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1. Abstract:

We describe the IRMA framework for supervisory control of complex, distributed
production processes and describe an application of this framework to emissions control
and troubleshooting for geothermal power plants. We describe Gaussian influence
diagrams, the mathematical formalism upon which our control regime is based, and we
show how the Schemer multiprocessing architecture supports a demonstration of
applicability of our controller and diagnostician to the plant by supporting execution of a
simulation model of the plant and integrating them with it.

2. Subject:

This report describes a system that makes it easy to build control systems and
troubleshooting programs for production plants. There are three main ideas here: a
multiprocessing system that supports process communication can be very helpful in
building a control system, building a control system based on a model of the system makes
it easier for the system to be built and maintained, and Gaussian influence diagrams is a
computation approach that is simultaneously easy to formulate and mathematically
rigorous.

3. Objectives/Benefits:

CIFE funded this research because the issues of sensor fusion, reflective control of
processing, and complexity that we address with Gaussian influence diagrams and a
multiprocessing architecture are equally applicable to facility engineering as to production
control. In addition, the paradigms for human-computer interface explored in the project
can be useful beyond the domain of facility engineering. Our work aimed at showing that
this supervisory control architecture is helpful for building a plant control system.

4. Methodology:

The research was in the form of a proof-of-concept demonstration. After extensive
knowledge engineering interviews with PG&E personnel, we constructed a simulation of
geothermal plant operations, including crucial features such as: inherent variability of the
system and interactions among subsystems, as well as modeling the behavior of thermal
and chemical processes in the plant. We then identified which data are available online for



a controller such as we are construction, and which controls can be effected online, and
created a structure in which only those data and controls were available to the controller and
diagnostician. Finally, we built a controller and diagnostician and integrated them with the
system, showing that their performance was good.

5. Results:

We found that GID-based control responds appropriately to a wide variety of routine and
unusual chemical emissions scenarios, and that in most cases a diagnostic component based
on a diagnostic tree can identify sources of thermal cycle inefficiency while calling on the
operator to make only those investigations that would be called for by an experienced
thermal engineer. Our project created a simulation model of the plant that could be used as
a training tool, or for what-if analysis, as well as serving as a testbed for our controller and
diagnostician. These components constitute a second major product of the research. A
third result of the work is a graphical user interface that shows the progress of the GID
solver in an intuitive fashion as it progresses. A fourth product of the research is an
extensive HyperCard application documenting many features about the plant, both those
simulated, and others as well, in an easily browsable causal network format.

6. Research Status:

The proof of concept is complete, and the system for the Geysers is ready to proceed to the
prototype stage. In addition, the IRMA framework and the GID software are usable for a
plant control project at other production facilities.
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Abstract

We present the IRMA (Intelligent Real-time Monitoring Associate) framework for
supervisory control of complex, distributed production processes. IRMA integrates
decision analytic, optimization, and Al-style tools into a multiprocessing problem-solving
environment. We describe the application of IRMA to emissions control and thermal
efficiency monitoring at a geothermal power plant. This application uses the Gaussian
Influence Diagram (GID) model for control by unrolling a continuous process into a
sequence of discrete-time control decisions and optimizing these, taking account of
previous observations of the system state. It employs a simple form of Model-Based
Reasoning for diagnosis of faults and sources of thermal inefficiency. We give a tutorial
introduction to GIDs and describe approaches to model specification and repeated
construction of the GIDs used for emissions control. We give examples of the operation of
both the controller and the diagnostician, and identify shortcomings of the latter that
suggest the use of a Mixture-of-Gaussians ID, which allows discrete variables as well as
continuous ones. We also discuss knowledge acquisition and representation issues, and

LA substantial portion of this document is published as Johnson et al. (1993).
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we describe the Schemer multiprocessing environment upon which IRMA is based and
show how it supports our approach to supervisory control. Schemer’s flexible support for
multiple communicating processes allows a robust and intelligent control system to be
created. We conclude with comparisons of IRMA to other decision analytic and process-

control applications.
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1. Problem: Control of complex, distributed production processes

This report describes a research project undertaken in 1990 and 1991 in conjunction
with the Stanford Center for Integrated Facilities Engineering and Pacific Gas & Elecric.
The report has four major sections: introduction to the problem, our general solution
approach and research objectives, results of our research, and evaluation of it in light of our
research goals. In addition, we give directions for future work, we compare our work to
other research, and we give an introduction to Gaussian influence diagrams along with
detailed specifications of the controller and results of tests of the controller and
diagnostician. We begin by discussing the task domain in general, then our specific focus
on geothermal electric plant operations, and we state the research objectives that motivated

our choice of focus and our overall approach to the problem.

1.1. General Issue: Supervisory control of production
The IRMA (Intelligent Real-time Monitoring Associate) architecture provides computer-
based problem-solving support for supervisory control of complex, distributed production
processes. The supervisory control task has a number of attributes that constrain the
functionality of a problem-solving architecture, including 1) real-time performance
requirements, 2) need for modeling of continuous, physically distributed, and concurrent
processes, 3) significant uncertainty about plant state, and 4) diverse task requirements.
If a continuous product is being produced, either a continuous representation of it is
required, or a discrete approximation of suitably fine granularity must be employed. A
physically distributed production process creates concurrent events — events going on at
roughly the same time as each other but without any direct causal or informational link.
Supervisory controllers of such processes must integrate information from diverse sources,
control individual production units, and coordinate their concurrent actions. This often
requires balancing apparently incommensurate goals. Uncertainty about system state is a
persistent problem, due to imperfect or noisy sensors, limited instrumentation, and the
inherent unobservability of critical portions of plant operations. Physically distributed
production systems and their control technology compound these problems with data
transmission delays, inconsistency of data formats, and unreliability of data transmission
facilities. Process management has diverse task requirements, including the following:
monitor the process, determine/assess current situation, forecast/model situation evolution,
plan/choose control actions, and carry out the appropriate control actions.

Extant research addresses each of preceding issues individually, but an integrated
approach to these concerns remains to be established. Conventional production-control
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systems have addressed the continuous, real-time aspects of the task and, to some extent,

have addressed coordination of concurrent distributed processes. Independently, decision

analyses have been performed to address uncertainty and evaluate tradeoffs among
production objectives (e.g., Chao et al., 1985; Keeney et al., 1986). In addition, rule-
based systems have been constructed that apply the methods of knowledge-based problem-
solving from the field of artificial intelligence to supervisory control (Shahidehpour and
Kraft, 1986). Our research aims to integrate the best features of these approaches.

1.2. Specific Application: Geothermal electric plant control

In pursuit of such an integrated approach, we are developing IRMA, a computer-based
system to control geothermal production of electricity at Pacific Gas and Electric’s
(PG&E’s) Geysers facility in northern California. In plants at the Geysers, steam from
underground sources contains impurities that damage machinery and produce
environmental pollution, which must be abated by costly chemical treatment processes.

Supervisors of this process strive to simultaneously maximize production efficiency,

minimize emission of pollutants, and limit plant deterioration, by monitoring on-line

sensors, investigating and diagnosing problems, and taking remedial action if needed.

Critical decisions must be made in real-time to balance these competing concerns.
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Our project was undertaken for units 5 & 6 of the PG&E West Geysers field. The
following description is true for those units, but other technologies are used for cooling and
chemical abatement at units in the East Geysers field. Steam in underground formations is
mined and piped to a turbine, whose rotation drives a generator. Each unit generates 55
MWs if it gets adequate steam. West Geysers units have direct-contact condensers, in
which the cooling water returning from the cooling tower is sprayed through the steam to
cool it. The hot condensed steam is pumped to the cooling tower, where it is cooled by
evaporation and convection. Most of the incoming steam evaporates. The rest, called
blowdown, overflows the tower basin, and is captured and pumped back into the ground.
A cooling tower is made of five cells, all in a row. The condensate is poured onto
horizontal plywood headers across the top of the cells. These headers have small holes,
which, together with the baffles inside the tower cells, disperse the condensate for maximal
cooling.

The incoming steam contains H,S, which is noxious if released to the atmosphere, and
which turns to sulfuric or sulfurous acid in water. First and second stage jets blow
noncondensible gases, including H,S, from the condenser through the inter- and after-
condensers (collectively, the auxiliary condensers) to the incinerator, where the H,S is
burned, turning it into sulfite. The remainder from this process is returned to the
condenser. This reduces emissions and keeps backpressure down. H,S in the condensate
must be treated by adding iron chelate to the tower basin. This frees the hydrogen, leaving
only sulfur, which combines with the sulfite to make water-soluble thiosulfate, which may
be released to the environment.

HQSO§+SO — H+5,05

Since the iron chelate is constantly lost with the blowdown, incineration is the cheaper
form of H,S abatement. Thus it is desirable to maximize partitioning, the portion of the
H,S that is in the gases. High pH in the basin makes the abatement in liquid phase more
efficient, but it reduces the partitioning. Acid or caustic soda can be added to keep pH in its
optimal range, which is between 6.5 and 7. While this is only mildly acidic, other parts of
the system are more so, and the physical plant is continually worn down by this.

Roughly 200 sensors at units 5 & 6 can be read from the plant operator’s console. The
automated plant monitoring system records and time-stamps all data. In addition, periodic
inspection and chemical analysis of the condensate and effluent gases are performed to get
additional information about the state of the system. Some control activities can be initiated
from the console, while others require physical manipulation of the component in question.
The manager of this process strives to maximize production of electricity, minimize
emission of pollutants, and prevent damage to the plant, by monitoring on-line sensors,
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investigating and diagnosing problems, and taking remedial action if needed. We aim to
help her/him in this task with the IRMA supervisory control system.

1.3. Research objectives

Our research objectives relate to our approach to supervisory control as a sequence of
episodes in which control problems are solved rationally. The goals motivating our
development of IRMA are to demonstrate the usefulness of a supervisory control
environment with multiple problem-solving components to the PG&E Geysers geothermal
plants, to find a systematic approach to choosing an appropriate solver from among these
tools and creating problem-solving models, to identify a set of tools that constitutes an
appropriate environment for process management, and to find a knowledge representation
that is congenial to the experts’ way of thinking, and that supports this form of problem-
solving. Another of our long-term research objectives is to determine how a system like
IRMA can best function on the spectrum from full automation (Tse and Fehling, 1989) to
providing advice and guidance to human process managers (Rutledge et al., 1989; Paterson
and Fehling, 1992). The goals motivating our development of Schemer are to develop an
architecture that supports rational use of process-management resources (CPU, RAM, data,
solvers), and to articulate and realize a model of rational community problem solving. Our
particular research goal for this project with PG&E is to identify the benefits and
drawbacks of GIDs as one problem-solving approach in the repertoire of this problem-

solving approach.

