A C IFE CENTER FOR INTEGRATED FACILITY ENGINEERING

Integrating AutoCAD with Finite Element Code
to Model Underground Construction

By

Timothy Y. Lai
and

Ronaldo I. Borja

CIFE Technical Report #111
January, 1998

STANFORD UNIVERSITY

Copyright © 1998 by
Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

¢/o CIFE, Civil and Environmental Engineering Dept.,
Stanford University,
Terman Engineering Center
Mail Code: 4020

Stanford, CA 94305-4020

SUMMARY
CIFE TECHNICAL REPORT #111

Title: Integrating AutoCAD with Finite Element Code to Model Underground
Construction

Authors: Timothy Y. Lai, Ronaldo I. Borja (PI)
Publication Date: January, 1998

Funding Sources:
e CIFE Seed Research
e Title of Research Project: Integrating 4D CAD Model with Field Monitoring Program

for Underground Construction

1. Abstract:
The use of AutoCAD to allow easy interaction with a 3D nonlinear finite element

(FE) excavation code DIG-DIRT written by the PI is presented. DIG-DIRT currently has
many advanced features such as the element birth/death option to model the
placement/removal of new/old materials, fluid flow option, consolidation with free-
surface seepage, nonlinear soil behavior, and geometric nonlinearity options. However,
DIG-DIRT has limited input/output capabilities. The current AutoCAD model allows the
user to input the problem, run DIG-DIRT, and view the results (displacement, pore
pressures, stresses/ strains) all from within AutoCAD. The current model also allows the
user to view the output results at different time steps during the excavation sequence.
This is essential since the process of excavation involves sequential removal of earth
materials and installation of new structural members. Enhancing DIG-DIRT, by adding a
user-friendly interface such as AutoCAD, will make the advanced features accessible to
the design and construction community.

2. Subject:
This project links a nonlinear FE excavation code, written in Fortran, with the

graphical software, AutoCAD. Failures in underground construction are not uncommon.
Therefore, an excavation tool that can predict failures is essential. The FE excavation
code (DIG-DIRT) capable of predicting such failures is already in place. A graphical
user interface (GUI) that will facilitate the input and output of information to and from
DIG-DIRT will enhance DIG-DIRT for the purpose of preventing underground
construction failures.

3. Objectives/Benefits:

The objective of this project is to develop a graphical user interface so that the
advanced features of DIG-DIRT will be made accessible to the design and construction
community. The algorithms used in both the FE program and the GUI is now well
established. Therefore, the value added from the project comes directly from the transfer

of technology.

4. Methodology:
The software used to interface DIG-DIRT is AutoCAD. Specifically, the

AutoLISP programming language within AutoCAD together with AutoCAD’s other
macro and customization features were used for the project.

5. Results:
From the project, a graphical user interface was developed for DIG-DIRT that

allows the user to input the problem, run DIG-DIRT, and view the results (displacement,
pore pressures, stresses/ strains) all from within AutoCAD. Software allowing the input
and output of information from DIG-DIRT were created. All AutoLISP files needed to
run the interface were generated. Finally, AutoCAD macro and custom files to
supplement the AutoLISP files were written.

A 3-year long project sponsored by the National Science Foundation has resulted
from this seed grant. The title of the project is: “Finite element analysis of strain
localization in excavations,” Principal Investigator: Ronaldo I. Borja; Project Period: 1
October 1997- 30 September 2000; Sponsoring Program: Geomechanical, Geotechnical
and Geoenvironment Systems (NSF: Civil and Mechanical Systems).

6. Research Status:
All the essential tasks needed to run an underground construction simulation is in

place. There are three main areas for future work. These are:

e Improvements to GUL: The way input and output of information to DIG-DIRT can
still be improved. More output capabilities and a more object oriented input phase
can be put in place.

e Field Monitoring/Performance Feedback: Enhancing DIG-DIRT to incorporate these
features will allow the geotechnical engineer a way to analyze underground
construction more accurately and in real time.

e Use in Classroom Teaching/Research: The newly developed GUI, together with
DIG-DIRT, will be tested in the foundation engineering class of the PI next winter
(1998). Feedback from students will be gathered and incorporated. Using DIG-DIRT
with the GUI in research is ongoing.

Abstract

The use of AutoCAD to allow easy interaction with a 3D nonlinear finite element
(FE) excavation code DIG-DIRT written by the PI is presented. DIG-DIRT currently has
many advanced features such as the element birth/death option to model the
placement/removal of new/old materials, fluid flow option, consolidation with free-
surface seepage, nonlinear soil behavior, and geometric nonlinearity options. However,
DIG-DIRT has limited input/output capabilities. The current AutoCAD model allows the
user to input the problem, run DIG-DIRT, and view the results (displacement, pore
pressures, stresses/ strains) all from within AutoCAD. The current model also allows the
user to view the output results at different time steps during the excavation sequence.
This is essential since the process of excavation involves sequential removal of earth
materials and installation of new structural members. Enhancing DIG-DIRT, by adding a
user-friendly interface such as AutoCAD, will make the advanced features accessible to

the design and construction community.

Acknowledgments

This project was sponsored by a seed project award from the Center For Integrated
Facilities Engineering (CIFE), Stanford University. A 3-year long project sponsored by
the National Science Foundation has resulted from this seed grant. The title of the project
is: “Finite element analysis of strain localization in excavations,” Principal Investigator:
Ronaldo I. Borja; Project Period: 1 October 1997- 30 September 2000; Sponsoring
Program: Geomechanical, Geotechnical and Geoenvironment Systems (NSF: Civil and

Mechanical Systems).

The authors would like to thank CIFE for the use of their computer equipment and
software to make the project possible, and the Civil Engineering Department of Stanford
University for granting access to the Advanced Computing Environment (ACE) Lab at

Stanford University.

ii

Table of Contents

J B3 T Ty o1 L1 Te1 310) 1 OO 1
2. PUrpOSE/ODJECIIVES .. vuetiinintiniii i ettt et et 6
3. Impact/SIgNifiCanceocviviiiiiiiiiis i 6
4. Current State of DIG-DIRTcoiiiiiiiit i i e e 7
O R 1113 PR PRI 7
N 1313 o111 A T 8
5. Methodology/TOOIS ...vuuenenie ittt e et 8
5.1 AUIOCAD oottt e 9
5.1.1. AQVANTAZES 1. uotenit i e 9
5.1, 2. DraWbaCKS .. uetiniiiit ittt e e e e e e 10
5.1.3. Other Programscoouuiiiiiis ciiiiiiii i e 10

5.2, AULOLISP ..o e 11
5.2.1. Main(Isp) Fle ..ceoneniniiiiiin i 12
5.2.2. Layer(Isp) File ..o 13
5.2.3. Dialog(ISp) File .o.ovnine i e 13
5.2.4. Write(.Isp) and Convert(.f) File.. ... 14
5.2.5. Getinfo (ISP) FAIE «...ceceeeeeeeeieieee e e et eeei et neneeaeae e neeeseenens 15
5.2.6. Draworig/Drawdef(.1sp) File.............oooviiiiiiiiiiis 15
5.2.7. Elemnumb(.Isp) File.....ocooeeeves vevenieniieiiiniiiiiiiiiiieiinieneinenenn 17
5.2.8. Drstress/Drstrain(\1sp) File ...ccooc voviviiniiiiiiii 17

5.3. Macro and Custom Features of AutoCAD ... 19
5.3.1.Acad.pgp FIle «.oonnni i e 19
5.3.2. Menu(mnu) File ...ooiiiiiiiiii e e 20
5.3.3. Dialog(.dCl) File ..uovineiniiiii i 21

