Clr ECENTER FOR INTEGRATED FACILITY ENGINEERING

A Data Management Model
for
Change Control in
Collaborative Design Environment

By

Karthik Krishnamurthy
and
Kincho Law

CIFE Technical Report #106
March, 1996

STANFORD UNIVERSITY

© Copyright by Karthik Krishnamurthy1996
All Rights Reserved

SUMMARY
CIFE TECHNICAL REPORT #106

Title: A Data Management Model for Change Control in Collaborative
: Design Environment

Authors: Karthik Krishnamurthy and Kincho H. Law

Dept. of Civil Engineering, Stanford University

Publication Date: March 1996
Funding Sources: :

» Name of Agency: National Science Foundation, Grant No. IRI-9116646-01

» Title of Research Project: Integrated Data Exchange and Concurrent Design for

Engineered Facilities

» Name of Agency: Center for Integrated Facility Engineering, Stanford University
e Title of Research Project: Version and Configuration Management of 3-D CAD Object Model

1. Abstract:

This report presents a data management model to support collaborative design. The
model monitors independent design activities by systematically tracking component
descriptions in the individual disciplines. A multidisciplinary project is then described
in terms of independently evolving designs from the participating disciplines. A closely
coupled three-layered framework of versions, assemblies and configurations is
proposed to manage independent design entities and coordination among design
participants. The model has been implemented and validated on both ORACLE
relational database system and AutoCAD system.

2. Subject:

This report describes the results of a research project that studies the issues involved in
collaborative design. Based on our observations of current design practice, we propose
a management solution in terms of version and configuration control of design data. In
particular, a three-layered framework of versions, assemblies and configurations that
can be implemented in both relational database and CAD environments is developed.
The model can support project coordination through asynchronous communication-of
changes among designers, as well as project monitoring through systematic tracking of
evolving project descriptions. «

3. Objectives/Benefits:

Engineering design is a complex process which involves coordination of
multidisciplinary efforts. For the most part, designers from each participating
discipline independently develop aspects of the project from their perspectives.
Individual designs are then aggregated to describe an overall project design. Besides
being multidisciplinary in nature, design is an evolutionary as well as iterative process.
Each designer typically generates, in parallel, several design alternatives, some of
which are incrementally refined and/or modified until a satisfactory solution is
obtained. The iterative design process requires maintaining descriptions of the entity at
intermediate design stages of the design process. In addition, individual designers,
despite their cooperative spirit, often desire autonomy and to retain control over the
information they shared with others. For one, designers from different disciplines are

ii

affiliated with different firms (or different departments within the same firm). In
practice, designers independently evaluate several design options before sharing a more
persistent description with the design team. The proposed data management model is
designed to support collaborative design as well as allows independent control of
individual design. The model has been tested in both a database management system as
well as a CAD environment. It is envisioned that the model proposed herein can
significantly enhance current mutidisciplinary design practice if the features described in
this report are included in future CAD systems .

Methodology:

The background and status of current research related to version and configuration
management as well as collaborative design issues were extensively reviewed. In
addition, current design practices were studied through a real seismic retrofit design
project. The change control procedures adopted by the designers were observed. The
proposed data management model was then developed, taking into consideration the
issues involved in current mutlidisciplinary design practice. An application to a
simplified design of a Medical Cyclotron facility has been used to illustrate the
practicability of the data management model.

Results:

There are two saliant features of the proposed data management model. First, a three-
layered closely coupled framework of versions, assemblies and configurations is
developed. Configurations are used to integrate designs from each of the participating
disciplines to describe an overall project. Assemblies are used to describe designs in
each discipline or complex entities. Complex entities are in turn formed by aggregating
instances of primitive entities in the database. An evolving description of a primitive
entity is maintained using a version hierarchy, each version in a hierarchy contains
specific descriptions of instances of that entity.

The second feature introduces a new concept of equivalent operations, which provides
an efficient mechanism for managing changes among versions of a primitive entity. By
applying this concept, we establish a version of a primitive entity as the summary of all
- changes that have been made to its contents. In addition, we develop operators to
store, detect and characterize changes among individual versions. The close coupling
of the versions, assemblies and configurations allows the computed version changes to
be recursively combined to represent changes at various levels of design abstractions.

Applying these two concepts, a theoretical data management model is developed that
supports project coordination through the asynchronous communication of changes
among designers, as well as project monitoring through systematic tracking of evolving
project descriptions. The model is tested by prototype implementations using
ORACLE, a relational database software, and AutoCAD, a graphic CAD environment.

Research Status:

The theoretical framework of versions, assemblies and configurations is completed and
tested. The model is ready for implementation in CAD environments. One remain
issue that needs further exploration is to implement the model in a truly distributed
design environment.

ii

“Abstract

This thesis presents a data management model to support collaborative design environ-
ments. Specifically, the proposed model describes a multidisciplinary project in terms of
independently evolving designs from the participating disciplines. The model monitors in-
dependent design activities by systematically tracking component descriptions in the indi-
vidual disciplines. Projects are coordinated through asynchronous communication of design
changes. There are two salient features of the given model. First, we specify a three-layered
closely coupled framework of versions, assemblies, and configurations. In this framework,
configurations integrate designs from each of the participating disciplines to describe an
overall project. Assemblies can be either total or partial. The designs in each discipline are
represented as total assemblies; partial assemblies represent complex entities that can be
further aggregate& to describe an overall design in a given discipline. Complex entities are
in turn formed by aggregating instances of primitive entities in the database. We maintain
an evolving description of a primitive entity as a version hierarchy; each version in a given
hierarchy contains specific descriptions of instances of that entity. ‘ ,

The second feature introduces a new céncept, equivalent operation, which provides an
efficient mechanism for managing changes among versions of a primitive entity. Intuitively,
an equivalent operation is a single data operation that summarizes the effect of a sequence
of changes on an instance description. By applying this concept, we establish a version of
a primitive entity as the summary of all changes that have been made to its contents. A
version in the data management model is thus a unit of granularity whose consistency can
be evaluated. In addition, we develop operators to store, detect and characterize changes
among individual versions. The close coupling of the version, assembly and configuration
levels allows these computed version changes to be recursively combined to represent changes
at various assembly and configuration levels.

Applying these two concepts, the model efficiently supports project coordination through

iv

the asynchronous communication of changes among designers, as well as project monitoring
through the systematic tracking of evolving project descriptions. We have implemented and
tested the model in both an ORACLE relational database for alpha-numeric design data as
well as an AUTOCAD environment for 3-D graphical objects. ‘

Acknowledgments

This report is reproduced from a doctoral dissertation by Karthik Krishnamurthy submitted
to Stanford University. The doctoral committee comprised of Professors Kincho H. Law
(principal advisor), Jeffrey D. Ullman and Paul Teicholz. The authors would like to thank
Professor Jennifer Widom, Dr. Arthur Keller, Dr. Craig Howard, Dr. Ashish Gupta and
Dr. Sanjai Tiwari for their valuable discussions and feedback throughout this project.

This research was partially sponsored by the National Science Foundation, Grant No. IR-
9116646, and by the Center for Integrated Facility Engineering at Stanford University.

vi

Contents

o Ut W

Abstract iv
Acknowledgments vi
1 Introduction

1.1 Need for Change Management v
1.2 Need for a Comprehensive Data Management Model
1.3 Survey of Related Work B

1.4 Outlineof Thesis i e 13

2 Overview of the Data Management Model 16

2.1 Requirements of a Data Management Model 18

2.2 Version Model B 19

2.3 Assembly Model oo 22

2.4 Configuration Model e S .24

2.4.1 Overview of the Configuration Model IR 24

2.4.2 Configuration Properties tb Support Collaboration 25

2.5 Application of Equivalent Operations to the Proposed Framework 27

2.6 Application Example e 29

2.7 Summary and Discussions 0., P 31

3 Version Model - 42

3.1 Overview of the Version Model 45

3.2 Basic Relational Scheme L o o oL 55

3.2.1 Overview of the Relational Data Model 55

3.2.2 Relational Implementation Scheme R .56

viii

3.2.3 Modifying a Version Description
3.24 Drawbacks e
3.3 Theory of Equivalent Operations
3.3.1 Rules to Compute an Equivalent Operation
3.3.2 Equivalent operation of.a sequence' of opératioﬂs A
3.3.3 Final Description of Instance [
3.3.4 Algebraic Laws for Precedence Relationships
3.3.5 Computing Equivalent Operation for a Valid Sequence of Changes
3.4 Representation Scheme Based on Storing Changes
3.4.1 Basic Representation Scheme
3.4.2 Describing a Version Definition
3.4.3 Optimization for Representation Scheme
3.5 Application of Equivalent Operations to the Version Model
3.5.1 Describinga Version o o o
- 3.5.2 Computing Changes Using a check-out/check-back-deltas Protocol
3.5.3 Integrating Application Changes with an Active Version
3.5.4 Computing changes between versions
3.5.5 Removingaversion0.ea...

3.6 Summary and Discussions e e e e

Assembly and Configuration Models

4.1 Assembly Model for Design Applications

4.1.1 Overview of the Assembly Model B
4.1.2 Assembly Properties for Collaboration

4.1.3 Relational Representation Scheme
4.1.4 Extensions to the Version Scheme
4.1.5 Assembly State Operators
4.1.6 Assembly Change Management N
4.2 Configuration Model e
4.2.1 Overview of the Configuration Model e e
4.2.2 Configuration Properties for Collaboration e e
4.2.3 Relational Representation Scheme
4.2.4 Configuration Change Management SRR

X

4.3 Summary and Discussions 145

Change Management in a CAD Environment 147
5.1 Application Example oL, R Y
5.2 Version Model.0 e e R 149
5.2.1 Representation Scheme 149
5.2.2 Version Change Management 152
5.3 Assembly Model161
5.3.1 | Representation Scheme - oL L. 162
5.3.2 Modified Implementation of Assembly State Operators 164
5.3.3 Assembly Change Management 166
5.4 Configuration Model I 173
5.4.1 Representation Scheme 173
5.4.2 Support for Project Change Management 174
5.5 Summary and Conclusions v vvu e [176
Summary and Conclusions 178
6.1 Model as a Comprehensive Data Management Solution 179
6.2 Limitations and Future Work, 181

| LiSt of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.1
3.12
3.13
3.14

3.15
4.1

5.1
5.2

Example Configurations Created by a Structural Engineer

Specifications of States of Component Assemblies

Sequence of Operations on Version States (Application Example)
Relational Representation of a BEAM Entity
Database Operations to Specify Version States (Application Example) . . .
Description of the BEAM Entity after Executing the Operations in Table 3.1
An update-version Operator to Modify a Version for Change A
Change Made to Instances Contained in an Active Version (m-2)
Description of the BEAM Entity After Executing the Changes in Table 3.6 .
Instantiation of Version m-2: materialize(m-2)
Function (get-eqchange (u, v)) for Computing an Equivalent Operation for

aPairof Operators

summarize (u, v, w) Function for a Sequence of Changes on an Instance . .
Function, merge(remove-id), to Merge Changes Between the Removed Ver-

sion and its Children

Example Sequence of Version Operations on the Box Entity.
Example Sequence of Operators on a Box Instance 2.78672e+06 (ENTITY-
Ops-LoG List) e

63
63
64
64
65
79

85
86

- 86

95
99

104
105

5.3 Detected Change on Box Instance 2.78672e+06 (Application Example)
5.4 Example Configurations Created by a Structural Engineer

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9
2.10

2.11

3.1
3.2

Architect Delivers Initial Floor Plan 3
Structural Designer Independently Develops Shear Wall-Framing System . . 3
Architect Modifies Initial Floor Plan 4
Architect Generates Alternative Layouts before Selecting New Floor Plan . 4
Architect Presents New Floor Plan 5
Building Example to Illustrate the Propagation of a Single Design Change
Across Disciplines and Different Levels of Detail 6
Initial Floor Plan of the Facility (Assembly aa-i0) 34
Example Version Hierarchy of a Box Entity 35
Version Model for Design Applications 36
Component Hierarchy of Architectural Assembly aa-i0 37
Assembly Model as a Finite State Machine 37
Configuration Model to Support Collaboration 38
Current Structural System (Assembly sa-f0) Based on Initial Floor Plan . . 38
Intermediate Configuration sc-1 to Validate Current Structural System Against
Initial Floor Plan o L e 39
Alternative Layouts Generated by the Architect to Satisfy Client’s Require-
ments e e e e e e e e e e 40
Intermediate Configuration sc-2 to Validate Current Structural Sys£em Against
New Floor Plan e 41
Intermediate Configuration sc-3 to Validate Modified Structural System Against
New Floor Plan i e 41
Initial Version Hierarchy: BeaM Entity 46
Procedure to create a Root Version of a Primitive Entity . R 48

xiii

3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10
3.1
3.12
3.13

3.14
3.15

3.16
3.17

3.18
- 3.19

3.20
3.21
3.22

4.1
4.2
4.3

4.4
4.5

Procedure to activate a Version of a Primitive Entity 49
Procedure to suspend a Version of a Primitive Entity 50
Procedure to declare a Version of a Primitive Entity 51

Procedure to derive a New Child Active Version of a Previously declared

VETSION & . v v o e e e e e e e e e e e e e e ... b2
Procedure to remove an Existing Version from an Entity Derivation Hierarchy 52
Version Model as a Finite State Machine 53
BeaM Entity Hierarchy after Executing Operators in Table 3.1 54

Extended Representation Scheme of the BEAM Hierarchy Shown in Figure 3.9 76
Algorithm to materialize a Version Represented by Equivalent Operations 80
Procedure to complete a Version in an Entity Derivation Hierarchy 81
Procedure to materialize a Version of a Primitive Entity Represented by

the “Optimized” Scheme o e 94
Relational Description of materialized BEAM Version m-2 95

Algorithm to compress a Sequence of Operators on Each Modified Instance

to Detect the Net Changes Made During an 'App]ication Session 96 -
Procedure to Query a Version for an Instance Logically Belonging to It:
query-tuple Operator 97
Procedure to integrate Application Changes on an Entity with its Active

25 51) e e e e 98
Description of the BEAM Entity after Modifying Active Version m-2 99
Algorithm to compute the Changes Between Two Versions Where One Ver-

sion is an Ancestorof the Other v o cv v v v v v v .. e 101
Relational Representation of Changes Between Two Versions 101

Data Operations to remove a Version from an Entity Derivation Hierarchy . 102

Reconfiguring a Version Hierarchy When removing a Version Definition . . 103
Assembly Model as a Finite State Machine P 112
Procedure to define a New Assembly in a Particular Discipline 113

Procedure to generate a New Assembly as a Child of an Existing Defined

Assembly e e e 114
Procedure to eliminate an Existing Assembly from a Particular Discipline 115
Assembly Model as a Finite State Machine e 116

4.6
4.7
4.8
4.9
4.10

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

4.19
4.20
4.21
4.22
4.23
4.24
4.25

5.1
5.2
5.3

5.4

5.5
5.6

Version Model for Design Applications, 119
Procedure to freeze a Particular Version in an Entity Derivation Hierarchy 120
Procedure to thaw a Frozen Version in an Entity Derivation Hierarchy . .. 121
Procedure to publish a Particular Vérsion in an Entity Derivation Hierarchy 122

Procedure to suppress a Published or Perszstent Version in an Entity Deriva-

tion Hierarchy e e e e e e e e e e e 123
Procedure to archive a Particular Version in an Entity Derivation Hierarchy 124
Procedure to freeze a Defined Assembly in a Particular Discipline 126
Procedure to thaw a Frozen Assembly in a Particular Discipline 127

Procedure to publish a Frozen or Archived Assembly in a Particular Discipline128
Procedure to suppress an Assembly with an AccessProperty, “publish” . . 129
Procedure to archive a Frozen or Published Assembly in a Particular Discipline130
Procedure to define a New Configuration 134

Procedure to generate a New Configuration from an Existing Configuration

Definition e e 135
Procedure to eliminate a Defined Configuration 136
Configuration Model to Support Collaboration 138
Procedure to protect a Defined Configuration 139
Procedure to unprotect a Defined Configuration 140

Procedure to grant-access to an Intermediate or Recorded Configuration . 141
Procedure to restrict-access to an Accessible or Landmark Configuration 142

Procedure to stamp an Intermediate or Accessible Configuration in a Partic-

ular Di’scipiine e e e e e e e e e e e e e e e e e 143
Initial Floor Plan of the Facility (Assembly aa-i0) 149
Example Version Hierarchy of a Box Entity 157
Final Representation of the Version Hlerarchy (Box-INDEX and BOX-ACTIVE

Lists) . . o oo e oo 157
Instantiation of Version b-1a3 in BoX Derivation Hierarchy (materialize(b-

1a3)) . o o e e e e e 158

Description of Box Entity Hierarchy after Modifying Active Version b-1a3 . 159
Computation of Changes between Versions b-1 and b-1a3 (inserted Opera-
tions) e Ce e 160

XV

5.7 Computation of Changes between Versions b-1 and b-1a3 (replace Operations)160

5.8 Component Hierarchy of Initial Architectural Layout (Assembly aa-i0) . . . 163
5.9 Procedure to freeze a Defined Assembly in a Particular Discipline 168
5.10 Procedure to publish a Frozen or Archived Assembly e 169
5.11 Procedure to archive a Frozen or Published Assembly ". 170
5.12 New Floor Plan of the Facility (Assembly aa-il) PR ol
5.13 Component Hierarchy of New Architectural Layout (Assembly aa-il) 171

5.14 Current Structural System (Assembly sa-f0) Based on Initial Floor Plan . . 172
5.15 Intermediate Configuration sc-2 to Validate Current Structural System Against
New Floor Plan ittt e e e e 175

xvi

Chapter 1
Introduction

The engineering design process is often the result of a multidisciplinary collaborative effort.
For the most part, designers from each of the participating disciplines independently develop
aspects of a project according to their individual perspectives. These individual designs
are then aggregated to describe the entire project. For example, a building includes an
architect’s floor plan, a structural engineer’s framing system, and a mechanical engineer’s
ducting and piping systems, among others. Furthermore, a design in a particular discipline
is further described by its own component entities. For example, a particular structural
frame is described by aggregating its components, including specific beams, columns and
slabs.

In addition to the multidisciplinary aspect, engineering design is an evolutionary pro-
cess. Designers typically generate several solution alternatives in pa,ra,llel,v incrementally -
refining some of them to obtain more detailed descriptions. One of the developed solution
alternatives is then selected for the project. Also designers must often modify previous
changes made to a’design description that were later realized to be unsatisfactory. In situ-
ations where undesirable design features are not easily corrected, designers often redesign
the concerned alternative from an earlier description. Redesign efforts require maintaining
intermediate descriptions of entities through various stages of its evolution. Also, to monitor
a design process, designers ask questions such as: “How have the descriptions of instances
of a particular entity changed in the past two weeks ?” This involves computing changes
between intermediate descriptions of the concerned design alternative.

Complexity arises in multidisciplinary design situations because changes made in one

discipline commonly impact design descriptions in other disciplines. " Furthermore, these

CHAPTER 1. INTRODUCTION 2

changes are propagated through different levels of detail. This thesis presents a data man-
agement model to support collaborative design environments. Specifically, the proposed
model describes a multidisciplinary project in terms of the independent evolution of designs
from the participating disciplines. The model monitors independent design activities by -
systematically tracking component descriptions in the individual disciplines. Projects are
coordinated through asynchronous communication of design changes. There are two salient
features of the given model. First, we specify a three-layered closely coupled framework of
versions, assemblies and configurations. In this framework, we maintain a primitive entity
as a version set, where a version contains specific descriptions of instances of that entity. A
primitive entity, in our model, is one that can be described independently and is arbitrarily
specified for a given design situation. Assemblies integrate component instances to describe
more complex entities, as well as designs in individual disciplines. A particular component
of an assembly could be either an instance of a primitive entity or another complex entity
_ from the same discipline. Configurations provide a framework to describe an overall project
design that is composed of designs from the participating disciplines. Second, we introduce
a concept of equivalent operations to summarize the effect of a sequence of changes on an
instance description, and apply this concept to detect, store and manage changes among
versions of a primitive entity. The close coupling of the version, assembly, and configura-
tion levels enables changes at the assembly and configuration levels to be characterized by
recursively combining changes computed at the version level.

This chapter motivates this research effort, surveys related works and outlines the over-
all organization of this thesis. In Section-1.1, we consider a simple facility design example
to underscore the importance of managing changes in typical design situations, highlighting .
some critical issues addressed in this study. We monitored a facility design project [26]
to understand practices currently adopted by professional designers to coordinate changes
among them. While a number of strategies were used, they were mostly ad hoc and unre-
liable. Section 1.2 summarizes our observations, reinforcing the need for a comprehensive
model that systematicaﬂy manages project changes. Although this observed example con-
siders a design situation in the Architecture/Engineering/Construction (AEC) domain, the
issues examined are broadly relevant across most multidisciplinary collaborative environ-
ments from other domains as well. In Section 1.3, we survey some of the systems that
have been proposed for supporting collaboration among designers in multidisciplinary en-

vironments. While the reviewed systems address specific coordination issues, we have not

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Structural Designer Independently Develops Shear Wall-Framing System

encountered any comprehensive data management model that accounts for existing design
processes. We have also reviewed literature that enumerates the basic requirements for such
comprehensive data management schemes. Finally, Section 1.4 outlines our discussion of

the proposed model, detailing the organization of this thesis.

1.1 Need fbr Change Management

We illustrate the significance of change management in collaborative scenarios with a simple
facility design example which is typical of most multidisciplinary design sitnations. Figure
1.1 shows a preliminary meeting at which an architect provides the team with an initial
description of the floor plan. Referencing this initial layout, the structural-and mechanical
engineers independently design their framing and ducting systems, respectively. Figure 1.2
shows the structural engineer developing the shear wall-framing system. In the meantime,
however, the architect, in consultation with the client, modifies the floor plan to better
suit the facility’s requirements. Figure 1.3 illustrates this situation. In fact, the architect
generates several alternatives shown in Figure 1.4, before selecting one of them for the

current project. Figure 1.5 fast forwards to the next team meeting at which the architect

CHAPTER 1. INTRODUCTION 4

Y
5
i

t \
_— T

| -
= I

Figure 1.4: Architect Generates Alternative Layouts before Selecting New Floor Plan

presents the modified layout for the facility.- Only then is the structural engineer aware
that she has designed a shear wall-framing system for a floor plan that is no longer valid.
To address potential inconsistencies between the existing framing system and the new floor

plan, the structural engineer must know:

1. What has changed between the new floor plan and the floor plan that she currently

references ?
2. Which of those changes impact her work ?

This research focuses on efficiently answering the first question, while providing support for
the second.

Typically, a particular design change could impact design descriptions’in several disci-
plines, affecting entities at various levels of detail. Figure 1.6 demonstrates how the effects
of an example design change propagates. In Figure 1.6(a), the architect moves the two wall
panels W1 and W2. This change makes the existing structural framing system inconsistent
with the overall layout; the Y-axis frame F1 is now offset from the wall partitions. To
reestablish consistency, the structural designer moves the frame F1 to coincide with the

current positions of partitions W1 and W2. This is shown in Figure 1.6(b). Moving frame

CHAPTER 1. INTRODUCTION ' 5

Figure 1.5: Architect Presents New Floor Plan

F1, in this fashion, increases the spans of component beams of the X-axis frames G1 and
G2. Figure 1.6(c) shows the increase in the span of beam B1 in one of the X-axis frames
G1. The increased beam span accounts for greater design moments in beam BI, forcing
the structural engineer to redesign the beam’s sectional properties (Figure 1.6(d)). This
trivial example demonstrates that even a single design change (moving the wall panels in
the architectural floor plan) can_havé a significant impact on the overall design process;
the architectural change affected structural design entities at various levels of detail (from
the overall 3-D framing system through the sectional properties of individual beams). Real
design situations usually involve many such changes. Large projects, such as the design of
an industrial plant, can have hundreds of thousands of changes propagated among the many
designers who participate in the project. It is therefore obvious that change management

is indeed a very complex problem.

1.2° Need for a Comprehensive Data Management Model |

To better understand the strategies adopted by designers in professional design environ-
ments, we undertook a three month study [26] of a facility redesign project in the California
Bay Area, spanning the conceptual, schematic and detailed design phases. The project
involved reconfiguring a computer warehouse into a bioengineering plant.- The redesigned
structure was retrofitted to satisfy the latest seismic design codes. We specifically studied
the processes by which designers coordinated changes in this multidisciplinary environment,
identifying problems in communication and notification of design changes and other infor-
mation exchanges (such as client’s specifications, or rationale for design decisions among
others) within the design team. In this particular project, each team member was re-

sponsible for maintaining a log of the evolution of his/her own design description, and for

CHAPTER 1. INTRODUCTION 6

Gl

e

(@) Architect moves partition walls (b) Structural Engineer moves frame F1

Frame G1

J (c) Beam B1 has a larger span resulting
: in greater design moments

(d) Sectional properties of Beam B1 are
changed to account for the increase in design moments

Figure 1.6: Building Example to Ilustrate the Propagation of a Single Design Change
Across Disciplines and Different Levels of Detail

communicating to the other team members potentially impacted by these changes. One
such situation had the architect rearranging the interior spaces to meet the facility’s new
requirements. The architect generated an initial floor plan, and progressively modified it
based on feedback from the client. Concurrency became critical as designs in the other dis-
ciplines were referencing the same floor pldn even while the architect was iteratively refining
it. To provide some degree of order in this dynamic environment, the architect periodically
checkpointed his work, making the latest checkpointed description of the floor plan avail-
able to the other team members at weekly meetings. At each meeting, the architect would
also outline how the design had changed since the previous meeting. This helped to make
the other designers aware of changes that potentially impacted their work. The weekly
meetings also provided a forum for designers to evaluate their individual progress, and to
solicit feedback on the impact of their designs on the overall project. Outside of these
weekly meetings, the designers also communicated changes, both through formal change
order forms as well as through informal FAX and telephone messages.

Despite their cooperative spirit, individual designers still wished to retain control over

CHAPTER 1. INTRODUCTION 7

information they shared with others. The need for autonomy arose from a number of fac-
tors. For one, designers from different disciplines were affiliated with different organizations
(or different departments within the same organization). Also, they maintained varied
perspectives on the project according to their professional training. In one particular situa-
tion, we observed that the architect first independently evaluated several ceiling desigﬁs for -
their aesthetic appeal, before sharing possible solutions with the electrical and mechanical
engineers for their feedback. This strategy gave the architect flexibility in independently
evaluating several design options before sharing a more persistent description with other
team members.

Unfortunately, mechanisms currently used by professional designers are usually both
ad hoc and unreliable. Success of a specific strategy depends largely on the experience
and thoroughness of the individual designers. Our study identified three categories of data
management problems: (i) information transfer problems, (ii) understanding design intent
problems, and (iii) storage problems. Difficulties in information transfer relate to detecting
and communicating design information. In typical design situations, a number of poten-
tially conflicting design changes go largely undetected until later in the design process.
Comments such as “Only after constructing the facility will we realize all the design in-
consistencies,” are often expressed by engineering designers. Problems related to design
intent are due to insufficient understanding by individual designers of the impact of their
decisions on the design processes in the other disciplines. Lastly, storage problems arise
due to poor organization of design information that dynamically evolves through a design
process. Such information includes both the design descriptions as well as justifications for
their development. - -

The observations made during our study and subsequent discussions with practicing
designers have comvinced us that we need a comprehensive‘ data management model for
supporting collaborative design environments. The proposed model primarily addresses
storage issues, describing an evolving multidisciplinary project in terms of independently
evolving descriptions from the participating disciplines. The model also partially addresses
information transfer issues by providing a systematic framework to stbre, detect, and man-
age changes both across disciplines and through various levels of detail in each discipline.
In addition, the model supports an asynchronous communication scheme for coordinating

changes among the design team members.

CHAPTER 1. INTRODUCTION 8

1.3 Survey of Related Work

Challenged by growing competitive pressﬁres, the Architecture/Engineering/Construction
(AEC) and mechanical engineering industries (among others) have been charged with look-
ing for ways to improve their business processes by reducing costs, and by increasing qual- .
ity, responsiveness, and overall consumer satisfaction. In the building industry, a series of
workshops were held by the National Research Council [1, 2, 3] to develop a conceptual
framework for integration of computer-based technologies in the building process. These
workshops (known as Woods Hole workshops) soon focused on a conceptual framework as
well as developmental needs to formulate and construct an integrated database that spans
the life cycle of a facility. The integrated database (IDB) would eventually support all
phases of the building project and life cycle cost considerations, providing the economic ra-
tionale for the building owner to invest in its development. The Woods Hole workshops led
to the development of a prototype of an integrated database using heterogeneous hardware
and software. Although the prototype was tested only for a sequential execution of typical
tasks between the design and construction phases, the flexibility of the IDB to access and
propagate design changes was appreciated. The core of the IDB engine, an integrator, was
proposed to support the heterogeneous environment.

During the past decade, researchers have developed products and tools to support pro-
cesses in design/manufacturing organizations [17]. The key challenges in implementing such
Data Management Control Applications [11] has been to (i) survey current organizations,
processes and procedures, then (i) adequately defining the requirements, and finally (iii)
creating the. specifications necessary for .evaluating available products. The existing Prod-
uct Data. Management systems (PDMs) have largely focused on some of the product-related.
activities, such as tracking design files through a company’s release cycle, restricting access
to such files, maintaining past versions of files for obtaining audit trails, controlling the
update process, notifying users of file changes and performing electronic sign-offs. These
systems have not, however, addressed capturing, managing, and coordinating processes in
dynamically evolving collaborative environments.

Prasad, Morenc and Rangan [35] model concurrent environments by a number of inter-
dependent contexts that proceed in parallel; that is, designers are often required to proceed

with subjective interpretations using partial information. Based on their characterization,

CHAPTER 1. INTRODUCTION 9

Morenc and Rangan [33] have identified three requirements for concurrent engineering en-
vironments. First, concurrent activities typically involve a high degree of data and function
(design) interdependencies. Second, in contrast to design interdependence, concurrency also
implies the ability to design independently. As a result, in real design situations, a designer
must make assumptions about objects for which other designers are responsible. Third,
overall consistency must be ensured, as objects belonging to different designers evolve in-
dependently through the design process. Thus, concurrent engineering environments must
be flexible enough to accommodate various strategies to meet these three requirements.

Prasad et al[35] have also outlined seven categories of information management needs
of concurrent engineering environments: information modeling, teaming and sharing, plan-
ning and scheduling, networking and distribution, reasoning and negotiation, collaborative
decision making and organization and management. The basis for this requirement set is
detecting, managing and communicating changes within the design team, and identifying
and resolving any inconsistencies among the various designs.

We have reviewed some of the prototype systems that partially satisfy the enumerated
information management requirements. Initial research efforts in the computer-aided en-
gineering community have been primarily aimed at storing multidisciplinary design data.
Most of the surveyed systems use a centralized repository to maintain the final project
design [38, 10]. The DICE [31] project considers a distributed environment with each
agent having its own local database, although a centralized database is used to store the
overall design. KADBASE [15], on the other hand, considers a heterogeneous distributed
environment, addressing the issue of semantic and syntactic translations for data retrieval.
However, none of these research efforts have addressed the evolution of project descriptibns
over time, through independent development of individual designs from the participating
disciplines.

Efforts in software engineering [5, 30], engineering design [18] and document management
[34] have been concerned with the problem of recording an evolving project description in
terms of the independent evolution of its components. These efforts ha,v; been directed
towards integrating the areas of version control and configuration management. Version
control tracks the evolution of components with the duration as well as progress of the
project. The goals of version control are to facilitate the efficient retrieval and storing
of many versions of the same component, and to enforce restrictions for observing and

controlling the evolution of each component. Configuration management, on the other hand,

CHAPTER 1. INTRODUCTION 10

is interested in putting together components to form a system. Configuring of systems can
be separated into two related parts: (i) a generic description of the parts and their inter-
relationships that comprise the system, and (ii) an actual instantiation of a system from its
generic description. It may be noted that a generic description could be represented as a
product model shown by structured schemas and meta-schemas. The goals of configuration
management are to facilitate the fast instantiation of a system and to enforce restrictions
on the possible ways to describe a system.

The design database community has proposed versions to checkpoint evolving descrip-
tions of a primitive entity [20, 25] and configurations to describe a composite entity in terms
of specific versions of its components [20, 4]. Despite the proliferation of versioning schemes,
none of the surveyed efforts have adequately addressed the interactions between versions
and configurations in the context of multidisciplinary projects.

Ambriola et al[5] have traced the evolution of systems and tools used in software devel-
opment environments for configuration management and version control. Their exposition
is centered on two tools, the Source Code Control System (SCCS) [36] and make [9], which
are developed through three technological generations'. First generation environments, such -
as the Revision Control System (RCS) [40], integrated the configuration management and
version control activities by gluing together the two independent tools, creating a more
powerful environment for both tasks. The RCS system is at first a version control tool,
enhancing the SCCS model by explicating its tree structure and increasing control by the
system. Additionally, it provides a simple interface to the make program. A weakness of
this generation of tools is that they consider their components as unstructured files; the
tools fail to capitalize on situations where the contents of components are indeed restricted.
The second generation systems (such as Cedar [39] and Gandalf prototype [12] systems)
introduce the notion of a database; components are software objects with attributes. The
Cedar system considers two concepts: configuration and description file. A configuration
is an explicit description of both components and generic systems. Con{igurations also
specify how to resolve import/export between interfaces and provide methods to perform
inter-modular checking. A description file, on the other hand, contains the description of an
actual file system, choosing a physical file among the possible versions for each component.
In the Gandalf prototype, the organization of a system is depicted by AND/OR graphs.
A module could be structured by an AND grouping of other modules. The interface for a

specific module could be implemented by an OR group of possible candidates, each of which

CHAPTER 1. INTRODUCTION | 11

can exist in several (OR) versions. When a system is generated, exactly one implementa-
tion and one version has to be chosen for each interface in the system. These systems do
not exploit the embedded attribute schema in the database and the selection mechanisms
are still rather primitive. Further, the systems assume no constructs for inter-modular
type-checking, and consider no means for exp_ressfng module inter-connection. The thifd
generation systems (such as Adele [6]) develop a language-specific system that has knowl-
edge of the semantics of the components; this information is used to automatically construct
dependency graphs among the set of components. In Adele the only requirement for the
supported programming language is that components (called objects) have an interface and
a body. Interfaces can exist in more versions, and bodies for each version of an interface can
be in different versions or revisions. Adele introduces a family as a set of alike objects; a
particular interface can be implemented by a body or another sub-family. The instantiation
of a configuration is done by computing the composition list, selecting the right implemen-
tation from a user-defined description. Attributes that describe the individual objects can
be used in the selection process. Version control in this system is performed on atomic
objects.

Like software engineering, document management has also been an area of active re-
search for integrating version control and configuration management activities. Peltonen et
al[34] have developed an Engineering Document Management System (EDMS) that models
CAD drawings and other engineering documents as objects, which can be composed of sub-
documents and have multiple versions and representations. In this system, sub-documents
cannot be further decomposed. Further, a document version has one version from each
of its component sub-documents. A sub—document version has a primary representation
and additional secondary representations. The relationships among various representations
need not be symmetric. For ex@mple, a Postscript! representation could be generated from
a CAD drawing file but not vice versa. Documents contain user defined attributes as well
as actual data maintained as binary large objects (BLOBs) in a relational environment
(similar to the second and third generation software development environmenté).

The above configuration management systems fail to meet certain crucial needs of large

!Postscript is a registered trademark of Adobe, Inc; Postscript Language Reference Manual, Addison-
Wesley, 1990, second edition.

CHAPTER 1. INTRODUCTION 12

scale development efforts that involve a diverse group of professionals. Users cannot concur-
rently build different versions of the same system or share common derived objects. More-
over, the systems were not designed for distributed environments, which are more common
in multidisciplinary situations. Leblang and Chase [30] developed a Domain Software Engi-
neering Environment (DSEE) that addreséés some of these concerns. Their éystem is based
on the tight integration of the system builder (configuration management) and the source
code control system (version control); configuration threads are a rule based description
of component versions used for building a particular system. The process of instantiation
evaluates the configuration thread, resolving any dynamic references to specific versions.
The result is a version description containing the exact version and translation rules for
each component. The cornerstone of this work is the network-wide transparent access to
arbitrary versions of source elements. This assumption does not hold in usual design sit-
uations where individual designers wish to retain control over the information they share
with others. ,

Katz et al[20] and Chou and Kim [8] have enumerated certain interesting combinations
of version properties necessary for collaboration as distinguishable version states. Simi-
larly, Peltonen et al. have outlined document approval and release procedures by means of
user-defined state graphs. Unlike the design version models of Katz and Chou, the latter
document management system provides a more general mechanism for defining appropriate
state graphs. This system provides authorizing and commit progra,ms that allow greater
flexibility to meet individual organization procedures. However, none of the reviewed sys-
tems have systematically identified the minimal set of basic version properties necessary to
'support collaboration. _ | '

Parallel research efforts have focused on coordibna;ting concurrent changes on shared de-
sign entities. Hall [13] argues against exclusive locks when modifying design objects and pro-
poses an asynchronous communication scheme for notifying designers of changes to objects
they are currently referencing. Spooner et al[37] have developed rules to merge concurrent
changes, identifying and resolving conflicting modifications. They have n(;t, however, ad-
dressed the integration of the merged change set with an existing version description. We are
also not aware of any research efforts that address the complementary problem of detecting
changes made to a structured design representation in CAD application environments.

