
Con~puter Interpretation
of

Process and Instrumentation Diagrams

T. Binford, T. Chen,

J. Kunz, and K. H. Law

CIPE Technical Report #I12
August, 1997

STANFORD UNIVERSITY

Copyright O 1997 by
Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

C/O CZFE, Civil and Environmental Engineering Dept.,
Stan ford University,

Terman Engineering Center
Mail Code: 4020

Stan ford, CA 94305-4020

SUMMARY

CIFE TECHNICAL REPORT #I12

Header: CIPID

Title: Computer Interpretation of Process and Instrumen-
t at ion Diagrams

Authors: T. Binford, T. Chen, J. Kunz, and K.H. Law

Publication Date: July, 1997

Funding Sources:

Name of Agency: CIFE

Title of Research Project: Seed Research Project

1 Abstract:

This report describes a prototype system that interprets Process and Instrumentation
Diagrams (P&IDs). The system takes a P&ID in a vector CAD file in DXF format
and produces an intelligent P&ID model that has symbolic interpretations for system
components (e.g., check valve, pumps, etc.) and symbolic attributions (cold water,
propane, etc.).

The system finds structure among vectors, recognizes graphic symbols as physical
components from a database of components (e.g., valves), interprets annotations that
assign text to graphic symbols. Representation of diagrams is a hierarchy of classes
based on cellular topology and geometry (the Area-Curve-Vertex graph (ACV)) at the
symbol level. Presently, there are about 100 graphic symbols in the database.

The system has recognized 95% of covered graphic symbol instances for a full
page of an industrial drawing, with 89% of graphic symbol instances covered (in the
database). A drawing with 5,000 vectors required 20 minutes on an SGI Indy 4400SC
(approximately 10% faster than a P5 100MHz on SPECint92). For symbols that are
not yet in the database, a "learning" mechanism and a GUI is being developed to
construct the ACV data structure of the unknown symbol.

2 Subject:

What is the report about in laymen's terms? Turning vector CAD P&IDs
into symbolic models.

What are the key ideas or concepts investigated? Representation of sym-
bol geometry, effective symbol recognition, computational complexity feasible for
industrial applications.

What is the essential message? A theoretical-based scalable interpretation
system has been developed. The system is effective, feasible, and promising for
short-term exploitation.

Why did CIFE fund this research? IAB mentioned this as one important
problem.

What benefits does the research have to CIFE members? Possible
near-term applications of the prototype for drawing interpretation, demonstra-
tion of success in automated P&ID interpretation, dealing with legacy drawings,
compliance with as-built, retrofitting, interpretation of vectorized drawing with
symbolic models.

What is the motivation for pursuing the research? Value of applications,
technical interest and challenge.

What did the research attempt to prove/disprove or explore? The
problem was originally thought t o be too difficult; there had been expensive fail-
ures by the industry. Our research demonstrates effective geometric computation
for a broad class of diagrams.

4 Methodology:

How was the research conducted?
Phase I: feasibility demonstration - on the order of 10 symbols. Phase 11: a
prototype system - on the order of 100 symbols (including the development of
a "learning" mechanism for the identification of unknown symbols). Phase 111:
scale-up.

Did the investigation involve case studies, computer models, or some
other method? An industrial, typical, single-sheet P&ID was used for the in-
vestigation. A theoretical class hierarchy based on previous work was developed
for the representation of graphic symbols.

5 Results:

What are the major findings of the investigation? The approach is well-
founded, very successful, and extensible.

What outputs were generated? A conference paper, a journal article (ac-
cepted), and a software prototype.

6 Research Status:

What is the status of the research? Seeking funding to continue develop-
ment and to link with other applications.

What is the logical next step? Develop industrial prototype, add further
capabilities (i.e., learning new and unusual symbols).

Are the results ready to be applied or do they need further develop-
ment? The results so far are ready for initial productizing.

What additional efforts are required before this research could be
applied? Build a product and develop a pilot project to exploit and aid in
productizing.

