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1. Abstract:

This report describes a preliminary study and the development of prototype systems for
diagrammatic reasoning in the domain of structural analysis. Diagrammatic reasoning is
prevalent in human problem solving behavior, especially for problems involving spatial
relationships among physical objects. Our research examines the relationship between
diagrammatic reasoning and symbolic reasoning in analysis of simple frame structures.
Preliminary evaluation shows that a diagrammatic reasoning capability provides an
environment where inferences about the physical results of proposed structural
corfigurations can take place in a more efficient as well as more intuitive manner than that
possible through purely symbolic representations.

2. Subject:

For preliminary analysis of structures, human engineers often employ diagrams as a visual
language to study and to gain intuitive understanding about the behavior of structures. This
paper reports on a preliminary study and the development of prototype systems that reason
with diagrams to solve structural analysis problems to better emulate the intuitive visual
problem solving techniques of human engineers.

Diagrammatic reasoning is a type of reasoning in which the primary means of inference is
the direct manipulation and inspection of a diagram. Humans often use diagrams not only
to solve problems but also to decide how to do so most efficiently. Our research examines
the relationship between diagrammatic reasoning and symbolic reasoning in a concrete
problem solving context of determining the deflection shape of a frame structure under a
load. We have built two systems called REDRAW-I and REDRAW-II, which draw
diagrams and manipulate them in order to determine the deflection shape just as a human
engineers do when they solve such problems qualitatively.

A program that is capable of reasoning qualitatively with diagrams are much more
understandable to humans than comparable programs that reason only with purely symbolic
representations when reasoning about spatial properties is essential part of the problem.
Therefore, such programs would be much more suitable for helping students acquire
intuitive understanding of the phenomena being analyzed, e.g. the behavior of a frame
structure under a load in our case. Furthermore, a diagrammatic reasoning program may be
much more efficient because the spatial information explicit in a diagram can be used to
control the system's reasoning process effectively.

3. Objectives/Benefits:

Although diagrams play an important role in human reasoning about physical structures,
little attempt has been made to capture the power of diagrammatic reasoning in a problem



solving system. Existing CAD systems can be used to draw a diagram but they can neither
relate the drawing to abstract concepts nor reason with the diagram as humans do.
Conventional Al systems can reason with abstract concepts but cannot relate them to what
an engineer actually sees. A technology to make a computer reason with diagrams just as
human engineers do will make systems much more understandable to a human user, and in
some cases, more computationally efficient than purely symbolic systems. A multi-
purpose, diagrammatic reasoning tool can greatly facilitate construction of problem solving
systems in domains that require reasoning about spatial information. Structural analysis is
just one example of such problems. Studying the role of diagrams in a problem solving
process will also help us understand how to train engineering students effectively in
visualization skills.

4. Methodology:

The project focused on constructing programs that can solve problems through drawing
and manipulating diagrams. We chose determination of deflection shape as the problem,
because diagrams play an important role when humans solve this type of problems.

5. Results:

We constructed two programs, REDRAW-I and REDRAW-1I, both of which solve the
same type of deflection shape problems qualitatively. REDRAW-I takes a more informal
approach than REDRAW-II, but they both draw diagrams and solves problems through
inspection and manipulation of the diagrams.

REDRAW systems appear to be much more effective in helping the user understand the
behavior of frame structures under a load and learn how to solve problems of this type
compared to a comparable system that solves the same type of problems purely
symbolically. In addition, they are more efficient, mainly due to the fact the spatial
information explicit in the diagrams can be used to focus the problem solving process.

6. Research Status:

We have successfully obtained a research planning grant from NSF to continue work on
this subject. We are using the grant to work on the following tasks as well as to prepare a
proposal for a larger grant.

* We are in the process of designing a general-purpose diagrammatic representation
and manipulation shell. We plan to use the shell to implement problem solving
systems for a variety of different tasks requiring use of diagrams.

*  We are also working on a formal characterization of a diagrammatic representation
in terms of its information content and the types of inference sanctioned by the
representation. This is essential in elucidating the role diagrams play in problem
solving, given a problem and a particular type of diagrams used.
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Abstract

For preliminary analysis of structures, human engineers often employ diagrams as a visual
language to study and to gain intuitive understanding about the behavior of structures. This
paper reports a preliminary study and the development of a prototype system for diagrammatic
reasoning to better emulate the intuitive visual problem solving techniques of human engineers.

Diagrammatic reasoning is a type of reasoning in which the primary means of inference is the
direct manipulation and inspection of a diagram. Diagrammatic reasoning is prevalent in
human problem solving behavior, especially for problems involving spatial relationships
among physical objects. Our research examines the relationship between diagrammatic
reasoning and symbolic reasoning in a computational framework. We have built a system
called REDRAW, which emulates the human capability for reasoning with pictures for
qualitative analysis of simple frame structures. Diagrammatic representations provide an
environment where inferences about the physical results of proposed structural configurations
can take place in a more intuitive manner than that possible through purely symbolic
representations.
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1. INTRODUCTION

The traditional approach to the study of structural analysis has been based, almost exclusively,
on quantitative (i.e. numerical) methods. Numerical values to loads and dimensions are
needed to determine the numerical value of reactions and bending moments as well as to
proportion the size of the members. Numerical analysis of structures, particularly statically
indeterminate structures, requires that the size of all the structural members be specified before
an analysis can be carried out. There is, however, an important step before that numerical
analysis can take place: the preliminary analysis and design phase where the schematic of the
structure is being defined and rough behavior of the structure is being studied. The detailed,
numerical analysis is intended to be a check on the preliminary analysis and design of the
structure.

Preliminary analysis requires a quite different set of techniques to determine the relationship
between the load and the resulting behavior of the structure based on "qualitative", i.e. non-
numerical, information. Qualitative analysis plays a significant part in the understanding of
structural behavior and the overall design checking procedures, which must be constructed to
ensure the correct use of computer modeling and numerical analysis programs.

There have been many investigations on extending the methodologies developed in qualitative
physics research [Iwasaki 1989; Weld and Kleer 1990] to the problem of qualitative structural
analysis [Slater 1986; Fruchter, Law and Iwasaki 1991; Roddis and Martin 1991]. Though all
these works focused on symbolic and/or mathematical modeling of structures, human
engineers often rely on sets of coherent diagrams rather than mathematical models in
preliminary analysis. In many engineering problems, drawing a diagram is a crucial step in the
problem solving process. Drawings often reveal important information that may not be explicit
in a written description, and can help one gain insights into the nature of the problem. In our
work, we attempt to explore the use of diagrammatic reasoning for qualitative analysis of
structures.