Recently, a number of mechanisms have been proposed to support communication among

CHAPTER 1. INTRODUCTION 13

different design applications. The surveyed frameworks include blackboards [38], design crit-
ics [31], and federations of software agents coordinated by task-independent facilitators [24].
Unfortunately, these methods are fairly ad hoc in the absence of any underlying model that
captures the complexity of the design process. In summary, we have encountered no compre-
hensive data management model that systematically and efficiently manages changes _acfoss
- different disciplines and through various levels of detail. For any model to be meaningful it
should also parallel current practices adopted by professional designers, providing individual
designers the flexibility to work independently while sharing information as necessary for
cooperation. Importantly, designers need to retain control over the information for which

they provide access. Development of such a model is the central focus of this dissertation.

1.4 Outline of Thesis

There are two salient characteristics of our proposed data management model. First, we
propose a three-layered closely coupled ffamework of versions, assemblies and configura-
tions. In this framework, configurations integrate deéigns from each of the participating
disciplines to describe an overall project. Assemblies can be either total or partial. The
designs in each discipline are represented as total assemblies; partial assemblies represent
complex entities that can be further aggregated to describe an overall design in a given dis-
cipline. Complex entities are in turn formed by aggregating instances of primitive entities
in the database. We maintain an evolving description of a primitive entity as a version hi-
erarchy; each version in a given hierarchy contains specific descriptions of instances of that
entity. This three-layéfe,d framework can be linked to a constraint management and no_tiﬁ- |
cation system that represents restrictions among designs both within and across disciplines,
as well as detects and notifies designers of any inconsistencies within a project description
[14].

The second feature introduces a new concept, equivalent operation, which provides an
efficient mechanism for managing changes among versions of a primitive engity. Intuitively,
an equivalent operation is a single data operation that summarizes the effect of a sequence
of changes on an instance description. By applying this concept, we establish a version of
a primitive entity as the summary of all changeé that have been made to its contents. A
version in the data management model is thus a unit of granularity whose consistency can

be evaluated. In addition, we develop operators to store, detect and characterize changes

CHAPTER 1. INTRODUCTION 14

among individual versions. The close coupling of the version, assembly and configuration
levels allows these computed version changes to be recursively combined to represent changes
at various assembly and configuration levels. Using these two characteristics, the model
provides an infrastructure for both project coordination and monitoring.

The rest of this dissertation is organized into the following five chapters:

e Chapter 2 provides an overview of our three-layered data management model. The
model supports design applications in each discipline, and provides a mechanism to
integrate the individual designs to describe the overall project. We evaluate the model

as a comprehensive data management solution for collaborative environments.

e Chapter 3 discusses in detail the version model to support application sessions in
a particular discipline. One salient feature of the version model is the distinction
made between a version’s definition and its contents. A version of a primitive entity
contains specific descriptions of instances of that entity. Based on the modifiability of a
version’s contents, we classify its into one of four states, which are sufficient to manage
the design process for that entity. The version model also includes a set of basic and
necessary operators to store and manage an evolving description of a primitive entity.
We maintain the version set of a primitive entity as a tree structure (referred to as
an entity derivation hierarchy), and develop a scheme to represent the version model
in a relational environment. In this scheme, a version is maintained as a summary
of all changes that were made to that version’s description. FEgquivalent operations
form the theoretical basis.for managing changes among versions in a given entity

. derivation hierarchy. In this chapter, the discussion is based on the implementation .
of the specific version state operators as a prototype system on top of an ORACLE

database system?.

e Chapter 4 outlines the assembly and configuration models. We enumerate basic con-
figuration properties that simulate situations realized in usual collab6rative environ-
ments. Based on the assigned property values, we categorize configuration definitions
into specified states. To manage the complexity of a multidisciplinary scenario, we
enforce restrictions on assemblies that are included in the various configuration states.

We propose assembly properties to meet these inclusion rules. Furthermore, the close

20RACLE is a registered trademark of Oracle Corporation

CHAPTER 1. INTRODUCTION - 15

coupling of the version and assembly models requires the properties of an assembly

to be shared by each of its component versions.

e Chapter 5 describes the implementation of the data management model in a CAD
paradigm. While the procedures to manage version changes are adapted from the
relational paradigm, the assembly model is extended to support a recursive definition.
A component of an assembly, in a CAD paradigm, could either be a primitive or a
complex entity. We can recursively expand an assembly definition into a component
hierarchy; the root of the hierarchy is the original assembly definition, the leaf nodes
correspond to instances of primitive versions included in the assembly definition. We
illustrate various aspects of the model in a CAD paradigm using an integrated example
of a facility design scenario. The described facility example is simple yet realistic,
and has been tested on a prototype implementation of the model in an AUTOCAD3

environment, using AUTOLISP as the programming interface.

e Finally, Chapter 6 summarizes this work and outlines future research directions. The
proposed model affords designers the flexibility to work independently while collabo-
rating with each other on a project. We believe that the model is particularly attrac-
tive for practical implementations. This belief is grounded in our evaluation of the
model as a comprehensive solution for project change control, which is independent

of the underlying implementation paradigm.

3AUTOCAD is a registered trademark of Autodesk, Inc; AUTOCAD Users Guide, Release 12.

Chapter 2

Overview of the Data Management
Model

This chapter presents an overview of a data management model for multidisciplinary design
environments. Primarily, the model maintains an evolving project description in terms of
independently evolving designs from each participating discipline. The model also efficiently
supports project coordination through asynchronous communication of changes among
designers, as well as project monitoring through the systematic tracking of evolving -
project descriptions. The basic premise is that in design situations, designers typically
work independently, while sharing information neceéssary for collaboration. Importantly,
they wish to retain control over information they make accessible to the remaining team
members. |
There are two salient characteristics of our proposed model. First, we propose a three-
layered closely coupled framework of versions, assemblies, and configurations. In this frame-
work, configurations integrate designs from each of the participating disciplines to describe
an overall project. Assemblies can be either total or partial. The designs in each discipline
are represented as total assemblies; partial assemblies represent complex entities that can
be further aggregated to describe an overall design in a given discipline. Complex entities
are in turn formed by aggregating instances of primitive entities in the database. We main-
tain an evolving description of a primitive entity as a version hierarchy; each version in a
given hierarchy contains specific descriptions of instances of that entity. This three-layered
framework can be linked to a constraint management and notification system that repre-

sents restrictions among designs both within and across disciplines, as well as detects and

16

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 17

notifies designers of any inconsistencies within a project description [14].

The second feature applies a new concept, equivalent operations, for efficiently managing
changes among versions of a primitive entity. Intuitively, an equivalent operation is a single
data operation that summarizes the effect of a sequence of changes on an instance. Using
this concept, we establish a version of a primitivé entity as the summary of all changés
that were made to its contents. A version in the data management model is thus a unit of
granularity whose consistency can be evaluated. In addition, we develop operators to store,
detect and characterize changes among versions of a primitive entity. The close coupling of
the version, assembly and configuration levels allows these computed version changes to be
recursively combined to represent changes at the assembly and configuration levels. Using
these two characteristics, the model provides an infrastructure for both project coordination
and monitoring.

The purpose of this chapter is to provide an overview of the three-layered data manage-
ment model and its application to collaborative design environments. Details of the version,
assembly and configuration models will be discussed in subsequent chapters. The organi-
zation of this chapter is as follows: The first section outlines the requirements of a data
management model to support collaborative design. These enumerated needs are guided
by the design process currently practiced by the Architecture/Engineering/Construction
(AEC) industry [26]. The next three sections present a brief overview of each of the ver-
sion, assembly, and configuration layers of our framework, highlighting the salient features
that make it attractive for practical implementations. Section 5 introduces the concept of
equivalent operations and discusses its application to the proposed framework for supporting
change management“ Throughout this chapter,. we illustrate various aspects of the model
using an integrated example of a facility design scenario. The described facility example
is simple yet realistic, and has been tested on a prototype implementation of the model
in an AUTOCAD environment, using AUTOLISP as the programming interface. Section
6 demonstrates the project change management capabilities through a scripted design sit-
uation for this example facility. Finally, in the last section, we evaluate the model as a

comprehensive data management solution for collaborative design environments.

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 18

2.1 Requirements of a Data Management Model

To better understand the collaborative design process, we undertook a three month study of
a facility redesign project in the California Bay Area, spanning the conceptual, schematic,
and detailed design phasés. The project involved reconfiguring a computer warehouse into
a bioengineering plant. The redesigned structure was retrofitted to satisfy the latest seismic
design codes. We specifically focused on the processes adopted by designers to coordinate
changes in this multidisciplinary environment. Based on observations made during this
study and subsequent discussions with professional designers [26], we have generalized the

requirements for a comprehensive data management model. The model must:

1. Support the design of individual component entities. The model must support
the independent generation of multiple solution altermatives for the design of a par-
ticular entity. One or more of these alternatives are incrementally refined by adding
more detail to their descriptions. For redesign, the model must maintain a history
of previous designs; undesirable changes can be retraced to an earlier description in
which they were first introduced. Monitoring the evolution of a specific alternative is
then accomplished by computing the differences between descriptions of the concerned

alternative over periods of time.

2. Support the design process in an individual discipline. The model must aggre-
gate descriptions of individual component entities to describe complex sub-systems,
as well as a complete design in a given discipline. Fﬁrther, the model must trace the
evolution of complex sub-designs, determining the net changes made to them over a |

period of time.

3. Provide a framework to integrate designs from individual disciplines to
represent a project description. The framework must provide collaborative en-
vironments that facilitate the evaluation of projéct descriptions, either by individual
designers or by the entire design team, collectively. Consistent project descriptions can
then be shared with actors both within and outside the design team and maintained

as a reference for future projects.

4. Support the management of changes both across disciplines and through
different levels of detail. To facilitate coordination in large projects, the model

must allow designers communicate their design changes with the rest of the team.

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 19

The model must also enable the project leader to monitor the overall progress of the

design effort in terms of the refinements made in each of the participating disciplines.

In summary, a comprehensive data management model for collaborative design must support
both the requirements of design applications in an individual discipline, as well as. the
integration of individual designs from the participating disciplines'to describe the-overall

project.

- 2.2 Version Model

One salient feature of the version model is the distinction made between a version’s definition
and its contents. A version of a primitive entity contains specific descriptions of instances
of that entity. Based on an application’s ability to modify the contents of a version, we

classify the version’s definition into one of the following four states.

e Active version, whose contents are being currently manipulated by an application

session. An entity can have at most one version in the active state.

e Suspended version, whose contents potentially can be modified by an application ses-

sion.

e Declared version, whose contents can only be accessed, not altered, by an application

session.
o Removed version, which previously existed but has since been eliminated.

These four version states are sufficient to m'ana'ge the design process for an individual entity.
In this model, declared versions correspond to checkpointed descriptions that can no longer
be modified. Suspended versions represent solution alternatives whose descriptions can
potentially be further modified. The specific alternative that is being currently designed
corresponds to the active version. -

The model includes a set of basic and necessary operators to store and manage an evolv-
ing description of a primitive entity. A version set of a primitive entity.is initially specified
by a create operation. By activating suspended versions, a designer can switch focus
among several alternatives being developed in parallel. Suspending a version results in
there being no active version for the given entity; a designer could temporarily divert atten-

tion to other design entities. On declaring a version, its description becomes checkpointed.

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 20

To further modify this alternative, a designer can derive a new active version as a child
of the checkpointed description. This operation logically copies the contents of the parent
into the child version; the statically inherited description can then be altered. A transitive
closure of the parent links.establishes ancestor-descendant relationships among versions. To -
control the storage needs of a version set, designers remove intermediate declared versions,
as well as alternatives that are no longer being considered.

We use a hierarchical tree structure to maintain the version set of a primitive entity.
We refer to the version tree as an entity derivation hierarchy. Each node in a given entity
derivation hierarchy corresponds to a particular version. As the version model guarantees
that a declared version cannot be activated, versions corresponding to the interior nodes
of a version hierarchy are declared. Nodes on the fringe of a version tree, on the other
hand, can be modified. A specific leaf version is active, while the remaining leaf nodes are
suspended. The version model does not, however, include a merge operator that integrates
~ descriptions of two parent versions into a common child. Explicitly specifying merge as a
state operator is not justified because the detection and resolution of conflicts arising in
merge operations depend on the particular descriptions of the two parent versions. The
current versioning scheme can, however, simulate the merging of two parent versions by
integrating the contents of one parent version into a child of the second. This results in a
structure similar to a spanning version tree.

We adopt the following convention to describe versions. Version identifiers are specified
as a string formed by concatenating the entity identifier and the number of the version in
the derivation hierarchy. The scheme to number each version of a primitive entity is in turn
-adapted from [21], and implicitly stores information of the parent version in the derivation.
hierarchy. Thus, version b-1 is version 1 in the hierarchy of the entity “b” (BOX entity in
the current example). '

To illustrate various aspects of the proposed model, we consider the example of a Medical
‘Cyclotron facility built on Stanford University campus. Figure 2.1 shows a simplified initial
architectural layout. To limit the scope of the example, we considered only three of the many
participating disciplines: architecture, structural engineering and mechanical engineering.
Figure 2.2 shows an example derivation hierarchy of a BoX primitive eﬁtity. Box instances
in each version of the hierarchy represent the exterior walls in the architectural layout of
the Cyclotron facility. In this figure, versions b-1, b-1a0, and b-lal are declared; version

b-1a2 is suspended, while version b-2 is active. Also, in this hierarchy, version b-1a0 is an

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL - 21

ancestor of version b-1a2, as it lies in the path from version b-1a2 to the root version b-1.
Specific wall instances in a given version are represented by the provided scheme, and are
uniquely identified by the value assigned to its primary attribute, Box-id. The attribute
Box-id (generated using AUTOCAD’s handle descriptor, “5”) uniquely identifies an instance
of a 3-D CAD object and is analogous to a key in a relational database. |

To collaborate on a project, designers need to share their designs with the other team

members. An access property, “publish,” for a given version allows designers from other

disciplines to reference its contents. Moreover, the model must ensure that a version cannot

be removed while other designers are accessing it. We therefore specify a status property,

“freeze,” which restricts a version from being explicitly removed from an entity derivation
hierarchy. Since certain versions may be components of project designs that are maintained
for extended periods, often covering the facility’s life cycle, they cannot be removed, at
least for the project duration. This feature is ensured by a status property, “archive,” for
versions that guarantees their existence; such a version can never be removed from the
entity hierarchy.

Based on the specific assignments of status and access property values, we further classify

a version definition into one of the following four additional states':

e Frozen version, which cannot be explicitly removed; status property value is “freeze.”
Contents of a frozen version are not accessible to designers from other disciplines;

access value is “not publish.”

o Published version, whose contents can be referenced by designers in other disciplines;

access property value is “publish.” “A published version cannot be removed while being

accessed by other designers; status value is “freeze.”

o Archived version, which is guaranteed to exist for the lifetime of the database. An
archived version is not accessible to designers from other disciplines. The version has

a status value, “archive,” and an access value, “not publish.” -

o Persistent version, which is guaranteed to exist for the lifetime of the database. At

the same time, it is accessible to designers from other disciplines, as well as actors

1The active, suspended, and declared version states are basically concerned with managing the design
process in an individual discipline and have a status property value, “not freeze,” and an access property
value, “not publish.” It is also obvious that status and access properties are irrelevant for removed versions.

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 22

2]

outside of the design team. The version has a status value, “archive,” and an access

value, “publish.”

Figure 2.3 shows graphically the version model as a finite state machine. The various version
state operators are indicated in this ﬁgure.by solid arrow lines. The exception is the'derive
operator, indicated by a dashed arc, which links two versions to support the evolution of a
design description. Freezing a version definition ensures that it cannot be removed without
first thawing it. This implies that the contents of a frozen version are also checkpointed;
a version must have been previously declared before it can be assigned a status property
value “freeze.” To ensure that a published version is not removed while it is being accessed,

the model requires that only frozen or archived versions can be published.

2.3 Assembly Model

An assembly, in our model, represents a complex entity resulting from a composite modeling
operation on a set of component instances. An individual component of an assembly can
be an instance of either a primitive or complex entity. While the former is an instance '
contained in a specific version in the entity derivation hierarchy, the latter is represented by
another assembly. We develop a component hierarchy for a given assembly by recursively
expanding its definition. The root of this hierarchy is the definition of the original assembly;
the leaf nodes represent primitive instances included in the assembly definition. Formally,
an instance of a primitive entity is included in an assembly if it is either a component of
that assembly definition or is included in one of its components. Furthermore, versions
containing instances that are included in a given assembly are denoted as.included versions.

Based on its existence, we classify an assembly deﬁnitio.n into one of the following two

states:

e Defined assembly, which describes an instance of a complex entity as the result of a

-

composite modeling operation on its components.
o Eliminated assembly, which was previously defined but no longer exists.

The assembly model provides two alternative approaches to create a new defined assembly.
A new assembly can be either defined independently as a composite modeling operation
on its component instances, or generated as a child of another defined assembly. When

generating a new assembly, a designer substitutes one or more instances included in the

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 23

parent assembly with more refined descriptions of those instances. The operation thus tracks
an evolving description of a complex entity. Further, each included version in the parent
assembly is guaranteed to be an ancestor of the corresponding included version (version of
the same entity) in the child assembly. A transitive closure of the parent links establishes
ancestor-descendant relationships among assemblies. An assembly is therefore a propé_r
ancestor of another, if the first assembly is eifher (i) a parent, or (ii) a proper ancestor of
the parent of the second assembly. Relaxing the restriction of a proper ancestor, we specify
that an assembly is an ancestor of itself. The assembly model also permits the elimination
of additional assemblies to minimize the storage requirements.

Assemblies can be alternatively classified as total or partial. A total assembly describes
a complete design in an individual discipline and includes in its definition at least one
instance of each entity in that discipline. A partial assembly, on the other hand, represents
an instance of a complex entity in that discipline and can be further combined with other
partial assemblies to describe more complex entities.

The initial architectural layout of the example Medical Cyclotron facility (shown in
Figure 2.1) is represented by a total assembly aa-i0. Figure 2.4 shows a partial component
hierarchy for this floor plan formed by the union of three assemblies that represent (i)
its exterior walls, (ii) its interior walls, and (iii) an adjoining facility. Assembly aa-e0,
which represents the set of exterior walls, is in turn formed by the union of individual
wall assemblies. Further, a particular exterior wall assembly aa-c0 is formed by subtracting
window and door openings (assembly aa-b0) from a solid wall. This wall corresponds to
the BoX instance 2.78338e+-06 in version b-1 of the entity hierarchy given earlier in Figure
2.2. Remaining elements in the example compdnent hierarchy of assembly aa-i0 (including
other exterior walls, interior walls and the adjaqent facility) can be similarly expanded.

For collaborative environments, we provide status and access properties for assemblies.

The possible property values and specified assembly states are similar to the version model?.

Status and access values assigned for a particular assembly definition are shared by each of
its included versions. This restriction is enforced by preconditions on operators that specify

assembly access and status properties. Figure 2.5 shows graphically the assembly model

as a finite state machine. Operators that specify various assembly states are shown in the

figure as directed arcs. Such operators recursively expand an assembly definition into its

2Similar to the version model, the defined and eliminated states describe an assembly in the context of a
single discipline. They thus have a status property value, “not freeze,” and an access property value, “not
publish.”

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 24

component hierarchy, and check that all included versions as well as intermediate assemblies
in the expanded hierarchy share the desired assembly properties. Pertinent state operators
are invoked to assign the specified property values for components which are not already
in the requn‘ed state. If even one mcluded version cannot be assigned the needed property

value, the entire assembly state operation fails.

2.4 Configuration Model

‘We employ a configuration as a framework to represent a multidisciplinary project in terms
of design descriptions from the participating disciplines. A designer in an individual disci-
pline creates a configuration by integrating a design from his/her discipline with a design
from each of the other disciplines. Complexity arises in typical multidisciplinary environ-
ments as the individual designs are not mutually exclusive; they share information such
as spatial arrangements and material properties of elements in the artifact being designed.
Constraints can be used to represent restrictions on an individual design due to decisions
made in other disciplines [14]. As total assemblies represent designs in the individual dis-
ciplines, a configuration is formally specified as a set of total assemblies, one from each
participating discipline, and a set of project constraints.

The remainder of this section is organized into two parts. First, we present an overview
of the configuration model. We propose configuration states and enumerate the operators
necessary to specify them. The second part describes properties that are specified for
configurations to support a collaborative environment. We also present rules for assembhes

. (and their mcluded versions) as components of a glven conﬁguratlon definition.

2.4.1 Overview of the Configuration Model

Based on its existence, we classify a configuration definition in one of the following two

states: .

e Defined configuration, which describes a project design in terms of component total
assemblies, one from each of the participating disciplines, and an associated set of

inter-disciplinary project constraints.

o FEliminated configuration, which was previously defined but no longer exists.

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL

Table 2.1: Example Configurations Created by a Structural Engineer

Config Arch. Struct. Hvac Parent
Assembly | Assembly | Assembly
sc-1 aa-i0 sa-f0 ha-a0 | “Null”
sc-2 aa-il sa-f0 ha-a0 sc-1

25

A configuration can be either defined independently, or generated as a child of an existing
defined configuration. In either case, the newly created configuration is in the defined state.
A generate operation substitutes one or more components of the parent configuration
with more refined designs from those disciplines, thereby tracking an evolving description
of a multidisciplinary project. Each component assembly in the parent configuration is
guaranteed to be an ancestor of the corresponding component assembly (design description
from the same discipline) in the child configuration. A transitive closure of parent links
between configuration definitions establishes ancestor-descendant relationships among them.
Also, an eliminate operation removes an existing deﬁned configuration to control storage
needs.

Table 2.1 shows two configurations created by a structural engineer in the example
scenario. In this example, configuration sc-1 is defined in terms of an architectural layout
(assembly aa-i0), a structural framing system (assembly sa-f0) and a mechanical ducting
system (assembly ha-a0). Configuration sc-2 is generated as a descendant of configuration
sc-1. The architectural layout aa-i0 in configuration sc-1 is replaced in configuration sc-2

by its descendant assembly, aa-il.

2.4.2 Configuration Properties to Support Collaboration

Access and status properties are specified for configurations to simulate situations realized

in a typical collaborative environment. Based on the specific property vaJues assigned, a

configuration can be categorized into one of the following four states:

o Intermediate configuration, which allows a designer to privately evaluate one or more
solution alternatives with respect to designs made accessible by the other disciplines.

Feedback from such evaluations help designers to independently refine their individual

3Like the assembly model defined and eliminated configuration states have a status property value, “not
freeze,” and an access property value, “not publish.”

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 26

designs for efficient integration with the overall project. An intermediate configura-

tion cannot be accessed by other designers; access value is “not publish.” In addition,
such a configuration cannot Be explicitly eliminated; the status property is assigned
a value, “freeze.” To satisfy the configuration properties, component assemblies from .
other disciplines must be at least in the published state, whereas the component as-

sembly from the designer’s own discipline need only be frozen.

o Accessible configuration, which simulates a meeting scenario where each designer
brings his/her design to the table for the entire team to collectively evaluate the
entire project description, and to identify any inconsistencies among its individual
components. Such a project design can be referenced by the entire design team; the

configuration has an access property value, “publish.” Since the configuration can

be referenced by other disciplines, it must also be guaranteed to exist (status value,
“freeze”). Thus, each component assembly of an accessible configuration must be in

the published or persistent state.

e Landmark configuration, which represents a consistent project description that can
be shared with actors outside the design team. Such configurations represent, among
others: (i) team records checkpointing descriptions of the project at the end of specific
design phases, (ii) project designs submitted to regulatory agencies for construction
approval, and (iii) documents released to contractors for bidding purposes. Land-
mark configurations are typically maintained for extended periods, often covering the
facility’s entire life cycle. Thus, such designs have a status value, “archive.” Also,
such configurations can be réferenced by the entire team (access value, “publish”)..
To satisfy these properties, component assemblies of a landmark configuration must

have a status property value, “archive,” as well as an access property value, “pub-

lish.” Therefore each component assembly of a landmark configuration must be in the

persistent state.

-

o Recorded configuration, which represents a design containing a component solution
alternative not selected for the current project, but maintained for future reference.
This would allow a mechanical engineer, for example, to maintain as personal records
an alternative ducting layout that was not selected for the concerned project. A

recorded configuration has a status property value, “archive,” but remains inaccessible

to designers from the other disciplines. To satisfy these sgmé,ntics, the assembly

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL .27

included from the creator’s discipline need only be archived, while assemblies from

the other disciplines must be persistent.

Figure 2.6 graphically represents the configuration model as a finite state machine. In
this figure, we identify the configuration states and provide operators to specify them. Table -
2.2 summarizes the inclusion rules for component assemblies of the various configuration

states. These proposed states represent the minimal status and access properties needed

for assemblies to be components of the proposed configuration states. We enforce these
inclusion rules as preconditions on operators that specify the various configuration states.
The close coupling of the assembly and version models implies that the properties of a
given assembly are shared by each of its included versions. Furthermore, we restrict certain
operations that alter the states of versions and assemblies which are included in existing
configurations. For example, a published assembly (or its included versions) cannot be
suppressed while it is a component of either (1) an accessible or landmark configuration
(having an access value, “publish”), or (2) a configuration definition created by a designer
from another discipline. Similarly, a frozen assembly (or any of its included versions) cannot

be thawed while it is a component of any existing configuration.

2.5 Application of Equivalent Operations to the Proposed

Framework

We introduce a concept of equivalent operations for developing procedures to store, detect,
and manage chané;es among versioﬁs of a primitive entity. The close coupling of the version,
assembly, and configuration layers enables the management of changes at the assembly and
configuration levels. We propose a forward deltas scheme [36] to implement the version
hierarchy of a given primitive entity. Each version in this scheme contains a summary of all
changes made to instances of the entity while the concerned version was active. Therefore,
a given version can be described by executing its associated changes on the description of its
parent version. Fquivalent operations provide the theoretical foundations for operators to
systematically manage changes at the version level. Intuitively, an equivalent operation for
a sequence of changes on an instance is a single data operation that results in the same final
description of the instance as the original sequence of changes. A more rigorous definition

for equivalent operations is based on the following result:

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 28

For any valid sequence of data operations on an instance, there exists at most one equivalent
operation which is valid. This equivalent operation produces the same final description of

the instance as the execution of the original sequence of data operations.

The theoretical development of this result will be discussed in Chapter 3.

Our model adopts a check-out/check-back-deltas protocol to structure the interaction
between an application and the active version of a primitive entity. At the start of a
design session, a designer checks-out a materialized description of the active version into
the CAD application. This description can then be iteratively refined using built-in CAD
drawing and editing tools. An executed operation is abstracted into one of three primitive
operations which capture its essence: insert, delete and replace. For example, a CAD
operation on the geometry of an instance (scale-or move) is mapped to a replace primitive
operation. Drawing a new instance is an insert primitive operation, while erasing an
existing instance is a delete primitive operation. The net changes made during a given
application session correspond to the equivalent operation on each instance that was modified
during the concerned session. At the end of a particulér application session, we detect these -
equivaéent operations by compressing the sequence of primitive operators on each modified
instance. The detected changes on each entity are then checked-back into its active version;
they are integrated with the existing description of the active version. As multiple CAD
sessions typically check-back their changes to a particular active version, a version in an
entity derivation hierarchy contains the set of equivalent operations of all changes on that
entity that were integrated with the given version while it was active. A version is therefore
described as a unit of graﬁularity whose consistency can be evaluated. In addition, changes
between an ancestor-descendant pair in a version hierarchy can be computed to effectively
monitor the progress of a design process. The resulting changes represent the minimal set
of data operations which can be executed on the concerned ancestor version to describe its
descendant. ,

We can recursively aggregate determined version changes in order to represent changes
among assemblies along both their composition and evolutionary relationships. While a
composition relationship identifies instances included in the components hierarchy of an as-
sembly definition, an evolution relationship identifies an earlier description of the complex
entity from which the current assembly has been generated. We can therefore describe

an assembly as the result of a composite modeling operation on materialized descriptions

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 29

of its components. Additionally, we can track the evolution of a complex entity by char-
acterizing the changes between two assemblies in terms of the computed changes between
corresponding pairs of instances included in both the assemblies. Characterizing assembly
changes in this fashion allows individual team members to efficiently determine the changes
between a recently published design and a prev1ously published description that is be—
—-———-———mg—cmrem}y—referenced Such a computation of changes between published assemblies is,
in essence, an asynchronous communication of design changes by a particular designer to
“the remaining team members, and is crucial to coordination in complex multidisciplinary
environments.

Similarly, the version and assembly changes can be aggregated to describe changes be-
tween configurations along both the composition and evolution links. A specific configura-
tion definition can be instantiated by aggregating descriptions of its component assemblies.
The model systematically tracks an evolving project description in terms of the changes
between pairs of component assemblies from each of the participating disciplines. This
relieves individual designers of the burden of monitoring particular design changes, while
empowering a project leader to quickly monitor the overall progress of the design process.
As the computation of project changes is in terms of changes made to individual designs,
a project leader can effectively ascertain the relative progress of the design process in each
participating discipline. This aspect of the model can be exploited to support the accounting

and scheduling of the project activities.

2.6 Application Example .

This section previews the data management model as a comprehensive solution for project
change management. We use a simple example éequence of design actions on the Cyclotron
design example that was introduced in Section 2.2. This example has been tested on a
prototype implementation of the model in an AUTOCAD environment [27]. Details of the
individual operators as well as the implementation methodology is deferreli to Chapter 5.
In Chapter 5, we will also revisit the current example, though in greater detail.

First, the architect presents the initial layout of the example facility (previously given in
Figure 2.1) to the remaining team members. The layout is represented as a published total
assembly, aa-i0. Based on this layout, the structural engineer develops a shear wall-framing

system represented as assembly sa-f0. Figure 2.7 shows a description of the structural design.

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 30

Concurrently, the mechanical engineer develops a ducting system for the existing layout.
This ducting system is represented by a total assembly, ha-a0. The mechanical engineer then
publishes the ducting system making it accessible to the rest of the team. To evaluate the
consistency of the new structural design with respect to the overall projett, the structural
engineer defines a new intermediate Conﬁguratlon sc-1, using published architectural and .
mechanical assemblies, aa-i0 and ha-a0, and the current structural design, sa-f0. Figure 2. 8
shows this configuration to be consistent.

In the meantime, the architect has independently rearranged the spatial layout of the
facility to suit the client’s needs. In fact, multiple alternative designs were developed (Figure
2.9), one of which (assembly aa-il) was finally selected by the client. Realizing possible
effects of the layout changes on other aspects of the project, the architect publishes the
new floor plan, aa-il. Aware that the architect has just published a new floor plan,
the structural engineer then reevaluates the existing shear wall-framing system against the
newly published layout. Figure 2.10 shows the revised configuration sc-2 that is generated
as a child of the earlier configuration sc-1. The new configuration uses the existing structural
design, sa-f0, along with the previously published mechanical system, ha-a0, and the newly
published floor plan, aa-il. It then becomes clear that the existing structural design, sa-f0,
is no longer consistent with the new facility layout.

To effectively address this inconsistency, the structural engineer must answer the fol-

lowing questions:
1. What has changed between the two architectural layouts, aa-i0 and aa-il?

2. What is the impact- of these architectural changes on the existing structural design, -
sa-f0 ?

By combining the computed changes on each component instance in the two architectural
layouts, the structural engineer determines the changes between the newly published floor
plan, aa-il, and the previously published layout, aa-i0. Computation of these changes is
equivalent to an asynchronous communication of the net changes by the architect to the
structural engineer. -

Given the net architectural changes, the structural engineer then redesigns the shear
wall-framing system. The modified assembly, sa-f1, is again evaluated with respect to the
- new layout, aa-il. Figure 2.11 shows a configuration sc-3 that is generated from the

previous structural engineering configuration, sc-2. This configuration includes the newly

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 31

published architectural layout, aa-il, the previous published mechanical system, ha-a0, and
the newly modified structural design, sa-fl. The project design is once again consistent.

On the surface, this simple scripted example demonstrates the application of our model
to possible collaborative design situations. More fundamentally, it shows an environment
that .provides flexibility for individual designers to work independently, while at the same -

time sharing information necessary for coordination.

2.7 Summary and Discussions

We have described a data management model to support multidisciplinary collaborative
design. The model is composed of a three-layered framework of versions, assemblies, and
configurations. The concept of equivalent operations forms the theoretical basis for operators
to detect, store, and manage changes among versions in each discipline. The close coupling of
the three framework layers allows the computed version changes to be recursively combined
for describing changes at the assembly and configuration levels. Applying these concepts, the
model efficiently supports project coordination through the asynchronous commaunication
of changes among designs, as well as project monitoring through the systematic tracking
of evolving project descriptions. The model is independent of the underlying data modeling
paradigm for representing the design data. This assertion is validated in this thesis by
implementing the model in both a relational (on top of an ORACLE database system using
Pro *C precompiler with dynamic SQL links), and a CAD environment (in an AUTOCAD
environment using AUTOLISP as the programming interface).

The proposed model parallels current design practices. The model affords desxgners the
flexibility to work independently while collaborating with each other on a project. In this
chapter, we demonstrated the project change management capabilities of our model using
a simple yet realistic example of a Medical Cyclotron facility. The example has been tested
on the AUTOCAD prototype implementation of our model.

We believe that this data management model is particularly attractitve for practical

implementation. This belief is grounded in the following special features of the model:

1. Supports an Individual Design Process: The version model maintains an evolv-
ing description of a primitive entity, where a version contains the set of equivalent

operations on all instances that were modified when the given version was active. By

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 32

declaring a version, a designer checkpoints its current description for future ref-
erence. To further modify this or any other checkpointed description, the designer
derives a new active version as a child of the concerned declared version. Deriving
a version in this way logically copies the contents of the parent declared version into:
the new child active version in which it can be further modified. The model maintains
the version set of a primitive entity as a hierarchical tree structure. Branching in a
version hierarchy enables the parallel development of several solution alternatives; the
designer switches focus to a particular alternative by activating it. Suspended ver-
sions represent alternatives that can be potentially modified upon activation. The
computation of changes between two versions of an entity along the same derivation
path allows a designer to monitor the design process. For redesign, a trace operation
retraces the evolution of a design alternative, locating the ancestor version in which
an undesirable change was first introduced. This ancestor version can be subsequently
modified by deriving a new active child of the given version. Furthermore, designers
can aggregate version changes to characterize assembly changes along both the com-
position and evolution links, thereby supporting the design process in an individual

discipline.

2. Supports Inter-disciplinary Collaboration: Designers from each discipline publi-
sh their individual designs to share information necessary for collaboration. Impor-
tantly, the model gives designers control over the descriptions they publish. A con-
figuration provides a framework to describe an entire project in terms of the compo-
nent designs from each participating discipline. The project description can then be
checked for overall consistency, either by individual designers or collectively by the

entire design team. Configuration status and access properties simulate environments

that facilitate cooperation. Intermediate configurations enable designers to privately
evaluate one or more solution alternatives with published designs from the other disci-
plines, helping designers tailor their individual designs for efficient integration with the
entire team effort. Accessible configurations simulate meeting scenarios in which each
designer brings his/her design to the meeting table for the entire-team to collectively
evaluate the project description. While recorded configurations represent consistent
project descriptions maintained as individual records, landmark configurations are

typically shared by actors both within and outside the design team.

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL - 33

3. Supports project monitoring: By characterizing the changes between two project
descriptions in terms of the changes between their component designs, a project leader
can quickly monitor the overall progress of a project in terms of the relative progress
of the design process in each participating discipline. This monitoring capability can .

be exploited in accounting and scheduling of various design activities.

