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1. Abstract: Brief Summary of Research Objectives and Results: 

A significant development in computing in the 1990s has been the move toward more distributed 
computer systems through network communication facilities. Software interoperability has 
become a major issue for organizations wishing to take advantage of private and open distributed 
computing facilities. Software interoperability technologies seek to smooth the integration of 
both legacy and new applications, even on heterogeneous hardware and software platforms. This 
report summarizes the significant issues and terminology used in the field of software 
interoperability, presents a range of diverse systems and methodologies used to integrate 
knowledge among programs, and concludes with a new view of interoperability and a novel way 
of addressing it. 



2. Subject: 

What is the report about in laymen's terms? Information Technologies (IT) that enable 
computer programs (applications) to communicate engineering data with each other across 
networks. 

What are the key ideas or concepts investigated? 

What is the essential message? Current IT supports interoperability, but it requires 
some effort to develop and support software integration platforms. 

3. Objectives/Benefits: 

Why did CIFE fund this research? Kaman Sciences funded this research at the request 
of the U.S. Air Force and the Electric Power Research Institute (EPRI) 

What benefits does the research have to CIFE members? This research gives a model of 
how AEC companies can develop interoperable systems to within their firms and across the 
clients and vendors that are part of their supply chains. 

What is the motivation for pursuing the research? Put many technologies into 
perspective with relation to each other and identify how they would work in the AEC industry. 

What did the research attempt to proveldisprove or explore? Different technologies that 
would support software applications interoperability. 

4. Methodology: 

How was the research conducted? The research includes a survey of relevant IT 
methods, and analysis of their features, and a comparison of how they support AEC industry 
needs. 

Did the investigation involve case studies, computer models, or some other method? 
Technology survey and analysis 

5. ~esul ts :  

What are the major findings of the investigation? 

What outputs were generated (software, other reports, video, other) EPRI Technical 
Report EPRI RP9000-32 

6. Research Status: 

What is the status of the research? Software prototype systems are currently being 
developed and tested 

What is the logical next step? Develop and test an interoperability architecture in the 
AEC industry. 

Are the results ready to be applied or do they need further development? Modest 
additional technology integration is needed for use, but the amount is well within the capability 
of most software and many larger AEC firms. 

What additional efforts are required before this research could be applied? Modest 
additional technology integration is needed for use, but the amount is well withn the capability 
of most software and many larger AEC firms. 



ABSTRACT 
A significant development in computing in the 1990s has been the move toward more distributed 
computer systems through network communication facilities. Instead of viewing computers as 
individual devices, users want to integrate these physically separate but electronically connected 
resources into a single logically unified computational environment. Software interoperability 
has become a major issue for organizations wishing to take advantage of private and open 
distributed computing facilities. Software interoperability technologies seek to smooth the 
integration of both legacy and new applications, even on heterogeneous hardware and software 
platforms. Improved integration not only benefits users within a company but also facilitates the 
sharing of knowledge with other disciplines and organizations, enhancing the workflow 
processes. Many companies also have huge investments in legacy systems that they hope to 
avoid rewriting by using interoperability tools to bring such applications into the network-driven 
environments of today. This report summarizes the significant issues and terminology used in the 
field of software interoperability, presents a range of diverse systems and methodologies used to 
integrate knowledge among programs, and concludes with a new view of interoperability and a 
novel way of addressing it. 
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1 INTRODUCTION 

A significant development in computing in the 1990s has been the move toward more distributed 
computer systems through network communication facilities. Instead of viewing computers as 
individual devices, users want to integrate these connected resources into a single computational 
environment. Both hardware and software vendors are developing means to support distributed 
computing at both a system and application program level. Interaction in the 1990s is focusing 
on mediation and cooperation among software components [Wegner 19961. 

The need to integrate computer applications by means of an interoperability methodology is 
greatest in distributed environments that are heterogeneous in their composition of hardware and 
software resources. By contrast, integrating code in a homogeneous network environment is 
usually acheved through the design of a distributed operating system. Although some 
environments are necessarily homogeneous, most organizations and virtually all industries have 
heterogeneous computing environments. 

