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1 Abstract: 

This report describes a prototype system that interprets Process and Instrumentation 
Diagrams (P&IDs). The system takes a P&ID in a vector CAD file in DXF format 
and produces an intelligent P&ID model that has symbolic interpretations for system 
components (e.g., check valve, pumps, etc.) and symbolic attributions (cold water, 
propane, etc.). 

The system finds structure among vectors, recognizes graphic symbols as physical 
components from a database of components (e.g., valves), interprets annotations that 
assign text to  graphic symbols. Representation of diagrams is a hierarchy of classes 
based on cellular topology and geometry (the Area-Curve-Vertex graph (ACV)) at the 
symbol level. Presently, there are about 100 graphic symbols in the database. 

The system has recognized 95% of covered graphic symbol instances for a full 
page of an industrial drawing, with 89% of graphic symbol instances covered (in the 
database). A drawing with 5,000 vectors required 20 minutes on an SGI Indy 4400SC 
(approximately 10% faster than a P5  100MHz on SPECint92). For symbols that are 
not yet in the database, a "learning" mechanism and a GUI is being developed to  
construct the ACV data structure of the unknown symbol. 

2 Subject: 

What is the report about in laymen's terms? Turning vector CAD P&IDs 
into symbolic models. 

What are the key ideas or concepts investigated? Representation of sym- 
bol geometry, effective symbol recognition, computational complexity feasible for 
industrial applications. 



What is the essential message? A theoretical-based scalable interpretation 
system has been developed. The system is effective, feasible, and promising for 
short-term exploitation. 

Why did CIFE fund this research? IAB mentioned this as one important 
problem. 

What benefits does the research have to CIFE members? Possible 
near-term applications of the prototype for drawing interpretation, demonstra- 
tion of success in automated P&ID interpretation, dealing with legacy drawings, 
compliance with as-built, retrofitting, interpretation of vectorized drawing with 
symbolic models. 

What is the motivation for pursuing the research? Value of applications, 
technical interest and challenge. 

What did the research attempt to  prove/disprove or explore? The 
problem was originally thought t o  be too difficult; there had been expensive fail- 
ures by the industry. Our research demonstrates effective geometric computation 
for a broad class of diagrams. 

4 Methodology: 

How was the research conducted? 
Phase I: feasibility demonstration - on the order of 10 symbols. Phase 11: a 
prototype system - on the order of 100 symbols (including the development of 
a "learning" mechanism for the identification of unknown symbols). Phase 111: 
scale-up. 

Did the investigation involve case studies, computer models, or some 
other method? An industrial, typical, single-sheet P&ID was used for the in- 
vestigation. A theoretical class hierarchy based on previous work was developed 
for the representation of graphic symbols. 

5 Results: 

What are the major findings of the investigation? The approach is well- 
founded, very successful, and extensible. 

What outputs were generated? A conference paper, a journal article (ac- 
cepted), and a software prototype. 

6 Research Status: 

What is the status of the research? Seeking funding to  continue develop- 
ment and to  link with other applications. 



What is the logical next step? Develop industrial prototype, add further 
capabilities (i.e., learning new and unusual symbols). 

Are the results ready to be applied or do they need further develop- 
ment? The results so far are ready for initial productizing. 

What additional efforts are required before this research could be 
applied? Build a product and develop a pilot project to exploit and aid in 
productizing. 
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1 Introduction 

Process and Instrumentation diagrams (P&IDs) describe the components of a plant and 
their logical connectivity. Figure 1 shows one sheet of a representative P&ID. Some 
lines represent pipes. Clusters of vectors indicate components, e.g., valves and pumps. 
Some of the graphic symbols are annotated with text and symbols, e.g., to indicate 
sizes of pipes and valves or functions of elements. A P&ID for a large process plant 
may include 100-1000 sheets. A small fraction of new designs are made in intelligent 
P&ID design systems (said to be I%), but the bulk of new and existing designs may 
be made with non-intelligent CAD format. There is also a legacy of P&ID designs on 
paper only. The motivation for interpretation of P&IDs is to build intelligent, symbolic 
P&IDs for automated analysis, in support of retrofitting, for maintenance, for as-built 
specification, and for compliance with regulations. 