5.4. Flow Chart of AutoCAD Interfacecooviiiiiiiiiiiiiiiiiiiiiiiii e 22
5.5. Summary of Current State of AutoCAD Interfacecooooviiiiiinnn, 23
6. Simulation of Underground ConstructiOno.cvoieiiiiiiiiiaireieenninieiinnn 23
6.1. Problem DesCriptionovvueriiiiins ciiiiiii e 24
6.2. Graphical OULPULoiiitiitiiiiiits ettt 25

. BULUIE W 0T oo e e e e e s 27

7.1. Improvements t0 GUI ... e 27
7.2. Field Monitoring/Performance Feedbacko, 27
7.3. Use in Classroom Teaching/Researchc.. coviiiiiiiiiiiii, 28
Appendix A: Additional FIgUIesc.oviiiiiiiiiii i e A-1
Appendix B: Sample AutoLISP Filesooooiiiiiiiiiiis e B-1
Appendix C: Sample Fortran Filecooiiiiiiiiiiiii e C-1
Appendix D: Sample AutoCAD Custom Filesc.ooviiiiiiiiiiiiiiiiiiinenns D-1
REfEIeNCES ..oviiiiitii i e E-1

iv

1. Introduction

Construction of multi-story high-rise buildings with several floors of basements
consists of excavating several meters of soil beneath the ground surface. The problem of
underground construction and excavation involves sequential removal of earth materials
and installation of new structural members. Construction of the substructure foundations
generally gives construction contractors the most difficulties. The problem lies in the
prediction of ground movements during the excavation process. Ground movements can
be caused by several factors including, but not limited to, soil condition, ground water
table, and adjacent building surcharges. This process affects not only the project but also
all the surrounding buildings within the project area. Therefore, it is essential to be able
to predict the ground movements and probable failures that may occur. With the
sequential nature of the process, the geotechnical engineer must be able to design the

braces, struts, and soil/rock anchors that must be used as the excavation proceeds.

The need for a system that allows the geotechnical engineer to analyze a given
condition and formulate sound, real-time engineering decisions cannot be overstated. A
properly analyzed and designed bracing system is a prerequisite for a successful
construction and completion of a project. However, if improper calculations are
performed, failure could occur, which could result in delays or even cancellation of the
construction project. Figure 1 shows an active mode failure on the sidewalk that resulted
from the construction of a 30-story high rise office building, called Chatham House, in
the financial district of Manila, Philippines. The bracing system included standard steel I-
beams braced against the core of the building, which was supplemented with rock
anchors holding back the soldier piles. The real cause of failure was not determined but it
was suspected that the rock anchors failed, leaving the standard bracing system to support
the soil on its own. Luckily, the failure was not catastrophic and the standard bracing
system was able to prevent total collapse (see Figs. 2 and 3). Construction of the project
has been continued to completion (see Fig. 4). If the engineer had a calibrated

numerical model, he/she could have performed “what if” scenarios as each layer of soil is

lure as seen from street level,

Active mode fai

.

1

igure

F

Figure 3. I-beams buckle but able to hold.

Figure 4. 30-story “Chatham Building”

removed, which could have prevented this failure from occurring. However, engineers
normally have to rely on the overdesign/factor of safety of the braces and anchors and
“observational approaches” for most underground construction. Savings on bracings and
peace of mind on the design of the bracing system can easily be realized with a proper

analysis tool in place.

As the previous case history has shown, the need for a soil-structure interaction
computer model with excavation is needed. The PI has already developed such a program
called DIG-DIRT. Its current capabilities include the element birth/death option to model
the placement/removal of new/old materials, fluid flow option, consolidation with free-
surface seepage, nonlinear soil behavior, and geometric nonlinearity options [10,11].
However, DIG-DIRT currently has limited input/output capabilities. Therefore, an
interface capable of bringing the features of DIG-DIRT to the construction and design

industry is essential.

The main software used in this project is AutoCAD [1,2,5]. Specifically, the
AutoLISP programming language within AutoCAD is the main tool used to develop the
interface. AutoCAD has numerous macro and custom features already developed
through the years to supplement the creation of the interface [3,6]. DIG-DIRT and
AutoCAD have now been linked in the computers of the Advanced Computing
Environment (ACE) Lab at Stanford University. Both DIG-DIRT and AutoCAD now
runs on a Windows-based Pentium Personal Computer. It is also available to run more
complex problems on the Unix based Silicon Graphics Inc. (SGI's) in the Center for
Integrated Facilities Engineering (CIFE) building at Stanford University. The current
AutoCAD model allows the user to input the problem, run DIG-DIRT, and view the
results (displacement, stresses, strains) all from within AutoCAD. A simulated
excavation will be shown to highlight graphically the current capabilities of DIG-DIRT
and the AutoCAD interface. For future work, topics include: (1) improving the
capabilities of the interface with respect to its input and output capabilities, (2)
incorporating field monitoring and performance feedback, and (3) testing DIG-DIRT

with the interface in classroom and research settings.

2. Purpose/ Obijectives

The purpose of this project is to develop an interface that allows the engineer to
use the powerful features of DIG-DIRT. This transfer of technology gives the
geotechnical engineer a tool to design the proper bracing system and to plan the sequence
of construction. With the graphical interface available in real time, the geotechnical
engineer will be able to see the deformations in the soil, and compute stress or strain
concentrations and any areas that could cause potential failure. By viewing these results
in a timely fashion, the engineer will be able to prevent failure through modification of
the design and sequence of construction. The engineer can redesign the bracings or add
the bracings sooner to prevent the possible failure that he/she “foresaw” while running

the program in real time.

3. Impact/Significance

The main impact of this project lies in the transfer of technology. The main tool
used is the AutoCAD AutoLISP language. This language has been in use since the early
versions of AutoCAD. The value added from this project lies in the easier usage of DIG-
DIRT. People who are unfamiliar with DIG-DIRT will now be able to take advantage of
its features. Specifically, geotechnical and construction engineers will be able to take
both programs, AutoCAD and DIG-DIRT, and run a simulated excavation sequence
without having to know the inner workings of either program. This will then help
prevent geotechnical failures such as shown previously. Another benefit from the project
is having a visualization tool for design and analysis. Finally, it will also benefit the
educational sector in classroom teaching and as a research tool. Students and researchers
alike will be able to “see” the results and process information more efficiently. Students
in a foundation engineering class will be able to view the deformations going on during
an excavation instead of just viewing numbers. Researchers, on the other hand, will be

able to show more effectively the failures or effects due to strain localization.

4. Current State of DIG-DIRT

DIG-DIRT is a nonlinear FE code written in FORTRAN. It has a number of
advanced computational features that allow simulation of actual construction process.
However, it lacks a powerful integration and user interface tool that facilitate easy input
and output of data. Currently, DIG-DIRT reads in the geometry, soil properties, and
other problem-related data from an input text file created by the user. It then analyses the
problem and outputs the deformation, stresses, strains and other data in output text files

(see Fig. 5).

INPUT DATA 5 OUTPUT TEXT
TEXT FILE E:> DIG-DIRT E> FILES

Figure 5. Flow chart of current state of input/output to DIG-DIRT.

4.1. Input

The current version of DIG-DIRT includes a help manual, which the user can use to
create the input text file. A sample input file is shown in the appendix. A page of the help
manual used to create the first two lines of the input text file is also included in the
appendix. While it is not too difficult for a user familiar with DIG-DIRT to reproduce an
input file, creating it is not convenient. Problems and inconveniences encountered with

creating an input file include:

e Input file created by text editor outside of AutoCAD.
e Restrictive formats.
¢ Sequential input of information.