Our work is aimed towards understanding the role of diagrammatic reasoning in engineering
problem solving. In this study, we explore the potential of diagrammatic reasoning in
determining the deflection shape of a building frame structure under load. We have
constructed a computer program called REDRAW (Reasoning with Drawings) that solves this
problem qualitatively using a diagram in a way similar to human engineers. Our hypothesis is
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that since humans reason with so much apparent ease with diagrams, a program that could
reason directly with a diagrammatic representation would be more understandable to the user
than a program that reasons exclusively with a purely symbolic representation of the same
information. Such a program may also be useful in imparting visualization skills to students of

engineering disciplines.

An advantage of the deflection shape problem for studying the role of visual reasoning in
problem solving is the fact that it is rich with domain-specific knowledge that has significant
implications on how the diagram is manipulated and interpreted. Another possible domain in
which to study diagrammatic reasoning is geometry, where pictures are abstract diagrams
without being a representation of anything in the world. However, in geometry, the only
property one reasons about is the geometric property. There are no other types of information,
apart from that represented in the diagram, that one must take into account when manipulating
and inspecting the diagram.

In contrast, pictures used for reasoning in engineering design are not simply abstract geometric
shapes but actually represent things in the real world. Furthermore, how a picture is
interpreted and manipulated depends significantly on what it represents. For example, a line in
our domain represents a beam or a column. Changing the length of the line would change the
information represented by the diagram. In other types of diagrams, such as a circuit diagram,
one could change the length or curvature of the line representing an electrical connection
without changing the informational content of the diagram. For the goal of better
understanding the role of visual reasoning in problem solving and its relation to symbolic
reasoning, it is important to work with a problem requiring a wealth of domain knowledge that
has significant influence on the way diagrams are used and interpreted.

This paper is organized as follows: In the remainder of this section, we define diagrammatic
reasoning and discuss its role in problem solving in general. We, then, discuss related work in
qualitative reasoning about physical systems and reasoning with images. Before going on to
describe REDRAW, we briefly review the problem of deflection of frame structures subject to
load. In Section 2 and 3, we describe the architecture of the two implementations of
REDRAW, REDRAW-I and -II, in detail. Section 4 concludes with a summary and a
discussion of future work.



1.1 DIAGRAMMATIC REASONING AND THE ROLES OF DIAGRAMS IN PROBLEM
SOLVING

The goal of symbolic or diagrammatic reasoning programs is to make inferences by
manipulating and inspecting the internal representations of information of the domain. A
symbolic reasoning program makes inferences through a purely descriptive representation of
the knowledge of the domain and the problem itself. A diagrammatic reasoning program, on
the other hand, represents at least some of the information, especially geometric information, in
a more depictive form, i.e. in a form that reflects the geometric and topological structure of

what is represented more directly than a purely descriptive form.

We define diagrammatic representation not only in terms of the distinction between the
depictive and the descriptive but also in operational terms, i.e. what types of operations on the
data structure are allowed and how they are used by the program. A diagrammatic reasoning
program performs at least part of its inferences using data structures with the following
characteristics:

1. The information represented explicitly in the data structure is the type of information that is
explicit in diagrams (i.e. geometric or otherwise visual information) and that is detected
easily by human visual inspection.

2. The operations that are permitted on the data structure are those that humans perform easily
with diagrams. Such operations can include both visual inspection operations as well as
manipulation -- through either mental imagery or through actual modification of the
drawing.

In contrast with diagrammatic reasoning programs, current symbolic reasoning programs use
only symbolic forms of representation such as logic, frames, semantic nets, etc. An important
difference between a symbolic representation and a diagrammatic one is that the information
represented explicitly in a symbolic program is not necessarily what is explicit in a picture.
Furthermore, reasoning is performed through some inference rules, which do not necessarily
reflect the types of inferences humans make with an image.

Computer graphics has played a significant role in the advancement of computer aided design.
However, graphics programs are used primarily to produce pictures, not to perform reasoning
tasks. Even when the picture produced represents an engineering entity instead of a purely
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abstract geometric shape, the program itself has no knowledge of nor does it reason about what
is depicted. Graphics programs make no attempt to interpret or reason with the pictures
produced. It is usually the user (the human viewer of the pictures) who interprets and
sometimes reasons about the pictures.

A salient feature of diagrammatic reasoning in many situations is its qualitativeness. People
reason with diagrams to get rough, qualitative answers. If a more precise, quantitative answer
is needed, they must resort to more formal, mathematical techniques. However, qualitative
techniques are extremely useful in gaining valuable insight into the range of possible solutions.
An initial qualitative understanding thus obtained can guide the later analysis by constructing

appropriate (numerical) models and employing appropriate analysis methods.

In order to develop an intuitive understanding of the response of the structure under a load, we
find that diagrams fulfill many of the same roles as those articulated by researchers in other
fields. First, diagrams are used as "a visual language of structural behavior that can be
understood with the minimum of textual comments” [Brohn 1984]). The language allows the
engineer to express explicitly the constraint or physical law that is relevant at each part of the
proposed structure, in such a way that the constraints and some of the consequences are
immediately apparent to the reader without further reasoning. Furthermore, the diagram serves
as a place holder or short-term memory device by allowing the designer to sketch out the result
of one deformation and then go back to see if there is a further effect or interaction that needs to
be addressed. Finally, visual inspection of diagrams can serve as a means to guide the
engineer to choose a more efficient problem solving method than she might otherwise.

1.2 RELATED WORK

There have been many investigations on extending the methodologies developed in qualitative
physics research to the problem of qualitative structural analysis [Slater 1986; Fruchter, Law
and Iwasaki 1991; Roddis and Martin 1991]. We have previously built a program called
QStruc to solve the same deflected shape problem described in this paper, but using a
traditional, symbolic Al approach[Fruchter, Law and Iwasaki 1991]. The program determines
the qualitative values of forces, moments, and displacements in a frame structure under a load.
The inputs to the system are a symbolic representation of the structure in terms of its members
and connections, and a load on the structure. There is no explicit representation of the shape of
a structure in the program. The shape is implicitly represented by the existence of such
physical processes as bending, and the qualitative values (positive, negative, zero or unknown)
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of such parameters as displacements. QStruc has successfully analyzed several simple two-
dimensional structures, thus demonstrating the feasibility of performing qualitative analysis of
structures on a computer. However, our experience with QStruc shows us that it does not help
an engineer to gain an intuitive understanding of the deflection process because its solution
strategy of setting up all applicable equilibrium equations and solving all of them reflects
neither the way humans usually solve the problem nor the causal process through which the
load makes the structure deform.