Across the spectrum of P&IDs, we expect there are typically a few hundred symbols 
that occur frequently, a similar number that occur infrequently in many P&IDs, and a 
few special symbols that are non-standard and may occur only in an individual drawing. 
We have implemented and tested a powerful mechanism to accommodate most of these 
symbols: generic representation of symbols, generation of generic symbol hypotheses, 
and a structured symbol database. We have made an effective implementation that was 
supported by a hierarchical class representation based on cellular topology. 

Figure 2 shows the plant composition model that represents structures throughout 
a process plant multi-sheet drawing. Each arc in the figure represents an interpretation 
step. Thus, for example, given a set of vectors, Step 2 of the interpretation process 
identifies the geometric structure and annotation text. The hierarchy of levels in the 
plant model covers symbolic, functional levels and geometric, graphic levels. Levels up 
through identification of components and assignment of annotation are more or less 
local and graphic in that they deal with information that is local in the diagram or 
implicit in conventions. Levels from circuits and up are non-local in that they deal with 
interpretations that are transmitted along connected components and pipes, potentially 



Figure 1: One sheet of a Representative Industrial Process and Instrumentation Dia- 
gram (P&ID). Most lines on the drawing represent symbols for plant components or 
pipes connecting components; some lines are part of text annotations, and others divide 
the drawing visually into logical sections. 

over large parts of the diagram. These levels deal with constructs that are functional, 
e.g., chilled water subsystem. 

The P&ID interpretation system accepts a vector-based representation of a P&ID. 
The system has a generic database that represents defined components in terms of ar- 
eas, curves and vertices (ACV). The system analysis methods first create an ACV data 
structure for a set of input vectors; then hypothesize components that may fit the data; 
and finally, match the input ACV with the hypothesized ACV's to find the component 
definitions that best fit the data. The resulting symbolic plant model represents the 
identified components (i .e., pipes, valves, pumps), their connectivity (i.e., pipe connec- 
tions) and their identifiable attributes (e.g., dimensions, constituent fluids) that can be 
identified as annotations in the original P&ID drawing. 
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Figure 2: Plant Composition Model and Examples. The plant composition model is 
used to represent a process plant. The different levels in the model are conceptually 
part of the geometric model or symbolic model. The geometric model is used to facili- 
tate graphic interpretation (vector-to-symbol recognition). The symbolic model enables 
functional interpretation of P&IDs. 

2 Status 

The system now analyzes full, single sheets of P&IDs. A user defines connections be- 
tween sheets interactively using a GUI. An input parser reads DXF files to extract 
entities and blocks. A display utility renders entities and blocks with pan and zoom. A 
module determines colinear relations among vectors that determine redundant, overlap- 
ping vectors that are very common; the module also determines colinear relations across 
gaps. A cellular topology structure is constructed after determining intersections be- 
tween vectors, i.e. , L, T, and X vertices. From intersections, areas, curves, and vertices 
are linked in an ACV graph that defines the cellular topology of hypotheses. A generic 
hypothesis generation mechanism determines clusters of vectors that are hypotheses for 
components. The database of component symbols is structured in a hierarchy based on 
the ACV. Recognition is done by comparing the ACV of the component hypothesis to 
the component model. Joints are added for later use. 



Annotations are analyzed in a similar way. Annotation graphic symbols are struc- 
tured in an ACV graph for recognition. Annotation graphic symbols and bounding box 
of text strings are used to assign text to component symbols, i.e., pipes, valves, etc. 
Parsing and interpretation of text is underway for instruments and components. 