Computer Interpretation of Process and
Instrument at ion Diagrams

T. Binford, T. Chen, J. Kunz, and K.H. Law
Stanford University, Stanford, CA 94305, USA

July 30, 1997

1 Introduction

Process and Instrumentation diagrams (P&IDs) describe the components of a plant and
their logical connectivity. Figure 1 shows one sheet of a representative P&ID. Some
lines represent pipes. Clusters of vectors indicate components, e.g., valves and pumps.
Some of the graphic symbols are annotated with text and symbols, e.g., to indicate
sizes of pipes and valves or functions of elements. A P&ID for a large process plant
may include 100-1000 sheets. A small fraction of new designs are made in intelligent
P&ID design systems (said to be I%), but the bulk of new and existing designs may
be made with non-intelligent CAD format. There is also a legacy of P&ID designs on
paper only. The motivation for interpretation of P&IDs is to build intelligent, symbolic
P&IDs for automated analysis, in support of retrofitting, for maintenance, for as-built
specification, and for compliance with regulations.

Across the spectrum of P&IDs, we expect there are typically a few hundred symbols
that occur frequently, a similar number that occur infrequently in many P&IDs, and a
few special symbols that are non-standard and may occur only in an individual drawing.
We have implemented and tested a powerful mechanism to accommodate most of these
symbols: generic representation of symbols, generation of generic symbol hypotheses,
and a structured symbol database. We have made an effective implementation that was
supported by a hierarchical class representation based on cellular topology.

Figure 2 shows the plant composition model that represents structures throughout
a process plant multi-sheet drawing. Each arc in the figure represents an interpretation
step. Thus, for example, given a set of vectors, Step 2 of the interpretation process
identifies the geometric structure and annotation text. The hierarchy of levels in the
plant model covers symbolic, functional levels and geometric, graphic levels. Levels up
through identification of components and assignment of annotation are more or less
local and graphic in that they deal with information that is local in the diagram or
implicit in conventions. Levels from circuits and up are non-local in that they deal with
interpretations that are transmitted along connected components and pipes, potentially

Figure 1: One sheet of a Representative Industrial Process and Instrumentation Dia-
gram (P&ID). Most lines on the drawing represent symbols for plant components or
pipes connecting components; some lines are part of text annotations, and others divide
the drawing visually into logical sections.

over large parts of the diagram. These levels deal with constructs that are functional,
e.g., chilled water subsystem.

The P&ID interpretation system accepts a vector-based representation of a P&ID.
The system has a generic database that represents defined components in terms of ar-
eas, curves and vertices (ACV). The system analysis methods first create an ACV data
structure for a set of input vectors; then hypothesize components that may fit the data;
and finally, match the input ACV with the hypothesized ACV's to find the component
definitions that best fit the data. The resulting symbolic plant model represents the
identified components (i .e., pipes, valves, pumps), their connectivity (i.e., pipe connec-
tions) and their identifiable attributes (e.g., dimensions, constituent fluids) that can be
identified as annotations in the original P&ID drawing.

Plant Composition Model
Examples:

I -

Symbolic cooling + 0 I
Model

ACV 2 @
-b4-

4
Geometric
Model -1XI-

Figure 2: Plant Composition Model and Examples. The plant composition model is
used to represent a process plant. The different levels in the model are conceptually
part of the geometric model or symbolic model. The geometric model is used to facili-
tate graphic interpretation (vector-to-symbol recognition). The symbolic model enables
functional interpretation of P&IDs.

2 Status

The system now analyzes full, single sheets of P&IDs. A user defines connections be-
tween sheets interactively using a GUI. An input parser reads DXF files to extract
entities and blocks. A display utility renders entities and blocks with pan and zoom. A
module determines colinear relations among vectors that determine redundant, overlap-
ping vectors that are very common; the module also determines colinear relations across
gaps. A cellular topology structure is constructed after determining intersections be-
tween vectors, i.e. , L, T, and X vertices. From intersections, areas, curves, and vertices
are linked in an ACV graph that defines the cellular topology of hypotheses. A generic
hypothesis generation mechanism determines clusters of vectors that are hypotheses for
components. The database of component symbols is structured in a hierarchy based on
the ACV. Recognition is done by comparing the ACV of the component hypothesis to
the component model. Joints are added for later use.

Annotations are analyzed in a similar way. Annotation graphic symbols are struc-
tured in an ACV graph for recognition. Annotation graphic symbols and bounding box
of text strings are used to assign text to component symbols, i.e., pipes, valves, etc.
Parsing and interpretation of text is underway for instruments and components.