2. The IRMA approach: DA and Supervisory Control

To respond to the diverse challenges of geothermal process management, our research
emphasizes coordinated and integrated use of multiple, concurrent problem-solving (PS)
methods. At a basic level, our desire to create a supervisory control system that behaves
rationally leads us to focus on decision analytic approaches to control, insofar as decision
analysis has an explicit philosophical orientation toward rationality. However, recently
there have been suggestions that the rationality of DA is flawed if it does not balance the
costs of identifying the most rational action against the benefits of this action. Because
process managers must seek to maximize performance under real-time constraints and
uncertainty, we focus on methods that embody what L. J. Good (1963) has called “type II
rationality,” balancing timeliness of task completion against performance optimality. We
are investigating a range of PS methods that realize different tradeoffs of optimality against
performance efficiency, rather than relying solely on optimizing procedures that may

squander precious time.
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This paper focuses on three key aspects of IRMA: continuous monitoring and choice of
control decision methodology, use of decision analysis as one such methodology, and the
Schemer architecture to support integration of various solution processes . Other IRMA
features already in place or contemplated include a decision tree analyzer, dynamic model
construction (DMC), planning and heuristic-search methods, truth maintenance, additional
optimization routines (e.g., linear or non-linear programming), support for temporal
projection, and architectural support for prototyping, such as checkpointing, stepping,

trace, and scenario scripting.

2.1. Model-based Supervisory Control

We base IRMA’s approach to process management on the following conception of the
PS steps entailed by process monitoring and control: 1) detect and diagnose potential
problems by assessing performance data in terms of a high-level diagnostic model of the
system, 2) choose a solution methodology in light of problem solving resources available
and the apparent nature of the problem, 3) formulate and solve the problem, 4) implement
the solution, and 5) revise the diagnostic model to reflect problem occurrence and the
response undertaken.

Step 2 illustrates our commitment to using multiple, alternative PS methods when
performing complex tasks under realistic conditions. Note that use of a specific solution
method requires that problem representation be appropriately framed.# We refer to a
problem, as framed for a chosen PS method as a solution basis, and to the process of
framing as dynamic model construction (DMC). We are investigating automated DMC for
systems like IRMA that employ multiple PS methods each requiring construction of
solution bases from a common knowledge-representation substrate. We are addressing
knowledge representation requirements of a system employing a heterogeneous set of PS
methods. Subsequent publications will describe our work on DMC.

2.2. Decision Analysis

Optimization of a model of the system is important for control applications, because it
offers a basis for formal analysis of the goodness of the control. By reasoning about the
model, we can endeavor to characterize the impact of approximations in the model on the
control policy and thereby show how close the resulting control of the system is to the best

4Use of a heuristic search methodology would require formulation of the problem in terms of state,
operators, stipulation of search heuristics, specification of goal states, etc. Alternatively, use of decision
modeling methods such as those we discuss in the sequel require problem formulation by identifying the
range of decision (action) options, the collection of outcome states that could be reached by those actions, a
set of added decision variables that contingently affect the relationship between actions and outcomes, a
joint probability distribution over these factors encoding their probabilistic interactions, and a value or
utility measure comparing the relative desirability of the alternative outcomes.
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that could be achieved with a given understanding of the system. Decision analysis
(Howard, 1966) is an optimization approach that explicitly models both preferences and
uncertainty. We feel that the ability to balance dissimilar goals (i.e. to support tradeoffs
among preferences), and to represent uncertainty probabilistically motivate a central role of
decision analysis in control of systems like the Geysers plants, where goals are
heterogeneous and information is imperfect.

Our general approach to control is motivated by our focus on decision analysis. Closed
loop control makes continuous use of process feedback. Open loop control allows a
control policy to be in force for an increment of time without reference to the system state
within that time period. We employ iterative open-loop control with a suitably fine time-
granularity because it achieves most of the benefits of closed loop’s coupling to the process
while allowing each decision point, in principle, to be a decision modeling step,
incorporating value analysis, assessment, problem-structuring, and sensitivity analysis as

needed.

2.3. Schemer runtime environment

In view of the heterogeneous array, and possibly simultaneous occurrence, of problems
faced during process management, our research emphasizes ways to coordinate and
integrate multiple, concurrent problem-solving (PS) tasks. And because process managers
must seek to maximize performance under real-time constraints and uncertainty, our work
addresses on the concerns of what LJ. Good (1963) calls “type-II rationality” balancing
timeliness of solving a problem or completing a task against solution optimality. This
motivates our use of a range of PS methods, embodying various tradeoffs of optimality
against performance efficiency rather than relying solely on formally optimal but
computationally costly PS procedures.

Schemer is, among other things, a runtime environment which supports preemptive
prioritized scheduling, communication (both synchronous and asynchronous), and
coordination of multiple concurrent problem-solving computer processes (Fehling et al.,
1989). We employed the Schemer architecture to support and integrate the problem-
solving tools described here. Schemer manages attention and supports the “choice of
solution” approach, allowing either quick or careful focused response as appropriate.
Schemer’s communication management infrastructure can help integrate sensors & human
observations. It support for synchronous communication supports quiescent handlers
which are triggered by pertinent information. These points will be fleshed out in the next
section of this report.

A community may manifest resource-bounded rational agency if it is composed of
multiple agents, each with its own objectives, and the agents whose objectives contribute to
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the community's objectives are given the resources they need by the community. This
conception motivates the Schemer runtime environment. Schemer supports a community
of computational “handlers”, subroutines with specific purposes which, taken all together,
will accomplish the user’s goals, if coordinated properly. Schemer supports a flexible
range of communication approaches to allow these routines to coordinate their activities. A
high-level routine with control of important computational resources (notably CPU time,
but also access to the keyboard and the monitor, and eventually also RAM) implements the
“community’s” resource allocation policy in the form of CPU scheduling directives and the
like. Each agent may pursue its objectives by means of an internal rational community of
sub-agents with all the structure of the community in which it is embedded; or it may do so

in an unanalyzable way.

3. Research results

We evaluate our experience with knowledge engineering, describe the Geysers
application of IRMA, then discuss the two main components of the Geysers application,
the iron feed rate controller and the thermal efficiency diagnostician, and finally assess the
role of Schemer in IRMA.

3.1. Knowledge acquisition and representation

We address knowledge acquisition, knowledge representation, and finally a tool that
we created to assist both processes in our research.
3.1.1. Knowledge acquisition

We worked with Kim Stucki, Brian Benn, and Shaun Brady of the PG&E Geysers
facility. Messrs Stucki and Brady are thermal engineers, and Mr. Benn is a chemical
engineer. We visited the Geysers site a half dozen times to interview them and others,
taking careful notes at interviews, and gathering source documents. In addition, we
interviewed PG&E personnel on the telephone and sent them periodic written summaries of
our understanding of the situation as it developed. We attempt to evaluate the knowledge
engineering approaches we used according to how effective they were at capturing
expertise, and how useful the expertise was for problems-solving. This section compiles
our subjective impressions of the efficiency and comfort level of our knowledge
engineering interaction with the experts using various approaches to knowledge
engineering; no effectiveness data was collected.

Knowledge engineering was complicated by the fact that some of the issues we asked
about were apparently poorly understood, and the answers changed significantly during the
course of the investigation. In some cases, this reflected a changing state of knowledge of
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the experts3, and in others it may be that we simply misunderstood the first time we were
told®. We conclude that one should cross-check fundamental facts about the application
carefully before using them to structure the analytic approach in a fundamental way.

Sending periodic written summaries for the experts’ review did not turn out to be a
good approach to knowledge engineering (although it may be advisable for other reasons):
the experts did not feel that they could offer any comments or corrections without doing a
thorough rewrite of the documents we sent.

We produced a prototype model of crucial parameters of the Geysers system, arranged
for a continuous bar-graph readout of any selected subset of variables during a simulation,
and showed it to the experts for their feedback. We believe that this methodology can help
reduce the information overload associated with a written report, allowing the expert to
focus on overall qualitative and quantitative response of components of our model in “real
time”. But this did not elicit much feedback from the experts. We conclude that either we
had gotten it all essentially right, but we cannot rule out the possibility that some flaw in
our user interface prevented the domain experts from comparing the dynamics of our
simulated plant to those of their actual one.

Use of a “causal” network’ during interviews helped communicate to the experts the
range of phenomena upon which we were focusing our work, and one of the experts was
quite comfortable with a diagnostic tree, but none of them seemed comfortable following
causal pointers in a diagram of twenty nodes. Perhaps a more experienced decision analyst
could use this tool better, and perhaps it is more useful for specific decisions than for a
general situation in which the variables were not clearly defined. The experts were
comfortable giving setpoints, measures of variability, and measures of sensitivity of one
variable to its causal predecessors (if the variables in question were numeric), once these
were established.

Use of source documents was helpful, but not without costs. This approach trades
knowledge engineer’s time for domain experts’ time. This can be helpful, but it is
important for the knowledge engineer to vet all conclusions s/he draws with the domain

expert, to avoid misinterpretation or misapplication of data.

SInitially it was said that low pH helps H,S abatement, but subsequent instrumentation made it possible to
test this, and the evidence turned out contrary to this in an important class of cases.

6We understood initial descriptions of water chemistry in the tower basin to suggest that concentrations
equilibrate slowly (over the course of six hours), whereas later we were told that this takes place within an
hour.

7We ultimately interpreted the arcs in the network probabilistically and elicted them as such, but we found
that notions of causality were more comfortable for the experts. In addition, Shachter and Heckerman
(1987) implies that an ID should be elicited and structured as if it were causal.
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The experts seemed comfortable filling in frames corresponding to the various
knowledge representations we investigated.

3.1.2. Knowledge representation issues/approaches

We investigated four general knowledge representation (KR) schemas: information and
control, causal, taxonomic, and scenario-based. In addition, we feel it is important to
explore KRs with temporal attributes; in our case we did not do this because all the
mechanisms we studied are realized over the end of one time period.

An “information and control” schema comprising component, sensors, monitoring
activities, and controlling activities proved easy for the experts to assess, and gave a helpful
overview of the parameters of interest in the system, as well as giving specific information
for structuring influence diagrams.

As noted above, the experts were not entirely comfortable with a causal network, but
they could specify for any given system attribute what its normal value is, how much
intrinsic variability it has, what its causal predecessors are, and how it responds to their
variations. This data can prove helpful in constructing both influence diagrams and
diagnostic trees.