Two phases of development efforts have been demonstrated. A Phase 1 demonstra- 
tion (feasibility) was done with a handful of components on a small part of a diagram. 
A Phase 2 demo was done with a full sheet from an industrial P&ID to demonstrate 
scaling up of the algorithms. The test was realistic in that it was a real P&ID. The 
graphic symbol database has about 100 symbols including component symbols and an- 
notation symbols. Some statistical analysis of drafting in the test P&ID were used 
to make decisions about hypotheses and about computational complexity. The test 
diagram has about 5,000 vectors, with 356 symbol instances in 41 symbol classes. Of 
those symbol classes, 30 are covered in the symbol database and 318 (i.e., about 89%) 
symbols are covered instances. Of those covered symbol instances, 302 were recognized, 
i.e., 95% recognition of covered symbol instances. Overall recognition was 85% of all 
symbol instances. The system is developed in Allegro Common Lisp (with no decla- 
rations) on an SGI Indy R4400SC (150MHz) with performance about 92 SPECint92. 
The interpretation takes about 20 minutes. The efficiency can certainly be improved 
dramatically as we are continuing development of new algorithms and improving the 
implementation. For symbols that are not yet in the database, a "learning" mechanism 
is being developed to construct the ACV data structure of the unknown symbol. 

Establishing Geometric Structure 

A P&ID diagram contains a large number of vectors. The first task is to find relations 
among vectors such as colinearity and intersection. 

For computational complexity reasons, it is useful to find colinear relations among 
vectors. At vector level (see Figure 2), colinear relations establish redundant, overlap- 
ping vectors (2-vertices) (see Figure 3) which occur frequently with input and output 
pipes in a block overlapping pipes connecting components, and with the same vector 
occurring in multiple layers. At component level, a pair of colinear opposed T-vertices 
often corresponds to the 110 ports (see Figure6(a) for example) of a component and 
is used as a strong evidence for generic component hypothesis generation. At circuit 
level, cascading components are often connected by colinear pipes. 

In the next step, colinear sets of vectors are used to build a cellular structure, which 
allows us to find L-vertices, T-vertices, and X-vertices efficiently. 

3.1 Colinear Relations 

P&IDs have predominantly horizontal and vertical vectors, but there are also vectors at 
various other angles. In some diagrams, a part of the drawing is set at an angle to give 
intuition about the setting in the plant. For computational efficiency, it is valuable to 
give preferential treatment to horizontal and vertical vectors, but the mechanism must 



Figure 3: L-vertex, T-vertex and X-vertex. These are the four categories of connections 
commonly found in P&IDs. 

treat relations among vectors at all angles. 
We map vectors into colinear sets of horizontal, vertical, and other orientations. 

Colinear sets are stored as RB trees which are balanced binary trees with color on each 
node to ensure tree balancing[2]. Figure 4 (a) shows a horizontal colinear set of four 
line segments. The coordinates of the left endpoints are used as keys for sorting. Note 
that L1 and L2 are overlapped. Figure 4 (b) shows the binary tree for the colinear set. 
Each node contains a key for sorting and a pointer to the actual object. Overlapped 
lines (Z-vertices) can be found easily by performing tests within binary trees. 

Pointe 

Kl<K2<K3&4 

Figure 4: Colinear set and Binary tree. Figure (a) shows a horizontal colinear set and 
Figure (b) shows the binary tree for the colinear set. 

3.2 L, T, and X vertices 

Colinear relations are used in setting up the cellular topology using projection. All 
colinear sets are projected onto the horizontal axis and the vertical axis, as illustrated 
in Figure 5. A cellular structure is built up as an anisotropic grid adapted to the input 
drawing. 



Figure 5: Projection and Cellular Structure. Figure (a) shows a circuit and the projec- 
tion of the pipes (colinear sets) onto the horizontal axis. Figure (b) shows the stacks 
of lines produced by vertical projection. Figure (c) shows the partial cellular structure. 
A full cellular structure is constructed using both vertical and horizontal projections. 
Note that line segment 0 is linked to line segment 1 by colinearity. 

As shown in Figure 3, two vectors may intersect at the endpoint of one (T-vertex), 
at endpoints of both (L-vertex), or at the interior of both (X-vertex). To find L-vertices, 
T-vertices, and X-vertices, searches in the cellular structure are performed. 

