francisco, CA, 1988.

State of California Public Utilities Commission, Rules for Overhead Electrical
Line Construction — General Order No. 95, Documents Section of the State of
California, Sacramento, CA, 1969.

Sanvido, V. E., Designing Productivity Management and Control Systems for
Construction Projects, Ph.D. Dissertation, Department of Civil Engineering,
Stanford University, Stanford, CA, June 1984,

Sanvido, V. E., An Integrated Building Process Model, Technical Report No. 1,
Computer Integrated Construction Research Program, Department of
Architectural Engineering, Pennsylvania State University, University Park, PA,
January 1990.

Sause, R., A Model of the Design Process for Computer Integrated Structural
Engineering, Ph. D. Dissertation, University of California, Berkeley, CA, 1989.

Sause, R., Martini, K., and Powell, G. H., “Object-Oriented Approaches for
Integrated Engineering Design Systems,”Journal of Computing in Civil
Engineering, Vol. 6, No. 3, pp. 248-265, July, 1992.

Sembugamoorthy, V., and Chandrasekaran, B., “Functional Representation of
Devices and Compilation of Diagnostic Problem-Solving Systems,” Experience,
Memory, and Reasoning, edited by J. L. Kolodner and C. K. Riesbeck, pp. 47-
73, 1986.

Shema, D. B, et al., “Design knowledge capture and alternatives generation
using possibility tables in Canard,” Knowledge Acquisition, pp. 345-363, 1990.

Sheth, A., and Larson, J. A., “Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases,” ACM Computing
Surveys, Vol. 22, No.3, pp. 183-236, September 1990.

Shipman, D. W., “The Functional Data Model and the Data Languages
DAPLEX,” ACM Transactions on Database Systems, Vol. 6, No. 1, pp. 140-
173, March, 1981. (Also appears in Readings in Object-Oriented Database
Systems, edited by S. Zdonik and D. Maier, Morgan Kaufman, 1990.)

Smith, J. M., and Smith, D.C.P., “Database Abstractions: Aggregation and
Generalization,” ACM Transactions on Database Systems, Vol. 2, No. 2, pp.
105-133, June, 1977.

Spooner, D. L., “An Object-Oriented Data Management System for Mechanical
CAD,” Proceedings of the 1986 International Workshop on Object-Oriented
Database Systems, September, 1986.

Srinivasan , K., and Jayaraman, S., “Design and Development of an Enterprise
Modeling Methodology,” Workshop Notes of the 1192 Workshop Program on Al
in Enterprise Integration, sponsored by the American Association for Artificial
Intelligence, San Jose, July, 1992,

Sriram, D., Knowledge-Based Approaches for Structural Design, Unpublished
Manuscript, Massachusetts Institute of Technology, Cambridge, Massachusetts,
1984.

Sriram, D., Logcher, R. D., Groleau, N., and Chemeff, J., DICE: An Object-
Oriented Programming Environment for Cooperative Engineering Design,
Technical Report No. IESL-89-03, Intelligent Engineering Systems Laboratory,

Phan & Howard page 181

[Staley 86]
[Stefik 90]
[Steinberg 87]
[Stonebraker 76]
[Stonebraker 86a]

[Stonebraker 86b]

[Stroustrup 88]
[Sundgren 74]

[Tatum 90]

[Thomas 89]
[Thomas 90]

[Tiwari 93]
[Tong 90]

[Tsichritzis 76]

[Tsichritzis 82]
[Turner 8a)

[Ullman 91a)

[Ullman 91b]

Civil Engineering Department, Massachusetts Institute of Technology,
Cambridge, MA.

Staley, S. M., and Anderson, D. C., “Functional Specification for CAD
Databases,” Computer-Aided Design, Vol. 18, No. 3, pp. 132-138, April, 1986.

Stefik, M., Introduction to Knowledge Systems, Unpublished Book Draft, Xerox
Palo Alto Research Center, Summer 1990 Version, 1990.

Steinberg, L. “Design as refinement plus constraint propagation: The VEXED
experience.” AAAI pp. 830-835, August, 1987.

Stonebraker, M., Wong, E., and Kreps, P. “The Design and Implementation of
INGRES,” ACM Transactions on Database Systems, pp. 189-222, 1976,

Stonebraker, M., “Object Management in Postgres Using Procedures,” IEEE, p.
66, 1986.

Stonebraker, M., and Rowe, L. A., “The Design of POSTGRES,” Proceedings
of the International Conference on the Management of Data, pp. 340-355 , June,
1986.

Stroustrup, B., “What is Object-Oriented Programming?,” IEEE Software, May
1988.

Sundgren, B., “The Infological Approach to Data Bases,” Data Base
Management, North-Holland, 1974.

Tatum, C. B., Managing Integration Technology for Engineering and
Construction, Unpublished Working Paper, Center for Integrated Facility
Engineering (CIFE), Stanford University, Stanford, CA, March, 1990.

Thomas, D., “What's in an Object?,” Byte Magazine, pp. 231-253, March 1989.

Thomas, G., et al., “Heterogeneous Distributed Database Systems for Production
Use,” ACM Computing Surveys, Vol. 22, No. 3, pp. 237-266, September, 1990.

Tiwari, S., and Howard, H. C., “The Management of Design: A Design
Notification Scheme for Distributed AEC Framework,” The First International
Conference on the Management of Information Technology for Construction,
Singapore, August 17-20, 1993.

Tong, C., “Knowledge-Based Design as Engineering Science: the Rutgers
Al/Design Project,” Applications of Artificial Intelligence in Engineering V,
Proceedings of the Fifth International Conference, Volume I, edited by J.S.
Gero, Boston, MA, pp. 3-22, 1990.

Tsichritzis, D, C., and Lochovsky, F. H., “Hierarchical Data Base Management:
A Survey,” ACM Comp. Surv. 8, No. 1, March, 1976. (Also appears in [Date
90].)

Tsichritzis, D. C., and Lochovsky, F. H., Data Models, Prentice-Hall,
Englewood Cliffs, NJ, 1982,

Turner, J., Architecture/Engineering/Construction (AEC) Building Systems
Model, PDES/STEP, 1ISO TC184/SC4/WG1, Document 3.2.2.4, July, 1988.

Ullman, D. G., “Design Histories: Archiving the Evolution of Products,”
Proceedings of the DARPA Workshop on Manufacturing, Salt Lake City, Utah,
February 5-6, 1991.

Ullman, J. D, et al., “Integrated Data Exchange and Concurrent Design for
engineered facilities,” Proposal to the National Science Foundation, October,
1991.

page 182

Phan & Howard

[Umeda 90]

[Vanegas 87]

[VanLehn 89]

[Verheijen 82]

[Visser 89]

[Yao 78]

[Yourdon 79]

[Zdonik 90]

[Zweben 89]

[Wang 83]

[Warthen 88]

[Warthen 90]

[Webster 86]

[Wiederhold 80]

[Wiederhold 83]
[Wiederhold 84]

[Wiederhold 85]

Umeda, Y., Takeda, H., Tomiyama, T., and Yoshikawa, H., “Function,
Behavior, and Structure.” Applications of Artificial Intelligence in Engineering
V, Proceedings of the Fifth International Conference, Volume I, edited by J.S.
Gero, Boston, MA, p.p. 177-194, 1990.

Vanegas, J. A. P., A Model for Design/Construction Integration During the
Initial Phases of Design for Building Construction Projects, Ph.D. Dissertation,
Department of Civil Engineering, Stanford University, Stanford, CA, 1987.

VanLehn, K., “Problem Solving and Cognitive Skill Acquisition,” Foundations
of Cognitive Science, edited by M. Posner, pp. 527-579, The MIT Press,
Cambridge, MA, 1989,

Verheijen, G. M.A., and Bekkum, J. v., “NIAM: An Information Analysis
Method,” In T.W. Olle, H. G. SOl and A. A. Verrijn-Stuart (editors),
“Information Systems Design Methodologies: A Comparative Review,”
Proceedings of the CRIS-1 Conference, North-Holland, 1982.

Visser, W., “More or Less Following a Plan during Design: Opportunistic
deviatins in Specification,” Special Issue on Empirical Studies of Programmers
of the International Journal of Man-Machine Studies, 1989.

Yao, S. B., Navathe, S. B., and Weldon, J., “An Integrated Approach to Logical
Database Design,” Proceedings of New York University Symposium on Database
Design, May, 1978,

Yourdon, E., and Constantine, L. L., Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design, Prentice-Hall, Inc,,
Englewood Cliffs, N. J., 1979.

Zdonik, S. B., and Maier, D., “Fundamental of Object-Oriented Databases,”
Readings in Object-Oriented DataBase Systems, The Morgan Kaufmann Series
in Data Management Systems, (series) edited by Jim Gray, Morgan Kaufmann
Publishers, Inc., 1990.

Zweben, M., and Eskey, M. “Constraint Satisfaction with Delayed Evaluation,”
Proceedings of IICAI-89, pp. 875-880, 1989.

Wang, C. K., Intermediate Structural Analysis, McGraw-Hill, Inc., New York,
1983.

Warthen, B., “PDES - A CAD Standard For Data Exchange,” Unix World,
December, 1988.

Warthen, B., “ PDES Shapes Data Exchange Technology,” Computer-Aided
Engineering, February, 1990,

Merriam-Webster Inc., Publishers, Webster’s Third New International
Dictionary of the English Language Unabridged, Editor in Chief P.B. Grove and
the Merriam-Webster Editorial Staff, Springfield, MA, 1986.

Wiederhold, G., “The Structural Model for Data Base Design,” Proceedings
International Conference on the Entity-Relationship Approach to System
Analysis and Design, 1980.

Wiederhold, G., Database Design, Computer Science Series, McGraw Hill, New
York, NY, 2nd edition, 1983.

Wiederhold, G., “Databases,” IEEE Computer, Centennial issue, Vol. 17, No.
10, pp. 211-223, October, 1984.

Wiederhold, G., et al., “Models for Engineering Information Systems,”
Proceedings of the 1985 VHSIC Conference, December, 1985.

Phan & Howard page 183

[Wiederhold 86]

[Wiederhold 86b]

[Wiederhold 88]

[Wiederhold 89]

[Wiederhold 91]

[Williams 89]

[Wilson 88]

[Wimmer 92]

[Wulf 76]

Wiederhold, G., “Knowledge versus Data,” On Knowledge Base Management
Systems: Integrating Artificial Intelligence and Database Technologies, pp. 77-
82, edited by M. L. Brodie, and J. Mylopoulos, Springer-Verlag, NY, 1986.

Wiederhold, G., “Views, Objects, and Databases,” IEEE Computer, pp. 37-44,
December, 1986.

Wiederhold, G., “Engineering Information Systems: Prospects and Problems of
Integration,” IEEE Spring COMPCON Digest of Papers, pp. 228-229, March,
1988.

Wiederhold, G., “The architecture of future information systems,” Proceedings
of the International Symposium on Database Systems for Advanced
Applications, KISS and IPSJ, Seoul, Korea, 1989,

Wiederhold, G., “Mediators in the Architecture of Future Information Systems,”
IEEE Computer, March, 1991,

Williams, A. L., Comparative Analysis of the Modeling Languages: IDEF1X,
Express, and NIAM, Information Technology, McDonnell Aircraft Company,
May, 1989.

Wilson, P.R., and Kennicott, P.R., PDES/STEP Integrated Product Information
Model (IPIM), 1ISO TC 184/SC4/WG1, Doc. 4.1.2., Working Draft, September,
1988.

Wimmer, K., and Wimmer, N., “Conceptual Modelling Based on Ontological
Principles,” Submitted to Knowledge Acquisition, Revised Version, May, 1992,

Wulf, W. A, London, R. L., and Shaw, M., “An Introduction to the construction
and verification of alphard programs,” IEEE Transactions on Software
Engineering, 1976.

page 184

Phan & Howard

C IF E CENTER FOR INTEGRATED FACILITY ENGINEERING

The Primitive-Composite (P-C) Approach-
A Methodology for Developing Sharable
Object-Oriented Data Representations
For Facility Engineering Integration:

Appendices
by

Dr. D. H. Douglas Phan

Dr. H. Craig Howard

TECHNICAL REPORT
Number 85B

August, 1993

Stanford University

© Copyright by Dung Huu Douglas Phan 1993

All Rights Reserved

page it Phan & Howard

Contents

APPENDIX A: Detailed Domain Description:

Electrical Utility Transmission Tower Engineering 185

A.1 Tower Domain and Scope of Functional Analysiscccccccecinienininicnnennns 186
A.2 Functional Decomposition of the Tower Engineering Process...................... 186
A.3 Detailed Description of the Processccceeveeecceeecrcemiencrininiiincenieceeeeaens 186
A.3.1 Transmission Line Analysis and Design Phasecccccccocivinnnnnn. 187
A.3.2 Tower Structural Conceptual Design.......... e 189
A.3.3 Tower Structural Detailed Design........ccocoveeiiiiicicnoninninieineeceeecees 191
A.3.4 Tower Construction Planningc.cocceeroemnnceenncinnncn e 193
A.3.5 Tower Construction EXECUtiONcceeeeeeericcenveinniiiiniecene e 195
A.3.6 Tower Facility Managementcccovenmiiiviinniiiieennin e 196
A.4 Graphical Functional Schemata of the Processcc.ccceeeviiiiniiiniinennnns 197

' APPENDIX B: DEAL: Pseudo-Codes and

A Detailed Analysis of “Transmission Tower Members” 217
B.1 Pseudo-Codes for Operations in the DEAL-1 Procedure...........cccooveeurnnne. 218
B.2 Pseudo-Codes for Operations in the DEAL-2 Procedure.......c.cccccoevecninnnnnn. 222
B.3 Detailed Analysis of the “Transmission Tower Members” Domain
BIELY <ttt e e s ntesaneesaessaeeseen s e nees 226
APPENDIX C: Rules and Guidelines of the P-C Data Modeling Method 241
C.1 Rules and Guidelines for the Refinement of Entitiesccoceeveiveviiinnnnnn. 242
C.2 Rules and Guidelines for the Design of Object Classes & Class Hierarchies 249
C.2.1 Rules and Guidelines for the Design of Object Classes..........ccccoeuenn.e. 249
C.2.2 Rules and Guidelines for the Design of Class Hierarchies 252
APPENDIX D: Documentation of the Tower Domain Primitive Schema........... 255

APPENDIX E: Documentation of Composite Classes
Defined in the TeStngcccceerrvrrversnressennssnissaenssenesenssnnsseacssnnenns 309

Phan & Howard page i

List of Figures

FIGURE A.1: Hierarchical Functional Decomposition of the Phases of the Tower

Engineering Process int0 FUNCHONS.ccceoveuieeieiiieeeecieceee ettt ev e eenns 187
FIGURE A.2: Legend for the Partitioned Data Flow Diagrams that follow. 198
FIGURE A.3: Diagram Notes for the Partitioned Data Flow Diagrams that follow. 199
FIGURE D.1: Legend for the Graphical Representations of Primitive Characterization
Hierarchies that fOlOW.ccooireiiiie et 256
FIGURE D.2: Primitive Characterization Hierarchies Describing SPATIAL
REFERENCE FORM. ..ottt ettt et ettt et aeee 257
FIGURE D.3: Primitive Characterization Hierarchies Describing GEOMETRY FORM.

266

FIGURE D.4: Primitive Characterization Hierarchies Describing TOPOLOGY FORM.
270

FIGURE D.5: Primitive Characterization Hierarchies Describing SHAPE
REPRESENTATION FORM.cooiiiiieeetieteee sttt evte et s ssae e e s e eeas 275

FIGURE D.6: Primitive Characterization Hierarchies Describing MATERIAL FORM. P
... 285

FIGURE D.7: Primitive Characterization Hierarchies Describing PART
DETAILING/FABRICATION FORM.cooiiiieeeeee ettt et 288

FIGURE D.8: Primitive Characterization Hierarchies Describing STRUCTURAL
ENGINEERING BEHAVIOR.ooiitiiiteinteetettee sttt sttt st e e e esese e e e e seee e enee 293

FIGURE D.9: Primitive Characterization Hierarchies Describing STRUCTURAL
ENGINEERING FUNCTIONS. ...ttt eeeeee e sesestessee e sasssae s seesen 297

FIGURE D.10: Primitive Characterization Hierarchies Describing REQUIREMENTS.
... 300

FIGURE D.11: Primitive Characterization Hierarchies Describing DESIGN. 305

FIGURE E.1: Legend for the Graphical Representations of Composite Classes that
FOLMOW. ettt ettt st e e st et e e sttt es ettt erenenene 312

FIGURE E.2: Composite Classes Representing Different User Views
in the Data Uses Considered in the P-C Approach’s Testing.cccecverieercecvcercnces 313

page v A Phan & Howard

— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

Appendix A

Detailed Domain Description:
Electrical Utility
‘Transmission Tower Engineering

Abstract:

This appendix describes in detail the domain of electrical utility transmission towers to
which we applied the P-C Approach. Specifically, it presents the six phases of the
engineering process in this domain using the following format: (1) general description
(time, key project participants, place, work involved and goal), (2) key terms and
concepts, (3) description of the functions to which the phase is decomposed and (4)
end results of the phase. Finally, it shows the graphical functional schemata
portraying that engineering process using PANDA. These schemata present a
concise, pictorial description of that process.

Organization:

A.1 Tower Domain and Scope of Functional Analysis
A.2 Functional Decomposition of the Tower Engineering Process
A.3 Detailed Description of the Process
A.3.1 Transmission Line Analysis and Design Phase
A.3.2 Tower Structural Conceptual Design
A.3.3 Tower Structural Detailed Design
A.3.4 Tower Construction Planning
A.3.5 Tower Construction Execution
A.3.6 Tower Facility Management
A.4 Graphical Functional Schemata of the Process

Phan & Howard page 185

—— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering ——

A.1 Tower Domain and Scope of Functional Analysis

Electrical utility transmission towers are large lattice structures supporting wires
that transmit electrical power. The tower facility engineering process extends throughout
the tower life cycle, from the initial need analysis to the possible final demolition of the
structure. The process includes several stages of development. It typically involves
participants from various disciplines, including electrical engineering, structural
engineering, fabrication and construction management. Computer applications are used to
automate certain design functions of the process, such as structural analysis and member
design.

In the functional analysis’ of this domain, we examined the entire process of
engineering a transmission tower. However, we put less emphasis on the tower facility
management that occurs after the tower is constructed. This facility management involves
many scenarios in which various activities are carried out to keep the tower operational. It
is difficult to cover all of those scenarios given our time and resource constraints. We also
analyzed the initial electrical design stage of the process in less detail than some other
stages. In tower structural design, we focused on designing new tower structures rather
than retrofitting existing structures.

A.2 Functional Decomposition of the Tower Engineering
Process

The tower facility engineering process involves programming, design, construction
and long-term management of the facility. As shown in Figure A.1, we divided the entire
process into the following phases: (1) Transmission Line Analysis and Design, (2) Tower
Structural Conceptual Design, (3) Tower Structural Detailed Design, (4) Tower
Construction Planning, (5) Tower Construction Execution and (6) Tower Facility
Management. Phase 1 here corresponds to the programming of the facility, Phases 2 and
3 to the design, Phase 4 and 5 to the construction, and Phase 6 to the management. By
and large, this breakdown is consistent with the one for commercial high-rise office
buildings as defined in [Luth 91]. However, since transmission towers are less
complicated than buildings, their life cycle is much simpler. Figure A.1 on the next page
summarizes the functions into which the six phases of the tower engineering process are
decomposed. '

A.3 Detailed Description of the Process

In this section, we describe in detail all six phases of the tower engineering process.
We use the following format consistently for all phases: (1) general description (time, key
project participants, place, work involved and goal), (2) key terms and concepts, (3)
description of the functions to which the phase is decomposed and (4) end results of the
phase. This format reflects the way in which a domain expert would identify a particular
phase. As an alternative, the reader can review the graphical functional schemata of the
process using PANDA that are shown in the next section. Those schemata present a
concise, pictorial description of the process.

t The information used in this functional analysis was provided and verified by design engineers of a
utility company and also came from my own work experience in this area.

page 186 Phan & Howard

—— Appendix A—Detailed Domain Description: Elecirical Utility Transmission Tower Engineering —

Tower
I\Fnazﬁ:ggement Transmission Line
Phase Rehabilitation Need AnaIySIs & DeSlgn
Jy ee Phase
Analysis

Operations \ Retrofitting

&
Maintenance

Layout &
Design
Refinement

Tower
Testing
(optional)

Tower

Gen‘erating
Construction Stringing Design
Execution Operations Request
Phase
Tower Preliminary
Assembly & Load
Erection TO WE R Computation Tower
Geometry Structural
E:grsication LIFE Configuration Conpeptual
CYCLE ————J Design
- onceptual
Compiting Besign Phase
Erection
Bill of Material
& Bundling
List Structural
Generating
Detailed
Drawing
Detailing .
Fabrication /. Design
Tower Parts Dimensioning Refinement
Construction 'L‘E’,“be’S t& Generating | Foundation
Planning ayngoul B schematic \Pesign Tower
Connections Drawin I
Phase 9 Structura
Detailed Design
Phase

FIGURE A.1: Hierarchical Functional Decomposition of the Phases of
the Tower Engineering Process into Functions.
The functions are labeled within the sections of the circle. The phases are labeled
outside of the circle. The heavier lines mark the beginning and end of each phase

- and help identify the functions that belong to that phase.

A.3.1 Transmission Line Analysis and Design Phase ’

General Description This phase occurs at the beginning of the process when a need
or economic opportunity for electrical utility services is perceived. The key participants
are electrical engineers and structural engineers. This phase occurs at the engineers’
workplace. It involves analyzing the perceived need and laying out and designing a new
transmission line. The goal is to achieve an economic solution that fills the need and has
an acceptable cost.

Key Terms and Concepts The following terms and concepts are used in this phase:

Design Request — An official document that requests the analysis or design of an
existing or new tower type. It also specifies all the requirements needed for demgmng the
tower type.

Phan & Howard page 187

— Appendix A—Detailed Domain Description; Electrical Utility Transmission Tower Engineering —

Tower Design Requirements — Statements of what is required of the tower’s design (and
even construction). For transmission towers, design requirements vary with the tower
type cover electrical clearances, loading, strength and serviceability, constructibility, cost,
right-of-way and tower dimensions.

Functions This phase consists of four functions:

° Need Analysis: The electrical engineer analyzes the perceived need for electrical
utility services within a region. She considers the current electricity demand and
supply in the region. She projects the region’s future growth and the increase in its
electricity consumption. The engineer then decides whether a new transmission line
is needed. If so, he or she determines how much electrical power should be
transmitted and what type of conductors should be used to transmit that power. This
allows the engineer to determine the transmission line voltage that is necessary.

° Line Layout and Design: The engineer sets the direction of the transmission line,
considering the geography and topology of the terrain. He then designs the types of
towers needed to support the line. Specifically, the engineer determines the global
attributes of those tower types, including the tower function classification, line
angle, tower setting, etc. He also sets the location and orientation of individual
tower structures used in the line.

° Line Layout and Design Refinement: After the line is laid out and designed, the
electrical engineer approximates its total cost. She decides whether the existing line
layout and design needs to be refined to obtain a lower-cost solution. At this point,
the structural engineer may get involved by suggesting ways to produce tower
structures that are lighter and thus lower cost. The cost of individual structures
contributes to the total cost of the transmission line. The electrical engineer may
take several iterations before reaching an acceptable solution. She then analyzes the
cost/value ratio of the line and decides on its economic feasibility. When the
electrical engineer decides that building the line is economically feasible, she
finalizes the layout and design.

° Generating Design Requests for Tower Types: If the line is to be built, the electrical
engineer then generates an official design request for each tower type used in the
line. The design request contains all the information necessary to design the tower
type, including its design requirements. '

Results The end results of this phase are: (1) the layout data of the transmission line
and (2) the design requests of the tower types. The line layout data includes the location,
orientation and tower settings of the towers used in the transmission line. For each tower
type, the design request contains the design requirements and global attributes of the
tower type. The design requirements help define the constraints on the tower design and
construction in subsequent phases. The global attributes describe:

° tower function classification, line angle, static-wire spans and conductor-wire spans,

° tower electrical characteristics, including voltage, number of circuits, circuit
arrangement and minimum static shield angle,

. the types and properties of the electrical equipment the tower carries, specifically
conductor and static types, conductor and static tensions, the number of conductor
and static wires per phase, and the types of insulators and hardware.

page 188 Phan & Howard

~——— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

A sketch showing a typical tower setting in the line may also be included in the
design request.