Research has been reported in cognitive psychology as well as artificial intelligence on the roles
of diagrammatic reasoning in human problem solving. Larkin and Simon discussed
extensively the advantages of diagrams for facilitating inference about topological or geometric
relationships [Larkin and Simon 1987]. One important advantage of diagrammatic
representation is that it makes explicit the spatial relationships that might require extensive
search and numerous inference steps to detect using a symbolic representation [Larkin and
Simon 1987]. Chandrasekaran and Narayanan [Chandrasekaran and Narayanan 1990], Novak
and Bulko [Novak and Bulko 1992], Borning [Borning 1979] and others have also pointed out
the usefulness of diagrams to human problem solvers as a device to aid in visualization,
"gedanken experiments"” or prediction. Chandrasekaran and Narayanan proposed a visual
modality-specific architecture, using a visual representation scheme, consisting of symbolic
representations of the purely visual aspects (shape, color, size, spatial relations) of a given
situation at multiple levels of resolution [Larkin and Simon 1987]. Their objective is "to
propose a cognitive architecture underlying visual perception and mental imagery that explains
analog mental imagery as well as symbolic visual representations" [Larkin and Simon 1987].
Lindsay uses constraint maintenance techniques to manipulate a diagrammatic representation to
make inferences and test conjectures in qualitative geometric reasoning [Lindsay 1992]. His
goal is to demonstrate that a combination of propositional and pictorial representations offers
more psychologically plausible and computationally efficient ways of reasoning about
mathematical problems. Novak and Bulko [Novak and Bulko 1992], Koedinger [Koedinger
and Anderson 1990] and others have explored the idea that diagrams may sometimes be used
not primarily for making base-level inference, but rather to help in the selection of an
appropriate method to solve a problem; that is, as an "aid in the organization of cognitive
activity" [Chandrasekaran, Narayanan and Iwasaki 1993].

In Lindsay's research in qualitative geometric reasoning [Lindsay 1992], he has developed a
computational model of human visual reasoning in the domain of plane geometry. Lindsay
uses constraint maintenance techniques to manipulate a diagrammatic representation to make
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inferences and test conjectures. His goal is to demonstrate that a combination of propositional
and pictorial representations offers more psychologically plausible and computationally
efficient ways of reasoning about mathematical problems.

The work by Forbus and his colleagues on FROB [Forbus 1980] and the CLOCK project
[Forbus, Nielsen and Faltings 1991] is aimed at automating the qualitative spatial reasoning
process. They also take a multi-faceted approach to representing information about shape.
They represent the detailed metric information about the shape in a Metric Diagram. The Metric
Diagram is used to compute a more qualitative, symbolic description called a Place Vocabulary.
In their systems, a Metric Diagram, which represents precise geometric information explicitly,
is used to compute a symbolic representation using the Place Vocabulary, by most of the
reasoning itself takes place only using the Place Vocabulary.

In the modality-specific architecture proposed by Chandrasekaran and Narayanan
[Chandrasekaran and Narayanan 1990], the visual representation is linked to an underlying
analogical representation of a picture so that visual operations performed on the analogical
representation are immediately reflected on the visual representation and vice versa. The
architecture of REDRAW is greatly influenced by the ideas of Chandrasekaran & Narayanan
[Chandrasekaran and Narayanan 1992] as well as those of Kosslyn [Kosslyn 1980], regarding
human cognitive architecture, in which they argue that some types of reasoning are tightly
coupled with perception. This idea of "perceptually grounded reasoning" is reflected in the
architecture of REDRAW, which consists of symbolic and diagrammatic layers that are closely
coupled. Furthermore, the problem solving approach of REDRAW is designed to mimic the
qualitative structural analysis method of human engineers.

1.3 THE DEFLECTION PROBLEM OF FRAME STRUCTURES

In this section, we explain the deflection shape problem, including the diagrammatic and
symbolic components of the solution process. Determining the qualitative deflected shape of a
frame structure under a load is one of the fundamental steps in analyzing and understanding the
behavior of a structure. Engineers first sketch a simple, 2-D drawing of the shape of the given
frame structure. Given a load on the structure, they modify the shape of the structural member
under the load. They inspect the modified shape to identify the places where constraints for
equilibrium and geometric compatibility conditions of the structure are violated. Those
constraint violations are corrected by modifying the shape of connected structural members,

propagating deflection to other parts of the structure. This process is repeated until all the
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constraints are satisfied. The drawing thus produced shows the final deflected shape of the
frame under the given load.

Figure 1 illustrates an example of this type of reasoning process. (a) shows the given frame
structure. Under the load, B/ deflects in the same direction as the load as shown in (b). Since
J1 and J2 are rigid joints, they must maintain a 90-degree angle. Inspecting the shape (b)
shows that they are not. To make them 90 degrees, the columns CI and C2 are rotated around
the joints as shown in (c). However, since the supports of CI and C2 do not allow
displacement, the columns must be bent to keep the ends fixed as shown in (d). Furthermore,
since the supports of CI and C2 are rigid supports, the lower portion of the columns must
remain perpendicular to the ground as shown in (e). Inspection of the shape (€) shows that the
moment equilibrium around J! is not satisfied because both members connected by JI are
deflected clockwise indicating the sum of the moments around the joint to be non-zero,
violating the moment equilibrium condition. The same can be said for J2, also. Finally, both
of the end portions of B/ are bent upwards slightly in order to achieve moment equilibrium
around J! and J2 as shown in (f).

J1 ]2
B1 N

C1

———
VAR VR VR T Vv,

/"

(a) (b) (c)

-

‘ .

(d (e) ®

Figure 1: Steps in determining the deflected shape



The above example of problem solving process involves a representation, such as a diagram,
that reflects spatial information much more directly than conventional sentential representations
as well as manipulation of such a representation to make inferences. It also involves use of
non-visual knowledge. Another important feature of the problem solving process is that the
reasoning carried out is qualitative. The answer produced in this case is a picture of a deflected
shape. Although the resulting picture is qualitatively consonant with the problem solution, it is
not, nor does it need to be, mathematically precise or to scale.

This type of problem can also be solved by a more formal, mathematical technique involving
setting up equations for forces, bending moments and deflection. However, even when the
more formal method is used, visualization is an indispensable first step that provides an
engineer with an intuitive understanding of the behavior of the structure and enables her to

recognize a good strategy for further analysis.

We set out to build a computer program that can reason about the deflection shape problem
using a diagram just as a human engineer would. Our first implementation of such a program,
REDRAW-I solves this type of deflected shape problems by directly manipulating a
representation of the shape in the manner shown in Figure 1. Our second implementation,
REDRAW-II, solves the same problems by a more systematic formal approach, computing the
forces, bending moments, and the deflection shape, while also using diagrams. We will
describe the two implementations in detail in the following sections.