We thought carefully about taxonomies or hierarchies, but found them to be of only
limited value. Taxonomies have to do with nesting and instantiation of classes/aggregates.
We had two generating units (numbers 5 and 6), but their interaction was weak enough that
we treated them as independent. This was the only obvious class of repeated objects in our
domain. We looked for other taxonomies and considered two closely, one by aggregate
component (cooling tower, condenser, incinerator, turbine, steam pipes, weather), and
another by underlying substance (H,O, sulfur, hydrogen/pH, iron, corrosive chemicals,
energy, time, gases). The taxonomy by component was helpful for knowledge acquisition,
to make sure frame instances at all components were identified and specified. But it did not
partition the variables in a modular way — there were strong interactions between variables
pertinent to different components. In addition, subcomponents or attributes of components
did not appear to share any useful properties — we could set up the taxonomy, but there
would be nothing to inherit. The taxonomy by substance succeeded in decomposing our
80-attribute system into a set of attribute classes within which interactions are strong and
between which interactions are weak. The “interactions” of variables normally
corresponded to change in form of a bit of substance, e.g. main-steam-pressure is related to
water-in-basin, which is related to water-evaporated. But again we found few useful
properties shared by instances of these classes.

The taxonomy by substance did suggest formulation and use of a “conservation law””: a
substance is neither created nor destroyed within the system. We feel this may have been a
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productive approach, but our experts were loath to undertake this investigation. They had
apparently considered it before, insofar as they had a names for two important prongs of
this investigation: sulfur balance, and heat balance. Their reluctance may stem from the
substantial deviations from the underlying conservation laws due to poorly understood
interactions of the system with its environment (e.g. substantial loss of water volume due
to unknown leaks).

We identified a number of problems/scenarios/syndromes, but these never proved
useful in problem-solving; we always reasoned at a lower eventwise level without any
particular problems. For the record, the syndromes are as follows: low iron concentration,
sulfur solids fouling, turbine blade plating, bad partitioning, low pH/poor liquid abatement,
air leak, incinerator trips off, and turbine loses blade.

3.1.3. Knowledge management tool

In response to the success of a close-in view of a causal network, the fact that
representations of causality mesh nicely with the information-and-control knowledge
schema, and the utility of this information for problem-solving, we built a knowledge base
structured as a causal network. Each node corresponded to a feature/variable of the
system, and each had arcs from its causal predecessors. At each node there was an
informal frame of data: a verbal description that addressed the following topics for that
feature:

e definition & measurement,

* base value (setpoint),

e variability (spread),

* sensitivity to predecessors, and

* numerical formulation of the above information (if any).

We found it helpful to cite the source of each fact entered in this database to facilitate
resolution of apparent conflicts. We implemented the network in HyperCard, with one
card for each feature/variable, and with lists of causal predecessors and successors that
could be used for traversing the network. In addition, we maintained a picture of the
network whose nodes were mouse-sensitive, allowing direct access to any variable.

These textual summaries of a feature’s role in the causal network were helpful in
structuring the body of knowledge for our understanding, they provided a scratch pad for
derivation of formal relationships, and they served to document the models we
subsequently created. Ultimately we intend to tie this database to automated model
construction by imitating the way we used it in constructing solution models for the system

manually.
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3.2. Overview of our application

IRMA demonstrates the applicability to PG&E Geysers geothermal plants of a
supervisory controller employing a GID-based iron-feed-rate controller for the emissions
control system and a diagnostic tree processor to identify sources of thermal inefficiency.
The systems showed how to integrate disparate sensor data regarding the following system
attributes: weather, emissions, steam flow, chemical makeup of the circulating water, and
thermal properties of the steam; and it filtered out measurement and process noise using the
GID approach. The controller balanced H2S emissions against financial cost when
choosing an optimal chemical abatement policy. The controller used only data available
online, and the diagnostician was generally able to diagnose plant mishaps with only
limited human assistance. In this application of IRMA, the supervisory monitoring process
is to be performed partially by the computer and partially by the human operator: the
emissions control decision is made automatically every hour, and the operator is to invoke
the thermal diagnostician when s/he feels it is needed.

For the Geysers demonstration project we wanted to prove that our system could be
integrated with the data sources online at the Geysers, but we did not want to link the
project under development to the actual plant. Instead, we constructed a simulation of the
plant, and attempted to control this simulation. The model simulated the behavior of the
plant under both normal and abnormal conditions (mishaps). We made sure to include a
significant amount of noise in the behavior of the simulation, to ensure that the problem we
solved was not oversimplified. The iron feed rate controller was only given data from the
simulation that is available online; the diagnostician explicitly noted all requests for human
investigation which its inferences required, and it was designed to minimize these. In
addition to serving as a testbed for the controller and diagnostician, the model supported
‘what-if” analysis wherein the analyst changes one or more aspects of system state and

observes the response of the system.

3.3. GID-based iron feed rate control model

Control of iron feed rate is central to the emissions control process at the Geysers. We
describe the structure of our control model, specification of its parameters, how it is used,
and the results when it was used to control our simulation of the plant.
3.3.1. Why to use Gaussian influence diagrams

Gaussian influence diagrams (GIDs) are a particularly simple solution technique to
formulate, because, unlike their more common discrete-valued counterparts, these influence
diagrams of continuous-valued variables are completely specified by precisely the data we
have. If we accept the GID’s limitation that only a multivariate Gaussian distribution of

state variables may be represented, we may formulate a well-stated decision problem by
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merely translating each of the elementary data given by the experts (setpoints, spread, and
sensitivities) into single numeric values. We feel that this direct correspondence to the way
our experts think about the problem is an important argument in favor of using the GID as a
solution technique. Stated differently, use of GID obviates “discretization” of a continuous
distribution and explicit assessment of probabilities.

An introduction to GIDs is given in an appendix. Shachter and Kenley (1989) define
GIDs, gives a solution algorithm, and notes that the GID is able to implement the linear-
quadratic-Gaussian approach to control. Its probabilistic basis allows GID to integrate
disparate sensors & human observations robustly and defensibly. The explicit value
function inherent in any ID allows one to specify tradeoffs among conflicting or apparently
incommensurate goals. Furthermore, the use of this formalism provides assurance that the
system can provide an appropriate response to all system states, in distinction to some rule-
based approaches where some situations fall through the “cracks” of the database and
engender no response at all.

3.3.2. Structure

With the guidance of PG&E process engineers, we formulated the emissions control
problem at the Geysers as a sequence of hourly control decisions taking account of
information from previous hours and the effect of current actions on future hours. A set of
variables was identified whose joint distribution captures the entire impact of previous
history on the current situation. These variables, labeled “-1” in figure 2, constitute such a
“Markov state.” The reduced complexity of the future hour (labeled “+1”), and the
existence of only one such hour in our formulation, are based on our judgment that these
captured the effects of the current decision on future circumstances adequately, the most
important such effect being that most of the iron catalyst fed in now will still be dissolved
in the condensate in the future. Figure 2 shows an influence diagram modeling crucial
aspects of the iron feed rate problem as we understand it.8

This influence diagram represents the following physical characteristics of the system.
The iron is fed into a basin of condensed steam (water), and it causes chemical reactions
that reduce the emission of H,S into the atmosphere. The basin loses some of its volume
to blowdown every hour; hence the expensive iron catalyst must be fed into the system
constantly to maintain appropriate emissions levels. The rate of blowdown is faster when
there is more water in the system, which can occur either because there has been more
incoming steam flow, or because a low ambient temperature (wet bulb) reduces evaporation
of the condensate. The value function balances the cost of the iron against the amount of

8“No-forgetting” arcs (Howard and Matheson, 1981) into the second decision are omitted to reduce diagram
clutter.



IRMA 13

H,S emissions. Other factors enter into this system, but their impact is less important.
None of the variables except the value function is considered to be completely determined

by its conditioning variables (i.e. none has zero conditional variance).

Steam

Iron AmL

feed

r atﬁfy iron -1

-

rate +1

Figure 2. Geysers emissions control influence diagram

3.3.3. Parameters

To assess the parameters of the model, we interviewed the domain experts, studied
system operations data, modeled the system’s dynamics, and then created the closest
approximation to this model directly expressible in a (linear) GID.? We found that an
adequate controller can be created in this way. But linearizing the model conflicted with the
notion that the chemical reactions characterizing the system are governed by ratios, not
differences. In particular, the Geysers chemical engineer told us that the concentration of
iron (the ratio of the amount of iron to the amount of water) was the crucial factor affecting
H7S emissions, and that its impact on emissions was quadratic, not linear. We found that

9A GID is necessarily a linear model because in a multivariate Gaussian distribution, the conditional mean
of any variable given any others is a linear function of the given variables.



IRMA 14

the inferences could be improved and the control of the system could be made more stable
by applying the GID model to the logarithms of the original variables, allowing all the arc
strengths into the emissions node to be interpreted as exponents of the conditioning
variables, not coefficients of them. Under this interpretation, the strengths of the arcs from
log steam flow, log amt.iron, and log amt.water into log emissions are 1, -2, and 2
respectively, implying linear, inverse quadratic, and quadratic influence of the original
variables on emissions. This reformulation required that the distribution of the state
variables be specified as multivariate lognormal, which had the helpful side effect of
ensuring that all variables are always positive.

If a model has been specified using linear parameters, a logarithmic formulation whose
marginal response around setpoints is locally identical may be derived from parameters of
the linear formulation as follows:

To get: Calculate:

mean of logs log of mean

standard deviation of logs standard deviation / mean

arc strength of logs arc strength * mean of parent / mean of child

While the lognormal distribution specified in this way matches the local behavior of the
corresponding Gaussian, it understates the mean and variance of the distribution
somewhat. We initially formulated linear parameters for our model and then transformed
them to logs to preserve local responses, using the formulas given here. The parameters of
both the linear and logarithmic formulations are given below. A line is drawn dividing the
arc-strength table into arcs within a time period and arcs between time periods.

LINEAR PARAMETERS LOG PARAMETERS
NODE MEAN @5 MEAN @6 ST.DEV. MEAN @5 MEAN @6 ST.DEV,
Ironfeedrate 4.4 4 - 1.5 1.4 -
Wet bulb 47 47 5 3.85 3.85 0.11
Steam flow 750 750 50 6.62 6.62 0.07
Amt. water 1875 1875 40 7.54 7.54 0.02
Amt. iron 21 20 2 3.04 3.00 0.10
Emissions 8 5.5 3 2.1 1.7 0.4



IRMA
ARC FROM ARC TO LINEAR STRENGTH LOG STRENGTH
@35 @6 @5 @6
Wet bulb Amt. water -6.2 -6.2 -0.15  -0.15
Steam flow Amt. water 0.2 0.2 0.08 0.08
Iron feedrate  Amt. iron 0.4 0.4 0.08 0.08
Amt. water Amt. iron -0.0019 -0.0018 -0.17  -0.17
Steam flow Emissions 0.01 0.01 1 1
Amt. iron Emissions -0.67 -1 -2 -2
Amt. water Emissions 0.009 0.012 2 2
Amt. iron Amt. iron 1 1 1 1
Amt. water Amt. water 0.92 0.92 0.92 0.92
Steam flow Steam flow 0.80 0.80 0.80 0.80
Wet bulb Wet bulb 1 1 1 1
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Figure 3 shows parameters of the logarithmic formulation of our problem for unit 5 in

GID notation.