A.3.2 Tower Structural Conceptual Design

General Description This phase occurs as soon as the structural engineers receive the
design request. The key participants are structural engineers, and this phase occurs at
their workplace. It involves calculating the loads applied to the tower structure and
configuring a tower geometry. The goal is to obtain a tower geometry that both meets the
requirements (including the loading requirements) and will result in an economical
design.

Key Terms and Concepts The following terms and concepts are used in this phase:

Loading Condition — A description of a scenario in which a tower structure would be
subjected to external environmental loading. For utility transmission towers, the
environmental loading can be gravity, wind, ice, temperature, ground motion, impact
forces on the structure, conductor-wire tension (under normal conditions, broken wire
conditions and construction and maintenance conditions), etc.

Load Case — A particular way in which the loading condition might occur. For example,
a hurricane extreme loading condition with 100 mile-per-hour winds may produce several
different load cases, each corresponding to a different wind direction: perpendicular to
the transverse face of the tower, perpendicular to the conductor wires, at 45 degrees to the
conductor wires, at every 15-degree increment from the tower bisector, etc.

Load — An external force applied to a structure in a certain load case. A description of a
load includes its magnitude, direction, location, type (i.e., axial, moment, torsion) and
form (i.e., concentrated, linear, per area).

Load Tree — A schematic representation of loading from a load case on a diagram of the
structure. A conventional load tree shows all the load vectors from that load case at the
location where they are applied on the structure. Alternatively, a combined load tree
shows a resultant load vector at each significant location on the structure.

Tower Structural Systems — For transmission towers, the four major types of structural
systems are (1) leg systems, (2) lacing systems, (3) arm systems and (4) redundant
systems. Leg, lacing and arm systems are the “primary systems” of the structure that
resist loading. Redundant systems are the “secondary systems” that mainly increase the
stiffness and reliability of the primary load-resisting systems.

Member — A conceptualized component of a system that serves a particular function.
“Primary members” (e.g., leg and lacing members) are members of primary systems,
whereas “secondary members” (e.g., redundant members) belong to secondary systems.

Functions This phase consists of three functions: (1) Preliminary Load Computation,
(2) Geometry Configuration and (3) Conceptual Design Refinement. These functions are
highly interdependent: Loads on the tower structure cannot be computed until a
preliminary tower geometry is obtained, and a tower geometry cannot be generated until
the loads are computed. This underlines the complexity of the tower design synthesis. In
practice, the engineer uses his or her design experience as well as an iterative approach to
find a solution. The detailed description of the functions is as follows:

Phan & Howard page 189

—— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

° Preliminary Load Computation: Given the tower electrical clearances, the structural
engineer first approximates the spatial arrangement of the static level, the conductor
levels and the tower body. At this point, she needs a preliminary geometry of the
tower in order to compute the loads. She may use the geometry of a similar tower
type as a starting point. Alternatively, the engineer may use rules of thumb or past
design experience to roughly configure a new geometry. She also determines all the
necessary loading conditions if they were not completely specified in the design
request. Using the loading conditions, she defines the principal load cases. For each
load case, the engineer then calculates the loads and generates a load tree (either
conventional or combined). ‘

° Geometry Configuration: Having generated the load trees, the structural engineer
can calculate the optimum base spread (i.e., the larger dimension at the base of the
tower) that can sustain the tower loading. Next, he determines the cross-sectional
shape of the tower. Following standard practice, the shape can be either square or
rectangular. This decision depends on the way loading is applied to the structure
and on the way the structure would distribute that loading. The engineer then
determines the load paths and the tower structural systems suitable for those load
paths. These systems include the leg, arm, lacing and redundant systems of the
tower structure. To select the bracing pattern of the redundant systems, the engineer
must give great attention to the overall stability of the system. Geometrically
unstable redundant systems can cause premature failure of the primary members. In
designing all those structural systems, the engineer also works out the complete
details of the tower geometry and topology. In short, the geometry of a tower type is
determined by several factors, including the number of circuits, the electrical
clearances, the type of insulators (i.e., their length and maximum transverse
displacement), the amount of vertical deflection of the conductor wires at the
attachment points, and the economy that the engineer is trying to achieve.

° Conceptual Design Refinement: After one iteration of the above functions, the
structural engineer goes back and calculates the load trees based on the existing
geometry. She then refines the existing geometry using those load trees. This
process continues until a satisfactory geometry is obtained. The aesthetic impact of
the tower may be the final consideration in configuring its geometry.

Results This phase generates a large amount of data. First, it produces data that
describes the individual loads of the load trees from different load cases (i.e., magnitude,
direction, location, type and form). Second, this phase produces data of the tower
geometry, including: (1) global geometric data of the tower (i.e., tower height, panel
heights, cage width, base spread, taper ratio, extension heights, bend line elevation, etc.)
and (2) detailed geometric data of the systems and members in the tower body and the
static and conductor arms. The second set of data includes spatial data (i.e., coordinates,
orientation, spatial envelope dimensions), geometric data (i.e., shape, dimensions, etc.)
and topological data (i.e., topological representation and connectivities). The structural
engineer also knows about the functions of the tower’s systems and members. (These
functions are resisting loads, implementing load paths, transferring loads, supporting
members, bracing members, etc.) Unfortunately, this knowledge may not be represented
in any format or documented in any source.

page 190 Phan & Howard

—— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

A.3.3 Tower Structural Detailed Design

General Description This phase occurs when the structural engineer has a
satisfactory tower geometry and is in a position to design the structure. The key
participants are structural engineers and foundation engineers (civil engineers who
specialize in the field of foundation engineering). This phase occurs at the workplace or
workplaces of these participants. It involves carrying out the detailed design of the
structure and communicating the design information, by means of drawings and written
specifications, to those who will detail, fabricate and erect the structure. Given the tower
geometry determined during the previous phase, the goal is to obtain a light-weight
structure that meets all the strength and serviceability requirements.

Key Terms and Concepts The following terms and concepts are used in this phase:

Tower Anchoring Devices — Devices used to connect the structure to the foundation.
There are two common types: (1) base shoes used with anchor bolts and (2) stub angles.
A “base shoe” is a welded assembly that consists of an angle and a base plate. “Anchor
bolts” are special bolts used to anchor the tower structure to the foundation. A “stub
angle” is a special angle member that is embedded in the concrete foundation and bolted
to the tower legs.

Schematic Drawing — A drawing of the tower type’s structure that the structural
engineer produces at the end of the detailed design phase. The drawing is intended to
communicate the tower design information to the detailer, fabricator and construction
crew. Generating a schematic drawing involves putting the data generated in the required
presentation format, and making any special notes or specific details to the detailer,
fabrication and construction crew.

Element — An analysis component of a system that corresponds to a particular member
of the system.

Functions This phase consists of five functions: (1) Structural Analysis, (2) Member
Design, (3) Design Refinement, (4) Foundation Design and (5) Generating Schematic
Drawing. The first three functions are highly interdependent: The structural analysis
cannot be carried out until the member sizes are known, and the member design cannot be
done until the members’ stresses and deflections from the analysis are obtained. The
design refinement involves iterating over the preceding two functions to improve the
design. In practice, the structural engineer also uses his or her design experience to find a
solution. A detailed description of these functions is as follows: '

. Structural Analysis: The structural engineer decides on the material (e.g., steel) and
material grade (e.g., A-36) of the tower members. (Transmission towers today are
built out of steel or aluminum.) The engineer also assumes the member sizes and
analysis element (i.e., truss, beam, column, beam-column, etc.). To do this, the
structural engineer uses his or her design experience and the data used in the design
of similar tower structures in the past. He or she then carries out a structural
analysis of the tower. Since transmission towers are highly indeterminate structures,
they are analyzed using commercial finite-element analysis programs. The engineer
also uses the loads and the tower geometry from the previous phase to prepare data
for the input file of the analysis program. By running the analysis, the engineer
obtains the behavior of the structure under the specified load cases. The output data
includes the stresses, deflections and end reactions of the members.

Phan & Howard page 191

—— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

Member Design: Using the data generated by the analysis, the structural engineer
checks the assumed member sizes for strength and serviceability. The members’
capacity must sustain the controlling stresses and deflections from all load cases.
The engineer considers the strength and serviceability requirements of standard
design codes such as [SCPUC 69], [ASCE 71], [ANSI 82], [SAE 88] and [AISC
89]. If a member fails, she tries another size until a satisfactory size is obtained. She
also verifies the end conditions—i.e., the analysis model—of the members assumed
in the structural analysis. A re-analysis is necessary if there is a large discrepancy
between the members and elements assumed and those designed. Then, for each
structural member, the engineer also determines the number, pattern and diameters
of bolt holes required to transmit the member’s internal loads. This information will
be used to lay out the connections between members and to specify the fabrication
details in the next phase.

Design Refinement: Third, after one iteration of structural analysis and member
design, the structural engineer might iterate over those two functions in order to
design a structure that uses smaller member sizes and thus has a lighter weight. This
function of the process is called design refinement rather than design optimization
because its objective is to find a “good enough” solution rather than the best
solution. Such a solution would meet all design constraints, would have acceptable
accuracy in the analysis, and could be found in a reasonable time using the available
human and computational resources. Also note that in this function, as in the
previous two functions, loading, strength and serviceability, constructibility and
cost requirements are carefully considered.

Foundation Design: Last, using the controlling reaction loads at the tower base
from all load cases, the foundation engineer designs the tower foundation. This
involves designing the concrete foundation as well as the anchoring devices of the
tower.

Generating Schematic Drawing: The engineer produces a schematic drawing of the
structure to communicate the information to the detailer, fabricator and construction
crew.

Results This phase results in a large amount of design information. This information
includes the member sizes (e.g., angle L. 8 x 8 x 1/2), dimensions, cross-sectional
properties, analysis end conditions, stresses, deflections, and reaction loads, and the
number and pattern of bolt holes. Moreover, the schematic drawing of the tower type
displays the following:

1)

)
3)

“)
(5)

drawing title, which includes the designation and version number of the drawing as
well as the designation of individual sheets,

a schematic diagram of the tower structure showing its geometry and topology,

global tower geometric data such as tower height, panel heights, cage width, base
spread, taper ratio, extension heights, bend line elevation, etc.

typical sizes (e.g., L 8 x 8 x 1/2) of the leg, lacing and redundant members,

loading conditions for which the structure is analyzed and designed, and even
references to the load calculation,

page 192 Phan & Howard

——— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

(6) general notes to the detailer about specifications, bolt sizes, steel material grades,
member framing, drawing layout, etc., and

(7) any specific details regarding member framing, member splices, static and
conductor wire connections, tower-to-foundation connections, etc.

This schematic drawing is used in the next phase.

A.3.4 Tower Construction Planning

General Description This phase occurs once there is a finished schematic drawing
that can be used to work out all the necessary construction details. The key participants
are structural detailers. However, when detailing problems (e.g., missing design
information, uncommon member sizes) arise, the detailers cooperate with the structural
designers to resolve the problem. This phase occurs at the workplace of the detailers, who
can be either company or contract employees. The phase involves developing all the
fabrication and erection details in preparation for tower construction. The goal is to plan
the next construction phase in order to minimize errors and maximize efficiency.

Key Terms and Concepts The following terms and concepts are used in this phase:

Fabrication Part — A single piece to be fabricated and used in the construction of the
structure. It corresponds to a member or connection in the structure. For transmission
towers, the part can be an angle member or a connection plate. However, a member or
connection may have more than one fabrication part.

Fabrication Feature — A single specification of how a fabrication part should be made
out of raw material. There are numerous fabrication features. For transmission tower
members, fabrication features include dimensions, the hole pattern, hole sizes, edge
preparation, edge clipping, gage line, etc.

Mark Number — An identification mark printed or stamped on a fabrication part.

Working Point — A point of reference that is selected from the tower structure’s
schematic diagram and used to work out all detailed dimensions of the members.

Detailed Drawing — A drawing of the tower type’s structure produced by the detailer at
the end of the construction planning phase. The drawing is intended to communicate to
the fabricator and construction crew the detailed information necessary to fabricate and
construct the tower in the subsequent phase. Generating a detailed drawing involves
putting the data generated in the required presentation format, specifying the fabrication
features of the tower members, and making any special notes or specific details to the
fabrication and construction crew.

Functions This phase consists of three functions:

. Dimensioning Members and Laying out Connections: From the schematic drawing,
the detailer establishes the main working points of the tower structure. Using these
working points, he or she calculates the overall length, slope and bevel of all
members. To start laying out the connections, the detailer reviews any special notes
about member framing on the schematic drawing. Having established the member
lengths, she lays out each connection. The layout data generated for the connection
includes its plate shape and size, hole pattern, and required ringfill and bolt length.
The detailer also determines the member clearances that are needed to avoid

Phan & Howard » page 193

— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering — -

interferences. In the next function, these clearances are used to determine the exact
lengths of the fabrication parts that correspond to the members.

Detailing Fabrication Parts: For each member or connection, the detailer
determines the number of fabrication parts needed. He gives each fabrication part a
unique mark number. He then details the fabrication part by specifying its
fabrication features, such as dimensions, number of holes out, hole pattern, hole
diameter, edge preparation, edge clipping, gage line, etc. To do this, the detailer
uses the member sizes, steel material grades and any special notes from the
schematic drawing. He also uses the connections’ layout data from the preceding
function.

Generating Detailed Drawing: The detailer first generates the bolt schedule, which
includes all the hardware (bolts, nuts, ringfills, etc.) needed to assemble the tower.
She then computes the raw (or black) and total (or galvanized) weights of the basic
tower and extensions. Last, she puts together the detailed drawing of the tower,
which is a detailed graphical and textual representation of the tower structure. It
includes all the information necessary to fabricate and construct the structure. As
the final result of the design and construction planning, the detailed drawing
communicates both the design information and the designer’s intention to the
fabricator and field construction crew. Therefore, the drawing must be
unambiguous, readable, concise and complete as possible. Moreover, almost all
detailed drawings currently used are paper-based.*

Compiling Erection Bill of Material and Bundling List: The detailer compiles a
detailed list of all fabrication parts. He groups these pieces into separate bundles,
taking into account their size, length, quantity and weight. The purpose of this
function is to facilitate shipment from the fabrication shop to the site, as well as site
handling by the construction crew. The result is the erection bill of material and
bundling list that shows by bundles all fabrication parts of the tower structure.

Results All design data for the tower structure is generated by the end of this phase.
The results are the detailed drawing and the erection bill of material and bundling list.
The detailed drawing displays the following information:

Erection diagrams, which include a foundation setting plan and detailed sketches of
the basic tower and extensions. These sketches indicate the mark numbers of all
fabrication parts as well as bolt counts and bolt lengths at each connection.

A bolt schedule, which lists all the hardware (bolts, nuts, ringfills, etc.) needed to
assemble the tower.

Loading conditions similar to those shown on the schematic drawing.

Tower weights, including the weights of the basic tower and the tower used with
different extensions. Each weight is the sum of the galvanized weight of the tower
and the weight of the hardware.

¥ Better computer-aided design tools can significantly improve this function by automating the generation
of detailed drawings in electronic form. Such drawings are a more error-free and cost-effective means of
communicating design information.

page 194 Phan & Howard

— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

° Details of fabrication parts, which include mark number, quantity, size, dimensions,
material type and grade, fabrication features and any special fabrication and
erection notes.

The erection bill of material itemizes the fabrication parts, whereas the bundling
list shows how these pieces should be grouped together. These two results are usually
combined into one deliverable. Together, they show by bundles the mark number,
quantity, shape (e.g., L-shape for angle), size (e.g., 8 x 8 x 1/2), length, and approximate
weight—since the true weight can only be known accurately after fabrication is
completed—of all fabrication parts. It also includes any additional written remarks about
these pieces.

Together, the detailed drawing and the erection bill of material and bundling list are .
a comprehensive, but not complete, representation of the tower design data.

A.3.5 Tower Construction Execution

General Description This phase occurs as soon as the fabricator who successfully
bid the contract for tower fabrication receives the approved purchase order as well as the
detailed drawing of the tower type. The key participants are the fabricator, the material
supplier, the construction manager and field construction crew. This phase occurs at the
fabricator’s shop and at the site where the tower is to be erected. However, the electrical
engineers and the structural designers of the tower type are also involved in inspecting the
construction work at different stages. In addition, they provide their expertise in solving
problems that arise during construction. If prototype testing of the tower type is to be
carried out, structural engineers are heavily involved in developing the test specifications
and monitoring the test procedure. This phase involves constructing the tower structure,
as planned in the previous phase. (Actually, several structures of the same tower type may
be installed in one transmission line). The goal is to minimize errors, damage and cost
overruns during construction.

Key Terms and Concepts The following terms and concepts are used in this phase:

Black (or Raw or Ungalvanized) Steel Parts — Steel fabrication parts right after
fabrication and before galvanization. The weight of all black steel pieces in the tower is
called the black weight.

Galvanized Steel Parts — Black steel fabrication parts after being subjected to a
galvanization process. Galvanization uses zinc coating to protect steel against weather
corrosion. During galvanization, the black steel pieces are subjected to extensive surface
preparation and prefluxing and are then immersed in molten zinc.

Functions This phase consists of four functions:

. Parts Fabrication: The fabricator reviews the detailed drawing and the erection bill
of material and bundling list. If she detects any errors, inconsistencies or
complications (e.g., material grade is not available at the time), she contacts the
detailer or possibly the structural designer and works out the problems. After having
a working detailed drawing, the fabricator then prepares material take-off lists. At
this point, the fabricator procures the necessary raw material from warehouses or
steel mills. Fabrication begins after the material supplier delivers the raw material as
ordered. Today, fabrication is done using advanced computer-aided manufacturing
technology and in particular, numerically controlled programmable equipment.

Phan & Howard page 195

— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

After making all the parts, the fabricator cleans them up to remove mill scale, dirt
and grease. Then, he galvanizes these black steel parts using an time-consuming
process. He carefully inspects the galvanized steel parts for uniformity, appearance
and defects. Finally, he bundles and ships them to the site.

° Supplying Raw Steel Material: The material supplier gathers the raw steel material
as ordered by the fabricator and then makes the delivery. Parts fabrication resumes
as soon as the material was delivered.

° Tower Assembly and Erection: The construction crew opens the bundles at the site
where the tower is to be erected. They assemble as much of the tower on the ground
as possible: tower arms, extensions, cage and panels below the bend line. Problems
generally arise during the tower assembly. Member fit, for instance, is a major
concern. Parts that do not fit together create complications and slow down the

- construction process. Revisions to the tower’s detailed drawing might be required to
avoid similar problems in the future. (Constructibility knowledge should be used
early in the tower design and detailing to eliminate problems of this nature.) Next,
the construction crew lifts the assembled sections by crane, put them in place and
connect them. They then lift the assembled tower, place it onto its stub angles or
base shoes, and anchor it to the foundation. (Note that small tower structures can be
completely assembled and then lifted onto the foundation, whereas larger structures
are usually erected section by section.)

° Stringing Operations: After erecting enough towers in the transmission line, the
crew carries out stringing operations to install the insulators and static and
conductor wires on the towers. The wires are then pulled up to the cable tension
specified in the original Design Request and in the detailed drawing.

The tower testing function is optional and not discussed here.

Results This phase results in the tower structures constructed and the transmission line
installed. The basic difference between this phase and the building construction execution
phase in [Luth 91] is that the construction sequence and methods used are different for
the two kinds of structures.

A.3.6 Tower Facility Management

General Description This phase occurs after the tower is constructed. As with
buildings, it corresponds to the remaining period in the tower facility life cycle.
Depending on the specific work involved, the participants are the people who have been
involved in the design and construction of the tower. Therefore, this phase can occur at
the engineers’ workplace or in the field. Simply put, this phase involves managing the
constructed tower. The goal is to make sure that the tower is operational and thus serve its
functions throughout its life span.

Functions This phase consists of two functions: (1) Operation and Maintenance and
(2) Rehabilitation and Retrofitting. These two functions are independent of one another
and can be concurrent. A detailed description of these functions follows:

. Operations and Maintenance: This function includes post-construction activities
aimed at improving or maintaining the conditions of the tower in order to make it
operational. For example, a wide-flange member may be added on each side of the

page 196 Phan & Howard

—— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

tower cage at each level of conductor arms. This addition enables a construction
worker to stand on it and work on the tower. These post-construction activities can
also be aimed at protecting the tower structure against weathering effects, structural
failures, acts of God, sabotage, etc. Member repair also falls into this category.
However, the activities here do not change the purposes for which the tower was
designed and constructed. In addition, they do not involve major re-analysis or re-
design of the tower structure.

] Rehabilitation and Retrofit: In contrast to the above function, this function includes
post-construction activities aimed at changing the purposes for which the tower was
designed and constructed. These activities generally involve re-analysis and/or re-
design of the tower structure. Re-analysis and re-design may be necessary for a
number of reasons, including: new design code requirements, different construction
methods of the tower structure, addition of new electrical equipment to the
structure, a different type of foundation and/or foundation construction methods, a
different geographic location, a different electrical facility usage of the tower (i.e.,
usage of the tower with a different voltage, line angle, tower function classification,
static and conductor wires, other electrical equipment, etc.).

Results The result of this phase is an operational tower. The basic difference between
this phase and the building facility management phase in [Luth 91] is that operation and
maintenance are defined here as one coherent function instead of two separate functions.

A.4 Graphical Functional Schemata of the Process

This section presents a series of Partitioned Data Flow diagrams (or P-diagrams)
that are the graphical function schemata of the tower engineering process described in the
preceding section. Due to space constraints, Figures A.2 and A.3 first show the legend
and diagram notes for all the P-diagrams that follow. The legend includes the graphical
symbols for the concepts of PANDA. Diagram notes are general notes that applies to an
entire diagram that specifically refers to them. Only reference notes (i.e., annotations of
nodes or links using a reference number or symbol) are shown directly on the diagram.
Then, the first diagram illustrates the process’ highest-level skeleton functional schema
with all six phases. The remaining diagrams show the more detailed functional schemata
of the first five phases. As explained in the beginning, the last tower facility management
phase is not shown here.

Phan & Howard page 197

— Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

NODES Participant Data Repository
Node Node
b
Activity Data ltem
Node Node
i g
Decision .
Physical
| <> Node D Node
interference Data Source or Sink
Node Node
Boundary Flow Merge
Node O Node
Duplicated Duplicated
Participant Data ltem
Node ‘ Node
Duplicated
Data Source or Sink
Node-
LINKS Participation Link
(an annotation describes a supporting role of paricipation;
= no annotation assumes an executive role of participation)
Precedence Link
Data Flow Link
: Data Generation Link
A $ (annotation is the abbreviation of a type of
data generation operation. A: Abstracting; D: Deriving;
V: Versioning; S: Storing; C: Combining; P: Presenting)
4%~ Physical Flow Link |
S Mixed Flow Link

FIGURE A.2: Legend for the Partitioned Data Flow Diagrams that follow.
The graphical representations of duplicated nodes were inspired by Gane’s and Sarson’s
version of the Data Flow model [Gane 79].

page 198 Phan & Howard

~ Appendix A—Detailed Domain Description: Electrical Utility Transmission Tower Engineering —

A. This diagram is the highest-level skeleton graphical functional schema of the
process. It illustrates the breakdown of the process into several major
phases. This schema results from the first step, 1.1, of the methodology
presented in Section 4.4.1 of Chapter 4. At this level, the three partitions do
not show the details about the participants, activities, data, material and
products. Successive top-down functional decomposition of this skeleton
schema would reveal those details. Indeed, the diagrams that follow this
would give more details for the individual phases and their functions and
activities.

B. This diagram is an intermediate skeleton graphical functional schema of a
phase. lt illustrates mainly the breakdown of a phase into several functions.
This schema results from the first step, 1.1, of the methodology presented in
Section 4.4.1 of Chapter 4. At this level, the three partitions still do not
reveal all the details about the participants, activities, data, material and
products. Also, the schema does not necessarily show all the design loops
and iterations that could possible occur in this phase. In fact, the diagrams
that follow this would reveal all of the aforementioned details for the
individual functions of this phase.

C. This diagram is a detailed skeleton graphical functional schema of one or
more functions. It illustrates the breakdown of the function or functions into
several activities. It shows all the details in three partitions: (1) Participants,
(2) Process and (3) Data, Material and Products. This schema results from
completing all the steps in the two passes of the methodology presented in
Section 4.4.1 of Chapter 4.