Two phases of development efforts have been demonstrated. A Phase 1 demonstra-
tion (feasibility) was done with a handful of components on a small part of a diagram.
A Phase 2 demo was done with a full sheet from an industrial P&ID to demonstrate
scaling up of the algorithms. The test was realistic in that it was a real P&ID. The
graphic symbol database has about 100 symbols including component symbols and an-
notation symbols. Some statistical analysis of drafting in the test P&ID were used
to make decisions about hypotheses and about computational complexity. The test
diagram has about 5,000 vectors, with 356 symbol instances in 41 symbol classes. Of
those symbol classes, 30 are covered in the symbol database and 318 (i.e., about 89%)
symbols are covered instances. Of those covered symbol instances, 302 were recognized,
i.e., 95% recognition of covered symbol instances. Overall recognition was 85% of all
symbol instances. The system is developed in Allegro Common Lisp (with no decla-
rations) on an SGI Indy R4400SC (150MHz) with performance about 92 SPECint92.
The interpretation takes about 20 minutes. The efficiency can certainly be improved
dramatically as we are continuing development of new algorithms and improving the
implementation. For symbols that are not yet in the database, a "learning" mechanism
is being developed to construct the ACV data structure of the unknown symbol.

Establishing Geometric Structure

A P&ID diagram contains a large number of vectors. The first task is to find relations
among vectors such as colinearity and intersection.

For computational complexity reasons, it is useful to find colinear relations among
vectors. At vector level (see Figure 2), colinear relations establish redundant, overlap-
ping vectors (2-vertices) (see Figure 3) which occur frequently with input and output
pipes in a block overlapping pipes connecting components, and with the same vector
occurring in multiple layers. At component level, a pair of colinear opposed T-vertices
often corresponds to the 110 ports (see Figure6(a) for example) of a component and
is used as a strong evidence for generic component hypothesis generation. At circuit
level, cascading components are often connected by colinear pipes.

In the next step, colinear sets of vectors are used to build a cellular structure, which
allows us to find L-vertices, T-vertices, and X-vertices efficiently.

3.1 Colinear Relations

P&IDs have predominantly horizontal and vertical vectors, but there are also vectors at
various other angles. In some diagrams, a part of the drawing is set at an angle to give
intuition about the setting in the plant. For computational efficiency, it is valuable to
give preferential treatment to horizontal and vertical vectors, but the mechanism must

Figure 3: L-vertex, T-vertex and X-vertex. These are the four categories of connections
commonly found in P&IDs.

treat relations among vectors at all angles.
We map vectors into colinear sets of horizontal, vertical, and other orientations.

Colinear sets are stored as RB trees which are balanced binary trees with color on each
node to ensure tree balancing[2]. Figure 4 (a) shows a horizontal colinear set of four
line segments. The coordinates of the left endpoints are used as keys for sorting. Note
that L1 and L2 are overlapped. Figure 4 (b) shows the binary tree for the colinear set.
Each node contains a key for sorting and a pointer to the actual object. Overlapped
lines (Z-vertices) can be found easily by performing tests within binary trees.

Pointe

Kl<K2<K3&4

Figure 4: Colinear set and Binary tree. Figure (a) shows a horizontal colinear set and
Figure (b) shows the binary tree for the colinear set.

3.2 L, T, and X vertices

Colinear relations are used in setting up the cellular topology using projection. All
colinear sets are projected onto the horizontal axis and the vertical axis, as illustrated
in Figure 5. A cellular structure is built up as an anisotropic grid adapted to the input
drawing.

Figure 5: Projection and Cellular Structure. Figure (a) shows a circuit and the projec-
tion of the pipes (colinear sets) onto the horizontal axis. Figure (b) shows the stacks
of lines produced by vertical projection. Figure (c) shows the partial cellular structure.
A full cellular structure is constructed using both vertical and horizontal projections.
Note that line segment 0 is linked to line segment 1 by colinearity.

As shown in Figure 3, two vectors may intersect at the endpoint of one (T-vertex),
at endpoints of both (L-vertex), or at the interior of both (X-vertex). To find L-vertices,
T-vertices, and X-vertices, searches in the cellular structure are performed.