Figure 3. GID fragment, with parameters specified (logarithmic formulation)
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The value node balances the cost of the iron catalyst against the costs of H2S emissions.
PG&E faces a regulatory ceiling on emissions of H2S: if its plant is found to be in
violation, it pays a large fine; otherwise it pays nothing. Therefore value is a step function
of H2S emissions, with the step at the regulatory ceiling. Value is also a linear function of
iron feed rate (reflecting the cost of the iron catalyst). Note that two problems are evident
here: matching a step function with a quadratic function, and matching the sum of a linear
and a step function of the underlying variables with a quadratic function of those variables’
logs. We solved both problems by creating pseudo-data of the costs in question for a set of

typical circumstances and fitting a curve of the required form to those points. We then
increased the H)S cost parameters to represent the fact that the PG&E decision-makers

place additional value on low H2S emissions beyond merely avoiding a fine — PG&E is a
“green” company. The resulting value functions for the linear and logarithmic formulations
were:

-0.25 emissions2 +2 emissions -6.3 iron.feed and

-60 (In emissions)2 +120 (In emissions) -8 (In iron feed rate) -14 (In iron feed rate)
3.3.4. Use

For each hour of this repeated decision-making process, we identified the following
stages of formulation, inference and control: 1) create the generic ID, 2) update time-
dependent variables, 3) propagate the previous hour’s inferences, 4) update for current
evidence, and 5) optimize. The first three steps constitute the problem-formulation phase
of a decision-making process; steps 4 and 5 constitute solution of the decision problem.
We begin with the ID shown in figure 3. Our database for the plant specifies mean and
conditional variance for each chance node, as well as the strength of each conditioning arc.
These specifications are generally independent of the time of day, with one important
exception: the ambient wet bulb temperature varies systematically through the day. To
address this, step 2 adjusts the means for the wet bulb nodes and propagates the impacts of
the adjustments to nodes downstream from them, most importantly to the amount of water
in the system. Step 3 accounts for the inferences drawn from the previous hour, by putting
the previous hour’s posterior probability distribution for its “‘current” hour into the “-1”
hour variables and propagating the effect of those changes through the rest of the diagram.
Note that there still is variance in the state nodes after these procedures. The fourth step is
to absorb the evidence from the four nodes whose value is available online at the plant: iron
feed rate, steam flow, wet bulb, and emissions, and to propagate this information through
the rest of the diagram. After observation, the variance of these variables can be set to
zero. Finally the GID solution algorithm is applied.
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3.3.5. Performance

Figure 4 shows the behavior of the linear and logarithmic emissions controllers under
an exogenous shock to the system, reduction of the simulated system’s iron concentration
to 3 ppm. This constitutes a more extreme shock than is likely to occur in practice, and it
shows the responses of the system and the controllers clearly. In both cases the system
had been running stably with normal iron concentration (14 ppm) prior to the shock, and
the controllers had a relatively good inference of the iron concentration at that point. The
inferred concentration shown here is the quotient of the inferred amt.iron and amt. water
after absorbing other evidence from the period in question.

Since temperature, iron feed rate, steam flow and emissions are measured by online
sensors at the Geysers, we made these values from the simulation available to the
controller, and we show them here. Both the actual (simulated) and inferred values for the
other two crucial parameters, amt.water and iron.conc. (=amt.iron/amt.water), are shown.

Numerical data for this “3 ppm test” are given in an appendix.
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Figure 4(a) Logarithmic Controller
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Figure 4. Geysers model response to exogenous shock

Note that even when the iron concentration is held relatively constant, there is a great
deal of noise in the underlying simulation of H2S emissions relative to the regulatory
ceiling of 11 kg/hr, so determining an appropriate target concentration is relatively hard.
Both controllers return the system to an appropriate concentration level relatively quickly.
The linear controller returns the system to its equilibrium more quickly, but it exhibits
cyclical behavior once the system has returned to equilibrium because it over-responds to
the noise in the system. The inferences made by both systems were good. The ability of
the logarithmic GID to control our strongly nonlinear simulation suggests that
transformations of variables may be a good general approach to make its restrictive
assumptions reasonable. Its initial under-response to the shock is partially explained by
our use of lognormal parameters which understate the mean and variance of the distribution
of H,S emissions in order to achieve a better local fit to our understanding of the data.

Figure 5 shows a profile of the overall costs of the linear and logarithmic control
approaches. The figure of merit being graphed here is the sum of the cost of the iron
chelate and an assessment of $70 for each hour where the simulated emissions were above
the regulatory ceiling. The numbers in parentheses show the overall costs of the two
approaches. In this example, the linear controller’s costs were slightly lower, despite its
high costs in the hour after the shock.
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Figure 5. Overall cost profile of the two controllers
While our adjustment of the value function to reflect “green” sentiments was informal,
it could be made more formal if it made a significant difference, and sensitivity analysis can
establish the impact of this representation of preferences on the system and bound its effect.
It would be impossible even to address value tradeoff questions in traditional PID process
controllers, which make no explicit reference to an objective function. However, we were
not entirely satisfied with the ability of GID’s quadratic value function to capture the
apparent discontinuity in our decision-maker’s value tradeoff preferences at the regulatory
ceiling. It may be that extensions to GIDs which allow the value function to be the
exponential of a quadratic (described in Shachter and Kenley 1989, but not yet
implemented in IRMA) will give enough flexibility to specify value tradeoffs robustly. We
believe that both controllers would do a good job, but online tests are required before this

can be stated with confidence.

3.4. Thermal inefficiency diagnostic tree

This subsection describes the component of our system that identifies the causes of
thermal inefficiency at the Geysers plant. The domain expert in this area (Mr. Shaun
Brady) described his problem solving thought processes in detail, and many aspects of that
thought can be captured very faithfully in the logic of a diagnostic tree, so we employed
that formalism for thermal cycle trouble-shooting. We describe the structure and
parameters of this problem-solving tool, we illustrate its use, and we describe its
effectiveness diagnosing sources of inefficiency in our plant simulation.
3.4.1. Structure and Parameters

Mr. Brady told us that his troubleshooting logic follows the diagnostic tree shown in

figure 6, where incoming arrows indicate factors which could cause the parameter in
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question to take an inappropriate value. He diagnoses inefficiency beginning at the root
and stepping through the tree investigating possible sources of problems at each juncture.
For example, suppose that efficiency is impaired due to a malfunction of the motive steam
system. He begins at the root by investigating whether sufficient power is generated. If
not, he investigates main steam flow, backpressure, and turbine effectiveness. Presumably
backpressure would be too high, so he then investigates TTD (a measure of condenser
effectiveness) and cooling water temperature. Finding TTD also to be too high, he is led to
investigate, among other things, the motive steam system.

We built a diagnostic component for our system that mimics this logic, using specific
rejection values to determine the appropriateness of the following parameters:
backpressure, TTD, vent gas flow, condenser air flow (= air leak), cooling water
temperature, tower effectiveness, steam flow, and steam rate. The following problems
were modeled as Booleans: dirty condenser, insufficient motive steam, auxiliary condenser
problem, recirculation of steam through the tower, bad distribution of water to cooling
tower cells, tower fill is clogged, and steam valves closed. The following parameters are
indicted if other explanations of inadequacies failed, insofar as they are uncontrollable or
not easily measured: excess noncondensibles (for condenser loading), unknown condenser
problem (for TTD), wet bulb temperature too high (for CWT), and low incoming steam
flow; in this way, any situation which “falls through the cracks” of the diagnostic tree’s
expertise is explicitly flagged, and as specific a description of the situation as possible is
given. Backpressure and Power generated are logically determined by their antecedents.

The following rejection points were used to determine the appropriateness of each
parameter: backpressure > 4.75, TTD > 18.5, vent gas flow > 7, condenser air flow (= air
leak) > 3, cooling water temperature > 81°, tower effectiveness < 0.85, steam flow < 650,

and steam rate > 20.
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Figure 6. A tree for diagnosing causes of thermal inefficiency
3.4.2. Use

There are two issues of concern in the use of a diagnostic tree: how to find out the
value of the parameter in question, and how to judge whether it is acceptable. For the
Geysers system, most of the investigations of parameters called for here would have to be
carried out by system operators or engineers and input into the system manually, as these
quantities are not available online. Having made this commitment to human involvement,
we then made all the simulation’s parameters available to the diagnostic system, tracked the
amount of human investigation that was called for by the system, and tried to design the
diagnostic tree solver to minimize inconvenience to personnel. To track the human
investigation required, and to assure ourselves that the diagnostician was working
properly, we gave it the ability to give a verbal trace of the conclusions it reached and logic
and crucial data it considered in the process. An example is given in an appendix (section
9).

3.4.3. Performance

Two types of judgment errors can be made at any juncture: deciding that a parameter is
unacceptable when nothing is wrong (a “false positive””) and deciding that it is acceptable
when it is really giving evidence of an underlying problem (a “false negative”). A false
positive is viewed as more costly, because it leads to time-consuming unnecessary remedial
action, whereas a false negative may well be rendered moot by the problem becoming

evident in the near future.
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The approach to judging whether a parameter is acceptable, as described to us by Mr.
Brady, uses a fixed rejection point to determine whether each parameter is at an appropriate
level, but it is clear to us that he makes more refined judgments than this in practice,
because these thresholds are routinely violated without causing him alarm. The thresholds
are defined for an optimal system, and he makes allowances for environmental conditions,
noise in the system, and the effect of known faults in the system. In order to reduce false
positives, we made the thresholds more lenient. This required us to allow the operator to
specify to the diagnostic system that a variable has an unacceptable value, even if it was
within its rejection point due to favorable conditions and a lenient criterion. These
judgments normally concern the acceptability of parameters near the root of the tree such as
backpressure, whose appropriate values the operators know well; the system’s diagnostics
become more powerful and require less operator assistance as more problem-specific
parameters are checked.

In our test suite of 21 exogenous shocks to the underlying simulation, the thermal
diagnostician typically diagnoses the problem unaided a few times, it diagnoses the
problem with the operator specifying that backpressure is too high in all but a couple cases,
and it is able to identify the problem with one more “assist”, regarding either TTD or
cooling water temperature as appropriate, in all the remaining cases. An example of this
test suite is given in an appendix.