4. Supports project coordination: Our model does not explicitly transfer change no-
tifications among designers. However, by publishing a design description, a designer
shares it with the rest of the team. Individual designers can then efficiently determine
the net changes between two published designs: one that has been newly published,
and a previously published design that is being currently referenced. This is, in
essence, equivalent to an asyhchronous communication of the net design changes by
an individual designer to the other team members. The key differences between our

scheme and other reviewed change notification strategies are:

(2) Only the net changes made over a period of time are communicated. This affords
designers the flexibility to try various alternatives in private before making a more

persistent description public.

(b) A designer needs to provide access to a particular design before it can be refer-
enced by other team members. This parallels current practices in professional
design environments where designers typically insist on retaining control over
the information they share. Althbugh asynchronous schemes such as the one
“we prdpése can lead to delays in informing designers of a particular change, our
model assumes that, in é cooperative eﬁvironment, designers will be prompt in

making persistent and critical changes accessible.

(c) Presently, our model does not provide filters for individual designers to screen out
those changes that do not impact them. A designer has access to the entire set
of computed changes, but is left with the responsibility of identifying the smaller
subset of changes that affect his/her work. Protocols to link configurations with
constraint checking and notification schemes have been explored [14], but they

have not been presently implemented.

In evaluating the above characteristics of our model against the set of requirements enu-

merated in Section 2.1, we believe that the proposed model provides a comprehensive data

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 34

Shedsn

SERLA YU A S
3 (AR SUBTRACT Leudleed

Figure 2.1: Initial Floor Plan of the Facility (Assembly aa-i0)

Table 2.2: Specifications of States of Component Assemblies

Configuration Assembly State Assembly State
State (Other Disciplines) | (Owner’s Discipline)
Intermediate Published Frozen
Accessible Published Published
Recorded Persistent Archived
Landmark Persistent Persistent

management solution for collaborative design environments. The following two chapters
describe the model in greater detail, outlining schemes to represent the model in a re-
lational environment for alpha-numeric data. Chapter 5, on the other hand, focuses on

implementing the model in a CAD environment to handle evolving graphical data.

DO —

Version b-2
(active)

(2.78672e+06 412 6 144 210 -250 0)
(2.78338e+06 6 874 144 616 -244 0)
(2.68377e+06 412 6 144 210 630 0)

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL

Version b-1

(declared)

(2.78672e+06 321 6 144 210 -144 0)
(2.78338e+06 6 782 144 525 -138 0)
(2.68377e+06 321 6 144 210 644 0)

[Version b-1a0

(declared)
(2.44213e+06 104 6 144 210 -144 Q)

(2.67366e+06 6 100 144 308 -244 0)

(2.78672e+06 321 6 144 308 -144 0)
B Ll (2.78338e+06 6 874 144 616 -244 0)

\L (2.68377e+06 412 6 144 210 630 0)

Version b-1al

(declared)

(2.44213e+06 104 6 144 210 -144 0)
(2.67366e+06 6 100 144 308 -244 0)

ﬁ] (2.78338e+06 6 874 144 616 -244 0)
(2.68377e+06 412 6 144 210 630 0)

Version b-1a2

(suspended)

(2.44213e+06 104 6 144 210 -144 0)
(2.67366e+06 6 100 144 308 -244 0)
(2.78672e+06 321 6 144 308 -275 0)
(2.78338e+06 6 874 144 616 -244 0)
(2.68377e+06 412 6 144 210 630 0)

T

 S—

Scheme: < Box-id, Lx, Ly, Lz, Xcoord, Ycoord, Zcoord > -

Figure 2.2: Example Version Hierarchy of a Box Entity

35

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 36

| create

Active, Suspended, and Declared:
status = "not freeze"

access = "not publish"
thaw

status

freeze" "archive"

o=

",

access

suppress‘ suppress

"publish" / archive

Published

Figure 2.3: Version Model for Design Applications

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 37

(Arch aa-i0)
Architectural Floor Plan
union

T N

(Arch aa-e0) (Arch aa-r0) Arch aa-tQ
Exterior Wall Assembly Interior Wall gdjacent paces
union Assembly :

T

(Arch aa-a0) (Arch aa-c0) (Arch aa-d0)
Wall assembly I Wall assembly 2 Wall assembly 3
subtract subtract subtract

. (Arch aa-b0)
(Box&;llzggggys §+06) Window Assembly 2
union

(Box b-0a3 3.03193e+06)

(Box b-0a3 3.10185¢+06) Window Entity 6

Window Entity 4 g\ 023 3 13604e+06)
Window Entity 5

Figure 2.4: Component Hierarchy of Architectural Assembly aa-i0

\1/ define

Defined, and Eliminated:
status = "not freeze"

access = "not publish”

Assembly Status
"freeze" "archive"

P

archive

Assembly
Access
Privileges

suppress suppress

"publis archive

Published

Figure 2.5: Assembly Model as a Finite State Machine

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL

Defined, and Eliminated:

status = "not freeze"
eliminate access = "not publish”

unprotect

Configuration Status

“archive"

"unpublish"

Configuration
Access
Privileges

"publish’,

Figure 2.6: Configuration Model to Support Collaboration

<=L & i —

38

Figure 2.7: Current Structural System (Assembly sa-f0) Based on Initial Floor Plan

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL -39

Figure 2.8: Intermediate Configuration sc-1 to Validate Current Structural System Agaihst
Initial Floor Plan

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 40

l l Assembly aa-i0

Assembly aa-il Assembly aa-i0a0

/

Assembly aa-i0al

Figure 2.9: Alternative Layouts Generated by the Architect to Satisfy Client’s Requirements

CHAPTER 2. OVERVIEW OF THE DATA MANAGEMENT MODEL 41

jugn

Figure 2.10: Intermediate Configuration sc-2 to Validate Current Structural System Against
New Floor Plan '

Figure 2.11: Intermediate Configuration sc-3 to Validate Modified Structural System
Against New Floor Plan

| Chapter 3

Version Model

This chapter presents a version model for managing descriptions of a primitive entity
through its development. To design a particular entity, designers typically generate sev-
eral solution alternatives, some of which are incrementally refined to obtain more detailed
descriptions. In addition, designers often modify previous descriptions _that are later real-
ized as unsatisfactory. In situations where such undesirable features are not easily corrected,
designers often redesign the concerned alternative from an earlier description. Redesign ef-
forts require maintaining intermediate descriptions of entities through various stages of its
evolution. Also, to monitor a design process, it is necessary to compute the changes made
on instances over a period of time. By maintaining intermediate design states, designers can
obtain the net changes or deltas more efficiently than simply tracking all design changes.

" We propose a version model to maintain evolving descriptions of instances of a single
primitive entity. The model maintains a version set as a tree structure, each version in a
particular hierarchy contains specific descriptions of instances of that entity. Branching in a
version hierarchy allows several alternatives to be developed independently. The proposed
model distinguishes between the definition of a version and its contents. We, however, relate
the two by classifying a version definition into four distinct states, three of which (active,
suspended and declared) are based on the modifiability of its contents. Declared versions
represent previously checkpointed descriptions of an entity. Active and_suspended versions,
on the other hand, are modifiable; the active version corresponds to the current focus of
a design application, while suspended versions represent solution alternatives which could
be refined by making them active. Finally, the fourth removed state is mainly for record-

keeping purposes. These version states are the minimal number of states needed to support

42

CHAPTER 3. VERSION MODEL 43

an individual design process. We maintain the version set of a primitive entity as a tree
structure, and specify operators to manage the version hierarchy for each entity. The first
section of this chapter discusses, in detail, the version model for managing the design of a
primitive entity. A

In addition, we develop operators to store and manage changes both within and across
versions. Unlike the operators on a version definition, procedures on its contents depend
on the data modeling paradigm used to describe the design entities. This chapter primarily
considers the implementation of the version model in a relational environment, although
the algorithms developed here are applicable to other underlying data models as well. In
this context, we specify a primitive entity by a relational scheme; a given instance is a tuple
in that relation. A change is an insert/delete/replace operation on a tuple. Section
3.2 presents a basic implementation scheme that associates all instances contained in a
version with a system-generated identifier. Using this scheme, the procedure to derive a
new version physically copies all tuples from the parent to the child version. Given that we
‘typicaﬂy modify only a fraction of a version’s contents while it is active, the present scheme
would store multiple copies of the same instance description in versions along a derivation
path. To overcome this obvious drawback, we apply a new concept, equivalent operations,
to develop a more compact versioning scheme. Intuitively, an equivalent operation is a single
data operation that summarizes the effect of a sequence of changes on an instance. Section
3.3 then establishes some fundamental properties for equivalent operations. By applying the
developed concepts, we represent a version of a primitive entity as a set of equivalent opera-
tions on instances of that entity. Section 3.4 provides a compact forward deltas scheme [36]
to represent a version hierarchy. This scheme is efficient in terms of storage; each version
contains only a summary of all changes made to that entity while the given version was
active. Tuples belonging to a version description could be either physically associated with
that version itself, or inherited from one of its ancestors. We describe a particular version
by retracing its derivation path till the root version, collecting from each of its ancestors
those tuples that logically belong to its definition. Instantiating a version in this fashion
can be computationally expensive in large design hierarchies. Our approach to improving
computational efficiency is to explicitly store instantiated descriptionshof certain interme-
diate versions in the version hierarchy. We call such instantiated versions as complete; the
remaining versions are denoted as incomplete. By this efficiency for storage tradeoff, pro-

cedures to describe a version need to retrace the derivation path only until the most recent

CHAPTER 3. VERSION MODEL 44

complete ancestor version, which physically contains all tuples from its own ancestors that
could be potentially inherited by the version being described.

In Section 3.5, we apply equivalent operations to store, detect, and manage changes
among versions in an entity hierarchy. We introduce a check-out/check-back-deltas protocol
to structure the interaction between an application and the active version of a primitive
entity. Using this protocol, a designer initially checks-out a description of the active version
into the design application, where it can be modified. At the end of the session, the designer
checks-back, into the active version, the net changes made during that session. We represent
the checked-back design changes as insert, delete, or replace equivalent operations on
the modified instances. These application changes are determined by a compress opera-
tion. The checked-back changes on an entity are then merged with its active version. An
integrate operator obtains the equivalent operations for the checked-back changes and the
present active version description. The active version now contains the new set of equiva-
lent operations. Since multiple application sessions typically check-back their changes while
a particular version is in the active state, a version, in our scheme, contains the set of
equivalent operations of all changes that were checked-back to that version. By maintaining
versions as a set of eguivalent operations, we can efficiently compute the net changes be-
tween two versions, where one is an ancestor of the other. These computed changes are the
minimal set of data operations that can be executed on the ancestor version to describe its
descendant.

Throughout this chapter, we illustrate various aspects of the model using an example
derivation hierarchyof a smgle primitive entity, BEAM. This example has been tested on a
prototype implementation of the model in an ORACLE! relational database system. The
prototype has been implemented in the C programming language using dynamic SQL links
that are supported by a Pro*C precompiler.

Version control has been an active research area in the software engineering, CAD and
database communities. In the last section, we summarize our version model in the context

of previous research developments, while highlighting our specific contributions to the field.

1ORACLE is a trademark of ORACLE Corp.

CHAPTER 3. VERSION MODEL 45

3.1 Overview of the Version Model

Based on its existence and the modifiability of its contents, we classify a version definition

into one of the following four states:

e Active version, whose contents are being currently manipulated by an’ application

session. An entity can have at most one version in the active state.

o Suspended version, whose contents can potentially be modified by an application ses-

siom.

e Declared version, whose contents can only be accessed, but not altered, by an appli-

cation session.
e Remowved version, which previously existed, but has since been eliminated.

We use a tree structure to maintain the version set of a primitive entity, and refer to it
as an entity derivation hierarchy. Each node in a given entity hierarchy corresponds to a
particular version. Since a declared version cannot be reassigned to an active state, versions
that correspond to interior nodes of a given version hierarchy are declared. On the hand,
nodes on the fringe of a version tree can usually be modified; a single leaf version could be
active; the remaining leaf nodes are likely to be suspended. While it is possible for a leaf
node to be declared, an existing interior version cannot be in the suspended or active states.

The model includes a set of basic and necessary operators on a version definition to
generate and maintain a version tree. A version set of a primitive entity is initially specified
by a create operation. By activating suspended versions, a designer can switch focus
among several alternatives being developed in parallel. Suspending a version results in there
being no active version for the given entity; a designer could temporarily divert attention
to other design entities. On declaring a version, its description becomes checkpointed. To
continue modifying this or any other checkpointed description, a designer derives a new
active version as a child of the concerned declared version. This operation logically copies the
contents of the parent version into the child; this statically inherited description can now
be altered. To control the storage needs of a version set, designers‘remove intermediate
declared versions, as well as alternatives that are no longer being considered.

Throughout this thesis, we use the following notation: Version identifiers are specified as

a string formed by the concatenation of the entity identifier and the number of the version

CHAPTER 3. VERSION MODEL ' 46

Version m-0 i/
(declared)
<11, 18t, 25ft >
<12, 20t, 30ft > 11 12 13 141 15
< 13, 20, 30ft > -
< 14, 20t, 30ft > -1 1 4 1 1 4
< 15, 18t, 25ft.>
11 12 13 14 15 11 12 13 14 15
4 L AL 4 L 4 4 L % I L
Version m-1 Version m-0a0
(suspended) (active)
< 11, 18t, 25ft > <11, 20t, 30ft >
<12, 22t, 35ft > <12, 18t, 25t >
< 13, 16t, 20ft > < 13, 20t, 30ft >
< 14, 22t, 35ft > < 14, 18t, 25ft >
<15, 18t, 25ft > , < 15, 20t, 30ft >

Scheme: < Beam-id, Wt, Span >
Figure 3.1: Initial Version Hierarchy: BEAM Entity

in the derivation hierarchy. The version numbering scheme is in turn adopted from [21], and
implicitly stores information of the parent version in the derivation hierarchy. A version
m-1 in this scheme is, thus, version 1 in the hierarchy of the entity “m” (BEAM entity in
the current illustrative example). |

Figure 3.1 shows an example derivation hierarchy of a BEAM primitive entity, each
version in the hierarchy contaiﬁs' component beaxhs of the 2-D frame. In Figure 3.1, version
m-0 is declared; version m-1 is suspended, while version m-0a0 is active. We describe the
BEAM instances in each version using the provided scheme. A primary attribute, Beam-id,
uniquely identifies instances in a particular version. The remaining secon:iary attributes,
Wt and Span, describe the design properties of each BEAM instance.

The rest of this section develops procedures for version state operators that generate
and manage a version hierarchy. We describe these procedures using an ALGOL 68 syntax,
though for clarity we also use ALGOL 60 notations. Procedures for the version state

operators use the following data type declarations:

CHAPTER 3. VERSION MODEL 47

Table 3.1: Sequence of Operations on Version States (Application Example)

Operations Version Initial Final Version Hierarchy
, , Affected | . State State Changes
activate(BEAM, m-1) | m-0a0 active suspended none
m-1 suspended active none
declare(BEAM, m-1) m-1 active declared none
derive(BEAM, m-2) m-2 not existent active | version m-2 becomes
child of version m-1

° ehtity: Name of the entity under consideration.

e idyersion: ldentifier of given version belonging to an entity derivation hierarchy.

e primary: Set of primary attributes that uniquely identify each instance of an entity.
In addition, the proposed version algorithms use the following external fuhctz’ons:

e vers-numgen = (entity E, idversion P) idversion V: Generates an identifier V for a new
version of a primitive entity E that is derived as a child of previously declared version
P. Using the adopted numbering scheme [21], we can uniquely generate an identifier
for a version, given the identifier of its parent and the version’s position with respect
to its siblings. A vers-numgen function requests the user for the former value, the
system internally maintains the number of children at each node. The child counter
for a node is incremented each time a vers-numgen operator is executed at that node.
When creating a root version of a primitivé entity, the parent identifier P is assigned

a value, “Null.”

e vers-parent = (entity E, idversion V) idyersion P: Obtains the parent P of a version
V in the derivation hierarchy of entity E. As the version set is maintained as a tree

structure, all versions except the root have exactly one parent.

e vers-state = (entity E, idversion V) string S: Determines the current state specifica-

tion S of a version V belonging to the derivation hierarchy of entity E.

We now present the six basic operators necessary to develop an entity derivation hierarchy

to specify the state of each included version.

CHAPTER 3. VERSION MODEL 48

Algorithm 1 (create)

‘ Input: e: Name of the primitive entity whose version hierarchy is being created.

Output: v: Identifier of the root version in the. derivation hierarchy of entity e.

procedure create = (entity e) idversion V:
~ begin
v := vers-numgen(e, “Null”);
vers-state(e, v) := active;
end procedure
<&

Figure 3.2: Procedure to create a Root Version of a Primitive Entity

o create(E): Specifies the root version of the derivation hierarchy of an entity E and
determines it as active. A create operation initiates a call to a system function
vers-numgen that generates an identifier V for the version. Figure 3.2 outlines an

algorithm for the create operator.

o activate(E, V): Takes a suspended version V of an entity E and makes it active.
A version that was active before the execution of the operator is now specified as
suspended. By activating a particular design alternative, a designer changes focus
to the concerned design solution from some other alternative. Therefore, an activate
operator allows a designer to develop several alternatives in parallel, while switching
his/her attention among them. A successful activate operation ensurés that version -
V is in the active state. The opefation' fails only if an existing version is in the declared

state. An algorithm to implement this operator is presented in Figure 3.3.

e suspend(E, V): Specifies an active version V of entity E as suspended. A successful
execution of this operator results in there being no active version in the derivation
hierarchy. By suspending an active version, a designer temporarfly halts efforts
directed towards entity E, diverting attention to other entities. Figure 3.4 outlines a

procedure to suspend a version.

e declare(E, V): Specifies an active version V of entity E as declared. Declaring a
version checkpoints its description for future reference. Further, a suspended version

needs to be activated before it can be declared. An algorithm for the declare

CHAPTER 3. VERSION MODEL 49

Algorithm 2 (activate)

Input: e: Name of the primitive entity of interest.
v: Identifier of the version being activated.

Output: success: Boolean indicator of a successful operatlon

procedure activate = (entity e, idversion V) boolean success:
begin v
if ((vers-state(e, v) = suspended) OR (vers-state(e, v) = active)) begin
if (vers-state(e, v) = suspended) begin
vers-state(e, v) := active;
end;
success := TRUE;
end;
end procedure
<

Figure 3.3: Procedure to activate a Version of a Primitive Entity

operator is presented in Figure 3.5.

e derive(E, P): Creates a new active version V of entity E, and links it as a child
of a declared version P. The operation invokes the system function vers-numgen for
generating an identifier V for the new child version. Further, the new child version
is specified as active. As a derive operation logically copies the contents of the
parent lversion into the child,‘a de_signer can modify a design alternative even after

- checkpointing its description. The derive operation is fundamental to extending a -

version hierarchy. Figure 3.6 provides a procedure for a derive operation.

e remove(E, V): Specifies an existing version (active, suspended, or declared) V of entity
E as removed. Storage considerations prompt procedures to prune version hierarchies
by removing: (i) alternatives that are no longer part of a design solution, and (ii)
certain intermediate checkpointed descriptions that were created early in the design
process. Figure 3.7 shows an algorithm to remove a version definition from an entity
hierarchy. Since a removed version does not exist anymore, its contents must also be
erased. The procedure to erase the contents of a version being removed depends on

the underlying data modeling paradigm, as well as the representation scheme used

CHAPTER 3. VERSION MODEL - 50

Algorithm 3 (suspend)

Input: e: Name of the primitive entity of interest.
v: Identifier of the version being suspended.

Qutput: success: Boolean indicator of a successful operation.

procedure suspend = (entity e, idyersion v) boolean success:
begin
success := FALSE;
if ((vers-state(e, v) = suspended) OR (vers-state(e, v) = active)) begin
if (vers-state(e, v) = active) begin
vers-state(e, v) 1= suspended,
end;
success := TRUE;
end;
end procedure
<

Figure 3.4: Procedure to suspend a Version of a Primitive Entity

to implement the version model. In Section 3.5.5, we will outline a procedure for

removing the contents of a version in the relational context.

“The above set represents a minimal set of operators needed to manage a design process for
a primitive entity. Figure 3.8 shows graphically the version model as a finite state machine.
The various version state operators are indicated in this figure by solid arrow lines. The
exception is the derive operator, indicated by a dashed arc, which links two versions to
generate an entity derivation hierarchy. The version model does not, however, explicitly
support a merge state operator that integrates descriptions of two parent versions into a
common child. The detection and resolution of conflicts that arise in merge operations
depend on the specific descriptions of the two parent versions, and do not justify specifying
merge as a state operator. The current versioning scheme can however simulate the merging
of two parent versions by integrating the contents of one of the parent versions into a child
of the second. This results in a structure similar to a spanning version—tree.

We demonstrate the version model, using the “ongoing” example of the BEAM entity.
Specifically, we execute the following sequence of operators on the BEAM version hierarchy

shown in Figure 3.1.

CHAPTER 3. VERSION MODEL 51

Algorithm 4 (declare)

Input: e: Name of the primitive entity of interest.
v: Identifier of the version being declared.
Output: success: Boolean indicator of a successful operation.
procedure declare = (entity e, idversion v) boolean success:
begin
success := FALSE;
if ((vers-state(e, v) = active) OR (vers-state(e, v) = declared)) begin
if (vers-state(e, v) = active) begin
vers-state(e, v) := declared;
end;
success := TRUE;
end;
end procedure

<&
Figure 3.5: Procedure to declare a Version of a Primitive Entity

1. activate(BEAM, m-1): This operation specifies version m-1 as active. The version

m-0a0 which was initially active is now specified as suspended.
2. declare(BEaM, m-1): This operation specifies version m-1 as declared.

3. derive(BrAM, m-1): This operator creates a new active version m-2 and links it as a
child of the previously declared version m-1. At the time of derivation, the contents

of the parent version m-1 are logically copied into the child version m-2.

The execution of the above sequence of operations is summarized in Table 3.1. Figure 3.9

shows a final description of the example BEAM derivation hierarchy.

CHAPTER 3. VERSION MODEL ' 52

Algorithm 5 (derive)

Input: e: Name of the primitive entity of interest. _
p: Identifier of the declared version, a child for which is being derived.

Output: v: Identifier of the new active version which is a child of version p.

procedure derive = (entity e, idversion P) 1dversion V:
begin
if (vers-state(e, p) = declared) begin
v := vers-numgen(e, p);
vers-state(e, v) := active;
vers-parent(e, v) := p;
end;
end procedure

<

Figure 3.6: Procedure to derive a New Child Active Version of a Previously declared
Version

Algorithm 6 (remove)

Input: e: Name of the primitive entity of interest.
v: Identifier of the version being removed..

procedure remove = (entity e, idyersion V) boolean success:
begin
success := FALSE;
if ((vers-state(e, v) = active) OR (vers-state(e, v) = suspended) OR
(vers-state(e, v) = declared)) begin
vers-state(e, v) := removed; .
success := TRUE;
end;
end procedure -
&

Figure 3.7: Procedure to remove an Existing Version from an Entity Derivation Hierarchy

CHAPTER 3. VERSION MODEL

“““““““ Version Model

~
-~

-~
~

Active

~

i declare

suspend activate

remove

Figure 3.8: Version Model as a Finite State Machine

remove

53

CHAPTER 3. VERSION MODEL

Version m-0 ‘l’

(declared)

<11, 18t, 25ft >

< 12, 20t, 30ft > 11 12 13 14 115

<13, 20t, 30ft >
< 14, 20t, 30ft > I N L £ I S
< 15, 18t, 25ft >

Version m-1
(declared)
< 11,18t 258> 12— 1314 13 | ot 13 | ial s
< 12, 22t, 351t > L i
<13, 16t,20ft> — — - e L . . A
< 14, 22t, 35ft > . 020
< 15, 18, 25ft > ngiggdf: d?a

< 11, 201, 30ft >

<12, 18t, 25ft >

< 13, 20t, 30ft >

< 14, 18t, 25ft >

< 15, 20t, 30ft >
Version m-2
(active) 1l 12113 14 15

< 11, 18¢t, 25ft > .
< 12,22t,35ft> — — - -,
< 13, 16t, 20ft > ’ ’ :
< 14, 22t, 35ft >
< 15, 18t, 25ft >

Scheme: < Beam-id, Span, Wt >

Figure 3.9: BEaM Entity Hierarchy after Executing Operators in Table 3.1

CHAPTER 3. VERSION MODEL 55

3.2 Basic Relational Scheme

We present a scheme to implement the version model in the context of a relational data
model. In this paradigm, we describe a primitive entity E by a relation E(X, Y), where X
denotes the set of prz"mary (key) attributes for uniquely identifying a particular instance, |
and Y denotes the set of secondary attributes which describe additional properties of the
instance. For clarity, the primary attributes are underlined. Relations presented in this
thesis are in BCNF [41], the only non-trivial functional dependencies in a relational scheme
are between the primary (key) and the secondary (non-key) attributes.

A scheme to implement the version model must (1) maintain an entity hierarchy, (2)
identify the state specified for each version, and (3) describe the contents of versions in
the hierarchy. Before describing our versioning scheme, we first present a brief background
review of the relational model. Second, we outline the scheme for implementing the version
model. Three relations: E-INDEX, E-AcTIVE and E-DATA, completely describe an entity

" hierarchy. A specific version is uniquely identified by a system attribute, Version-id. As
mentioned in the previous section, a vers-numgen function generates this attribute value
when the version was initially created or derived. We also present SQL implementations
of some of the version state operators that were given earlier in Section 3.1. The third part
of the chapter proposes a simple protocol, update-in-place, to structure interaction between
an application and the active version. This protocol synchronously executes application
changes on the active version. We develop a formal framework to reason about changes
and outline the procedure to integrate design changes on an entity with the contents of its
active version. Finally, the fourth part sketches a serious limitation of the current versioning
scheme. When deriving a new child version, all tuples associated with the parent version ‘
are physically copied into the child. Since designers usually modify only a fraction of the
tuples while a version is active, the scheme stores several copies of the same tuple in two or
more versions along the derivation path. This motivates the development of more storage

P

efficient schemes that will be presented in later sections.

3.2.1 Overview of the Relational Data Model -

In the set-theoretic notion, a relation instance is any subset of the Cartesian product of one
or more domains, where a domain is any (finite) set of values. The members of a relation

are called tuples. A tuple is an ordered set of values, each one from its respective domain.

CHAPTER 3. VERSION MODEL - 56

Simplistically, a relation can be viewed as a table whose columns are given names called
attributes, and each row is a tuple. A relation is denoted by a specified schema which is
an ordered set of domains and a set of constraints that tuples in the relation must satisty.
Functional dependency or key dependency is an example of such a constraint. Fma,]ly,

database schema is a set of relation schemata, each of which is indexed by relation name. We
consider three data operations that manipulate individual tuples: deletion, insertion,
and replacement-. A deletion removes one or more tuples from a relation. On the other
hand, an insertion is the addition of one or more tuples into a relation. A replacement
is a combination of deletions and insertions applied in pairs to the same relation performed
as a single atomic action that does not require an intermediate consistent state between the

deletion and insertion steps.

3.2.2 Relational Implementation Scheme

We represent a primitive entity E (described by the scheme E(X, Y)) by three relations: E-
INDEX, E-ACTIVE, and E-DATA. An E-INDEX relation maintains with each version a link
to its parent. As the version set is a tree structure, all versions except the root have exactly
one parent; a version tree can be uniquely generated with this information. The E-INDEX
relation also identifies versions in the declared state. An E-ACTIVE relation locates the
currently active version. An existing version that is neither declared nor active is inferred
as suspended. Finally, an E-DATA relation associates all instances in a version description
with its system generated identifier, Version- id. The three relations, E-INDEX, E-ACTIVE

and E- DATA are forma]ly deﬁned as follows
o E-INDEX(Version-id, Parent-id, Decl-status)
where the attributes specified are given as:

— Version-id: System-generated identifier of the version in an entity derivation

-

hierarchy.

— Parent-id: Identifier of the parent of the given version. As the version set is a

tree structure, all versions except the root have exactly one parent.

— Decl-status: Indicator of declared versions, which has the possible values: “y” or

“p
n.

CHAPTER 3. VERSION MODEL 57

e E-AcTIVE(Act-version-id)

where the attribute Act-version-id identifies the currently active version. Since an
entity can have at most one version in the active state, an E-AcCTIVE relation has a

maximum of one tuple.
o E-Data(Version-id, X, Y)
where the attributes specified are given as follows:

— Version-id: System-generated identifier of the version in an entity derivation

hierarchy.

— X: Set of primary attributes in the entity scheme that uniquely identify an in-

stance in the given version.

— Y: Set of secondary attributes in the entity scheme that describe certain design
properties of each instance. Such attributes in a particular version are function-

ally dependent on the set of primary attributes.

These three relations completely describe a primitive entity. This representation scheme is
more attractive than alternative schemes that identify active and suspended versions in the
E-INDEX relation itself, as in design situations it is typically important to quickly identify
the version that is currently active. Alternatively, instead of creating an E-ACTIVE table
for each entity, a relational table can be constructed by collecting the active versions of all
entities in that discipline, which requires less storage requirements than maintaining a sepa-
rate E- ACTIVE relation for each individual entity. Nonetheless, the current implementation
employs the E-ACTIVE relation for each entity, mainly for purposes of clﬁrity.

We adopt the following convention for representing relations: Attribute names in a rela-
tional scheme are specified in upper case, while specific values assigned to those attributes
are in lower case. For example, a BEAM-DATA relation that describes an/example BeaMm

entity has the following definition: BEAM-DATA(Version-id, Beam-id, Wt, Span) represents

the scheme of the relation, while BEAM-DATA(m-0, 11, 18, 25) is a specific tuple with the
values m-0, 11, 18, and 25 assigned to the attributes Version-id, Beam-id, Wt and Span,
respectively.

Table 3.2 presents the three relations, BEAM-INDEX, BEAM-ACTIVE, and BEAM-DATA,

to maintain the initial version hierarchy of the BEAM entity that was given in Figure 3.1.

CHAPTER 3. VERSION MODEL | 58

In Table 3.2(a), version m-0 is identified as declared by the Decl-status attribute. Also, the
BEAM-ACTIVE relation in Table 3.2(b) specifies version m-0a0 as active. In this example,
version m-1 is suspended as it is neither declared nor active. Table 3.2(c) shows the BEAM-
DaTA relation which describes each version in'the BEaM derivation hierarchy presented in
Figure 3.1. | o ' ’ .

We use the previously presented example sequence of state operators (Table 3.1) to
demonstrate the version model in a relational context. SQL statements for these example
operations on the BEAM entity hierarchy are summarized in Table 3.3. The final description
of the relations BEAM-INDEX and BEAM-ACTIVE after executing the sequence of operations
shown in Table 3.4. The representation of the relations corresponds to the description of

the BEAM hierarchy earlier shown in Figure 3.9.

3.2.3 Modifying a Version Description

We provide three data operations for modifying instances in a given version: insert, delete
and replace. Employing a simple update in-place protocol, a single application change on
an entity is directly executed on its active version. Before describing the procedure to
modify an active version, we first develop a formal framework to discuss design changes.
We then specify criteria to determine the validity of changes in this context. Finally, we
develop a procedure, update-version, that integrates changes on an entity with the current

description of its active version, while using the update-in-place protocol.

Framework for Change Management

In this work, a change is forrhally defined as a data operation on an instance of an entify.
A change on an instance has a matching tuple if the instance already exists in the active
version of the concerned entity. We define the following terms for changes on an entity E,
described by the relation E(X, Y).

e A change A on an instance of entity E (described by the scheme E(X, Y)), is main-
tained as a positive literal described by the scheme, A(X, Y, O), where

— X: Set of primary attributes that uniquely identify the instance being modified.

— Y: Set of secondary attributes which describe the particular design modification.

— O: Operator descriptor of the change; one of insert, delete, or replace.

CHAPTER 3. VERSION MODEL 59

e A particular change A, represented as A(x, y, 0), is a data operation o, where o €
{insert, delete, replace}, on the instance of primitive entity E that is identified

by a set of primary attribute values, x.

e A specific change A(x, y, 0) on an instance (identified by primary attribute values, x)
has a matching tuple if the instance already exists in the active version of the entity E..

This matching tuple is specified as: E-DATA(active-id, x, '), where x is the identical

set of primary attribute values as the change A. The secondary attribute values of the

change, y, do not necessarily equal the instance description, y’.

o A sequence of n changes on an instance of entity E, is represented as a directed graph
(chain) G(C,S), where C is the set of changes = {Cy, ..., Ck, ..., Cn}, and 5 is the set
of edges between adjacent changes. A specific term in this sequence, Ck, corresponds
to the k" change in the sequence. We specify that a change C; is an earlier change
in the sequence than another change Cj, if ¢ < j; and the ordering relationship is
symbolically denoted as C; < C;. Further, a change C; precedes another change G;,
ifte=7-1, and the precedence relationship is represented as: C; ~ C;. That is, for
C; ~ Cj, C; is an immediate ancestor of change Cj; alternatively, C; is an immediate

successor of change C;.

The above definitions are used throughout the discussions presented in this chapter.

Validity of data operations

" We enumerate rules to specify the validity of a change A on an active version of an en-
tity E (described by the relational scheme, E(X, Y)). From a practical viewpoint, a valid
change can be successfully integrated with an existing description of an active version of

the concerned entity E.

e An insert operation A(x, y, “insert”) is valid only if there does not exist a maiching
tuple in the active version. Intuitively, this rule asserts that we can insert an instance

only if it is not contained in the active version.

o A delete operation A(x, y, “delete”) is valid only if there exists a matching tuple in
the active version. In other words, we can delete from an active version only those

instances which are contained in it.

CHAPTER 3. VERSION MODEL 60

e A replace operation A(x, y, “replace”) is valid only if there exists a matching tuple
in the active version. Similar to a delete operation, we can replace only those

instances that already exist in the active version.

Further, a sequence of n changes represented by a directed graph (chain) G(C,S) is valid, if

- each change in that sequence, C; where i = 1, ..., n, is individually valid.

Algorithm to integrate changes

We outline a procedure to integrate application changes with the currently active version
using an update in-place protocol. This procedure ensures that each design change on the
active version is valid based on the rules presented above. We implement this procedure as
an update-version operator. Table 3.5 shows specific tasks executed for various combina- '
tions of a design change A with the possibility of a matching tuple in the active version,
active-id, of the E-DATA relation. = We illustrate the operator by modifying the active
version m-2 of our “ongoing” BEAM entity example (previously given in Table 3.4), using

the sequences of changes shown in Table 3.6.

1. Sequence 1, Change 1: Matching tuple exists: BEAM-DATA(m-2, 11, 18, 25); replace
the matching tuple with the new tuple BEAM-DATA(m-2, 11, 20, 30).

2. Sequence 2, Change 1: Matching tuple exists: BEAM-DATA(m-2, 12, 22, 35); delete
tuple.

" 3. Sequence 2, Change 2: No matching tuple exists; insert tuple BEAM—DATA(__r_n__—z, 12, -
20, 30). S

4. Sequence 3, Change 1: Matching tuple exists: BEAM-DATA(m-2, 14, 22, 35); replace
the matching tuple with the new tuple BEAM-DATA(m-2, 14, 18, 25).

5. Sequence 3, Change 2: Matching tuple exists: BEAM-DATA(m-2, 14, 18, 25); replace
the matching tuple with the new tuple BEAM-DATA(m-2, 14, 20, 30).

" 6. Sequence 4, Change 1: Matching tuple exists: BEAM-DATA(m-2, 15, 18, 25); replace
the matching tuple with the new tuple BeaM-DaTA(m-2, 15, 20, 30).

Table 3.7 describes the BEAM-DATA relation obtained on executing the above data opera-

tions.

CHAPTER 3. VERSION MODEL 61

3.2.4 Drawbacks

The proposed scheme suffers from an obvious drawback in that multiple copies of an in-
stance description can occur in many versions along a derivation path. A derive operation
physically copiés all tuples associated with the parent version into the new child version.
Since only a fraction of a version’s tuples are usually modified while the version is active,
many copies of an instance can exist in intermediate versions along a derivation path. The
BEAM-DATA relation (Table 3.7), for example, stores identical copies of Beam 13 in versions
m-1 and m-2. This limitation becomes critical in large derivation hierarchies, having a num-
ber of instances (tuples) in each version. In Section 3.4, we present a more compact scheme
where a version contains only the summary of all changes made when the version was active.

The theoretical foundations for this compact scheme are developed in the following section.