As an example, the L-vertex formed by line segments 3 & 4 in Figure 5 can be found
by performing two searches in the cellular structure. First, use the x coordinate of the
right endpoint of line segment 3 as a key to search the stacks shown in Figure 5 (c),
and locate the stack (1 3 4 5). Second, use the y coordinate of the right endpoint of
line segment 3 as a key to search the stack (1 3 4 5) to find out that line segment 4
is connected to line segment 3. The overall computational cost is very low compared
to brute force searches. Note that the data structures used for searching are RB-trees,
which greatly facilitate the computations.

T-vertices, and X-vertices are found in a similar fashion. The computational cost
is slightly higher for these vertices because we may need to perform searches in several
stacks to find a vertex.

4 Graphic Interpretation

It would be possible to recognize graphic symbols by brute force model-based methods
that match each component model in the database with each set of the corresponding
number of vectors in the drawing. This approach would have the complexity:

where N, is the average number of component models in a P&ID drawing, Nu is the
number of vectors in the drawing and mu is the number of vectors in the component
model. A typical drawing such as the one shown in Figure 1 may consist up to 5,000
vectors, contain up to 100 component types and, on the average, has 6 vectors per
component model. The complexity is about 2 * 1021 model matches. We decided from
the start that a brute-force method was computationally unacceptable. Such a method
is also not useful because it does not identify relations among symbols that could be used
for classification, e.g., in a specific valve class1. It does not indicate which vectors and
symbols form a component when the component is unknown. The scientific approach
chosen results in roughly a factor of 1019 fewer model matches.

The issues mentioned above motivate synthesizing a generic component hypothesis
generator. Its objective is to generate hypotheses about the classes of components that
best fit a cluster of vectors. Generic hypothesis generation will be especially important
in learning new components and structures. The class definition also describes relations
among classes and thus can be used to establish relations among hypotheses. The func-
tional concept of input and output ports (flanges) was used to delineate components as
connected vectors bounded by ports (see Figure 6(a)). The ACV graph for components
is the area-curve-vertex graph of areas bounded by the connected vectors in a compo-
nent (see Figure 6(b)). The ACV graph is a hierarchical description of graphic symbols
as a structured network. ACV graphs are the basis for the database hierarchy and for
symbol recognition.

The database is structured as a hierarchy with topological constraints first, then
geometric constraints (see Figure 7). Areas are considered before vectors. The descrip-
tors are: the number of ports, number of areas, shape of areas, orientation relationship
between areas, and connectivity of vectors. These descriptors are computed from ACV
graphs directly.

Symbol recognition is the equivalent of finding subgraph isomorphisms which is
known to be NP-complete. Various methods have been proposed for matching graphs;
most of them match planar graphs with no specific structures to a flat database of
graphs. In other words, the graph being matched is compared to every graph in their
databases, and the best match is then found according to some metric of closeness.
Although those methods have some applications, their performance is not totally sat-
isfactory. Those methods also do not provide a learning mechanism.

w e make use of similarities in valves to make a class hierarchy of valves. Similar class hierarchies
are constructed for other component types.

Valve

A pair of flanges Associated Vectors
(a)

Figure 6: Generic Component Hypothesis Generation. Figure 6(a) shows a pair of
flanges and associated vectors that constitute the graphic symbol of a valve. The pair
of flanges, corresponding to the 110 ports of the valve symbol, is used as a strong
evidence for generic component hypothesis generation. Figure 6(b) is the ACV(Area-
Curve-Vertex) geometric description of the valve symbol.

In our approach, the hierarchical class definitions of similar objects greatly facili-
tate the symbol recognition process; symbol recognition is achieved by traversing the
database hierarchy according to the topological and geometric constraints (computed
from the ACV graphs) of the graphic symbols being matched. At least as important,
in developing the GUI and in the future implementation of learning, the ACV graph
of a newly observed component hypothesis is a new instance to be inserted into the
model database of graphic symbols. Thus, the learning system will present the user
with a component that belongs in a certain place in the hierarchy, e.g., a valve of some
unknown type, similar to a known valve.

The focus of this work is to exploit the structures of graphs to enable reliable and
efficient graph matching. If these were completely general graphs without domain
knowledge and without topology and geometry of symbols, the recognition and learning
problems would be extremely expensive computationally. In particular, ACV graphs are
used instead of general, planar graphs. When constructing the database, symbols are
inserted into the database hierarchy according to their ACV graphs. When matching
an unknown symbol to the database, the database hierarchy is traversed according to

the ACV graph of the unknown symbol.