We believe our system tracks the qualitative logic of the Geysers thermal expert’s
reasoning reasonably well. A trace of the logic printed by the thermal diagnostic system
when diagnosing a dirty condenser is given in an appendix. But while this system works
adequately, we would like to do better. We would like for its judgments of acceptability of
a parameter to be made taking account of environmental conditions (e.g. wet bulb) and
known faults (e.g. minor air leaks that are judged not to be worth looking for and
remedying). In addition, we would like for the reasoning to take account of noise in the
system by retracting a judgment which was “very close” when subsequent contrary
evidence arises. And finally, we would like to be able to explicitly model the possibility

that a parameter reading is entirely inappropriate due to a broken sensor.

3.5. Supervisory control and Schemer

We describe our implementation of Schemer, the support it gives for problem solving,
and the specific IRMA framework for supervisory control built on top of Schemer.
3.5.1. Our implementation of Schemer
3.5.1.1. LIS Schemer overview

This description of Schemer given in section 2 may seem a bit abstract. Our current
implementation of Schemer is written in Lucid Common Lisp with Common Lisp Object
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System on a Dec workstation. For concreteness we include here the instructions to coders

from the documentation of LIS schemer.

Here is a simplified picture of schemer: there is one schemer object; it has
multiple handlers; each handler has multiple ports; handlers may connect
each of their ports to one or more ports of other handlers and communicate
with other handlers through the connected ports. In this implementation,
there is a CLOS object for each schemer, handler, and port. Each schemer
and handler has a process, which is initially dormant, and a function, which
is what it does once it is activated. You breathe life into the schemer (you
give it the entire CPU), and it then divides up its time among its handlers.
You can specify the size and frequency of the time slice that each handler
will be given to exercise explicit control of this important problem-solving
resource. If a handler initiates synchronous communication, its intended
communication is noted in the appropriate port data structure, and it hangs,
consuming no CPU resource, until the communication is completed (i.e.,
the schemer skips its time slice in its rotation). I have written a function for
the schemer, which you may use if you wish, or you may use your own.
Mine is called 'time-slice. Normally the function a handler executes is
an infinite loop waiting for synchronous inputs and responding to them.
You write your own handler functions. To make a handler communicate
through a port, you put a call to one of the port "methods" (a method is a
function that takes objects as arguments) in the handler function.

3.5.1.2. Interprocess communication

Our interprocess communication infrastructure is based on that set out in (Reid 1980).
Reid intends to prove a result about the duality of communication and control, so her
concern is to guaranteed the widest expressiveness of her representation of communication,
with particular emphasis on dynamic aspects of communication. Accordingly, she allows
dynamic creation and destruction of components (which we call handlers in Schemer),
communication ports, and connections among ports. Information may be communicated
from one component to another by way of connected ports. She requires the direction
(inbound, or outbound) and synchronicity (synchronous or asynchronous) of ports to be
specified when they are created, and requires compatibility along these dimensions for a
pair of ports to be connected. A component may connect any pair of ports whose identities
itknows. In synchronous communication, the read and the write complete together, with
one or the other waiting, if necessary. Asynchronous communication may fail, but it does
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not suspend the processing of either component. Reid allows a port to be connected to
multiple ports for communication.

Reid identifies a set of design-time commitments and shows that any choice among
these commitments gives equivalent expressiveness to any other. For synchronous
communication, the two commitments are to what we call multiplicity and degree of
synchrony. The multiplicity of synchronous communication is relevant only when a port is
multiply-connected. It may either be disjunctive, in which case exactly one of the
connected ports takes part in the communication, or conjunctive, in which all connected
ports take part. Reid discusses tightly and loosely coupled synchronous communication,
which we will characterize later as a discussion of the degree of synchrony. The difference
is that in tightly coupled synchronous communication the send and receive always terminate
simultaneously, whereas with loosely coupled synchronous communication, if the send is
initiated first, the message is queued and the sending component is free to proceed. Reid
also identifies two design dimensions for asynchronous communication: what we call
locality, and one dimension of destructiveness of communication. For asynchronous
communication, she distinguishes transmitted communication, which is lost if the intended
recipient component, port or link is created after the message is sent, and retained
communication, which is lost if the sending component, port or link is destroyed before the
message is received. Her second distinction for asynchronous communication is whether
reading a message destroys it. She assumes that writing a message does not destroy any
other message.

LIS Schemer implements Reid’s semantics, with the following modifications. We
implemented retained writes conjunctively only; and reads of both localities disjunctively
only. We view these restrictions as being motivated by the semantics of the
communication, and we have never had a use for the sorts of communication excluded.
We support mixed multiplicity of transmitted communication, so that a message from one
multiply-connected port to another may be sent to all recipients without obliging the
recipient to receive from all senders. We require that all ports be typed by locality
(transmitted or retained). This typing determines the destructiveness of subsequent
communication acts. All transmitted communication is read destructively but not
overwritten; all retained communication is read nondestructively but is overwritten by
subsequent messages. As before, we feel these restrictions are motivated by the semantics
of the communication types, and we have had no need for the types excluded. This typing
by locality supports mixed synchrony. To understand mixed synchrony, note that to
synchronize communication, the read must wait until a message is available, and the write
must wait until the message is read. We characterize each half of this communication as
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having level one synchrony, and each half of strictly asynchronous communication as
having level zero synchrony. Loosely coupled synchronous communication is one form of
mixed synchrony, where the read has level one synchrony (it will not complete until a
message is received), but the write has level zero synchrony (it will complete and proceed
regardless). Mixed synchrony supports strict synchronous, strict asynchronous, loosely
coupled synchronous communication, and also the converse case where the write is at level
one (it will not complete until someone has read the message), but the read is at level zero.
Higher levels of synchrony are required to synchronize conjunctive communication of
multiple components. At present LIS Schemer supports only levels zero and one
synchrony; higher levels of synchrony can be emulated using multiple communications at
level one synchrony. LIS Schemer provides a naming service for handlers to support
appropriate connections of ports.
3.5.1.3. Multiprocessing

LIS Schemer is implemented on a single-processor DEC workstation. Accordingly its
multiprocessing is accomplished by time-slicing among the handlers. The general
architecture supports integration of handlers running on multiple processors, but our
implementation does not yet do so. As implied above, LIS Schemer supports dynamic
creation and destruction of handlers. It also allows the length or frequency of their time
slices to be dynamically revised in response to changing environmental requirements. Our
implementation supports embedded Schemers — a handler may either be a primitive unit (a
lisp function), or it may be a Schemer itself, time-slicing among component handlers and
generating behavior as an aggregate of its components’ behaviors. LIS Schemer supports
indefinite deferral of a handler. It supports interruptibility within the granularity of our
implementation (a few seconds). We are investigating ways to achieve a finer time
granularity, to allow more speedy interruption when required. And finally, LIS Schemer
supports a non-busy wait when a component is hung for i/o from a port. This feature,
together with the discipline of writing handler functions in an infinite loop headed by a
synchronous read, allows efficient and responsive use of the processor.
3.5.1.4. Triggering

Synchronous receipt of informational commands and requests by Schemer handlers
may be likened to triggering of a knowledge source in a blackboard system (Hayes-Roth,
1985; Nii, 1986). Informational commands either request a report of the handler’s data
state or cause a change in it, while requests normally cause a handler to perform some
action. The quiescent state of the handler awaiting synchronous communication
corresponds to the state of a blackboard knowledge source which has not yet been
triggered; informational commands that change a handler’s data state are like “partial
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matches” that change the likelihood of subsequent triggering or the nature of the subsequent
response; and requests that draw a response correspond to actual triggering.
3.5.2. Schemer problem-solving support

Schemer is a development environment and a substantive problem solving approach as
well as a formal architecture. Schemer resource management runtime architecture
encompasses all PS approaches, providing infrastructure needed by all, and suggesting or
favoring none. LIS Schemer’s “utility handlers” and other infrastructure support system
development and give substantive guidance toward specific PS approaches.

The support for development provided by LIS Schemer includes the following:
routines that simplify the maintenance of ports and links through the entire life cycle of a
port (create and register port; ask the schemer to identify other ports; connect it to them;
utilize, unregister, and destroy it); a dialog box for loading source code files, which,
together with the port-linking discipline supported by these routines allows the developer to
swap out a running handler, read in a new definition, and swap in an improved instance of
the handler which picks up where it left off; a handler template that supports development
of new handlers; a handler that supports query and manipulation of ports throughout the
system; a function that returns a pointer to a given handler for manipulation of its priority
or other resources; a handler that periodically reports the status of each handler, as reported
in their “status ports”; a handler that purges crashed handlers and cleans up associated data
structures; and an execution history and handler-level runtime profiler. We expect to be
able to develop handler-level step and trace functions as an additional development aid
based on the checkpoints identified for the execution history.

Utility handlers that can support a variety of applications include: a handler which will
send a “wake-up communication” to another handler at a pre-specified time, to support
periodic execution of a function without an intervening busy-wait; a “blackboard” handler
which supports a publicly-readable and -writeable data structure for other handlers; a
handler that supports asynchronous processing of keyboard and mouse events for X
Window dialog boxes; a handler that re-generates other handlers as needed; and a handler
that inputs user commands and dispatches them to the appropriate destination.

3.5.3. IRMA

In order to illustrate the role of ports, we give some typical uses of different types of
ports. We use the word synchronous here to mean having synchrony of level one. Unless
explicitly noted to the contrary, communication discussed in this paragraph is transmitted
and disjunctive. Conjunctive synchronous writes initiate both instances of the simulation
and make sure that the failure of this to occur is made evident by the writing party being
hung up. Synchronous reads are heavily used by service handlers to be always available
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when needed, and yet not to use any CPU resources. They are also used to receive
permission to use a non-shareable resource, suspending handler operations until the
resource is available; disjunctive writes of either level of synchrony may be employed to
give such permission. These writes, and instructions for activities whose results are not
required immediately are normally performed asynchronously so that if the service is not
performed, the requester is able to undertake remedial activity. Asynchronous reads are
used in unusual cases where a handler’s primary mission is not to respond to
requests/commands, but when it nonetheless should be able to respond to them. Examples
include the wake-up handler that never sleeps (= hangs for input) in order to allow its
clients to sleep until a specified time, and the master-control handler, one of whose modes
is to continually re-initiate simulation, diagnosis, and control to demonstrate the
components of the system in action. Retained ports are useful when there are aspects of a
handler’s state that it wishes to make available to others without concerning itself about
when it will be accessed. The most common example is for handlers to post their “status”
in a retained port for the status-report handler to read and report on. Retained writes are
also helpful for promulgating access to a shareable resource (e.g. a pointer to a shareable X
Windows display). In addition, the blackboard handler receives new information
synchronously and displays it on a retained port, so that the blackboard is always readable

by other handlers.
Here is a list of the handlers specific to the Geysers implementation of IRMA, and their
functions.
d The dispatcher reads user input from a dialog box and dispatches it to the
appropriate recipient.
. The handler-creator creates a new instance of any handler on command.
. The scripter reads a script of commands from a disk file that specifies exogenous

conditions to simulate, instructions to control simulation, or instructions to modify
iron control directives or aid diagnoses. This supports a test suite of exogenous
shocks to the system that would take hours of attention if controlled manually.