CHAPTER 3. VERSION MODEL 62

Table 3.2: Relational Representation of a BEAM Entity
(a) Maintenance of the BEAM Derivation Hierarchy
BEAM-INDEX

| Version-id | Parent-id | Decl-status |
m_O “Nllll” “y”
m-0a0 m-0 “n”
m-1 m-0 “n”

BEAM-ACTIVE

| Act-version-id ‘

(b) Identification of an Active Version in the Derivation Hierarchy

| m-0a0 |
(c) Descriptions of Versions in the Derivation Hierarchy
BeaM-DATA
| Version-id | Beam-id | Wt l Span |
m-0 11 18 25
m-0 12 20 30
m-0 13 20 30
m-0 14 20 30
m-0 15 18 25
m-0al 11 20 | 30
m-0al 12 18 25
m-0a0 13 20 30
m-0a0 14 18 25
m-0al 15 20 30
m-1 11 18 25
m-1 12 22 35
m-1 13 16 20
m-1 14 22 35
m-1 15 18 25

CHAPTER 3. VERSION MODEL

Table 3.3: Database Operations to Specify Version States (Application Example)

User SQL Database
Operations Operations
activate (BEAM, m-1) | active (initial) m-0a0
suspended (initial) m-1
operation DELETE FROM BEAM-ACTIVE;

INSERT INTO BEAM-ACTIVE
VALUES(m-1);

declare (BEAM, m-1) | active (initial)

operation

m-1

UPDATE BeAM-INDEX
SET Decl-status = “y”
WHERE Version-id = m-1;

derive (BEAM, m-1) | not existent (initial)

declared (initial)
operation

m-2

m-1

INSERT INTO BEAM-INDEX
‘VALUES(m-2, “n”, m-1);

63

Table 3.4: Description of the BEaM Entity after Executing the Operations in Table 3.1

(a) Representation of the BEaM Derivation Hierarchy
BeaM-INDEX Relation

| Version-id t Parent-id |

Decl-status |

m-O “Nuu” “y”
m-0a0 m-0 n”
m_ 1 m_O “y”
m-2 m-1 n” g

(b) Identification of the Active Version
BeaM-ACTIVE Relation -

Act-version-id

m-2

CHAPTER 3. VERSION MODEL

Table 3.5: An update-version Operator to Modify a Version for Change A

Status of physical
matching tuple

Change A

in E-DATA Alx, v/, “nsert”) | A(x, y’, “delete”) | A(x, y’, “replace”)
no matching insert tuple print error; print error;
tuple E-DaTa(active-id,

x,y)

E-Data(active-id
X, ¥)

print error;

delete tuple;

replace matching
tuple with
E-DaTa(active-id,
%9

Table 3.6: Change Made to Instances Contained in an Active Version (m-2)

| Sequence-no | Change-no | Beam-id | Wt | Span | Op-desc |
1 1 11 20t | 30ft | “replace”
2 1 12 22t | 35ft | “delete”
2 2 12 20t | 30ft | “insert”
3 1 14 18t | 25ft | “replace”
3 2 14 20t | 30ft | “replace”
4 1 15 20t | 30ft | “replace”

64

CHAPTER 3. VERSION MODEL

Table 3.7: Description of the BEAM Entity After Executing the Changes in Table 3.6

BEAM-DATA
] Version-id | Beam-id | Wt] Span }
m-0 11 18 25
m-0 12 20 30
m-0 13 20 30
m-0 14 20 30
- m-0 15 18 25
m-0a0 11 20 30
m-0a0 12 18 25
m-0a0 13 20 30
m-0a0 14 18 25
m-0a0 15 20 30
m-1 11 18 25
m-1 12 22 35
m-1 13 16 20
m-1 14 22 35
m-1 © 15 18 25
m-2- 11 | 20 30
m-2 12 20 30
m-2 13 16 20
m-2 14 20 30
m-2 15 20 30

CHAPTER 3. VERSION MODEL 66

3.3 Theory of Equivalent Operations

An equivalent operation for a sequence of changes on an instance is a single data operation
that results in the same final description of the instance as the original sequence of changes.
This section establishes that we can compute a unique equivdlent operation for a valid
- sequence of changes, from knowing the first and last changes in that sequence. Before we
can prove this result, we need to develop a framework in which to reason about equivalent
operations. We first present the basic rules to compute an equivalent operation for a pair of
changes on an instance of entity E. We then extend this framework for an arbitrarily long
sequence of changes by establishing that for any valid sequence of changes on an instance,
there exists at most one equivalent operation which is also valid. As a corollary to this
result, the last change in a valid sequence of changes describes the instance that has been
modified by that sequence. Using the above results, we develop important algebraic laws
that establish equivalences between valid operator sequences. Finally, we show that the
equivalent operation for a sequence of operators can be uniquely determined by using only
its first and last elements. The framework for equivalent operations developed in this section

provides the theoretical foundation for version change management.

3.3.1 Rules to Compute an Equivale.nt Operation

We enumerate the following rules to compute an equivalent operation Q (described by the
scheme Q(X, Y, 0)) for an ordered pair of two changes A(x, y, o) and B(x, y’, o') on
an instance of entity E that is identified by the primary attribute values; x. For this

pair of changes, A is'dn, immediate ancestor of the change B, i.e., A ~ B. Note tha,t'the -
descriptions of the two changes (secondary attribute values, y and y’) are typically different
unless otherwise specified. Further, we assume A to be a valid change; the validity of a given
pair of changes is thus determined by the individual validity of change B in the context of .
change A.

.
1. A(x, y, “insert”) ~ B(x, y’, “insert”) is an invalid sequence. B is an invalid oper-
ation since we cannot insert an instance that already exists; the instance has been

inserted by operation A.

2. A(x, y, “insert”) ~» B(x, y’, “delete”) < no operation. Note that in this case y is the

same set of values as y’'.

CHAPTER 3. VERSION MODEL 67

3. A(x, y, “insert”) ~ B(x, ¥/, “replace”) & Q(x, y', “insert”)
4. A(x, y, “delete”) ~ B(x, y', “insert”) & Q(x, y', “replace”)

5. A(x, y, “delete”) ~» B(x, y’, “delete”) is an invalid sequence. B is an invalid operation -
since we cannot delete an instance that no longer exists; the instance has been

deleted by operation A.

6. A(x,y, “delete”) ~ B(x, y', “replace”) is an invalid sequence. B is an invalid operation
since we cannot replace an instance that no longer exists; the instance has been

deleted by operation A.

7. A(x, ¥, “replace”) ~» B(x, y', “insert”) is an invalid sequence. B is an invalid operation
since we cannot insert an instance that already exists; A was a valid operation

because the instance already existed.

8. A(x, y, “replace”) ~ B(x, y', “delete”) & Q(x, y', “delete”). Note that in this case

y is the same set of values as y’.
9. A(x, y, “replace”) ~ B(x, y', “replace”) & Q(x, y', “replace”)

The equivalence rules show that for a valid sequence of two operations (the sequence is
valid if both changes A and B are valid) that do not result in a “no operation”, there
exists a single equivalent operation. It can be shown that such an equivalent operation, Q
is also valid. The equivalent rules can be implemented as a function, get-eqchange, that

computes the equivalent opemtioh, if any, for a valid sequence of two operations.

3.3.2 Equivalent operation of a sequence of operations

We extend equivalent operations for an arbitrarily long valid sequence of operations, by
guaranteeing that we can summarize the sequence of operations on an instance into at most

-

one equivalent operation.

Theorem 1 For any valid sequence of data operations on an instance,-there exists at most
one equivalent operation Qgeq which is also valid. This equivalent operation produces the
same final description of the instance as the ezecution of the original sequence of the data

operations.

CHAPTER 3. VERSION MODEL . 68

Proof: We represent a sequence of n changes on an instance of entity I (identified by a set
of primary attribute values, x) as a directed chain G(C,S), where C = {Cy, ..., Cx, ... Cn}
is the set of changes, and S is the set of edges between adjacent changes. A specific node
in this sequence, Cy, denotes the k** term in the sequence and is described as Ck(x, ¥, 0).
A directed edge S; in S represents the transit from an earlier change C; in the sequence to
its immediate successor change in the sequence Cit1 (Ci ~ Cit1)- ' '

Base: If there exists only one operation in the sequence G(C,S), the equivalent operation is

that operation itself.

Proof Steps: For an arbitrarily long sequence G (of length more than one), we show that the
sequence can be recursively compressed to a single node which is the equivalent operation.
The rest of this proof outlines the steps to compress the sequence, as well as the rationale

for the resulting equivalent operation to be valid.
1. Start with the root node Cqy of the chain G.

2. If there exists a node C; adjacent to the root node Cg (Co ~ C;) then use the rules
specified in Section 3.3.1 to compute the equivalent change Qo for the sequence Cq
~» C;. Substitute in the chain G, the sequence of two operations Co ~ Cy by the
equivalent operation Qp. Rename Qo as the new root node Cg. By the equivalence
rules, if both Cq and C; are valid, then there exists at most one equivalent operation
that is also valid (the equivalent operation could be a “no operation”). Furthermore,
as the equivalént node has the same effect as the two operations that it substituted,

the successor node of C; that was initially valid would continue to remain valid,

3. Repeat Step 2 till there does not exist any node adjacent to the root node, i.e, the
chain has been collapsed to a single node. As the sequence is valid, each execution
of the get-eqchange operator is guaranteed to obtain a valid equivalent operation.
The resulting root node Cy is the operation Qseq that is equivalent tothe sequence of

operations.

<&
The tesult of this theorem establishes that there exists a unique equivalent operation for a

valid sequence of changes.

CHAPTER 3. VERSION MODEL 69

3.3.3 Final Description of Instance

A corollary of Theorem 1 ensures that the computed equivalent operation for a valid se-

quence of operations is described by the last change.

Corollary of Theorem 1: The description of an instance, after the ezecution of a valid
sequence of data operations on it, is determined by the last change in that sequence.

<

Although we do not present a formal proof for this result, we intuitively explain it using
the following argument. The last change of the concerned valid sequence could be one of:
insert, delete, or replace operations. For each case we can show that the final description

of the instance is obtained by the last change.

e delete: If the last change is a delete operation, then the equivalent operation results

in an non-existent description of the instance.

e insert or replace: If the last change is either an insert or replace operation,
then the final description of the instance corresponds to the inserted or final replaced '

values, both of which are specified by the last change.

Theorem 1 and its Corollary establish that for a valid sequence of changes, there exists at
most one equivalent operation which is also valid. Furthermore, the resulting description of
the instance is determined by the last change in the original sequence. This result provides
the theoretical basis for the methodologies presented later in this chapter for version change

management.

3.3.4 Algebraic Laws for Precedence Relationships

We now specify important algebraic laws for equivalences among valid operator sequences
connected pairwise by precedence relationships. Let’s denote three valid data operations,
A, B, and C, on an individual instance of an entity E. We provide a connector, <, to
31gn1fy equivalences between the operator expressions that it connects. Using the standard
notations that were introduced in Section 3.2.3, we show the followmg four algebraic laws

among the changes A, B and C.

1. Identity Law: (A < A ~ “no operation” ¢ “no operation” ~» A) If A is a valid

operation then it is also valid if it is either preceded or succeeded by a “no operation.”

CHAPTER 3. VERSION MODEL " 70

Further, if A is an invalid change, then the other two operator sequences (containing

A and “no operation”) are also invalid.

2. Idempotent Law does not hold: (A ~ A ¢ A) Even if A is a valid operation, A ~
A may not be valid. It can be easily shown that A ~» A is valid only when A is a

replace operation.

3. Commutative Law does not hold: (A ~ B ¢ B ~» A) If A ~ B is a valid sequence,
it does not imply that B ~+ A is also valid. Moreover, even if both expressions are
valid, then by Corollary 1, operation B determines the instance description after the
execution of the left expression, while in the right expression, operation A controls
the final instance description. This implies that unless A and B are identical replace
operations (considering only situations where A ~» B and B ~» A are both valid),

their resulting descriptions are likely to be different.

4. Associative Law: ((A ~ B) ~ C & A ~ (B ~ C)) If the sequence A ~ B ~
C is valid, then from the result of Theorem 1, the sequence results in at most one
equivalent operation. It can be shown that getting this unique equivalent operation

is independent of the order in which the equivalences are computed.

These laws are used in developing valid algorithms for operators to detect changes in an
application environment and to integrate application changes on an entity with the current

description of its active version.

3.3.5 Computing Equivalent Opveratidn for a Valid Sequence of Changes

We are now ready to show that it is possible to uniquely determine the equivalent operation
for any arbitrary sequence of operators, from the first and last elements of that sequence.

Before stati'ng this result, we prove the following lemma.

Lemma 1 : For a valid sequence of operations on an instance, given the first and the last
operations in that sequence, there erists at most one possible equivalent operation Qint (“no
operation” (nop) is also a possible outcome) for the intermediate operations in the sequence.

This equivalent operation is called the equivalent intermediate operation.

Proof: We represent a sequence of n changes on an instance of entity E (identified by a set

of primary attribute values, x) as a directed chain G(C,S), where C = {Cy, ..., Cx, ... Cpn}

CHAPTER 3. VERSION MODEL 71

is the set of changes, and S is the set of edges between adjacent changes. A specific node
in this sequence, Cy, denotes the k" term in the sequence and is described by the scheme,
Ck(x, y, 0). A directed edge S; in S represents the transit from an earlier change C; in the
sequence to its immediate successor.change in the sequence Cit1 (Ci ~ Cig1)--

The reasoﬁing béhind this proof is as follows. For a valid sequence of n operations
(Ci,..., Cy) in the sequence G, we can, as a result of Theorem 1, summarize all the inter-
mediate changes (Ca,. .., Ch—1) into a single unique equivalent intermediate operation Qint-
The proof for this lemma, thus, translates into showing that for specific assignments of the
first (C1(x, y, op-desc)) and last (Cn(x, y', op—desc’)) operators in the valid sequence, there

exists at most one definition for the equivalent operation Qjnt-

Proof Steps: The proof presented here is exhaustive in that it analyzes the different possible
operator assignments for changes C; and C,, and uses the equivalence rules to show that for
each of the possible combination of assignments for the first and last changes (Cq and Cyp),
there is at most one feasible operator assignment for the equivalent operation Qint for the
entire sequence to be valid. The actual steps for proving each case is as follows: (i) We first
ignore the operator assignment for the first change C; and determine all possible operator
assignments for Qjng, such that the operator assignment of the change Cn remains valid.
(i) We then select from this list of possible operator assignments for Qint, 2 smaller subset

of operator assignments which would also ensure that change C; is a valid operation.

o Ci(x, y, “insert”) and Cy(x, y', “insert”): For Cy to be valid, the intermediate equiv-
alent operation must be either Qin(x, y, “delete”) or “no operétion” (nop). Since
C; and C, are both valid insert operations, the equivalence rules in Section 3.3.1
eliminate the possibility that the intermediate operations result in a “no operation.”
Qint(x, y, “delete”) is the only allowable intermediate equivalent operation for the

entire sequence to be valid.

o Ci(x, y, “insert”) and Cn(x, y’, “delete”): For C, to be valid, tlfle intermediate
equivalent operation must be either Qin(x, ¥, “insert”) or Qine(x, y', “replace”).
Since C; is an insert operation and the intermediate equivaleflt operation Qint is
valid, the equivalence rules in Section 3.3.1 eliminate the possibility that Qi is also
an insert operation. Qnt(x, y', “replace”) is thus the only allowable intermediate

equivalent operation for the entire sequence to be valid.

CHAPTER 3. VERSION MODEL 72

e Ci(x, v, “insert”) and Cu(x, y', “replace”): For C, to be valid, the intermediate
equivalent operation must be either Qine(x, y”, “insert”) or Qine(x, ¥, “replace”).
Since C; is an insert operation and the intermediate equivalent operation Qint is
Ava,ljd, the equivalence rules in Section 3.3.1 eliminate the possibility that Qine is also
an insert operation. Qin(x, y', “replace”) is thus the only allowable interme&iate ‘

equivalent operation for the entire sequence to be valid.

o Cyi(x, y, “delete”) and Cy(x, y', “insert”): For C, to be valid, the intermediate
equivalent operation must be either Qint(x, y, “delete”) or “no operation” (nop).
Since C; is a delete operation and the intermediate equivalent operation Qin¢ is
valid, the equivalence rules in Section 3.3.1 eliminate the possibility that Qjin¢ is also
a delete operation. Thus, the equivalent intermediate operation must result in a “no

operation” (nop) for the entire sequence to be valid.

o Cyi(x, y, “delete”) and Cp(x, y’, “delete”): For C, to be valid, the intermediate
equivalent operation must be either Qin(x, ¥/, “insert”) or Qine(x, ¥, “replace”).
Since C; is adelete operétion and the intermediate equivalent operation Qjns is valid,
the equivalence rules in Section 3.3.1 eliminate the possibility that Qin¢ is a replace
operation. Qni(X, y', “insert”) is thus the only allowable intermediate equivalent

operation for the entire sequence to be valid.

e Ci(x, y, “delete”) and Cy(x, y’, “replace”): For C, to be valid, the intermediate
equivalent operation must be either Qini(x, ¥, “inéert”) or Qins(x, y”, “replace”).
Since C; is a-delete and the intermediate equivalent operation Qint is valid, -the
eqmvalence rules in Section 3 3.1 eliminate the possibility that Q¢ is a replace
operation. Qini(X, y', “insert”) is thus the only allowable intermediate equivalent

operation for the entire sequence to be valid.

e Ci(x, y, “replace”) and Cy(x, y’, “insert”): For C, to be valid, the intermediate
equivalent operation must be either Qint(x, y, “delete”) or “no operation” (nop).
Since C; is a replace operation and both the intermediate equivalent operation Qint
and the last change C, are both valid, the equivalence rules in Section 3.3.1 eliminate
the possibility that Qin results in a “no operation.” Qine(X, y', “delete”) is thus the

only allowable intermediate equivalent operation for the entire sequence to be valid.

CHAPTER 3. VERSION MODEL 73

e Ci(x, y, “replace”) and Cu(x, y’, “delete”): For C, to be valid, the intermediate
equivalent operation must be either Qine(x, y', “insert”) or Qine(x, y', “replace”). Since
C, is a replace operation and the intermediate equivalent operation Qint is valid, the
equivalence rules in Section 3.3.1 eliminate the possibility that Qjn; is an insert.
operation. Qui(x, ¥, “replace”) is thus the only allowable intermediate equivalent

operation for the entire sequence to be valid.

e Ci(x, y, “replace”) and Cn(x, y', “replace”): For C, to be valid, the intermediate
equivalent operation must be either Qini(x, y”, “insert”) or Qine(X, ¥", “replace”).
Since C; is a replace operation and the intermediate equivalent operation Qint is
valid, the equivalence rules in Section 3.3.1 eliminate the possibility that Qine is an
insert operation. Qini(x, y', “replace”) is thus the only allowable intermediate equiv-

alent operation for the entire sequence to be valid.

<&

With Lemma 1, we can now state the main result in the following theorem.

Theorem 2 : For any valid sequence of operations on an instance, given the first and
last operators, it is possible to determine the value of the equivalent operation Qseq for the

sequence.

Proof: We represent a sequence of n changes on an instance of entity E (identified by a set
of primary attribute values, x) as a directed chain G(C,S), where C = {Cy, ..., Ck, - .- Cn}
is the set of changes, and S is the set of 'edges between' adjacent changes. A speciﬁc node
‘in this sequence, Cy, denotes the k*® term in the sequence and is described as Ck(x, y, 0).
A directed edge S; in S represents the transit from an earlier change C; in the sequence to
its immediate successor change in the sequence Ciyq (Cj ~ Cit1)-

Base: If there exists exactly one operation in the sequence G, then the equivalent operation
for the sequence Qseq is that operation itself. If, however, the sequence G has two oper-
ations, we can uniquely compute the unique equivalent operation using the rules given in

Section 3.3.1 (summarized as a get-eqchange function). -

Proof Steps: The proof for an arbitrarily long sequence G of n (three or more) operators

has the following steps:

CHAPTER 3. VERSION MODEL 74

1. Given the results of Lemma 1 and the first (C;) and last (Cy) changes in the operator
sequence, G, we can summarize all the intermediate changes (Cs,...,Cn-1) into one
valid equivalent intermediate operation Qint. In other words, we reduce the original
sequence of n operations (G) into. the following sequence of 3 operations: (Cyy Qinty .

Cn)-

9. For each combination of the above sequence of three valid changes (Cy, Qint, Cn) we
can determine the net equivalent operation, Qgeq, by using two times the equivalence
rules given in Section 3.3.1. Theorem 1 guarantees that Qgeq is both unique and valid.
Furthermore, by the Corollary of Theorem 1, the final description of the equivalent

- operation, Qseq, is obtained by the last change (Cyp)-

<&

This result provides the theoretical basis for procedures to compute the net differences
between two versions, one of which is an ancestor of the other in an entity derivation hierar-
chy. We compute the net differences as a set of equivalent operations that can be executed
on the ancestor version to describe its descendant. Using Theorem 2, we can obtain the
equivalent operation on each instance from only the first and last change on the instance
along the derivation path. In other words, such a procedure does not require the interme-
diate descriptions of each modified instance, making it particularly attractive for complex
design situations that typically maintain a large number of intermediate descriptions of an

incrementally refined artifact.

CHAPTER 3. VERSION MODEL 75

3.4 Representation Scheme Based on Storing Changes

This section proposes a compact forward deltas scheme [36] to implement the version hier-
archy of a primitive entity. Each version in this scheme contains a summary of all changes
made to instances of the entity when the concerned version was actwe Thus, a glven version
can be described by executing its associated changes (set of deltas) on the description of
its parent version. By applying the concept of equivalent operations, we establish a version
description as the set of equivalent operations of all changes on that entity that were made
when the given version was active. A version, in our model, is thus a unit of granularity
whose consistency can be evaluated. For this scheme, deriving a new version does not
produce a physical copy of the parent version’s tuples in the child version. Instead, the
child version logically inherits the description of the parent at the time it is derived.

In this section, we first extend the basic representation scheme presented in Section
3.2.2, to implement versions as a set of equivalent operations. We then discuss a procedure
to describe versions that are represented by the proposed scheme. Tuples logically belonging
to a version description could be either associated with the particular version or inherited
from its ancestors. However, the proposed procedure is computationally inefficient since
in order to instantiate a version, the operator retraces back to the root version of the
derivation hierarchy. A storage for efficiency tradeoff includes explicitly storing instantiated
descriptions of intermediate versions; we denote the instantiated versions as complete, the
remaining versions are incomplete. The modified procedure to instantiate a version now
needs to trace only till the most recent complete ancestor version which contains all tuples

from its own ancestors that could be potentially inherited by the version being described.

3.4.1 Basic Representation Scheme

For each version, we associate its Version-id attribute value with a set of equivalent oper-
ations, at most one on each instance that was modified when that versmn was active. To
completely describe the equivalent operations contained in a given vers1on we extend the
definition of the E-DATA relation presented in Section 3.2.2 by adding two new attributes,
Op-desc and Vprev. The Op-desc attribute records the descriptor of the equivalent opera-
tion on each instance. On the other hand, an Vprev attribute maintains with an instance
a link to its most recent description in an ancestor version. The Vprev attribute value is

critical in redesign efforts that require retracing of design changes through ancestor versions

CHAPTER 3. VERSION MODEL ' 76

SAL> select #* from Beam_Data:

YERSION_ID BEAM_ID WT SPAN OP_DESC YPREV
m—0 1n 18 25 insert Null
m—0 12 20 : 30 insert Null
m—0 o 13 - 20 30 insert Null
m=0 14 20 30 insert Null
n—0 15 18 25 insert Null
m=0a0 11 20 30 replace n-0
m—0a0 12 18 25 replace n-0
m—0a0 14 18 25 replace m—0
m—0a0 15 20 30 replace m—0
m-1 12 22 35 replace n—0
m—1 13 16 20 replace m=0
VERSION_ID BEAM_ID WT SPAN OP_DESC VPREVY
m—1 14 22 35 replace n—90

12 rows selected.

saL> 1

Figure 3.10: Extended Representation Scheme of the BEAM Hierarchy Shown in Figure 3.9

till when the unsatisfactory change was first introduced. For the sake of performance, we
explicitly store this value instead of computing the value every time it is needed. The mod-

ified definition of an E-DATA relation is now given:
E-Data(Version-id, X, Y, Op-desc, Vprev)

where the additional attributes are:

o Op-desc: Descriptor of the equivalent operation of all changes on a particular instance

when the given version was active. Possible values are: “insert,” “delete,” or “replace.”

e Vprev: Identifier of the ancestor version in the derivation hierarcliy in which the
instance was most recently modified. If the instance was insertedin the given version,

then the Vprev attribute is assigned a value, “Null.” -

Figure 3.10 uses the current scheme to implement the BEAM-DATA relation in an ORACLE
database. This relation describes the BEAM hierarchy that was described earlier in Figure
3.9 (Section 3.1).

CHAPTER 3. VERSION MODEL 77

3.4.2 Describing a Version Definition

We outline a procedure that describes versions which are represented by the proposed
forward deltas scheme. This procedure collects all tuples that logically belong to a version
description; a particular tuple could be either associated with the current vefsion or inherited
from its ancestors.

Previous research efforts have proposed a number of algorithms to instantiate versions
represented using similar forward deltas schemes [36]. These algorithms usually start with
the root version and successively apply the deltas associated with each intermediate ver-
sion on the derivation path from the root version to (and including) the version being
instantiated. However, such algorithms implicitly require identifying the actual derivation
path from the root version to the concerned version. Unfortunately, search procedures that
identify derivation paths could themselves be computationailly significant in large design
hierarchies with a high degree of branching.

Given that a version (except the root version) in an entity hierarchy has exactly one
parent, we propose an alternate procedure that retraces the parent links from (and includ-
ing) the concerned version to the root version collecting tuples that logically belong to the
instantiated version. We use Corollary 1 (Section 3.3.3) for identifying specific tuples that
logically belong to the version of interest. A version derivation path can be viewed as a
sequence of equivalent operations on each instance that was modified when the concerned
version or one of its ancestors were active. The description of each instance that is included
in a given version definition is therefore determined by the last element in its derivation

-sequence. If this is a delete operation, then that instance is not present in the version
description. However, all the latest non-delete equivalent operations are included while de-
scribing the version of interest. Further, included tuples that are physically associated with
a proper ancestor of the given version are denoted as inherited. We implement the above
procedure as a materialize operator that describes a version by obtaining the latest equiv-
alent operation on each instance along the version’s derivation path. Figure 3.11 outlines
an algorithm for the materialize operator. In addition to the type declarations in Section
3.1, we use the following type declarations: -

e tuple: Relational description of a change on an instance of an entity E that is stored

in an E-DATA relation.

e secondary: Set of secondary attributes that describe the design properties of each

instance of an entity E.

CHAPTER 3. VERSION MODEL : 78

e opdesc: Descriptor of the equivalent operation on an instance stored in a particular

version of an entity E.
In addition, this algorithm and subsequent algorithms use the following ezternal functions:

o vers-type = (entity E, idyersion V) string S: Specifies whether a given version V. of
entity E is complete. Possible values for the string S are completé or incomplete.

e fetch = (entity E, idyersion V, primary K) tuple T: Queries a version V in an E;DATA
relation for an instance that is identified by the primary attributes K. The queried
result is a tuple T from the E-DATA relation.

e retrieve = (entity E, idyersion V) tuple T: Obtains each tuple, in sequence, that is
physically associated with version identifier V in relation E-DATA. An execution of
this function returns a single tuple T that represents the instance which is subsequent
to the instance that was retrieved by the most recent execution of the retrieve
function for the same version V.

e key = (tuple T) primary K: Returns the primary attribute values K of a tuple T.

o dependent = (tuple T) secondary Y: Returns the secondary attribute values Y of a
tuple T.

e operator = (tuple T) opdesc O: Returns the operator descriptor O of a tuple T.

e output: Prints the assigned parameter values.

¢ 7T: Corresponds to the relational algebra operator, project. It obtains values assigned
to attributes F in tuple T.

e add = (primary X, [L:n] primary H) primary H: Adds an primary attribute X into the
appropriate position of a sorted array of primary attributes H. The resulting sorted

array replaces the.original array H. _
Table 3.8 illustrates a materialize operation by describing active version m-2 of our ex-

ample BEAM version hierarchy that was shown in Figure 3.10.

3.4.3 Optimization for Representation Scheme

~

The implementation scheme for versions as a set of equivalent operations is efficient in terms
of storage. However, each time we instantiate a version, a materialize operation must re-
trace back to the root version of the derivation hierarchy. Our apprc;ach to improve the
computational efficiency is to explicitly store instantiated descriptions of certain interme-

diate versions in the E-DATA relation. The “optimized” scheme denotes the instantiated

CHAPTER 3. VERSION MODEL 79

Table 3.8: Instantiation of Version m-2: materialize(m-2)

[Beam-id | Wt | Span |
14 22 35
13 16 20
12 22 35
15 18 25
11 18 25

versions as complete, while the remaining versions are incomplete. By this storage for effi-
ciency tradeoff, a materialize operation to instantiate an incomplete version needs to trace
only until the most recent complete ancestor version. As this ancestor version is complete, it
contains all tuples from its own ancestors that could be potentially inherited by the version
_being instantiated. Further, a complete version can be described by simply querying the
E-DATA relation on its version identifier.

To represent this “optimized” scheme, we need to distinguish complete versions in an
entity hierarchy, as well as identify those tuples in a complete version that were explicitly
copied from its ancestor versions. We accomplish these two requirements by the following

extensions to the representation scheme proposed in Section 3.4.1.

e A new value, “copy,” is added to the set of possible values that can be assigned to
attribute, Op-desc, in the E-DATA relation. This attribute value identifies those tuples

that are explicitly copied into a complete version from one of its ancestors.

e A new attribute, Version-type, in the scheme for the E-INDEX relation identifies ver-
sions that are complete. The root version of an entity derivation hierarchy is always

specified as complete.

An incomplete version can be made complete by explicitly copying the inherited tuples that
logically belong to the version description into its definition. The Op-desc attribute of each
copied tuple is assigned a value, “copy.” Also, the Version-type attfibute for the given
version in the E-INDEX relation is assigned a value, “complete.” Figure 3.12 describes, in
detail, a procedure to complete a version. The next section discusses the application of

equivalent operations for version change management.

CHAPTER 3. VERSION MODEL 80

Algorithm 7 (materialize)

Input: e: Name of the concerned entity.

materialize-id: identifier of the version being materialized.

Output: All the tuples that logically belong to version identified by materialize-id

procedure materialize = (entity e, idversion materialize-id):
begin tuple u; primary x; secondary y; [1:n] primary h; idversion Version-id; integer i
for i = 0 by 1 to n begin
h[i] := 05
end;
version-id := materialize-id,
while (version-id # “Null”) do
begin
u := retrieve(e, version-id);
while (u # “Null”) do

begin
if ((x := key(u)) € h)
begin
add(x, h);
if (operator(u) # “delete”)
begin :
 output(my u);
end;
end;
u := retrieve(e, version-id);
end;
version-id := vers-parent(version-id);
end;
end procedure -

<

Figure 3.11: Algorithm to materialize a Version Represented by Equivalent Operations

CHAPTER 3. VERSION MODEL

Algorithm 8 (complete)

Input: e: Name of the concerned entity. .
complete-id: Identifier of the version being completed.

Output: Relation E-DaTA(X, Y, O, A) with version complete-id instantiated.

procedure instantiate-tuple = (idversion version-id, tuple u) boolean success:
begin primary x; [1:n] primary h;;
if ((x := key(u)) ¢ h) begin
add(x, h);
if (operatorglyf)d}é “delete” AND version-id # complete-id) begin
success:= E;
end;
end;
end procedure

procedure complete = (entity e, idyersion complete-id):
begin idyersion version-id, tuple u, primary X, secondary y;
version-id := complete-id,
’z)vhi}e (version-id # “Null” AND vers-type(version-id) # “complete”) do
egin ‘
u:= retrieve(version-id);
while (u # “Null”) do

begin
success:= instantiate-tuple(version-id, u);
x:= key(u);

y:= dependent(u);
if (success) begin
insert E-DATA(complete-id, X, y, version-id);

end;
u:= retrieve(version-id);
end; _
(xl/ersion-id := vers-parent(version-id);
end;

u:= retrieve(version-id);
while (u # “Null”) do

begin
success:= instantiate-tuple(version-id, u);
x:= key(u);

y:= dependent(u);
if (success) begin
insert E-DATA(complete-id, x, y, version-id);
end;
u:= retrieve(version-id); N
end;
%nd procedure

Figure 3.12: Procedure to complete a Version in an Entity Derivation Hierarchy

CHAPTER 3. VERSION MODEL | 82

3.5 Application of Fquiwalent Opefatz’ons to the Version Model

We apply equivalent operations to store, detect, and manage changes among versions in an
entity derivation hierarchy. As developed in the previous section, a given version contains
the set of equivalent operations on the instances which were modified when that version
was active. Therefore, to modify an active version we (i) determine the net changes made
to an entity during an application session, and (ii) integrate these detected changes with
the current description of the active version. The exact methodology to detect net changes
depends on the specific protocol being employed to structure the interaction between the
application session and the version hierarchy.

We introduce a check-out/check-back-deltas protocol that structures the interaction be-
tween an application and the version hierarchy. Using a check-out/check-back-deltas proto-
col, a designer checks-out a materialized description of the active version into the appli-
cation environment. This description can then be iteratively refined using three primitive
operations: insert, delete, and replace. A compress operation summarizes the changes
made on instances of the entity during that application session. The net change on a
particular instance being the equivalent operation on that instance that was made during
the concerned session. Finally, we check-back these detected changes on an entity into its
active version, where they are integrated with the present version description. Since an
active version could be modified by several application sessions, a given version contains
the equivalent operations of all changes that were made to that entity while that version
was active. Our model therefore speciﬁes a version as a unit of granularity. In addition,
we can compute the changes between an ancestor-descendant pair of versions in an entity
hierarchy by determining the net equivalent operation of all intermediate versions along the
path between the two concerned versions. The resulting changes represent the minimal set
of data operations that can be executed on the concerned ancestor version to describe its
descendant.

The rest of this section discusses, in detail, specific procedures to support the design
process for a primitive entity. First, we present a procedure tomaterialize a version that is
represented using the “optimized” scheme presented in Section 3.4.3. Second, we outline the
procedure to detect the equivalent operations made during a particular application session
using a check-out/check-back-deltas protocol. Third, we discuss a procedure to integrate

detected application changes on each entity with the existing description of its active version.

CHAPTER 3. VERSION MODEL 83

The fourth part of this section shows a procedure to compute the differences between an
ancestor-descendant pair of versions in the entity derivation hierarchy. As mentioned earlier,
we need to prune a version hierarchy for curtailing its storage needs. In Section 3.1, we
outlined a general procedure to reconﬁgure a version hierarchy when removing versions from
it. The last part of this section focuses on procedures to erase the contents of a removed
version and also sketches an SQL implementation for removing a version definition from
an entity hierarchy. We demonstrate the proposed change management operators by using

our “ongoing” example of a BEAM entity derivation hierarchy.

3.5.1 Describing a Version

A materialize operation creates a version representation by collecting all instances that
logically belong to it; the instances could be either modified when that version was active
or inherited from its ancestors. To instantiate a version, a materialize procedure retraces
the path from the current version through its ancestors, collecting the latest equivalent op-
eration on each instance. If the equivalent operation is not a deletion then it is included
in the version description. By maintaining intermediate complete versions, a materialize
operation needs to trace only up to the most immediate complete ancestor version which
contains a copy of all the changes that could be potentially inherited by the version being
materialized. Figure 3.13 describes the procedure to materialize a version that is
represented using this modified scheme. Figure 3.14 describes active version m-2 of our
“ongoing” BEAM example, demonstrating the materialize operation in an ORACLE en-
_vironment. Figure 3.10 in Section 3.4.1 had earlier given the BEAM-DATA relation that

described the example version hierarchy.

3.5.2 Computing Changes Using a check-out/check-back-deltas Protocol

Using a check-out/check-back-deltas protocol, we determine the net changes made during a
particular session by summarizing the sequence of operations on instances that were made
during that session. Two aspects of our model make this feasible. First, we abstract each
application operation on an instance into its corresponding primitive operator. Second,
we store, as a sequence, all the primitive operators executed on each instance of a given
primitive entity that were made during the given session. At the end of this session, a
compress operator collapses the sequence of operators for each instance into a single root

operator, which corresponds to the descriptor of the equivalent operation on the particular

CHAPTER 3. VERSION MODEL 84

instance. By the results of Theorem 1, the compress operation is guaranteed to produce
a unique and valid equivalent operation, provided the original sequence of changes is also
valid.