® No graphical way to check input mesh.

4.2. Output

The outputs from DIG-DIRT are also text files. Unlike the input files, there is no manual
that guides the user. The user would have to be familiar with the code itself to know
what are the output files generated and what information is contained in them. A partial
sample of an output file on nodal deformed coordinates is shown in the appendix.

Additional problems/inconveniences include:

e Deciphering text-based information is a slow process.
e No graphical results to view.

e Other software needed to view output files.

5. Methodology/Tools

This section deals with the bulk of the work in interfacing DIG-DIRT to make it
more user friendly. The problems just highlighted has created the need to produce an
interface that will create the input file automatically. Also, the interface must be able to
read the output files and present it in a graphical setting. The flow chart for the input and
output of information to and from DIG-DIRT (Fig. 6) shows that the user has no direct
contact with DIG-DIRT and can treat it as a “black box™ analysis tool. The user will then

just have to master the interface.

USER-FRIENDLY
INTERFACE

USER-FRIENDLY
INTERFACE

USER ,
DIG-DIRT

Figure 6. Flow Chart of input/output to DIG-DIRT with interface.
8

OUTPUT
TEXT FILES

INPUT DATA
TEXT FILE

The software used to accomplish this user-friendly interface is AutoCAD. Within
AutoCAD, the programming language used is AutoLISP. To take full advantage of
AutoCAD, macro and custom features already developed and included in AutoCAD will
be used to supplement AutoLISP. A more detailed flow of the AutoCAD interface and a
summary of its current state and all the available features will be dealt with in the

following sections.

5.1. AutoCAD

AutoCAD has many advantages and disadvantages. Both pros and cons will be
discussed in the following sections. Also, other potential softwares that could have been
used will be discussed. The discussion using other softwares is by no means complete
because there are plenty of other softwares around that could have been used. However, a

comparison with a few softwares is included for completeness.

5.1.1. Advantages

An obvious advantage in using AutoCAD is its graphics capabilities and its wide
use in the design and construction industry. It has many built-in functions to draw and
manipulate graphic objects [4]. Because they are already included, a developer or user
can simply use the built-in functions without developing them from scratch. Examples of
these functions include the line, shade, and 3d-mesh commands which were used for this
project. Since most users need additional functions for their personal use, it also supports
several different compiled programming languages. This allows a developer or user to
create custom powerful commands and scripts. AutoCAD can “read” the compiled
languages of the programming languages AutoLISP, C, and C++. After these
programming languages are compiled, they become AutoLISP, ADS, and ARX files,
respectively. Once loaded into AutoCAD, the user can immediately use the custom

command that he/she developed.

Another reason for using AutoCAD is the support from CIFE. CIFE is an
organization which gets its funding from outside companies in industry. One of its
members is AutoDESK which produces the AutoCAD software. CIFE awarded a 1 year
grant to fund the production of a graphical user interface (GUI) to support DIG-DIRT.
The title of the grant awarded was “Integrating 4D CAD model with field monitoring
program for underground construction.” Because of the grant, a copy of AutoCAD
version 13 for the PC was available for use and installed in the ACE laboratory. Also,
access to use the more powerful SGI workstations to handle more complex problems was

granted.

5.1.2. Drawbacks

There are several problems with using AutoCAD. While it is true that AutoCAD
has many built-in graphics function, most are designed for the architect or draftsman in
mind. Since AutoCAD was not initially designed to be used as an interface, the template
to do the interface had to be done from scratch. Also, input and output is not as well-
developed like in other softwares. Because of this, a FORTRAN program had to be
developed to supplement the AutoCAD files. Finally, the main computations still have to
be done with another program such as FORTRAN. While this is acceptable, it is still a
drawback because we have to use a FORTRAN compiler when enhancing DIG-DIRT or

the interface itself.

5.1.3. Other Programs

There are two other software programs which come into mind to do the
interfacing. These include MATLAB and FORTRAN itself [7-9]. Both are good choices
and “might” do the job adequately. Both programs have the computational power to do
the calculations involved and were created with the engineer/mathematician/scientist in
mind. The problem with MATLAB is that one needs the professional version to have the
matrix capability and graphics environment to do the interfacing. Since this was not

available, MATLAB was not considered viable. FORTRAN, on the other hand, is

10

probably the most ideal tool since it can do the input, analysis, and output on its own
without having to rely on another program. Recall, that DIG-DIRT is written in
FORTRAN. Specifically, the code is written using FORTRAN 77 standards. The new
Microsoft FORTRAN 90 compiler being used to run DIG-DIRT also has advance
graphics capabilities to do the job. However, since the FORTRAN 90 compiler was just
recently obtained, most of these features have not been looked into. Therefore, the
viability of using FORTRAN 90 could not be ensured. Also, since the use of AutoCAD
has already reached an advanced stage, it will continue to be used for the current project.
In the future, the use of FORTRAN 90 will be pursued because of its inherent “in-house”

advantages.

5.2. AutoLISP

The main programming language used is AutoLISP. AutoLISP, which is a scaled
down version of Common LISP, is easy to use and takes full advantage of all the
graphical commands in AutoCAD. As mentioned in a previous section, AutoCAD
supports three different compiled languages: AutoLISP, AutoCAD Development System
(ADS), and AutoCAD Runtime Extension (ARX). ADS and ARX (based on C and C++
respectively) are more robust and have more features. They can access facilities directly
like the host operating system and generally can run more efficiently in terms of speed
and memory usage. However, they are also harder to develop and maintain. Since the
ADS and ARX programs are compiled on a C compiler, maintenance could be a problem.
There are different C compilers which support and recognize different libraries
(collection of built in commands and functions). Once a change is made in a code,
recompilation of an ADS or ARX program has to be performed. This entails the use of
a compatible C compiler or it won’t recognize some of the functions. Also, ADS
programs compiled for use in AutoCAD version 12 might not be able to run on the
current version 13. AutoLISP, on the other hand does not have these problems since
AutoCAD has an AutoLISP compiler built in. Therefore, it can just read an AutoLISP
program, compile and then run it. Of course, the advantages of ADS and ARX can also

be added to the interface at any time without affecting the AutoLISP environment already

11

in place. The additional ADS and ARX code will simply supplement AutoLISP.

The following sections describe the AutoLISP programs created and their
individual functions. All of the AutoLISP files have a .Isp file extension and have to be
loaded into AutoCAD by the load command. One of the drawbacks to using AutoLISP is
its poor formatting capabilities to handle input and output. Therefore, a fortran code

called convert.f is also included in the discussion.

5.2.1. Main (.Isp) file

The main (.Isp) file is the file that loads up all the other AutoLISP files created for
this project. It also automatically executes the command to create and define the different
layers the graphical outputs will be in (see layer (.sp) file in the next section). Finally it
loads up the menu file that lets the user choose what specific action to take. This file
actually doesn’t do any of the calculations but serves as the controlling file for all the
other AutoLISP and AutoCAD support and customized files. Figure 7 shows that the
user loads the main (.Isp) file immediately after starting AutoCAD. Once main.lsp is
loaded into AutoCAD, the user would be able to choose from a menu the functions he/she

wants to use.

EXIT
AUTOCAD

LOAD
MAIN.LSP

START
AUTOCAD

Figure 7. Flow chart of loading Main.LSP file .