FIGURE A.3: Diagram Notes for the Partitioned Data Flow Diagrams that
follow. v

Phan & Howard page 199

002 'd ‘Suip9uSus 12M0 L uoISSIUsUnLL, K1131) 1021410275 uondiosaq wpwoq pajwidq —v xipuaddy

(v 10N wreidei(q 99S) ‘ssesoid buuesubug

Aujoed Jemo] uojsspusuel] AN [1B911199]3 8y} jo ewsyss jeuolound jesiydelo [e}9jexs [oAs)-isaybiy (0 WYHOVIA-d

Aljjoed Jamoy
pejonisuo)
abeuepy
‘IA

bojeujuus)

$58001d
\ Bupasu)bug
Jamo]

pejeujuLs)
IA 8sBUd

Dojeajoe
IA 3sBUd B
pejeujuLa)
A 8SBU(

UOONIISUOY
18MO] BjNnoax3
‘A

PaleAljoe

A@sBud g
pejeujuue}

uojjonusuo)
lamo] ue|d
‘A

Al 8seyd g
pejeuluLe)

ubiseq peifeleq
{einjoniis
lemo | uuoped

il

DajeAjoe
i 8seyd »
pajeujwLI}
|| 8seyd

ubjsag
[enidesuo)
feinonis
JaMO uuojag
i

Bup

uo|ssjwsuel | pejeAfoe
i eseud 3 ubisag pejeAloe ss800Jd
pajeujuus) pue ezAeuy | 8seyd BupssuiBug

| 8seyd |

lemo]

$S3D0Hd I NOLLULHYd

107 “d ‘Sunzaudusg 4amo] uoissnusubLf a3 [0ou30a)q uondissaq wivwoq papviad —v xipuaddy

(g 90N weiderg 298) _
‘ubise(q pue sisAjeuy au] uoissiwsuel] ‘| eseyd jo ewayas jeuojound jesjyders) jejefeys eleipawialuf : L WyHOVIA-d

paleAloR
jI eseUd
' poleuiwe)
| eseld

sadA)
18mo] 10} sjsenbay
pajeuiLLIs] ubisag
¥3°] uonoun4 6jejsusty

vl

"\

peleaijoe Uc:mmu_wwmm.._
¥'3°1 uolloun4 euln eyl euysy

' paleuiue)
"3 uonoun

£31

7~

pajeAoe :o_wm_EmMM_h,_ | ubiseq
€3] uogouny " puenoke
¢ pejeuluLe}
"J°| uonoun .
4
Y 31

eun
uolssiwsuel| meN
10} pasN ey} ezAreuy

pereanoe
2’3’| uogouny
9 peleuluus)
"3°| uogoun

pejeaoe
13’1 uojouny

L3

paleanoe
| eseud

§$S300Hd Il NOLLILHYd

20z “d ‘Burtaandur Lamo uoissusuv Ll i) o1y Juondiosaq uiwoq papnaq —v xipuaddy

(D 910N weiderq 29S) ‘(ubrseg pue sisAjeuy euj uolssiwsuel]) | seyd Jo ‘sisAjeuy pasN ‘L3°] uonound (11 WvHOYId-d

sur uoibay ey}
SalIM ; : uoibey fddng pue
JoRnpUoH co_mw_Em%E L _Mﬂ.:mw:%m_ ay} Jo (sdewy pueuiaq]
jo adA} &Mw_w A aiming “o]) eleQ . Awupe|3
pals|es popajeg polsioid reowydeiboeny lusun)
sjonpold pue
lelolel ‘ejeq

‘Il NOLLILYVYd

pepeaN sedA}

pajeAloe I0PNpUOY
23'| uonouny pue W;om
3 PajeuiLLIa) aup] euuLB}R(Q auy Mau
{3°'] uoioun geL3l B Bujubisep
'}, pueweQ
Apuos|3
2inin Bunes|
A=
18o1d 88010
veLTl uossuedxes uoibey
sy ® UlYIM S9JIAIRS peleAjoe
pajeujuuo) uooun mal ou Ayun (esupeig =y
| eseug o} pasp ezAjeuy uonoun4
pajeuiuus) NEL
$89201d T
Buusauibug B
Jamo} W e
JII NOILILHVYd
feroidde pue
Butfes feuy
a1 sey
Jesuibug Jsauibug
eoLIoel3 eoHioaI3
Jabeuepy
sjyuedjopied

paloid
, ‘I NOllilHvd

£07 d ‘Sur1aauI§usy LoM0 [UoISSIUSUDLL K11]11/] [DO11103)5 JuondLLosa(] wivwo(pajiviad —V Xipuaddy

(D a10N weder 99S)
‘(ubisaqg pue sisAjeuyy aur7 uoissiuisuel]) | aseyd jo ‘ubisag pue jnoAeq aur ‘23’ uopound :g't WyHOVIA-d

Bojeren “

sellm
JOPUBA 10}onpuoy
juswdinb3 10 adAL
jeoloei pOIBI0S
adAL
au 8y uy mahwm_wn‘%._. 19M0] yoesd V
einnis 10} SHN2UID V
aurt ay; ut JamoL sueds eiim J0 JaquinN 3 uresie) Selim aul
mm““%”:m yoeg wn_umurmumuw Buijes JemoL ay} 1eA0 BW:MMNQ volssIwsUR :on_vmmmm.mi m:ﬁn_vmmﬂmi
o Eh:z j0 3 SO B 8jbuy U jes uopoang po102]95 eyl o ,._.%_v eq Yo ereq
UOHBIBUO o adA) UoNROySSeID | U sy jo abeyion Eafojodo) | reodeibosn
%3 UoyEs0 po1081oS cwwﬁwﬂ.._.“_ UO[SSIWSURI | sopiedoly pajoe|es !

sjonpold pue
feHolely
‘eleq
o/ N

N\
A il NOLLILHVd

=
(dooy) A”V uojel|q
paleAjoe - ouf o) 198 B pejeAjoe

2371 uolioung g > < 23'| uopound
pajeulusl €37 vz g pejeujuis}

uofpung _ _J 137 Uogtounyg

sadA] Ad
lemo] eyj ubiiseq e

gedl ;

peue)s

€3°] uonouny 52ININAS
B pojeulws} 18M0] [enplAIpU|
23l 1es

uofjoun4 8832014

‘I NOLLLLHVYd

€23

sinduy uedxe
sepioid

18auibug 1aauibug
[CRINEETE] feanjonis

1sauibug
[ede|3

sjuediofied
*INOLLILYVd

p0T "d ‘Suidn U 13m0 L UOISSTUSUDLL K111117) [0211399]7 :uondrdsa(] wmpwo(g papvidq —y xpuaddy

(D 910N weadei(q 29S) "(Ubiseg pue sisAjeuy eul uoissiwsuel]) | aseyd jo

‘ 3sanbey ubisag bunessuay ‘3] uonaun pue ‘Juswauyay ubisag pue JnoAeT ‘g3’ uonound :g°L WYHOVIAG-d

“ sellm
1eeuibu3 EM:%MM_.O JeBeuep
feampruig pereles o welold
odAy « q ¥ segedoid
10#0L WBe I
. 4 R ———
7y 4o seinguuy
Sd leqoo Ir
aury 6L o
Ul e Jo 1800 jE0] €
odA] o} ployseiy), pejewigsgy a “F' a_ 2l (4] 4]
Jemo] Yore 1500 g
..S..M..M”Mom adA| 1emo] yoere jo Loee Jo) _o;o.mo.n.ﬂ._.mo -
i s||||.l.lm 39 odA] Jemo] elempiey weg aeg eur ey Uy sueds eIt SIS 19 OGP
yoee 10} '8 s10j8{n8uY| Jo sedAL uBiseq pue ubjseq pue sainpns oRmSg pue ' Bugos oMo,
x 'p eseyd Jed seuipm Jo JequunN nofe < noke] 10M0] 10}0NpU0D % o.&c(oun
siuslWweinbey ' suoisue | JNE}g eu) ostaey A oun Jueung 10 16GUINN 9 5 woREosIND
ubiseq ¥ suojsue] 10}oNpuoc) v S OREIS coﬁ.su oy
9 olfuy plews onels 1o odAL L
—————— ¥ jusweburny JIN0AID _
S13Npold pue
fepoley ‘Bjeq
i NOLLIHVd
|
L uBwep-es
odA} jemoy ¥ 10As) euf Buniges
yoeg 10} jsenbeld ‘i 4007
pejeuluue) ubiseq eieiauen PereARs ubiseq ¢ Ployseiy] NDIs3a
, v Va1 ¥ poieutaer pue inofe) eun 10 Aujqisee 1500 aurn
pejeAROR uogouny . weuny ezifeury

1l 8seyd

€31 ©t3

opLOUCDT
B

Bugeeyy
2e3i

‘veg ubsep
Q¥ Peleuuue) chAEL ¥ inoAs suif
| seyd oy Buideey - pejeAgoe
1800 euny Ad £3') Uogound
ejelugsy
wefoid esop ()] h
pejeuuLe) & a
€3] uogouny e
pejeuiuue} PejeuuLe} vred ; ubtssp M.N
$5600.d j eseyd Buwopue,
BupeewBuz oputqe
1m0 .
6582014
I NOlLIIHYd
sjuswainbay Ay)iquonsisuon
‘sjuswalinbay Ajjiqessjass fBAcidde
pue yifuang ‘sjuswalnbay pue Budes [euy
Bujpeon ‘sjusliaiinbay |eaisAud 5 a4y sey
‘sjuawaiinbay saueles|) {EdMBlT & Jeeuibug Jeeuibug
{eoNoel3 eowjoel3
‘S310N 1ebeuEy ek
y swediopreg
ERINELEREL] wefod

‘I NOlLLIHVYd

0z “d ‘Suriaaurur 1amo] uoissuusuvdy QN Eo.Eo&m suondudsaq winwoq panvia —v xipuaddy

pajeAljor
Il eseyd
¥ pejeuiwIs)
| seyd

(g 10N wreiderq

pejeUILLIB)
£S°1] uoRouny

ubiseq |enjdeouon

lamo] eyj suyay

eS’ll

~

J

pejeApoe
£'S’l} uogoungy
2 pejeuiLIG)
S'l| uogoun

}

uopeinbyuon
Anewoey auiuneleq

csl

\. J

pajeAoe
2S'1| uonouny
2 pajeuILLIS)
'] uogoun

9S) ‘ubise(jenjdesuo) [einjoni)s Jomo] ‘Jj aseyd jo ewayas jeuonjaund [eaiydels [elafe)s ajeipawlalul 2 WYHOVIG-d

\..

Areujwijeld wiopad

uonejnofes
peo

vo«m>=om
1 S°}] uofouny

s

pajeAjoe
Il eseyd
R pajeujuie)
| eseyd

$S300Hd ‘Il NOLLILHYd

90z "d ‘Sur122118us] 10MO] UOISSTUSUDLL, K331137) 1DI14102]5 UondILISaT uIpwo(q pajv1aq —v xipuaddy

(D 910N weider 99S) * Jf 8seyd 4o ‘voneindwo peo] Aieujwijeld ‘LS| uondund :L'g WyHOVIG-d
t 058y UK0Y)
100uiBugy \ \

/

o]
_ (1 os9yq woy} esEyy wo.
lesuibuz 4 So_,.“_._m %)
weq pimonas Eoin0e)3
Bujpeo 1emo] .
$'0 s ‘0 s'D
eol] {) esey4.woy)
edA] Jemo} jo

Uo SUORE00 —.
¥ euHHJ odk) v .—. v 198nbey ubisen
— 10 EAPAIpUY T e L“HP_
u oma %ﬁ_ Mm___m_.__wnmm ”HH %.%ﬁ%n__z a— Buproq SONEA Jjeurny sedky SuoQIPUOD zﬁndm.%_s eddy
“sue jojonpuod .uaﬂ 8peo] a aMs_ — ﬂﬁﬂw JONO L ejiuIS UpLe| +Aaeumeo o ot e .
io9 yuondioseq g A Bupspcg youny Eu:;o._. lemo | mBiuIS v seURmel) e
aneIs jo UoneAe)3 .uomw.n_v <n=i%48 10 SUOQIPUOD | uoysswisUe:L E:hm“q .ow.ahﬂm.o e o FenoL
‘WybleH pe {o uondinseq Bupeoy {0 Uogeoo o aieQ Pyods e
iemo iseetie — e
. g (BUSJEHN
‘S31ON O hl ot
JONIH343H : 4
e BOLLLEYd
soel]
peo]
ejniousy j
9181 / speoq)
eunLIe)ag
gL
J] T W
W0y 8UORIPLIO: - ok
se8RY) uﬁ:-_;_ w:_vuuﬁ ° HNM““
- - 9 Buperges
L orisn b s
5 Y\..2risu
© | =
b e
weiy
gyisn) buwep

seeuBuz oo |
Eon:_nw.o.m 0 Isoubus mogosje
..__,n 90 woy Bugsenber
VLS i1senbey] "
uBtseq i
(dooy) \ o UoReuLOju| [&o:._:_BNG grovy
pejeatoe Buissiy W.w nE_..__M dv jo jueweBlmiry
3 v eaedg

o ejewpoiddy

18711 uofoung

s .
8503014
i NOLLLLHVd
BLiites
sy pue
ndul sepinosd
\:oc_a:m
Eogoed
swedjojueq
4 NOLLLLHVYd

202 “d ‘Buiaaun18usy 13m0] uOoISSTUSUDLL KI113/] 1D214193] uondiLdsa(] uivwoq papviag —v xpuaddy

(O 210N weideiq
99S) (i1 eseyd) Jusweuyey ubisaq |enjdeauo) ‘€S’|| uonaUN pue ‘uoneinbyuo) Anewosy ‘Zs|| uondund ;2’7 WyHOYIA-d

eleq An] .m .5
aemoL U_ 0_
S
]
U siequiey 1emo] Jo U swejsfs JemoL Jo Vd
9 2 Bieq |eoiojodo] 9% wme(|eoojodo]
9 & BB OpeuIoen) ¥ & BEQ OU) 9 eur pueg
pue juepunpsy .mﬂwu%wm_‘u._Emm ¥4 mieq jeeds ¥ +=iea freds n\ fu mora
§ E g oA0qR peauds meq
oseg B
saA0aULoD siequieyy sweysAs sugjsuewiq UIPBOT J0MO |
pue uopejuasaiday |esibojodo)] 2 emol jo 1omol jo uomees Rdo
: uogouny uogoung ss0ID
suojsuawiq ‘adeys g 10M0]
suojsuawq adojeaug jejjeds ome—
‘uojiejuan ‘ateuipiood i} el _ —
O« %9npoid
310N IONIHIJTH 3 MHEISI Biea
i NOILULHY D

(doop)

polRARE

inthiiody 251l wopouny
25°Il onoung ﬁ eseg Wwpdo ¥ pejEUMLS]
Anewosb @ 7 pPojBUNLLIS) > eenoEed
Jusung 1 . —
Buispes es
2 d007
N9Is3q ._aﬂww_.uom ss010) @
L a
ﬁ ZESH -
Ajowoed
jueuno feinpnng
Busiaas pue siged peo
€d007 suuLeje(
N9IS3a pejeAgoR spmeq e
€571} uonoundg Anewoesy
? Pejeunue} N0 Mom
pejeunLLIE
£l ¢hneuscen Y2l
uopound oReyisy
, 2ESH
Anouioeb ‘EoEo»
wauns
peumssy
bundexor M. TS wm_.u_._wﬁ%%w_.w: \
pejeARoR g
1§) @sBYy Anowosb EE_:OL Anewoeb pewnsse 8 P91 o
9 pejeunLLe)} BN vesll .m£ o} youq Butob -
{j eseyd i bugdeoe ‘t dOOTNDIS3a
: 8580014
HINOULLHYd
buifes puy eig
pue sindui sey
Jeeuibul
Jeeubuy
[eowmoe|3 {eanjorulg
sjuedpired

‘INOLLUYVd

907 *d ‘Su11w18us] 1aM0] UOISSTIUSUDLT K31]117) [DI14332]7 Juond1iosa(] Wivwo(pa)iniaq —y xipuaddy

(d 910N :
weiderq 99S) ‘ubiseq pejieleq |einjandlS oMo ‘jj] eseyd jo eweyas [euonound [eaiydels [e1ejexs ejeipaulieiul g WYHOVIG-d

/ 7 pereanoe
{ Aieseud
\ 3 pejeujuus}
111 eseud

Buimelg
Jjewsyds sjelausn

pejeujuus)}
SS°lli uoouny

uojjepuno
lamo] ubiseqg

'® pajeuils)
vad71
uojoun4|

POl

ubisaq
uBiseq reinjonig
lamo] ay) auyay

pajeAloe
YO'lj uojoung
% pajeujuue]
S°[[f uogour,

ESTNI

}

siequispy
lamo] uBiseq

pejeaoe
€87}l uofjoung
3 pajeujuLs}
S'li| uoioun

esil

pajeaioe
2S’[ll uojaung
' pajeu|uus)
S'))] uohoun

sisAfeuy
{eINjonIg ULouad

pajeAjoe
It 8seyd
*® pajeujule}
It eseyd

peleAjoe
LS uoliound

LS

$S§300Hd ‘Il NOILILHYd

60z 'd ‘SurdaunSur 1omo [UoISSTuSUDLL K117} 1091419315 :uond1dsa(J uwod pajiaq —y xipuaddy

(D 910N weideiq 218) ‘(ubiseg pajiereq jeinjonsis 1omoy) i eseyd 4o
‘ ub1saq Joquiapy ‘ZS’ji] uonodund pue ‘sisAjeuy feinjoniis

‘1S°lll uonaund :L°¢ WYHOVYIA-d

‘pauielqof .
st azis Aojoesiies e [jun siuswepg S ————— A
anuuoe) 9zis Ieyjoue sisieuwy
A1} 'sjie} 1aquiawl ayy j| k1 weibasg
*speo] Jaquusl Bu||ouod SeZiS Jequiely _ sisheuy weBoid
By} 10} $82S Jaquisw PeyLeA v woy sisheuy
paLNSSe ay} Yooy k eli4 Indino 0) 814 Indy| d d
. ‘ ‘2 d d d
‘STLON v v b v 2 9 S
3JON3IH343H _
R 1 eseyd e_ $02iS Joquiey sedAy eprin uoflonisued
suofprey eseyy Woy, peyeies 19M0 | IBRALIS reueiBpy teels
FEIEINLT] pu3 suogoeyeq _MMM_V Mﬂo) [LECHELLTE T S M.Meb:mmm o lepopy lesis WOSTY woy
p Wweyed % sossais lequiepy BupeoT Ajewoes feuopoes a ygsezs spABUY ¥ pepeles seprIp (edg sionpoid
g JequINN Jsquiep 1eM01 peyieleq -88040 10quIelN 88215 JOqUON | miequep ofqe|eAy]
S0jo0H puRel
108 Jequiely I] I F — weq
—Illm._ i
. O NOLWLILYVY
(dooy)
pejeapoe
1S HI vogoung
¥ pejeuLe)
wesBorg
sisheuy
1Moy uny
1Sl
welbald sisffeuy
ndu
suewe 3 sAreUy o.mw._w_ﬂi :
pawnsse ewg AUeA 9
ASZIg e
Jequiepy uBseq IS
3O L2s I s02iS
sjuelle|gy - g sjueLwe|3 siskjeuy F -
g sezig uogoun; 1aquia ewnssy Il #seud
'3 Pepus > 9 PojBUMLLG)
" we o
¥ Poree se|oH }jog Jequely acasu 1Sl opess I eSEUd
Jo Jejewr|g ¥ " 100.- @ [euejEl pejeAOER
Wwened @ Alsquiey yeteg s
N9Is3a
lequin e uBiseq | ase Aeig se Hofeund
2SI Buidesy VIS
”] 858004
@ SINOLLULHYd
JeeliBug
leinonng .
siredppmed

‘INOULLYYd

017 *d ‘Suraaui8usy 13m0 uoIsstusunLy K113 1014123]7 :uonduosaq wipwo(q pajineq —y xipuaddy

(D 210N weidei(] 29S) ‘(Ubiseq pajiere(jeinjondls Jomol) |jj eseyd jo ‘bumeiq anewsyss
Buneseued ‘|| uoyaund pue ‘ubiseq uoyepunod ‘v@<'ll] uonoung pue ‘Jusweuley ubiseqg ‘€SIl uopdUNd :2°€ WYHOVIA-d

seoiAap Builoyoue Jamo)
Buipiebel sjrejep oyoeds Aue 11}

Bumes 1omaj Jo Yojeys i

suoppuos Buipeo) jeieush
jo sisjewesed ubisap pue uopdiiosep 1

Abojodo} pue Agawoab Jama) Jo
weJbeip ofewsyos ‘ejep Answoab (eqoib g

siequew juepunpai pue buloe; ‘Be| jo
sozis [eoydf) smous .5

sapelb |eusjewl jee]s

Jnoqe sajou [elsuab :x

+S3LON AON3AHA4TYH
isjlelaq Bumeiq
aimonig |4 aeWeYdS
4+ 4 o | g .
m.&.o.< m.&.0.< w.&.o.< WQO< E.Q_< Wl.oi wmo< m&o<
eleq \ ‘ \ \
saibuy weiBoid o ¥ suewap (neseyd ° (neseyg 0o
qn eleg Speo] sisAleuy ned by wou)eq way) eeq jelele
S +-— ‘laquinN 8o
10 S80YS uojepuno Bujjioaucy woy B sozS Bupeo Kijswoen leslg
eseg JemoL ased vV adinding .mmmm H JsquIspy 18mMo| peyelaq wwwoﬂ__mmw
JamoL J6qUIBN peliteA S1equiesn
Iz I l | I I |
8jonpoid
% [BlioIEN
). 4 eleq
P
& A O nowunyd

pajealioe

BuipeoT] —
pue Ajswoan)

(dooy)
pajeAloe pajeAoe
Al 8seyd sl Jamo| 8uy) suyay JuewaLiyey L8711 uojjouny
B paleulwja) uonoun saolneq Bupoyauy g2'esll ubjsed 3 pajeujuue)
1l eseyyq lioung 1emo] uBisaq peiEeq
3 pajeujw.s) 2 monﬁ
ol AL ubjseq ey NOISIa
uofjouny Bujuyes
Y BV
Budesy
psajeuils) ﬁl 8y} Jo eoueidessy
SSl
uonaun4 Bumeiq uonepunod pejeAnoe uogoun4
Jewsyos sjessusy 18MO] YO Bujpeo] 3 pejeulle]
=] uBiseq uopoun pue Aawosen Nw.:._
R pejeujuLs} 13m0 3y} ezjfeuly uogoun
Lol €SIt
w uonoun. Y2ES I $5990Id
Bl NOILILHYd

Jssuibug

feinjonys

Jasuibug

uoljepuno

J88uibuz

NS

sjued|ojjieq
‘INOLLILYYd

112 'd ‘§ui12218Us 1oM0] UOISSTUSUDLT 11113 [DI14193]7 :u0d1IISI(T UIDwo(pajv1a(—y xipuaddy

(g 210N weiderq 298)
MENEEN\Q uononlisuo) Jemoj \\= oseld jo ewayag jeuoijoun+ \NU.:\QEQ je18ja)s ajeipawiisiul % NvHODVIA-d

poteAloe
Aoseld
% pojeulLs]
Al oseld

1s17 Buypung
pue jeusjel jJo
1119 uopoe.3 s|idwo)

pajeujue}
¥S"A Uoijoung

YS'Al

™
Buimesy
eAlloR :
vm.ﬂ«co._ﬂc: ¥ pejieleq sjelsusy)
SJBUIULID
? pojeulws) eS|

£S"Al uooun

)

sued
uopeouGe jfeleq

pajeAljoe
£5'Al Uotiouny

® pajeuluLs)
2S°Al uotoun,

S¢S'Al

SUOJ19aULOD
pajeAlde no Aet pue poleAljoe
2S" Al Uoouny slaquIspy uoisuswi(] IS'Al

% paleujus)
LS"Al uojlouny

uonoun4

IS'A

pajeAlioe
Nl oseyd

S$S300Hd ‘i NOILILHVd

212 d ‘Sua2u1usg 1oMo [uoISSIUSUDLL 3111371 10214103 JU0nd1OS(T UIDWOT Papvia(—V xipuaddy

(D 210N wreigeiq 29S) “(Buruueld uoljoniysuo 1amot) Al eseyd Jo ‘sued uolesliqe-
buijreag ‘2s°Al uoljaun4 pue ‘suojjoeuuo) jno buiAe] pue siequely buiuoisuawig ‘LS°Al UondUN (LY WYHDVIG-d

yibus) jjog pue |ybuy ‘useyed sjoy
‘azis pue adeys ajejd ,suojosuuc) :,,

-S3LON 3ON3H343H N " A
l]
eseyd wolj; aseyd woy)
Bumeig JECE]
<E v v v dpwayos lesnprus
suosaUUCYH
¥ SIaqUIBN [SELITEN]
o} sped sepeig mmw_mw (seouaiapajuy (suolpauuoco 10 ainpnig sinpnS
uojjesjiqe jeLBiEW » sezig — Dw.: ofe pioae o}) jo sadfy sjansg 19mo] a8y} 1emo|
a2y} Emﬁ. sequanlf QIS uoIBUL0Y saduelEs|) -371) Bupwely %y sedojg uo sjujed ay) Jo weibeiqf
jo seinjeay jeoidAL i 18quisiN JBQUIBI Inoqe ¥ syibuan Bupiiopm ojjeweyos
uoljesjiqe ¥ : sajou |ejoads 1251 Te)
1BQUINN YJeW .