4.1 Automatic Construction of Unidentifiable Components in
the Database

Even though the data structure for most of the known components can be established
manually, unidentifiable symbols are still encountered in practice. This situation oc-
curs relatively frequently in day-to-day industrial applications where drafting personnel
may simply add a "new" symbol for convenience. Another issue is that manually con-
structing a database for an application containing very large number of components
can be very time consuming. For a system to accomplish the full function of converting
legacy unintelligent documentation to an intelligent model, the system must provide
mechanisms to make adding a substantial number of new symbols easy. Substantial
progress has been made in implementing that facility. A semi-automated procedure has
been developed to construct the topological and geometric structures of unidentifiable
components (i.e., symbols that are not known in the database) and to store the data
structure in the database.

The basic procedure for each graphic symbol to be added to the database can be
summarized as follows:

1. Delineate the symbol hypothesis.

2. Compute the ACV graph.

3. For each of the areas (subgraphs)
compute the shape
compute the size
compute the order

End

4. For each of the curves
record its type

End

5 . For each of the vertices
compute the degree of the vertex
compute geometric relations of vectors at the vertex
(e.g., two vectors are incident at a vertex and form a right angle)

End

6. Compute relations of the areas(e.g., two areas may share a common
vertex or a common vector (edge)).

7. Create a database class instance and build a path from the root
of the hierarchy to the instance. (A path has segments that
correspond to the topology and geometry of the symbol being
added to the database hierarchy (see Figure 7).)

root

%.
root

t

i
I %

topological
I \ constraints

i ,
intermediate f--

t class instances \\ ,
i ,

, ,

/
7 constraints

,

d b
database hierarchy

d
a class intsance

Figure 7: Left shows a class hierarchy; right shows a path in the hierarchy. Note that
the nodes correspond to class instances and the arcs correspond to topological and
geometric constraints.

A symbol is a graph consisting of a set of vertices and a set of vectors (edges) that
connect them. The number of vectors is called "size", and the number of vertices is
called "order". A vertex can be characterized by the number of incident vectors (degree)
and a vector can be associated with its type (e.g., a line segment, a circular arc, or a
circle).

The sizes and orders of areas (subgraphs) are used in building the first few segments;
then, the relations among the areas are used in the following segments. Note that these
segments characterize the topology of the graphic symbol being added; graphic symbols
that share this set of segments are isomorphic to each other. In order to distinguish
graphic symbols further, the geometric constraints of symbols (e.g., shapes of areas) are
used.

The procedure used above requires minimal interaction by an user. Step 2 - Step
6 are executed automatically. In Step 1, the users only need to select a cluster of
vectors using mechanisms provided by the GUI, and enter class name (and functional
descriptions) of the symbol being added.

4.2 Symbol Recognition

Symbol recognition is achieved by generating symbol hypotheses and traversing the
database hierarchy to find the best matches. Hypothesis generation amounts to seg-
menting out a few vectors that possibly constitute a symbol, from a sea of vectors.
For example, a symbol hypothesis can be a cluster of vectors bounded by a pair of
T-vertices (flanges). The purpose of hypothesis generation is to avoid the need of brute-
force matching, matching all database model symbols against all tuples of vectors in

the diagram.
The symbol recognition procedure can be summarized as follows:

1. Generate generic component hypothesis.

2. Compute the ACV graph.

3. Perform Steps 3 to 6 of the symbol construction procedure as
described in the previous section.

4. Traverse the database hierarchy using the topological and
geometric information for a cluster of vectors established in
Step 3.

5 . Report a match or partial matches.

Note that the entire hierarchy is the space we seek to find a match. In the recognition
process, each segment (of a path) in the hierarchy prunes the search space further, such
that the search space becomes smaller and smaller as the recognition process proceeds.

The recognition strategy is fast because only a few class instances are actually
compared to the hypothesis being matched. Topological constraints eliminate symbols
that are not likely to match. The computational cost for topology checking is low.
Geometric constraints differentiate isomorphic symbols and give the best match. If
a full match cannot be found, partial matches are returned. For partial matches or
unidentified symbols, user interaction is needed to update the database as described
in the previous section. After the database is updated, the recognition procedure is
invoked again.