. The master control handler implements technical changes that optimize the system
for consideration of thermal or chemical components or for “production” operation
of all components optimally. It supports simulation of a single time period,
continuous simulation, or strictly synchronous responses to a test suite of input
conditions and commands.

. The two instances of the simulation handler (for units 5 and 6 respectively) will
simulate an hour on command, will employ either simple or GID control for iron
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feed rate on command, and will allow query or manipulation of any state variable in
the simulation during simulation or stasis.

° Two instances of the GID chemical controller recommend an iron feed rate based on
GID analysis and send graphics manipulation commands to the graphics manager to
document their progress, if requested. They will toggle between linear or
logarithmic formulations on command.

. Two instances of the simple chemical controller recommend an iron feed rate
quickly but nonoptimally, for use when focusing on the thermal diagnostician.

i The graphics manager displays an influence diagram or diagnostic tree, accepts
commands for manipulation of components of these images, and suppresses or
allows graphical output on command.

. There are two text-window managers that manage sections of an X Windows

display, reporting system status of the simulation and controller respectively.
o There are two report writers that write a report of the state of the simulation to disk,
and which also annotate this report with user’s comments on command.

4. Evaluation of the research

We treat two major topics in this evaluation of our research: the role of Schemer as a
basis for the IRMA prototype, and the success of IRMA’s supervisory control paradigm in
this application. We also evaluate our work in light of other research goals that motivated
it.
4.1. Schemer

We found the Schemer multiprocessing architecture to be an important part of the
problem-solving (PS) system because 1) it allows the PS tools described above (both
symbolic and numeric) to be run and coordinated without constraining the timing of one
control process to serve the other, 2) it allows for background processes that maintain
system integrity and provide robustness in the face of exceptional situations, 3) it supports
interruptibility, for cases where an important problem must be dealt with quickly and
single-mindedly, 4) its support for inter-process communication allows PS routines to poll
for their data, even when a real-time data capture system is designed for interrupt-oriented
communication, 5) it enables background PS processes, such as re-estimation of model
parameters, and 6) it allows human operators to initiate, redirect, or advise ongoing PS
processes, e.g. to override control recommendations. We found Schemer’s flexible
support of control structures particularly helpful. We have been able to run the entire
Geysers application in “field” mode, with all components running asynchronously, in
“demo” mode, where all activities are sequenced for clear presentation in a demonstration
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run for PG&E personnel, and in “verification” mode, where a test suite of activities and
natural conditions is fed in from an input file.

Schemer’s control of CPU and communication connectivity give the control application
a way to explicitly manage these computational resources, which has added clarity to the
problem-solving process. It would be beneficial if Schemer could also manage RAM,
another important computing resource, and if the relationship of its resource management
paradigm to a rational or economic framework were more evident. Notwithstanding this
failing, Schemer can clearly be seen to support the vision of rational community problem

solving set out at the end of section 2.3.

4.2. Supervisory control

The concept of supervisory control proved quite appropriate for the task. We were able
to run the plant simulation, the two major control processes, and various support processes
asynchronously (as they would be in an online situation), and we found that we achieved
the anticipated benefits. The operator or analyst could interact with or advise any individual
component without interfering with the others. Although we did not describe it here, we
constructed another iron feed rate controller that operated very quickly but crudely, and we
were able to swap it in and out as circumstances dictated; this ability can be as valuable at
the plant as it was for our demonstration project. The diagnostic component was designed
according to a supervisory model — that there is an ongoing monitoring process (in the
operator’s head) that invokes it as needed. We have not been able to investigate automation
of this process in our research so far, but the architecture of the system supports it cleanly,
and this is an area of long term interest to us. The chemical controller was able to use
simple GID solution components to solve a dynamic problem with dynamic parameters by
means of a relatively simple addition of a module to handle time-dependent priors. The
benefits from this decoupled and reflective approach to control were evident even in this
environment where the overall structure of the problem is not changing much and where
time requirements are relatively forgiving; the supervisory control approach seems even
more attractive for domains such as modern assembly lines which must be flexible
regarding both quantity of output and type of product. IRMA’s approach seems equally
suited to support other aspects of process management such as fault detection, failure
analysis, and fault correction, and scheduling and rescheduling of regular maintenance in a
production facility.
4.3. Other aspects

We feel that the diagnostic tree processor that could be extracted from the thermal
diagnostician and the GID solver that forms the basis of the iron feed rate controller
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constitute an important basis for a toolbox for a supervisory controller. Other tools that
could well prove useful include an LP solver, a database manager, a truth-maintenance
system, and a MoGID solver (as discussed in section 5). We found GIDs to be very useful
in forming inferences about the underlying state of a very noisy (simulated) system, and we
found that they could do so robustly even if data were missing at a decision point. We
were less satisfied with the ability to express value tradeoffs in the implementation of GID
we were using. Only the tradeoffs implicit in a quadratic objective function could be
captured. The diagnostic tree was found to support a clearly auditable analysis of the
source of thermal efficiencies, and it showed a basic competence, but the use of fixed
rejection values that are insensitive to contextual features was found to be unduly
restrictive. Our setpoint-spread-sensitivity knowledge representation, while not yet fully
formalized and automated, constitutes the basis of an important bridge between the way
experts think about the domain and the kinds of information needed by solvers. We also
note that a tremendous amount of effort went into constructing the GID for control, but
that, in retrospect, much of the effort could be formalized into a system that dynamically
constructs such models. In addition, we identified only a few problem-specific heuristics

for choosing the appropriate solver for a given problem.

5. Future research
Here we describe some future research that is motivated by these reflections.

5.1. Mixture-of-Gaussian IDs

We are investigating a generalization of GIDs that allows both continuous and discrete
nodes. The conditional distributions in these nodes are mixtures (weighted sums) of
Gaussian components. In these mixture-of-Gaussians IDs (MoGIDs), we allow
continuous-valued nodes to be conditioned by discrete nodes: for each discrete condition
of the parent, the child may have a different conditional Gaussian distribution.
Generalization of the GID solution algorithm for MoGIDs with discrete decision and
chance variables appears feasible as long as continuous variables are prevented from
conditioning discrete ones. MoGIDs can express anything that can be expressed in a
discrete ID (by setting all component Gaussians’ variances to zero) or a GID (by giving
every node only one Gaussian component). In return for their increased complexity,
MoGIDs give us the ability to reason about discrete conditioning events, such as
component malfunction.

This may provide a more powerful, integrated approach to some of IRMA’s tasks such
as thermal control than is afforded by the fault-tree methods currently used. In the
diagnostic tree described in section 3.3, the underlying premise is that each node represents
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a physical subsystem whose operation is in one of two states, fixed or broken. The use of
fixed setpoints and the inability to revisit conclusions drawn earlier in a traversal of the tree
reflects the assumption that the system is roughly deterministic. We have found this
assumption to be problematic. We feel that the thermal system could be modeled better by
a MoGID with discrete variables representing whether the physical devices or sensors in
question are fixed or broken with different Gaussian distributions for the output of each
device in each of these cases. For instance, a working sensor will reflect the true value of
the quantity it measures with some variance, whereas it will read “zero” with no variance if
it is broken; for modeling cooling water temperature, there could be one Gaussian
distribution for it under normal conditions, and another less favorable one if tower steam is

recirculating (see figure 7 for a generic ID fragment).

deterministic broken/ \ giscrete

output |

working deterministic

output | broken if broken
output | working if working

Gaussian

Figure 7. A mixture of Gaussians model of device output

If we take the graphical structure of the diagnostic tree and make each of its junctures a
deterministic node with only two states (broken or fixed) in a discrete ID, we can capture
the essential logic of the tree. If we then introduce noise into our output model in one or
both of these states and reflect quantitative relationships among nodes’ responses, we have
a MoGID model of the system that can absorb evidence of environmental conditions before
reaching inferences about the state of a component. For example, it would be
straightforward to build such a model that “knows” that backpressure of 47, while perfectly
acceptable when ambient temperature is 60°, is excessive when ambient temperature is 35°.
We believe this approach can cut down “false negative” diagnoses and handle multiple

mishaps.
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5.2. Dynamic Model Construction

While our approach to control is oriented toward the use of multiple diverse problem
solving components, and while we started our research with a number of solvers in mind,
we find ourselves pressed toward using roughly the same technique (IDs with continuous
variables) for both problems we studied carefully. This may be explained by considering
three important aspects of problem difficulty: complexity, uncertainty, and time pressure.10
In both issues we addressed in the Geysers application there is some need to handle
complexity, uncertainty is important, and time pressure is weak, so we have been led to
move from quick deterministic analytic techniques such as a diagnostic tree to more
expressive solution techniques such as MoGID. If time pressures were greater and the
system more nearly deterministic, the diagnostic tree would be more appropriate, or if the
system were more complex but less uncertain, a system of equations solver might be more
appropriate. Figure 8 shows a taxonomy of solution techniques, where increased
expressiveness in either dimension generally requires increased runtime.

LN
complexity

system of MoGID

equations

discrete ID
diagnostic
tree GID
N

Cd

uncertainty

Figure 8. Taxonomy of solvers

We believe that automatic model construction offers the possibility of control systems
based on models being created, maintained, and upgraded by domain experts without
experience in modeling. By suitable extensions to the hypertext knowledge-engineering
tool described in section 3.1, we hope to research creation of a graphical interface for
system description that can be used by end users, and that can support automated
construction of different sorts of models for different needs, e.g., end users could add or
modify branches in the diagnostic tree as conditions change. This will require further
research into knowledge representation, choice of solver, and construction of a solution

10These aspects of problem difficulty are motivated by the problem dimensions given in (Howard, 1968):
complexity, uncertainty, and time dependence; and the dimensions of computer program costs in (Schoppers
and Linden, 1990): response time, processing power required, program space, and inattentiveness o problem
detail.
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basis from a general-purpose database. An important next step on this research path will be
to generalize the model construction capabilities in Geysers IRMA as follows: 1) make
both the thermal diagnostician and chemical controllers completely data-driven by
identifying and isolating data about system features being addressed, 2) merge the two
resulting databases into one by identifying or creating a formalism that supports them both,
3) fill in the data frames in this database consistently, 4) make an ad hoc model constructor
that construct appropriate solvers (e.g. the ones we constructed by hand) in routine
situations, and 5) generalize the logic of this constructor with regard to choice of solver,

granularity of model, and discretization and unrolling of time.