% — 5 oo

‘eleq il NOILILHYd

suonasuuc) o Ae

pajeAjoe
2S°Al Uojioung g EIS'Al
pajguiwa) [S°A 7y

uopouny

pajeapoe
£S°Al uoloung
» pajeulula)

speq
uojjeauqed [le}dQ

suojsuawg
JELTTENNEIE R

2S'Al . LS
12S°Al ZIS'Al
uocioung - Sjiod pajenoe
Wm Buptiom seInonig bSAl
[ayy ystiqels3 uofjoung paeARe
L'LS'Al

SRR

b

§8930.d :}| NOILILHYd

synduy
epiraid

lajieisg
ainjanig

ssyEpRQ
1eaulbuy ainpnig

{einjonng

siuediajued :f NOILILYVd

£1Z 'd ‘Su1122u18usy 19MO0] UOISSTUSUDLT K11]131] 1DI14193]7 ..:o.am.:%wQ wmpwo(q pajiviaq —vy xipuaddy

(D 90N wreader(q 99S) ‘(buruued uojonisuon jomoy) Al eseyd jo ‘1si
buijpung pue jelislep Jo jjig uofjoai3 bulidwo) ‘vS'Al uonound pue ‘buimelq pajiejag buljeleusy ‘gs Al uoljound gy WyHOVIA-d

] /
m \ (i
eseyd woy ' aSeyd Woij)
1eBeuey bumeiq Bumeiq {soulbuz
o[l e}e . el
uoRaNSUCY pargieq .wﬂn_ sS‘'d‘D s‘d‘d S‘'d‘D oneweyos I nis
oV
a _ | & Y _ v
/ o3 frsosss [o |/
seag 3 SJoqUIeN 10} -
15 Buypung Jemo) viseg Yibue wog .
pue [eUelely u_ac_zm_o 10 SHBOM siequiep sezig lequiepy uoeauge eInpeyos §og sUed uoneouqe 4 eeq inokeq
neweysg Jo syyBlep jeoldA | oL Jo seinjeed uoliseuucd
§0 lilg uonoeig pezueAen) Jeeul Ssiequiepy uonest $621S J6qUIOR
g swbiep n ResLiqe feoidA)
weig B JequUInN IeW !
! _ ! &1 _
NV - 8jonpold g |BuLIBl ‘Bleg
AP ‘N NOLLILHVd
Bumeiq jereq
el
4 pereutune} < —
| PSAl 1 S1BAlOR E'ES'Al
uonoung Buipung % (euelep vm1>”cmwsc:m suoisuey
10 1jig uonoesg » pereUILIe} : pueiemoL oisegjo |
dojeneq €S’ >._ sjybiepy eindwon ¢ —
uonoung pejeAoe

LPS'Al

peleniloe

[Aeseyy
| % poeujuie)

, Aleseyd

C'ES'Al

eInpeyog iog
ejeloues)

L'ES"AI

£S'Aj uojioung

 pejeujuLe)
2S'Al

uonaung

88990l | NOILILHVd

leieleq

anpnng

sjuedioiyed 3| NOILILHVd

weIdei 99S)

pIC "d ‘Suiaaun§usy om0 uoISSnUsupLy 11371 (00143931 uondiasaq uiowoq pajmwiaq —y xipuaddy

(g s10N

‘uoInd9x3 UoIJoNIISUO) JaMO] ‘A 8seyd Jo ewayas [euoijound [eaiydeso [ejejes ejeipauliaiul ¢ WYHOVIG-d

pejenoe
IA 8seyd
B pajeuLLa)
Aoseyd

suonerdgo
Bujbulig wiopay

pajeujwIa}
$0°A uohioung

YO'A

pajenoe
¥0'A uotouny
B pajeuIa}
0\ uooun,

sJamo
10a13 pue ajquassy

ED'A

(swed diys
*® 9)pung ‘sjed)iqe)
sued Jomo | sjedliqey

pajeaoe
£0"A Uojiouny
» pajBUiLIa}
3" A LogouN,

LA

pawinsa)
LA Uojouny
» pajeuiwia)
d'A UoROUN

[BuBjeN |30l
mey bulf|ddng

ed'A

(leysren
pajeaoe 18pJQ ¥ asedald)
¢d’A uolung SHed pajeAoe

® papuadsns
4°A uojoun

1amo] ejedjiqed 14"A uojiouny

Ld'A

pajenton
A dseyd

SS3J0Hd *ll NOILILHYd

CIZ "d ‘Suriaaun8usg 1Mo uoIsstusubL] K311 109143931 uondiiasa(uivwoq paliviad —y xipuaddy

(D 910N wreider 99S) (Uonnsexy uononijsuo 1omol) A eseld jo
‘tersorepy BuiAjddns ‘g4'A uonound pue ‘suonesliqed sued ¢

I4°A uojjound :1°s WydOVIa-d
("ewsyas sy} Aidwis o} .mﬁo:umu_. Bujpesy auo sapun ind st siy1)
‘syed joadsuj pue szjueAjes) ‘ues|) ‘aew 4

‘S310N
3JON3IH343H
oS 4 doys ﬁl \ "
uonINSUOD Al 3SYHd woy uogeouqey ells pelepio J6pIO -
e je sued s Buypung oy je syed uoRonuisuoy ey JuewaIroo)y pepesN 3ISYHd wayj) Bumsiq |
uopeouqey pue [2uelel uogesuqey 1B [eUBiEW |96]S m“m_mcwﬁﬁwwm leusiEN 1.II.| [BleJEW [e0lS s Buypung pepeleq mmwﬂsﬂ M._Er
pepedsu] |0 1@ uooau3 peedsu; MEY pelenjeq 10015 mey S 'd meyjounowy pue eueey Bupopm amonas
puE pezjueAlenD pUE pezpIeAlED 10 |g uoroas3y
A B 3 A _
spnpold
. ¥ [BUaey ‘meg
Av O il NOLLLLYVd
4 sued som0) d ﬁ
Fonaed i pepuedsns jeyeley mey
VidA A anoaid ~
S peiunsel uofpuny (doys sJojeauqes)
A A
uofeund 11 jjo-exeL
sued Uopeouqey ruoiey asdard |
diyg pue ejpung
\ 82 H4A
FREN pejBAfoR
2d'A
uogouny JesuBuz [RINGONIS
X Jo Jelje1eq eLp L
peieAlpe ol glueiqosd B N0 HOM
£0°A Uopoung .
@snoyelep feuejely : - umelq pefieieq
Mﬂormoﬂwﬁu ,<~ HIA ol uo L pejeafor
) pajepio s& ejejdwoou]
{epelew mat JoueD | 101t i
12dA . Pouu (doys sojeouqes)
lepuo el JeAlleq Bupelq jieleq
et mojey ~
MBIARY 0} INURUCD FidA . $8030id
SR— 1d00TMIATH Ill...l..\M 1 NOLLILHYd
swejqasd; msmzsnm W
o4 o opa .
Jenddn suosinjos suognyos |
1oieoHqed _u.,_hs.m—.m‘ 10jeauqed epiroid, mmhsn:nw
: J/ sy jojeopqey
Je|iwieg

Jeeouibuz

[RIrgonig

siuedpnred
SINOLLLLHYd

(D AON Eﬁmﬁm 99)
“(uonnsaxg uononIISUOY J9MOL) A 8SeYd JO ‘UOIoaIT PUE A|qQUISSSY JOMOL ‘€A uoljound :Z's WYHOVIG-d

917 'd ‘SuiLaau1us] 19MO L UOISSTUSUDLT K11113) [D014302] uondiuosa(q uipwoq papiviaq —y apuaddy

vi v]
pejEisul vogepunog \ ous
SOl pue f Bumes puncsg uo punasg uo OINISUOD
1}5UC UoiSUe salj meig nonas
Foooduos | o [SoEnsum pue e P ey po 1eq suopaes B | weom] oy 2 sueg
lomo] peauinbey togepuno o} s101e sy PUe palai3 Gupirop Jomol sueln pue jybiey emo) uogesuqe
) peJoipuy pue Jomo) pejquiessy 1am0] 10] peqessy peisedsy
pejei] 1emo] P POZIEAS
sjonpold
1 ? 1 _ 2 ¥ |epow
‘epeg
- , i
NOLLLLHVYd
¥
{ous wo))
peyoads suoisue)
0} JeMo] UO SauIp Iind
SYO'A
~ o puUnoIg uo
8WeISAS 10MO |
{ous uo) Jamoj eiquIessy
{ peojeuiune) aJque 8y . <
YO'A 19M0] UO SalIpy Buiquesse ¢eueid Aq VEDA
g slog|nsuj sy PejeAnde peylj eq ue
$O'A uogoung & pejquesse Apjeld woo
b ‘Jemo] Jeyisym
\WON (o3 Uo) oppeg
uoRepuno A A
033 Jolpuy
pejeaioe 9 punoJb uo Jemo |
|A oseyd eupuz egwessy
4 9 pereuiuLe} e BEETA
A eseyd
y
uonoeg Aq uopoes
Jemo] Bunreweyy 2
olp a1 g UOREPUNOS fg B__Eoo.__wﬁ_.“_;
0 LOeS eseg JoLpuy — uogoes Aq uogaes sweygord 6y anosey] jeg voz..roﬁmﬂ.m:mm
o Jemo) el Bugosse Jo siequ
% YEEDA . equiep
YeEOA S Jemo) euiog
$880001d
‘i NOLLILHYd
sweyqosd
oy wegosd
BAjOSBS B}
»aK sdjay sejeblsoaur
UOHBNISLO]) »oxy
uolpNiELN
JKHER(0
snpPnIS 1eopqe swiedioneg

‘INOILILHY S

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

Appendix B

DEAL: Pseudo-Codes and

A Detailed Analysis of
“Transmission Tower Members”

Abstract:

This appendix shows the pseudo-codes for the operations in the procedures of
DEAL-1 and DEAL-2. It also provides a detailed analysis of the “Transmission Tower
Members” domain entity of transmission towers studied in this research

Organization:

B.1 Pseudo-Codes for Operations in the DEAL-1 Procedure
B.2 Pseudo-Codes for Operations in the DEAL-2 Procedure

B.3 Detailed Analysis of the “Transmission Tower Members” Domain Entity

Phan & Howard page 217

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

B.1 Pseudo-Codes for Operations in the DEAL-1 Procedure

The following are pseudo-codes for the ELABORATE, ASSIGN, COHERE, and
DECOMPOSE operations in the DEAL-1 procedure introduced in Section 5.3.5.1 of
Chapter 5. The keywords of the pseudo-code format used here are shown in bold.

operation ELABORATE (vertex vi)

// This operation is used in the first step of Procedure
DEAL-1 for each criterion I. It enables the modeler to
“elaborate” the data items of a given vertex vi. The
elaborated data items represent the new assertions that
reflect the modeler’s most current state of belief about or
understanding of the problem at hand [VanLehn 897].

begin

end

// Define a temporary set ej for the new extension of
vy .
ej = emptyset;

for each dk imn EXT(vi) do begin

// The user inputs new data items d] to replace the
existing dk. When prompting the user for dj, also

remind the user of the restriction of the elaboration
task as stated in the description of the procedure.

ej = ej U {d] | user-input d]};

end

// Save the resulting ej back to EXT(vji). Function
SET—EXT(vi,sj) sets the extension of vj to an input

set sj of data items.

SET-EXT(vi, ej);

// Check and enforce the safe elaboration rule.

RUN_SAFE_ELABORATION_RULE(v7y):

page 218

Phan & Howard

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

operation ASSIGN(vertex vij, criterion I)

// This operation is used in the first step of Procedure
DEAL-1. It assigns into separate “binders” data items of a
given vertex vi that have the same characteristic according
to the criterion I being considered. For instance, under the
access~-cohesion criterion, each binder corresponds to a
unique logical path (or combination of paths) for accessing

data items of vj.
begin

// First, the user inputs the element I under
consideration in the intension of the vertex. Function

SET-INT-I(vi, Ij) sets the element I of the intension
of vi to the input set Ij.

SET-INT-I(v], user-input an_TI);

//Then, assign each data item using a function AT:
EXT(vi) -> INT(vi).I. The set corresponding to this
function is:

AT = {(di,m) | di in EXT(vi) & m in INT(vj).I};

end

Phan & Howard

page 219

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

operation COHERE (vertex vj, criterion I)

// This operation is used in the third step of Procedure
DEAL-1. While the previous operation assigns data items,
this operation creates “cohesive sets” of data items
contained in a given v] whose elements cohere to the same

binder. For instance, under the access-cohesion criteria,
each cohesive set contains all data items that can be
accessed by the same unique logical access path or
combination of paths. Cohesive sets have unique properties:
They are disjoint equivalence classes of the relation
CohereT defined below. In set theory, equivalence classes

form a partition of the underlying set and in this case, of
the entity ei represented by vi [McEliece 89, p. 28].

begin
// Define an equivalence relation CohereT: EXT(vi) ->
EXT(v]) that is the composition of the corresponding
function AT and its inverse function: CochereT= AT o

AI'_l . The set corresponding to this relation is:
Coherel = {(di, dj) | (di, m) in AT & (m, dj) in
AI_l }i

// Collect all the distinct equivalent classes CT
from the equivalence relation CohereT into a set
called allCT.

allCT = emptyset;
for each di in EXT(vi) do begin

// The symbol €(dj) represents an equal
equivalent class of the data item dj. C(dj) is
never empty since dj belongs to it [McEliece
89, p. 25].

if ¢(dj) not in allCcT then allCT = allCT U
{c(di)y;

end

// Save the set allCT using a function SET-allCT (v]
, allCT, I). The set is retrieved in the next
operation using a function GET-allcT(vi, I).

SET-allCT (vi., allCcT, I);

end

page 220- Phan & Howard

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

operation DECOMPOSE (vertex vj , criterion I)

// This operation is used in the fourth step of Procedure
DEAL-1. It decomposes a given vertex vj into new vertices
vj, each of which corresponds to a single cohesive set.
Cohesive sets were explained in the previous operation.

begin

for each CT 4in GET-allCT(vj, I) do begin
// Create a new vertex vj 1.
vj = NEW(VERTEX) ;
// Make vij a child of vj by creating a directed
link from vi to vj. '
LINK(vi ,vj).
// Equate the extension to vj to CT. Function
SET—EXT(vi,sj) sets the extension of vj to an
input set sj of data items.
SET—EXT(Vj , CTI);
// Copy the intension of the parent vertex vi.
Function, SET-INT(v7, tj), sets the intension
of vi to an input tuple tj being (Aj, Cj, Tj,
Sy, Uj).
SET-INT(vj, INT(vi).I);
// Appropriately modify the element I under
consideration of the tuple in the intension of
V. (U: Union of sets.) Function SET-INT-I(vi,
Ij) sets the element A of the intension of v3j
to the input set Ij.
SET-INT-I(vj, U (m)) where di in CT and (di,m)
in AT; :
// Prompt the user for the name of the entity
represented by vj.
SET—NAME(vj, user-input a_name);

end

// Check and enforce the non-loss, disjoint

decomposition rule.

RUN_NLD_DECOMPOSITION_RULE(vi) ;

end

Phan & Howard

page 221

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

B.2 Pseudo-Codes for Operations in the DEAL-2 Procedure

The following are pseudo-codes for the ELABORATE-2, ASSIGN-2, COHERE-2,
and DECOMPOSE-2 operations of the DEAL-2 procedure introduced in Section 5.3.6.1
of Chapter 5. These operations are similar to their counterparts in the DEAL-1 procedure.
However, these operations are modified, enabling the moder to reuse the previously

identified primitive entities ep’.

operation ELABORATE-2 (vertex v] , entities ep’)

//This operation is used in the first step of Procedure
DEAL-2.

begin
// Define a temporary set ej for the new extension of
vy -
ej = emptyset;

for each dk in EXT(v]) do begin

// MODIFICATION: If n primitive entities ep’ can be
reused in the description of the entity represented by
vi and the data items of ep ‘' can replace dk, then

use ep’ .

if (n REUSABLE ep’) then ej = ej Uk:l,n ep’;
// Else the user inputs the new data items d] to
replace the existing dk. When prompting the user for
d], also remind the user of the restriction of the

elaboration task as stated in the description of the
procedure.

else ej = ej U {d] | user-input d4d]};

end

// Save the result back to EXT(vi). Function SET-
EXT(vj_,sj) sets the extension of vi to an input set

sj of data items.

SET-EXT (v, ej) ;

// Check and enforce the safe elaboration rule.
RUN_SAFE_ELABORATION_RULE(v]i) ;

end

page 222 Phan & Howard

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

operation ASSIGN-2(vertex vj,criterion I, entities eEy)

//This operation is used in Step I.l1 of Procedure DEAL-Z2.

begin

end

// MODIFICATION: If n primitive entities ep’ were
reused in the previous operation ELABORATE-2, then the
data items that were elaborated from ep’ will not be

assigned in this operation. Let eg]lab is the set of
data items that were elaborated from the primitive
entities ep’.

if (REUSABLE ep’) them eelab = Uk:l,n ep’;

else eglab = empty-set;

// First, the user inputs the element I under
consideration in the intension of the vertex. Function
SET-INT-I(v], Ij) sets the element I of the intension

of vj to the input set Ij.

SET-INT-I(vi, user-input an_I);

//Then, assign each data item using a function AT:
EXT(vi1) -> INT(vi).I. The set corresponding to this
function is:

AT = {(di,m) | 41 in EXT(vi) & m in INT(vi).I};:

Phan & Howard

page 223

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

operation COHERE-2 (vertex vj,criterion I, entities qp’)
begin
// Define an equivalence relation CohereT: EXT(vi) ->
EXT(vi) that is the composition of the corresponding
function AT and its inverse function: CohereJ= AT o

AI__l . The set corresponding to this relation is:
CohereT = {(di, dj) | (di, m) in AT & (m, dj) in
AI_1 Yi

// Collect all the distinct equivalent classes CT
from the equivalence relation CohereT into a set
called allCT.

// MODIFICATION: If n primitive entities ep’ were
reused in the previous operations ELABORATE-2 and
I-ASSIGN-2, then ep’ serve here as the initial

cohesive sets in the set allCT.
if (n REUSABLE ep’) then allcT(vi) = Uxoi,n ep’s

else allCT(vji) = emptyset;

for each dj in (EXT(v]) - eglab) do begin

// The symbol €(dj) represents an equal
equivalent class of the data item dj . €(dj) is
never empty since dj belongs to it [McEliece
89, p. 25].

if €(di) not im allCT then allcT = allcT U
{c(di)y:

end

// Save the set allCT using a function SET-allCT(vi
, allCT, I). The set is retrieved in the next
operation using a function GET-allCT(vi, I).

SET-allcT(vj ., allcT, I):

end

page 224 Phan & Howard

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

operation DECOMPOSE-2(vertex vj,criterion I, entities ep’)

begin

end

// This first part is similar to the DECOMPOSE
operation in DEAL-1.

for

end

each Cr in GET-allCr(vi, I) do begin
// Create a new vertex vj ji.
vy = NEW (VERTEX) ;

// Make v4 a child of vj by creating a directed
link from vj to vj.
LINK(vi ,vj).

// Equate the extension to v4 to Cp. Function
SET~EXT(vi,Sj) sets the extension of vi to an
input set s of data items.

SET-EXT (v§, Cr);

// Copy the intension of the parent vertex vj.
Function, SET-INT(vj, tj), sets the intension of
vi to an input tuple ty (A4, C5j, T§, S5, Uj).
SET-INT(Vj, INT(vi).I);

// MODIFICATION: The element m in INT(vi).I has
not been defined if Cr comes from one of the
primitive entities ep’ that were reused. Prompt
the user for m and modify the element I under
consideration in the intension of vj. Function
SET-INT-I(vji, Ij) sets the element A of the
intension of vj to the input set Ij.
if (n REUSABLE ep’) then begin

SET-INT-I(v4, usexr-input {m});

// Set the name of vy to the same name as

e r
p -
SET-NAME (v], ep’_name);

// Then declared vj as terminated vertex.
TERMINATE (vj) ;

end

else begin
// Appropriately modify the element I
under consideration of the tuple in the
intension of V. (U: Union of sets.)

SET-INT-I(v4, U {m*}) where dj in

Cr and (dj,m*) in Arg;

// Prompt the user for the name of the
entity represented by vj.
SET-NAME (v, usexr-input a_name) ;
end

// Check and enforce the non-loss, disjoint
decomposition rule.
RUN_NLD_DECOMPOSITION_RULE(Vi);

Phan & Howard

page 225

Appendix B—DEAL: Pseudo-codes and Analysis of “Transmission Tower Members”

B.3 Detailed Analysis of the “Transmission Tower Members”
Domain Entity

This section shows a detailed analysis of a domain entity called “Transmission
Tower Members” using DEAL-1. In this analysis, the domain entity is initially described
by one data item, tower_data. Five successive steps were carried out to evaluate the
entities’ cohesion. In those steps, the shaded vertices are the non-cohesive one that get
decomposed. Data items whose name ends in “_data” will be elaborated in a later step.

STEP 1:
ACCESS-COHESION

{detailed_fabrication_data,

o design_data
- ELABORATE: Replace [''oqsmission |§ - analysis_data]
tower_data Members
with two more specific
data items. { [Project-Folder].Member_ID, <
[Detailing-Documents].Mark_No,<
» ASSIGN: Determine Transmission . <
the logical access paths Tower [Analysis-Documents].Element_No } |«
& assign each data item Members { detailed_fabrication_data,
to the proper paths. - -

design_data,

analysis_data}

» COHERE: Find th issi

cohesive sets!n ° Tra{lw_son“w,;srs on 1. { detailed_ fabrication_data }
(In this case, there are Members 2. {design_data)

two.) : —

3. {analysis data)}

» DECOMPOSE:
Decompose

the non-cohesive vertex
into child vertices,

each corresponding

to a single cohesive set.