The user does not need to load up any other files since everything needed was already
loaded by the main (lsp) file. To load the main.lsp file, the user simply selects
“application” from the standard “tools” menu. A dialog box will appear requesting what
AutoLISP file to load. The user needs to know where the main.Isp file is located (which

drive/directory it is in). After selecting the file, the user clicks on the load button and the
12

file will then be loaded. The user is in the “DIG-DIRT environment” once main (.Isp) is
loaded. The user can go to the AutoCAD environment by choosing “exit” from the DIG-
DIRT menu at any time during the excavation simulation. The user can then go back to

the DIG-DIRT environment by simply loading up main (.Isp) again.

5.2.2. Laver (.Isp) file

This AutoLISP file creates the different layers and attributes the layers will
possess. The attributes include the name, color, and linetype of a particular layer. An
important feature that AutoCAD offers is the ability to draw and view objects in different
layers. An example of this use is when we draw the original underformed mesh in a layer
which is different from the current deformed mesh after a particular loading is applied.
We can then view either mesh or both mesh at the same time by simply turning the layers

on or off.

5.2.3. Dialog (.Isp) file

This file manages the dialog boxes used to get input information needed to run
DIG-DIRT. The user inputs the problem by entering the information on dialog boxes (see
Fig. 8). All the information entered in the dialog boxes are stored in different variables
defined in the dialog.Isp file. The dialog.1sp file actually contains the commands to load
up each of the custom-made dialog boxes (created in Dialog.dcl files talked about later).
After the user enters all the information for that particular dialog box and enters “ok”, the
AutoLISP command within the dialog.lsp file closes the dialog boxes and stores the
values in the respective variables. If a particular dialog box is re-opened, the values

entered on the previous input will be shown and the user can make changes.

Overall, there are currently 17 “control cards” that the user has to go through and
input information. The control cards are described in more detail in the DIG-DIRT user
manual. In short, a control card is basically a collection of similar data grouped together.

There are over 17 dialog boxes since some control cards have multiple dialog boxes.

13

Eile: ﬂeip

-MAIN-

-MAIN-

fiﬂjjjjTWf

L ENE SR

ﬁﬂSlart“!fJ,EDUCATIDN VERSIA.. Mscvo:oltinexPamt {Pr Iﬁwnbrnp Pemt e

Figure 8. Dialog boxes to get problem information from user.

5.2.4. Write (.Isp) and Convert (.f) file

After all the dialog boxes are filled out, the user then selects “write” from the
menu and this AutoLISP file will write out the information on an output file called
“datal”. A part of “datal” can be seen in the appendix. As you can see, the formatting
capabilities of AutoLISP is poor since it can only write out one value per line. Because of
this, a FORTRAN program called convert.f needs to be implemented to convert “datal”
into “data” which is in the format that is readable by DIG-DIRT. The following flow
chart (Fig. 9) shows the initial input process to create the data file to be read by DIG-
DIRT. Words in quotes are the actual words that represent the choices the user can select
from the menu. With this system in place for the input phase, the problem of making
formatting errors are eliminated. Also, logical errors will also be minimized since the

user is guided in making the input file.

14

SELECT “DATA” TO INPUT INFO.
IN DIALOG BOXES

SELECT “WRITE” TO MAKE DATA1 FILE
AND TO CONVERT DATAI INTO DATA

SELECT “RUN” TO
RUN DIG-DIRT

Figure 9. Flow chart for input phase of interface.

5.2.5. Getinfo(.Isp) file

The getinfo (Isp) file is executed automatically and immediately after running
DIG-DIRT. It reads in all the information from the output files of DIG-DIRT. There are
three files that are specially outputted for the AutoCAD interface. These are “outdata,”
“out.ele,” and “out.str.” This process is convenient and efficient since all the output data
needed by the interface is loaded into the AutoCAD environment at one time. Once this

is accomplished, the user can now select from the menu which output to view.

5.2.6. Draworig/Drawdef (.Isp) file

This file draws the undeformed (original) and deformed (current) mesh. A
sample of this output is shown in the following figures (Figs. 10 & 11). The undeformed
and deformed meshes are plotted on different layers to allow for differentiation. Here,
we simply use the well-known AutoCAD command “line” to draw the individual
elements for both meshes. During the excavation process, the deformed mesh will
constantly be changing at different time steps. An added feature of the AutoCAD
interface is that the user can specify the time step in which to view the deformed mesh.

The user will be able to view other results (stresses/strains) at different time steps as well.

15

DRAWDRIG
IDRAW_DEF
ELEMNUME
PwSTRESS
DWSTRAIN

-MAIN-

FEON

A

2

[Conmand ;
[Connand

183160 v B : L s . _ - -
5[] EDUCATION VERSIOL. PR MinosoliDoveoperSio |- 0 e . L e

Figure 10. Undeformed (original) mesh.

DATA...
RAWORIG

[ELEMNUMB
DWSTRESS:
DWSTRAN
ENCAVATE
INSTALL

WHRITE
EOIT
RUN
LAYERS..
HELP
exT

MAIN-

omnand: «Cancelw

onnand :

ek ks : f

SR Shan l', ICATION VERS)

B Miiosoh Devmopar S |11

Figure 11. Deformed (current) mesh.

16

5.2.7. Elemnumb (.Isp) file

This AutoLISP file also plots the element numbers (see Fig. 12). The size of the
element numbers depend on the size of the element itself since the height of the element
is scaled to the length of the element sides. Also, the position of the element numbers are
dependent on the position of the elements. Therefore, in a given mesh, the heights of the
different element numbers will be different and their position will follow the deformed

mesh. Also, the element numbers are plotted on a different layer from the

undeformed/deformed meshes.

55 56 o7 o8 029 e« 6l 62 ¢3
46 47 48 49 S0 % m ., ..
37 38 39 40 41 sz 43 a4 4
28 29 30 31 32 33 34 35 2
139 20 21 22 23 e 25 gz 27
|
10 11 12 13 14 15 1w 17 13
2 3 4 5 &7 os s
P
Al
></
imlzszxazqs ; UDELIHLEIHHPM sk i L o . i
st ’<,EDUCAT(DNVERSIO BB Vicimoh Developin Siat !ﬁdentmp Pl L e L R

Figure 12. Plot of element numbering.

5.2.8. Drstress/Drstrain (.Isp) file

The Drstress (.Isp) file takes an output file created by DIG-DIRT and uses the
information to plot the stresses. Currently, it plots the sigmall stresses at the gauss
points of each element. For background, gauss points are points on the elements where
numerical integration takes place and where the stress/strain values are stored and

located. Values of stress and strain at other points are then extracted from the values at

17

the gauss points. The output file created by DIG-DIRT is called “out.str”. A linear
interpolation of the stresses is done by the built in AutoCAD command “3dmesh”. If the
user wants to get the exact value of the stress at a particular gauss point, he/she would
simply click on the point and the attributes button on the standard AutoCAD toolbar. This
view is further enhanced by taking an isometric point of view that will allow the user to
visualize the stresses more clearly. For visibility, the stress plots are viewed in “sw

isometric” view and the “shade” command was use to further enhance the plot (Fig. 13).

The strains are handled in a similar way. However, the octahedral shear strains
are plotted. For background, the octahedral shear strains are the shear/tangential (as
oppose to normal) component of the traction vector that is acting on a plane where the

principal shear strains are acting.

Finally, by turning on all the layers, we can see the combine output (Fig. 14). The
undeformed/deformed shape, element numbering, and a plot of stress/strain can then be

seen together.

pRaw
EDIT
ZooM
DATA...
DRAWGEIG
DRAW_DEF
ELEMNUMB
Ewsmmn ;
EXCAVATE
NSTALL
WRITE
£niT
RUN
LAYERS
//f}, HELP
N exit
P X
,,%%%@%“@%w@
s ey,
S \:ﬁ*ﬁ%‘@gw’,—/f" POV <
e
Sae
St
w%%\ =
— ‘%@
AT
o €:Nacad\nenu . rnu
¥
oty

e

[Lebucamonveasto. . o Csan

SR Start| BB Hicromlt Developer Stidi | 3 rmbitinp - Pamt]

Figure 13. Plot of stress at gauss points using ‘“3dmesh’ and ‘“‘shade”’command.