The actual mechanism for collapsing the operator sequence associated with a particular

instance is as follows:

1. We substitute the first two nodes of an operator sequence with its equivalent operator
that is obtained by the rules given in Section 3.3.1 (implemented as a get-eqchange
function). Table 3.9 summarizes the get-eqchange function for different cases of the

first (u) and the second (v) operators.

2. We repeat Step 1 till the given operator sequence has been reduced to a single node,
i.e., there no longer exists a node in the operator sequence that is adjacent to the root
node. This resulting root node is the equivalent operator on the given instance during

the particular session.

3. We use the results of Corollary 1 (Section 3.3.3) to describe the detected equivalent
operations. By this result, inserted or replacement values correspond to the instance
descriptions at the end of the session, while the replaced or deleted values are originally

checked-out from the version hierarchy.

Figure 3.15 outlines a compress procedure. We use a query-tuple function to describe
instances logically contained in the active version. Similar to a materialize operation
(presented in Section 3.4.2), this function also retraces the derivation path from the given
version till the most fe_cent complete ancestor version. However, unlike a mate'rialize .
operation, a query-tuple operation terminates when a description of the concerned instance
is located; only in the worst case does it retrace upto the most immediate complete ancestor
version. Figure 3.16 describes an algorithm for a query-tuple operator. We consider the
following example to demonstrate a compress operation. The initial checked-out description
of version m-2 was given in Figure 3.14. To this description, we execute an e};ample sequence
of data operations that is maintained in Table 3.10. The table associates with each modified
BEAM instance, the sequence of operators executed on the instance during the considered

session. Following are the execution steps of the compress operation on each BEAM instance:

1. Instance: Beam 11;

Iteration 1: Root: replace;

CHAPTER 3. VERSION MODEL

85

Table 3.9: Function (get-eqchange (u, v)) for Computing an Equivalent Operation for a

Pair of Operators

descriptor of descriptor of the second change v
the first change u op-desc
op — desc’ op-desc 1= op-desc := op-desc =
“insert” “delete” “replace”
op — desc’ := “insert” | print error; | no operation insert;
op — desc’ := “delete” replace; print error; | print error;
op — desc’ := “replace” | print error; deleate; replace;

Iteration 1: Tail[0]: Null;

Descriptor of the Equivalent Operation: replace

Equivalent Operation on Beam 11: replace BEAM-DATA(1L, 18, 25) with

BeaM-DATA(11, 20, 30).

2. Instance: Beam 12;
Iteration 1: Root: delete;
Iteration 1:Tail[0]: insert;
Iteration 2: Root: replace;
Iteration 2: Tail[0]: replace;
Tteration 3: Root: replace; .

' Tteration 3: Tail[0]: Null;

Descriptor of the Equivalent Operation: replace

Equivalent Operation on Beam 12: replace BeaM-DATA(12, 22, 35) with

BeaM-DATA(12, 20, 30).

3. Instance: Beam 14;
Iteration 1: Root: replace;
Iteration 1: Tail[0]: replace;
Iteration 2: Root: replace;

Iteration 2: Tail[0]: Null;

-

CHAPTER 3. VERSION MODEL

Table 3.10: Example Sequence of Operators on Instances of the BEAM Entity

] Beam-id

Sequence of Operator Descriptors l '

11

replace

12

delete ~» insert ~» replace

14

[replace ~» replace

15

replace

Table 3.11: Example Detected Equivalent Operations on Active Version (m-2)

[Change-no | Beam-id | Wt I Span ‘ Op-desc]

1 ‘11 20t | 30ft | “replace”
2 12 20t | 30ft | “replace”
3 14 20t | 30ft | “replace”
4 15 20t | 30ft | “replace”

Descriptor of the Equivalent Operation: replace

Equivalent Operationon Beam 14: replace BEAM-DATA(14, 22, 35) with

BeaM-DaTA(14, 20, 30).

4. Instance: Beam 15;

Iteration 1: Root: replace;

Tteration 1: Tail[0]: Null;

Descriptor of the Fquivalent Operation: replace

Equivalent Operationon Beam 15: replace BEAM-DATA(15, 18, 25) with

BeaMm-DaTa(15, 20, 30).

86

Table 3.11 summarizes the net changes on the BEAM instances. These detected equivalent

operations represent the net changes made during the example application session. Ideally,

a compress operator would be implemented within an application environment; the current

implementation would be inconvenient in;situations that have a number of different design

applications, some of which might even be customized.

CHAPTER 3. VERSION MODEL 87

3.5.3 Integrating Application Changes with an Active Version

An integrate operation merges the net design changes on an entity that are checked-back
with an existing description of the entity’s active version. For the “optimized” scheme, a
particular change has a matching tuple if there is an instance in the materialized descrip-
tion of the active version that has identical primary attribute values as the specified change.

There are two possible situations for a change to have a matching tuple:

o A tuple with the same primary attribute values is physically associated with the

identifier of the active version.

o A tuple with the same primary attribute values is logically inherited by the active

version.

We call the former tuple a physical matching tuple, the latter is a logical matching tuple.
Formally,

e A specific change A(x, y, o) on an instance of entity E has a physical matching tuple, if
there exists a tuple in the active version (the Version-id attribute is assigned a value,

active-id) of the relation E-DATA (represented by E-Data(active-id, X, y')) that has

the same primary attribute values, x, as the change A.

o A specific change A(x, y, o) on an instance of entity E has a logical matching tuple, if

there exists a tuple in the relation E-DATA (i.e., E-DaTA(version-id, X, y')) that has

the same primary attribute values, x, as the change A and is inherited by the active

version.

We employ the query-tuple operator on the active version for obtaining the matching
tuple, if any exists, for a particular application change. If the matching tuple is associated
with the active version itself then it is physically matching; the tuple is a logical matching
tuple, if it is physically associated with an ancestor of the active version.

We specify two criteria for integrating a change into an active version. The criteria

have been adapted from previous work on view update translation [22].

e The change is valid in the context of the active version. We can insert an
instance only if it is not logically contained in the active version; Deleted or replaced

instances must logically be part of the active version.

CHAPTER 3. VERSION MODEL 88

e The new change is merged with the current description of the active version.

Four factors are proposed to effectively check-back a change into an active version:

~ Changes cannot be simpler: Two or more changes on a given instance are replaced
by its equivalent operation. Furthermore, an individual change contains all of the
attributes in the entity scheme, even if only one attribute is modified; no proper

subset of an instance description can be maintained in a version.

~ No database “side effects”: An entity can only be modified by a change that

alters the contents of its active version.

— No delete - insert pairs: A modification to one or more non-primary attributes of
an instance is referenced as a replace operation. Thus, a delete-insert pair of
operations on an instance with identical primary attribute values is summarized

as a replace operation.

— Key replacements are a delete - insert pair: Replacement of one or more primary
attribute values is represented as a deletion of an instance list with the old
primary attribute values followed by an insertion of another instance list with

the new primary attribute values.

These criteria provide the framework for an integrate operation. Figure 3.17 outlines a
procedure to implement an integrate operator. For each checked-back change, we invoke
an integrate-change operator that computes the equivalent operation of the checked-
back change and the description of the same instance that occurs in the active version.
This computed equivalent operation replaces the current description of the instance in the
active version. Specific execution of this integrate-change operator however depends on
the description of the checked-back change, as well as any existing matching tuple. Table
3.12 summarizes this function for different operator combinations. For each instance, this
function determines the equivalent operation of its initial description and the sequence of
changes on that instance. This resulting equivalent operation is now contained in the active
version. We illustrate an integrate operation by modifying the description of active
version m-2 of the BEAM entity (shown in Figure 3.14) by the equivalent operations detected
in Table 3.11. These example equivalent operations were originally computed earlier in
Section 3.5.2 by a compress operation using a check-out/check-back-deltas protocol. The

execution of the integrate operation is as follows:

1. Change 1:

CHAPTER 3. VERSION MODEL 89

Physical Matching Tuple does not exist;
Logical Matching Tuple exists, Version-id := m-0;

insert tuple BEAM-DATA(m-2, 11, 20, 30, “replace”, m-0);
2. Change 2:

Physical Matching Tuple does not exist;
Logical Matching Tuple exists, Version-id := m-1;

insert tuple BeaM-DaTa(m-2, 12, 20, 30, “replace”, m-1);
3. Change 3:

Physical Matching Tuple does not exist;
Logical Matching Tuple exists, Version-id := m-1;

insert tuple BEAM-DATA(m-2, 14, 20, 30, “replace”. m-1);
4. Change 4:

Physical Matching Tuple does not exist;
Logical Matching Tuple exists, Version-id := m-0;

insert tuple BEAM-DaATA(m-2, 15, 20, 30, “replace”, m-0)

The final description of the BEaM-DATA relation according to the optimized representation
scheme is shdwn in Figure 3.18. A number of application sessions typically check-back their
changes into the version hierarchy while a given version is active. The integrate operation
ensures that a version is represented by the set of equivalent operations of all changes that
were checked-back by application sessions, while that version was active; the versioning
scheme is therefore a forward deltas scheme [36]; a version can be described by executing its
associated set of equivalent operations on the description of its parent version. Furthermore,

the version is a unit of granularity whose consistency can be evaluated.

3.5.4 Computing changes between versions

A compute operation determines the differences between two versions, where one is an

ancestor of the other in an entity derivation hierarchy. These computed changes are 2

CHAPTER 3. VERSION MODEL 90

minimal set of data operations or deltas which can be executed on the ancestor version to
produce a description of the descendant.

Figure 3.19 outlines the compute procedure. The proposed procedure is an innova-
tive application of equivalent operations. Our model views a derivation path between an
ancestor-descendant pair of versions as a set of sequences of equivalent operations, one for
each instance that was modified in one or more versions along the derivation path. By this
interpretation, a compute operation involves determining the net equivalent operation for
the sequence of equivalent operations on each modified instance. Furthermore, as a result of
Theorem 2, we can uniquely determine the net equivalent operation or delta on an instance
by considering only the first and last elements of its equivalent operator sequence. In other
words, for each modified instance, the algorithm does not require the equivalent operations
from other intermediate versions. This is computationally efficient in design situations hav-
ing large version hierarchies with a number of intermediate descriptions of an incrementally
refined artifact.

Given the first (u) and last (v) changes on a single instance along a derivation path,
a summarize function computes the net equivalent operation. Table 3.13 tabulates the
execution of the summarize function for different operator assignments of the first and last
change. When the the first change (u) is a replace operation, we obtain the replaced
instance description from the ancestor version in which it is stored. This tuple is denoted
as w and is located by the Vprev attribute associated with the tuple u. In addition to, the
ezternal functions provided in Section 3.4.2, a compute-deltas operator uses the following

three functions pathchild, length, and anc:

e pathchild = (identifier P) identifier V: Retrieves the child version V of the version P

along a predefined derivation path between an ancestor-descendant pair of versions.

o length = ([1:n] primary H) integer K: Determines the number of elements K in a set

of primary attribute values H.

o anc = (tuple T) idversion A: Returns the identifier of the ancestor version A where the
current instance was most recently modified. This is stored in the attribute, Vprev,

in the E-DaTa relation.

Figure 3.20 demonstrates the execution of a compute operator in a relational system, by
determining the differences between versions m-0 and m-2 in the BEAM-DATA relation that

was previously shown in Figure 3.18.

CHAPTER 3. VERSION MODEL 91

3.5.5 Removing a version

We outline a procedure to remove a particular version from an entity derivation hierarchy.
When intermediate versions are removed, the version hierarchy is reconfigured; children of
the removed version are now specified as the children of its parent. Additionally, instances
physically associated with the removed version must be deleted. Unfortunately, in our
representation scheme, tuples associated with a given version can be logically inherited by
its successors. These tuples are also used to compute differences between two versions, in
whose derivation path the removed version lies. Thus, any strategy to delete the contents
of a removed version must ensure: (i) descriptions of other versions in the hierarchy are
not be affected, and (ii) computation of changes between any two versions must remain
unchanged. To satisfy these two restrictions we merge the changes associated with the
identifier of the removed version with the descriptions of each of its child versions. Success

of this approach can be reasoned as follows:

1. Descriptions of successor versions are not affected: Removing a version could po-
tentially affect the procedure to materialize those successor versions which inherit
tuples from the version being removed. Such situations arise when the child of the
removed version along each of the concerned derivation paths does not contain the
instances being inherited. By merging the contents of the removed version with its
children, we explicitly copy all such inherited tuples into the interested child versions.
Successor versions now inkerit the particular tuples from the child versions; the child
versions explicitly associate the tuples with their identifiers and thus do not need to

inherit them.

2. Computation of changes between any two versions are not affected: We merge the
description of all instances contained in the version being removed version with each
of its child versions. Thus, we store with each child version, the equivalent opera-
tions on all instances that were contained in the removed version or the considered
child version or both. Additionally, as the changes associated with the version to be
removed are merged with each of its children, corresponding sets of equivalent opera-
tions are maintained in all possible derivation paths that contain the removed version;

computation of changes along any derivation path is not affected.

CHAPTER 3. VERSION MODEL 92

An algorithm to implement a remove operation for the proposed “optimized” relational
scheme executes the following operations on the E-DaTa, E-INDEX, and E-ACTIVE rela-

tions:

e Eliminates the concerned version from the E-INDEX relation, and modifies the parent
links of its child versions to reconfigure the hierarchy; children of the removed version
are now children of its parent version. If the removed version was in the active state,

then it is deleted from the E-ACTIVE relation as well.

e Merges the tuples associated with the version to be removed in the E-DATA relation

with the tuples associated with each of its child versions.

Figures 3.21 and 3.22 describe the procedures to remove a version from the hierarchy. The
procedure in Figure 3.21 modifies the descriptions of the child versions to ensure that the
computation of changes is not affected, while Figure 3.22 describes the database operations
to reconfigure the hierarchy. These database operations have been presented in a syntax
similar to SQL [41]. In addition to the external functions that are provided in Section 3.5.4,
the remove algorithms use the following functions:
o delete = (idversion V, primary X): Eliminates from the relation E-DaTa the tuple
identified by the version identifier V and the primary attributes X.
o next-child = (idversion P) idversion C: Obtains the child version C of the version P that
is subsequent to one that was most recently referenced, as determined by the current
position of a Vers-locator pointer. Successful execution of a next-child function

advances the pointer by one component.
Table 3.14 describes the procedure to substitute an existing change in the child version

with the equivalent operation of the instance in the parent removed version (u) and the
child version (v). The execution of a merge function for different cases of changes in the
parent and child versions are provided by the rules specified in Section 3.3.1. Table 3.15, on
the other hand, considers situations where the child version does not contain a tuple on the
instance being merged. In situations where the concerned tuple is one of insert, delete or
replace operations) the tuple is physically inserted into the child version. Further, the
Vprev attribute value of a version that initially pointed towards the removed version is now
redirected to its child version that lies on the path from the given version to the removed
version. However, if the considered is a copy operation, it need not be merged into the child

version. Also, in this case the Vprev attribute value in the successor version is redirected

CHAPTER 3. VERSION MODEL 93

to the ancestor version from which the tuple was originally copied. In every situation the

tuples associated with the version being removed are deleted from the E-DATA relation.

CHAPTER 3. VERSION MODEL 94

Algorithm 9 (materialize - Optimized Model)

Input: e: Name of the concerned entity.
materialize-id: Identifier of the version being materialized.

Qutput: tuples that are logically part of the version that is materialized.

External Function: the function instantiate-tuple is defined in Algorithm 8.

procedure materialize = (entity e, idversion materialize-id):
begin %dver_sion Versjon—‘id3 tuple u, primary X, secondary y;
version-id := materialize-id; :
while (version-id # “Null” AND vers-type(version-id) # “complete”) do
begin
u:= retrieve(version-id);

while (u # EOF) do

begin
success:= instantiate-tuple(version-id, u);
x:= key(u);

y:= dependent(u);
if (success) begin
output (7y,yu);

end;
u:= retrieve(version-id);
end;
version-id := vers-parent(version-id);

end;
w:= retrieve(version-id);

while (u # EOF) do

begin
success:= instantiate-tuple(version-id, u);
x:= key(u);

y:= dependent(u);
if (success) begin
output (my yu);
end;
u:= retrieve(version-id);
end;
end procedure

Figure 3.13: Procedure to materialize a Version of a Primitive Entity Represented by the
“QOptimized” Scheme

CHAPTER 3. VERSION MODEL

SAL> select # from Beam_material:

BEAM_ID WT SPAN
14 22 35
13 16 20
12 22 35
15 18 25
11 18 25
e SELY [

95

Figure 3.14: Relational Description of materialized BEaM Version m-2

Table 3.12: The (integrate-change) Operator to Modify a Version Description.

Status of
matching tuple
in E-Data

Change A

A(x, v/, “insert”)

A(x, y', “delete”)
AND (y = y')

A(x, y', “replace”)

logical matching
tuple exists
tuple exists

print error;

insert tuple

E-DaTa(active-id,
x, vy, “delete”,
anc-id)

insert tuple
E'DATA(_@_CE.YQ'_I'Qy
x, y', “replace”,

anc-id)

not existent, also
no logical matching
tuple exists

insert tuple
E-DaTa(active-id,
x, v/, “insert”,

3 Nuu)’)

print error;

print error;

physical matching

tuple exists

E-Data(active-id, x,
y, “insert”, “Null”)

print error;

delete matching
tuple;

replace tuple to
E-DaTA(active-id,
yl', “insert”’ ’.(Nun”);

E-DaTA(active-id, x,
y, “delete”, a)

replace tuple to
E-Data(active-id,

x, y', “replace”, a);

print error;

print error;

E-Data(active-id, x,
v, “replace”, a)

print error;

replace tuple to
E-DaTA(active-id,
x, y', “delete”, a);

replace tuple to
E-Data(active-id,

x, y', “replace”, a);

E-Data(active-id, x,
¥y, “copy”, a)

print error;

replace tuple to
E-DAaTA(active-id,
x, y', “delete”, a);

replace tuple to
E-Data(active-id,

x, y', “replace”, a);

CHAPTER 3. VERSION MODEL 96

Algorithm 10 (compress)

Input: g: is the number of instances that were modified in that application session
op is the sequence of n changes on each instance of the entity E-DaTa.

¢ is the description of each instance of the entity E at the end of the application
session.

Output: Equivalent operation on each instance that was modified in the particular applica-
tion session.

proceduge compress-instance = (op-desc root, [1:t] op-desc tail, entity e) op-desc
root:
begin integer i
while (tail[l] # “Null”) do
begin
root := get-eqchange(root, tail[l]);
for i :=1to t-1 do

begin
tailli] := tailli+1];
end;
root := compress-instance(root, tail, E);
end;

end procedure
procedure compress = ([l:g][n] op-desc op, [1:g] tuple t, entity e):
begin integer k, j; op-desc root; [1:n-1] op-desc tail;

for k:=1to gdo

begin
root := op[k][1];
for j:=1to n-1 do
taillj] := p[<Jl+1];
end;

root := compress-instance(root, tail, e);
if (root = “insert”) begin
output(t[k], “insert”);
end;
if (root = “delete”) begin
Sutput(query tuple(active-id, key(t[k])), “delete”);
en
if (root = “replace”) begin

if (NOT compare(query-tuple(active-id, key(t[k])), Tk])) begln
output(query-tuple(active-id, key(t { D) — t[k], “replace”);
end;
end;

end;
%nd procedure

Figure 3.15: Algorithm to compress a Sequence of Operators on Each Modified Instance
to Detect the Net Changes Made During an Application Session

CHAPTER 3. VERSION MODEL 97

Algorithm 11 (query-tuple)

Input: current-id: Identifier of the version for which the existence of a matching tuple is to
be determined.

x: Values assigned to the primary attributes of the instance of the entity E that is
being queried.

Qutput: success-id: identifier of the version in which a description of the queried instance
is located.

procedure query-tuple = (idversion current-id, primary instance-id) idversion
success-id:
begin idyersion Vversion-id, tuple u, primary X, secondary y, boolean success;
version-id := current-id;
while (version-id # “Null” AND vers-type(version-id) # “complete” AND (NOT success)) do
begin
u:= fetch(version-id, x);
while (u # EOF AND (NOT success)) do
begin
success := TRUE;
if (operator(u) # “delete”) begin
output (Ty,yu);
success-id := version-id,
end;
end;
version-id := vers-parent(version-id);
end;
if (version-id # “Null” AND (NOT success)) begin
u:= fetch(version-id, x);
while (u # EOF AND (NOT success)) do
begin
success := TRUE;
if (operator(u) # “delete”) begin
output (Ty,yu);
success-id := version-id;
end;
end;
end;
end procedure

&

Figure 3.16: Procedure to Query a Version for an Instance Logically Belonging to It:
query-tuple Operator

CHAPTER 3. VERSION MODEL 98

Algorithm 12 (integrate)

Input: e: Name of the concerned entity.

ch: Set of g sequences of changes on the entity E-DATA, each element of which is a
valid sequence of n data operations on a specific instance of the entity E identified
by the values assigned to the key attributes X.

g: Number of instances that were modified in that application transaction.

n: Number of changes on each instance.
Output: E-DATA with the summary of changes committed

procedure integrate-instance = ([1:n] change ch, entity e):
‘begin integer i
for i:=1tondo
begin
integrate-change(chli], e);
end;
end procedure

procedure integrate = ([1:g][l:n] change ch, entity e):
begin integer k;

for k:= 1to gdo

begin

integrate-instance(ch(k], e);

end;
end procedure
<&

Figure 3.17: Procedure to integrate Application Changes on an Entity with its Active
Version

CHAPTER 3. VERSION MODEL

SQL> select * from Beam_Data

-

YERSION_ID BEAM_ID WT SPAN OP_DESC YPREY
m—0 11 18 25 insert Null
n—0 12 20 30 insert Null
m—0 13 20 30 insert Null
m—=0 14 20 30 insert Null
m=0 15 18 25 insert Null
m—0a0 11 20 30 replace n—0
m=-0al 12 18 25 replace n—0
n—0a0 14 18 25 replace n—0
m~0al 15 20 30 replace n=0
m—1 12 22 35 replace n—0
m—-1 13 16 20 replace =0
YERSION_ID BEAM_ID WT SPAN OP_DESC VPREY
m—1 14 22 35 replace mn—0
m—2 11 20 30 replace n—0
m—2 12 20 30 replace m—1
m=2 14 20 30 replace n—1
m-2 15 20 30 replace n—0

16 rows selected.

Zisa [

Figure 3.18: Description of the BEAM Entity after Modifying Active Version m-2

Table 3.13: summarize (u, v, w) Function for a Sequence of Changes on an Instance

first change last change
v := E-Data(last-id, x, y', op-desc, a)
op-desc := | op-desc := | op-desc := | op-desc :=
“copy” “insert” “delete”. “replace”
u = E-DaTa(first-id, x, | if(y # ¥') replace | delete(u); | replace
y, “copy”, anc-id) replace (u — v); (u — v);
(u = v);
u := E-DATA(first-id, x, | insert(v); | insert(v); nop insert(v);
v, “insert”, “Null”)
u := E-DaTa(first-id, x, | replace replace | delete(u); | replace
v, “delete”, anc-id) (u— v); (u — v); (u— v);
u := E-DATA(first-id, x, | replace replace | delete(w); | replace
y, “replace”, anc-id) | (w — v); | (w — v); (w — v);

Note: w := E-DaTA(anc-id, x, y", op—desc’, a')

CHAPTER 3. VERSION MODEL 100

Algorithm 13 (compute)

Input: version: identifier of the ancestor version (ancestor of versiong) in version hier-
archy of entity E

versiong: identifier of the descendant version (descendant of version4) in version
hierarchy of entity E

first: first data operation on each instance in the derivation path from versiong to
versionpg

last: last data operation on an instance in the derivation path from versiong to
versiong

anc: ancestor of the first data operation on each instance in the derivation path from
version 4 to versiong.

Output: eq: equivalent data operation on each instance that is modified in the derivation
path from verstony to versiong.

procedure range = (idyersion range-id, [1:n] tuple first, last, initial, [1:n] primary h)
[1:n] tuple first, last, initial, [1:n] primary h:
begin tuple u; primary x; secondary y; idversion version-id;
version-id := range-id;
u := retrieve(version-id);

while (u # EOF) do

begin
if ((x := key(u) ¢ h) begin
add(x, h);

if (operator(u) = “replace”) begin
anc-id := anc(u);
initial[x] := fetch(anc-id, x);
end;
first[x] := u;
last[x] 1= u;
end;
else begin
last[x] = u;
end;
u := retrieve(version-id);
end;
end procedure
&

CHAPTER 3. VERSION MODEL

Algorithm 13 (contd.) compute

procedure compute = (idyersion VeTSion 4, versiong) [1:n] tuple eq:

begin idyersion version-id; [1:n] tuple first, last, initial; [Lin] primary h; integer i

for i := 1 by 1 to n begin
hli] := 0;
end;
version-id := pathchild(version);

while (version-id # “Null” AND version-id # versiong) do

begin

range(version-id, first, last, initial, h);

version-id := pathchild(version-id);
end;
range(version-id, first, last, initial, h);
for i ;= 1 by 1 to length(h) begin

eq[h[i]] := summarize(first[h[i]], last[hi]], initiall A[i]]);

end;
end procedure

&

101

Figure 3.19: Algorithm to compute the Changes Between Two Versions Where One Version

is an Ancestor of the Other

SOL> select * from Beam_rchanges:

BEAM_ID WT SPAN OP_DESC
11 18 25 replaced
11 20 30 replacent
13 20 30 replaced
13 16 20 replacemt
15 18 25 replaced
15 20 30 replacemt

6 rows selected,

e SOL>]

Figure 3.20: Relational Representation of Changes Between Two Versions

CHAPTER 3. VERSION MODEL 102

Algorithm 14 (remove)

Input: e: Name of the concerned entity.

remove-id: Identifier of the version being removed
Output: E-DaTA and E-INDEX relations without the version, remove-id.

procedure remove = (entity e, idversion remove-id):
begin tuple u, v, w; primary x; secondary y, y'; [L:n] tuple z; [1:n] primary h;
idversion version-id; integer k;
u := retrieve(remove-id);
while (u # EOF) do
begin
x = key(u);
add (x, h);
add (u, 2);
w:= retrieve(remove-id);
end;
version-id := nextchild(remove-id);
while (version-id # “Null”) do
begin
for (i := 0 by 1 to length(h))
begin
v := fetch(version-id, x);
merge(u, v);
end;
version-id := nextchild(remove-id);
end;
delete(remove-id, e);
end procedure

&

Figure 3.21: Data Operations to remove a Version from an Entity Derivation Hierarchy

CHAPTER 3. VERSION MODEL 103

Algorithm 15 (Remove Version: Pruning the Hierarchy)

UPDATE E-INDEX
SET Parent-id = parent(remove-id))
WHERE Version-id = SELECT Version-id
FROM E-INDEX
WHERE Parent-id = remove-id

DELETE FROM E-INDEX
WHERE Version-id = remove-id
&

Figure 3.22: Reconfiguring a Version Hierarchy When removing a Version Definition

CHAPTER 3. VERSION MODEL 104

Table 3.14: Function, merge(remove-id), to Merge Changes Between the Removed Version
and its Children

E-Data(Version-id, X, Y, Op-desc, Vprev)
tuple in parent existing tuple in child version
version being removed v := E-Data(child-id, x, y', op-desc, remove-id)
op-desc := | op-desc := | op-desc := | op-desc :=
“copy” “insert” “delete” “replace”
u:= E-Data update v print update v | update v
(remove-id, x, set error; set set
y, “copy”, anc-id) Vprev := Vprev = Vprev :=
anc-id; anc-id; anc-id;
u = E-DaTA update v print delete(v); | update v
(remove-id, x, set eIToT; set
v, “insert”, “Null”) Vprev := Vprev :=
“Nu]l” “Nul].”
AND set AND set
Op-desc = Op-desc :=
“insert”; " | “insert”;
u:= E-DATaA print update v print print
(remove-id, x, error; set erTor; error;
y, “delete”, anc-id) Vprev :=
anc-id
AND set
Op-desc :=
“replace”;
u:= E-DATA update v print update v | update v
(remove-id, x, set error; set set
y, “replace”, anc-id) Vprev := Vprev ;= Vprev :=
anc-id anc-id; anc-id;
AND set
Op-desc :=
“replace”;

CHAPTER 3. VERSION MODEL

Table 3.15: Merging of Changes (Contd.) (merge)

tuple in parent version

tuple not existent tuple in child version

E-DaTa(remove-id, x,
y, “copy”, anc-id)

w := E-DaTa(version-id, x, y”, op-desc, remove-id)

update w
set Vprev := anc-id;

E-DaATA(remove-id, x,
y, “insert”, “Null”)

w := E-DATa(version-id, x, y”, op-desc, remove-id)

update w

set Vprev := child-id;

insert

E-DATA(child-id, x, y, “insert”, “Null”);

E-DATA(remove-id, x,
v, “delete”; anc-id)

w := E-DATA(version-id, X,
update w

set Vprev := child-id;
insert

E-DATA(child-id, x, y, “delete”, anc-id);

v

v'' op-desc, remove-id)

E-DaTA(remove-id, x,
v, “replace”, anc-id)

w := E-DATA(version-id, x, y”, op-desc, remove-id)

update w

set Vprev := child-id;

insert

E-DaTa(child-id, x, y, “replace”, anc-id);

105

CHAPTER 3. VERSION MODEL 106

3.6 Summary and Discussions

This chapter described a version model to manage evolving descriptions of a primitive
entity in a single discipline. Specifically, we maintain the version set as a tree structure in
which branching allows multiple alternatives to be developed in parallel. Each version in a
particular hierarchy contains specific descriptions of instances of that entity.

Research efforts in the software engineering, CAD, and database communities have
proposed to managing evolving descriptions of data items [18]. In the design environment,
various structures, including the hierarchy [19] and the DAG (directed acyclic graph) [25]
have been proposed to organize individual versions. Although a DAG is a more general
structure, we are aware of no general algorithms that detect and resolve conflicts that arise
when version descriptions are merged.

Efficient storage and retrieval of changes is critical to supporting an evolutionary process.
Starting with the Source Code Control System (SCCS) model [36], the software engineering
community has explored maintaining versions as a set of deltas or data operations on the
contents of the version. A number of variations have been proposed on storing the delta
set. Using a forward delta set, a version is described by executing its delta set on its
parent version’s description. A reverse delta set is just the opposite, executing the delta set
associated with a version on its description results in the description of its parent version.
The SCCS [36] model is based on storing forward deltas scheme. Each delta, in this model, is
either an insertion, deletion, or replacement of a line of text. A version is described by
applying the deltas sequentially from the root till the specified version. To manage a version
chain, SCCS partitions it into levels, distinguishing releases within each level. In a particular
level. a new delta set can only be added to the end of the last release. The RCS model [40]
extends the SCCS model by supporting a more general branching mechanism. To improve
access time, the most receht version on the trunk is stored intact. All other revisions on the
trunk are stored as reverse deltas. Thus, the extraction of the latest version is a simple fast
copy operation. Earlier versions are described by applying the reverse deltas to the latest
version. The model uses forward deltas to store branches. Regenerating a revision on a side
branch involves extracting the latest revision on the trunk, applying reverse deltas until the
revision that forks into the desired branch, and then applying the forward deltas until the
branch version of interest is reached. Although the RCS model is efficient in accessing the

latest version in the trunk, it performs poorly in materializing branch versions in situations

CHAPTER 3. VERSION MODEL 107

where branching occurs early in the hierarchy. Unfortunately, in design scenarios branching
typically occurs early in the process; a designer usually generates multiple alternatives in the
conceptual phase, and refines one or more of these alternatives through the design process.

Also, the SCCS and RCS models suffer from the following shortcomings:

1. They have not provided any systematic criteria to integrate application changes with

an existing version description.

2. They have not specified algorithms to compute changes between versions, where one

has evolved from the other.

3. They have not addressed implications of pruning a version hierarchy by removing
intermediate versions. Removing a version should not affect the instantiation of its
descendant versions. Also the computation of changes between two versions must re-
main unaffected on removing one or more intermediate versions along their derivation

path.

Although Spooner et al. [37] have developed rules to merge changes on an instance from
multiple concurrent transactions, they have not addressed the integration of the merged
change set with an existing version description. Neither are we aware of any research efforts
that have studied the complementary problem of detecting changes made to structured
design representations in CAD application environments. Algorithms, similar to UNIX’s
diff program [16], have been utilized to compute changes between two versions by comparing
their descriptions. Given that design versions are represented by more structured entity
schemes, we can improve on diff type algorithms by applying more sophisticated techniques
than a simple scan of two files to search for matching lines of text.

We apply a concept of equivalent operations to store, detect and manage changes among
versions in an entity hierarchy. Intuitively, an equivalent operation for a sequehce of changes
results in the same final description of the instance as the original sequence of changes. Using
the concept of equivalent operations, we establish a version as the set of equivalent operations
of all changes on that entity that were made while the given version was active. Thus, the
versioning scheme is a forward deltas scheme, a version can be described by executing its
associated set of changes (set of deltas) on the description of its parent version. For greater
computational efficiency, we store instantiated descriptions of certain intermediate versions.

Such instantiated versions are denoted as complete; the remaining versions are incomplete.

CHAPTER 3. VERSION MODEL 108

A materialize operator describes a version by retracing the path from the current
version through its ancestors, collecting the latest equivalent operation on each instance. It
the equivalent operation is not a delete operation, it is included in the version description.
By maintaining intermediate complete versions, a materialize operation needs to trace
only up to the most immediate complete ancestor version which contains a copy of all
changes that could be potentially inherited by the version being materialized.

We introduce a check-out/check-back-deltas protocol to structure the interaction between
an application session and the active version. To detect the net changes made during a ses-
sion, we compress the sequence of operators on each instance that was modified during that
session. Two aspects of our model make this feasible. First, we abstract each application
operation on an instance into its corresponding primitive operator. Second, we maintain as
a sequence the descriptors of all operations that were executed on each modified instance.
The detected equivalent operation on each instance is then integrated with the existing
description of the concerned entity’s version. Since an integrate operation merges the
changes from all application sessions that check-back their changes into an active version, a
version is a unit of granularity whose consistency can be evaluated.

A compute operation determines the differences between two versions, where one is an
ancestor of the other in an entity derivation hierarchy. These determined changes are a
minimal set of data operations or deltas which can be executed on the ancestor version to
describe its descendant. The compute operator is an innovative application of equivalent
operations; the operator determines the net change on each instance from the first and last
description of the instance in versions along the derivation path.

Storage considerations prompt procedures to prune version hierarchies by removing:
(i) alternatives that are no longer part of a design solution, and (ii) certain intermediate
checkpointed descriptions that were created early in the design process. We outlined a
procedure that merges the contents of the version being removed with each of its child
versions. The resulting equivalent operations for a given child version replaces its original
description. This procedure ensures that the following procedures are unaffected when
removing a version: (i) to materialize successor versions that inherit tuples from the
version being removed, and (ii) to compute changes between two versions along whose

derivation path lies the version being removed.

Chapter 4

Assembly and Configuration
Models

This chapter describes assemblies and configurations to represent an evolving multidisci-
plinary project description in terms of the independent evolution of design descriptions from
its participating disciplines. Assemblies, in this model, maintain a complex entity as the
result of a composite modeling operation on its components. Assemblies can be either total
or partial. Total assemblies describe a complete design in an individual discipline, while a
partial assembly represents a complex entity that can be aggregated with other complex
entities to describe an individual design. Configurations are employed as a framework to
represent a multidisciplinary design project in terms of design descriptions from each of
the participating disciplines. A designer in an individual discipline creates a configuration
by integrating a design from his/her discipline with a design from each of the other disci-
plines. Complexity arises in typical multidisciplinary design environments as designs from
the participating disciplines are not mutually exclusive; they share information such as the
spatial arrangements and material properties of the elements belonging to the artifact being
designed. Constraints can be used to represent restrictions on an individual design due to
decisions made in other disciplines [14]. As total assemblies represent designs in individual
disciplines, a configuration is formally specified as a set of total assemblies, one from each
participating discipline, and a set of project constraints.

This chapter also demonstrates the change management capabilities of the proposed

model. As described in the previous chapter, equivalent operations provide the theoretical

109

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 110

foundations to manage changes at the version level. The close coupling of the version, as-
sembly and configuration levels, enables these computed version changes to be recursively
combined to represent changes at the various assembly and configuration levels. These con-
cepts are applied to support project coordination through asynchronous communication
of changes among designers, as well as project monitoring through systematic tracking of
evolving project descriptions. We also propose representation schemes for the assembly and
configuration models in a relational environment and discuss prototypical implementations

in an ORACLE database system.