Structural
Design
Members

Structural
Analysis
Elements

Detailed
Fabrication/
Erection

Parts

({ [Project- ([Analysis- ({ [Detailing-
Folder]. Documents]. Documents].
Member_ID}) Element_No}) Mark_No})
design_data ; {detailed_
(design_date] {da;r::iysrs_ fabrication_data)

page 226 Phan & Howard

42T °d |, ‘S12qUIdPN 13040 T UOISSIUSUDL T, JO S1SAjouy pup sapod-opnasq :TvIqd—yg apuaddy

{ { _ {

ejep ejep { _ { elep {
“IoiAeyaq “uonduosep { Blep _ Blep uojoun) Tuopejuesaides elep {
“esuodsel Tapou elep ~uopeoyoeds mc_t&mclm: peo| Tojlewayods ~uojjejueseaidal eyep
Tleinyonus} Tjuswaje} “feusiew} “Buipeoj} ‘ejepjoejiue} Tlequiewy} “edeys) Tjeneds)
({arrssqusy (arequeap
({ar requeap ‘[uonejussaiday ‘[Bupissyd
«’Buipeot,, ({ar"1equsy dpewsyds -9dueles|d
({oNTJuawez ({ oNTjuawalg ({ uopeubisag -fuonses-ubisaq ‘[uonwes-ubisag 2amonns ({uopeubisaqg -jeou}o9|3
“[aig-inding “[e114-1nduy) TWLSY ~13pjo4 ~19pjo4 -13pjo4 ",89]buy,, ~19pjo4
-sishieuvl}) gishieuyl}) Iwosivl}) -1o9fo1d] }) -09lo1d] }) 499loidl}) IWosivl}) -osfoud]})

suopdiioseq

{e1ep suonduoseq suopduoseq suonealjoeds ubiseQ -cwmmﬁwm -cmmmw_ﬂwm suoplduoseq
“uonesuqe) Indino 9pPON suopduose(Buipeoq » Jeuopouny ajewsYsg edeyg jeneds
“pajiejap} sishjeuy B Juswa|q [elsleN 18quisiy laquiepy 1equep lequisy laquepn
({oNDHER
‘[swuawnooq .
-Buereql }) ' /“

sued

uoioeig sjuswsaj3 siequapy
JuonEeslIqeS sisAleuy uBiseq
[eanonns [ednjonag

Q. PolEied

syred ssaooe [eoibo]
olioads pue joauip Buisn
NOISTHOD-SSADIY
‘(peleadal) | 4319

siaquely
lamo]
uojssiwsues]

977 “d ,,‘S13qUI N 19MO] UOISSTUSUDL],,, JO SISKIpUy pup Sapod-opnasqd -Tv4d—g xipuaddy

(8v4Q) wio4 uonesuged/Buijieleq Wed
(H1¥WN) wiod [eusiey

(dVHS) wo uonejueseidey adeysg

A

1S3Q) uonduosa ubiseq (A”3S) Jo1neysg ANjiqesdines 0d0.l) wio ABojodo |
NOD3IY) suswelinbey 34 1S) Joineyag yibuensg (039) wio4 Ajswosy)
(ONN4) suonouny (ATINV) sisAjeuy esuodsay (1vds) wio4 souelsjey jeneds
{eyep~urens { { aN3o31
‘ejep { { elep | uoheulsep _ ejep
Tuswese|dsip elep elep ~suojjes)dde " peo| mcozmnm_aam { mo_mmnoa
‘eyep”ssalls Tuonduosep Tssiuedold ‘ejepTspeo|T|eulsixe N peoj Blep mnmcm (
‘eyep TJuswaje Tleusiew ‘elep seses” peo| pallejsuel] “jeaibojodoy ejep e
Teoi0} ‘elep_uonduosep ‘elep_edAy ‘elep h ‘ssodind ‘ejep suolsuswip lmzmwmﬂ
“esuodsel} “epou} Tleuslew} Tsuonpuod~Buipeol} ejep ioeiue} Toljewosb} adeys} fet
AH3S ONN4 0doL
. h ERENES ANV HLVIN no3y Isaa 03o dVHS 1vds
e}
“salnjes)
- uofealiqey mCOZQ_Lome suoije] suolje}
‘eje suoydiioss suojduosa suoijesiyioedg o : _ ’
tmc_Emﬂ Indino d 8poN d suondioseq Buipeo] " _Mm%wom__: y M__“mmﬂomﬂwm :wahcnw@m_ m:wm_ﬁm_.%Mon_
Jm_wwmmv_ sisAjeuy B Juswe|3 [euslep lequisiy 18qUs|y .LmnEos_ 19qWepy ho.nEms_
“lequew }
gv4d

sued
uoijoel3
Juonesiqe
pajieieQ

sjuews|3
sisAjeuy
[einionyg

siequieiy
ubisaq
[einjonis

Eo_aaao z%_mm&
lem_‘_ommﬁmu jenjasouod

8y} Bujubisse Jaye)
NOISTHOO-Ld3ONOD
edals

siequisiy
4. lamo]
b uoissjwsuel |

{eiep~ssals

{eiepTuiells ‘ejep

‘ejep 8210}

Tuawaoedsip} “asuodsal}
AH3S YIS

suopduasagg
lojaeyag
uswiaoeldsiq

suonduoss(
loiaeysg
asuodsay

{erep

“uonduasep

TjJuswaje

‘eyep~uopduasap

{ ~apou}

eiep AINY
“salnjes)
~ uopeauge)
-ENU

~Bunuely mcowmw”_mmo

.S@U

TnoAe) R JusWe|g
“Jaquisw }

gv4d

syed
uooaig

Juoneatiqe-

psiieleqg

{uoneunsep

627 *d . ‘S12quIdJ 120] UOISSTUSUDL,, JO SISKIDUY puv sapos-opnasd Tyad—g xipuaddy

{simeaj)oq daysTubisap ‘suogesijdde
‘lejewe|p jjoq_ubisep ~peoj _
‘eyep syibus|Tpaoeiqun Tpausjsuel *xmtm» pus
‘uonduosepioeyiue} - ‘asodind} ‘XeaA uejs}
1S3a ONNd 0dOoL
suopesyddy
suonduossQ peo
ubiseqg lajsuel] suopduaseq
laquisiy o) ebp3
{etep {eyepTsuopeojdde
~“sajuedoid “peo| ‘ejep

Tlelejew Tspeoj |ewaixe ‘ejep
‘ejep~edA}l TsaseoTpeoj ‘ejep

TJeusiew} TsuopipuocdbBulpeoy}

no3d

H1VIN

suonduasaQ
leusie

slequisiy
d lamo)
h\ UoIss|suel |

suopdussaq
Buipeo]
Jaquisy

suopdiuosag?
ubisag

sjuswia|q
sisAjeuy
feinmoniis

slaquisy
ubiseQ
[eimonng

{27 wiod
‘| "jutod}
03
sjuswbeg
eur {erep
“eadojeAus
{e1ep Tleneds
“se|uadoid edeys ‘ejep
‘ejep suojsuswlip TweisAs
“edeys} Tejeuipiood}
dVHS 1lvdS

suoje)
-uasaidey suonduaseq

adeyg jeneds

laquiepy lequie

(uonesado
3SOdNOD3AA 8ul Jaye)
NOISIHOD-1d3ONOD

'2d3l1s

05z 'd ,, ‘SIoqUIa N 10M0] UOISSTUSUDL],, JO S1SKIDUY pup sapod-opnasd Tygd—4g puaddy

seoueles|n) [eouoe|g Jaquapy Buppeyd A eseyd — 21}

8jnpayag Jjog ejeieuss) L'eS Al AAIOY — 91)

sWed uoneduqge jfeleq :1'gs Al Aoy — g1

suopoauuo) IO Ae g LS'Al AliniaY — 1)

suojsuswi(] Jequisiy 81elndjeY 2'LS Al AIAY — 1)

S8|0H 1jog JO JejusWelq B Wwaped B JequinN ubisaq 2SIl AlAloy — 213
saz|g laquisiy ubisaq :1'2S |1l AAnOY — L}

we.bold sisAleuy Jamo| Uny ' 1S" || AIAIOY — O}

weiboid sisAjeuy o} eji4 induj esedsid £ 1S || ANAIOY — 61

sjuswa|3 sisAjeuy B S8ZIS Jaque 19819S 1| LS"(I} AUAY — B

opelD) JeUsje| siequispy 19818S (L' LS (I} AARY — A

sWieisAg [einjonilg pue syjed peo’ euluue}sq €23l AlAoy — 9l
5801] peo sjessusd 19'Lg’|| Aoy — S)

speoT euluLeleq :§° LS|l LAY — 1)

sese) peoT suluLeeq (0" 1LS°|| AlAnayY — £)

suoppuoy Bulpeo suluusieq gy 1Sl Aoy — 21

('v xipuaddy ass) Answoan) Aleujwild & awnssy :2'1S°|| AllAoY — 1}

{eiep_urens

Tusweoe|dsip}

cliol

suopduoseq

{eyep~ssans {aimes))joq de)subisep

‘ejep ‘ejep 0210} ‘lejewelpT)joq” ubisep
Tesuodsel} ‘eyep-syibUB| peoeIquN
HOR ‘uopduosep ioe)pe}

HIZE ‘CILEY “HILLY “LI9Y

suonduosaq

loiaeyeq Joineysq suopduoseq
uewade|dsig asuodsay ubiseq
laquiapy
{erep {eyep {eyepTsuopesidde
{ “uopduosep “seluedoid _ peoj ‘gjep
elep Tuswele [elsjew ~Speo| |ewaixe ‘ejep
“saines) ‘eyep~uopduosep ‘Blep adAy _ seseo peo| ‘glep
~ uopeouqe) Tepou} ~leuelEw} Tsuonipuod mm__umo:.
‘ejep Li6} HZY HISY LA CLIEY 'LICY
“ejnpayosTijog
‘ejep
Tseoueles|d
‘ejep suopduosaq suopduosaQ suonduoseq
“InoAe| indino 8poN suonduosaq Buipeo
~Jequiaw } sisA[euy » Juswa|g [eusyepy laquiaiy
LIS ‘LIS

‘LI ‘LIER

syed
uopoalg

i /uoneouqey
e

N~

sjuswelg

{uoneugsep aN3oD3
‘suojjesydde peo) _ _

~paiiejsuel {xeueA " pue {g7wed
‘esodind} ‘X8WeA jejs} ‘1 " juod)
c19} el 418

_ laep

seousielel

mcozwnu_a% .._m._umam

hmhﬂcﬂg 1 suonduose(suswbeg - S_M_M_w

oL ebp3 eun “eneds

{evep —y rep

“sopedaid edeys _ WeIsAs

‘eyepTsuojsuswIp 8jeuipIo0}

dewsl zun

(8§:2 LIZL ‘L

suofdussaq suope) suone)
ubiseq -ueseidey -ugse.idey suonduosaQ
3 [euojoung opeWeyos edeys [eeds
laquispy JOqUIBI laquispy laquis |y

slaque
sisAfeuy cmnummos_ (NDISSY uolelado
sioquepy [eimonas feamonis —saw 1eolboj
ooy ay) bulubisse Jaye)
uolssiwsuel | NOIS3HODO-3INIL

€ d31S

{wun

{adeys Tuojsuswip
~aInsojous “wybay
“pausjal Tainsojous
‘nun 'Uipim
Tuojsuawip Tainsojous
‘asuejsip ‘YiBus,
"o |E:mo_ocL
[4742] Lz

&Soousiajey
{/ reupnybuoy
. woiq

¥\ ainsojou3

snaoig
ainsojouy

jepeds ieneds / {eiep
X se|padoid " adeys
‘ejep suolsuswip

“adeys}

Ligy

suojje}

-uasaiday
adeys

Jequapy

{leataju)
“loq
‘az|s _ {
TYoq~deis wun~ybus)
‘Iatjliuspi {jun"1sjoWelp ‘anjeATyibua)
“ainjesy) ‘anjeA”Jsjawelp} ‘sixe”paseiqun}
[1r4 8} Zitn L

sainjead

ufisaQ siajeweiq syibus
jog jod paoriqun)
daig uBiseq ubseq

{uogeupsep
‘suojjeoijdde
~peoj
Tpalejsuel}
‘asodind}

cio

suojjeoyddy
peoT suojiduoseg
{ejep 18ysuel] ufiiseg
“sajuadoxd o] Jaquiepy

Tleuarew
‘elep~adA}
“jenajew}

Ha

suojjdussag
ubjsa(]

g [euoyouNy

JELEPY]

suojjdioseq
eUSIEN

siequap

| 1§27 *d ,, S13quay 1300 [UOISSTUSUDL], fo S1S{jpuy puv sapoa-opnasd TvAd—4 Yipuaddy

{suoijoun;
‘sjusuodwod
‘'sofjsueoeleyd
TuBisap
‘uoljesijissed}
L9
suondyioseq
oejuy
ubiseq {saouaiajel
{ ~dnjoo;
‘Jun—peo| ‘siejalueled
{ ‘uojoalp ~ases peg
$9jeulp1o0d ‘spnjjubew ‘1010ef peog;
Twio] ‘AloBajes peoj REIMIET]
‘1ayjiuapl peol} “ajuapiTpeo} ~“ases”Buipeol}
LS Livd LigY
suolieojoads, £'suopeayoads
uotied)|ddy “peo suojjeayjoeds
_ peo] ~pajenuasuo “eseg
ior v “olelS “peoq

siaquisiy
ufisag
Jeinionns

Jamo]
uojssjwsuel

{ainjesadway
'892iN08

Tpeoj pauejes
‘poads
TpuiM T ewalxe
‘Aiofisyed”ainoniis
‘Aiofisyes ainsodxe

: {uopjeuwlojsues;
‘se@ouelejal ‘adA}
~dn™o0} _
Usijuepl {xeUeA”pue {2 wjod -
Tuopypuoo~Bujpeol} ‘xapsA uels} ‘| "ujod}
LY eI 413
suofjesjjjoads
_TPUM
awaipg suopdoseq sewbag
ISNV a6p3 eup] ejeu|pIoo]

suojje}
-uesaiday
dfjewsyos
18quispyy

(Buuepio-awn ayy pue uogeiado
ISOdNODIA ay) 18yje youeiq
,slaquisjy uBiseq jeinonng, alp)
NOISIHOO-ANIL

‘£d3ais

267 d , ‘S13qQUIB Y LoMOT uOISSTusupL 1, Jo SISKipuy pup sapos-opnasq Tvad—g Xipuaddy

{einjeledwie)
‘s821N0S™ peO|”p8lIejel
{seousiejel ‘peedspumewelxe
o f dn™00| ‘fioBeyes eimponns
‘wun"peo| ‘sigjewesed ‘Kiobejes einsodxe
_ { ‘uonoslip Tased” peoj ‘sgousisjel
_ {erepTssouns $8JeuIplood ‘epnyubew “ojoe) peo) ~dn™jo0]
{eiep~ureas _Blep ol ‘AioBajespeo) ‘Jelpuepl “elnuspl
elep B 9010} ‘Ieynuspl peol} “isiuepl peo|} “ases Bulpeoj} ~uopipuoo~Buipeo|}
“jusweoe|dsip} asuodsal} LIS a .
ZI0 1} LIOL} §)2} HEY L
mmo_ﬁo___wﬂ% suoyeolyoedg suopeayoeds
suonduose suonduoseq cﬁmﬁmoﬁ_v_ VIl _ peon suopediyioeds . Puim
IoiABYDg loineyeg _ peoT peleiusouo) “ese) sweipg
uswiede|dsig esuodsay wior iy Toels peo TISNV
{=iep
{elep “sajuadoud {erep
“uopdiiosep “edeys —ggni0doid
Tuswele ‘elep “leLejew
‘ejep”uonduosep TsuolsuswIp ‘erep~edA}
“epou} adeys} “leueiew}
116} L8} (V2]

suone}

suopduoaseq suopdioseq -Ussaidey
Indino 8PON edeys suopdiioseq
sishjeuy R Jusws|] lequisiy jellsley

sjuswa|g
sisfjeuy

|ednioniis

slaquisy
1amo]
uoissiwsues |

suofduoss(]

Buipeo

(Bunepio-awy sy} pue uoiesado
3S0OdNOD3A 8yi Jeye youeuq
«Suswa(3 sishjeuy [einjonag, ay)
NOISIHOO-INIL

‘€ d31S

€€z 'd , ‘S1aqQUIJY 120 [UOISSTUSUDLT,,, JO SISKjpuy puv sapos-opnasd “TvAd—4 xipuaddy

{nun"yibus
*mw.“wwww ‘uiod—Buyiom 3 3
‘s0UBISID ‘subuu {yun~eoueisip r_c: ‘Wbus)
~au|"abeb Tj0 Jequinu ..E_oa Buijiom .aoﬁ|_m>mn
‘9pISUO ~paJinbal uonoaulp”Jes|o N aom.u ado|s
‘6o "uo} ‘ypbusj)joq} ‘edueisip sesjo} ‘yibus|T|eleno}
LI9LE LIS Liv 1} LIELT

sainjea sainjes sainjeso sainjesa
uoIye00 BuIWE] soueses|) noke
uoneouqe : Jaquisy 19qUIBN

lequis|y

sued (Buuepio-awi} ay)
uonoaig pue uonelado
airel 4S0OdNO0D4d
ay} Jaye youelq
«SHEd uoljedlqe
pajieleq, ayy)
NOIS3FHOO-ANIL
‘€ d41S

JELIET
1Mo
uoISSIWsuRI |

{edeys
“einsojpue
“peusjel
‘yun
“uojsuswip
‘eoue)sip
“uoi}

gsoouvlejon
{ 1euipnybuoy
B o4
8insojouy
{elieds

(ereoydnp)
suondioseq
lefeds

iequisy

{uun
Tuojsuswip
‘WBlay
~einsofoue
_ 'uipm
ainsojoue
‘Yibuey
~einsojous)

8Insopoul
|eneds

{reaseiul
Hoq

‘ezis
Yyoq~dejs
Hsynuepi
“aunjes

seinjesd
ubiseq

yog
deig

(i sseuxaiyy

{

wun~yibus|
‘enjea"yibue)
‘sixe” psoelqun}

{nun~1e18wep
‘enjea”iejoweip}

sislewelq

syibuen
peoeiqun
ubiseQq

'Zp_uoisuswip
“|p uoisuewip {uoneunsep
{pronues “uopeuBisep ‘suohiedijdde
‘JejueaTieeys Tezis peo]
‘esle”uMo8Ss} ~odeys “pelsjsuen;
ust ‘ssodind}

seipedold
uopoeg
edeyg

1equiely

suonduoseq
edeys-
osiv {eiep
“seedoid
“leuslew
‘e1epTedA
Tjeusiew)

jeusie

suogduoseq

suoljeaddy
peoq

lejsuei]

oL

suoijdisossq

suoljdiaseq
uBiseq

8 |euoyoung

lequisy

siequepy

{suoioun}
‘siueuodwod
'solisuelereya
"ubisep
‘uoijeslyissejo}

suoiduaseq
ey
ufiseq

{

S6JEUipJ00d
ol
‘Iejjiwepy peay}

suoReDI)I08dg,
“uonesjddy
“peo]
TwiorTly

{seoueiejel
{ Tdn™yo0}
‘yun~peo| ‘siejewered
‘uoislip Teseo peo}
‘spnyubew ‘1010e)"pEO}
‘hioBerespeo; ‘Jeipuept
‘setuuepipeoj} ~esea Buipeoi}
suolieotyoedg
“peoq suoljeoipoedg
“pelenuascuoy Tasen
“onels “ped)

suonduoseq
Bupeo
lequep

siequep
ubiseq
leinonilg

lemo]
UO|SS|WiSUBl

pET d , ‘SI2qQUIBIN 19MO] UOISSTUSUDL],, JO SISy pup sapod-opnasd “Tydd—¢ Xipuaddy

{eimesedwe;
's82inos

“peoj peuejel
‘peeds
TpuimMTswsixe
*A10BelEs " aimonus
‘fioBejea einsodxe
‘seaualejel

“dn 00|

. eyiuep)
“uoiypuos Buipeoj}

suoneoiyoeds
“puim
~ewelxy
TISNY

{xeuea~pus
‘xepeA UeIs}

suoyjduoseq

ebp3

{uoneuuojsuesn

‘odfy

_ Tweysks

{z"wiod “etjwep)

‘LT wiod} “weishs}
swewbeg swelsAs

eury 8]RUIPI00D

Suope}
-usseidey suoiduaseq
ogewsyog [eneds
lequep Jsquepy

(uonesado

3SOdWO0D3Q 8y} tee Youelq
«Slequisy ublseq fesnjoruls, eys)
NOIS3HOJ-30HNOS

YvdAIlS

{sejeuip1002
“uoneso|
‘AjIsusjul_Iejeos
‘uofoelipTeouslajel
‘uonoelip~{eulou
‘fiobajes uess
‘adA)” urens)

suopduosaQ
loinetjeqg
ustuaoe|dsig

{se1euipiood

“uoneso]

‘Asuejullejeos

{epmubew ‘'uopoenpTecusie}el

{sereUpiood
~isjuad
‘uonoalip

Tjueweoe|dsy ‘uonoaup_leulou ‘epnjiufeweaio}
‘ad '‘fioBajeoTssalls ‘Aiobejeoe0io}
~Jusweoe|dsip} ‘adAy” ssens} ‘ady"e010})

suonduoseq $80104

loeysg sossallg esuodsay —
esuodsay Jomeyeg opEis L o
‘L P uoisuswip
{pioqueo ‘uoneubisap
‘1ejuso 1esys “ezis
‘ealeUONo8S) “adeys})

salpadoid
: suonduossQg suonduaseq uonoes suonduosae(
lolAeyeq loneyeq edeys edeys-q
osuodso lequiaiy osiv

(eyep
“uonduossp
Tjuswele
‘ejep_uopndiosap
Tepou}

suoyduosaq
ndinp suonduosaq
sisAjeuy 8PON
B JuslWapj

sueWe|g
sisAjeuy
feimonng

CEZ *d |, ‘S12qQUIdIN 1200] UOISSTUSUDL,, JO S1SKIDUy puv sapod-opnasd Tvad—g xipuaddy

{

$8jeuipIood
Tjuof
‘Iaynuepi~peoj}

{eimeledwes}
'S80IN0s” peo|” pallajel
{seousliejel ‘pasds puim ewenxs

{ ~dn™y00 ‘fiobejeo sinjonns

‘Hun"peo} ‘sisjewel ‘A1ofiejeoeinsodxa
‘uogoalip Teseo T peo| ‘seousie)al
‘opnyjubew ‘10J08) " PERO} ~dn™00]
‘fiobBejes™peo| ‘leynuepi ‘1eynuspl

‘Iyiuepipeo]) “eses buipeol) ~uonipuosTBulpeo))

f suoneoyioads, o opeoyseds suogeayoed
; uopeoljddy “peo suopeoytoedsg “pum
R _ Peo] ~pejefuaslo) —eseg Teweng
uiory “opeig “peoy TISNY
{eep
“sagJadoid
“leusjew
‘ejepadAy
“leteyew)
. suonduosaq
suogduoseq Bupeoq
|euelepy {equisiy
(uoneiado

siequisiy

lamo]
uoissiwsUes

ISOdWOD3IA 8yl 18lje youeiq
Siuswis|3 sisAjeuy jeinonas, ayy
NOISaHQOD-30HNOS

: ‘¥ d31s

{eouelsip
189S0
‘@ouelsIp
“oul"ebeb
‘OpIsTuo
‘B uo}

sainjes
uoIes0T
uolneolqe

957 'd ,, ‘S1qUIa 1aM0 L UOISSTUSUDLL,, Jo S1s{jouy pup sapos-opnasq 1TyAd—d vipuaddy

{nun"ybus
‘quiod Bupjom
‘s||ybun {sun~eoueiSIp {yun"uyiBbus
Tjo Jaquinu ‘iod - Burjiom ‘dosp~19neq
“painbes ‘UoI0aIIPTIES|D ‘dosp—edojs

‘ybus|jjoq} ‘eouelsipTiesip} ‘yibus||esaA0}

sainjea soinjes sainjes
Buiwe. aoueIes|) InoAe
: 1equis i\ Jequis

laquisy

sued

9
\c%wom% J (uopelado
pajielaq 4SOdN0O3d

| ay} Jeye youeuq
slaquieiy «SHEd UOHEOLQE]

19MO| pajelaq, oy
uoissiwsuell / NOISTHOD-30HNOS
‘v 431S

{resteu
“lioq
‘azis {
"jlog dals nun"yibuey
‘Joynuep! {uun"IejoWwelp ‘anjeA”yibusy
“ainjea)} ‘anjeA”Iejowelp} ‘sixe”padeiqun}

salnjea
ubiseq

liog
delg

{uogeunssp
‘suofjeoiidde
“peo|
~“pauejsuel)
‘asodind}

.QQmEm_o
jlod
ubisaq

syibue
peoeiqun
ubiseq

‘Jeypuspipeo)

suoneoyjddy
peo suondiosaq
I9JSuel] ubiseq

ol

Jaquisy

suonduosa(
ubiseq

3 feuonouny

laquiapy

siequiaiy

{suonouny
‘sjusuodwiod
‘sofsuejoeieyd
“ubisep
‘Uoneolyisse|o)

suonduoaseq

PEjY
ubiseq

{

sajeu|plood
Tuiof

suofeoyioadg)

“Tuoneoyddy
_ pea]
uor 1y

‘1eynuepi~peay)

{seouaisjal

{ ~dn™yoo}

‘un~peo; ‘siejewesed
‘uogoaap TesesTpeg|
‘spryiubew ‘10}08)”peO)
‘faobejeopeo) ‘19ypuep!