5.3. Other possible extensions

Other possible extensions to the research include symbolically compiling GID inference
to avoid repeated arc reversals, employing Kjaerulff’s triangulation procedure (Kjaerulff
1992) to speed ID inference, developing faster, GID-specific solution algorithms,
constructing and performing a full-fledged decision analysis for recommendations of
expensive remedies to thermal inefficiencies, and automatic re-estimation of chemical
control system parameters from online data.

While Schemer’s control of CPU and communication connectivity is helpful, it would
be beneficial for Schemer to control RAM as well. In addition, it would be helpful for the
control of these computational resources to be cast in explicitly economic terms (giving
computational entities funny money and making them buy the resources they need). This
approach was set out in (Miller and Drexler, 1988) and (Drexler and Miller, 1988) and a
preliminary implementation was given in (Waldspurger, et al., 1992). We feel that this is
an important research direction for Schemer research.

6. Relationship to other work

Tatman and Shachter (1990) describe an efficient computational procedure for solving
dynamic programming problems (problems with repeated decisions) under uncertainty in
influence diagrams. This work uses of the notion of a set of nodes summarizing history (a
Markov state). It introduces a “sub-value node” that isolates each period’s contribution to
value, allowing the subproblem for each time period to be solved independently of other
periods. Although our chemical control problem has a repeated decision structure, we felt
the effect of future decisions in our problem could be captured in a simpler way than this.

Dean et al. (1990), Kirman et al. (1991), and Paterson and Fehling (1992) employ a
similar approach to ours in their work on Bayesian control systems for robotic activity and
information gathering. The latter, whose domain is the activity of an unmanned Mars
rover, describes the use of GIDs for operational decisions with particular reference to
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specification of a quadratic value function. This article explicitly addresses the decision
whether the rover should act or bring humans at mission control “into the loop”. A similar
concept to this “mixed initiative” behavior of robots is the notion of an “active” Decision
Support System, where the DSS performs analyses of its own and reports these to the
analyst as well as serving as a workbench for her/him. This notion was presaged by the
empirical investigations of Shoval (1986). Implementations are described in various
papers (e.g., McCoy and Boys, 1987; Mili, 1989; Manheim et al., 1991; Raghavan, 1991;
and others).

D’ Ambrosio and Fehling (D’ Ambrosio et al., 1987) describe the MCM controller for
continuous production of phosphorus that performs inference in a qualitative system model
whose variables were in three broad classes: observations, states, and high level
syndromes, following the CASNET model (Weiss et al., 1978). The modeling in IRMA
supports, but does not require, such use of multiple classificatory layers. However,
qualitative modeling is currently not supported. Both MCM and IRMA employ the
Schemer real-time, multitasking architecture to manage supervisory control activities.

Ramamurthi and Agogino also use influence diagrams for process control (Ramamurthi
and Agogino, 1988; Ramamurthi et al., 1990). There are three main differences between
their work and ours. First, influence diagrams in their system are discrete, not continuous.
Second, their use of arc reversal for probabilistic inference is off-line, which decreases
runtime but does so at the cost of limiting competence to the cases for which a particular
arrangement of arcs is appropriate. And finally, their only control method is the influence
diagram, whereas IRMA uses the GID as one tool in a toolbox.

7. Summary

IRMA presents a promising approach to supervisory process control. Its employs
decision analytic tools that are oriented toward rational control decisions, and other solution
methodologies that offer different thoroughness/runtime tradeoffs, to allow a supervisory
function to make rational choices among them. In this implementation, the supervisory
function is left to the human operator, but the IRMA architecture allows it to be automated,
and the Schemer environment on which it is built encourages this sort of reflective meta-
control. The IRMA architecture is based on the Schemer multiprocessing architecture for
distributed, real-time problem-solving applications. Our development of Schemer for this
project has focused on flexibility in the interprocess communication infrastructure, which
has supported a variety of efficient and clear ways to coordinate heterogeneous problem
solving technologies. In particular, we find that Schemer architecture gives significant
support to the supervisory control approach. IRMA takes an episodic problem solving
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approach to supervisory control: discretizing the time dimension of a continuous process
allows us to formulate a control problem at a geothermal plant as a repeated decision
problem. IRMA integrates diverse tools into a system that can use different problem-
solving approaches, such as Gaussian influence diagrams (GIDs) and diagnostic trees, as
dictated by the nature of the problem and the problem solving resources (time, data,
solvers) available. IRMA can accept advice or redirection from the operator while
processing. Acquisition of a body of knowledge about plant operations, and synthesis of
this knowledge into a creditable computer model of two PG&E Geysers geothermal plants
allowed us to demonstrate the value of the IRMA supervisory control approach for this
domain. The GID-based controller in our prototype gives normatively defensible
emissions control directives using limited information. Using GIDs, we can formulate the
control problem in terms accessible to domain experts and solve it in a normatively
defensible way. The GID approach integrates weather, emissions, and steam flow data,
and filters out measurement and process noise; and it balances H2S emissions against
financial cost. We found that use of variables transformed to log space is helpful in
modeling chemical reactions in a GID. The thermal diagnostician in our prototype was able
to find most sources of thermal inefficiency in our simulation using a diagnostic tree and
information that is available online in the Geysers generating units. This includes data
regarding weather, chemical makeup of the circulating water, and thermal properties of the
steam. In our work, we implemented and employed causal network for knowledge
representation. The setpoint / spread / sensitivity knowledge framework upon which it is
based appears to be both accessible to domain experts and useful for diverse solvers and
automatic modeling.

Our ongoing research addresses research problems that we were able to state as a result
of this IRMA prototype for PG&E Geysers geothermal plants. Thermal diagnostics may
be better done with an influence diagram employing mixtures of Gaussians. We are
building a MoGID solver. We are investigating ways to automatically construct different
kinds of problem solving systems from a single knowledge base. We are pursuing a more
explicit use of economic concepts for computational resource allocation. And finally,
another of our long-term research objectives is to determine how a system like IRMA can
best function on the spectrum from full automation to providing advice and guidance to

human process managers.
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9. Appendices
This section contains an introduction to Gaussian Influence diagrams, the worksheet

used to identify parameters of the GID-based controller, and results of various tests of the

system.
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9.1. Introduction to Gaussian influence diagrams

In the following subsections, we give an introduction to influence diagrams, and to a
form of influence diagrams called Gaussian influence diagrams that allows specification of
continuous-valued variables.

9.1.1. Influence diagrams in general

Influence diagrams (IDs) provide a general, flexible way to model decisions (Howard and
Matheson, 1981). IDs explicitly represent probabilistic relevance, availability of
information at decision points, and preference tradeoffs. An ID consists of a set of nodes,
representing the variables, and arcs (arrows), representing probabilistic relevance or
information, connecting some of the nodes. Round or oval nodes represent chance
(random) variables, rectangular nodes represent decision (control) variables, and a diamond
node represents the value or utility function expressing the decision maker’s preferences.

A node’s parents are the nodes with outgoing arcs to that node. There are two types of
arcs. A conditioning arc, into a chance node, indicates that the probability distribution for
the chance variable is conditioned on the values of the node’s parents. An informational
arc, into a decision node, indicates that the outcomes of the parents are known at the time
the decision is made. Each chance node has an associated probability distribution
conditioned on each possible combination of outcomes of the parent variables. If there are
no parents, then the distribution is unconditional or “marginal.” A deterministic node,
indicated by a double oval, represents a state variable for which the conditional
distributions are all single values occurring with certainty (the marginal distribution may
show uncertainty still).

Each decision node embodies a set of alternatives. A decision policy specifies one of
these alternatives for each set of outcomes of the parent variables, or a single alternative if
the decision node has no parents. The criterion used to select optimal decision policies is to
maximize expected utility, using the objective function represented by the value node. The
maximum-expected-utility criterion for decision making is derived from axioms of utility
theory as shown by von Neumann and Morgenstern, Savage, and others. A fully specified
ID may be solved exactly (without numerical integration) for the optimal decision policies,
if all variables have discrete values (Shachter, 1986) and in some cases with continuous
variables, as illustrated below. The solution procedure applies a sequence of ID
transformations that leave the joint probability distribution of the variables of interest

unchanged
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9.1.2. Gaussian influence diagrams

X ——eeepe-l Decision

reference value

X sensitivity; .

(mean, var.)

X-——-————)

Gaussian ID notation

Figure 9. Gaussian ID notation

A Gaussian Influence Diagram (GID) is an ID which asserts the probability distribution
of the chance variables to be multivariate Gaussian (normal), the decision domains to be
continuous and unbounded, and the value function to be a quadratic function of the state
variables (Shachter and Kenley, 1989). The GID can be used to represent and solve
efficiently the linear-quadratic-Gaussian control model (see Kenley, 1986 for efficiency
comparisons for Kalman filtering), but it is more general.

The GID may be specified in a simple, elegant way (see figure 1) as a consequence of
the following properties of the multivariate Gaussian distribution: (1) the conditional
distribution of any (scalar) variable given any others is Gaussian, (2) the conditional mean
is a linear function of the conditioning variables, and (3) the conditional variance is constant
(independent of the values of the conditioning variables). Each chance node in the GID is
specified by an unconditional mean and a conditional variance. Each conditioning arc is
specified by a single coefficient, giving the linear sensitivity of the mean of a node to the
value of the parent indicated by the arc. This coefficient is called the strength or sensitivity
of the arc. Decision nodes and the informational arcs into them do not need to be specified
numerically, except for an arbitrary, initial reference value for each decision node, to allow
specifying downstream nodes. The conditional distribution of a chance variable in terms of

these parameters is derived below.
Suppose a chance node Y has parents X1, ..., Xy, i.e. chance variable Y is to be

conditioned on variables X1, ..., X. Let | be Y’s unconditional mean. Letby, ..., by be
the coefficients of the linear conditional mean: b; = 9dY(X1, ..., Xp)/0X; fori=1, ..., n.

Then Y’s conditional mean is:
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n
E[Y X1, .. Xpl=¢ +2bi(Xi - EXy),
i=1
so that the expectation of this conditional mean over X1, ..., Xp, is the unconditional mean
L. L is also the conditional mean gien that all of Y’s parents are at their means.

Let v be the conditional variance of Y: Var[YIX1, ..., Xp]. The GID specifies node Y
by W and v and specifies the arcs to Y by by, ..., by. Since Y | X1, ..., Xy is Gaussian, it
can be expressed explicitly in terms of these parameters and an additional Gaussian
variable:

n
Y IX1, 0Xp =1+ Y biXi-EXy) +VV Z,
i=1
where Z is independent standard Gaussian and is independent of all other variables. This
expresses a linear regression of Y on X1, ..., Xy, with error Vv Z.