2. REDRAW-I

REDRAW-I solves the deflected shape problem, following the same solution process outlines
in Figure 1. Given a diagram of a frame structure and a load, REDRAW-I produces the
underlying symbolic model in order to facilitate reasoning about non-diagrammatic concepts.
Then, the program uses its structural engineering knowledge to propagate constraints on the
diagram of the structure, inspecting and modifying this picture until a final shape is produced
that represents a stable deflected structure under the given load as illustrated in Figure 1.
REDRAW-I directly manipulates a representation of the shape in the same manner as depicted
in the steps shown in the figure. As with the qualitative nature of human visual reasoning, the
reasoning carried out by REDRAW-1 is also qualitative. The answer it produces is a picture of
a deflected shape.

2.1 SYSTEM ARCHITECTURE OF REDRAW-I



From examining the way deflection shape problems are solved by humans, it is apparent that
solving this type of problem requires not only an ability to manipulate and inspect diagrams but
also substantal structural engineering knowledge. Structural engineering knowledge about the
properties of various types of joints and supports is necessary to identify the constraints
applicable to the state (shape) of the structure. Such knowledge is best represented and
manipulated symbolically. On the other hand, information about the shapes is best represented
as a picture. Many types of modification and inspection of the shape are also more easily

carried out with a picture.

STRUCTURE LAYER - .- .| DIAGRAM LAYER
=
(Deflect Beam1 :dir down) + .5 .| — (Bendblpicty-) —p
. r P
- } P
. ,-i .
Qs Diagram
LR Representation

Structure Layer
e Objects: beams, columns, connections, supports, load, etc.
e Operators: generate-force—equilibrium-conditions,
generate—moment-equilibrium—conditions, etc.
Diagram Layer
¢ Objects: lines, splines, circles
» Operators:
Manipulation: rotate, bend, translate, smooth, etc.
Inspection: get-angular-displacement, get-displacement,
symmetrical-p, etc.

Figure 2: Two-layered architecture of REDRAW

The requirement for both pictorial and non-pictorial representation and reasoning suggests a
layered architecture. Figure 2 shows the architecture of REDRAW-I schematically. Thus,
REDRAW-I includes both symbolic reasoning and diagrammatic reasoning components. The
former contains the symbolic representation of the structural components and the structural
engineering knowledge about various types of structural members, joints, supports, and the
constraints they impose on the shape. It also includes a rule-based inference mechanism to
make use of the knowledge. The latter, diagrammatic reasoning component includes an
internal representation of the two-dimensional shape of the frame structure as well as a set of
operators to manipulate and inspect the shape. These operators, some of which are shown in
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Figure 2, correspond to the manipulation and inspection operations people perform frequently
and easily with diagrams while solving deflected-shape problems.

The REDRAW-I system was developed using KEE!, a Lisp-based object-oriented knowledge
engineering development environment. KEE is a flexible environment that supports graphics
for simple two-dimensional drawings as well as multiple inheritance, objects, methods and

active values for changing slot values programmatically.
2.1.1 The Structure Layer

The Structure Layer contains a symbolic representation of the domain objects as well as the
domain-specific knowledge. It stores non-visual information (such as that a hinged joint can
rotate while a rigid joint cannot), various types of structural members, equilibrium conditions,
as well as heuristic knowledge for controlling the structural analysis process. The classes of
engineering objects of the domain (namely, objects representing beams, columns, supports,
loads and structures) are arranged in a class-subclass hierarchy. The instances of such classes
themselves contain information about its connected neighbors as well as about sub- and super-
components, forming a partonomic hierarchy. All of the symbolic objects also contain a
pointer to their pictorial object counterparts.

2.1.2 The Diagram Layer

The Diagram Layer represents the two-dimensional shape of a structure. There are several
operators that directly act on this representation to allow inspection as well as transformation of
the shape. These operators correspond to the operations people perform easily with diagrams.
The internal representation of a shape is a combination of a bitmap whose elements correspond
to each "point" in a picture, and a more symbolic representation where each line is represented
by a set of x-y coordinates.

The Diagram Layer is independent of the structural engineering domain in the sense that it does
not contain any structural engineering concepts. The basic objects are graphical primitives
such as lines, splines and circles. However, the types of both manipulation and inspection
operators provided for the layer do reflect the requirements of the domain. For example, the
assumption that the frames consist of incompressible members made a particular set of
operators necessary (e.g. the program requires a bend operator but not a stretch or compress

1 KEE is a registered trademark of IntelliCorp Inc.
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operator). The effects of the reasoning mechanisms also depend on the specific functioning of
those required operators (for example, the bend operator creates a moderate curve rather than a
complete bend that would cause the line endpoints to touch or cross; or, the inspect operator
may look at components connected to the component in question, but will not compare that
component to any other, as it might in some other domain.) The objects contain information
only about their current shape and position with respect to other pictorial elements in the
graphics window.

Beam and column objects are implemented as splines at the picture level; that is, the set of
coordinate points in the object's point slot are connected by a curve. Besides such splines that
depict the shape and, therefore, are actually used for reasoning, there are other iconic objects at
the diagram layer depicting such things as load and different types of joints and supports. For
example, fixed joints and supports and pinned supports are depicted with polylines, hinged
joints are shown with circles, and roller supports are a combination of polylines and circles.
The load objects are simple lines with an arrow at one end to show the direction of the load on
a component. These iconic entities are only used to indicate specific component types to the
user when the structure is actually drawn on the screen.

The relationships among the pictorial objects are also quite straightforward. The objects relate
to each other in qualitative spatial terms such as connected-to, near, left, right, above and
below. Moreover, only those primitive geometric properties that are easily identified by visual
inspection rather than by reasoning involving multiple steps are used in the process of
determining the deformation shape of a structural component. Such properties include whether
two lines are approximately parallel and whether the angle between them is acute, obtuse or
right angle. The pictures are not drawn in precise proportion. Only such information as
approximate relative size, shape and proximity are used to draw them.

The Diagram Layer operators affect the position of a graphical object as well as its shape by
making changes to the coordinates in the object's position and the list of points depicting the
objects. Making changes to these coordinate values cause the picture object to be redrawn
immediately in the KEE graphics window. For example, a spline with y-coordinate points of
all zeros describes a straight beam. By replacing these zero y-values with appropriate negative
numbers, the spline will be redrawn as a downward curve to represent a beam under a direct
point load. Picture object points can be replaced individually or by equations, and both are
done in this implementation. An important point to recall is that the drawing of the curves do
not need to be precise; they need only be approximately correct and "look right” to a user. The
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system doesn't need any more precision than the user would require as if the same picture is
drawn on the back of an envelope. The system needs only to know the basic direction and
shape of the curves in order to make inferences about the shape and stability of a particular
frame structure under load.