“eseo”buipeoy}

suoneoljioads
~peo suojjeayioadg
peleuesuon —ese)
“onels peoq

suopduasaq
Buipeo
leque

siaquisiy
ubiseq
[eimonyg

lomo]
uoissiwsuel

L6 °d ,, ‘S13qUIdP 12M0] UOISSTUSUDLT ,, JO SISKIDUY pUD SIp0d-0pnasd :Tyaq—g xipuaddy

{eimesadwey
'sedinos

“peo| paus)al
‘peads

TpumT BBl
‘fioBejes™alnjonns
‘AobBejes~ainsodxa
‘s@ousieal
~dn™)o0]

‘Jaynuepi
“uoppuos Bujpeoy)

suonesyioad

“Pum
Tewenx3

ISNV

{uotew.ojsuen
| ‘ody
“we)sA
) {xepeA"pue {2 uiod ,_mc_ﬂ_mo%m
XS8UeA LIE]S) ‘1 Tuiod) “we}sAs).
suonduosa(sjuewbog swalshs
o6p3 sun sjeuipIoo?)

suone}
-uesaidey suofiduosaq
ojeweyos leneds

Jequiay lequay

(uopesado

3SOdN0J3A 8yl 18ye youelq
«Siaquis|y ubisaQ [einjonig, ayy)
NOISaHOO-3SN

‘g dals

{adeys
ainsojoua
“pelsjal
‘Jun
~uolsuswip
‘aoue)sip
Tjuou}

Q0oUBI9)oY
[euipnybuoT
juos4
ainsojous
[eneds

{nun

‘aweu”sixe
‘aouglsip~ploljued
‘uopeubisap
“edeys}

{rna‘zna}

splosjuen)
{iun uonoesg
“uojsuswip
‘Wbiay
~ainsojous
o ‘uipim
ainsojpus
‘Yibus|
~alnsojous}

$x00ig
8Ins0jou

[eneds

(sreandnp)
suonduaseq
feneds

lequisiy

siaquIs iy

ubiseq
[feinonng

967 'd ,, ‘S1aqUI 1aMO T UOISSTUSUDL,, Jo S1sCipuy pup sapos-opnasq rTvaq—g xipuaddy

{uun‘sweuTs|xe
Teouelejel
‘$8)euIpI009 {yun
TIalued ‘ealeTUON0OS
‘uopeubissp ‘uopeubisep
~adeys} ~adeys}
{enal} {zna‘ina}
slauen
lesys sealy
uonoag uogoeg
fssewpory . wn fodky
‘gp_uoisuswip ninpoul “leusiew
‘|p uoisuswip w:_m_ooE ‘uoneubisep
‘UogeuBisep U2NEUDISSE “Jeuerew}
“azis _m_._mﬁc.: PR
-sdeys) {€NA ‘tna} {rna‘ena ‘zna}

suope)

adeys

suofduaseq

-ussaidey

laquisy

suopduaseq
edA|
feueie|N

adeyg-
osiv

INpop
feuerep

(ebed snoinaud

Ee
um:czcoow

(uonesado

sIequisiy 3ISOdNOD3IA 8yl 1ayje youeiq
Mol | .SIaquiapy UBISaQ eimonas, auy)
uolssiwsues | NOIS3IHOO-3SN

‘G d31S

{sejeulpio0o
~uoneso)
‘AjIsugjui”Iejeos
‘Uonosiip”eouelelel
‘uonoelipewou
‘fobBejeouens
‘adAy~ uresys}

suopdioseq
lojaeyag
usweorjdsig

{sejeuipioos

“uopesol {se1eUiploos
‘AjisuejurJejess “lejues
{epnyubew ‘uonoslipTesuslelel ‘uogoslip

Tjuswaoeydsip ‘uonoalip” jeulou ‘apnjubew 8010}
‘fobejes"ssaqs
sseljs}

‘adA)
Tjuswsoe|dsip} ‘adAy™

‘fobajes 9210}
‘adAy"e010}}

suonduoseq $80104 Awmumc_lﬂm% _ %ﬂﬂaz
J0InBYSg sassaNs asuodsay ‘wopeel1o u_ ns
esuodsay loineyeq onels ~ceoibop ch_%mw

‘ ‘UORIPUOD ‘adfy
J.:mv::on - TJuewele

ounuspl - eynuep

8pou} —usussie)

{rna‘nal {1na}

suopduoseq suonduoseq
suogdioseq suonduoseq SpON juswel3
loiAeyag sishjeuy sisAjeuy
asuodsay feinongg SPON-OM |

(ebed
snoaid
ey} uo sepou
uaip|iyo ay} ess)

suonduoseqg
indino
sisA[euy

sjuswaf]
sishjeuy
[einjonig

66z "d ,, ‘S1aqUIDJY 1dMOL UOISSTUSUDL],, JO SISKIDUY pUD $3p09-0pNnasd Ty I(d—yg xipuaddy

{sinjesedwe)

'se0INos

“peo| paligel

‘poads

{seoueleel N ECTIEY) G

{ “dn™joo] ‘fiobeyes einjonns

‘un”peo] 'sielewered ‘fiobejeoeinsodxe

{ ‘uogoellp ©SED pEO) ‘seoueleel
Seleuiplood ‘epmyubew ‘JoJoEJPEO] ~dnjo0]
ol ‘Aiobeyespeoy ‘leynuep} ‘Jeynuep!

leypuapl

peof} ‘Jeyiuepi~peoj} “eseo”Buipeo)} ~uonipuod~Buipeo)}

suopeoijioad suopeoyoeds suopeoyoed
uogeolddy ~peo suoneoyoedg “puim
_ peo] Tpejequesuo) TeseD “eweld
juor v DS “peo] TISNY
(ebed
snoje.d
ey} uo sepou
usJpjiyo eLy ees)
suonduoseq
Buipeo
lequisy
(uoneisedo

dSOdNOJQ eyl 1ejje Yyouelq
Siuswia[g sisAjeuy feinnng, eyl
NOISTFHOO-3ISN

‘Sdd1s

slaqualy

oMo
uoissjwisuel

{eouessip
19SH0
‘gouelsip
aul|—obeb
‘apIsTuo
‘Bajuo}

seinjee
UoNEBIOT
uoieolqe

OpZ d |, ‘SI1IQUIN 19MO [UOISSTUSUDLT,, JO S1SK)puy pup sapod-opnasq “TvId—g xipuaddy

salnjesa
Buiwelq
laquisy

‘quiod—Buiyiom

{nun~yibus
‘sjibul {nun"aouelsip {nun~yibus|
Tj0TI8quinu ‘uiodBupjiom ‘dospT|onaq
“painbal ‘uoljoalIpTIes| ‘dosp~adojs

‘ybuelyog} ‘eduelsipTies|o} ‘yibus||jesonc}

sainyesa
1noAe
laquiaiy

sainjes
aoueles|)
laquiay

sued

\C%%N%m | (uonelsado
SI1e] 3S0dN0D3d

PeliEied ay) 19Ye youe.q

.SUed uoleouqe
pajeleq, ayy)
NOISTHOD-3SN
G d31S

slaqua
1Mo |
uoissiwsuel |

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

Appendix C

Rules and Guidelines
of the P-C Data Modeling Method

Abstract:

This appendix contains the full documentation of all rules and guidelines of the
P-C Data Modeling Method. These rules and guidelines are divided into two major
groups: (1) for the refinement of entities and (2) those for the design of object classes
(including their attributes and methods) and class hierarchies. Whenever possible,
documentation includes the following items: label and name (e.g., “R-REFI.1" and
“Complete Entity Descriptions”), statement, explanation, example(s), exception(s),
counterexample(s), discussion (i.e., applicability, advantages, tradeoffs, and other
comments) of the rule or guideline; and references to other relevant rules and
guidelines.

Organization:

C.1 Rules and Guidelines for the Refinement of Entities

C.2 Rules and Guidelines for the Design of Object Classes and Class Hierarchies
C.2.1 Rules and Guidelines for the Design of Object Classes
C.2.2 Rules and Guidelines for the Design of Class Hierarchies

Phan & Howard page 241

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

C.1 Rules and Guidelines for the Refinement of Entities

The following conventions are adopted here to label the rules and guidelines for
later reference:

e -~ R for rules and G for guidelines,

e REFI for entity refinement (i.e., the first category of rules and guidelines) and DESI
’ for design (i.e., the second category), and

o O for the design of gbject classes, A for the design of class attributes, M for the
design of class methods, and H for the design of object class hierarchies.

Component rules and guidelines within each group are labeled using subscripts such
as.l, .2,.3, etc.

Batini et al. [92] explains the design schema qualities such as minimality,
expressiveness, efficiency, and self-explanation that are mentioned in the rules and

guidelines.

R-REFI.1

Statement:

Explanation:

Example:

Discussion:

R-REFI1.2

Statement:

Explanation:

Example:

Discussion:

Complete entity descriptions
An entity description must include all the data items that the entity needs.

This rule ensures that all entity descriptions are complete and self-
sufficient in terms of their data items. It requires the modeler to review the
entity description at hand before taking the next transformation step.

An “AISC L-Shape Descriptions” entity description (including
“dimension d1,” “dimension d2,” and “thickness t” data items) needs
another data item, “dimension unit,” to complement its existing data items.

If the description of a primitive entity is incomplete, the modeler must also
consider the next two rules.

Safe addition of necessary data items to a primitive entity description

An incomplete primitive entity description can include necessary new data
items only if they do not affect its cohesion.

If a primitive entity description needs additional data items, the modeler
can add those items only if they will not affect the cohesion of the entity.
Otherwise, the modeler must re-evaluate the entity’s cohesion (and
possibly decompose the entity as in Phase 3).

The modeler can “safely” add the “dimension unit” data item to the “AISC
L-Shape Descriptions” primitive entity description in the previous rule.

Descriptive data items are items such as units, names, verbose
descriptions, notes, references, user-defined object identifiers, etc. that
further enhance an entity description. “Dimension unit” in the example is
such an item. Adding such data items will not affect the cohesion of
primitive entities.

page 242

Phan & Howard

R-REFI.3

Statement:

Explanation:

Example:

R-REFI1.4

Statement:

Explanation:

Example:

R-REFI-5

R-REFI-5.1

Statement;

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

Addition of optional data items to an entity description

An entity description can include optional data items (i.e., desirable but
non-essential), which will be converted into optional attributes in the
equivalent class definition. However, these data items must be limited to
few (or even one) per primitive entity.

This rule provides the modeler with the flexibility of adding information to
an entity description. However, optional data items affect the
time-cohesion of primitive entities since the optional data item values need
not be assigned at any time. (By definition, a primitive entity is time-
cohesive if all its data item values must be specified at the same time.)
They also affect the entities’ use-cohesion since they may not always be
used with the existing data items of the entity. (By definition, an entity is
use-cohesive if all or none its data items are used in the “primary data
uses” of the domain.) Therefore, optional data items must be limited to
few (or even one) per primitive entity. '

The description of a primitive entity, “Behavior Response Forces,”
includes one optional data item called “optional designation” (whose
values can be “Fp,” “Mp”, “T¢,” etc.).

Include all dependencies in the entity description.

An entity description must capture all the dependencies of the entity on
other entities in the schema.

According to this rule, the modeler must examine all possible
dependencies of the entity being considered and represent them in the
entity description. The subsequent rules specify different representations
for various types of entity dependencies.

A “Design History Descriptions” entity has two dependencies: a
dependency by reference on “Design Artifact Descriptions” and another
by definition on “Design Operation Descriptions.” '

Representing entity dependencies

This rule includes the following component rules.

Options for representing entity dependencies by derivation

If a primitive entity, X, is dependent by derivation on another primitive
entity, Y, the modeler can choose one of the following options to represent
the dependency: She can (1) incorporate a “derives” relationship of
derivation type into the description of Y and include a user-defined object
identifier in the descriptions of both X and Y, (2) incorporate a “derives”
relationship of derivation type into the description of Y and a “derived-
from” inverse relationship into the description of X, or (3) eliminate X by
incorporating its data items as “derived data items” into the description
of Y.

Phan & Howard page 243

Explanation:

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

No single rule applies to all cases of entity dependencies by derivation.
Instead, each of the following three component rules describes its own

- applicable cases and presents a way to represent the dependency.

References:

R-REFI-5.1.1

Statement:

Explanation:

Example:

Discussion:

Reference:

R-REFI-5.1.2

Statement:

This rule includes the following three component rules.

Representing an entity dependency by derivation using a “derives”
relationship and a user-defined object identifier

If a primitive entity, X, is dependent by derivation on another primitive
entity, Y, the modeler can incorporate a “derives” relationship of
derivation type into the description of Y and can include a user-defined
object identifier in the descriptions of both X and Y.

Y can include a reference data item (e.g., “derived X”) and convert it into
a relationship attribute whose relationship is “derives.” This relationship
attribute captures the semantics of derivation between X and Y. (e.g., the
deletion of an instance of Y will trigger the deletion of its derived
instances of X.) This attribute can be delayed, given that the delay type is
specified at each new instance. In X’s description, a user-defined object
identifier can take the place of the inverse relationship “derived-from.”
This identifier must be converted into a required and unique attribute. In
fact, it can be used to search the database for a matching instance of X
before storing a new or modified instance of Y. Y’s description must
include the same identifier.

An “AISC L-Shape Section Properties” entity is dependent by derivation
on another “AISC L-Shape Descriptions” entity. The description of the
latter includes an identifier (“shape size designation”) and a reference data
item (“derived section properties™) to “AISC L-Shape Section Properties,”
which also includes the same identifier in its description.

This rule applies to cases where the user already uses object identifiers
such as the shape and size designations in the above example for instances
of the deriving entity, Y. (In other cases, requiring a unique identifier for
each instance of X or Y can be a burden to the user.) Moreover, in these
cases, the attribute values of the derived instance such as standard shape
section properties are specified once and will rarely change. The
advantage here is that the stored derived instances can be retrieved as often
as needed and the matching identifier eliminates the need for
implementing and maintaining the inverse relationship in X. The tradeoff
is that there is no direct access from X to Y.

This rule also refers to Rule R-DESI-A.2, which deals with user-defined
object identifiers.

Representing an entity dependency by derivation using a pair of
relationships of derivation type

If a primitive entity, X, is dependent by derivation on another primitive
entity, Y, the modeler can incorporate a “derives” relationship of
derivation type into the description of Y and an inverse ‘“derived-from”
relationship into the description of X.

page 244

Phan & Howard

Explanation:

Example:

Discussion:

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

Y can include a reference data item (e.g., “derived X”’) and convert it into
a relationship attribute whose relationship is “derives.” This attribute can
be delayed, given that the delay type is specified at each new instance. X
can include a reference data item (e.g., “source Y’) and convert it into a
required relationship attribute whose relationship is “derived-from.”

A “Path Connectivities” entity is dependent by derivation on another “Path
Descriptions” entity. The description of the latter includes a data item that
refers to “Path Connectivities” (“derived path connectivity”), which in
turn includes a reference data item, “source path description.”

This rule applies to cases where users do not always associate an identifier
with each instance of the deriving entity, Y, and where the computation in
the derivation is rather involved. The advantage of this option over the
previous one is that the inverse relationship in X provides direct access to
Y. Finding an instance of Y that matches a given instance of X is much
more efficient in this case than in the case of the previous rule. The
tradeoff is that the modeler carries the burden of implementing the inverse
derived-from relationship and maintaining both relationships.

R-REFI-5.1.3 Representing an entity dependency by derivation using derived

Statement:

Explanation:

Example:

Discussion:

R-REFI-5.2

Statement:

attributes

If a primitive entity, X, is dependent by derivation on another primitive
entity, Y, the modeler can eliminate X by incorporating its data items as
“derived data items” into the description of Y.

Y can include the data items in X’s description as its own data items and
convert them into derived attributes. These attributes must be implemented
as methods in the equivalent class definition of Y. Consequently, they do
not affect the source-cohesion of the primitive entity, Y. The attribute
values must not be stored in the database, but rather computed on demand
using these methods. X needs not be represented as another class in the
domain primitive schema.

A “Cartesian Vector Direction Cosines” entity is dependent by derivation
on another “Cartesian Vectors” entity. The three direction cosines (X, y, z)
of the former entity are incorporated as derived data items into the
description of the latter entity.

This rule applies to cases where the attribute values of the derived
instances are subject to frequent modification and where the computation
in the derivation is rather simple. One advantage over the two previous
options is that the modeler eliminates the entity dependency being
considered and, as a result, deals with one less entity (i.e., X). Another
advantage is that the derived attribute values require no storage space and,
when computed on demand, are always up to date. The tradeoff is the high
cost of computing those values at each request.

Options for representing entity dependencies by definition

If a primitive entity, X, is dependent by definition on another primitive
entity, Y, the modeler can choose between the following options to
represent the dependency: (1) representing Y as an abstract data type and

Phan & Howard page 245

Explanation:

References:

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

using this data type in the description of X, or (2) incorporating a
“subpart” relationship of aggregation type into the description of X.

No single rule applies to all cases of entity dependencies by definition.
Instead, both of the following rules describe their applicable cases and
present a way to represent the dependency.

This rule includes the following two component rules.

R-REFI-5.2.1 Representing an entity dependency by definition using an abstract data

Statement:

Explanation:

Example:

Discussion:

Lype

If a primitive entity, X, is dependent by definition on another primitive
entity, Y, the modeler can represent Y as an abstract data type and use this

data type in the description of X.

X can include the data items in Y’s description as a single data item and
convert it into a required attribute is of abstract data type. In fact, Y can be
implemented as an abstract data type rather than a class. In object-oriented
programming languages such as C++, an abstract data type corresponds to
a “struct” (i.e., a user-defined data structure), which contains fields of data
and which, unlike an object class, does not have an object identity and
behavior.

A “Structural Analysis Node Descriptions” entity is dependent by
definition on another “Cartesian Coordinates” entity. An abstract data type
can represent “Cartesian Coordinates.” The description of “Structural
Analysis Node Descriptions” includes a data item of that data type,
namely “node coordinates.”

This rule applies to cases where it makes sense to represent the auxiliary
entity, Y, as an abstract data type rather than as a class. One advantage of
this option is that the modeler eliminates the entity dependency being
considered and, as a result, deals with one less entity (i.e., Y). Another
advantage is that the information about Y can be quickly accessed from
within the description of X. The tradeoffs are losing the object identity of
Y and losing the ability to incorporate object behavior into Y.

R-REFI-5.2.2 Representing an entity dependency by definition with a relationship of

Statement:

Explanation:

Example:

aggregation type

If a primitive entity, X, is dependent by definition on another primitive
entity, Y, the modeler can incorporate a “subpart” relationship of
aggregation type into the description of X.

X can include a reference data item (e.g., “subparts Y or “own Y”’) and
convert into a required relationship attribute whose relationship is
“subpart.” When no other entities depend on Y, Y can include a reference
data item (e.g., “parent X”) and convert it into a required relationship
attribute whose relationship is “part-of.” (Otherwise, Y need not include a
reference data item for each inverse relationship to those entities that
depend on Y.)

A “Parameterized Requirement Statements” entity is dependent by
definition on another “Design Parameters” entity. The description of the
latter includes a data item that refers to “Design Parameters™ (“own design

page 246

Phan & Howard

Discussion:

R-REFI-5.3

Statement:

Explanation:

References:

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

parameters”). However, that entity does not include a reference data item
for the inverse relationship since entities such as “Performance Criteria,”
“Design Features,” and “Design Constraints” are also dependent on it.

This rule applies to cases where using the previous rule does not apply
(i.e., where Y must be represented as a class rather than an abstract data
type). The advantage of this option over the previous one is that the
equivalent Y class definition has object identity and can encapsulate
behavior in the form of methods. The tradeoff is that the modeler must
deal with two entities and must implement and maintain the relationships
between them. '

Options for representing entity dependencies by reference

If a primitive entity, X, is dependent by reference on another primitive
entity, Y, the modeler can choose between the following options to
represent the dependency: (1) incorporating a “referred-to” relationship
of referential association type into the description of X, or (2) including
user-defined object identifiers in the descriptions of both X and Y to
associate their instances.

No single rule applies to all cases of entity dependencies by reference.
Instead, both of the following two rules describe their applicable cases and
present a way to represent the dependency.

This rule includes the following two component rules.

R-REFI-5.3.1 Representing an entity dependency by reference with a relatioriship of

Statement:

Explanation:

Example:

Discussion:

association type

If a primitive entity, X, is dependent by reference on another primitive
entity, Y, the modeler can incorporate a “referred-to” relationship of
referential association type into the description of X.

X can include a reference data item (e.g., “referred Y”’) and convert it into
a required relationship attribute whose relationship is “referred-to.” When
no other entities depend on Y, Y can include a reference data item (e.g.,

- “referring X’) and convert it into a required relationship attribute whose

relationship is “referred-by.”(Otherwise, Y need not include a reference
data item for each inverse relationship to those entities that depend on Y).

A “Loading Condition Specifications” entity is dependent by reference on
another “Load Source Specifications” entity. The description of the former
includes a data item that refers to “Loading Condition Specifications”
(“referred load sources”). However, that entity does not include a
reference data item for the inverse relationship since entities such as
“External Load Specifications” are also dependent on it.

This rule applies to cases where the user frequently requests the
information about Y to which X refers. The advantage here is that the
relationship in X provides direct access to Y, and therefore, finding a
instance of Y to which a given instance of X refers is much quicker than is
the case for the next rule. The tradeoff is that the modeler must implement
and maintain the relationships.

Phan & Howard page 247

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

R-REFI-5.3.2 Representing an entity dependency by reference with a user-defined

Statement:

Explanation:

Example:

Discussion:

Reference:

object identifier

If a primitive entity, X, is dependent by reference on another primitive
entity, Y, the modeler can include a user-defined object identifier in the
descriptions of both X and Y to associate their instances.

Y can include a user-defined object identifier (e.g., “Y identifier”), and X
can include a data item for associating its instances with those of Y (e.g.,
“referred Y identifier””). This data item can be used to search the database
for an instance of Y to which a given instance of X refers. Similarly, the
required and unique identifier of an instance of Y can be used to search for
instances of X that refer to it.

An “Axial Element Displacements” entity is dependent by reference on
another “Structural Analysis Element Descriptions” entity. The latter
entity includes in its description a user-defined object identifier, “element
identifier.” The former includes a data item that matches the identifier in
“Structural Analysis Element Descriptions,” namely “referred element
identifier.”

This rule applies to cases where the user already uses object identifiers
such as the one in the above example for instances of the referred entity,
Y. (In other cases, requiring a unique object identifier for each instance of
X or Y can be a burden to the user.) Moreover, in these cases, specifying
which instance is referred to (as in the above example, referred member
identifier) is more important than establishing a link for eventually
accessing the information about that instance. The advantage of this option
over the previous one are that the modeler does not need to implement and
maintain any relationships. The tradeoffs are that user-defined object
identifiers do not provide direct access links from X to Y and that
searching the database using these identifiers can be computationally
costly.

This rule also refers to Rule R-DESI-A.2, which deals with user-defined
object identifiers.

page 248

Phan & Howard

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

C.2 Rules and Guidelines for the Design of Object Classes and
Class Hierarchies

C.2.1 Rules and Guidelines for the Design of Object Classes

G-DESI-0.1

Statement:

Use explicit class names.

The name of a class should explicitly articulate what the class represents.

Explanation: This guideline is designed to enhance the self-explanation and

Example:

Exception:

References:

G-DESI-0.2

Statement:

Explanation:

Example:

References:

G-DESI-A.1

Statement:

Explanation:

expressiveness of the resulting schema (whether it is primitive or
composite). ,

“Square Shape Descriptions,” “Solid Rectangle Shape Descriptions,”
“Triangle Shape Descriptions,” and “Solid Circle Shape Descriptions”
classes represent four common geometric shapes.

In cases where the class name is long and inconvenient to the
implementation (e.g., “Cross-Section Modulus of Elasticity Properties™),
the modeler can shorten it while making it as explicit as possible (e.g.,
“Section Elastic Moduli”).

This guideline goes together with Guideline G-DESI-A.1 and
G-DESI-M.1, which deal with eéxplicit names for class attributes and class
methods.

Reconsider classes with few attributes.

A class with one or a few attributes should be considered for possible
elimination using Guidelines G-DESI-H.2 to H 4.

This guideline is intended to enhance the efficiency of the resulting
schema and to make sure that a class is only introduced when it is needed
(and thus meaningful to the resulting schema). In general, a class that has
few (or even one) attributes and that has relationships with other classes
can be eliminated by moving its attributes to the related classes.

A “Structural Analysis Element Descriptions” class that has only one
attribute, “element identifier,” was reconsidered but not eliminated
because it provides a place-holder for adding subclasses representing more
specific types of analysis elements.

Guidelines G-DESI-H.2 to H.4 show when to include a class in a class
hierarchy and discuss the special case of abstract superclasses with no
attributes.

Use explicit attribute names.

The name of an attribute should explicitly articulate the object property
that the attribute represents.

This guideline is designed to enhance the expressiveness and self-
explanation of the resulting schema (whether it is primitive or composite).

Phan & Howard page 249

Example:
Exception:

References:

G-DESI-A.2

Statement:

Explanation:

Example:

G-DESI-A.3

Statement:

Explanation:

Example:

G-DESI-A.4

Statement:

Explanation:

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

The name of a relationship attribute can include a prefix such as “derived,”
“own,” or “referred,” which clearly denotes the relationship type.
Examples are “derived load cases,” “own load parameters,” and “referred

load sources.”