Therefore, software interoperability is becoming a major issue for organizations wishing to take 
advantage of private and open distributed computing facilities. Interoperability is usually defined 
as "the capability with which two or more programs can share and process information 
irrespective of their implementation language and platform." Already, many Information System 
managers and application developers are considering systems that support the "client-server" 
model of resource utilization. In b s  context, software interoperability technologies seek to 
smooth the integration of both legacy and new applications, even on heterogeneous hardware and 
software platforms. Improved integration not only benefits users within a company, but also 
facilitates the sharing of lmowledge with other disciplines and organizations, enhancing the 
workflow processes. Many companies also have huge investments in legacy systems that they 
hope to avoid rewriting by using interoperability tools to bring such applications into the 
network-driven environments of today. 

This report summarizes basic interoperability principles and the different approaches that 
researchers have taken to provide software interoperability. In addition to surveying these 
methodologies, the report concludes with an outlook on the fbture of software interoperability 
and a novel means of integrating applications in an industrial environment. 



2 LEVELS OF SOFTWARE INTEROPERABILITY 

Figure 2-1 shows how software interoperability between different applications can be modeled at 
different levels of abstraction. This section describes these levels of abstraction and how they 
relate to the evolution of interoperable applications. 

Specification-/eve 

Figure 2-1: Information exchange between two software applications can be modeled at different 
levels of abstraction. Historically, distributed systems have focused in the physical and data-type 

2.1 Physical interoperability 

Interoperability, even today, is usually achieved by transferring technical details through shared 
media such as paper drawings and electronic files on floppy disks. Such approaches date back 
many years to times when paper and archive media were the only means of transferring 
information between programs. Lack of adequate tools today ensures that many users persist 
with sharing at the level of physical media (via "sneaker ware".) It is also not unusual for users 
to transfer information from one application to another manually, reading the output from one 
program and manually reentering it as input to another program. This approach to 
interoperability is both time consuming and costly to users, as information must frequently be 
entered into downstream applications using different interfaces and representation formats. 



Levels of sofhvare Inferoperability 

2.2.Data-type interoperability 

The advent of computer networks meant that users could share information among programs 
directly without having to extract information out fkom an electronic format prior to transferring 
it. Many protocols have since been developed to support structured exchange of information 
among distributed and disparate programs. The most popular of these protocols is the Internet 
Protocol (IP), which is driving the interconnection of many small networks, many of which 
support other protocols, into a global Internet. Thus IP can be considered an interoperability 
protocol at the level of "wide area" networking. Moreover, hardware interfaces for connecting 
desktop computers to office networks are now widely available and affordable. Wireless and 
other telecommunication channels also support interconnection of computing devices. 

Given an abundance of networking facilities, most research has focused on achieving software 
interoperability at the level of "data-type" compatibility. This allows data to be shared by 
different objects and procedures independently of the programming languages or hardware 
platforms used. The type model is defined using the specifications based on the structures of the 
objects, and type compatibility is achieved by overcoming representation differences (such as 
byte ordering and floating point format) in how machines implement such objects, usually by 
translation into and out of a universal representation format. Most systems today provide 
application programming interfaces (APIs) to encapsulate such differences when various 
programs must interoperate in a networked environment, at least at the level of simple data types 
intrinsic to most popular programming languages. 

2.3 Specification-level interoperability 

Specification-level interoperability [Wileden et a1 1991.1 encapsulates knowledge representation 
differences at the level of abstract data types as well as simple types. Figure 2-2 shows an 
example where a table (of rows and columns) might be represented using arrays or list structures 
or both. 



Levels of sofnvare lnteroperability 

Interoperability at the specification level enables programs to communicate at higher levels of 
abstraction and increases the degree of information hiding, affording application designers 
greater flexibility in how they implement the underlying structures beneath the interoperability 
interface. 

TABLE 

STORED AS AN ARRAY 

2.4 Semantic lnteroperability 

A 

Modem symbolic models explicitly represent "function" (design intent) and predicted "behavior" 
as well as "form" (structured description). Current research on "type" and "specification" level 
interoperability among programs normally considers only form at the integration interface. For 
example, in passing a centrifugal pump entity from one application to another, functional 
semantics would have to include the view that such a device is an "energy provider" to the 
material stream it is pumping, and behavioral semantics would include modeling its performance 
characteristics (e.g., as a function of its operating speed). At present there is very little work on 
semantic interoperability, almost all of it in the database integration community wadis 19961. 
Systems that translate semantics across different databases are only at prototype stages. There is 
currently very little work in the area of interoperability where programs exchange information at 
a semantic level, especially in disciplines such as engineering where it is common for experts in 
a design project to use different abstract views of shared entities. One example is the Integrated 
Knowledge Framework (IKF) being developed by EPRI to achieve common semantics and a 
single abstract view across all aspects of power plant management, operations and maintenance 
[EPRI 19961. 