As an example, the L-vertex formed by line segments 3 & 4 in Figure 5 can be found 
by performing two searches in the cellular structure. First, use the x coordinate of the 
right endpoint of line segment 3 as a key to search the stacks shown in Figure 5 (c), 
and locate the stack (1 3 4 5). Second, use the y coordinate of the right endpoint of 
line segment 3 as a key to search the stack (1 3 4 5) to find out that line segment 4 
is connected to line segment 3. The overall computational cost is very low compared 
to brute force searches. Note that the data structures used for searching are RB-trees, 
which greatly facilitate the computations. 

T-vertices, and X-vertices are found in a similar fashion. The computational cost 
is slightly higher for these vertices because we may need to perform searches in several 
stacks to find a vertex. 



4 Graphic Interpretation 

It would be possible to recognize graphic symbols by brute force model-based methods 
that match each component model in the database with each set of the corresponding 
number of vectors in the drawing. This approach would have the complexity: 

where N, is the average number of component models in a P&ID drawing, Nu is the 
number of vectors in the drawing and mu is the number of vectors in the component 
model. A typical drawing such as the one shown in Figure 1 may consist up to 5,000 
vectors, contain up to 100 component types and, on the average, has 6 vectors per 
component model. The complexity is about 2 * 1021 model matches. We decided from 
the start that a brute-force method was computationally unacceptable. Such a method 
is also not useful because it does not identify relations among symbols that could be used 
for classification, e.g., in a specific valve class1. It does not indicate which vectors and 
symbols form a component when the component is unknown. The scientific approach 
chosen results in roughly a factor of 1019 fewer model matches. 

The issues mentioned above motivate synthesizing a generic component hypothesis 
generator. Its objective is to generate hypotheses about the classes of components that 
best fit a cluster of vectors. Generic hypothesis generation will be especially important 
in learning new components and structures. The class definition also describes relations 
among classes and thus can be used to establish relations among hypotheses. The func- 
tional concept of input and output ports (flanges) was used to delineate components as 
connected vectors bounded by ports (see Figure 6(a)). The ACV graph for components 
is the area-curve-vertex graph of areas bounded by the connected vectors in a compo- 
nent (see Figure 6(b)). The ACV graph is a hierarchical description of graphic symbols 
as a structured network. ACV graphs are the basis for the database hierarchy and for 
symbol recognition. 

The database is structured as a hierarchy with topological constraints first, then 
geometric constraints (see Figure 7). Areas are considered before vectors. The descrip- 
tors are: the number of ports, number of areas, shape of areas, orientation relationship 
between areas, and connectivity of vectors. These descriptors are computed from ACV 
graphs directly. 

Symbol recognition is the equivalent of finding subgraph isomorphisms which is 
known to be NP-complete. Various methods have been proposed for matching graphs; 
most of them match planar graphs with no specific structures to  a flat database of 
graphs. In other words, the graph being matched is compared to every graph in their 
databases, and the best match is then found according to some metric of closeness. 
Although those methods have some applications, their performance is not totally sat- 
isfactory. Those methods also do not provide a learning mechanism. 

w e  make use of similarities in valves to make a class hierarchy of valves. Similar class hierarchies 
are constructed for other component types. 
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Figure 6: Generic Component Hypothesis Generation. Figure 6(a) shows a pair of 
flanges and associated vectors that constitute the graphic symbol of a valve. The pair 
of flanges, corresponding to the 110 ports of the valve symbol, is used as a strong 
evidence for generic component hypothesis generation. Figure 6(b) is the ACV(Area- 
Curve-Vertex) geometric description of the valve symbol. 

In our approach, the hierarchical class definitions of similar objects greatly facili- 
tate the symbol recognition process; symbol recognition is achieved by traversing the 
database hierarchy according to the topological and geometric constraints (computed 
from the ACV graphs) of the graphic symbols being matched. At least as important, 
in developing the GUI and in the future implementation of learning, the ACV graph 
of a newly observed component hypothesis is a new instance to be inserted into the 
model database of graphic symbols. Thus, the learning system will present the user 
with a component that belongs in a certain place in the hierarchy, e.g., a valve of some 
unknown type, similar to a known valve. 