In cases where the attribute name (e.g., “standard derived cross section
properties”) becomes long and inconvenient to the implementation, the
modeler can shorten it (e.g., “derived section properties”) while making it
as explicit as possible.

This guideline goes together with Guidelines G-DESI-O.1 and
G-DESI-M.1, which deal with explicit names for object classes and class
methods.

When to include a user-defined object identifier

A class does not need a user-defined object identifier unless the user uses
such an identifier. In that case, such an identifier must be a required and
unique attribute.

In the object-oriented paradigm, the object identity of each instance is
globally unique and is created and maintained by the system. However, if
the user chooses to define an explicit attribute as her own identifier of
instances, then that attribute must be given a unique value in each
instance. '

“shape size designation,” “material designation” and “requirement
identifier” are user-defined object identifiers for “AISC Shape
Descriptions,” “Material Properties,” and “General Requirements” classes
respectively.

Remove redundant relationship attributes.

Redundant relationship attributes should be removed.

This guideline ensures minimality of the resulting schema. Redundant
relationship attributes occur when different paths following the
relationship links go from one source class to the same destination class
and produce the same effect. This guideline applies to relationships of any
type. In particular, cycles of relationships must be completely eliminated.

A “Load Condition Specifications” class has relationships with two other
classes, “Load Source Specifications” and “Load Case Specifications.”
“Load Case Specifications,” in turn, has a relationship with “Load Source
Specifications.” In this case, the last relationship creates a cycle and must
be removed. '

No new attributes in composite classes

The introduction of new attributes in composite classes should be
minimized.

A composite class should not introduce any attributes other than those of
primitive or composite classes from which it is defined. This guideline
implies that the domain primitive schema should, if possible, provide all

page 250

Phan & Howard

Example:

G-DESI-M.1

Statement:
Explanation:

Example:

References:

R-DESI-M.2

Statement:

Explanation:

Example:

R-DESI-M.3

Statement:

Explanation:

Example:

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

the primitive classes necessary to support different user views in the
domain.

The definition of the composite class, “Tower Members As Analyzed,”
uses the following primitive classes: “Two-Node Analysis Element
Descriptions,” “Section Areas,” “Material Moduli,” “Load Application
Specifications,” and “Cartesian Coordinate Systems.” It does not add any.
new attributes.

Use explicit method names.

The name of a class method should explicitly articulate what the method
performs.

This guideline is designed to enhance the expressiveness and self-
explanation of the resulting schema.

The name of a method for setting an attribute value includes a prefix such
as “set” to denote the operation of the method clearly. Similarly, the name
of a method for retrieving an attribute value includes a prefix such as
“get.” For example, the “distance d1” attribute of the “AISC Angle Shape
Description” class corresponds to two methods, “set distance d1” and “get
distance d1.”

This guideline goes together with Guidelines G-DESI-O.1 and
G-DESI-A.1, which deal with explicit names for object classes and class
attributes. ‘

Define methods for computing'derived attribute values.

A class method must be defined for each derived attribute in order to
compute its value on demand.

A derived attribute is dependent on other attributes; a method is defined to
compute that attribute, which is derived on demand. (By contrast, an
independent attribute is stored in the database.)

The three derived attributes of a “Cartesian Vectors” class, which
represent x, y, and z directional cosines, yield three corresponding
methods: “compute cosine x,” “compute cosine y,” and “compute cosine
Z.”)

Defining methods to update and retrieve independent attribute values.

A pair of class methods must be defined for each independent attribute to
set and retrieve its value. “Set” methods must have at least one argument,
while “get” methods must return at least one response value.

Attributes are typically private to their object class. This rule ensures that a
class has access to its attributes via methods. In fact, these methods set the
object state or provide the means to inquire about the object state. “Set”
methods may not return any response, while “get” methods may not have
any argument.

The two independent attributes of the “Cartesian Vectors” class in the
previous rule, which represent the magnitude and direction, yield four

Phan & Howard page 251

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

LA N 19 AN 19 ?

methods: “set magnitude,” “get magnitude,” “set direction,” and “get

direction.”
C.2.2 Rules and Guidelines for the Design of Class Hierarchies

R-DESI-H.1 Do not misuse relationships of generalization type in class hierarchies.

Statement: Two classes belong to the same class hierarchy only if one represents a
more specialized definition of the concept represented by the other.

Explanation: This rule applies to both primitive and composite classes. It is designed to
avoid misusing these relationships, as pointed out in [Phan 91b].

Example: A “Structural Members” class should not be a subclass of “Buildings.”

R-DESI-H.2 Define a common superclass.

Statement: If two or more classes have one or more attributes in common, these
classes must have a new common superclass in the class hierarchy.

Explanation: This rule is designed to remind the modeler to take advantage of
generalization. However, the modeler must weigh the tradeoffs between
introducing a superclass and implementing the code of the common
attributes in all classes sharing those attributes.

Example: “AISC I-Shape Descriptions,” “AISC T-Shape Descriptions,” and “AISC
C-Shape Descriptions” classes can share a common superclass, “AISC
Symmetric Rolled Shape Descriptions,” which includes four attributes
common to these classes.

G-DESI-H.3 Define a typical class.

Statement: If several instances share two or more common attribute values, they
should be instances of a new typical class in the class hierarchy.

Explanation: This guideline is designed to remind the modeler to take advantage of
typical classes, which are very beneficial in representing data of facility
design objects. The new typical class has default attributes whose values
are the commonly used values.

Example: A “Tower Leg Analysis Element Descriptions” typical class is subclass of
a “Two-Node Analysis Element Descriptions” class. The typical class’
attributes “element type,” “start support type,” “end support type,” and
“length unit” have the default values of “truss element,” “hinged,”
“hinged,” and “feet” respectively. :

page 252 Phan & Howard

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

G-DESI-H.4 When to introduce a new subclass in a class hierarchy

This guideline includes the following component guidelines.

G-DESI-H.4.1 Do not invent a subclass with no attributes.

Statement: A new subclass in a class hierarchy should add at least one new attribute
to the set inherited from its superclass.

Explanation: This guideline ensures that a new subclass is added only when the subclass
has a distinct identity in its hierarchy.

Example: Three new subclasses, “AISC I-Shape Descriptions,” “AISC T-Shape
Descriptions,” and “AISC C-Shape Descriptions,” are added to the class
hierarchy representing AISC standard shape descriptions. Each subclass
has at least one attribute.

Exception: * Superclasses with few (or even one) attribute are useful where they
provide a place-holder for: (1) adding more specialized subclasses later, or
(2) defining relationship attributes of other classes, which can be linked to
any subclasses of the superclass. These superclasses are called “abstract
superclasses.” The example given in Guideline G-DESI-O.2 demonstrates
the first case. An illustration of the second case is the abstract superclass,
“AISC Rolled Shape Descriptions.” This superclass provides a convenient
place-holder for an instance of “AISC Combination Shape Descriptions”
that can later be linked to instances of subclasses of the superclass (e.g.,
“AISC L-Shape Descriptions,” “AISC I-Shape Descriptions,” “AISC C-
Shape Descriptions”).

References: This rule must be used in conjunction with Rule R-DESI-H.1, Rule R-
DESI-H.2 and the rules presented hereafter.

G-DESI-H .4.2 Do not invent a subclass when a relationship will do.

Statement: A new subclass should not be introduced if its only additional feature can
be represented by a relationship in its superclass. :

Explanation: This guideline is designed to avoid replacing relationships with subclasses,
as pointed out in [Howard 92].

Example: A “Gravity Load Resisting Frames” class should not be introduced as a
new subclass of “Frames,” since its only new feature can be represented
by a relationship to the appropriate load types supported by those frames.

G-DESI-H.4.3 Do not add a level when a discriminating attribute will do.

Statement: Another level in the class hierarchy should not be introduced if a single
attribute in the superclass can distinguish the different subclasses.

Explanation: This guideline is designed to enhance the minimality and efficiency of the
- resulting schema.

Example: An “AISC Combination Shape Descriptions” class includes an attribute to
' distinguish different types of shape combinations (i.e., “combination shape
type”), thereby eliminating the need for another unnecessary level of

Phan & Howard page 253

G-DESI-H.5

Statement:

Explanation:

Example:

References:

G-DESI-H.6

Statement:

Explanation:

Exception

Appendix C—Rules and Guidelines of the P-C Data Modeling Method

subclasses such as “S-C Combination Shape Descriptions,” “C-L
Combination Shape Descriptions,” “C-C Combination Shape
Descriptions,” etc.

Shallow Primitive Characterization Hierarchies

Primitive characterization hierarchies should be kept shallow.

Several shallow primitive class hierarchies are preferred to a few deep
hierarchies. As a rule of thumb, a primitive characterization hierarchy
should contain at most three levels. Otherwise, the modeler should first
review the hierarchy using Rule R-DESI-H.1 and the preceding set of
guidelines. She should consider eliminating classes at the intermediate
levels if possible. In addition, the modeler should review the overall
concept that was used to build the class hierarchy. A deep primitive
characterization hierarchy is indicative of a concept that is not sufficiently
distinctive. In that case, the concept should be refined into several
subconcepts, each of which will lead to a more shallow primitive class
hierarchy.

A deep primitive characterization hierarchy on shape descriptions was
broken up into two separate hierarchies: one on geometric shape
descriptions and the other on AISC standard shape descriptions.

Rule R-DESI-H.1 and rule set R-DESI-H.4.

No Composite Class Hierarchies

Composite class hierarchies should not be necessary.

Although by definition, a composite class can be a subclass of another
composite class, composite class hierarchies are not recommended here for
the following reason: The flexibility of the P-C Approach in representing
facility design objects comes from allowing the user to define any
composite class when needed from a given primitive schema. At any time,
the user can instantly customize a composite class by selecting primitive
classes from primitive characterization of this schema. Therefore, both
predefined composite classes and composite class hierarchies should not
be necessary.

A typical class (e.g., “Tower Cage Members As Designed”) can be a
subclass of a composite class (e.g., “Tower Members As Designed”) to
capture the common values shared by instances of the composite class
(e.g., length, member size, material designation). -

page 254

Phan & Howard

Appendix D—Documentation of the Tower Domain Primitive Schema

Appendix D

Documentation of the
Tower Domain Primitive Schema

Abstract:

This appendix contains the documentation of the domain primitive schema for
transmission towers. Specifically, this appendix shows the graphlcal representations
of all the primitive characterization hierarchies included in that schema. These
graphical representations are based on those presented in [Batini 92] for conceptual
data modeling. The first figure is the legend for the graphical representations that
follow. The definitions of some primitive classes in this schema are based on those of
the entities in the PDES/STEP Integrated Product Information Model (IPIM) [Wilson

88].

Phan & Howard page 255

Appendix D—Documentation of the Tower Domain Primitive Schema

LEGEND

l::l Primitive subclass-of
class relationship

primitive

characterization
e ATTRIBUTE hierarchy
Shape:

CLASS e CLASS HIERARCHY

s ndofa

Attribute of simple data types
O (integers, real numbers, characters,
strings, booleans)

Attribute of aggregate data types
(arrays, lists, sets, bags, etc.)

() Attribute whose type is abstract data type

<>(1 | Relationship attribute with max & min
'™ cardinalities in parentheses

V Derived attribute

Required attribute
Required & unique attribute

Optional attribute
Default attribute

. FIGURE D.1: Legend for the Graphical Representations of Primitive
Characterization Hierarchies that follow.

page 256

Phan & Howard

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.2: Primitive Characterization Hierarchies Describing
SPATIAL REFERENCE FORM.

Phan & Howard page 257

(1)
wasAs |eouayds
Tpa.iajal

$8}BUIPJ002™ uonisod
“reouayds

Suo1)ISod
“Jeousyds

967 'd DwaydS a1 WIDWO 42MO0] Y1 JO UONDIIWNI0F—(Xipuaddy

(L)
wa)sAs jeoupuljAd
“pallsjal

S8JeuipJ009uolIsod
T|esupulho

O

suosod
~ [eoupuliAD

suopduosag
“wo+
“Buuonisoqd

(11)
walsAs urisaued
“paliagal

saleulploos uonisod
“ueisaued

SUOISO4
uB|ISaueD

65z "d ‘vwaYdS a1 WDWO(T 12M0] Y1 JO uopuawnsoq—(Xipuaddy

(1) (1) (1'1)

we)sAs jeausyds wolsAs™jedupulho Wwa)sAs ueISalUR)
“poalgjal paugjal “palisjal

£ uonoauip T jedusyds €7 uonoauIp~edlpullAd € uonosIIp™ UBISOUED
2 uonoalip—jesusyds 2 uoioaaip~eoaupulAo 2 uonoalipTueisaled
| uonoaap~eduayds Flcozom__ul_mo:ucio 1T uol}o81p~ ueISBUED

Nanme

suoneuaLIO
“reousyds

suoneusLO
“TeoupuliAD

suoielualiQ
“ueisaue)

suonduossg
U0
“uoneusBLIO

097 ‘d ‘DwaYyss 3L WIDWO(12M0], 3Y1 JO uonpuawndo— xipuaddy

£ uonoalipTeouayds
2 uonoalip jeolayds
| uonoasnp~eouayds
$8]euIplo0o uolisodTeousyds

suolnewiojsuely
“Jeousyds

XUJeWw UoiBWIOSURI) " UBISaBD
£7UOoNoBIIP URISAED
2 uonoalp T uBISaUED
L~ uoNo3Ip T UBISaUED

£uofjoalip™ [esupulAD
2 uonoalip T esupulAo
L TuonosIp” [eaLpulAD

S9]eUIPI009 " uoISOd T [eoupulAo S8]euUIpI009_uonIsod " uelsaueD

suonewiojsuel |
“TeoupulAD

SUOHBULIOJSUBL]
“ueISauED

suolneuLIOjSUBL |
WIEED)

192 “d ‘Dwayos aaiuLLd WIowo(q 1Mo ay1 Jo uonpawndoq— xipuaddy

wa)sAs jeouayds

(1'0) ~pauisjal
uojjewlojsuel) [eouayds
(1'0) ~umo

SwoelsAs
~8]BUIPI00D
“JeouBydsS

wasAsT|eoupuljho
(+'0) “pauigjal

uonewuojsuel feoupullAo
(+'0)

umo

SWwalsAS
T8]BUIPI00D
T1RoLPUNAD

SwalsAg
~8jeuIpI00)
WD)

adA"walshs
uonduosap
layjuapi-wajlsAs

wa)sAs ueisaued
~pauigjal

uoljewlojsue.}UeISOUED

(1‘0) UMo

<9

SwojsAs
~8]BUIPI00D
“ueisape)

(10)

79z “d ‘Dwaydg 2L WDWO(T 19MO L 3yl Jo uoupawmdoq—(Xipuaddy

uonoap~fesupulAd uol03IIp " UBISaUED

uonoapeoUByds
S8]BUIPI00I ™ UoISOd [ROLIPUIAD $8]BeUIPJ00DUolisod ueisaued

saleuIplood_uoisod eousyds

Sluaaoe|d Sjuswaoeld SjuaLdode|d
“sixy ajbuls - “Sixyeibuis “sixy9jbuIs
~JeouBYdS “1eoUpUlAD “ueIsauen

SjuBLWaE|d

SIXy
~8lbuis

£97 “d ‘Duayds aauLLd WITWO(12MO], 211 Jo uoupaundoq—d xipuaddy

2 uonoalip jeousyds
| uonoalipT jeousyds
Sa)eulplooduonisod |eousyds

Sjuawaoe|d

“SIxy~e|qnog
“Jeousyds

2 uonoalipjesupuljAo
| "uonoalIp[esupullAo
S8]euIpI009uotisod jeoupulAo

Sjuswooe|d

“SixyTe/qnog
“JeaupunAo

sjuswaoe|d
“Sixy
~8|gnog

2 uonoalpueisayed
| uonoalIpueISaUED
Sa)euIp1009_uolisod ueisaped

SJusWase|d
“SIXye|qnog
~ueISaue)

$97 *d ‘DwaYdS ALY WIDWO(1MO] Y1 JO uouDIuIWNI0(F—(X1puaddy

1biay2insojoua

WbBIBy "ansojoua UIpIM2Insofous
SNIPBI~2INSO0JoUd SNipeJ 2INS0|oud yi1buaj a.nsojoud
xmm:mcum SJ8pUIIAD sy20/g9
84nsojous ~a.insojouzy ~8insojou3
Jeneds “leneds “Jeneds

sadeys
~ainsojouzy

“jeneds Jun"uoISusWIp

¢9z “d ‘Dwayds danIMLL WIDWO(19MO] 11 Jo uonpuaundoq-—d apuaddy

SOUBISIP™WON0] aouelsip~doy souejsipIybu 9ouBlSIp Yo 9ouElSIpTIes) 90UBJSIpT U0l

S90Ua19)oH SoouUaisjoy S90UBIBJaH S90uBI9joH Sooua.iejo Saoug.iojay
“1BOIIBA “1BOIIAA “Jeiaie] “JesoleT “Jeuipnybuo “Jeuipmibuo
woyog “doy iy Wy ~Ieay “Juoi4

S9JUai9jo
Img:mo\ocm
“jeneds

Jun"uoISUsWIP

(1‘1) adeys~ainsoous palidjol

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.3: Primitive Characterization Hierarchies Describing
GEOMETRY FORM.

page 266 Phan & Howard

197 “d ‘Duiayog aamuLLg MDWO(130 1 fo uonmIuaumIoq—(Xipuaddy

S9JBeUIPI00D Sa)eulplood S9]euiplood
“leouayds TlesupuljAo “uUelsaued

S04
“TeaupuiAo

sjulod
“Jeousyds

sjuiod
“ueisaEeD

uonduosap

SJUIo
iod JaynuspIjulod

99z *d ‘Dwaydg dariud WIDWO(1240 Y3 Jo uonmuawnd0q—d vipuaddy

Juiod™18juan
(1'1) Ppauvjel
nun~—a|bue
s|bue o
snipel

€999

sy

snipes” sixe ™ Jouiw
snipeJ sixe” Jofew

snipel

7

_ sasdij|3 V

SaAIND
1%

$8joIID
sjuawbas
yibuajyuswbos TJ0 Jequinu
2 luiod o —uo-iod
- yibua||elo0] aulj uo julo
(1)) Palsjal (1‘1) “ponaal
L juiod auyfuo~sjuiod y

uonoalIp U

(1'1) ~pausjel

(u'g) ~Palgjal

saury

sjuswbes
“papunoqupn

eury

saulifjod

Jun_uoisuswiIp

uonduosap
@ Jsynuapi aAIND

697 “d ‘Dwayd§ dAnULLJ WPWO(T 413MO] 311 Jo uoimuaunIoq—(d xipuaddy

nun—ajbue
_ _ B U
AAIND " PapNIIXd BAIND PAAJOASI albu 09 v
(1'1) ~umo (1) Tumo snipel snipel sn|pel

uoIsnJix3 Jeaur uolNjoAsy : (saoeung
Jo J0 sa0eung sa0euns $80BLNS papunoqun)
~saoeuns ~saoeuns ~|BoIL0D “Jeousyds “Teoupulifo saug|d
soxe a|qnop
sa0euns saoeung (') ~UMO
Tidems ~Aigjuaws|3

yun—uoisuswip

uonduosap

S9OBUNS Jalluspi—aoeyns

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.4: Primitive Characterization Hierarchies Describing
TOPOLOGY FORM. '

page 270 Phan & Howard

122 'd ‘Dwayos aaumuLLd MO 1aMO] a1 Jo uonpiuawndoq—d xipuaddy

(abed xau uo panuguo))

XOLOA pud . B wuod
(11) —pauiojol (1'1) SEVETEY
XoUBoA lels AIAIIDBUU0D XBLIBA

(11) “paliajal (1'1) “PpaAlLap

suondauosag

suonduosadg
~ebp3

XaLBA

suonduossg
Wawa|g uopduosap
“Jeaibojodoy Jayjuapi luswala

7,7 “d ‘Dwayos annuLd MpWo(T 19mM0 L a1 fo uonvawnI0q—(Xipuaddy

(ebed 1xou uO panuiuod)
AAIDBUU0D " d0O)

(11 e

sabpas
(u'p) padvjal

sdoo| abpa~181n0
(up) “pausjal

AAoBUU0S Yied

AlINIIOBUU0D 80R) -
(') PaALIBP

(1) “paAudp suopduosaq
sdoojebpapunoq “doo7"8bp3 sabpo~yred
(u‘y) “pausjal (uy) paliajal

suondiosag
~doo7

suonduosag
~ooe

suonduosag
“Yed

suonduosed
“Juawaz
“Jeaibojodoy

) uondiossep
Jaijjuapl juswisle

£/ "d ‘Dwayds ALY WIDWO(12MO] Y1 Jo uonmuawnioq—(xipuaddy

AAROBUUOD™|[BYS ™8Ik} AIIAIOBUUOD T [[YS ™ lIM
(1) paALBp (1) ~PpaAUap
908} punog sdoo|_punoq

(u'y) PaLBJRI (u't) i EYIEIEY

S|jays~ punoqg 1aIno
AC. : |U®‘_._®u_.®._

Aianosuuod~uoibal

(L) ~paAuLd SiIvys
w P ~figpunog Siieys
s|loys~punoq ~3084 9IIM

(u't) ~pausjal

suondiosag
“S|eys

suonduosaqg
“uoibay

suonduossag
TJuswalg
~Jeoibojodo

uonduosap
Jayjjuapl luaws|d

#/7 d DwaydS AL WIDWO 120 211 Jo uonpmawnIoq—(apuaddy

_ suoibel Slieys~eoe} sjleys eum $90R) sdoo| ebps syjed sebpe
(wo) P8IoBULoD (u'o) “POI9BULOD (o) PBIOBUUOD () TPEIOBUUOD . TPEIOBULOD (wo) POIOBUUOD - (u'p) TPeJIBULOD
SopINjoEUUOD SeIJIAII98UL0D
SOpNOBULCY _ neys “lleys SOIIAIOBULOD S8lINO8ULOD SelAloeULIoD) S8fIA28ULOD)
uoibey Aiepunog "eoe “aiim “eoeq ~doo7 efp3 yred “XoleA

seliAjoeuUo)
“juswielg

\mo.\mo\ OQOK 1ayjijuepi juswele

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.5: Primitive Characterization Hierarchies Describing
SHAPE REPRESENTATION FORM.

Phan & Howard page 275

9/z *d ‘Dwayds L d WDWO(] 19M0] a3 Jo uonpiuaumdoq—d xipuaddy

(ebed 1xau uo panuguo))

- pTybray
Lq oseqIa|lews q oseq q yipm
q eseq pybiay p_yibua) pezis

suonduosaq suonduosa(d

he; = suoiauoss suonauosag

_ adeys _sdeys Cadous “adeys
prozadel] a|bueli] ~oibuEiony ~a1enbg

(u'o)
selladold uondasT panisp

suonduosaqg

“oujeweled
“adeys

“ol8wo8r)

jHun—uoisuswip
uoneubisepadeys

12T d ‘Duayag aatnuLd WIDWO(J 42M0 L Y1 Jo uoumuawnioq—d xpuaddy

nun—sjbue
J7snipeiiouiw Ag|bue
Y snipesJolew I snipel p_l1ejowelp

suonduosag suonauosag suopduasag
Tadeys “adeys “adeys
“asdiy3 ~10)088 :/be)
1BINaIID

(u‘o)

suondiosaq saiuadoid uonoas paausp

ToljeweIed
“adeys
~ol8Wwoan)

Hun~uolsuswip
uoneubissp~adeys

9/ 'd ‘Dwayds sarIuLLg WIDWO(T 19MO Y3 Jo uonpuaunaoq—d Xipuaddy

SN[BA UOlsuswip

suoisuauwiiqg Hun
“adeys uonduosap
WD) awleuuoIsuawip

uoneubisap~adeys

6.2 “d ‘Dwayds a0 UWIDWO(T 42MO] Y1 JO uoupIuaun20q—(xipuaddy

M]TSSOUMOIY) WS M) SSaUMOIUI gam M) SSaUIIYl gam

nw

- suondiosaeg suonduosag suonduossg

+ Ssowio TedeysL “adeysTo “adeys’
¢p_Uoisusuilp DSl “oSIV oSIV
LpTuoIsuswip

suondiossg

“edeyspajjod
ToulBWWAS

“OSIv

suonduosag Nssauxnoiy)abuey sodeyspaj|o.