18

LEMNUMB.

DWSTRAIN
EXCAVATE
INSTALL
IWRITE
EDIT

RUN
LAVERS.
HELP

EXIT

’ G
sl | Mot Posrant o T EDUCATION VERSIB.. . f 2aam

Figure 14. Combined plot of all output.

5.3. Macro and Custom Features of AutoCAD

Aside from the AutoLISP files created, other built in custom features of
AutoCAD are used. These include the acad.pgp files, menu files and dialog.dcl files.
These files supplement the AutoLISP programming language and will be described in the

following sections.

5.3.1. Acad (.pgp) file

This file allows AutoCAD to recognize and execute DOS or UNIX commands
from within AutoCAD. It also allows the creation of aliases for usual AutoCAD
commands. A sample acad.pgp file is shown in the appendix. A drawback for this file is
that a developer cannot create macros (custom series of commands) within this file.
Therefore, all custom-made commands must be created using the AutoLISP command
“defun” (short for define function). Once a user enters a command on the command line,

AutoCAD executes the command if it recognizes it. If not, it looks at the acad.pgp file if

19

it is an alias or system command. If it is still not defined in the acad.pgp file, it will issue
an error command specifying it doesn’t recognize it. The acad.pgp file is the one file we
do not load into AutoCAD. Instead, AutoCAD will search for the first acad.pgp file in its
files search path. Therefore, the custom acad.pgp file is located in the (c:r13\win)
directory. Also, since it is not actually loaded into AutoCAD, the user/developer must
use the “reinit” (reinitialize) command whenever a change in this file is made. The main
use of this file is it allows the user to run DIG-DIRT from within AutoCAD (see Fig. 15).
When the user selects run from the DIG-DIRT menu, the user is actually accessing the

executable file of DIG-DIRT.

IDRAW_DEF
ELEMNUMB
wSTRESS,

DWSTRAIN
EXCAVATE

1%

FStant] A EOUCATIO . Misossh Poneort: B | et Port | (BB AutoCAD ShellAz... o

Figure 15. Running DIG-DIRT from within AutoCAD using the acad.pgp file.

5.3.2. Menu (.mnu) file

After the main.Isp file is loaded, a custom made file called menu (.mnu) file is
loaded automatically. Once this screen menu is loaded, AutoCAD’s default standard
menus all disappear and is replaced by the menu developed in the menu.mnu file. Note

that all screen menus might have to be “turned on” first. To do this, select “options-

20

preferences” and then the “system” tab from the standard AutoCAD toolbar. Then, check
the “screen menu” button. The menu file creates a blank drawing screen with only the

screen menu on the right side. The full screen will look something like figure 16.

Figure 16. AutoCAD screen with loaded DIG-DIRT menu.

The options with three periods following the word will bring up another screen showing
more options. The initial options above show some regular AutoCAD commands that
can be included in the menu. When the user wants to return to the regular AutoCAD
window, he/she can just select the exit command and the regular AutoCAD screen and
pull-down menus will be loaded and the “DIG-DIRT” menu will disappear. The “DIG-
DIRT” menu can easily be brought back by loading up main.Isp or using the AutoCAD

command “menu” and selecting the menu.mnu file from the correct directory.

5.3.3. Dialog(.dcl) files

These files contain the design for all the dialog boxes in the interface. They are
loaded by the dialog.lsp files. The default values for any item in the dialog boxes are also
contained in the dialog (.dcl) files. Part of the dialog.dcl file is shown in the appendix.
Each “card” in the current DIG-DIRT input manual is represented by a dialog box. The
(.dcl) file, like the menu (.mnu) file, is again different from an AutoLISP (.Isp) file and

has its own set of syntax.

21

5.4. Flow Chart of AutoCAD Interface

The GUI was designed for maximum flexibility. However, certain steps must still
be followed for it to run correctly. Therefore, a flow chart is presented to describe the
step-by-step procedures in using the AutoCAD interface (see Fig. 17). After loading and
starting AutoCAD, the user first loads main.Isp. As mentioned before, this will load all
the AutoLISP files and supporting files needed for the interface. This also brings up the
DIG-DIRT menu. Once this is accomplished, the user is in the “DIG-DIRT”
environment. At this point, the user can select from the DIG-DIRT menu what to
execute. However, since the problem statement has not been specified and DIG-DIRT
has not run yet, most of the options in the menu are still unavailable. The first step is
therefore to create the input file into DIG-DIRT. The dialog boxes will guide the user to
create the geometry, input the element material types, boundary conditions, and sequence
of construction/excavation. Once the input file is created, the user then selects “run” and

DIG-DIRT starts to analyze the problem.

LOAD MAIN.LSPTO k.
BRING UP DIG-DIRT MENU

OR USE MENU COMMAND

&

CREATE INPUT FILE
USING DIALOG BOXES

EXIT TO AUTOCAD
ENVIRONMENT

&

RUN DIG-DIRT

&

SELECT TIME

E VIEW RESULTS

Figure 17. Flow chart of AutoCAD interface.

3
Sajic

22

When the analysis is complete, the user must now specify the time step in which
to view the results. After this, the user can select to view the different results
(undeformed/deformed mesh, stress/strain plot, element numbering). The user will be
able to plot the results for another time step by simply selecting a different time step. Of
course, the user has to delete the results of the previous time step so that it will not draw
it over the current time step. Also, the user can go out of the DIG-DIRT environment
and into the AutoCAD environment by simply selecting “exit” from the DIG-DIRT
menu. The user can then go back to the DIG-DIRT environment by simply loading

main.Isp again or using the menu command to load up the DIG-DIRT menu.

5.5. Summary of Current State of AutoCAD Interface

The current AutoCAD model allows the user to input the problem, run DIG-
DIRT, and view the results (displacement, stresses, strains) all from within AutoCAD.
The input phase consisting of the dialog boxes (dialog.lsp/.dcl files) and formatting
(write.Isp/convert.f) are complete and working. The user can therefore reproduce and
create the input file with no formatting errors. DIG-DIRT runs within AutoCAD via the
acad.pgp file. Graphical results are in place showing the (deformed/undeformed meshes,
stress/strain plots and element numbering). Also, the user can simply select a time step
and view the results for that time step. The interface is able to process the information for
different element groups at different time steps. This is essential especially for an

excavation program where elements are born or die at different time steps.

6. Simulation of Underground Construction

To show the capabilities of the current GUI, a simulation of underground
construction will be performed. First, the problem will be described and then graphical
results will be presented. Since the input phase consists mainly of creating the input file
for DIG-DIRT, the next sections will focus on the output phase where the GUI plays a

more significant role.

23

6.1. Problem Description

An excavation simulation entails excavating “soil” elements and putting in “strut”
elements at prescribed time steps. For the simulation, the original/undeformed mesh
(Fig. 18) consists of three element groups. The first element group consists of the
elements representing the soil (elements #1-160). From these, the first 64 elements will
be excavated. The second element group consist of elements representing the bedrock
(elements #161-320). The third element group consist of elements representing the struts

which will be placed at prescribed time steps.