Figure 10 uses a GID to represent and solve a simple stochastic control problem. The
example used is a simplified version of the subproblem faced each period for the Geysers
application described in Section 3. Figure 10a shows the problem: to find the iron feed rate
that minimizes the expected cost, or maximizes the negative expected value, of emissions
plus iron supply costs. Value is assumed to decrease quadratically with current-period
emissions (Y) and previous-period emissions (Y-), and to decrease linearly with iron feed
rate (X). The conditional mean of current emissions is assumed to increase linearly with
previous emissions and decrease linearly with iron feed rate, and its conditional variance is
assumed to be constant. We give the iron feed rate an initial reference value of 4, for
convenience in assessing the conditional mean of emissions, which we assess to be 8 in
this case. The GID model of emissionsis: Y = 8+ 1(Y —-8)-2(X-4) +3 Z, where Z
is standard Gaussian. We observe the previous emissions to be 10 before we make the
iron feed decision.

To solve this problem, we first account for the evidence that Y~ is 10, by updating the
mean of Y to 8 + 1(10 — 8) = 10, and by updating the value function to V'(X,Y) =
V(X,Y,Y )ly-—10 (Figure 10b). Then we take the expectation of the value function over Y,
giving V"(X) = Ey[V'(X,Y)]. This allows us to remove Y from the diagram, since it is no
longer needed to express any conditional distributions or functions (Figure 10c). Finally,
we calculate the optimal decision as the maximum of the quadratic function V"(X), which
occurs at X = 6 (Figure 10d). Without the observation of high previous emissions, the
optimal iron feed rate would have been only 5; however, the observation leads us to
anticipate high emissions this period and to increase iron feed to 6 to abate these emissions.
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Though this example is simple, it gives a qualitative picture of how our control
procedure works. In more complex problems including the Geysers problem, some arcs
must be reversed (via Bayes’ rule), and optimal decisions must be determined as a function
of their parents. Shachter and Kenley (1989) give the general, backward-recursive solution

algorithm.
(8,3%)

Previous\ Observed
emissions / value: 10

Y...

1
Iron -
foed —=2 g (‘Emissions Value \;(X’E’Y )
rate Y 18,32) N =-Y°-Y “-24X
X
4

10(a) Initial diagram

L, 4039 VIE,Y) = VOGY,Y) gy
X 2 102
C <> = -Y2.10-24X

10(b) Update for observation that Y = 10

< @ V'(X) = EY[V'(X,Y)]
g =E V'(X, 10-2(X-4) +32)

= -4X2448X -433

10(c) Take expectation over Y

@ max V"(X) =-289
X

(6,0)

2(d) Optimize X
Figure 10. Example GID Solution

9.2. Derivation of parameters for linear iron feed rate GID
This worksheet shows the derivation of the parameters of the linear GID iron feed

controller. The logarithmic parameters may be derived from these by the formulas given in
section 3.3.3.
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unitS:unit6
s 780 Steam flow, kph
f 44 Iron feed, gph (effective)
¢ 11:10 Iron concentration, ppm
i 390:420 H2S in, ppm
0o 8:6 H2S out, ppm
a 0.0032:0.002 abatement factor
2000 kp water in system
0.92 decay factor for blowdown
0.72 decay factor for blowdown and evaporation
note: 0.72(2000+780) = 2000
400 feed-to-concentration factor 100 ppm * 0.0004 kp/gal

¢ = (0.92(2000)c+400£)(0.72(2000)+0.72s)-1
= (1840c+400£)(0.72(2000+s))"1
0 = asic2

Solving for ¢ in the 2d eqn gives ¢ = Vasi/o = 11 : 9 to make 0=8, but the model keeps
cat11:10.
Solving for f from first eqn gives f=0.4¢c =4.

dc/oc = 1840(0.72(2000+s))-1 Is=780 =0.92

ac/of = 400(0.72(2000+s))-1 Is=780 = 0.2

9c/ds = -(1840c+400£)(0.72(2000+s)) 2 le=1 1,f=4,s=780 = -0.005

00/di = asc2 13=0.0032:0.002,5=780,c=12,10 = 0.02

d0/dc = -2asic™3 13=0.0032:0.002,5=780,i=390:420,c=12:10 = -1.5 : -1.26.
but regression shows +0.2 : -1.2. I choose -0.9 : -1.2.

d0/0s = aic"2 13=0.0032:0.002,i=390:420,c=12:10 = 0.01

As wet bulb temperature goes from 60 to 30 (either 50% or 100% ... avg is 71%),
187.5 less steam ((60-30)/120 %) evaporates. Linear arc wet.bulb -> amt.water is -6.

9.3. Results of test script manipulations

A test script of mishaps was prepared to test the model and the thermal diagnostician. In this
script, the model is made to simulate a given mishap and then the diagnostician is told to investigate
the system. The diagnoses given by the diagnostician in a typical test suite are given here.
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Different test suites achieve slightly different results due to the noise in the system, but the
predominant outcome is always that the bulk of the problems are diagnosed correctly. In a few
case, the test suite is crafted to inform the system that the value of a general diagnostic variable is
inappropriate because if this had not been done the diagnostician would likely find no problem in

the system. This issue is discussed in section 3.4.3.

air leak ok
aux-condenser prob. ok (intermit)
high base steam rate ok

high CWT ok

fill problem ok (intermit)
hotwell temp too high ok (7
noncondensibles = § ok

steam valves shut =T ok

TID =20 ok
unseasonable = 15 ok
water flow = 12000 ok
bad distribution =T ok
blowdown = 500 ?

dirty condenser ok

insufficent motive steam only if coaxed

recirculation only if coaxed
steam seal leak ok
throttle flow = 300 ok

tower effectiveness = .6 0ok
turbine effectiveness = .6 ok
vent gas flow = 20 ok

h2s emissions = 20 ok
iron concentration = 5 ok
iron content = .01 ok

iron concentration = 4 ok
iron feed rate = 0 ok
main steam flow = 1100 ok
wet bulb = 30 ok

look for air leak

fix aux condensers

turbines; cannot handle

unknown tower problem

tower fill problem

unknown tower problem

identifies excess NCs

tells you to open the valves

unk. cause of condenser inefficiency
unk condenser inefficiency

unk high backpressure

fix tower distribution

unk. high backpressure

tell how much dirty condenser costs
identify motive steam of BP & TTD specified
identify recirc if BP, CWT

look for air leak/steam seal leak

unk cause of low steam

unk tower problem

turbine: cannot fix

vent gases high due to excess NCs

raise feed rate from 6 t0 9
raise feed rate from 9 to 13 & drop smoothly
raise feed from 7 to 10 & drop smoothly

emissions went way up
it did it
it did it
it did it
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H2S emissions = 20

iron content = .01

main steam h2s = 600

it did it
it did it

emissions went up

9.4. Results of the emissions exogenous-shock test

44

Since temperature, iron feed rate, steam flow and emissions are measured by online

sensors at the Geysers, we made these values from the simulation available to the

controller, and we report them here. For the other two crucial parameters, amt.water and

iron.conc. (=amt.iron/amt.water), the actual value in the simulation is reported, followed

by the value inferred by the GID controller after observing the other values.

Logarithmic control responds to the 3 ppm test: (actual/inferred)
steam amt.water

time
lam

W o

temp
41.
39.
38.
43.
46,
49.
54,
54,
54.
56.
54.
57.
54.
50.

feed

8.
8.
20.
21.
l6.
9.
10.
10.

Q00 oy oo W

762.
799.
742.
799.
750.
755.
810.
753.
728.
671.
728.
785.
842.
836.

2155.
2187.
2182.
2182.
2130.
2078.
2035.
1975.
1914.
1832.
1805.
1791.
1835.
1895.

Linear control responds to the 3 ppm test:

time

dam

5

6

7

8

9
10
11
12pm

Uk W=

temp
38.
38.
44.
48,
47 .
52.
56.
54.
58.
60.
56.
52.
47,
46.

feed

7.
12.
71.

8.
11.

*._X
AN NGO O

steam
793.
736.
793.
809.
866.
872.
815.
778.
721.
664.
721.
720.
707.
650.

amt .
2207.
2189.
2176.
2153.
2177.
2162.
2085.
2022.
1925.
1812.
1770.
1763.
1781.
1773.

/2133.
/2220.
/2279.
/2288.
/2247 .
/2211.
/2149.
/2084.
/2017.
/1929.
/1889.
/1843,
/1826.
/1835.

water

/2222.
/2387.
/2370.
/2346.
/2330.
/2286.
/2219.
/2149.
/2053.
/1939.
/1864.
/1834.
/1825.
/1822.

iron.conc.
/ 13.
9.
9.
10.
12.
11.
12.
12.
13.
14.
13.
13.
13.
13.

14.
3.
6.
9.

10.

11.

12.

12.

13.

13.

13.

14.

14.

13.

iron.conc.
14.
4.
15.
14.
14.
15.
14.
15.
15.
14.
14.
14.
15.
14.

14.

3.
15.
15.
15.
15.
15.

15.
15.
14.
13.
13.

14.

13.

N N

N T

emissions
5.
127.
35.
11.
4.
14.

[
OO WwWwoyJ W

l.—l

emissions
4.
97.

AR ORBWWE WRWOR
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9.5. Computer-generated reasoning trace

45

Here is the output that the thermal diagnostic component produces while it is
diagnosing a one particular mishap: a dirty condenser. This example is chosen only
because the trace is reasonably long. The sort of text generated by investigations of other

mishaps is similar.

TDIAG recommends:

Check backpressure.

In the current simulation,
the result of this would be:
Backpressure is 5.3.

In light of the following
facts at unit 5:
Backpressure is too high.
TDIAG recommends:

Calculate TTD.

In the current simulation,
the result of this would be:
TTD is 24.

In light of the following
facts at unit 5:
Backpressure is too high.
TTD is too high.

TDIAG recommends:

Check vent gas flow.

In the current simulation,
the result of this would be:
Vent gas flow is 9.2.

In light of the following
facts at unit 5:
Backpressure is too high.
TTD is too high.

Vent gas flow is too high.
TDIAG recommends:

Determine air content of vent
gas flow.

In the current simulation,
the result of this would be:
Condenser air flow is 1.0.

In light of the following
facts at unit 5:
Backpressure is too high.
TTD is too high.

Vent gas flow is too high.
Condenser air flow is ok.
TDIAG recommends:

Do a temperature traversge on
the condenser.

In the current simulation,
the result of this would be:
Temperature traverse
indicates dirty condenser.

Dirty condenser is costing
229. thousand dollars a year.