19 upmalBueyy () ~pasiajel
p~yidep adA"uoneuiquiod

“edeys]
oSy

m:m.ﬁ:ommq suondlosag
lmqmcm “sadeys
pajjod “pauiquod
~ oSy “OSIv

saiJadoid uonoss

suondassqg (u'o) ~peAuap
9 deys Hun—uoisuawip
osiv

@ uoneubisep ezis adeys

087 “d ‘Dwayds aaiuLg UIDWO 41240 2y1 fo uonpawmsoq—(d xipuaddy

_ suonosloid suoinosloid 3
edeys—osIv ~adeys ~adeys adeysouowoab
(1) PoliSsl oSIY ~OLEUI09D) (1) TPoLBp

suonovfoid
“adeys
WZEDE]S)

nun—yibus|paroaloud
yibus| paloslold
uonoalip~pa1dsiold

uonduosap
Jayuapi—uonosloid

192 d ‘Dwayd§ aanuLd IO 1Mo Y1 Jo uonwauaunIoq—d Xipuaddy

(ebed xau uo panunuo))

nun—abue
aifue"Buo0d T IWBS
wbisy

snipel

ss8punfo
pijos biay snipel

bt snipel juod
(1¢]) JoWe0~UMO

nwAV

SIXY "8UO YIM

Sixe B
spijos

(1°]) "umo sasoyds

SoAlIWLId
“Buispon
“pios

Hun"uolsuaswip
uonduosap
laljquapl pljos

78z d ‘vuayds aarnuld Wowo(J 42M0] ayl fo uorwuawnioq— xipuaddy

nun—g|bue
SIXeTUONN|OASI SIXeUOISNJIXd
(L)) ~umo (1) “umo
- wbie
N:camu HoRu a|bue~uonnjonal ypdapuoisnixa
A7ybray | UIpIM . 908} PIAOAS] 808J PapNIIXd
X"oseq uibus (11) ~umo (K1) ~umo
Mm%m__ uonnjoray uoisnix3 reaury
Jenbuy syoo/g e o
by “seinbuelosy ~spijos ~spijos

Saxy om[
UM
spljos

saxe a|gnop
(X

Spljos
T1domsg

seAlwld
“Buyepopy
~pijos

jHun~—uoIsusWIp
uonduosap
Jaynuapr plos

£87 *d ‘vwdydg aayTULLd WIDWO(19MO] ay1 o uoimIuaUNI0q—(] Xipuaddy

(ebed xau uo panunuo))

aweuTs|xe
aweusixe aweusixe adAysninpow aweus|xe
aoueIsIp~plouad I snipes uonelAb sninpow ["luswiow eale

pey
SpIofusy “uoneifo IInpoyy selauy sealy
uonoss “uopoes “uofoes ~uonoes ~Uooas

anjea” Apadoid

saiuadoid jun
“uonoes uonduosap
WIIEDED) aweuApadoud

® uoneubisapadeys

p8z d ‘DWaYa§ aanmuLd WIDWO(J 13M0], 31 JO uonpuaunoq— Xipuaddy

aWeU ™ SIXe adualgal
$9)eUIPJO0I ™ IBJUBD Wbiem™eauy

SI81UBD siyblom
WLEEIS “Ieaur]
“uoloes “uoioes

anjeA” Auadoud
Hun

uonduosap
sweu~Auadoud

@ uoneubisap~adeys

Soiadoid
“uonoss
W2EDED)

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.6: Primitive Characterization Hierarchies Describing
MATERIAL FORM.

Phan & Howard page 285

987 "d ‘Dwayds damuLLd Moo 1amox ay1 fo uoypruaunsoq—(xipuaddy

Hun~anjesadwa)

ainjesadwa)
90UBIR)L _
WETIITE o) wun-ypbusis nun~snjnpow JUBIONIB09 nun—Aysusp
“uoisuedxa enjeA ulbuans ones snjnpow “buidwep Aysuap

SIUB11}J809) saiuadoid SIU8IoI80D
“uojsuedxy Yibuas oney INPow “Budweqg sansuag
jeuisy “euayepw “uosiod “eusiew “jeianponys “ssepy

satuadold
“jeusiepy
“JeiousL)

uonduosap
aweu~ Auadoud
@ uoneubisep jeusiew

282 “d ‘Dwayos AL MIDWO(12M0], 211 fo uoumIuawWnI0q—(Xipuaddy

Sadf} odAl jeuslew
“Ieuayew uonduossp
“Jes8usn) uoneubisapleusiew

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.7: Primitive Characterization Hierarchies Describing
PART DETAILING/FABRICATION FORM.

Phan & Howard page 288

(ebed 1xau uo panuguo))

uoneoo| pus
(1) “pausjal

uoedo| lels
(1'1) ~pausjal

uonoaIIP ewW

MMW\%%MMMM . co_ummo_lv_ Jew

“uofeouqe (p pasejol

Ixa) yjew

Adend (L) ~umo

adAy
TJuswainseaw
jun
~uoisuawip séinjesd
sanjuend suoisuswiqg MNiew
“uoneouqe ~uonesuqe onjea =

687 "d ‘DWaYIS 2L WIDUWO(T L2M0], Y1 JO uonDIuaunIoq—(apuaddy

2ouB)SIp oS}

aoue)sIp

“aul"obeb

apisTuo

Buins™Ixa} baj"uo

Sixa]
ew SuojIB207
“ON “uopeouqed

SaImea
~uoneouqe4

uonduosep
4 JayuapiTainjes)

062 "d ‘Dwaysg daimuiLd WO 12M0] Y1 Jo uonpIUIMNIOq—(] X1puaddy

(ebed 1Xau uo panupuod)

_ Jyun—aoue]sIp
nun~aoue)sip

aoue|SIp HUN"8oUEB)SIp
_ SOuEIsIp ~abeb—dio 20uBISIp yun—aoue)sIp
9beb7no 20uEISIp ~Buipuu SouEISIp Hun"sibue
_ oouelsIp —jesyo~dio o) ~Bupjoo|q a|6ueBuiddijo
18S}0 N0 9pISTU0 ~azIsTadeys apIS_uo apisTuo
apIsTuo Baj"uo apISuo 6o uo Baj"uo

SINno
“yoeg

sbuiddio

sbuipuiio
80

sbunjoolg
" |89H

sBurdadiin
~ebpg

“abp3

sainjea
~uonealqe

uondiuosap
@ /oyhuspl ainjes)

162 "d ‘Dwayos aannuiLd WIDWO(42M0 T 3y1 fo uonpuaunI0q— xipuaddy

L

adojs puaq

. (L'1) “umo

ueds uones0| puaq
aouejsip~doup (1°1) ~Pausjel

sainjes-

S9Impa-
~edojs

“pusg

EY1EN
~uoneoLqe

uonduosap
@ '94juapi ainea)

26T d ‘vwayds aamuLL WIDWO(T 19MO, aY1 Jo uouDIuAMNIO(—(Xipusddy

uun—yibus)
JodBupjiom
(L'1) “pausjel JUN"GOUESID i
siiibun wiod Bupiom nun 1595_
40 Jaquinu (1'+) ~peusjes dospjenaq
painbal uonoalIpIeaIo dosp~adojs
“Wbusyjoq 90UE)SIp Je3|0 wibus|Tjesano

s8injea CEY N sainjeay
“Buiweiq “eoueleal) “InoAe7
laquiapy WELIIEN “1equispy

sainiea

~Buyereqg uonduosap

JelnuapiaInjesy

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.8: Primitive Characterization Hierarchies Describing
STRUCTURAL ENGINEERING BEHAVIOR.

Phan & Howard , page 293

$62 “d ‘DwaYyds AL WIDWO(T 122MO] Y1 JO uOuDIMUNIOF—(] Xipuaddy

nun~ssans
S9]eUIpI00D UoNRI0|
AlisusjuiJejeos
Uo10alIP~ 8ousIs)8l
uonoBJIp JewIou
Aobajeo~ssans
adAy"ssans

S9SS3.lS
~I0InBYBg

HUNT8210) BAJR
yipimeale
yibus|eale

JuNT8210) Bui|
bus|~auy

Jun—8910}
“pajenuasuod

$§90104 S82104 $82.10
~asuodsay ~osuodsay ~asuodsay
“Baly ~“aur7 “pajesusIu0)D
“onelS ~onelS ~onels
Hun
~uolsuswip
$82104 O _sejeulp00o
~osuodsay 18juad
“oneIg uonoa.Ip
apnyubew

$80104
“esuodsay _ 5
~J0|ABY3g y Aioberes s010j "asuodsal

'®) adAy"a010) asuodsal

SeAjiwld
~loineyag —E&) oweu jeuondo
uibusas 0y uopduosep

§62 “d ‘Dwayas aannuLd MIDWO(T L9MO, Y1 Jo uonpIuawunI0— xipuaddy

dauapl
TJuswaje T paLIgjal
Jayuspl nun
juswisjs Um.:m%m: TJuawedeldsIp _ S9]BUIPJ00D™ UO(}BI0|
~ ~ S8JBUIPJO0D UOIIBI0 —
SOJeUIPI000™UOREO] Hun-sibue opmubew | oreHIPI000 LOREDO! yun~uope|sues
jun sibue suonoaspTUONEIOL —Juswade|dsip yun~g|bue a0uBISIpUONEISUEN
SO1BUIDIO0I-LUONEOO uonoaJIp~ Buiisim se|bue”uonejos odf) a|bue”uonejol uonoa.Ip
Jeulp ﬁ_csi_w_mz w_ ejbue~Buysimi sejeuipioodsul0d Tjuswade|dsipTjeixe uoljoaJIp uonejol “uonejsuel}
AysusjuiJefeos Qo0 — QOO
uoNOaIIP 92UBIBJoI 1S 4
- ! saimean) Sluawaoedsig
cm_:ommh_u fewou ~j0"saibuy Juswa|g “wews|3 suojejod suojejsuel]
0 M%AN&NMW ~Joineyag “Jeinxa|d ey omeysg “loineyeg

surels Sjuswaoe|dsiq
~Ioineyag _ “Joineyag O adAuswaoe|dsip

SoAljIWIo
~loineyag aweu jeuondo
“Anqesoinias O uonduosep

(ii]

96 *d ‘DWwaYIS AL UWIDUO(T d1aMO] aYy1 fo uopiuaunaoq— Xipuaddy

nun~yibus)

S9)BUIPI00D 8poU
(1'1) ¢ opou palis)al

suojduosaqg WIopaalf~Jo~sea169p

oy - — Jusws|g _
apou paligjal ! ybus|uswaje _

o —maﬂlmumhoah:m “sisAjguy o0 UBWS[uonipuod~Asepunoq
- 9PON oML Hiews| JOYNUBPIT PO

adAy” | "uoddns Jjuapl—ap

suonduosaq m:ﬁ&%mm&

Juswayg _2BoN
- “sIsAleuy lm.a jeuy
Jaynuapr juswaje |\m§o§m jeinjonis

SaAwilA
“SisAjeuy
“Jeinjonys

uonduosap

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.9: Primitive Characterization Hierarchies Describing
STRUCTURAL ENGINEERING FUNCTIONS .

Phan & Howard page 297

867 “d ‘Dwayss auULLJ WIDWO(L1dMOT Y1 JO UOIDIUIUNIOq—(] Xipuaddy

(ebed 1xau uo panunuo))

suonpuos™ Buipeol

syyed peoj (wy) palisjal suonpuoo Buipeo

(wy) Pausel (1+1) UoNeUHSEP W) —PauRpl

Syled peoT sbuipeoT sbupeo]
- Tjuswayduwiy ~Jajsuel] Jsisey
oL o1 0L

sloejile 0]

(t'0) “Buiddew
suoyounygns

(u‘o) “UMO

suonduasaqg
~uonoun

asodind
WZEDED)

Jayuspl uonouny

662 'd ‘vuaydg aaruLd MDWO(12M0] 3Y1 fo uoupuaundoq— xipuaddy

(uey) S10108UUOD suofneoldde peoj

s109[qo sy8lqo s108lqo (uy) PBMBJBI gyopeardde peo
(u'y) PBusjis (u'y) POIOBUUOD (yy) ~pauoddns 4 uojleunsap () peaulsjal

S198/0 $128/G0 S108/q0 suofieayddy~peo|fsuoneoyddy peo
“uayns TJosuu0) “uoddng “igjsuelf TJsisay
0l o4 0l 04 oL

sloejue 0}
(t'o) “HBuiddew

suonounigns
(u‘o) ~umo

suonduasaqg
“uonoun4

asodind
“eisusn)

Jayhuapi uonouny

Appendix D—Documentation of the Tower Domain Primitive Schema

- FIGURE D.10: Primitive Characterization Hierarchies Describing
REQUIREMENTS.

page 300 Phan & Howard

10€ “d ‘Dutayd§ damuL g WIDWO(19MO] 1 Jo UoDIUIUNIOF—(Xipuaddy

(ebed 1xau uo panunuo))

sialaweled uolBIIO sio)oweled
(u) “umo - ~uoeayoads soydesb 18]
aWeU uola)Io {up) “umo " Tuoneoyioads ~uoneoyioads

O
suoneay08ds suoneIYI3dS m:o.amou.smqm
_eusyo TJuswalinbay Tuswainbay Juswaiinbay
gouewWIoled ~pazuajowered “Jeoiydern “jenixa)

$90U8I30l
~dn™00]

uonduosap

layljuapi uswaiinbal

Sjuswalinbay
WIEDE]S)

(ebed 1xau uo psnunuo))

si8)sweled
(u‘o) ~82IN0ST UMO

2dA"a21n0s peo|

suonea0ads
~82Inos
“peoT

Z0€ “d ‘DwaYos aanTuLLd WIDWO(T 12M0] 313 JO uonpIuaunIoq— xpuaddy

Sjuatainbay
TJeisusn)

nun~aunssaud

HUN~SSBUNOIY) | Hun—paads
ainssald pum paadsTpumTawaxa
SSOUXOIYY 8di [eipel Jlunssauxoiy} fioBajes ainonns

1ous1p~ Buipeo) SSaUNOIY) 8ol |eIpeI Aobajeo ainsodxa

suoneay10ads suoneay0ads suofeoyoads
“89/ puim ~Buipeo “PUIM TBwaxg
"OS3IN ~80] Areal “ISNY

suoneayoads
“uonpuo)
“buipeo7
19MO0 |

Hun—ainjesadwa)
ainjesadwa)

S92IN0S™PEO|

suoneolyoeds (u‘o) “passal
“Uopipuog $9SB0PEO|
Buipeo (u‘y) “paAlsp
slajaweseduonpuod

CERIEIEIEY (u'0) ~umo
~dn™oo0] Jaynuapluolipuoo~Buipeoy

uonduosap

lalluapiTuswalinbal

£05 "d ‘DWaYIS 201IULIJ WIDWO(T 19MO] Y1 JO uouDIUAUNI0G—(xipuaddy

(ebed 1xau uo panunuo))

Hun"peo| eaJe o
yipimeale Hun peoj auy Hun—peo|
yibus| eale yibuayauy “pajenuasuod

suoneol109ds SuoNBIYINadS SuolBI}108dS
“peo7 RALY ~peoT 8ur] “peo

“onels “onels “pajenuaduod
2118)S

suoneoyoeds
“pBOT7IBUIGIXT
“onels

uonoaIp
apnuubew

—O
—O
suopneoldde peo|
suoleoy0ads > W) poALISP
“peot —O
Tewexy O
O

Aobojeo peoj eUIgNXS
Jalnuapi peo| T eulaIxa
la|jpuapi ased peoj

SEBIVEIETEY

suswaynbay [dn™jo0j

WEIEIED) —O uonduosap
—@®

Jayuapijuswaiinbai

PO “d ‘Dwaydg dantuLLg UIDWO(1dMO] Y JO UOIDIUMAMNIOT—(] Xipuaddy

L U
90UB]SIPTI9S)0

$9]eUIpJ00D I8JUad uofjoalip jasyo
paldde $9JeUIPJ002IUI0] sajeuipJooouiol

suoiealy0ads
“uoneoyddy peoy
~J8quispyuUQO

suoneay1oads
“uoneonddy
~PEOTTIUIOPTHO

suoneolj08ds
“uoneoydady
“peo7 U0 lY

suoneoynads
“uoneoyddy
“peo7

181J1}UBpI—PeO| [RUIBIXD

ERIVEIEIEY

swewesnbey [~ dn00l
“Jesouay [—O uonduosap

—@ J9uapi uawainbay

Appendix D—Documentation of the Tower Domain Primitive Schema

FIGURE D.11: Primitive Characterization Hierarchies Describing
DESIGN.

Phan & Howard page 305

90¢ “d ‘Dwayds dannuLLg WIDWO(T 12MO 3y Jo uouDIUIMNIOg—(Xipuaddy

(ebed 1xau uo panuguo)) SjuleJ}Su0d
(u'y) PaLBaI
snjejs
anjeA ua.1Ng Hun
yun"anjea anjea
adAy"anjea Tleduswinu -

sjusuodwod

sajqeLep siajoweled (u'o) ~umo

_ “ubiseg ~ubisaq suopoun)— o}

snjejs paujejsuoy “feouswnN (1'0) ~Buiddew
Sa|qeLBATPaLIBa) _ Sisjouesed onsusloeIeYd UBISOP
(u'p) ~paxapul (uo) ~UbISapTUMO UOREOYISSE[D

adA ujesisuod 1ajjuapl ainjes) layhuapl|ioelue

suonduosaqg
Jurensuod
“ubisaqg

suondiosag
WEIEI T -
~ubisaeqg

suonaduosaqg
Ta.impa
~ubisag

suoiduosaqg
gy
~ubisaqg

sweu
“lolaweled

SoAjIWlid
“uonduassag
“ubisaqg

uonduosap

£0€ "d DUAYDS 201U g UIDUO 1dMO] Y1 fo uo1IUWNIOJ—(Xipuaddy

Sajou

(u'g) ~pelIsjal
suonensnyj!

(uo) “umo

waluoo feosydelb

soydein
~ubisaqg

soydesb

A_.._ _OV |U®.=®h®._
suonejouue
(u'o) TUMO

1UB1U0S[eNIXa)

BLIBJID
(u's) “pauisjal
Jaynuapi
Tuonouny~aAoalqo

suonduosag
“uonoun-
“aA109lg0

SUONOUN)—UOIEN[eAd
(u'y) ~pauigjal
SNJe}S aAleUId)je
1oejie

(1) ~pauigjal
Jayljuapi-aAieula)je

suonduosag
“anieuIa)Y
~ubisag

SNJB]STUOISIBA
UOISIBA

(+0) TIxau
1ejie

(1't) ~peaulsjal
Ja)IIUBPI-UOISIBA

suonduosag
“UOISIaA
~ubisag

sennwLd
“uondussag
“ubisag

uonduosap

80€ d ‘Dwayds AL WIDWO(T 12MO] Y1 fo UoIDIUUNIOF—(] Xipuaddy

'

Sjoejlle Sjoejilue suoouny suoouny

(u1) UMO (u'}) TPauBjal (u'L) “umo (u'1) ~pausjal

sbuiddepy sBuiddepy sbuddepy sbuiddewy
“uoyebaibby ~uonBI0SSY ~uonebaibby ~U0/IBI00SSY
SI9BJiUY 0.1 TS1oB/UY 0L “suopoun4~oy ~suopound oy
uonoun4 “Joeyuy

uopound 0By

sbuiddepy
“suonoundTo L
ey

sbuiddeyy

Spogjuy oL
“uopoun4

sbuiddeyy
“Joejuy
“uonoun4

Appendix E

Documentation of
Composite Classes
Defined in the Testing

Abstract:

This appendix contains the documentation of the composite classes that represent
different user views of the transmission tower leg members. These user views pertain
to the data uses considered in the testing of the P-C Approach. Specifically, this
appendix shows the graphical representations of those composite classes. These
graphical representations are based on those presented in [Batini 92] for conceptual
data modeling. The first figure is the legend for the graphical representations that
follow. '

Phan & Howard page 309

LEGEND

*CLASS e RELATIONSHIPS
Composite — subclass
class | (Generalization)
mmell- part-of
:l Primitive (Aggregation)
| class il referred-by
(Referential
e ATTRIBUTE Association)

Shape: atiribute of simple data types

- O (integers, real numbers, characters,
strings, booleans)

Attribute of aggregate data types
(arrays, lists, sets, bags, etc.)

(_) Attribute whose type is abstract data type

<>(1 , Relationship attribute with max & min
" cardinalities in parantheses

V Derived attribute

Required attribute
Required & unique attribute
Optional attribute

Default attribute

FIGURE E.1: Legend for the Graphical Representations of Composite
Classes that follow.

page 310 Phan & Howard

FIGURE E.2: Composite Classes Representing Different User Views
in the Data Uses Considered in the P-C Approach’s Testing.

Phan & Howard page 311

analyzed_member_identifier
own_analysis_elements (1,n)
own_analysis_nodes (2,n)

referred_section_area (1,1)

referred_young_modulus (1,1)
referred_load_cases (0,n)

referred_extemal_loads (0,n)
referred_load_applications (0,n)

DATA USE 1-A:

‘The structural engineer prepares the input file to
the structural analysis program.

designed_member_identifier
referred_shape_description (1,1)
max_tens_T (0,1)

max_comp_C (0,1)
max_shear_V (0,1)
max_bending_M (0,1)
max_tbrque_To (0,1)

unbraced_length_x (1,1)
unbraced_length_y (1,1)
unbraced_length_z (1,1)
referred_young_modulus (1,1)
referred_shear_modulus (1,1)
referred_yield_Fy (1,1)
referred_tensile_Fu (1,1)
referred_design_artifact (1,1)
working_normal_stresses (0,5)
working_shear_stresses (0,5)
allowable_axial_stress (0,1)
allowable_shear_stress (0,1)

DATA USE 1-B:
The structural engineer designs the members.

page 312 Phan & Howard

bolted_member_identifier
referred_shape_description (1,1)
max_tens_T (0,1)

max_comp_C (0,1)
max_shear_V (0,1)
referred_analysis_elements (1,n)
referred_yield_Fy (1,1)
referred_tensile_Fu (1,1)
bolt_diameter (1,1)
number_of_holes_out (1,1)

DATA USE 1-C:

The structural engineer designs the members' bolted end connectors.

Tower_
Members_
As

Conceptualizea

conceptualized_member_identifier
own_design_artifact (1,1)
own_schematic_representation (1,1)
referred_shape_description (1,1)
referred_coordinate_system (1,1)

DATA USE 2:

The structural engineer assumes a preliminary geometry
for the tower by arranging tower systems and conﬂgunng
their members.

Phan & Howard page 313

ower_
Members_

-redesigned_member_identifier
member_already_designed (1,1)
referred_design_functions (1,n)
referred_analysis_elements (1,n)

referred_coordinate_system (1,1)
referred_fabrication_features (1,n)

DATA USE 3:

The structural engineer redesigns the tower leg members
to add new electrical equipment to the tower structure.

Tower _
Members
As

Anchored

anchored_member_identifier
referred_shape_description (1,1)
max_reactions_P (1,n)
max_reactions_V (1,n)
max_reactions_M (1,n)
referred_analysis_element (1,1)
referred_yield_Fy (1,1)
bolt_diameter (0,1)
number_of_holes (0,1)

DATA USE 4:

The foundation engineer uses the data of bottom leg members
to design the tower anchoring devices.

page 314 Phan & Howard

detailed_member_identifier
bolt_diameter (0,1)
number_of_holes (0,1)
referred_shape_description (1,1)
referred_member_layout (1,1)
referred_member_clearances (0,1)
own_fab_features (1,n)
own_detail_notes (0,1)
own_detail_illustrations (0,n)

DATA USE 5-A:

The detailer details the fabrication parts.

delived_member_identifier
optional_remarks

referred_NC_mark (1,1)
referred_fab_quantity (1,1)

referred_shape_description (1,1)
referred_fab_length (1,1)
own_approximate_weight (0,1)

DATA USE 5-B:

The fabricator bundles and ships parts to the construction site.

Phan & Howard — page 315

ower_
Members

assembled_member_identifier
referred_shape_description (1,1)
referred_NC_mark (1,1)
referred_fab_quantity (1,1)
referred_fab_length (1,1)
referred_bolt_patterns (1,n)
referred_approximate_weight (0,1)
referred_schematic_representation (0,1)

DATA USE 5C:

The construction crews assemble the tower panels on grounds.

checked_member_identifier
referred_shape_description (1,1)
referred_cartesian_position (1,1)
referred_cartesian_orientation (1,1)
referred_member_layout (1,1)
own_spatial_envelope (1,1)

DATA USE 6:

The electrical engineer checks the leg members for electrical clearances.

page 316 ‘ ' Phan & Howard

	TR085A
	TR085B