B 

STORED AS A LIST 

C 

A 

V W X  

Figure 2-2: Specification-level interoperability hides the details of aggregate data types (such as 
lists and arrays) used in the shared knowledge model. This figure shows how a table can be stored 
using a single-dimension array or a linked list. Applications sharing the data need not know these 
underlying details and can treat the entity as a table. 

3 B 3.0.47 3 C 



ISSUES 

There are two models within an interoperability architecture: "execution" and "type". The former 
concerns the execution control of integrated programs, while the latter deals with how multiple 
programs access and manipulate a shared data entity. Ths  section describes the major issues 
pertaining to these models. 

3.1 Procedure call versus message passing 

A Remote Procedure Call (RPC) is used to invoke execution of a subroutine in a second program 
that is "registered" with the calling program. Given a network address of the callee, the calling 
program can invoke the subroutine across a network interface. Figure 3-1 depicts how RPCs 
enable access to remotely defined procedures. Although asynchronous RPC engines do exist, 
almost all application development currently uses a synchronous model that requires both the 
client and server processes to be up and running. 

NETWORK CONNECTION 

Machine = "Orange" Machine = "Apple" 

foo (...) 
{ 

bar(...); 1 
1 Local Procedure Remote Procedure . y(...).. 

Call (RPC) 1 
bar(..) 2" 
{ 

Apple:foo(. . . .); 
1 1' 

Figure 3-1: Remote Procedure Calls (RPCs) extend the paradigm of local procedure calling to 
provide access to remote procedures using the same syntax. The "client" application running on the 
machine with the network name "Orange" invokes the software defined in the "server" application 
running on the machine identified as "Apple". Although asynchronous RPC mechanisms exist, 
almost all RPC-based applications use a synchronous communication model that means that both 
programs (the client and the server) must run concurrently on the distributed machines. In this 
figure, the distinction between a local and a remote call is made using a machine name ("Apple") as 
a prefix to the procedure name. In practice the explicit notation is not required as low-level code in 
the calling application (usually generated automatically by a "stub-code" generator) will hide these 
details from the application programmer. 

RPCs are the foundation of most client-server systems today. For example, typical database 
systems have client programs send queries for information to the server machine via a procedure- 
based interface. Where the interoperability is managed on the local machine only, Interprocess 



Communication (IPC) facilities (such as "shared memory addresses") within the host operating 
system can be used to reduce the computational overhead of the call. Procedure calling 
mechanisms provide a synchronous execution model as both the caller and callee programs must 
be running at the time of the interaction. While good for hgh  performance, performance of RPC- 
based interoperability is limited by slow and unreliable networks. 

Message passing places the request sent from the calling program into a "queue" managed by the 
callee. This execution mode is therefore asynchronous, offering an e-mail-like store-and-forward 
mechanism so that the callee application need not be running to field the request (that must then 
be buffered in persistent storage). It is best used for loosely-coupled interoperability (e.g., 
workflow applications) where there is no need for real-time performance. Many "agentm-based 
systems use a message passing communication model. While messages are a natural abstraction 
for humans, they often prove very difficult to implement and debug given that programs are 
procedure oriented (hence the popularity of RPCs), and asynchronous systems are difficult to 
design, debug and maintain because much of the system behavior is "in flight" on the network - 
a situation exacerbated when complex message structures (like software agents) are used. 

3.2 Systems Interface definition 

The systems interface used for the exchange of interoperable information can be predefined or 
left to the application designer. Predefined interfaces force applications to comply with a 
"universal" interface in order to simplify the interoperability issues - changes can be made to 
underlying code but programs are constrained to the given API. By contrast, greater flexibility is 
provided if the methodology supports interoperability through the use of an interface definition 
language (IDL). S o h a r e  developers are no longer constrained to a predetermined API; 
however, the more general facility increases the system's complexity as it is the interface 
between two programs that governs their interoperability behavior. 