149150 151 1192153 | 394 1135 136 158159

Strut Elements will be / - 2 -b1g b 1516 197 113811391140 141 | 142 1143 1144 1460142

placed at a prescribed P Ty O F T DA FT A R o PP JOVR P preg Jovg ooy e
timestep 3 | 2 86 B9 130 M 9N 5 ty) 09 1861 [iee e e

|

JRAW_VE
e |

EXCAVATE
[TRETE PO VS 3 62 103 105 107 30910 fm ihSTALL o

i 2 22 E o WRITE o
/ Eht [: i Lid R ks fRa A
geinying gs g [83 5 166 87)
Elements # 1-64 to be 0B N B T
o wl

2163 65| ¢ &9 iR 77475

excavated

G207 1308 | 5 3 iz 35 3163 3B 3G 3

& 287 2682 & 29 293z 2552 298z

66267 268 2 2 @72:27312741275 278 2792

246247 248 291 | #5e 2531254 | 255 256|257 #58 259128
Elements # 161-320 ez 2k 2ry zeq zES|ewe 227 ziBle 1| 2zl ens] 234|235 37 2% 239 |
Simulate the bedrock 206 207 2g e & 2 212: 213 215216 & 28 219 i

S {188 187 : 188 192193 195 96 196 1195 | 200

65166 1167 168 neins 175176 178475

Figure 18. Plot of original mesh for simulated underground construction example.

The excavation sequence is as follows. There are five time steps for this
simplified simulation. The first time step (time step #1) is used to allow the effect of
gravity to take effect. Excavation occurs from time step #2 to time step #5 where 16
elements are excavated for each time step. Strut elements will be placed at time step #3
and will remain for the rest of the simulation. Also, note that the element numbering

feature was used to keep track of the elements being excavated.

24

6.2. Graphical Qutput

A major output the user wants to view is the deformed mesh after undergoing
excavation. In Fig. 19, we see the deformed meshes for time step #2 to time step #5. The
magnitude of the displacement was multiplied five times for better visibility. The
deformed shapes were obtained by selecting a particular time step and then plotting it
through the “draw_def” option. If the user wants to view another time step, the first one
would be erased and another time step would be selected. Of course, the user can also
plot the results of one time step over another. As mentioned in a previous section, the
interface keeps track of which elements are excavated or put in place so that the

corresponding graphical results will be plotted accordingly.

Other results the user might want to see is the strain output. In Figs. 20 and 21, a
plot of the strain output (magnified 100 times) is presented for time step #3 and time step
#5. Notice that the views are different for each of the time steps. Here, we take
advantage of the fact that the user can exit to the AutoCAD environment at any time and

view the graphics from any point of view.

Figure 19. Plot of deformed mesh for time steps #2- #5.

25

3

'
M@m
0
\
S

()

¢

0

)
W

i

9

)
)
%
0

)

9

g

0

i

5
o

%
0

0
%%
0

i

i

)
X
)

5

%

)
W
3
)

(X
&
4

0
o

0

0

)

9

)
)
w%

@%

@W
)

@i minp
2152 BEw

o] = [

,.,uo_mﬁ.mAuE P .
230z EE, _Ga E
ggagPinesatas 3
S5HZREZ2E0E58Y ;

¢
o
S
A

0

)
S

llconnand:

R Stant | BB Microroll Devedopes St [EDUCATION VERSTD, -

tput at time step #3.

Figure 20. Strain ou

WSTRESS |

MRITE
£0IT
RUN
LAY
ELP
EXIT
MAIN

KGR
S ow%
A0

RS
¥

g
ACANANRNS
RS

*Cancels

& EDUCATION VERS

Figure 21. Strain output at time step #5.

26

7. Future Work

In the future, there are three main areas that can be dealt with. These are:

(1) improving the interface with regard to the way it inputs and outputs data to and from

DIG-DIRT
(2) improving DIG-DIRT itself to handle field monitoring and performance feedback
(3) using the GUI with DIG-DIRT in class and research settings

7.1. Improvements to GUI

The current interface allows the user to input the problem, run DIG-DIRT, and
view graphical results all from within AutoCAD. However, as with most programs, the
GUI can constantly be improved. For the input phase, a more object oriented approach
can be in place to get user information. For example, the geometry of the problem can be
inputted by drawing the mesh instead of inputting the nodal points in dialog boxes. For
the output phase, better plots of the stress and strain contours can be in place where a
measure of the magnitude of the values would be in place. Also, use of object linking
and embedding (OLE) can be taken advantage of to create tables and charts of some

results like strut axial loads as the excavation proceeds.

7.2. Field Monitoring/Performance Feedback

The task of having a field monitoring program and performance feedback is
natural since we want to test the capabilities of both the GUI and DIG-DIRT under real
time, actual situations. This program (Fig. 22) would allow the engineer to make real
time predictions of what will happen for the next time step. The engineer would start by
using the information from the previous time step to do a numerical simulation and
compare with actual results using a field monitoring program. Then, the engineer would

use the information to calibrate the model for a prediction of the next time step. Large

27

errors would mean that the model is bad. However, good results would mean that the
model is capable of predicting future results. In this way, the engineer can do “what if”

scenarios such as deciding to put a strut or not.

1 FIELD MONITORING NUMERICAL
PROGRAM SIMULATION
PREVIOUS
LOAD STEP
__________________ MODEL
CALIBRATION
NEXT LOAD
STEP k————
__________________ PREDICTION
REDESIGN, IF

v NECESSARY

Figure 22. Incorporating field monitoring and performance feedback

7.3. Use in Classroom Teaching/Research

One important impact of the project is the value it has in the educational field.
For teaching purposes, the tool realized from this project will help the student visualize
the deformations and stress/strains the soil structure undergoes during underground
structure construction. The GUI and DIG-DIRT will be tested next winter (1998) during
the PI’s foundation engineering class. Student reactions and suggestions will be obtained
to assess its educational value. Also, ongoing research that will improve the capabilities

of DIG-DIRT will be enhanced by having a user-friendly DIG-DIRT.

28

APPENDIX A

Additional Figures
Sample Input File
Excavation problem
375 0 2 2 3 1 1 1 1 0
1 0 0 15 0
1 0 1.0
1 9 1.0
0 0 0 0 0
1 4 0.0 0.0
21 0 5.0 0.0
357 0 5.0 4.0
337 0 0.0 4.0
20 1 16 21
358 2 0.0 3.4375
366 0 2.0 3.4375
8 1 0 0
367 2 0.0 3.5625
375 0 2.0 3.5625
8 1 0 0
1 1 1 1
21 0 1 1
22 21 1 0
337 0 1 0
42 21 1 0
357 0 1 0
358 0 1 0
367 0 1 0
0.0 0.0
1.0 1.0
4 160 6 1 1 0 0 1 2 0
2 2 8 0 1 1
2 6
1.0e3 0.45 0.0 15.5 0.0
1.0e-3 1.0e-3 0.0
20.0 0.0 0.0 -1.0
1 316 317 338 337 1
8 1 1 8 8 -21
65 177 178 199 198 1
12 1 1 8 12 21
4 160 6 1 1 0 0 2 2
0 0 0 0 1 1
2 6
1.0e5 0.1 0.0 1.0e5 0
1.0e-3 1.0e-3 0.0
30.0 0.0 0.0 -1.0

Sample Output File from DIG-DIRT

—
AAAA’\AAAAAAAAAAAAAAA»\»\AAA,—\A’\AAAAAAAAAAAAA»—\AAAAAAAAA

i e e el ol o Yy Sy Py

e

.197
.197
.053
.053
.447
.447
.303
.303
. 697
. 697
.553
.553
.947
.947
.803
.803
.197
.197
.053
.053
.447
.447
.303
.303
. 687
.697
.553
.553
.947
.947
.803
.803
.197
.197
.053
.053
. 447
.447
.303
.303
.697
. 697
.553
.553
.947
.947
.803
.803
.197
.187
.053
.053