2.1.3 Linking the Structure and Diagram Layers

There is a close link between the information in the two layers. Communication between the
two layers takes place by sending commands and posting constraints by the Structure Layer,
which is carried out or checked by the Diagram Layer. There is a translator between the two
layers to mediate the communication between the two layers as shown in Figure 2. The system
relates the representation of a particular beam in the Structure Layer to a spline in the Diagram
Layer, and the concept of deflection of a beam to an operation on a spline to transform its
shape. Likewise, the system is able to identify features of a shape (e.g. direction of bending,
existence of an inflection point) and to communicate them to the Structure Layer. When the
Structure Layer posts a constraint or a command, the Translator translates it into a call to a
Diagram Layer operator that can directly act on the representation of the shape to manipulate or
inspect it. The result is again translated back to concepts that the Structure Layer understands.

2.2 EXAMPLES

In this section, we illustrate the problem solving process by REDRAW-I with two simple
frame analysis examples.

2.2.1 Example 1

In the first example, we illustrate the type of communication that takes place between the
Structure Layer, the Diagram Layer, and the Translator, which we will denote as S, D, and T,
respectively. Given the frame structure of Figure 3(a), with a load, LOAD3, placed on the
middle of the beam, S sends a command, “Deflect BEAM3 in the same direction as the load,”
which T, translates into an operation “Bend BEAM3 pic in the negative direction of the y-
coordinate”, where BEAM3 pic is the label on the spline showing the shape of BEAM3.
Carrying out this operation will result in the shape shown in Figure 3(b).
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BEAM3

JOINT3 F" Q‘ JOINTS

coL3 COL4
Verzed /Jﬂ
SUPPORT3 SUPPORT4
(a)

(d) (e)

Fig. 3: Solution Sequence by REDRAW-I - Example 1

Continuing the interpretation process, S infers that since JOINT3 is a rigid joint, BEAM3 and
COL3 must maintain the same angle, i.e. perpendicular to each other at JOINT3, before and
after application of the load. S issues a query to test this constraint. The query is translated
into “get the angle between BEAM3 pic and COL3.pic at the ends connected by JOINT3 pic”
for D. The answer, the actual angle between the two lines, is communicated to S as the answer
that the constraint is not satisfied. S now issues a command to satisfy this constraint while
keeping BEAM3 fixed, which is translated into “make the angle between BEAM3.pic and
COL3 pic at JOINT3 pic be 90 degrees without modifying BEAM3 pic" for D. REDRAW-I
follows the same line of reasoning for COLA, also. Carrying out these operations will result in
the shape shown in Figure 3(c).
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Communication between the Structure and the Diagram Layers continues until all the
constraints are satisfied. The results are depicted as shown in Figures 3(d) and 3(e). Figure 4
summarizes the symbolic reasoning activities carried out by REDRAW-I for this example.

STRUCTURE LAYER DIAGRAM LAYER
TRANSLATOR
JFC | ive direction of th
Deflect Beam3 in the same direction as load. —i Bend BEf“‘M3 wic in the negative direction of the
y-coordinate.

sorvt 3 is of support Constraint A: Angle at
type fixed at 90°. coL3 must be 90° to BEam3.
Get angle between cor3 and seam3 at jomwt3. ~—i—fp> | Get angle between corL3.pic and BEaM3. pic at 10T 3. PIC.

Satisfy Constraint A: Make angle between coL3

<4 | Angle betw 3. d Beam3.pPic is < 90°
and 8eAM3 be 90° while keeping seam3 fixed. ge oen cor-.pe and e e

(Similarly, for angle between cord and seam3.)

—+ | Bend coL3.ric in the negative direction of the
x-coordinate to make angle between coL3.rc

supporT3 is of support || Constraint B: Angle at and BEAM3.PIC at JomNT3.PiC be 90°.
type fixed at90°. suppoRT3 must be 90° to coL3.
] Get angle of coL3 at supporT3. l-——> Get angle of coL3.pic at supPoRT3.PiC.

Satisfy Constraint B: Make angle of coL3 to surporT3 be < Angle of coL3.pic at supPorT3. FIC is < 90°,

90°. (Similarly, for angle of coL4to supporT4.)

—+ [ Bend lower portion of coL3.pic to make angle
of coL3.pic at supporT3.PiC be 90°.

Constraint C: Moment around Jowt3 must be zero.

Get direction of deflection of sBeam3.pic and coL3.ric at
JoINT 3.PIC.

Get moment around jom 3. N

. . <§—4— | Moment around Jomwr3.pic is non-zero.
Satisfy Constraint C: Establish moment equilibrium

around Jot3. (Similarly, for moment around jomwt4.) ’

Bend end of sBeam3.ric to make moment be zero.

Figure 4: Illustration of the inter-layer communication of REDRAW
2.2.2 Example 2

The second example is a simple frame structure with a hinge as shown in Figure 5. A point
load is placed on the middle of the beam. In this example, we provide the details for the object
representation and the execution of REDRAW-1. As noted earlier, once the frame structure is
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Figure 5: Solution Sequence by REDRAW-I - Example 2
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It (Output) The Graph of the REDRAW.V1 Knowledge Base

.CIRCLES— =—HINGE.1.PIC

DASHED.S.LINES
s.unss<
OLD.S.LINES— — —LOAD1.PIC

ETS.OF.LINES
.POLYLINE9<S __ JOINT1.PIC
TRIANGLES < — — PINNED.SUPPORT1.PIC
S

= PINNED.SUPPORT2.PIC

DIAGRAM.LAYE

ORIZ.SPLINE— — —BEAM1.PIC
SPLINE _ — coLl.pic
ERT.SPLINE<<
= coL2.ric
INVISIBLE.PICTURE. 1
KEEPICTURE.INSTANCES
EAM— — — BEAMI
~coLi
COLUMN<T
~coL2
OAD— — — L0AD1
STRUCTURE.LAYER
VIEWPORT.1 TRUCTURE— —STRUCT1
FIXED.JOINT— — —JOINTT
FIXE

IXED.SUPPORT

ROLLER————ROLLER.SUPPORT

UPPORT: INGED.JOINT— —HINGE1
INGE
PINNED.SUPPORT1
PINNED.SUPPORT<

PINNED.SUPPORT2

Figure 6: Object hierarchy of REDRAW-1
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In this example, the Diagram Layer first examines the load arrow for the direction of the load
and it checks the coordinates of the arrow relative to the beam to determine that the load is
placed approximately in the center of the beam. REDRAW-I will immediately call the bend
operator in the Diagram Layer to redraw the picture of the beam so it bends under load in the
direction of the load. The bending of the initial component on a structure compels the program
to examine the picture and try to determine the effects of that bend on the rest of the structure.