5 Interpretation of Text and Annotation

Text and annotations carry attributes of components, e.g., the size of a pipe. Text
and annotations are fundamental for reasoning about functions of components and
subsystems in an intelligent P&ID. Three operations are essential in interpretation of
text and annotation: 1) translation of text symbols; 2) interpretation of annotation
symbols; 3) assignment of text and annotation to graphic components or subsystems.
We have obtained an ANSI spec for instrumentation drawings[7]. A special parser and
translator is being constructed for instrumentation and components.

Annotation symbols are interpreted using the same mechanism as interpretation of
graphic symbols. Assignment of annotation to graphic components combines interpre-
tation of annotation symbols with geometric information from the text string. Text can
be in-line with, aligned with, enclosed in, above or below a graphic symbol. Annotation
symbols point to or indicate graphic symbols (see Figure 8). Presently, the system
automatically generates a bounding box to enclose each text annotation on a drawing.
A semantic based (natural language) parser will be developed to interpret the text and
attached the interpreted results as attribute information of the "intelligent objects."

In line: - Cooling -
Aligned: - Process Water Return

Enclosed:

UV STERILIZER

Above:

Below:

PCWP-1

Text
connector: +G' pcv15

Figure 8: Texts and Graphic symbols. Text can be associated with graphic symbols
in various ways as shown above. Annotations allow higher level systems to interpret
functionalities of P&ID components and systems and also enable the linking of multiple
sheets into a logically unified drawing.

6 Results and An Illustrative Example

The following provides an example to illustrate the capabilities of the prototype
system. The example drawing is shown in Figure 9 which represents a portion extracted
from the sheet shown in Figure 1. Figure 10(a) shows the legend sheet showing the
symbols in the existing database for this illustration. The results are shown in Figure
10(b), where the solid lines show all the identified symbols and the dashed lines show
the symbols that are not yet identifiable.

As described in the previous section, a GUI has developed that can be used to allow
the user to automatically construct the topological and geometric structure of a symbol
or component. First, the user can simply put a bounding box around an unidentifiable
symbol, which is then displayed as shown in Figure 11. With the GUI as shown in
the figure, the user can then add the necessary information about this new symbol.
Once the user defined information is completed, the new symbol can be added to the
database; Figure 12(a) shows the legend of the updated database, which includes the
new symbol. Also, the system can point out where the new symbol fits in the component
hierarchy, simplifying the effort of the user.

Finally, the user can now apply the new component database to the drawing. The
results are displayed as shown in Figure 12(b). Note that all the instances of the new
symbol are identified using the new database. This illustrative example clearly shows
that the "learning" mechanism can be established through the semi-automated symbol
construction process described earlier.

&-- - HOSE

Figure 9: A portion extracted from the sheet shown in Figure 1. All symbols are shown
in dashed lines to indicate that they are CAD vectors to be interpreted.

7 Functional Interpretation and Applications

The output from our graphic interpretation phase is a list of all recognized symbols and
their immediate connectivity. We use this information to generate a single symbolic
model of the process plant, as interpreted from the input drawings.

7.1 STEP Format

We use the emerging STEP standard, Application Protocol #227[5], as a language for
our output model. Note that AP227 is a geometry standard, not the P&ID standard
AP221. (AP 221 is yet to be adopted as IS0 standard. Our results can be immediately
translated into AP221 format when it becomes available.) Other output formats (JS-
PACE) have been implemented to connect the intelligent model to analysis and design
tools. It has required modest effort to implement outputs to these standards. The intel-
ligent diagram model facilitates translation into various standard outputs. In a similar
way, electrical diagrams can be translated into appropriate IETM or other standard
formats. Thus, our interpretation system can interface with many end-user tools, since
STEP is being adopted worldwide as a single standard for the electronic exchange of

I -- (TYF ij
Z HOSE

Figure 10: (a) All the symbols in the database are shown. A database can be created
from legend sheets by the interaction of users with a GUI. (b) All the identified symbols
are shown in solid lines. The four pumps are not identified and are shown in dashed
lines.

product and process information.

7.2 Applied Engineering Knowledge

While our graphic interpretation engine can identify plant component symbols and
their connectivity from the input drawing, it does not perform any interpretation of
the input P&ID using engineering knowledge. To detect drawing errors such as missing
components, inconsistent attribute annotations, and impossible system configurations,
we export our interpreted model into the PlantSpace system developed by Jacobus, Inc.