.000

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwuwwwwwwwwwwwmwww

. 947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
.947
.803
. 947
.803
. 697
.553
.697
.553
.697
.553
.697
.553
.697
.553
.697
.553
.697
.553
.697
.553
.697
.553
.697
.553

AN ANNNMNINNNMNNOODNDNDNODNDODNDNDNDNDNNDNDDNNDNNDNDNDND N N

.045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
. 045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
. 045)
.045)
. 045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
.045)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)
.136)

Sample “DATA1” File

Excavation problem
375

CORPRORMPORRERMWNDNO

(@]

MO OO (@] el el NoNeoNoNeNe)

(@]

= N

DIG-DIRT
USER’S MANUAL
© COPYRIGHT 1997 BY R. L. BORJA

1. TITLE CARD (2044)

Columns Variable Description
1-80 TITLE(20) Job title for output heading
2a. CONTROL CARD (1415)
Columns Variable Description
1-5 NUMNP Number of nodal points;
if = 0, program stops
6-10 NPPN Number of pore pressure nodes;
if > 0, mixed formulation
11-15 NSD Number of spatial dimensions;
if = 2, 2D analysis;
if = 3, 3D analysis; consolidation not available
1620 NDOF Number of degrees of freedom per node;
input 2 if NPPN=0, input 3 if NPPN>0
21-25 NUMEG Number of element groups;
>1
2630 NTSG Number of time step groups;
>1
31-35 NLC Number of load cases;
if = 0, set internally to 1
3640 NLS Number of load steps;
>0
41-45 NSB Number of time steps between
spatial printout; > 1
46-50 NDOUT Number of displacement/pore pressure
output histories; > 0
51-55 MODE Execution mode;
= 0, data check only
= 1, execution
56-60 ISYMM Symmetry parameter;
= (, symmetric matrix
= 1, nonsymmetric matrix
61-65 NSZERO Step number at which displacements
are to be reset to zero (NS=0 during first step)
66-70 IECHO Input echo print mode;
= 0, echo-print input data
= 1, do not echo print input data

APPENDIX B
Sample AutoLISP Files

MAIN.LSP
;This file, main.1sp, is the main file for the AutoCadd project

;Load LAYER.Isp :

;Describes the information for

;the deform and current mesh layer,element number,

;stress, and current layer

(load "c:\\acad\\layer.Isp")

(c:layit)

;Load GETINFO.Isp : AutoLISP program that reads all information
;from DIG-DIRT and stores them as variables to be used by all
;AutoLISP functions

(load "c:\\acad\\getinfo.lsp")
; (c:getinfo)

;Load other AutoLISP files:

;DRAWORIG draws the original mesh

;DRAWDEEF draws the current/deformed mesh
;DRSTRESS draws the stress "mountain”

;PATCH supplements drstress

;DIALOG gives information on dialog boxes
;ELEMNUMB draws the element numbers

;WRITE writes input info into file which is then transformed
;by a FORTRAN file to format readable by DIG-DIRT
(load "c:\\acad\\draworig.1sp")

(load "c:\\acad\\drawdef.1sp")

(load "c:\\acad\\drstress.Isp")

(load "c:\\acad\\patch.lsp")

(load "c:\\acad\\dialog.Isp")

(load "c:\\acad\\elemnumb.lIsp")

(load "c:\\acad\\write.lsp")

;Load menu menu.mnu

(command "menu

c:\acad\\menu.mnu")

B-1

GETINFO.LSP

:GETINFO.LSP

;AutoLISP file that gets all the info needed from output files created
;by FORTRAN code DIG-DIRT. Specifically, it reads the info from the
;output files called out.ele, out.str and outdata

(defun c:getinfo ()
(setq f (open "c:\\r13\\win\\outdata" "r"))
(setq g (open "c:\\r13\\win\\out.ele" "r"))
(setq h (open "c:\\r13\\win\\out.str" "r"))
(setq nemgr (atoi (read-line g)))
(setq ntstep (atoi (read-line g)))
;load element group information into list "elemgrp"
(setq test 1)
(setq elemgrp ((0 0 0 0)))
(while (<= test nemgr)
(setq elemgrp (cons (READ(read-line g)) elemgrp))
(setq test (1+ test))
)

~ (setq elemgrp (reverse elemgrp))
; read total number of elements and number of nodalpts

(setq nnpts (atoi (read-line g)))
(setq nelem (atoi (read-line g)))

;load element connectivity data into list "conn"
(setqtest 1)
(setqconn (0000 0)))
(while (<= test nelem)
(setq conn (cons (READ(read-line f)) conn))
(setq test (1+ test))
)

(setq conn (reverse conn))
;load coordinates into list "pt"
(setq test 1)
(setq pt ((0.0 0.0)))
(while (<= test (* nnpts (1+ ntstep)))

B-2

(setq pt (cons (READ(read-line f)) pt))
(setq test (1+ test))
)

(setq pt (reverse pt))

.
?

Jiopkksciicrkckkkk ¥1oad stress "coordinates” into list "strptHk kKA Kk

; gaussnumb is total # of gauss points for all times steps.
; templist is temporary list for each element group information
(setq gaussnumb ()
(setq testa 1)
(while (<= testa nemgr)
(setq templist (nth testa elemgrp))

*xd4%% CHECK IF ELEM BIRTH/DEATH NOT USED sk kdokk ook
(if (= (nth 1 (nth testa elemgrp)) 0)
(progn
(setq addon (* (nth O templist) (nth 4 templist)
(nth 4 templist) ntstep))
(setq gaussnumb (+ gaussnumb addon))
)
)
@if (= (nth 1 (nth testa elemgrp)) 1)
(progn
(setq addon (* (1+ (- ntstep (nth 2 templist)))
(nth 3 templist)(nth 4 templist)
(nth 4 templist)))

(setq gaussnumb (+ gaussnumb addon))

)
)

; tempb will be number of total elem died
; temp will tempb* integration pts
; totposs is total number of elem*(numb. of gauss pts)*ntstep

(if (= (nth 1 (nth testa elemgrp)) 2)
(progn
(setq count 1)
(setq tempb 0)
(setq tempa 1) :
(while (<= tempa (1+ (- ntstep (nth 2 templist))))

B-3

(setq tempb (+ tempb (* count (nth 3 templist))))
(setq count (1+ count))
(setq tempa (1+ tempa))
)
(setq temp (* tempb (nth 4 templist)
(nth 4 templist)))
(setq totposs (* (nth O templist) ntstep
(nth 4 templist)(nth 4 templist)))
(setq addon (- totposs temp))
(setq gaussnumb (+ gaussnumb addon))

)
)

(setq testa (1+ testa))

)

; After calculating gaussnumb can proceed to load strpt

(setq test 1)

(setq strpt ((0.0 0.0 0.0)))

(while (<= test gaussnumb)
(setq strpt (cons (READ(read-line h)) strpt))
(setq test (1+ test))

)

(setq strpt (reverse strpt))

:close data files

(close f)
(close g)

(close h)
o e sfesfe e fe o e e ok e s o sfe st e sfe s e st sk e o sk sk sk ok s ok o e ok
3

DRAWORIG.LSP

;Autolisp program to draw original mesh.