3.3 Execution intermediaries 

Distributed systems and standards are frequently designed so that procedure calls and messages 
are handled by an "intermediary" program (e.g., CORBA). This controller connects the 
"sending" application with the "receiving" one and might be implemented as a stand-alone 
server (an Object Request Broker, for example) or as a module that is tightly or loosely coupled 
with the client application through an API. These alternatives are illustrated in Figure 3-2. 



RPCIMessag- 

Application Response 

Sending' Object Request 'Receiving' 
Application Broker Application 

Request Broker (usually on a separate machine) 

foo( ...) 
{ 

RPC("Apple",bar); 

RPC Cal 

Communication API 
(statically or dynamically linked into applications) 

Figure 3-2: Execution intermediaries hide network communication requirements f?om client 
application developers. For example, Object Request Brokers (ORB) set up the communication link 
between a client and a server application that will receive and process the client request. Any results 
that need to be returned to the client will pass through the ORB. Another model of execution 
intermediary is to use client- and server-side code stubs. These low-level communication engines, or 
<< wrappers," are linked into the applications. They manage the placing of network requests and do 
any necessary data conversions to support heterogeneous hardware connections. 

Intermediaries can be used to simplify the interoperability interface as they present a consistent 
API to the calling application and shield it f?om the underlying communication protocols 
necessary to invoke the called program. They can- also be instructed to communicate with other 
applications under certain conditions, e.g., when monitoring a transaction it may be necessary to 
"inform" an administrative service of the completed transaction. 

3.4 Data-type compatibility 

Software interoperability requires that there at least be compatibility between the data types used 
in the exchange of knowledge. There must be a consistent view of the attributes and behavior of 
any data object shared among the integrated applications. While a single type model across all 
the languages in which interoperable programs will be written greatly simplifies their integration, 
it is too much of a restriction for most practical purposes. For example, some languages (e.g., 
FORTRAN 77, Common Lisp) do not support abstract data types and therefore limit applications 
developers to a single type model. 



3.4.1 Universal type model 

An alternative is to use a "universal" data-type model. In th s  approach, knowledge exchange is 
via a universal representation. The most popular approach is to use an ASCII format, with 
applications translating data in and out of text file formats. Many programming languages 
support customized formatting of such files. An alternative medium of communication is to use 
Interprocess Communication (IPC) facilities, such as UNIX "pipes". IPC supports byte stream 
exchange between two applications that agree on the type model so that translation between the 
shared data model and the byte stream can be achieved. 

3.4.2 Basic type model 

A single, universal type model is usually based around the basic data types to be supported at the 
level of interoperability. Traditionally, these are types such as strings of text, real numbers, and 
integers. Extensions to support aggregate types, such as arrays, are straightforward. 

Interoperability supporting basic types has been fundamental to the success of RPC protocols 
used in client-server systems today. While most RPC packages generate C language code for the 
interface, some provide features for supporting translation of interface specifications defined in 
other programming languages. There also exist systems for supporting RPCs in a mixed- 
language environment. Each supported language must provide standard translation routines that 
form the API for data interoperability. Some mixed language systems are generic while others 
are designed specifically for exchange between applications in a predetermined set of languages. 

The basic type model does not support complex abstract data types such as "trees" and "hash 
tables", thereby complicating interoperability where more sophisticated programming languages 
such as Ada and C++ are to be used. 

3.4.3 Standardized submodels 

Another approach to type compatibility is to use a system-independent database manager to 
support operations on objects shared by the integrated applications. Objects that are not part of 
the shared submodel can be implemented and manipulated independently of the shared database. 
The shared sub-model will usually support simple data types and constructors for them, and the 
interoperating programs use a foreign query language to access stored data. Emerging object- 
oriented databases support rich submodels. 

3.5 Interpreted languages 

A common alternative to achieving software interoperability by exchanging knowledge between 
two executing processes is to instead exchange an application (and supporting data) in an 
interpretable format that supports subsequent processing on multiple platforms, each of which 
must provide an interpreter. Popular programming languages for interpretation-based 
applications are written in Lisp, Java, Tcl, Python and Perl. m l e  this execution model cannot 
support concurrent interoperability or multiple programming languages, and is dependent on the 
availability of interpretation engines, it is very useful for simple applications (such as "applets" 
distributed on the World Wide Web) and for developing prototype applications. As the 
capabilities and availability of platforms supporting such languages exist, one expects an 
"interpreted" model of interoperability will be sufficient for many applications such as document 



exchange and those applications that do not require substantial computational support (for which 
interpreted systems were never intended). 