The focus of this work is to  exploit the structures of graphs to enable reliable and 
efficient graph matching. If these were completely general graphs without domain 
knowledge and without topology and geometry of symbols, the recognition and learning 
problems would be extremely expensive computationally. In particular, ACV graphs are 
used instead of general, planar graphs. When constructing the database, symbols are 
inserted into the database hierarchy according to  their ACV graphs. When matching 
an unknown symbol to  the database, the database hierarchy is traversed according to 



the ACV graph of the unknown symbol. 

4.1 Automatic Construction of Unidentifiable Components in 
the Database 

Even though the data structure for most of the known components can be established 
manually, unidentifiable symbols are still encountered in practice. This situation oc- 
curs relatively frequently in day-to-day industrial applications where drafting personnel 
may simply add a "new" symbol for convenience. Another issue is that manually con- 
structing a database for an application containing very large number of components 
can be very time consuming. For a system to accomplish the full function of converting 
legacy unintelligent documentation to an intelligent model, the system must provide 
mechanisms to make adding a substantial number of new symbols easy. Substantial 
progress has been made in implementing that facility. A semi-automated procedure has 
been developed to construct the topological and geometric structures of unidentifiable 
components (i.e., symbols that are not known in the database) and to  store the data 
structure in the database. 

The basic procedure for each graphic symbol to be added to the database can be 
summarized as follows: 

1. Delineate the symbol hypothesis. 

2. Compute the ACV graph. 

3. For each of the areas (subgraphs) 
compute the shape 
compute the size 
compute the order 

End 

4. For each of the curves 
record its type 

End 

5 .  For each of the vertices 
compute the degree of the vertex 
compute geometric relations of vectors at the vertex 
(e.g., two vectors are incident at a vertex and form a right angle) 

End 

6. Compute relations of the areas(e.g., two areas may share a common 
vertex or a common vector (edge)). 

7. Create a database class instance and build a path from the root 
of the hierarchy to the instance. (A path has segments that 
correspond to the topology and geometry of the symbol being 
added to the database hierarchy (see Figure 7).) 
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Figure 7: Left shows a class hierarchy; right shows a path in the hierarchy. Note that 
the nodes correspond to class instances and the arcs correspond to topological and 
geometric constraints. 

A symbol is a graph consisting of a set of vertices and a set of vectors (edges) that 
connect them. The number of vectors is called "size", and the number of vertices is 
called "order". A vertex can be characterized by the number of incident vectors (degree) 
and a vector can be associated with its type (e.g., a line segment, a circular arc, or a 
circle). 

The sizes and orders of areas (subgraphs) are used in building the first few segments; 
then, the relations among the areas are used in the following segments. Note that these 
segments characterize the topology of the graphic symbol being added; graphic symbols 
that share this set of segments are isomorphic to each other. In order to distinguish 
graphic symbols further, the geometric constraints of symbols (e.g., shapes of areas) are 
used. 

The procedure used above requires minimal interaction by an user. Step 2 - Step 
6 are executed automatically. In Step 1, the users only need to select a cluster of 
vectors using mechanisms provided by the GUI, and enter class name (and functional 
descriptions) of the symbol being added. 

4.2 Symbol Recognition 

Symbol recognition is achieved by generating symbol hypotheses and traversing the 
database hierarchy to find the best matches. Hypothesis generation amounts to seg- 
menting out a few vectors that possibly constitute a symbol, from a sea of vectors. 
For example, a symbol hypothesis can be a cluster of vectors bounded by a pair of 
T-vertices (flanges). The purpose of hypothesis generation is to avoid the need of brute- 
force matching, matching all database model symbols against all tuples of vectors in 



the diagram. 
The symbol recognition procedure can be summarized as follows: 

1. Generate generic component hypothesis. 

2. Compute the ACV graph. 

3. Perform Steps 3 to 6 of the symbol construction procedure as 
described in the previous section. 

4. Traverse the database hierarchy using the topological and 
geometric information for a cluster of vectors established in 
Step 3. 