After the structural component, BEAM I, upon which the load was placed has been examined,
the system proceeds to investigate all of the components connected to the loaded component,
and so on. The examination will be in terms of the structural constraints that are associated
with the different components. Most of the constraints consist of knowledge concerning the
various support conditions and their resulting reactions. For example, the load on the beam is
constrained by the fact that the angle at the fixed joint must remain at its original 90 degrees.
The Structure Layer sends a message to the Diagram Layer to determine the angle at the joint
after bending. In the Diagram Layer, the check.angle operator is defined to measure the angle
between the column and the tangent of the deformed beam. The operator then replies that the
angle at the fixed joint is currently less than 90 degrees. The Structure Layer then issues a
command to deflect COL! to restore the angle at the rigid joint. However, in order for the
bend operator in the Diagram Layer to perform properly, the system must determine the type of
connection at the other end of COLI. The system searches the object list in the Structure
Layer for the structural component whose associated picture object is positioned at the other
end of the column, which is determined to be PINNED.SUPPORTI. Finally, an order for the
bend operation can be issued to the Diagram Layer. In this case, the column will not actually
bend at all but will rotate on its pinned support to restore the angle at the fixed joint.

In pictorial terms, the spline representing the shape of the column receives the new coordinates
from the rotate operator. As in a real paper and pencil drawing, the column (pictorially the
spline) is now shown in the correct rotation but is no longer attached to the support at the
bottom end. An implicit piece of knowledge says that all structural components connected by a
joint remain connected throughout the deformation process. Therefore, the beam (pictorially
the spline) is moved in the direction of the rotation of the column so that the column is again
attached to the support.

REDRAW-I now proceeds to examine other parts of the picture. The system notes the hinged
joint at the other end of the beam but finds no constraints that apply. That is, the original
bending of the beam caused a rotation in the hinge which was allowable. REDRAW-I notes at
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this point that COL2 is attached at the other end to another pinned support. The system then
checks the moment around the fixed joint, JOINTI and determines that the entire structure
must sway towards the hinged joint in order to release the moment around JOINTI. Again,
the system need not determine the numerical value of these forces, only whether the moments
were zero, negative or positive. The Diagram Layer replaces the coordinates of the spline for
COL2 just as it did with COLI and then changes the column's position so that it still attached
to the pinned support at the other end.

The system goes through the drawing again to look for additional constraint violations in the
current deflected shape of the frame structure. The sequence of the execution steps is
displayed as shown in Figure 7. If all applicable constraints are built into the system, then the
drawing should depict a stable deformed structure under load. (In the current implementation,
however, REDRAW-I does not have the capability to recognize unstable structures.)

18



Kee Desktop 1 - Lisp Listener

(deflect 'structure.layer 'load1 'beam1)
Apply LOAD1 toBeaml.

LoaD1 will deflect BeAM1 downward in middle.
Examining picture...

BeAM 1 is connected tocoL 1 by JOINTT.
Angle between Beam1 andcot 1 is less than 90 degrees.

JOINT1 is of support type fixed.
Constraint: coL 1 must be at 90 degrees toseam1.

BendcoL1 to restore 90 degree angle.

coLlisattached toPINNED.SUPPORT 1 at otherend.
Constraint: coL 1 must rotate on PINNED.SUPPORT 1.

RotatecoL 1 OnPINNED.SUPPORT 1.

Moment is non-zero around JOINT 1.
Constraint: Moment must be zero around JOINT1.

BeaMm1 is connectedtocoL2 by HINGET.

Angle between geam1 and coL2 is less than 30 degrees.
HINGE 1 is of support type hinged.

No constraints apply.

Examining picture...

coL2isconnectedtoPINNED. SUPPORTZ.

Releasemoment at JOINTT.
STRUCT 1 sSwaysSONPINNED.SUPPORT 1 andPINNED. SUPPORTZ2.

Angle between coL2 and PINNED.SUPPORTZ is less than 90 degrees.
PINNED.SUPPORT 1 is of support type hinged.

coL1isconnected toBeAM1 by JOINTT.

Angle betweenseam1 and cor 1 is 90 degrees.

No constraints apply.

BeaM1 is connected tocoL2 by HINGET.
Angle between geam1 and coL2 is less than 90 degrees.
HINGE1 is of support type hinged.
 No constraints apply.
Examining picture...

No more constraints apply.

Figure 7: Summary of problem solving process of REDRAW-I in Example 2
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2.3 DISCUSSION

REDRAW-I successfully analyzed simple deflection shape problems. In REDRAW-I, the
domain knowledge in the Structure Layer determines how the structural members are deformed
one by one and, thus, how the reasoning proceeds. Since the constraints in the symbolic layer
contain implicitly the knowledge that deformations propagate from one component to those
connected to it, examination of the diagram also proceeds from the component sustaining the
original load to the components connected to it, and so forth. In addition, an issue arises
concerning the necessity of a "local versus extended" examination of a component in the
propagation of the deformation. A hinge joint, for example, allows rotation of the components
connected to it. The effect of the hinge on two connected components is localized at the
connection point. A fixed joint, on the other hand, requires an examination of the type of
attachment at the other end of the component so that an appropriate constraint can be applied
and the correct deformation shape be imposed. Thus a more complex or extended examination
of a component must take place to correctly implement the fixed joint constraint.

REDRAW-I allows the user to concentrate on the qualitative features of the structure, without
requiring the specification of details. The diagrammatic components of the system facilitate the
visualization of the particular deformation problem and its likely range of solutions. To aid in
this visualization, we purposely include a "write-over" ability such that at each step after a
shape transformation, the previous configuration is shown in dotted lines, just as a person
draws a deformation right over the original line rather than create a separate new drawing.
Displaying the "before" and "after" shapes allows the user to visually inspect and verify the
inference process that was used in the shape transformation. The explanation facility of
REDRAW-1, which explains every step of the reasoning process, provides the user with
further insight into the constraints imposed and the inferences made to arrive at the final stable
deflected shape.

We learned from the first implementation reported herein much about how the system should
function at both the Structure Layer and at the Diagram Layer. However, since REDRAW-I
followed a very informal analysis method, its heuristics did not work well when the structure
became more complicated. The most critical shortcomings of its informal method is that it did
not reason explicitly about forces and bending moments underlying the heuristics for
determining how the deformation should propagate. As a result, when there were some
ambiguities due to multiple rules being applicable to propagate deformation, it could not

resolve the ambiguity or even reason about the real cause of such ambiguity, which would
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normally be due to effects of competing forces or bending moments. Furthermore, because
there were no explicit reasoning about forces and moments, one could not proceed directly
from the informal analysis to a more formal analysis, which would require reasoning about
those concepts. REDRAW-II, described next, was implemented to address these problems, by
employing a more formal analysis technique that would allow us to reason explicitly about
forces, moments and the shape, while taking full advantage of diagrammatic reasoning
capabilities.