4.1 Assembly Model for Design Applications

This section presents an assembly model to represent complex entities in an individual disci-
pline, as well as to support collaboration among designers on a project. We first present an
overview of the assembly model, discussing the proposed assembly states and operators to

specify them. Second, we enumerate access and status properties for assemblies which sup-

port the design process. These properties allow designers to share information, both within
and outside the design team, while retaining control over the descriptions for which they
provide access. Also, assemblies can be maintained over extended periods, often covering
the facility’s life cycle. Third, we present a scheme for representing assemblies in a rela-
tional context. This scheme establishes both composition and evolution relationships among
assemblies. While a composition relationship identifies the versions included in an assembly
definition, an evolution relationship identifies an earlier description of the complex entity
from which the current assembly has been generated. Additionally, the scheme maintains

the status and access properties assigned for each assembly in a particular discipline. The

close coupling of the version and assembly model requires that specific assembly status and
access property values are shared by each of its component versions. The fourth part of
this section extends the version model given in Chapter 3 (Section 3.1) by providing status
and access properties for version definitions; the scheme of an E-INDEX relation given in
Section 3.4.3 is extended to store the assigned property values. The sharing of assembly
properties by its components is enforced by the assembly state operators. In the fifth part,
we formally present the operators included in the assembly model. Finally, the sixth part
of this section discusses the management of changes among assemblies along both the com-

position and evolution links. Along a composition relationship, we instantiate an assembly

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 111

as an aggregation of materialized descriptions of its component versions. Along an evolu-
tion relationship, on the other hand, we characterize the changes between two assemblies in
terms of computed changes between corresponding pairs of component versions. We discuss

the implementation of these procedures in a relational database environment.

4.1.1 Overview of the Assembly Model

An assembly, in our model, represents a complex entity as a result of a composite modeling
operation on a set of component instances. Based on its existence, we classify an assembly

definition into one of the following two states:

o Defined assembly, which describes an instance of a complex entity as the result of a

composite modeling operation on its components.
o FEliminated assembly, which was previously defined. but no longer exists.

Figure 4.1 shows graphically the finite state representation of the assembly model. The
model provides two alternative approaches to create a new defined assembly. A new assembly
can be either defined independently as a composite modeling operation on its component
instances. or generated as a child of another defined assembly. When generating a new
assembly, a designer substitutes one or more components of the parent assembly with more
refined descriptions. The operation thus tracks an evolving description of a complex entity.
Further, each component of the parent assembly is guaranteed to be an ancestor of the
corresponding component in the child assembly. A transitive closure of the parent links
establishes ancestor-descendant relationships among assemblies. An assembly is therefore
a proper ancestor of another, if the first assembly is either a parent or a proper ancestor of
the parent of the second assembly. Relaxing the restriction of a proper ancestor, we specify
that an assembly is an ancestor of itself. The assembly model also permits the elimination
of additional assemblies to minimize the storage requirements.

Before describing the assembly state operators in detail, we outline the data type dec-

larations used in our discussions:
o discipline: Type declaration of the discipline under consideration.

o idassembly: Type declaration of the identifier of the specific assembly in a particular

discipline.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 112

define Assembly
Model

generate

eliminate

Figure 4.1: Assembly Model as a Finite State Machine

o statesssembly: State specification of an assembly definition.

We employ the following ezternal functions to develop algorithms for the proposed assembly

state operators:

e ably-numgen = (discipline D, [1:n] idversion V; idassembly Q) idassembly A: Generates an
identifier A for a new assembly in a discipline D that is generated as a child of an
existing defined assembly Q, and has n component versions. When defining a new
assembly in that discipline, the identifier of the parent version Q is assigned a “Null”
value. This function also stores the assembly definition in terms of its components,

which can be retrieved by other operators.

o ably-destroy = (discipline D, idassembly A) boolean Z: Erases the assembly definition
A from the set of assemblies in discipline D. Z indicates a successful execution of the

operator.

e ably-parent = (discipline D, idassembly A) idassembly Q: Retrieves the identifier of the
parent Q of an assembly A in the concerned discipline D. The function returns the
identifier of the assembly from which the current assembly has been generated. If the

assembly A were independently defined, then this function returns a “Null” value.

e ably-state = (discipline D, idassembly A) Stateassembly W: Obtains the current state

specification W of an assembly A belonging to a discipline D.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 113

Algorithm 16 (define-assembly)

Input: d: Name of the discipline in which the assembly is being defined.

v: Identifier of component versions of the new assembly.
n: Total number of entities included in the assembly definition.

Qutput: a: Identifier of the newly defined assembly.

procedure define-assembly = (discipline d, [1:n] idversion V) idassembly &
begin

a := ably-numgen(d, [L:n] v, “Null”);
ably-state(d, a) := defined,
end;

end procedure

<&

Figure 4.2: Procedure to define a New Assembly in a Particular Discipline

We now describe the assembly operators in detail:

o define-assembly(discipline D, [1:n] idversion V) idassembly A: Creates a new assembly

in discipline D given a set of n component versions. The assembly is total if it contains
a version of each entity in that discipline. A define-assembly operator initiates a
call to a system function ably-numgen that generates an identifier A for the assembly.

Figure 4.2 outlines an algorithm to implement the define-assembly operator.

generate-assembly(discipline D, [1:n] idversion V, 1dassembly Q) idassembly A: Creates
a new assembly A in a discipline D and links it to a previously defined assembly Q, as
a child of that assembly. The operator invokes an ably-numgen function to generate
the identifier A for the new child assembly. An algorithm for a generate operator is
presented in Figure 4.3. Each component version in assembly A is guaranteed to be

a descendant of its corresponding version (version of the same entity) in assembly Q.

eliminate-assembly(discipline D, idassembly A): Specifies an existing defined assembly
A in discipline D as eliminated. Figure 4.4 shows an algorithm to eliminate an
assembly definition from a particular discipline. The algorithm does not remove any
of the assembly’s component versions, as they could be components of other assemblies

as well.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 114

Algorithm 17 (generate-assembly)

Input: d: Name of the discipline in which the-assembly is being generated.
q: Identifier of a previous defined assembly, a child of which is being generated.

v: Set of n component version identifiers. Each component version identifier is guar-
anteed to be a descendant of the corresponding version in assembly q. '

n: Total number of entities included in the assembly definition.

Output: a: Identifier of the newly generated assembly. The assembly is specified in the
defined state.

procedure generate-assembly = (discipline d, [1:n] idversion V, idassembly q) idassembly @
begin
a := ably-numgen(d, [1:n] v, g);
ably-state(d, a) := defined,
end;
end procedure
<&

Figure 4.3: Procedure to generate a New Assembly as a Child of an Existing Defined
Assembly

These three operators completely specify the assembly states needed for designing in a
particular discipline.

Assemblies can be alternatively classified as total or partial. A total assembly describes
a complete design in an individual discipline and contains in its definition at least one
version of each entity in that discipline. A pariial assembly, on the other hand, repfeéents a
complex entity in that discipline which can be further combined with other partial assembﬁes

to describe more complex entities. >

4.1.2 Assembly Properties for Collaboration

To collaborate on a project, designers need to share their designs with the remaining team

members. An access property, “publish,” for a given assembly specifies that designers

from other disciplines can reference its contents. However, the model must ensure that
an assembly not be removed while designers from other disciplines are accessing it. We
therefore specify a status property, “freeze,” which specifies that a given assembly cannot

be explicitly eliminated from an entity derivation hierarchy. Since certain assemblies could

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 115

Algorithm 18 (eliminate-assembly)

Input: d: Name of the concerned discipline.
a: Identifier of the existing assembly which is being eliminated.
Output: success: Indicator of the a successful operation.
procedure eliminate-assembly = (discipline d, idassembly @) boolean success:
begin :
success := FALSE;
if (ably-state(d, a) = defined) begin
ably-state(d, a) := eliminated;
success := ably-destroy(d, a);
end;
end procedure

<&

Figure 4.4: Procedure to eliminate an Existing Assembly from a Particular Discipline

be components of project designs that are maintained for extended periods, often covering
the facility’s life cycle, they must not be eliminated at least during the life cycle of the
project. This feature is ensured by a status property, “archive,” for assemblies to guarantee

their existence.

Based on the specific assignments of status and access property values, we further classify

an assembly definition into one of the following four additional states:

o Frozen assembly, which cannot be explicitly removed; status property value is “freeze.”
Contents of a.frozen assembly are not accessible to designers from other disciplines;

access value is “not publish.”

o Published assembly, whose contents can be referenced by designers in other disciplines;
access property value is “publish.” A published assembly cannot be removed while

~

being accessed by other designers; status value is “freeze.”

e Archived assembly, which is guaranteed to exist for the lifetime of the database. An
archived assembly is not accessible to designers from other disciplines. The assembly

has a status value, “archive,” and an access value, “not publish.”

e Persistent assembly, which is guaranteed to exist for the lifetime of the database. At

the same time, it is accessible to designers from other disciplines, as well as actors

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 116

J{ define Assembly

Model
generate

Defined, and Eliminated:
status = "ot frqeze" V

eliminate N -
access = "not publish

Assembly Status
"freeze" "archive"

archive

"unpublish”
ﬁssembly
ccess i
ce publis
Privileges suppress suppress

"publis archive

Published

Figure 4.5: Assembly Model as a Finite State Machine

outside of the design team. The assembly has a status value, “archive,” and an access

value, “publish.”

Figure 4.5 shows graphically the assembly model as a finite state machine. As mentioned

in Section 2.3, defined and eliminated assemblies have a status property value, “not freeze,”

and an access property value, “not publish.” The various assembly state operators.are

indicated in this figure by solid arrow lines. To ensure that a published assembly is not
eliminated while it is being accessed, the model requires that an assembly must have a

status value of “freeze,” or “archive,” before it can be published.

4.1.3 Relational Representation Scheme -

We propose a scheme to represent assemblies that maintains both composition and evo-
lution relationships among assemblies, and describes the property values assigned to each
assembly in that discipline. This scheme stores assemblies in a discipline D as a relation,
D-ASSEMBLY. A particular assembly is a tuple in this relation, and is uniquely identified

by a system-generated attribute, Assembly-id. Composition relationships are maintained

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 117

' by associating with an assembly definition the set of its component versions, Components.
While total assemblies have a version from each entity in that discipline, a partial assembly
contains versions from a subset of the entities. This scheme establishes evolution relation-
ships by identifying the assembly from which a given assembly has been generated. Such.
parent links are stored in a Parent-id attribute. An assembly that is defined independently
has no parent; the Parent-id attribute is assigned a “Null” value. Additionally, the assembly
scheme identifies the status and access property values assigned to each assembly definition

in Fr-status and Pub-status attributes. We now present the definition of a D-ASSEMBLY

relation:

D-AsseMBLY(Assembly-id, Components;_; ,, Assembly-type, Parent-id, Fr-Status,
Pub-Status) '

where the attributes specified are:

o Assembly-id: System-generated attribute that uniquely identifies an assembly in a

particular discipline.

e Components: Set of component versions of an assembly definition. The component
set has n elements, where n is the total number of entities contained in the given
discipline. A component version in a specific entity derivation hierarchy is identified
by an attribute, Version-id. If the concerned assembly is a partial assembly, attributes
corresponding to entities not included in the assembly definition are assigned “Null”

values.
"o Assembly-type: Indicator of a total assembly. Possible values are: total or partial.

e Assembly-parent: Identifier of the assembly from which the current assembly has been
generated. For independently defined assemblies, the attribute is assigned a “Null”

value.

-

o Fr-Status: Attribute that determines the status property value of an assembly. Pos-

sible values include “y” (“freeze”), “a” (“archive”), and “n” (“not freeze”).

e Pub-Status: Attribute that determines the access property value of an assembly.
Possible values include “y” (“publish”), and “n” (“not publish”).

This scheme completely describes each assembly in a given discipl'inei

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS - 118

4.1.4 Extensions to the Version Scheme

The close coupling of assembly and version models implies that the status and access values

assigned for a particular assembly definition are shared by each of its component versions.

We enforce this restriction as preconditions on operators that assign specific assembly prop- -
_erties. The version model classifies versions into four additional version states based on the

particular status and access property values. The four version states, frozen, published,

archived, and persistent are similar to the state specifications proposed earlier for assem-
blies. Adding these four states to the ones proposed earlier, we can graphically represent
the version model for collaboration as a finite state machine shown in Figure 4.6. As stated
previously in Section 2.2, active, suspended, and declared versions have a status property

value, “not freeze,” and an access property value, “not publish.” Status and access proper-

ties are not pertinent for removed versions. The various version state operators are indicated
in this figure by solid arrow lines. Freezing a version definition ensures that it cannot be
explicitly removed. This implies that the contents of a frozen version are also checkpointed
and thus cannot be modified. Our model therefore requires that a version must be previ-
ously declared, before being assigned a status value, “freeze.” Also, a published version
must not be removed while designers from other disciplines are accessing it; only frozen or
archived versions can be published. '

We extend the representation scheme for versions that was presented earlier in Chapter

3 (Section 3.4.3) for locating access and status property values. We provide two new at-
tributes, Fr-status and Pub-status, for the E-INDEX relation; the modified definition of the

relation is:
E-INpEX(Version-id, Parent-id, Decl-status, Fr-status, Pub-status)
where the new attributes are:

o Fr-status: Maintains the status property of each version in an entity derivation hier-

archv. Possible values include “y” (“freeze”), “a” (“archive”), and “n” (“not freeze”).
b b

e Pub-Status: Maintains the access property of each version in an entity derivation
hierarchy. Possible values include “y” (“publish”), and “n” (“not publish”).

In addition to the external functions given in Section 4.1.1 and Section 3.5.5, we outline the
following functions that are used by operators to specify the version and assembly property

values:

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 119

| create

PR e L

: declare

L d Active, Suspended, and Declared:
agptivate .
. status = 'not freeze” .

access = "not publish"

thaw

status

"archive"

access

suppress suppress

archive

"publish”

Published

Figure 4.6: Version Model for Design Applications

o mem-assembly = (entity E, idversion V) [1:n] idassembly At Returns the set of assemblies

in which the version V of entity E is a component.

- e status-assembly = (idassembly A) string S: Obtains the status property value of an

assembly A in the given discipline. Possible values of S are “freeze,” “archive,” and

“not freeze.”

o access-assembly = (idassembly A) string S: Obtains the access property value of an

assembly A in the given discipline. Possible values of S are “publish,” and “not
publish.”

-~

e comp-entity = (idassembly A, integer I) entity E: Retrieves the name of entity E that

is the I, component in the definition of assembly A.

e comp-version = (idassembly A, integer I) idversion V: Retrieves the identifier of version

V that is the I, element of an assembly A.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 120

Algorithm 19 (freeze)

Input: e: Name of the concerned primitive entity.
v: Identifier of the version being assigned the status value, “freeze.”

Output: success: Boolean indicator of a successful operation.

procedure freeze = (entity e, idversion V) boolean success:
begin
success := FALSE;
if (vers-state(e, v) = declared) begin
vers-state(e, v) := frozen;
end;
if ((vers-state(e, v) = frozen) OR (vers-state(e, v) = archived)) begin
success := TRUE;
end;
end procedure

<&

Figure 4.7: Procedure to freeze a Particular Version in an Entity Derivation Hierarchy

For the sake of clarity, we employ a construct “(ANY condition) that returns TRUE, if there
exists a value for which the specified condition is satisfied. This construct is similar to the
logical quantifier, 3. For example, an expression, (ANY access-assembly(mem-assembly(e,
v)) = “publish”), returns a TRUE value if the concerned version v of entity e is a component

of even one assembly that has an access property value, “publish.” The ANY construct can

be easily implemented in ALGOL by checkmg the condition within a while loop.
We now discuss, in detaﬂ the various version state operators to assign the status and

access properties for a version definition.

o freeze(E, V): Specifies a declared version V of entity E as frozen. Successful execution
of a freeze operation ensures that the version V is in the frozen or/archived states.
As the version model requires a version to be in the declared state before assigning
a status value, “freeze,” a freeze operation on an active or suspended version fails.

An algorithm for a freeze operator is outlined in Figure 4.7.

o thaw(E, V): Specifies a frozen version V of entity E as declared. Figure 4.8 gives an
algorithm for this operator. A thaw operation fails if either the version V does not ini-

tially have a status value, “freeze,” oris a component of one or more frozen or archzved

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 121

Algorithm 20 (thaw)

Input: e: Name of the concerned primitive entity. -

v: Identifier of the version being thawed.

Output: success: Boolean indicator of a successful operation.

procedure thaw = (entity e, idversion V) boolean success:
begin

success := FALSE;
if ((vers-state(e, v) = frozen) AND
(NOT ((ANY status-assembly(mem-assembly(e, v)) = “freeze”) AND
(ANY status-assembly(mem-assembly(e, v)) = “archive”)))) begin
vers-state(e, v) := declared;
success := TRUL;
end;

end procedure

Figure 4.8: Procedure to thaw a Frozen Version in an Entity Derivation Hierarchy

assemblies in that discipline. We implement these restrictions as a precondition for

the thaw operator.

o publish(E, V): Specifies the access property value of version V of entity E as “pub-

lish.” The version model requires status values, “freeze” or “archive” (frozen or

archived states) for versions before they can be published. If successful, a frozen
version is specified as published, while an archived version is now in the persistent
state. We enforce this restriction as a precondition for the publish procedure (Figure

4.9).

o suppress(E, V): Specifies the access property value of a published or persistent version

V as “not publish.” The version V is now in the frozen or archived state. This

143

operation can fail because the version: (i) has an initial status property value, “not

freeze” (access value is also “not publish”), or (ii) is a component of at least one other
published or persistent assembly in the same discipline D. We enforce these restrictions

as preconditions for the proposed procedures in Figure 4.10.

e archive(E, V): Specifies the status value of a version V of entity E as “archive.” If

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 122

Algorithm 21 (publish)

Input: e: Name of the concerned primitive entity.
v: Identifier of the version being published.

Outpui: success: Boolean indicator of a successful operation.

procedure publish = (entity e, idversion V) boolean success:
begin
success := FALSE;
if (vers-state(e, v) = frozen) begin
vers-state(e, v) := published;
end;
if (vers-state(e, v) = archived) begin
vers-state(e, v) := published;
end;
end procedure

<
Figure 4.9: Procedure to publish a Particular Version in an Entity Derivation Hierarchy

the version V was in the frozen state it is now archived, while a published version is

now specified as persistent. Figure 4.11 shows an algorithm for the archive operator.

These version and assembly operators allow designers to share information with other dis-

ciplines, while retaining control over the actual design descriptions that they share.

4.1.5 Assembly State Operators

We now describe the operators to specify the various assembly states. These operators
invoke corresponding version state operators to assign the required property values for each

of its component versions that are not already in the specified state. -

o freeze-assembly(D, A): Specifies a defined assembly A in discipline D as frozen. A
successful execution of a freeze-assembly operation implies that each of the compo-
nent versions of assembly A has a status value, “freeze” or “archive.” The operator
involves a freeze operator on those component versions which do not initially have

the required status property value. Failing to assign a “freeze” status value for even

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS

Algorithm 22 (suppress)

Input: e: Name of the concerned primitive entity.
v: Identifier of the version being suppressed.

- Qutput: success: Boolean indicator of the success of the operation.

procedure suppress = (entity e, idversion v) boolean success:
begin
success := FALSE;
if ((vers-state(e, v) = published) AND
(NOT (ANY access-assembly(mem-assembly(e, v)) = “publish”))) begin
vers-state(e, v) 1= frozen;
success := TRUE;
end;
if ((vers-state(e, v) = persistent) AND
(NOT (ANY access-assembly(mem-assembly(e, v)) = “publish”))) begin
vers-state(e, v) := published;
success := TRUE;
end;
end procedure
&

123

Figure 4.10: Procedure to suppress a Published or Persistent Version in an Entity Deriva-

tion Hierarchy

one of its component versions, causes the entire freeze-assembly operator to fail.
Such a situation arises if the concerned component version is in the active or suspended

states. Figure 4.12 outlines an algorithm to implement a freeze-assembly operator.’

thaw-assembly(D, A): Specifies a frozen assembly A in a particular discipline D as
defined. Component versions of assembly D are not thawed, as they could be compo-

nents of other assemblies having status values, “freeze” or “archive.” An algorithm

for this operator is shown in Figure 4.13.

publish-assembly(D, A): Specifies the access property of an assembly A in discipline

D as “publish.” Since the contents of a published or persistent assembly is accessed by
other designers, it must be guaranteed to exist at least while it is being referenced; an

assembly has a status value, “freeze” or “archive,” before it can be pub-lished. Thus,

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS - 124

Algorithm 23 (archive)

Input: e: Name of the concerned primitive entity.
v: Identifier of the version being archived.

Qutput: success: Boolean indicator of a successful operation.

procedure archive = (exitity e, idversion V) boolean success:
begin
success := FALSE;
if (vers-state(e, v) = frozen) begin
vers-state(e, v) := archived,
success := TRUE;
end;
if (vers-state(e, v) = published) begin
vers-state(e, v) := persistent,
success := TRUE;
end;
if (vers-state(e, v) = archive) begin
success := TRUE;
end;
end procedure

<&

Figure 4.11: Procedure to archive a Particular Version in an Entity Derivation Hierarchy

a frozen assembly is now in the published state, while an archived assembly is specified
as persistent. The access value of an assembly is shared by its component version,
a publish-assembly operator publishes component versions that do not have an

initial access property value, “publish.” Failure to publish even one component

version causes the original publish-assembly to fail. Such situations occur when

a component version does not have a status property value, “freeze” (the concerned

version is declared, active or suspended). Figure 4.14 gives an algorithm for this

operator.

e suppress-assembly(D, A): Specifies the access value of a published or persistent as-
sembly A in a particular discipline D as “not publish.” However, this operator does

not explicitly suppress any of its component versions, as they could be components

of other assemblies having an access property value, “publish.” Figure 4.15 shows an

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 125

algorithm for the operator.

e archive-assembly(D, A): Specifies the status value of an assembly A in discipline
D as “archive.” Thus, frozen assembly is now archived, while a published assembly is

~ specified as persistent. In addition, an archive-assembly operation shares theé status

value, “archive,” with each component version. The original archive-assembly op-
erator fails if any of its component versions cannot be archived. Such a situation
occurs when a component version does not have a status value, “freeze;” it is originally

in the declared, active or suspended states.

The current implementation of the assembly model does not rollback an assembly operation
that fails. It does, however, maintain a log of versions whose states have been altered,
giving designers information to manually undo any executed operators. This feature is
based on our assumption that designers will often re-execute failed assembly operators after

correcting the original causes of failure.

4.1.6 Assembly Change Management

We manage changes among assemblies along both the composition and evolution links.
Along a composition axis, we describe an assembly as the result of a composite modeling
operation (union) on its component versions. We implement a display-assembly oper-
ator that aggregates descriptions of its component versions to describe a complex entity.
Along an evolution axis, we determine the differences between the descriptions of two as-
semblies, where one is an ancestor of the other. Such an ancestor relationship guaran-
tees that each component version in the ancestor assembly is an ancestor of the corre-
sponding component version (version of the same entity) in the descendant assembly. A
characterize-assembly-deltas operator is implemented to report the changes between
the two assemblies in terms of the changes between the descriptions of each of its component
versions. The changes between each corresponding pair of versions is in turn determined

using a compute operator.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS ‘ 126

Algorithm 24 (freeze-assembly)

Input: d: Name of the concerned discipline.
n: Total number of entities in the given discipline.
a: Identifier of the assembly being assigned a status property value, “freeze.”

Output: success: Boolean indicator of a successful operation.

procedure freeze-assembly = (discipline d, idassembly 3, integer n) boolean success:
begin entity e, idversion V, integer i
success := FALSE;
- if ((ably-state(d, a) = defined) OR
‘ (ably-state(d, a) = frozen)) begin
success := TRUE;
if (ably-state(d, a) = defined) begin
for i = 1 to n begin
if (success = TRUE) begin
e := comp-entity(a, i);
v := comp-version(a, i);
success := freeze(e, v);
end;
end;
end; : ,
" if ((success = TRUE) AND (ably-state(d, a) = defined)) begin
ably-state(d, a) := frozen;
end; :
_ end;
end procedure

<&

-

Figure 4.12: Procedure to freeze a Defined Assembly in a Particular Discipline

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 127

Algorithm 25 (thaw-assembly)

Input: d: Name of the concerned discipline.
a: Identifier of the assembly being thawed.

Output: success: Boolean indicator of a successful operation.

procedure thaw-assembly = (discipline d, idassembly a) boolean success:
begin

success := FALSE;

if (ably-state(d, a) = frozen) begin

ably-state(d, a) := defined;

end; :
end procedure
<o

Figure 4.13: Procedure to thaw a Frozen Assembly in a Particular Discipline

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 128

Algorithm 26 (publish-assembly)

~ Input: d: Name of the concerned discipline.
n: Total number of entities in the given discipline.
a: Identifier of the assembly being published.

Output: success: Boolean indicator of a successful operation.

procedure publ‘ish-assembly = (discipline d, idassembly @, integer n) boolean success:
begin entity e, idyersion Vv, integer i
success := FALSE;
if ((ably-state(d, a) = frozen) OR
(ably-state(d, a) = archived) OR
(ably-state(d, a) = published)) OR
(ably-state(d, a) = persistent)) begin
success := TRUE;
if ((ably-state(d, a) = frozen) OR
(ably-state(d, a) = archived)) begin
for i = 1 to n begin
if (success = TRUE) begin
e := comp-entity(a, i);
v := comp-version(a, i);
success := publish(e, v);
. end;
end;
end; :
if ((success = TRUE) AND ((ably-state(d, a) = frozen) begin
ably-state(d, a) := published;
end;
if ((success = TRUE) AND ((ably-state(d, a) = archived) begin
ably-state(d, a) := persistent;
end;
end;
end procedure

<&

Figure 4.14: Procedure to publish a Frozen or Archived Assembly in a Particular Discipline

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 129

Algorithm 27 (suppress-assembly)

" Input: d: Name of the discipline in which the assembly is being created.
a: Identifier of the assembly in discipline d that is being suppressed.

" procedure suppress-assembly = (discipline d, idassembly 2):
begin
if ((ably-state(a) = published) begin
ably-state(d, a) := frozen;
end; '
if ((ably-state(a) = persistent) begin
ably-state(d, a) := archived;
end;
end procedure

<&

Figufe 4.15: Procedure to suppress an Aséembly with an Access Property, “publish”

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS - 130

Algorithm 28 (archive-assembly)

Input: d: Name of the concerned discipline. ‘
n: Total number of entities in the given discipline.
a: Identifier of the assembly being archived.

Output: success: Boolean indicator of the success of the operation.

procedure archive-assembly = (discipline d, idassembly @, integer n) boolean success:
begin entity e, idversion V, integer i;
success := FALSE;
if ((ably-state(d, a) = frozen) OR
(ably-state(d, a) = archived) OR
(ably-state(d, a) = published)) OR
(ably-state(d, a) = persistent)) begin
success := TRUE;
if ((ably-state(d, a) = frozen) OR
(ably-state(d, a) = published)) begin
for i = 1 to n begin
if (success = TRUE) begin '
e := comp-entity(a, i);
v := comp-version(a, i);
success := archive(e, v);
end;
end;
end; ‘ _
if ((success = TRUE) AND ((ably-state(d; a) = frozen) begin
ably-state(d, a) := archived; '
end;
if ((success = TRUE) AND ((ably-state(d, a) = published) begin
ably-state(d, a) := persistent;
end;
end;
end procedure

<&

Figure 4.16: Procedure to archive a Frozenor Published Assembly in a Particular Discipline

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS - 131

4.2 Configuration Model

We propose a configuration as an integration framework to describe a multidisciplinary
project design as an aggregation of design descriptions from each of the participating disci-
plines. Specifically, a configuration, in our model, is a set of total a.ssemblies‘(one from each
discipline) and an associated set of inter-disciplinary constra,inté. This sectién is divided
into four parts. We first provide an overview of the configuration model. In this model, con-
figurations are created by an individual designer using a design from his/her own discipline

along with designs from each of the remaining participating disciplines. We provide access

and status properties for configuration definitions for promoting cooperation among project
team members. Because of the close coupling of the version, assembly, and configuration
models, these configuration properties translate into requirements on component assemblies
(and in turn their own component versions). Third, we present a scheme to represent the
configuration model in a relational environment, establishing both composition and evolu-

tion links among configurations. This scheme also identifies the status and access property

values of each configuration created by that discipline. Finally, the last part of this section
discusses the change management capabilities of our model; we characterize changes among
configurations along both the composition and evolution links. The changes are expressed
in terms of changes among component versions and assemblies, and are essential to both

project monitoring and coordination.

4.2.1 Overview of the Configuration Model

Based on its existence, we classify a configuration definition in -one of the following two

states:

e Defined configuration, which describes a project design in terms of component total
assemblies, one from each of the participating disciplines, and an associated set of

inter-disciplinary project constraints. -

o Eliminated configuration, which was previously defined but no longer exists.

A configuration can be either defined independently, or generated as a child of an existing
defined configuration. In either case, the newly created configuration is in the defined state.
A generate operation substitutes one or more components of the parent configuration with

more refined designs from those disciplines, thereby tracking an evolving multidisciplinary

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 132

project description. Each component assembly in the parent configuration is guaranteed
to be an ancestor of the corresponding component assembly (design description from the
same discipline) in the child configuration. A transitive closure of parent links between
configuration definitions establishes ancestor-descendant rglationships among them. Also,
an eliminate operation removes an existing deﬁﬁed configuration to reduce the requiréd
storage space. |

A designer creates (defines or generates) a configuration, using a design from his /her
own discipline along with a design description from each of the remaining participating
disciplines. To provide a stable environment for sharing information, we place the following

two restrictions on component designs of a configuration definition:

1. Individual designs and their components must not be eliminated while they are
included in a configuration definition. In other words, a total assembly must be guar-

anteed to exist, to be a component of a configuration.

2. Descriptions of designs from the other disciplines must be accessible to a designer in

order to include them in his/her configuration.

Therefore to satisfy these requirements for a defined configuration, we establish that compo-
nent fotal assemblies from disciplines other than the creator’s discipline must be published,
while the component assembly from the creator’s own discipline need only be frozen.
Before describing the configuration state operators in detail, we outline the data type
declarations employed in the discussions. These data type declarations are in addition to

those provided in Sections 4.1.1.

¢ idconsig: Type declaratiqn of the identiﬁel_‘ of the concerned configuration definition

created in a particular discipline.
o stateconng: State specification of a configuration definition.

We also use the following ezternal functions to develop algorithms for the proposed assembly

state operators:

¢ config-numgen = (discipline D, [1:m] idassembly A, idconfig R) idconfig F: Generates an
identifier F for a new configuration created by a designer from a discipline D that is
generated as a child of an existing defined configuration R, and has a component total

assembly from each of the m participating disciplines. When indépendently defining

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 133

a new configuration, the parent identifier R is assigned a value, “Null.” This function
also stores the configuration definition in terms of its component total assemblies,

which can be retrieved by other operators.

e. config-parent = (discip]jné D, idconfig F) idconsig R: Returns the ideﬁtiﬁef of config-
_uration R that is the parent of configuration F belonging to the same discipline D.
The function returns the identifier of the configuration from which the current con-
figuration has been generated. If the configuration F were defined independently,

this function returns a “Null” value.

e config-state = (discipline D, idconfig F) stateconfig X: This function obtains the
current state specification X of a configuration F created by a designer from a discipline
D.

e config-destroy = (discipline D, idconfig F) boolean Z: Erases a configuration defini-
tion F from the set of configurations belonging to discipline D. Z indicates a successful

execution of the operator.

e comp-config(discipline D, idconsg F, discipline E) idassembly A: Returns the total as-
sembly in participating discipline E that is a component of configuration F created

by a designer from discipline D.

For the sake of clarity, we employ a construct, “(ALL condition),” which returns a TRUE
value if the condition is satisfied for all the considered values. For example, the expression,
“(ALL ((access-assembly(comp-config(d, ¢, €)) = “publish”) AND (e # d))), is TRUE if
each component assembly of configuration f, which is not from the discipline d that created

the configuration, has an access property value “publish.” This construct is similar to the

logical quantifier, V. We can easily implement the above expression in ALGOL by specifying
the condition within a for loop.

We provide the following configuration state operators: -

e define-config(D, [1:m] A) F: Creates a new configuration in a discipline D, given a
set of component total assemblies, one from each of the m pa,rticil;ating disciplines. A
define-config operator invokes a config-numgen function which generates the sys-
tem identifier F for the newly defined configuration. Figure 4.17 gives an algorithm

to implement a define-config operation.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 134

Algorithm 29 (define-config)

Input: d: Name of the discipline that is defining the configuration.
a: Set of component total assemblies, one from each of the m participating disciplines.
Output: f: Identifier of the new configuration, which is in the defined state. '
procedure define-config = (discipline d, [1:m] idassembly @) idconfig f
begin
if (ALL ((access-assembly(comp-config(d, c, €)) =
“publish”) AND (e # d))) begin
f:= config-numgen(d, [1:m] a, “Null”);
config-state(d, f) := defined;
end;
end procedure
o A

Figure 4.17: Procedure to define a New Configuration

o generate-config(discipline D, [1:m] idassembly A, idconfig R) idconfig F': Creates a new
configuration as a descendant of a given configuration R belonging to the same disci-
pline D. A generate-config operator uses a config-numgen function for obtaining a
unique system identifier F for the new configuration. This operator ensures that each
component assembly of the new configuration F is a descendant of the correspond-
ing assembly (assembly from the same discipline) in configuration R. A procedure to

generate a new configuration is given in Figure 4.18.

o eliminate-conf ig(disciphne D, idconsig F): Specifies an existing defined configuration
F belonging to a discipline D to be in the eliminated state. However, this operator
does not further eliminate any of its component assemblies which can be components

of other configurations. Figure 4.19 outlines an algorithm to execute this operator.

These three operators specify the two assembly states, defined and eliminated.

4.2.2 Configuration Properties for Collaboration

Given that configurations are frameworks to represent multidisciplinary project descriptions,

we can provide access and status properties for configuration definitions to simulate real

situations found in typical collaborative environments. Based on the specific property values

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 135

Algorithm 30 (generate-config)

Input: d: Name of the discipline which is generating the new configuration.

r: Identifier of a defined configuration that is an ancestor of the newly created config-
uration. ' '

a: Identifiers of m component total assemblies of the configuration being created. Each
component assembly is a descendant of the corresponding assembly (assembly from
the same discipline) in configuration r.
Output: f: Identifier of the newly generated configuration which is in the defined state.
procedure generate-config = (discipline d, [1:m] idassembly 2, idconfig r) idconfig £
begin
if (ALL ((access-assembly(comp-config(d, ¢, €)) =
“publish”) AND (e # d))) begin
f:= config-numgen(d, [1:m) idassembly 2, idconfig I);
config-state(d, f) := defined;
end;

" end procedure
&

Figure 4.18: Procedure to generate a New Configuration from an Existing Configuration
Definition

assigned to it, a configuration definition can be categorized into one of the following four

states:

. Intermediate configuration, which a]lows a designer to privately evaluate one or more
* solution alternatives with respect to designs made accessible by other designers. Feed-
back from such evaluations help designers independently refine their individual designs
for efficient integration with the overall project. An intermediate configuration can-
not be accessed by other disciplines; access value is “not publish.” In addition, stich

a configuration cannot be explicitly eliminated; the status property is assigned a

value, “freeze.” To satisfy the configuration properties, the component assemblies
from other disciplines must at least be in the published state, whereas the component

assembly from the designer’s own discipline need only be frozen.

e Accessible configuration, which simulates a meeting scenario in which each designer

brings his/her design to the table for the entire team to collectively evaluate the

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS . 136

Algorithm 31 (eliminate-config)

Input: d: Name of the concerned discipline.
f: Identifier of the defined configuration that is being ellmlnated

Output: success: Indicator of the successful execution of the eliminate operation.

procedure eliminate-config = (discipline d, idconfig 1) boolean success:
begin
success := FALSE;
if (config-state(f) = defined) begin
config-state(f) := eliminated;
success := config-destroy(d, f);
end;
end procedure

<&

Figure 4.19: Procedure to eliminate a Defined Configuration

entire project description, and to identify any inconsistencies among its individual
components. Such a project design can be referenced by the entire design team; the

configuration has an access property value, “publish.” Since the configuration can

be referenced by other disciplines, it must also be guaranteed to exist (status value,
“freeze”). Thus, each component assembly of an accessible configuration must be in

the published or persistent state.

e Landmark configuration, which represents a consistent project description that can
be shared with actors outside the design team. Such configurations represent, among
others: (i) team records checkpointing descriptions of the project at the end of specific
design phases, (ii) project designs submitted to regulatory agencies for construction
approval, and (iii) documents released to contractors for bidding purposes. Landmark

-conﬁgurations are typically maintained for extended periods, often covering the facil-

ity’s entire life cycle. Thus, such designs have a status value, “archive.” Also, such
configurations can be referenced by the entire team (access value, “publish”). To

satisfy these properties, component assemblies of a landmark configuration must have

a status property value, “archive,” as well as an access value, “publish.” Therefore

each component assembly must be in the persistent state.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 137

Table 4.1: Specifications of States of Component Assemblies

Configuration Assembly State Assembly State
State (Other Disciplines) | (Owner Discipline)
Intermediate Published Frozen
Accessible Published Published
Recorded Persistent Archived
Landmark Persistent Persistent

o Recorded configuration, which represents a project description containing a conipoQ
nent design alternative not selected for the current project, but maintained for future
reference. This would allow a mechanical engineer, for example, to maintain, as per-
sonal records, an alternative ducting layout that was not selected for the concerned
project. A recorded configuration has a status property value, “archive,” but remains
inaccessible to designers from the other disciplines. To satisfy these semantics, the
assembly included from the creator’s discipline need only be archived, while assemblies

from the other disciplines must be persistent.