5 .  Report a match or partial matches. 

Note that the entire hierarchy is the space we seek to find a match. In the recognition 
process, each segment (of a path) in the hierarchy prunes the search space further, such 
that the search space becomes smaller and smaller as the recognition process proceeds. 

The recognition strategy is fast because only a few class instances are actually 
compared to the hypothesis being matched. Topological constraints eliminate symbols 
that are not likely to match. The computational cost for topology checking is low. 
Geometric constraints differentiate isomorphic symbols and give the best match. If 
a full match cannot be found, partial matches are returned. For partial matches or 
unidentified symbols, user interaction is needed to update the database as described 
in the previous section. After the database is updated, the recognition procedure is 
invoked again. 

5 Interpretation of Text and Annotation 

Text and annotations carry attributes of components, e.g., the size of a pipe. Text 
and annotations are fundamental for reasoning about functions of components and 
subsystems in an intelligent P&ID. Three operations are essential in interpretation of 
text and annotation: 1) translation of text symbols; 2) interpretation of annotation 
symbols; 3) assignment of text and annotation to graphic components or subsystems. 
We have obtained an ANSI spec for instrumentation drawings[7]. A special parser and 
translator is being constructed for instrumentation and components. 

Annotation symbols are interpreted using the same mechanism as interpretation of 
graphic symbols. Assignment of annotation to graphic components combines interpre- 
tation of annotation symbols with geometric information from the text string. Text can 
be in-line with, aligned with, enclosed in, above or below a graphic symbol. Annotation 
symbols point to or indicate graphic symbols (see Figure 8). Presently, the system 
automatically generates a bounding box to enclose each text annotation on a drawing. 
A semantic based (natural language) parser will be developed to interpret the text and 
attached the interpreted results as attribute information of the "intelligent objects." 
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Figure 8: Texts and Graphic symbols. Text can be associated with graphic symbols 
in various ways as shown above. Annotations allow higher level systems to interpret 
functionalities of P&ID components and systems and also enable the linking of multiple 
sheets into a logically unified drawing. 

6 Results and An Illustrative Example 

The following provides an example to illustrate the capabilities of the prototype 
system. The example drawing is shown in Figure 9 which represents a portion extracted 
from the sheet shown in Figure 1. Figure 10(a) shows the legend sheet showing the 
symbols in the existing database for this illustration. The results are shown in Figure 
10(b), where the solid lines show all the identified symbols and the dashed lines show 
the symbols that are not yet identifiable. 

As described in the previous section, a GUI has developed that can be used to allow 
the user to automatically construct the topological and geometric structure of a symbol 
or component. First, the user can simply put a bounding box around an unidentifiable 
symbol, which is then displayed as shown in Figure 11. With the GUI as shown in 
the figure, the user can then add the necessary information about this new symbol. 
Once the user defined information is completed, the new symbol can be added to the 
database; Figure 12(a) shows the legend of the updated database, which includes the 
new symbol. Also, the system can point out where the new symbol fits in the component 
hierarchy, simplifying the effort of the user. 

Finally, the user can now apply the new component database to the drawing. The 
results are displayed as shown in Figure 12(b). Note that all the instances of the new 
symbol are identified using the new database. This illustrative example clearly shows 
that the "learning" mechanism can be established through the semi-automated symbol 
construction process described earlier. 
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Figure 9: A portion extracted from the sheet shown in Figure 1. All symbols are shown 
in dashed lines to indicate that they are CAD vectors to be interpreted. 

7 Functional Interpretation and Applications 

The output from our graphic interpretation phase is a list of all recognized symbols and 
their immediate connectivity. We use this information to generate a single symbolic 
model of the process plant, as interpreted from the input drawings. 