3. REDRAW-II

REDRAW-II solves the deflection shape problem by explicitly reasoning about the forces,
moments, and shape. Its analysis method better reflects the formal analysis technique
employed by structural engineers, and, in principle, can be used to analyze much more
complex structures than REDRAW-I could.

As in REDRAW-1, REDRAW-II has two layers: the Structure Layer which contains the
symbolic representations of the domain knowledge, and the Diagram Layer which provides an
environment for reasoning with a depictive representation. REDRAW-II differs from
REDRAW-I in two main respects: First, the system's knowledge base and the reasoning
mechanism makes explicit the three subproblems -- the force equilibrium, moment equilibrium
and deflection -- which the structural engineer must consider simultaneously in order to
determine the final deflected shape. REDRAW-II draws and manipulates three different
diagrams, a force diagram, a bending moment diagram, and a shape diagram, to reason about
the subproblems and display the results. In general, the three subproblems can be solved in
any order, but the most efficient solution strategy depends on the problem and what
information is available at any given point. A partial solution to one subproblem can be used to
obtain a partial solution to another subproblem, and the solutions can be checked for mutual
consistency. Secondly, the subproblems are not solved only through manipulating diagrams,
but also through setting up equations and solving them. Diagrams are used not only to solve
the subproblems but also to make control decisions such as what force to solve for next and
what equation is likely to produce an answer for the force.

3.1 SYSTEM ARCHITECTURE OF REDRAW-II

As in REDRAW-I, REDRAW-II consists of the Diagram Layer and the Structure Layer. In
REDRAW-II, the knowledge base of structural engineering knowledge in the Structure Layer
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is divided into two parts. One part is the set of three rule bases for rules relating to the analysis
of force, moment and deflection. The relevant rule base is examined in full each time a
different stage of the analysis is chosen for action. The rules express straightforward pieces of
engineering knowledge which can be applied immediately to the problem at hand. Examples of
such rules are "the horizontal force at a vertical roller support is zero," and "the vertical and
horizontal forces at the unsupported end of cantilevered segment is zero." The other part of the
Structure Layer knowledge base consists of methods for selecting an equation to set up that is
most likely to lead to a solution and methods for solving equations.

3.1.1 The Task Hierarchy

In REDRAW-II, each problem solving step represented as a well-defined task, and the system
maintains queues of tasks for the three separate subproblems. This design allows the system
to move back and forth among the three subproblems as relevant knowledge becomes known.

The initial task is always a task to analyze a structure that has been specified both symbolically
and diagrammatically. It, in turn, creates three high-level tasks to determine the bending
moments, reaction forces and deflected shape of the proposed structure. Each task is placed in
the separate task queue. The analysis tasks in any particular queue may be in a form that the
system can act upon immediately, or it may spawn sub-tasks of its own to break down the
problem even further. For example, Find-all-forces is the initial task that is put on the force
queue. This task cannot be immediately performed. Instead, it causes creation of a sub-task to
try to apply all of the force-related rules in the knowledge base to the problem of analyzing the
force equilibrium. If the force rules are not successful, then new sub-tasks will be created to
formulate and solve a force or moment equilibrium equation around a particular point in the
structure, and then solve that equation qualitatively.

When a task is completed successfully, the new piece of information about the structure is
placed in slots of the frames associated with the relevant structural members. For example, if a
particular vertical or horizontal force is calculated at a point, then the qualitative value (zero,
positive or negative) is placed to a slot in the force object associated with the structural member
(i.e. the force object Force.P associated with the beam PS). When a task fails, it is marked
"failed" and put back on the queue.

The current control strategy for deciding what queue to turn to look for the next task is as
follows: The queues are prioritized in the order of force, moments, and shape, with the force
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queue having the highest priority2. Initially, the queue with the highest priority becomes the
current queue. The system keeps dequeuing tasks from the current queue until the queue is
empty or until none of the tasks on the queue succeeds. Then, the queue with the next highest
priority becomes current. If there is no lower-priority queue than the current one, the highest-
priority queue becomes the current one. This continues until all the queues are empty.

3.2 EXAMPLE

Figure 8 illustrates the three sub-problems of a problem solved by REDRAW-II. Figure 8a.
shows graphically the information that is specified about a structure to be analyzed. This
structure is specified both symbolically and diagrammatically. Figures 8b. - 8d. show the
finished results of the force, moment and deflected shape analyses. To give an idea of the
reasoning that REDRAW-II uses, we will describe part of each of the three stages of the
analysis.

Focusing on the force diagram in Figure 8b. we are given only the vertical downward force
imposed by the point load at E. In order to correctly determine the deflected shape, the system
must identify all force reactions to the load and ensure that all forces are in equilibrium. The
system will first examine the force rule-base for any rules that might be applicable. Finding no
useful force rules, the system must set up and solve several qualitative equations to determine
all of the force reactions. For example, in order to find the vertical force VF.4 at A, the system
will set up a moment equilibrium equation around point C. This equation will be of the form:
VE.E* 112 |BC/+ BC*VE =0

Solving for Vg.4 qualitatively, the system determines that the vertical force at A is positive
(upward). A similar equation set up around B will show that the vertical force at D is also
positive, allowing all forces to be in equilibrium.

For the moment diagram in Figure 8c. the moment rule-base was utilized extensively. For
example, the values of the bending moment at points A and D are both zero, since the specified
hinged supports allow rotation of the attached column when a load is applied. This result is
confirmed diagrammatically in Figure 8d. in which the deflected shape also shows the rotation
of the hinged support.

2 The order is actually arbitrary.
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Figure 8: An example of a problem solved by REDRAW-II

3.3 DISCUSSION

REDRAW-II is able to solve the same type of deformation shape problems as REDRAW-I
could, while computing the forces and bending moments in addition to the shape. The analysis
method of REDRAW-II is more formal than that of REDRAW-I. REDRAW-II explicitly
reasons about theoretical concepts of interest such as forces and moments and inflection point,
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which underlie determination of deformation shape but which themselves are not visual. In
REDRAW-I in contrast, such knowledge was not explicit in the rules for propagating
deformation. Because REDRAW-II reasons explicitly about theoretical concepts and used
equations to reason about them, it is possible to enumerate systematically all the possible
qualitative solutions when there is ambiguity and identify the causes of such ambiguity. Also,
this would make it more straightforward to proceed to a more precise quantitative analysis from
the results of REDRAW-II. Furthermore, the fact REDRAW-II reasons about and generates
diagrams of the forces, moments and shape makes it possible to check the consistency of the
solutions.