Figure 4.20 graphically represents the configuration model as a finite state machine. As
established in Section 2.4.2, defined and eliminated configurations have a status property

value, “not freeze,” and an access property value, “not publish.” In this figure, we identify

the configuration states and provide operators to specify them. Table 4.1 summarizes the

inclusion rules for component assemblies of the various configuration states. These state

specifications represent the minimal requirements of status and access properties needed for
assemblies to be components of a configuration specified to be in a giveﬁ state. The close
coupling of the assembly and version models necessarily enforces these rules on versions
included in the component assemblies.

We now describe the configuration state operators in greater detail.

-

e protect(D, F): A protect operation assigns a status value, “freeze,” for a configura-
tion T belonging to the discipline D. Such a configuration cannot be eliminated by
a designer from the same discipline unless explicitly unprotected. Since the minimal
property specifications for component assemblies of an intermediate configuration are
the same as those for a defined configuration, this operator does not concern with

the component assembly states. Figure 4.21 outlines a procedﬁre to implement the

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 138

Configuration
odel

Defined, and Eliminated:
4 status = “not freeze"
eliminate, access = 'not publish”

unprotect

Configuration Status
"archive"

"unpublish”

Configuration
Access
Privileges

“publish’,

Figure 4.20: Configuration Model to Support Collaboration

protect operator.

e unprotect(D, F): An unprotect operation initializes the status property value of

a configuration F from discipline D from “freeze” to “not freeze”; an intermediate
configuration can now be eliminated. In the context of the configuration model, the
operator specifies an intermediate configuration F in the discipline D as defined. An

'algorithm for this operator is presented in Figure 4.22.

e grant-access(D,F): A grant-acéess operator sets an access property value, “pub-
lish,” for a configuration F from a discipline D. The definition as well as contents of
the configuration are now accessible to designers from other disciplines. Therefore the
configuration model ensures that the concerned configuration be in the intermediate
or recorded states before it can be published. Furthermore, its component assemblies
also must have an access value, “publish.” Since component assemblies from other
disciplines are guaranteed to have an access value, “publish,” the operator needs to

only check if the assembly from the designer’s own discipline D has an access prop-

erty value, “publish.” We enforce the above two requirements as preconditions on
the operator. Figure 4.23 gives an algorithm for this operator. Particular to the con-

figuration model, a grant-access operator specifies an intermediate configuration F

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 139

Algorithm 32 (protect)

Input: d: Name of the concerned discipline.
f: Identifier of the configuration belonging to discipline d that is being protected. .

Output: success: Boolean indicator of a successful operation.

procedure protect = (discipline d, idconsg) boolean success:
begin
success := FALSE;
if (config-state(d, f) = defined) begin
config-state(d, f) := intermediate;
success := TRUE;
end;
end procedure
o :

Figure 4.21: Procedure to protect a Defined Configuration

belonging to discipline D as accessible. Alternatively, a configuration in the recorded

state is now specified as landmark.

e restrict-access(D,F): A restrict-access operation revokes access privileges gra-
nted to designers from other disciplines on a particular configuration F created by a

designer from a discipline D. The operation sets the access property value of the

configuration as “not publish,” while the property values of its components remains
unchanged. In other words, the operator specifies an accessible or landmark configu-
ration F from a discipline D as intermediate or recorded, respectively. An algorithm

for this operator is shown in Figure 4.24.

o stamp(D, F): A stamp operation sets the status property value of a configuration
F from discipline D as “archive,” guaranteeing its existence for the life cycle of the

- facility. Before we can specify an “archive” status value, the configuration must have

a status value, “freeze” (intermediate or accessible states). Also, each component

assembly must have a status value, “archive.” The required access property values

for the component assemblies are ensured by the initial states of the configuration

F; assemblies from other disciplines already have an access value, “publish,” while if

the configuration F is intermediate the designer’s own component assembly could be

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 140

Algorithm 33 (unprotect)

Input: d: Name of the concerned discipline. '
f: Identifier of the configuration of discipline d that is being unprotected.

Qutput: success: Boolean indicator of a successful operation.

procedure unprotect = (discipline d, idconsig f) boolean success:
begin
success := FALSE;
if (config-state(d, f) = intermediate) begin
config-state(d, f) := defined,
success := TRUE;
end;
end procedure

<

Figure 4.22: Procedure to unprotect a Defined Configuration

assigned an access property value, “not publish”. A successful operation specifies an

intermediate configuration as recorded, while an accessible configuration is now in the

landmark state. An algorithm for the stamp operator is shown in Figure 4.25.

The close coupling of the three layers of our model requires that the properties of compo-
nent total assemblies (and their component versions) not be changed while the assemblies
are still component of existing configurations. We enforce these requirements as precondi-

tions on operators that specify access and status properties for versions and assemblies that’

are included in an existing configuration definition. For example, a published assembly or
version cannot be suppressed while it is a component of any accessible or landmark con-
figuration (having 'an access value, “publish”) created by that discipline, or is a component
of any configuration definition created by other disciplines. Similarly, a frozen assembly
or any of its included versions cannot be thawed while being a component of any existing

configuration.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 141

Algorithm 34 (grant-access)

Input: d: Name of the concerned discipline.
f: Identifier of the configuration of discipline d that is being granted-access. .

Output: success: Boolean indicator of a successful operation.

procedure grant-access = (discipline d, idconfig f) boolean success:
begin
success ;= FALSE;
if ((config-state(d, f) = intermediate) AND
(access-assembly(comp-config(d, f, d)) = “publish”)) begin
config-state(d, ¢) := accessible;
end;
if ((config-state(d, f) = recorded) AND
(access-assembly(comp-config(d, f, d)) = “publish”)) begin
config-state(d, ¢) := landmark;
end;
- end procedure

&

Figure 4.23: Procedure to grant-access to an Intermediate or Recorded Configuration

4.2.3 Relational Representation Scheme

We propose a scheme to represent configurations in a relational environment. This scheme
maintains configurations created by a d1sc1phne D as a relation D-CONFIGURATION, estab-
lishing both the composition and evolution relationships among configurations. The scheme

" also stores the status and access property values assigned to each configuration definition.’

We establish the composition relationships by identifying all component total assemblies of
each configuration; a Components set, in this scheme, contains all the component assembly
identifiers. On the other hand, we establish evolution relationships by identifying the parent
configuration from which a given configuration has been generated. Suchparent links are
stored in a Parent-id attribute. For configurations that have been defined independently,
this attribute is assigned a value, “Null.” -

The D-CONFIGURATION relation has the following definition:

D-CoNFIGURATION(Config-id, Components ;ji—y,..m} » Config-parent, Fr-status,
Pub-status)

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS - 142

Algorithm 35 (restrict-access)

Input: d: Name of the concerned discipline.
f: Identifier of the configuration belongmg to the discipline d Whose access prlvﬂeges ‘
are being restricted.

"QOutput: success: Boolean indicator of a successful operation.

procedure restrict-access = (discipline d, idconsig f) boolean success:
begin
success 1= FALSE
if (config-state(d, f) = accessible) begin
config-state(d, f) := intermediate;
end;
if (config-state(d, f) = landmark) begin
config-state(d, f) := recorded;
end;
end procedure

<
Figure 4.24: Procedure to restrict-access to an Accessible or Landmark Configuration

where the attributes specified are:

o Config-id: System-generated attribute that uniquely identifies each configuration cre-

ated by a given discipline.

° Component‘s: Set of m total assemblies that compose a configuration definition, one

assembly from each pa,rticipé,ting Adiscip]jne.

o Config-parent: Identifier of the parent configuration from which the current config-
uration has been generated. If defined independently, this attribute is assigned a

“Null” value.

-

e Fr-Status: Specifies the status property value of a configuration. Possible values

include “y” (“freeze”), “a” (“archive”), and “n” (“not freeze”). .
b

‘e Pub-Status: Specifies the access property value of a configuration. Possible values

include “y” (“publish”), and “n” (“not publish”).

The proposed representation scheme completely describes the compész’tz’on and evolution

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 143

Algorithm 36 (stamp)

Input: d: Name of the concerned discipline.
f: Identifier of the configuration belonging to the discipline d that is being stamped.

Output: success: Boolean indicator of a successful operation.

procedure stamp = (discipline d, idconsig) boolean success:
begin
success := FALSE;
if ((config-state(d, f) = intermediate) AND
(ALL (status-assembly(comp-config(d, f, e)) = “archive”))) begm
config-state(d, f) := recorded;
end;
if ((config-state(d, f) = accessible) AND
(ALL (status-assembly(comp-config(d, f, e)) = “archive”))) begm
config-state(d, f) := landmark;
end; ‘
end procedure
<

Figure 4.25: Procedure to stamp an Intermediate or Accessible Configuration in a Particular
Discipline

relationships among configurations belonging to a given discipline, and maintains their

status and access values.

4.2.4 Configuration Change Management

We manage changes among configurations along both the composition and evolution rela-
tionships. Along the composition axes, we describe an overall project design in terms of indi-
vidual designs from the participating disciplines. We implement a display-configuration
operator that invokes a display-assembly operator to describe each component design.
Along the evolution axes, we determine the differences between two configurations, where
one is an ancestor of another. Such an ancestor relationship guarantees that each component
total assembly in the ancestor configuration is also an ancestor of the cc;rresponding compo-
nent assembly (assembly from the same discipline) in the second (descendant) configuration.
We implement a characterize-config-deltas operator that represents the differences be-

tween two concerned configurations as the aggregation of the differences between each pair

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 144

of corresponding component assemblies; differences between each component assembly pair

are in turn described by executing characterize-assembly-deltas operations.

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 145

4.3 Summary and Discussions

In this chapter, we have described the assembly and configuration models and proposed a
scheme to represent them in a relational environment. Configurations provide a framework
that integrates designs from the participating disciplines to describe an overall project. We

have identified the basic status and access properties for configurations to support cooper-:

ation among designers. Based on its particular properties, we classify a configuration into
one of the four states. Using an intermediate configuration, a designer can privately eval-
uate his/her design with respect to the entire project. Accessible configurations simulate
meeting scenarios in which each designer brings the design to the table, allowing the entire
team to collectively evaluate the design progress. Landmark configurations represent project
descriptions that are maintained for extended periods and are accessible to members both
within and outside the design team. These include (i) team records checkpointing project
descriptions at the end of specific design phases, (ii) project designs submitted to regu-
latory agencies for construction approval, and (iii) documents released to contractors for
bidding purposes. Finally, recorded configurations allows designers to maintain, for pérsonal
references, alternative designs that were not selected for the current project.

Assemblies, in our model, aggregate component versions to describe complex entities.
Assemblies can be either total or partial. A total assembly represents a complete design
in an individual discipline, and contains a version of each entity belonging to that disci-
pline. Partial assemblies, on the other hand, describe complex entities that could be further
aggregated to describe more complex entities or a complet.e design in that discipline.

A salient feature of our model is the close coupling of the version, assembly, and con- .
figuration layers. To provide a stable environment for sharing information, we specify
restrictions on total assemblies that are components of the various configuration states. To

satisfy these restrictions, we provide access and status properties for assemblies, classifying

them into four distinct states based on the property assignments. Furthermore, the close

coupling of the assembly and version models ensures that the status and access property of

an assembly definition is in turn shared by each of its component versions.

Also, in this chapter, we propose schemes to represent both the assembly and configura-
tion models in a relational environment. These schemes establish both the composition and
evolution relationships. While composition links identify the components of a configuration

or assembly. an evolution link identifies the parent from which the concerned assembly or

CHAPTER 4. ASSEMBLY AND CONFIGURATION MODELS 146

configuration has been generated. The close coupling of the three layers allows computed
version changes to be combined to characterize changes at the assembly and configuration
levels, supporting both coordination and monitoring activities.

Many proposed versioning schemes have incorporated a notion of vers10n states to sup-

port collaboration [20, 8, 34]. Chou and Kim [8] have enumerated a number of mterest-
| ing version states (transient, working, and released), and have proposed an architecture of
databases (public, group, and private) to store shared versions. Unfortunately, this scheme
explicitly associates the properties of a given version with the database in which it is lo-
cated. This results in two major drawbacks. First, it is typically hard to realize the proposed
database architecture in real design scenarios. Second, to modify the accessibility of a de-
sign version, we need to explicitly copy the version from one database to another. The
Flectronic Document Management System (EDMS) [34] project also specifies a state graph
for releasing a document version. The system provides four states, draft, ready, checked, and
approved, which correspond to approval status of a given document version. Interestingly,
they provide authorizing and commit programs to specify how versions should behave in
different situations. Although this mechanism is more flexible than schemes with prespec-
ified state transition rules, the éhoice of state definitions is itself quite arbitrary. None of
the surveyed versioning schemes have systematically identified the core version properties
necessary for collaboration.

Some research efforts have previously defined configurations as the version of a com-
posite entity in terms of the versions of its components [20, 23, 32, 28]. Strategies, such
as layers and contexts [20], and version environments [32] have been proposed to to select
versions that are included in a consistent configuration. Cellary et al. [7] uses a concept of
database versions to control the propagation of versions of composite entities as a response
to new versions of.it component entities. However, none of the surveyed works support
configurations for multidisciplinary projects in distributed paradigms.

In conclusion, we believe that our three-layered model provides a compre}xensive solution

for project change management.

Chapter 5

Change Management in a CAD

Environment

- This chapter presents a scheme for representing versions, assemblies, and configurations in
a CAD environment and provides operators for storing and managing changes at each of -
the three levels. In the CAD context, an instance of a primitive entity is represented as a
list composed of associated lists, where each associated list consists of an attribute name
and value pair. Attributes can be either primary or secondary. The set of primary attribute
values uniquely identify an instance that is contained in a particular version of an entity.
Secondary attributes represent additional design properties of the instance. A change is
a data operation on an instance of an entity. CAD systems provide several operators to
manipulate design instances. We, .howe_\;er, abstract available CAD drawing and éditihg
operatots into three primitive operators that capture their essence: insert, delete and
replace. For example, a CAD operation that modifies the geometry (scale) or spafial
arrangements (move or rotate) of an instance are mapped to a replace primitive operation.
Drawing a new instance is an insert primitive operation, while erasing an existing instance
corresponds to a delete primitive operation. We thus model a change as a primitive insert,
delete, or replace operation on an instance. ,

We conceptually extend the relational scheme presented in Chapter 4 for representing
assemblies. An assembly, in our model, represents a complex entity resulting from a com-
posite modeling operation on a set of component instances. Our implementation currently

handles three composite modeling operations: union, intersect and subtract, which are also

147 -

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 148

supported by AUTOCAD’s Advanced Modeling Extension (AME). An individual compo-
nent of an assembly can be an instance of either a primitive or complex entity. While the
former is an instance belonging to a specific version in the entity derivation hierarchy, the
latter is represented by another assembly. We develop a component hierarchy for a given
assembly by recursively expanding its definition. The root of this hierarchy is the ofiginal
‘assembly; the leaf nodes represent primitive instances included in the assembly definition.
Formally, an instance of a primitive entity is included in an assembly if it is either a com-
ponent of that assembly definition or is included in one of its components. Furthermore,
versions containing instances that are included in a given assembly are denoted as included
versions. The model determines the changes between versions; we characterize changes at
the assembly and configuration levels by recursively aggregating computed version changes
along both their composition and evolution relationships.

We have implemented the proposed data management model as a prototype in an AU-
TOCAD system Release 12. AUTOLISP provides the programming interface. We illustrate
different aspects of our model using an integrated facility design example. The described
example is simple yet realistic, and has been tested on the CAD prototype system. Design
entities in the prototype are represented as 3-D graphical objects which have been defined
using AUTOCAD’s AME solid modeler.

The rest of this chapter is organized into four parts. We first describe the Medical
Cyclotron facility example which is used throughout this chapter to illustrate the various
~ aspects of the model. This example was first introduced in Chapter 2, and is developed
here in greater detail. Secoﬁd, we propose a CAD representation scheme for the version
model. A version, in this scheme, contains the set of equivalent primitive operations on each
instance that was modified when that version was in the active state. We employ a check-
out/check-back-deltas protocol to structure the interaction between an application session
and the active version and describe CAD operators for detecting, storing, and managing
changes among versions represented in this environment. Third, we devglop a recursive
scheme to represent the assembly model in a CAD paradigm. Management of changes
along both composition and evolution relationships is also discussed. Finally, we describe
a scheme to represent configurations, and demonstrate the model’s ca,f)a,bi]ities for project

coordination and monitoring.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 149

Figure 5.1: Initial Floor Plan of the Facility (Assembly aa-i0)

5.1 Application Example

Figure 5.1 shows an initial architectural layout of a Medical Cyclotron facility. To keep the
example simple, we focus on only three of the many participating disciplines: architecture,
structural engineering and mechanical engineering. The facility is stored in the AUTOCAD
environment using AME (AUTOCAD’s l\/fodeﬁng Extension) 3-D BoX objects.

5..2 Version Model

We present a CAD implementation scheme for the version model and describe how operators

manage changes among individual versions for this given scheme.

5.2.1 Representation Scheme -

We present a forward deltas scheme [36] to implement the version model in a CAD envi-
ronment. Similar to the relational representation scheme given in Seétion 3.4, in a CAD
environment, we completely describe a primitive entity E using three lists: E-DATA, E-
INDEX, and E-ACTIVE. An E-DATA listgassociates the description of each version with a

system-generated identifier, Version-id. Each version, in this scheme, contains a summary

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 150

of all changes made on that entity while the concerned version was active. Instances are
described by a list of attribute name and value pairs; a change, in our model, is an insert,
delete or replace primitive operation on an instance description. An attribute in the
E-DATA relation, Op-desc, records the net equivalent operator on each instance contained
in the considered version. For redesign, we also specify an Anc attribute that links each in-
stance with its most recent description in an ancestor version. For computational efficiency,
this “optimized” version scheme explicitly maintains intermediate complete versions. An
E-INDEX list implicitly maintains an entity derivation hierarchy, and identifies declared ver-
sions. A Parent-id attribute stores the identifier of the parent of each version. As the version
set is a tree structure, all versions except the root have exactly one parent version; a version
tree can therefore be uniquely generated with this information. A Version-type attribute in
the E-INDEX list distinguishes those versions which are complete. Finally, an E-ACTIVE list
explicitly locates the currently active version. A version that is neither declared nor active
is inferred as suspended.

We now present the definitions of the three lists,

o E-INDEX: ((Version-id Value)
((Version-type Value)
(Parent-id Value)
(Decl-Status Value)));|i=1,..., v}

which has v versions in the entity hierarchy. The remaining attributes are given as

follows:

— Version-id: System-generated identifier of the version in an entity derivation
hierarchy.

— Version-type: Indicator of complete versions. The root of an entity derivation
hierarchy is always complete.

— Parent-id: Identifier of the parent of a given version. The root version of an

entity derivation hierarchy has a “Null” value.

— Decl-status: Indicator of declared versions, which has the possible values: “y” or

[199)

n

o E-AcTIvE: (Act-Version-id Value)

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 151

where the attribute Act-version-id identifies the currently active version.

e E-Data: ((Version-id Value)
((Primary-attribute Value)(;|s=1,., p}
(Secondary-attribute Value)(;|;=1,..s)
(Operator-descriptor Value)

(Anc Value)) | k=1, n} HI[1=1, v}

which maintains v versions of entity E; a version in this scheme is describe by n

changes. The remaining attributes are specified as follows:

— Version-id: Identifier of the version in an entity derivation hierarchy.

— Primary-Attribute: Set of p primary attributes in the entity scheme that uniquely

identify an instance in the given version.

— Secondary-Attribute: Set of s secondary attributes in the entity scheme that de-
scribe certain design properties of each instance. Such attributes are functionally

dependent on the set of primary attributes.

— Operator-descriptor: Operator that summarizes all changes made to the con-

cerned instance when the given version was active.

— Anc: Identifier of the ancestor version in which the given instance was most re-
cently modified. In situations where the instance was inserted in the particular
version, this attribute is assigned a “Null” value. Although an Anc value can be
alternatively computed by retracing the derivation path from a version through
its ancestors, it is critical in redesign situations to quickly identify earlier descrip-
tions from which to redesign. We therefore explicitly store this value to reduce

the search time.

These three lists completely describe a primitive entity.

Figure 5.2 shows an example derivation hierarchy of a Box primitive entity. The Box
instances in each version of the hierarchy represent the exterior architectural walls of the
“running” facility design shown in Figure 5.1. In this figure, versions b-1, b-1a0, and b-1al
are declared; version b-1a2 is suspended, while version b-2 is active. Specific wall instances
in a given version are represented by the provided scheme and are uniquely identified by

the value assigned to its primary attribute, Box-id; the attribute Box-id (generated using

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 152

Table 5.1: Example Sequence of Version Operations on the BoxX Entity

Operations Version | Initial Final
Affected | State State
activate(BoxX, b-1a2) | b-2 active suspended
b-1a2 suspended active
declare(Box, b-1a2) | b-la2 active declared
derive(Box, b-1a2) b-1a3 non-existent | active &
child of
version b-la2

‘AUTOCAD’s handle descriptor “5”) uniquely identifies an instance of a 3-D CAD object
and is analogous to a key in a relational database. Figure 5.3 shows the lists BoX-INDEX
and BoxX-ACTIVE that maintain the example version hierarchy and identify the state of
each member version. Version b-1a2 is suspended as it is neither declared nor active.

We can extend the example version hierarchy by executing the following sequence of

operators:

1. activate(Box, b-1a2): Specifies version b-la2 as active. Version b-2 which was

initially active is now specified as suspended.
2. declare(BoxX, b-1a2): Specifies version b-1a2 as declared.

3. derive(BoX, b-1a2): Creates a new active version b-1a3 and links it, as a child, to
the previously declared version b-1a2. At the time of derivation, the contents of the

parent version b-1a2 are logically copied into the child version b-1a3.

Table 5.1 summarizes the above sequence of operations. In the resulting BoX entity hierar-
chy, version b-1a3 is active, while version b-1a2 is now suspended. Versions b-1, b-1a0, b-1al,
and b-1a2 are in the declared state. Furthermore, version b-1a3 has the same description as

its parent version b-la2.

5.2.2 Version Change Management

We introduce a check-out/check-back-deltas protocol that structures the interaction between
CAD applications and the version hierarchy. To modify the description of an active ver-

sion, the designer checks-out out its materialized description into the CAD application.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 153

Instances contained in that version description can be modified within the application en-
vironment using built-in drawing and editing tools. Most CAD systems provide several
operators to modify 3-D CAD instances, we abstract these operators into one of insert,
delete, and replace primitive operations. At the end of the given session, we detect the
net changes made during that session as a set of equivalent operations, at most one on each
instance that was modified during that given session. Two aspects of the framework makes
this possible. First, we store, with each instance, the sequence of all operators that were
executed on that instance. Second, a compress operator summarizes the operator sequence
on each instance to determine the set of equivalent operators during that session. Finally,
we check-back the detected changes into the version hierarchy; they are then integrated
with the existing description of the active version. Furthermore, a version, in our model, is a
unit of granularity containing the set of equivalent operations of all changes that were made
while that version was active. We can also compute the net changes between an ancestor-
descendant pair of versions in an entity hierarchy as the set of equivalent operations that
can be executed on the concerned ancestor version to describe its descendant.

Our prototype implementation realizes the above change management processes by the

following five basic operators:

e materialize: describes a version as the set of changes that logically belong to its

definition.

e translate: maps a CAD drawing or editing command to its corresponding primitive
operation. For each modified instance, we maintain a sequence of primitive operators

executed during the particular CAD session.

o compress: determines the equivalent primitive operation on each modified instance

by summarizing its associated sequence of primitive operations.

o integrate: merges the equivalent primitive operations on an entity with the descrip-

tion of its active version.

o compute: determines the difference between an ancestor-descendant pair of versions
as a minimum set of changes or deltas that can be executed on the ancestor version

to describe the descendant.

Procedures to implement these operators have been developed in Chapter 3 (Section 3.5).

While the algorithms were developed for a relational data model, they are easily translated

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 154

Table 5.2: Example Sequence of Operators on a Box Instance 2.78672e+06 (ENTITY-OPs-
Log List)

Handle-id Sequence of Operators

2.78672e+06 replace < replace < replace

to the CAD scenario. The rest of this section demonstrates these operators using a single
Box instance (identified by Box-id 2.78672e+06) contained in active version b-1ad of the
“ongoing” example BOX entity derivation hierarchy. As mentioned in the introduction, this

example has been tested on the prototype implementation of the model.

e materialize(BoX, b-1a3): We describe a version in terms of all instances that are
logically belong to its definition; component instances can be either physically associ-
ated with that version, or logically inherited from an ancestor version. A materialize
procedure retraces the derivation path of the current version till the most immediate
complete ancestor version, and collects the latest equivalent operation on each instance.
If the equivalent operation is not a delete operation then it is included in the version
description. Figure 5.4 shows an instantiated description of newly derived version
b-1a3 of the example BoX entity hierarchy. In this particular situation, the root ver-
sion b-1 is the most recent ancestor for version b-1a3, that is specified as complete.
Version b-1a3 does not contain any of the instances that belong to its definition;
instance 2.78672e+406 is inherited from version b-la2, while instances 2.44213e4-06,
2.68377e+06, 2.78338e+06 and 2.67366e+06 are inherited from ancestor version b-
1a0.

o translate: A translate function abstracts a CAD drawing or editing operation
into one of the three primitive operations: insert, delete, or replace. For exam-
ple, moving a BoX instance 2.78672e+06, of our “running” example, corresponds to
a primitive replace operation that transforms the instance from its initial to final
location. We maintain the list of primitive operators that were executed on each
instance during a given session. Table 5.2 shows an ENTITY-OPs-Log list contain-
ing an example sequence of three primitive replace operators on the Box instance
2.78672e+06.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 155

Table 5.3: Detected Change on Box Instance 2.78672e+06 (Application Example)
Handle-id Lx Ly Lz X Y Z Operator

2.78672e+06 321 6 144 308 -250 0 replace

e compress: A compress operation determines the equivalent operation on each modi-
fied instance by summarizing its associated sequence of primitive operators. For each
instance, a compress operation recursively substitutes the first two nodes of the oper-
ator sequence with its equivalent operation, till the entire operator sequence has been
reduced to a single node, producing the equivalent operator on the concerned instance.
Corollary 1 (Section 3.3.3) forms the basis for describing the detected equivalent op-
erations. By this result, the inserted or replacement values of instances correspond to
their descriptions at the end of a CAD session. On the other hand, replaced or deleted
values were originally checked-out from the version hierarchy. The resulting equivalent
operations are the net changes made during a particular CAD session, and are checked-
back into the entity’s active version. Table 5.3 gives the primitive replace operation
on Box instance 2.78672e+06 obtained by compressing the example ENTITY-OPs-
Log list (Table 5.2). The replacement value is the description of the BoX instance at

the end of the given session.

e integrate: An integrate operation merges the checked-back changes on an entity
with the existing description of that entity’s active version. As mentioned in Section
3.5.3, a given change on an instance has a maiching list if that instance exists in the

active version. Two possible situations exist for a change to have a matching list:

— The instance description is physically associated with the active version.

— The instance description is logically inherited from the active version’s ancestors.

We call the former a physical matching list, and the latter a logical matching list.
Section 3.5.3 presented two criteria for integrating a change into an active version,
and outlines an algorithm to implement the integrate operation. This procedure
ensures that a version is represented by the set of equivalent operations of all changes
that were checked-back by CAD sessions, while that version was active. The version-

ing scheme is therefore a forward deltas scheme [36]; a version can be described by

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 156

executing its associated set of equivalent operations on the description of its parent
version. We illustrate an integrate operation by checking back the previously com-
puted equivalent replace operation on BOX instance 2.78672e+06 (shown in Table
5.3) into the active version b-1a3 of our example version hierarchy. Figure 5.5 shows

the resulting description of the BoX entity hierarchy.

e compute: A compute operation determines the changes between two versions, where
one is an ancestor of the other in an entity derivation hierarchy. These computed
changes are a minimal set of data operations or deltas that can be executed on the
ancestor version to produce a description of the descendant version. The compute
procedure is an innovative application of equivalent operations. The version model
views a derivation path between an ancestor-descendant pair of versions as a set of
equivalent operator sequences, one sequence for each instance that was modified in ver-
sions along the derivation path. By this interpretation, a compute operation involves
determining the net equivalent operation for the operator sequence on each modified
instance. We illustrate a compute operation by determining the differences between
versions b-1 and b-1a3 of our example version hierarchy (Figure 5.5). The computed
differences are expressed in terms of insert, delete, and replace operations that
can be executed on version b-1 to produce a description of version b-1a3. Figure 5.6
shows the inserted Box instances, while Figure 5.7 displays both the replaced as well
as the replacement values of instances that have been modified along the concerned
derivation path. For each instance, the compute operation determines the delta by
considering only the first and last equivalent operations on that instance along the

derivation path from version b-1 and b-1a3 (versions b-1a0, b-1al, b-1a2, and b-1a3).

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 157

I Version b-1
(declared)
(2.78672e+06 321 6 144 210 -144 0)
(2.78338e+06 6 782 144 525 -138 0)
(2.68377e+06 321 6 144 210 644 0)

— Version b-1a0
(declared)
(2.44213e+06 104 6 144 210 -144.0)
, (2.67366e+06 6 100 144 308 -244 0)
(2.78672e+06 321 6 144 308 -144 0)
¥ Ll (2.78338e+06 6 874 144 616 -244 0)
fee—— (2.68377e+06 412 6 144 210 630 0)
Version b-2 i/
(active)
(2.78672e+06 412 6 144 210 -250 0) Version b-1al
(2.78338e+06 6 874 144 616 -244 0) (declared)
(2.68377e+06 412 6 144 210 630 0) (2.44213e+06 104 6 144 210 -144 0)

(2.67366e+06 6 100 144 308 -244 0)

Eﬂ (2.78338e+06 6 874 144 616 -244 0)
(2.68377e+06 412 6 144 210 630 0)

Version b-1a2

(suspended)

(2.44213e+06 104 6 144 210 -144 0)

(2.67366e+06 6 100 144 308 -244 0)

T (2.78672e+06 321 6 144 308 -275 Q)
(2.78338e+06 6 874 144 616 -244 0)

(2.68377e+06 412 6 144 210 630 0)

Sn—

Scheme: < Box-id, Lx, Ly, Lz, Xcoord, Ycoord, Zcoord >

Figure 5.2: Example Version Hierarchy of a Box Entity

(b~1 ((VERSION-TYPE COMPLETE) (PARRENT-ID NULL) (DECL Y) (FR N} (PUB N)))

(b=2 ((VERSION-TYPE COMPLETE) (PARENT-ID b-1) (DECL N) (FR N) (PUB N)))
(b-1a0 ((VERSION-TYPE INCOMPLETE) (PARENT-ID b-1) (DECL Y) (FR H) (PUB N)»
(b-1al ((VERSION-TYPE INCOMPLETE) (PARENT-ID b—1a0) (DECL Y) (FR N) (PUB N
{b~1a2 ((VERSION-TYPE INCOMPLETE) (PARENT-ID b-lal) (DECL Y) (FR N} (PUB N
{b~1a3 ((VERSION-TYPE INCOMPLETE) (PARENT~ID b—1a2) (DECL N) (FR N) (PUB N

(b-183)

Figure 5.3: Final Representation of the Version Hierarchy (Box-INDEX and BOX-ACTIVE
Lists)

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 158

Figure 5.4: Instantiation of Version b-1ad in Box Derivation Hierarchy (materialize(b-
1a3))

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT

C——™= Version b-1
(declared)

 ——
N
]
| U
Version b-2 ¢'
(suspended)

(2.78672e+06 412 6 144 210 -250 0)
(2.78338e+06 6 874 144 616 -244 0)
(2.68377e+006 412 6 144 210 630 0)

I

y

) |

—/ 33

hE
L

(2.78672e+06 321 6 144 210 -144 0)
(2.78338e+06 6 782 144 525 -138 0)
(2.68377e+06 321 6 144 210 644 0)

Version b-1a0

(declared)

(2.44213e+06 104 6 144 210 -144 0)
(2.67366e+06 6 100 144 308 -244 0)
(2.78672e+06 321 6 144 308 -144 0)
(2.78338e+06 6 874 144 616 -244 0)
(2.68377e+06 412 6 144 210 630 0)

Version b-lal

(declared)

(2.44213e+06 104 6 144 210 -144 0)
(2.67366e+06 6 100 144 308 -244 0)

(2.78338e+06 6 874 144 616 -244 0)
(2.68377e+06 412 6 144 210 630 0)

Version b-1a2
(declared)
22.44213e+06 104 6 144 210 -144 Og
2.67366e+06 6 100 144 308 -244 0
(2.78672e+06 321 6 144 308 -275 0)
(2.78338e+06 6 874 144 616 -244 0)
(2.68377e+06 412 6 144 210 630 0)

Version b-1a3
(active)

§2.44213e+06 104 6 144 210-144 0
2.67366e+06 6 100 144 308 -244
(2.78672e+06 321 6 144 308 -250 0
(2.78338e+06 6 874 144 616 -244 0)

' (2.68377e+06 412 6 144 210 630 0)

Scheme: < Box-id, Lx, Ly, Lz, Xcoord, Ycoord, Zcoord >

159

Figure 5.5: Description of Box Entity Hierarchy after Modifying Active Version b-1a3

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 160

Ty b T ERsErSE <) M

Ditcting the Aeanced Mateling Extenzian darshase.

Al

Figure 5.6: Computation of Changes between Versions b-1 and b-1a3 (inserted Operations)

Figure 5.7: Computation of Changes between Versions b-1 and b-1a3 (replace Operations)

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 161

5.3 Assembly Model

There are two important differences between the implementations of the assembly model
in the relational and CAD environments. Firstly, in the CAD environment, an individual
component of an assembly can be an instance of either another complex entity or a primitive
entity. While the former is represented by an assembly, the latter is an instance contained
in a specific version in the entity derivation hierarchy. We recursively expand an assembly
definition to develop a component hierarchy. The root of the hierarchy is the original assem-
bly, while leaf nodes correspond to primitive instances included in the assembly definition.
Specifically, an instance of a primitive entity is said to be included in an assembly if it
is either a component of that assembly definition or is included in one of its components.
We denote versions that contain primitive instances included in an assembly definition as
included versions.

The second distinction between relational and CAD implementations of assemblies is
that, in addition to the union composite modeling operation, the CAD prototype provides
intersect and subtract operators. These operators are in turn supported by AUTOCAD’s
Advanced Modeling Extension (AME). These two assembly characteristics are motivated
primarily by the way CAD systems are used in current design situations to build complex
entity descriptions. Extensions to the assembly scheme are possible because in a CAD
environment, an entity scheme is less formally defined; unlike the relational data model, we
need not specify a new entity scheme (create a new relation) each time we perform a new
composite modeling operation.

The rest of this section is organized as follows: The first part outlines a scheme to rep-
resent assemblies in a CAD environment. An assembly is defined as a composite modeling
operation on a set of components. The second part of this section discusses the operators

used to specify the status and access properties of an assembly definition. The proposed

algorithms extend previously presented procedures as they first generate a component hi-
erarchy for the given assembly, and ensure that the property values being assigned to the
assembly definition are shared by each of its included instances. Finally, the third part
of this section discusses operations to manage changes among assemblies. We describe an
assembly as a composite modeling operation on its components, and characterize changes
between an ancestor-descendant pair of assemblies, in terms of the changes between their

individual components.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 162

5.3.1 Representation Scheme

A scheme to implement the assembly model must represent both the composition and evo-
lution relationships among assemblies. While a composition relationship identifies instances
included in an assembly’s component hierarchy, an evolution relationship identifies an earlier
description of the complex entity from which the current assembly has been generated.