7.1 STEP Format 

We use the emerging STEP standard, Application Protocol #227[5], as a language for 
our output model. Note that AP227 is a geometry standard, not the P&ID standard 
AP221. (AP 221 is yet to be adopted as IS0 standard. Our results can be immediately 
translated into AP221 format when it becomes available.) Other output formats (JS- 
PACE) have been implemented to connect the intelligent model to analysis and design 
tools. It has required modest effort to implement outputs to these standards. The intel- 
ligent diagram model facilitates translation into various standard outputs. In a similar 
way, electrical diagrams can be translated into appropriate IETM or other standard 
formats. Thus, our interpretation system can interface with many end-user tools, since 
STEP is being adopted worldwide as a single standard for the electronic exchange of 
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Figure 10: (a) All the symbols in the database are shown. A database can be created 
from legend sheets by the interaction of users with a GUI. (b) All the identified symbols 
are shown in solid lines. The four pumps are not identified and are shown in dashed 
lines. 

product and process information. 

7.2 Applied Engineering Knowledge 

While our graphic interpretation engine can identify plant component symbols and 
their connectivity from the input drawing, it does not perform any interpretation of 
the input P&ID using engineering knowledge. To detect drawing errors such as missing 
components, inconsistent attribute annotations, and impossible system configurations, 
we export our interpreted model into the PlantSpace system developed by Jacobus, Inc. 

[GI 
This system provides us with a CAD-based interface for interactive connection of 

multiple P&IDs, beneath which the system maintains the required links between the 
various symbolic models interpreted for each sheet. This requires that we use the 
proprietary PlantSpace model format in addition to the open STEP standard. As 
STEP has yet to be assimilated into the major plant companies information systems, 



Figure 11: With the GUI, the user can put a bounding box around an unidentifiable 
symbol (the pump symbol in this case), type in necessary information about this new 
symbol, and then add it to the database. 

the popularity of the PlantSpace system ensures that we have a platform for direct 
transfer of interpreted models into state of the art industrial software environments. 

In addition to providing a means of linking multiple P&ID sheets, the PlantSpace 
system has an inference engine with which we can implement various rules to  detect 
drawing errors. We have already detected two inconsistencies in a drawing. Figure 
14 shows an example of a P&ID that we have encountered in an industrial drawing, 
in which there are annotation inconsistencies for both the pipe diameter attribute of 
the particular pipe line, and for the flow direction indicators. High level engineering 
knowledge about the system is needed to detect such logical errors in the input drawing. 

8 Conclusion and Future Work 

In earlier work, we demonstrated the feasibility of computer interpretation of P&IDs[4]. 
We have since improved the interpretation process by developing a more generic and 
robust methodology, which achieves a high success rate of symbol recognition for a 
single, typical industrial P&ID. In addition, a GUI was used to make easy constructing 
a component database and dealing with unidentifiable components. The output of the 
graphic interpretation was then used to generate a symbolic model for the process plant. 

The effect of uncertainty in measurements and ambiguity in notation must be taken 
into account by a coherent decision process. In dealing with scanned vectors from paper 
diagrams, errors are appreciable and enter into the decision process. In annotation, 
functional evidence, and circuit level interpretation, multiple ambiguous evidence must 
be integrated. Traditionally, Bayesian inference has been the well-founded basis for 
decision under uncertainty. There have been a series of theoretical papers showing that 
Bayesian probability is a unique, well-founded calculus for decision. 

The ACV and the object hierarchy are a network of topological, geometric, and 
functional relations (physical and engineering). Those relations combined with uncer- 
tainty in measurement and ambiguity in reference form a network of uncertain relations 
or constraints. In the SUCCESSOR system[3] at Stanford, we have translated such re- 
lations automatically into Bayesian networks solved by standard solvers. In general, 
constraints on the ACV translate one-one into Bayes nets. We have models for the 



Figure 12: (a) After the user defined information is completed, the pump symbol is 
added to the database. (b) All the instances of the new symbol (the four pumps in this 
case) are identified using the new database. 

uncertainties in the ACV induced by measurement uncertainties. In the course of the 
research, we will formulate a core of physical and engineering models that facilitate 
interpretation of annotation and text and that supply implied information. Thus, there 
is an automatic mechanism for globally consistent comprehension. 
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