(defun c:drawmesh ()

b

;Draw original mesh

2
1t

(command "layer" "set” "original" "")
(setq test 1)
(while (<= test nelem)
(command "line" (nth (nth 1 (nth test conn)) pt)
(nth (nth 2 (nth test conn)) pt)
(nth (nth 3 (nth test conn)) pt)
(nth (nth 4 (nth test conn)) pt)
ne
)
(setq test (1+ test))
)
(command "layer" "set
(command "zoom" "all")
(command "zoom" "vmax")

"non "o

new“" tn ")

LAYER.LSP

;LAYER.LSP
;Autolisp file to describe the “stress,

ke 13 b2 E1)

original,” “current,” “elemnumb,” and “new" layers

(defun c:layit ()
(command "layer
(command "layer
(command "layer
(command "layer
(command "layer
(command "layer
(command "layer
(command "layer
(command "layer
(command "layer

un tn "on Il)

new' stress

LRl "y

new""original" "")

"n 1 " H")

new “current

"t "nn

new""elemnumb" "")

" " "non ")

new""new
color""green""stress""")
color""blue""original""")
color""red""current""")
color""white""elemnumb" "")

Colorﬂ ngeen" Hnewll 1 ")

i

"y

"y

1n

"y

APPENDIX C
Sample Fortran File

CONVERT.F

PROGRAM Rdconv

Program to read in file "datal", which was outputed from
AutoCadd, and to write file "data2", which will be used
by DIG-DIRT

Free formatting to read in from "datal” since reading
one value per line

Symbols correspond to DIG-DIRT user manual
Numbers after variables represent either direction number

or card numbers: Ex Variable "Inc1" in card 17 will
be referred to as "Inc117"

OOOOOOOO{?OOOO

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
CHARACTER#*80 title,blank
INTEGER 12a(14),12b(5),I5(5),irec,nslms

INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::
INTEGER, ALLOCATABLE::

N(:),Numgp(:),M(:),Mgen(:)
NO(:),Numgp9(:),M9(:),Mgen9(:)
N10(:),Numgp10(:),M10(:),Mgen10(:)
n4(:),nts(:),n8(:),ng(:)

1d1(:),1d2(:),id3(:)
Ninc1(:),Ninc2(:),Inc1(:),Inc2(:)
Ninc19(:),Ninc29(:),Inc19(:),Inc29(:)
Ninc110(:),Ninc210(:),Inc110(:),Inc210(:)
Nparl(:),Npar2(:),Npar3(:),Npar4(:)
Npar5(:),Npar6(:),Npar7(:),Npar8(:)
Npar9(:),Npar10(:),Npar11(:),Npar12(:)
Npar13(:),Npar14(:),Npar15(:),Npar16(:)
Npar17(:),matyp(:),ncrit(:)
N17(¢),NG17()
IEN1(:),IEN2(:),JEN3(:),JEN4(:),JEN5(:)
IENG6(:),JEN7(:),JENS(:),IEN9(Y)
NELI1(:),NEL2(:),INCEL1(:),INCEL2(:)
INC117(:),INC217(2)

REAL, ALLOCATABLE:: X1(:),X2(:),Temp1(:),Temp2(:)
REAL, ALLOCATABLE:: D1(:),D2(:),D3(:),Temp19(:),Temp29(:)
REAL, ALLOCATABLE:: FI1(:),F2(:),F3(:),Temp110(:),Temp210(:)

REAL, ALLOCATABLE:: Dt(:),Temp39(:), Temp310(:),g1(:),g2(:)
REAL,ALLOCATABLE:: SPARI1(:),SPAR2(:),SPAR3(:),SPAR4(:),SPAR5(:)

C-1

(o]

[¢]

o

REAL,ALLOCATABLE:: SPAR6(:),SPAR7(:),SPARS(:),SPARI(:)

REAL,ALLOCATABLE:: WT(:),GW(:),GRAV1(:), GRAV2(:)
OPEN(10,FILE="c:\acad\datal ,.STATUS="UNKNOWN’,ERR=334)
OPEN(20,FILE="c:\acad\data2’,STATUS="UNKNOWN

blank=""
title card

Read(10,FMT=100,ERR=333,END=333)title
Write(20,100)title

card#2a

Do i=1,14
Read(10,*)12a(i)
enddo
Write(20,fmt="(1415)")(12a(i),i=1,14)

card#2b

Do i=1,5
Read(10,*)I2b(i)
enddo
Write(20,fmt="(515))(12b(i),i=1,5)

card#3

Read (10,*)irec

Read (10,*)nslms

Read (10,*)Beta
Write(20,fmt="(215,f10.2))irec,nslms,Beta

card#4

Read (10,*)ia
Allocate (n4(ia), nts(ia), dt(ia))
Do i=1,12a(6)
Read (10,*)n4(i)
Read (10,*)nts(i)
Read (10,*)Dt(i)
enddo
Do i=1,12a(6)
Write(20,fmt="(2i5,f10.2))n4(i),nts(i),dt(i)
enddo

card#5

C-2

APPENDIX D
Sample AutoCAD Custom Files

ACAD.PGP

;ACAD.PGP FILE

;This file contains the external unix commands that can be accessed inside
;AutoCad. It can also contain aliases for AutoCad commands

;The format can be found in AutoCad Customization Guide p.24

deltri,del,0,What file is to be deleted?,4
mkdir,mkdir,0,What directory do you want to create?,4
edit,edit,0,0pen what file?,4
dig,c:\\digdirt\\digdirt.exe,0,running,4
conv,c:\\acad\\rdconv.exe,0,writing,4

MENU.MNU

;Menu file to create a screen menu, taken from p.91
; of Customization guide

***SCREEN
[DIG-DIRT]

[*******]

[DATA...]$S=X $S=Data_Root
[WRITE]write conv ""

[EDIT] (startapp "notepad" "c:/acad/data2")
[RUN]dig "" getinfo

[TIMESTEP]timestep
[DRAWORIG]drawmesh
[DRAW_DEF]drawdef
[ELEMNUMB]Jelemnum
[DWSTRESS]drstress

[DWSTRAIN]

[EXCAVATE]TEXT 15.0,15.0 1.0 0 Not Yet Available ;
[LAYERS..]1$S=X $S=Layers
[DRAW...]$S=X $S=Draw_Root
[EDIT...]$S=X $S=Edit_Root
[ERASE]erase all ;;;

[ZOOM]zoom

[HELP]help

[EXIT]menu c:/r13/win/support/acad.mnc

D-1

References

[1]1 Omura, G. (1995). Mastering AutoCAD 13 for Windows 95, Windows 3.1, and
Windows NT (second edition). Sybex.

[2] Raker, D. & H. Rice. (1990). Inside AutoCAD: The Complete AutoCAD Guide
(sixth edition). New Riders Publishing.

[3] Autodesk. (1995). AutoCAD Release 13 Customization Guide.
[4] Autodesk. (1995). AutoCAD Release 13 Command Reference.
[5] Autodesk. (1995). AutoCAD Release 13 User’s Guide.

[6] Autodesk. (1995). AutoCAD Release 13 ADS Developer’s Guide.

[7] Etter, D.M. (1993). Structured Fortran 77 for Engineers and Scientists (fourth

edition). Benjamin Cummings Publishing Co.
[8] Mircrosoft. (1995). Fortran Powerstation Reference (professional edition).
[9] The Math Works Inc. (1992). The Student Edition of Matlab. Prentice Hall

[10] Borja, R.I. (1990). “Analysis of incremental excavation based on critical state

theory.” J. Geotech. Engrg., ASCE, 116(6), 964-985.

[11] Borja, R.I. (1992). “Free boundary, fluid flow, and seepage forces in excavations.”

J. Geotech. Engrg., ASCE, 118(1), 125-146.