We maintain assemblies in a particular discipline D as a list D-ASSEMBLY. An assem-
bly in this list is uniquely identified by a system-generated attribute, Assembly-id. Each
assembly contains a set of its component instance identifiers, Components. If a particular
component is a primitive entity, it is referenced as a specific instance belonging to a partic-
ular version in the entity derivation hierarchy. On the other hand, a component complex
entity is located as an assembly in that concerned discipline. In addition, we store the iden-
tifier of any parent assembly, Parent-id, from which the current description of the complex
entity could have been generated.

We now present the definition of the list, D-ASSEMBLY:

((Assembly-id Value)
((Operator Value)
(Components Value)¢j|i=1,c)
(Parent-id Value)))(|i1=1, w}

which has w assemblies in the discipline D. The remaining attributes are specified as follows:

o Assembly-id: System generated attribute that uniquely identifies an assembly in a

particular discipline.

o Operator: Descriptor of the composite modeling operation that is executed on the
component instances of an assembly to produce its final description. Possible values

are “union,” “intersect,” and “subtract.”

s Components: Set of ¢ instances that are components of the assembly definition. A
component primitive instance is uniquely identified as an instance belonging to a ver-
sion in a particular entity derivation hierarchy. We can thus identify such a component
instance by the attributes: Entity-Name, Version-id and a set of primary attributes.
Similarly, a component complex instance is identified as an assembly with identifier,

Assembly-id, in the given discipline.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 163

(Arch aa-i0)
Architectural Floor Plan
union

T N

(Arch aa-eQ) (Arch aa-rQ) (Arch aa-t0
Exterior Wall Assembly Interior Wall Adjacent Spaces
union Assembly

TN

(Arch aa-a0) (Arch aa-c0) (Arch aa-d0)
Wall assembly 1 Wall assembly 2 Wall assembly 3
subtract subtract subtract

AN

12 (Arch aa-b0)
<B°XV"V;H-I-5,§§§§3+°6> Window Assembly 2
union

(Box b-0a3 3.03193e+06)
(Box b-0a3 3.10185e+06) Window Entity 6

Window Entity 4 5 1\ 023 3.13604e+06)
Window Entity 5

Figure 5.8: Component Hierarchy of Initial Architectural Layout (Assembly aa-i0)

e Parent-id: Identifier of the parent assembly from which the current assembly has
been generated. In situations where the assembly was defined independently this

attribute is assigned a value, “Null.”

The initial architectural layout of the example Medical Cyclotron facility (shown earlier in
Figure 5.1) is represented by a total assembly, aa-i0. Figure 5.8 shows a partial component
hierarchy for this floor plan, that is formed by the union of three assemblies that represent
(i) exterior walls, (ii) interior walls, and (iii) an adjoining facility. Assembly aa-e0 which
denotes the set of exterior walls is in turn formed by the union of individual wall assemblies.
Further, a particular exterior wall assembly aa-c0 is formed by subtracting window and
door openings (assembly aa-b0) from the solid wall. This wall corresponds to the Box
instance 2.78338e+06 in version b-1 of the entity hierarchy given in Figure 5.5. Remaining
elements in the example component hierarchy of assembly aa-i0, including other exterior

walls, interior walls and the adjacent facility, can be similarly expanded.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 164

5.3.2 Modified Implementation of Assembly State Operators

We modify the procedures presented earlier to assign status and access properties for an

assembly definition. Specifically, we consider the freeze-assembly, archive-assembly,
and publish-assembly operators. The modifications to these procedures have been neces-
sitated by the following two factors: (i) an assembly, in a CAD environment, can be further
composed of other assemblies as well as instances of primitive entities, (ii) the close coupling

of the version and assembly models requires assembly status or access property values to

be shared by each of its components. To satisfy these requirements, we adopt the following

approach to assign particular assembly properties.
1. Expand the initial assembly definition to develop its component hierarchy.

2. Check that all included versions, and intermediate assemblies in the generated com-
ponent hierarchy share the desired assembly property. For intermediate assemblies
or included versions which do not currently share the required property values, the
assembly operator invokes pertinent state operators. Importantly, an assembly oper-
ator fails if even one of its included versions cannot be assigned the required property

values.

3. Assign the desired property value to the assembly definition provided that all elements

in the component hierarchy satisfy the minimum property requirements.

Figures 5.9, 5.10 and 5.11 outline procedures to freeze, publish, and archive assem-
blies. These procedures generate the component hierarchy in a post-order fashion, ensuring
that each included version has the minimum property values needed. In the event of fail-
ure, the current implementation does not rollback the entire operation. It does, however,
maintain a list of the successfully executed version and assembly state operators, giving
designers the information needed to manually restore the database to its original condition,
if so desired. However, as will be shown by an example later, the designers often re-execute
the original assembly operators after correcting the causes of failure.

In addition to the data types provided in previous chapters, the proposed procedures to

freeze, archive, and publish assemblies use the following additional data type:

e component: Generic type declaration of a component of an assembly. A component

could be either an instance of a primitive entity or another assembly.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 165

We also employ the following external functions in developing the given assembly state

operators. These functions are in addition to those provided in the previous chapters.

e first-component = (discipline D, idassembly A) component C: Returns the first com-
ponent C of an assembly A in the given discipline D. The function creates a new
pointer, Comp-locator, which maintains the last referenced component of the given

assembly.

¢ next-component = (discipline D, idassembly A) component C: Accesses the component
C of assembly A in discipline D that is subsequent to the one that was most recently
referenced, as determined by the current position of a Comp-locator pointer. Success-

ful execution of a next-component function advances the pointer by one component.

o type = (component C) string S: Determines if a given component C is an instance of a
primitive entity or an assembly describing a complex entity. The type of a component

Y

is expressed as a character string S. Possible values are “primitive,” and “complex.”

e inc-entity = (component C) entity E: Returns the entity name E of the component

C which is of type, “primitive.”

e inc-version = (component C) idyersion V: Returns the identifier of the version V that

is an element component C which is of type, “primitive.”

e inc-assembly = (component C) idassembiy A: Returns the identifier of the assembly

A that is an element of component C which is of type, “complex.”

e inc-entity = (component C) entity E: Returns the entity name E of the component

C that is of type, “primitive.”

Note the procedures to thaw and suppress assemblies, which were presented in Section
4.1.5, are unaffected by the changes to the assembly scheme. This is because thaw and

suppress operations do not alter status and access properties of their components, as a

component version could be included in other frozen or published assemblies as well. We
use a design situation from our “ongoing” Cyclotron facility design example to illustrate the
publish-assembly and freeze-assembly operators. To better meet the client’s require-
ments, the architect independently rearranged the initial layout of the facility that was pre-

viously presented in Figure 5.1. Figure 5.12 shows this modified floor plan. This floor plan

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 166

is represented by assembly aa-il which is generated from the initial layout, assembly aa-i0.
Figure 5.13 gives the component hierarchy for assembly aa-il. In assembly aa-i0, the facil-
ity’s exterior walls are represented by instances belonging to version b-1 of the Box entity.
In assembly aa-il, however, these BoX instances now belong to version b-1a3. From Figure
5.5 (Section 5.2.2), note that version b-1a3 is a descendant of version b-1 and is currently in
the active state. Realizing possible effects of this layout change on other designers, the ar-
chitect invokes a publish-assembly operator to provide others access to the new assembly
aa-il. However, the assembly model requires that an assembly definition must be frozen or
archived before it can be published. The architect therefore executes a freeze-assembly
operation on assembly aa-il. As included BOX version b-1a3 is active, it cannot be assigned

> causing the entire freeze-assembly operation on assembly aa-il

a status value, “freeze,
to fail. The architect overcomes this failed attempt by declaring version b-la3 and then
re-executing the freeze-assembly operator. A subsequent publish-assembly operation

makes the new facility design, aa-il, accessible to the entire design team.

5.3.3 Assembly Change Management

We manage changes among assemblies along both the composition and evolution links.
Along a composition relationship, we instantiate the description of an assembly as the result
of a composite modeling operation on its components. We implement a display-assembly
operator that generates an assembly component hierarchy, and recursively aggregates the
composite modeling operations on materialized descriptions of its included instances to
describe the original assembly. Figure 5.14 shows an example shear wall-framing system
(assembly sa-f0) designed by the structural engineer for the initial architectural floor plan
(Figure 5.1).

Along an evolution relationship, we characterize changes between an ancestor-descendant
pair of assemblies by recursively aggregating the computed changes between corresponding
pairs of instances that are included in both assemblies. The current prototype has im-
plemented this procedure using a characterize-assembly-deltas operator. Using this
opérator, a structural engineer, in our example, can easily determine the changes between a
newly published architectural layout, aa-i1, and a previously published layout, aa-i0, that
she is currently referencing. The effect of determining the changes between these two pub-
lished layouts is equivalent is similar to an asynchronous communication of the net design

changes by the architect to the structural engineer. In this model, however, the structural

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 167

engineer has access to the entire set of computed changes, and is left with the responsibility

of identifying the smaller subset of changes that impact her framing system.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 168

Algorithm 37 (freeze-assembly)

Input: d: Name of the concerned discipline.

v: Identifier of a defined assembly that is being assigned a status property value,
“freeze.”

Output: success: Boolean indicator of a successful operation.

procedure freeze-assembly = (discipline d, idassembly &) boolean success:
begin component c, entity e, idversion V;
success := FALSE;
¢ := first-component(a);
while (¢ # nil) do
if (type(c) = “primitive”) begin
e := inc-entity(c);
v := inc-version(c);
success := freeze(e, v);
else
a := inc-assembly(c);
success := freeze-assembly(d, a);
end;
end;
if (success) begin
state-assembly(d, a) := frozen;
end;
end procedure

<&

Figure 5.9: Procedure to freeze a Defined Assembly in a Particular Discipline

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT

Algorithm 38 (publish-assembly)

Input: d: Name of the concerned discipline.

a: Identifiers of the frozen or archived assembly being published.

Qutput: success: Boolean indicator of a successful operation.

procedure publish-assembly = (discipline d, idassembly @) boolean success:

begin component c, entity e, idyersion V;
success := FALSE;
¢ := first-component(a);
while (¢ # nil) do
if (type(c) = “primitive”) begin
e := inc-entity(c);
v := inc-version(c);
success := publish(e, v);
else
a := inc-assembly(c);
success := publish-assembly(d, a);
end;
end;
if (success) begin
if (state-assembly(d, a) = frozen) begin
state-assembly(d, a) := published;
end;
if (state-assembly(d, a) = archived) begin
state-assembly(d, a) := persistent;
end;
end;
end procedure

<

Figure 5.10: Procedure to publish a Frozen or Archived Assembly

169

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT

Algorithm 39 (archive-assembly)

Input: d: Name of the concerned discipline.

a: Identifier of a frozen or published assembly being archived.
Output: success: Boolean indicator of a successful operation.

procedure archive-assembly = (discipline d, idassembly @) boolean success:
begin component c, entity e, idversion V;
success ;= FALSE;
¢ := first-component(a);
while (¢ # nil) do
if (type(c) = “primitive”) begin
e := inc-entity(c);
v := inc-version(c);
success := archive(e, v);
else
a := inc-assembly(c);
success := archive-assembly(d, a);
end;
end;
if (success) begin
if (state-assembly(d, a) = frozen) begin
state-assembly(d, a) := archived;
end;
if (state-assembly(d, a) = published) begin
state-assembly(d, a) := persistent;
end;
end;
end procedure

<

Figure 5.11: Procedure to archive a Frozen or Published Assembly

1

{

0

CHAPTER 5.

Figure 5.13: Component Hierarchy of New Architectural Layout (Assembly aa-il)

CHANGE MANAGEMENT IN A CAD ENVIRONMENT

Figure 5.12: New Floor Plan of the Facility (Assembly aa-i1)

(Arch aa-il)
Architectural Floor Plan
union

T N

(Arch aa-e0) (Arch aa-t0) Arch aa-tQ
Exterior Wall Assembly Interior Wall Adjacent Spaces
union Assembly

T

(Arch aa-a0) (Arch aa-c0) (Arch aa-d0)
Wall assembly 1 Wall assembly 2 Wall assembly 3
subtract subtract subtract

N

. (Arch aa-b0)
(Box\galj?sig%&f}? %86+06) Window Assembly 2

union

(Box b-0a3 3.03193¢+06)
(Box b-0a3 3.10185¢+06) Window Entity 6
Window Entity 4\ 043 3 13604e+06)

Window Entity 5

1

{

1

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 172

Figure 5.14: Current Structural System (Assembly sa-f0) Based on Initial Floor Plan

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 173

5.4 Configuration Model

In this section, we first discuss a scheme to implement the configuration model in a CAD
paradigm. Two types of relationships are considered, composition and evolution. A compo-
sition relationship establishes the individual designs from the participating disciplines that
compose the project description; an evolution relationship establishes the link between a
configuration and its parent from which the configuration has been generated. In addition,

we specify access and status properties for configurations which simulate collaborative en-

vironments. Secondly, we describe operators that manage changes among project designs.
The close coupling of versions, assemblies, and configurations allows us to describe changes
between project designs in terms of changes between their component assemblies (and in

turn their included versions) from each of the participating disciplines.

5.4.1 Representation Scheme

We propose a scheme to represent both the composition and evolution relationships among
configurations. This scheme also describes the property values for configurations belonging
to that discipline. We maintain configurations created in a discipline, D, as a list, D-
CONFIGURATION. A particular configuration, in this discipline, is represented by a list that
is uniquely identified by a system-generated attribute, Config-id. Composition relationships
are established by associating with each configuration a set of its component total assem-
blies, Components. On the other hand, evolution relationships identify an earlier project

description from which the current configuration has been generated. Such links are stored

in a Parent-id attribute. The configuration scheme also maintain the assigned status and
access property values in attributes Fr-status and Pub-status, respectively. We now present

a definition of the D-CONFIGURATION list:

((Config-id Value)
((Components Value)(;|;=1, a4
(Parent-id Value)
(Fr-status Value)
(Pub-status Value)))((1=1,g}

which maintains g configurations in a discipline D. The other specified attributes are:

CHAPTER 5.

Table 5.4: Example Configurations Created by a Structural Engineer

CHANGE MANAGEMENT IN A CAD ENVIRONMENT

Config Arch. Struct. Hvac Parent
Assembly | Assembly | Assembly
sc-1 aa-i0 sa-f0 ha-a0 “Null”
sc-2 aa-il sa-f0 ha-a0 sc-1

174

o Config-id: System generated identifier that uniquely identifies a configuration created

by a designer from discipline D.

e Components: Set of component total assemblies, one from each of the d participating

disciplines.

e Parent-id: Identifier of any parent configuration from which the current configuration
has been generated. In situations where the configuration was defined indepen-

dently, this attribute is assigned a “Null” value.

o Fr-status: Indicator of the status property value of a configuration. Possible values

are “y”(“freeze”), “a” (“archive”), and “n” (“not freeze”).

e Pub-status: Indicator of the access property value of a configuration. Possible values
are “y”(“publish”), and “n” (“not publish”).

Table 5.4 shows two configurations created by a structural engineer of our example
facility design scenario. In this example, configuration sc-1 is defined in terms of an
architectural layout (assembly aa-i0), a structural framing system (assembly sa-f0) and a
mechanical ducting system (assembly ha-a0). Also, configuration sc-2 is generated as a
descendant of configuration, sc-1. The architectural layout aa-i0 in configuration sc-1 is

replaced in configuration sc-2 by its descendant assembly, aa-il.

5.4.2 Support for Project Change Management

We manage changes among configurations along both the composition and evolution links.
Along a composition relationship, we instantiate a configuration description in terms of its
components. The current prototype has implemented this functionality as display-con-

figuration operator that invokes display-assembly operators to describe designs from

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 175

Figure 5.15: Intermediate Configuration sc-2 to Validate Current Structural System Against
New Floor Plan

the participating disciplines. Figure 5.15 shows the example intermediate configuration sc-
2 of our Cyclotron facility design example as inconsistent. On the other hand, along an
evolution relationship, we determine the changes between two configurations, where one is
an ancestor of the other. These changes are represented in terms of changes between corre-
sponding pairs of component designs from the same discipline. We implement a characte-
rize-config-deltas operator that executes characterize-assembly-deltas operations
to compute the changes between each pair of component assemblies from the participating
disciplines. As mentioned in Section 4.1.6, a characterize-assembly-deltas operator in
turn determines the differences between two design descriptions in terms of the computed
changes between each corresponding pair of instances included in the two assemblies. The
characterize-config-deltas operation enables a project leader to monitor the overall
progress of a project, both efficiently and accurately. Since the computation of the project
changes is in terms of changes between individual designs, the project leader can further

determine the relative progress of the design process in the different participating disciplines.

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 176

5.5 Summary and Conclusions

In this chapter, we have presented the three-layered data management model of versions,
assemblies, and configurations in a CAD environment. We have implemented the scheme
in a AUTOCAD environment, and have validated the change management capabilities of
the model using a real though simplified design example. The purpose is to demonstrate
that our model is comprehensive in that it can handle the independent evolution of various
kinds of data found in design situations.

We believe that design data is mostly of three types: (i) alpha-numeric (such as en-
gineering properties of design entities), (ii) graphical (such as the geometry and spatial
arrangements of the design entities), and (iii) textual (such as design specifications and
progress reports). This situation is further complicated as the various kinds of data re-
side in different environments. While alpha-numeric data is typically stored in traditional
databases (network, relational or object-oriented), graphical objects are primarily stored in
CAD environments. Textual data is usually unstructured and can be found in ASCII files,
which may be linked to word processing applications.

A number of research efforts have attempted to model spatial relationships in a relational
environment [29]. However, there is a mismatch between the more formal structure of
relational schemes and the flexibility required for manipulating CAD drawings, making
these modeling efforts cumbersome and computational intensive. The proliferation of CAD
systems in recent years motivates the management of evolving CAD drawings.

As mentioned in Chapter 1, a number of schemes have been developed to version text files
in software engineering environments. Similarly, schemes have been proposed for evolving
alpha-numeric data in the form of design attribute values. However, we have not encoun-
tered any scheme that manages evolving design drawings within the CAD environments in
which they are situated.

Through this chapter, we have established that the proposed data management model
supports 3-D CAD objects, just as it handles relational tuples. With this validation, we
assert that the model provides a comprehensive solution for project data management.
Furthermore, we have implemented the model in a CAD environment, proving that our
theoretical three-layered framework of versions, assemblies and configurations is indepen-
dent of the underlying data model by which the design entities are expressed.

The schemes, developed in this chapter, to represent the three-layered data management

CHAPTER 5. CHANGE MANAGEMENT IN A CAD ENVIRONMENT 177

model in the CAD environment closely parallel the schemes proposed earlier (Chapters 3
and 4) for the relational environment. An important exception is the scheme to represent
assemblies. Most CAD systems provide assemblies as a framework to compose simpler ge-
ometric objects into more complex forms. These systems are flexible in allowing composite
entities to be described without previously specifying relationships among their compo-
nent instances. However, commercial CAD systems neither provide efficient version control
mechanisms for primitive entities nor do they capture temporal information for composite
entities. Versions, in our prototype, maintain evolving descriptions of the primitive graph-
ical entities such as the BoX entity. We use the standard composite modeling operations,
union, intersect, and subtract to form complex entities in terms of their components. Im-
portantly, however, our assembly truly adds a time dimension (or more precisely, a design
history) to CAD drawings by representing assemblies in terms of component instances that
belong to different versions. Finally, configurations aggregate total assemblies from each
discipline to describe an overall project. Though the current implementation is centralized,
we simulate a distributed environment using layers provided by AUTOCAD, and a perspec
operator to switch focus among them. Note that the model itself is independent of the ar-
chitecture of its computer implementation, and can be easily implemented in a distributed
paradigm.

Finally, we show the change management capabilities of our model as applied to a simple
design example. We apply the concept of equivalent operations to store, detect, and manage
changes among versions in an entity derivation hierarchy. The close coupling of the three
layers of the model allows us to characterize changes along the composition and evolution
relationships at the assembly, as well as configuration levels. In this chapter, we outline

" procedures to implement this capabilities in a CAD system. Through a scripted example
on a Medical Cyclotron facility example, we illustrate how these concepts can be applied

for coordinating and monitoring activities in typical design projects.

Chapter 6

Summary and Conclusions

In this thesis, we have developed a data management model for collaborative design environ-
ments. More specifically, we address the storing and managing of changes among designers
in a multidisciplinary project. The model has three salient features. First, we propose a
three-layered model of versions, assemblies, and configurations. Versions maintain evolving
descriptions of primitive entities within a single discipline. Assemblies integrate component
instances to describe more complex entities, as well as designs within individual designs.
Configurations provide a framework to represent an overall project design which is com-
posed of designs from the participating disciplines. Second, we introduce the concept of an
equivalent operation for a valid sequence of changes that is a single data operation which
results in the same final description of the instance as the original sequence of changes.
We prove that a valid sequence of changes can be summarized into at most one equivalent
operation which is also valid. Further, we can uniquely determine this equivalent operation
from just the first and last elements in the original sequence. Third, we apply equivalent
operations to the three-layered framework. Equivalent operations form the theoretical basis
for storing, detecting, and managing changes on versions of an entity. The close coupling
of the version, assembly, and configuration layers enables the computed version changes
to be combined for characterizing changes at the assembly and configuration levels. Using
these three concepts, the model efficiently supports project coordination through the
asynchronous communication of changes among designers, as well as project monitoring

through systematic tracking of evolving project descriptions.

178

CHAPTER 6. SUMMARY AND CONCLUSIONS 179

6.1 Model as a Comprehensive Data Management Solution

We assert that the proposed model is a comprehensive solution for project data manage-
ment. We base this belief on our understanding of collaborative design environments. Two
fundamental premises are crucial to our discussion.

Firstly, in multidisciplinary projects, designers work independently on various aspects of
the project, while sharing information as necessary for coordination. The four basic version
states, active, suspended, declared, and removed, are sufficient to support the design process
in an individual discipline. Branching in a particular version hierarchy allows designers to
maintain several solution alternatives. By activating suspended versions, the designer can
switch focus among the various alternatives, independently developing them in parallel.

Assemblies provide a mechanism to aggregate instances in component versions to de-
scribe more complex entities (partial assemblies), as well as complete designs in an individual

discipline (total assemblies). We provide access and status properties for assemblies to pro-

mote cooperation on a project. By publishing a total assembly, a designer shares the
design description with other consultants, both within and outside of the design team. Im-
portantly, the designer retains control over the information being shared. This is critical in
professional design environments where despite their cooperative spirit, designers typically
insist on controlling the information they provide others. Their need for autonomy arises
from a number of factors. For one, designers from different disciplines are often affiliated
with different organizations (or different departments within the same organization). They
also maintain a varied agenda on the project according to their professional training and
responsibilities. In our framework, the close coupling of the assembly and version models
requires that the properties of an assembly definition are shared by each of its component
versions.

Configurations provide a framework for designers to manage the shared information.
Formally, a configuration describes a multidisciplinary project design as an aggregation of
design descriptions from each of the participating disciplines. We provide basic status and
access properties for configurations which simulate environments that facilitate coopera-
tion. Based on its particular properties, we classify a configuration definition into one of
four states. Using an intermediate configuration, ‘a designer can privately evaluate his/her
design with respect to the entire project. Accessible configurations simulate meeting sce-

narios in which each designer brings his/her design to the table, allowing the entire team

CHAPTER 6. SUMMARY AND CONCLUSIONS 180

to collectively evaluate the design progress. Landmark configurations represent project de-
scriptions that are maintained for extended periods and are accessible to members both
within and outside the design team. These include (i) team records checkpointing project
descriptions at the end of specific design phases, (ii) project designs submitted to regu-
latory agencies for construction approval, and (iii) documents released to contractors for
bidding purposes. Finally, recorded configurations allow designers to maintain, for personal
references, alternative designs that were not selected for the current project.

Our second premise about multidisciplinary design projects is that engineering design
data is basically of three types: (i) alpha-numeric (such as engineering properties of design
entities), (ii) graphical (such as the geometry and spatial arrangements of design entities),
and (iil) textual (such as design specifications and progress reports). Moreover, we realize
that the different types of data reside in disparate environments. For example, alpha-
numeric design data is typically stored in traditional databases (network, relational, or
object-oriented), while graphical objects are primarily stored in CAD environments. Textual
data is usually unstructured and can be found in ASCII files which may be linked to word
processing applications.

By implementing the data management model in a relational, as well as a CAD envi-
ronment, we establish that the model is independent of the underlying data model used for
representing the design description. This reasserts that the proposed model is a compre-
hensive solution for multidisciplinary design projects. Importantly, the implementation of
the model avails the specific features of that environment.

A case in point is the implementation of the assembly model in the CAD environment.
CAD systems traditionally use assemblies for recursively composing complex geometric
forms from simpler components. The implementation of our model in the CAD environ-
ments uses this flexibility to extend the relational implementation of assemblies in two
ways. Firstly, in the CAD environment, an individual component of an assembly can be an
instance of either another complex entity or a primitive entity. While the former is repre-
sented by an assembly, the latter is an instance contained in a specific version in an entity
derivation hierarchy. We recursively expand an assembly definition to develop a component
hierarchy. The root of such a hierarchy is the original assembly, while leaf nodes corre-
spond to primitive instances included in the assembly definition. Specifically, an instance
of a primitive entity is said to be included in an assembly if it is either a component of

that assembly definition, or is included in one of its components. We denote versions that

CHAPTER 6. SUMMARY AND CONCLUSIONS 181

contain primitive instances included in an assembly definition as included versions.

The second distinction between relational and CAD implementations of assemblies is
that, in addition to the union composite modeling operator, the CAD prototype provides
intersect and subtract operators which are supported by AUTOCAD’s Advanced Modeling
Extension (AME). These two extensions were feasible because in a CAD environment, an
entity scheme is less formally defined than the relational data model; we need not specify
a new entity scheme (create a new relation) for each distinct complex entity formed by a

new composite modeling operation.

6.2 Limitations and Future Work

As mentioned in Section 1.2, we have classified design data management problems into three
basic categories: (i) information transfer, (ii) understanding design intent, and (iii) storage
requirements. This research has primarily addressed issues in storing evolving project design
data. Extensions to the model must also maintain the underlying rationale that guide the
design process. This research partially addresses the transfer of design information through
the asynchronous communication of detected design changes. For realistic scenarios, we
must integrate this asynchronous scheme with more robust synchronous communication
methodologies that support greater interaction in tightly-coupled design situations. Future
efforts must incorporate mechanisms that address the following issues: (i) capturing and dis-
seminating design intent, (ii) detecting inconsistencies that potentially arise due to specific
design changes, and (iii) identifying and notifying the impacted design team members.

In the more limited context of generalizing the present framework, future efforts should
be directed towards improving the computational efficiency of the proposed algorithms,
expanding the scope of the implementation, and validating the scalability of the model

using more involved design examples. We describe each of these research directions.

1. Generalizing change control algorithms: Some of the procedures presented in this
thesis apply to fairly specific situations. Such procedures can be generalized to make
them more applicable in a wider variety of design situations. A specific example is
the characterize-assembly-deltas procedure. While determining the net changes
between an ancestor-descendant pair of assemblies, the current procedure assumes
that the component hierarchies of the two assemblies have the same structure. Future

implementations can incorporate more general algorithms that relax this requirement.

CHAPTER 6. SUMMARY AND CONCLUSIONS 182

2. Improving the computational efficiency of the change control operations: The current
implementations are computationally inefficient as they do not avail mechanisms, such
as indexing strategies, to improve their performance. As mentioned earlier, the cur-
rent implementations primarily serve to validate the proposed concepts. The change
control algorithms given in this thesis must be revisited, incorporating schemes that
increase their efficiency. While relational systems provide indexing schemes, current
CAD systems deal mostly with ASCII pile files. We hope that this work coupled with
the proliferation of CAD systems in design environments motivates CAD vendors to
address this limitation. Also, the change detection procedures which are currently
built on top of a CAD system must be incorporated within CAD environments. This

is essential for realistic implementations of our concepts in large scale projects.

3. Implementing the model in distributed environments: One of our basic premises is
that designers typically work independently, while sharing information necessary for
collaboration. This premise is truly realized in distributed environments. Our current
CAD implementation though centralized simulates distributed situations using layers
that are provided in the AUTOCAD environment. A future project would involve
truly distributing the implementation across several hardware and software options

and supporting this networked environment.

4. Validating the scalability of the model: An obvious next step is to test this model for
more complex design environments till it is stable in real-world projects. Such an effort
is unrealistic in an academic research project, but is essential for the acceptability of

the proposed model.

In summary, we believe this thesis is exploratory in nature, outlining a comprehensive
data management model that manages project changes both across disciplines and through
various levels of detail. Further, we have developed implementations in both relational and

CAD environments to demonstrate its potential application in real project scenarios.

Bibliography

[1] Report from The 1984 Workshop on Advanced Technology for Building Design and
FEngineering. National Academy Press, Washington D.C., 1984.

[2] Report from The 1985 Workshop on Advanced Technology for Building Design and
Engineering. National Academy Press, Washington D.C., 1985.

[3] Report from The 1986 Workshop on Advanced Technology for Building Design and
Engineering. National Academy Press, Washington D.C., 1986.

[4] R. Agrawal and H. V. Jagdish. On Correctly Configuring Versioned Objects. In
Proceedings of the Fifteenth International Conference on Very Large Data Bases, pages

367-374, Amsterdam, Netherlands, 1989.

[5] V. Ambriola, L. Bendix, and P. Ciancarini. The Evolution of Configuration Manage-
ment and Version Control. Software Engineering Journal, pages 303-310, 1990.

[6] N. Belkhatir and J. Estublier. Experiences with a database of programs. ACM SIG-
PLAN Notices, 22(1):84-91, 1987.

[7] W. Cellary and G. Jomier. Consistency of Versions in Object Oriented Databases. In
Proceedings of the Sizteenth International Conference on Very Large Data Bases, pages

432-441, Brisbane, Australia, 1990.

[8] H. Chou and W. Kim. A Unifying Framework for Version Control in a CAD Envi-
ronment. In Proceedings of the Twelfth International Conference on Very Large Data

Bases, pages 336—-346, Kyoto, Japan, 1986.

[9] S. I. Feldman. Make - A Program for Maintaining Computer Programs. Software
Practice and Fzperience, 9:255-265, 1979.

183

BIBLIOGRAPHY 184

[10] S. J. Fenves et al. An Integrated Software Engineering Environment for Building Design
and Construction. In Proceedings of the Fifth ASCE Computing in Civil Engineering
Conference, pages 21-32, Alexandria, VA, 1988.

[11] B.J. Gray et al. Establishing Requirements for Data Management Control Applications
to Achieve a Successful System Implementation and Configuration. Proceedings, 1989
ASME International Computers in Engineering Conference and Ezposition, pages 1-9,
1989.

[12] A. N. Habermann and D. Notkin. Gandalf software development environments. IEEE
Transactions on Software Engineering, 12:1117-1127, 1986.

[13] K. Hall. A Framework for Change Management in a Design Database. Thesis STAN-
(CS-91-1379, Department of Computer Science, Stanford University, 1991.

[14] H. C. Howard et al. Versions, Configurations, and Constraints in CEDB. Working
Paper 031, Center for Integrated Facility Engineering, Stanford University, 1994.

[15] H. C. Howard and D. R. Rehak. KADBASE: Interfacing Expert Systems with
Databases. IEEFE Ezpert, 4(3):65-76, 1989.

[16] J. W. Hunt and M. D Mcllroy. An Algorithm for Differential File Comparison. Com-
puting Science Technical Report 41, Bell Laboratories, 1976.

[17] R. H. Johnson. Engineering Data Management - What’s Needed and Expected for the
1990’s. Proceedings, 1989 ASME International Computers in Engineering Conference
and Ezposition, pages 17-22, 1989.

[18] R. H. Katz. Toward a Unifying Framework for Version Modeling in Engineering
Databases. ACM Computing Surveys, 22(4):374-408, 1990.

[19] R. H. Katz et al. Version Modeling Concepts for Computer-Aided Design Databases.
In Proceedings of the ACM SIGMOD Conference, pages 379-386, Washington D.C.,
1986.

[20] R. H. Katz et al. Design Version Management. IEEE Design and Test, 4(1):12-22,
1987.

BIBLIOGRAPHY 185

[21] A. M. Keller and J. D. Ullman. A Version Numbering Scheme with a Useful Lexi-
cographical Order. In Proceedings of the IEFFE Data Fngineering Conference, pages
240-248, Taipei, Taiwan, 1995.

[22] A.M. Keller. Algorithms for Translating View Updates to Database Updates for Views
Involving Selections, Projections, and Joins. In Proceedings of the Fourth ACM Sigact-
Sigmod PODS Symposium, pages 154-163, Portland, Oregon, 1985.

[23] M. V. Ketabchi and V. Berzins. Modeling and Managing CAD Databases. I[EEE
Computer, 20(2):93-102, 1987.

[24] T. Khedro, M. R. Genesereth, and P. M. Teicholz. Agent-Based Framework for Inte-
grated Facility Engineering. Engineering with Computers, 9:94-107, 1993.

[25] P. Klahold, G. Schlageter, and W. Wilkes. A General Model for Version Management
in Databases. In Proceedings, Twelfth International Conference on Very Large Data

Bases, pages 319-327, Kyoto, Japan, 1986.

[26] K. Krishnamurthy and R. Fruchter. Feedback on Observation of Communication among
Design Consultants in Systemix Project. Working Paper 21, Center for Integrated
Facility Eengineering, Stanford University, 1992.

[27] K. Krishnamurthy and K. H. Law. Configuration Management in a CAD Paradigm.
In Proceedings of the International Mechanical Engineering Congress and Ezposition,
pages 103-116, San Francisco, CA, 1995. ASME.

[28] G. S. Landis. Design Evolution and History in an Object Oriented CAD/CAM
Database. In 31st COMPCON Conference, pages 297-305, San Francisco, CA, 1986.

[29] K. H. Law and M. K. Jouaneh. Data Modeling for Building Design. In Proceedings of
the Fourth ASCE Computing in Civil Engineering Conference, pages 21-36, Boston,
MA, 1986.

[30] D. B. Leblang and R. P. Chase. Parallel software configuration management in a

network environment. IEEFE Software, pages 28-35, 1987.

[31] F. Londono et al. A Blackboard Scheme for Cooperative Problem Solving by Hu-
man Experts. In D. Sriram et al., editors, Computer Aided Cooperative Development.

Springer-Verlag, 1991.

BIBLIOGRAPHY 186

[32] R. A. Lorie and W. Plouffe. Complex Objects and their Use in Design Transactions.
In Proceedings of the ACM Design for Engineering Applications Database Week, pages
115-121, San Jose, CA, 1983.

[33] R. Morenc and R. Rangan. Information Management to Support Concurrent Engi-
neering Environments. In Proceedings of the 1992 ASME International Computers in

Engineering Conference and Ezposition, pages 135-148, San Francisco, CA, 1992.

[34] H. Peltonen et al. An Engineering Document Management System. In Proceedings of
the ASME Winter Annual Meeting, New Orleans, LA, 1993.

[35] B. Prasad et al. Information management for concurrent engineering: Research issues.

Concurrent Engineering: Research and Applications, 1:3-20, 1993.

[36] M. Rochkind. The Source Code Control System. IEEE Transactions on Software
Engineering, SE-1(4):364-370, 1975.

[37] D. Spooner and M. Hardwick. Using Persistent Object Technology to Support Concur-
rent Engineering Systems. In P. Gu and A. Kusiak, editors, Concurrent Engineering:
Methodology and Applications, pages 205-234. Elsevier Science Publishers B.V., 1993.

[38] D. Sriram. Computer Aided Collaborative Product Development. Research Report
R91-14, Intelligent Engineering Systems Laboratory, Massachusetts Institute of Tech-
nology, 1991.

[39] P. T. Swinehart et al. A Structural View of the Cedar Programming Language. ACM
Transactions on Programming Languages and Systems, 8(4):419-490, 1986.

[40] W. F. Tichy. RCS - A System for Version Control. Software Practice and Ezperience,
15(7):637-645, 1985.

[41] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer Science
Press, Rockville, Maryland, 1989. Vols. 1 and 2.