Because of the more formal analysis method REDRAW-II employs, we believe that its
problem solving capability is more general and also more easily extensible in principle than
REDRAW-1. With respect to diagrammatic reasoning aspect, however, REDRAW-II relies
more on symbolic reasoning to solve problems and relies less on diagrams than REDRAW-IL.
This is not surprising, since this type of problem is solvable in principle without any
diagrammatic reasoning capability at all as demonstrated by QStruc[Fruchter, Law and Iwasaki
1991]. This is not evidence that diagrams are useless when a more mathematical analysis
method is employed, but, as Larkin and Simon have shown in their work, diagrams are useful
. for controlling the reasoning process even when a formal (mathematical) technique is
used[Larkin and Simon 1987].

In REDRAW-II, the diagrammatic information is used more for control purposes than for
actually solving a problem, especially for computing the forces and the bending moments. For
example, forces are computed by rules in a few simplest cases, and by setting up and solving
equations for the rest. REDRAW-II's heuristic methods to determine what equation is most
likely to produce an answer for a particular force given the available information relies on
diagrammatic information. REDRAW-II's ability to make such control decisions is much
weaker at this point than a human engineer's partly because we simply have not articulated
many such heuristics in a general enough form to put them into the system. Another important
reason for the weakness is that the set of diagrammatic inspection operators currently
implemented in REDRAW is incomplete and does not allow us to implement some heuristics,
especially those requiring detection of global features of diagrams (e.g. detecting symmetry).

In implementing REDRAW-I and -II, we initially intended all the diagrammatic operators, such
as bend, rotate and smooth, to be domain- and task-independent. However, it has become
clear that while some operators are domain-independent, others are quite domain- and task-

specific. For example, our "bend" operator bends a straight line into a simple curve that
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resembles the curve even a novice would draw to indicate the shape of a stick under a load.
However, the implementation of this "bend" operator reflects the assumptions implicit in the
domain and the task -- for instance, the curvature of the bent line is large enough so that it can
be clearly seen, but not so large that the structural member would appear to be broken. Also,
the particular choice of inspection operators we have implemented reflect the nature of the
problem we chose to work on. A more general-purpose diagrammatic reasoning layer will
require a larger set of operators. The operators also need to be parameterized to work in a
larger variety of situations. They must include operators for inspecting and manipulating both
local and global features of a diagram. They must cover the types of operations humans can do
fairly easily with diagrams.

4. CONCLUSION

This paper described our work on exploring the potential of diagrammatic reasoning in a
concrete problem-solving context. We have built prototype programs REDRAW-I and -II,
which reason qualitatively about deflection shape problems using diagrams. They solve the
problem in a more computationally efficient manner than a similar system, QStruc [Fruchter,
Law and Iwasaki 1991], in which a purely symbolic approach was taken to the same frame
structure problem. The efficiency advantage over QStruc is due to the fact that use of the
diagram allows the system to focus the solution process much better than QStruc, which
literally blindly sets up all equilibrium equations that apply and tries to solve them. Our
informal evaluation of the systems shows that the solution process of REDRAW programs are
much more instructive in helping the user to gain intuitive understanding of how frame
structures behavior under a load.

REDRAW-TI's informal analysis technique involving propagating deformations to other parts of
the structure uses a shape diagram extensively. REDRAW-II's analysis method involves more
formal, symbolic reasoning, including formulating force and moment equilibrium equations
and solving them. Unlike REDRAW-I, REDRAW-II explicitly solves the three different
subproblems, namely forces, bending moments and the shape. When a more formal method
of solving the problem is employed, the diagram is useful for controlling the inference.

We believe that diagrammatic reasoning has many advantages over purely symbolic reasoning

in problems dealing with spatial information. The explicit representation of the geometric

information greatly facilitates certain types of inferences about spatial configuration, that might

require many inference steps using purely symbolic representation. Furthermore, since people

do use diagrams extensively in many types of problems involving spatial information,
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programs that use diagrammatic representation in the similar manner will be much easier for
people to understand. For this reason, programs that are based on diagrammatic representation
will also be much more useful for teaching purposes.

We emphasize that REDRAW-I and-II are prototype systems that were developed primarily to
explore the role of diagrammatic reasoning in qualitative structural analysis. The primary
objective is to provide a good environment for studying diagrammatic reasoning, and how that
type of reasoning is integrated with symbolic reasoning for engineering problem solving. The
approach that we have undertaken allows us to examine and model more readily the flow of
pictorial and symbolic reasoning as well as to better identify the visual operators which are
important in the process of reasoning with diagrams. As a result of this study, we are in a
better position to identify interesting problems concerning organization of information
consisting of both symbolic and pictorial components and the complexity of problem solving
process that uses such information. By developing a strong understanding of the role visual
reasoning plays in the problem-solving process, we hope to be able to construct a general tool
that can be used to build diagrammatic reasoning systems for other engineering problems.

4.1 FUTURE WORK

The diagrammatic reasoning component of REDRAW that has been implemented thus far
meets only the minimum required to complete the target task. We are in the process of
designing a more general purpose diagrammatic representation and manipulation module. The
module will contain a direct representation of a diagram using an array of cells as well as a
symbolic representation of the diagram consisting of hierarchically organized elements of the
diagram. It will also provide a whole range of parameterized operators for generating,
manipulating and inspecting the diagram. We plan to make the module the kernel of a
diagrammatic reasoning shell that can be used to implement problem solving systems for a
variety of different tasks requiring use of line diagrams.

We are also working on a formal characterization of a diagrammatic representation. Diagrams
are very useful in representing certain types of relations and making inferences about them, but
if one is not careful about what types of inferences are warranted with a particular
diagrammatic representation, one could make incorrect inferences or fail to make an inference.
Therefore, it is important to be able to formally characterize a diagrammatic representation in
terms of its information content and the types of inference sanctioned by the representation.
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This is also essential in elucidating the role diagrams play in problem solving, given a problem
and a particular type of diagrams used.

In addition to examining the role of diagrammatic reasoning in problem solving, we are
considering the generality of our work and its extendibility to other areas of technical design
such as in architecture and mechanical engineering. Larkin and Simon [Larkin and Simon
1987]show that even with a symbolic representation, problem solving efficiency in some cases
can be greatly improved by organizing the information in a way that reflects the physical
structure of the object represented. With a mixed symbolic and diagrammatic approach,
interesting problems concerning the organization of the information and the computational
complexity of the problem solving algorithm may arise that could later effect both scalability
and generality. By developing a strong understanding of the role that visual reasoning plays in
the overall problem-solving process, we hope to be able to construct a general tool that can be
used to build diagrammatic reasoning systems in other problem domains.
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