[GI
This system provides us with a CAD-based interface for interactive connection of

multiple P&IDs, beneath which the system maintains the required links between the
various symbolic models interpreted for each sheet. This requires that we use the
proprietary PlantSpace model format in addition to the open STEP standard. As
STEP has yet to be assimilated into the major plant companies information systems,

Figure 11: With the GUI, the user can put a bounding box around an unidentifiable
symbol (the pump symbol in this case), type in necessary information about this new
symbol, and then add it to the database.

the popularity of the PlantSpace system ensures that we have a platform for direct
transfer of interpreted models into state of the art industrial software environments.

In addition to providing a means of linking multiple P&ID sheets, the PlantSpace
system has an inference engine with which we can implement various rules to detect
drawing errors. We have already detected two inconsistencies in a drawing. Figure
14 shows an example of a P&ID that we have encountered in an industrial drawing,
in which there are annotation inconsistencies for both the pipe diameter attribute of
the particular pipe line, and for the flow direction indicators. High level engineering
knowledge about the system is needed to detect such logical errors in the input drawing.

8 Conclusion and Future Work

In earlier work, we demonstrated the feasibility of computer interpretation of P&IDs[4].
We have since improved the interpretation process by developing a more generic and
robust methodology, which achieves a high success rate of symbol recognition for a
single, typical industrial P&ID. In addition, a GUI was used to make easy constructing
a component database and dealing with unidentifiable components. The output of the
graphic interpretation was then used to generate a symbolic model for the process plant.

The effect of uncertainty in measurements and ambiguity in notation must be taken
into account by a coherent decision process. In dealing with scanned vectors from paper
diagrams, errors are appreciable and enter into the decision process. In annotation,
functional evidence, and circuit level interpretation, multiple ambiguous evidence must
be integrated. Traditionally, Bayesian inference has been the well-founded basis for
decision under uncertainty. There have been a series of theoretical papers showing that
Bayesian probability is a unique, well-founded calculus for decision.

The ACV and the object hierarchy are a network of topological, geometric, and
functional relations (physical and engineering). Those relations combined with uncer-
tainty in measurement and ambiguity in reference form a network of uncertain relations
or constraints. In the SUCCESSOR system[3] at Stanford, we have translated such re-
lations automatically into Bayesian networks solved by standard solvers. In general,
constraints on the ACV translate one-one into Bayes nets. We have models for the

Figure 12: (a) After the user defined information is completed, the pump symbol is
added to the database. (b) All the instances of the new symbol (the four pumps in this
case) are identified using the new database.

uncertainties in the ACV induced by measurement uncertainties. In the course of the
research, we will formulate a core of physical and engineering models that facilitate
interpretation of annotation and text and that supply implied information. Thus, there
is an automatic mechanism for globally consistent comprehension.

Acknowledgments

We wish to thank Intel and Bechtel Corporations for providing us with several P&IDs.
We also gratefully acknowledge the support of Stanford University's Center for Inte-
grated Facilities Engineering which funded this research.

References

[:I] AutoCAD Release 12 (1993), Advanced Tools Manual, Chapter 6, Autodesk Inc.

Figure 13: The CAD-based interface of the PlantSpace system is shown. To utilize
the applied engineering knowledge, our interpreted model is fed into the PlantSpace
system.

Figure 14: High level engineering knowledge to detect logical errors in the input drawing.

[2] Cormen T.H., Leiserson C .E., Rivest R.L., "Introduction to Algorithms" , MIT
Press, McGraw-Hill, 1990

[3] Binford T., Levitt T., Mann W., "Bayesian Inference in Model-Based Machine Vi-
sion", Uncertainty in Artificial Intelligence, Elsevier Science Publishers B. V., 1989

[4] Howie C., Kunz J.C., Binford T., Chen T . and Law K.H., "Computer Interpreta-
tion of Process and Instrumentation Drawings", Developments in Computer Aided
Design and Modeling for Civil Engineering, 13-20, CIVIL-COMP PRESS 1995, Ed-
inburgh, UK

[5] Exchange of Spatial Configuration Information of Process Plants, IS0 10303

[6] JSpace Technology Overview, Jacobus Techonology Inc.

[7] The International Society for Measurement and Control, ANSI/ISA-S5.1-1984 (R
1992)