4 SOFTWARE TOOLS FOR INTEROPERABILITY 

T h s  section presents a wide variety of different tools for building interoperable systems. This 
section also provides a brief overview of some emerging "middleware" technologies. 

4.1 Component Object Model (COM) 

This object-oriented model has been developed by Microsoft to facilitate interoperability. It is 
effective across different programming languages and operating system plat forms. It supports the 
"distributed object computing" model in that the interoperable software is encapsulated with 
object-oriented interfaces. 

Interoperable components must comply with a predefined "binary" data access interface (here 
"binary" means the memory image of the object is independent of software development tools 
and programming languages), beneath which there is no constraint on the application 
implementation. 

Object interfaces are implemented as collections of tables of pointers to object member 
functions. Each interface has its own table and identification name (prefixed with an "I"). Access 
to the object has to be done through pointers in order to support a binary standard. Objects are 
written in C or C++. While individual interfaces are statically typed, objects are not, so 
programmers must verify object support for an operation at runtime. 

The execution model at the interface is based on RPCs between the integrated components. A 
query facility allows components to obtain data dynamically from other components. Interface 
definition beyond the "base" standard is achieved with an DL.  COM is a language-neutral 
technology for packaging class libraries, written in various object-oriented or procedural 
languages, for distribution in binary form, either as part of the operating system, a tool, or an 
application. 

While inheritance is a characteristic feature of object-oriented design, Microsoft has chosen not 
to support inheritance in COM for complexity reasons, especially in loosely-coupled and 
evolving distributed systems. Changes to a parent or child object in an implementation hierarchy 
can force changes in other components. As an alternative, "containment" and "aggregation" are 
used. The former technique involves a "client" component wrapping itself around the services 
interface of another object, encapsulating it fkom other client components. Aggregation modifies 
ths  arrangement by exposing the encapsulated component to other clients as if it were part of the 
outer object. While implementation inheritance is not supported, COM does support inheritance 
of component interfaces. Ths  decision not to support the former has led to great debate when 
comparing COM with the CORBA approach to distributed object computing. Several articles 
comparing COM with SOM (IBM's implementation of CORBA) are available on the World 
Wide Web. 



Microsoft's OLE (Object Linking and Embedding) 2.0 is an implementation within the 
framework of COM that is designed to work with Digital's ObjectBroker technology (an 
implementation of CORBA). Unlike other interoperability systems, OLE does not support 
integration of software across a network, although the groundwork is there for provision of this 
facility in the future. However, by integration with ObjectBroker, client applications on 
Microsoft PC platforms can currently interoperate with server programs running on UNIX and 
VMS systems. 

OLE enables applications to create "compound documents" that contain information fiom a 
number of different sources. For example, it is possible to embed a spreadsheet object within a 
word-processing document. The embedded object retains its properties and is not in any way 
altered during this "cut and paste" operation. If the object needs to be edited, the WindowsTM 
operating system will invoke the associated (originating) application which then loads the object. 

4.2 Common object request broker architecture (CORBA) 

CORBA, defined by the Object Management Group (OMG), attempts to support interoperability 
in the rapidly evolving heterogeneous hardware and software markets. Unlike the proprietary 
COM standard, it is an open development, intended to support interoperability between any 
applications regardless of their implementation languages and operating platforms. The first 
version, which defined the IDL and M I ,  was released in 1991. The second release (1994) 
defined support for interoperability where multiple vendors provide different object request 
brokers (ORBS). 

An ORB is the middleware technology that establishes a communication channel between a 
client and server application. The service invoked can be on the local machine or across a 
network. The ORB is not responsible for managing any objects - it only handles the message 
passing among them. Object representations and implementation are left to the developers of the 
client and server systems. 

The client need only communicate with the ORB (using a single API), without concern for where 
the target server is located, how it has been implemented, or what system it is running on. The 
output fiom the server is returned to the client through the ORB. An IDL (based on C++) is used 
to simplify the protocol for interoperability between the client and server programs. Legacy 
applications can be integrated with new ones by "wrapping" the communication interface around 
the old software using the IDL. There are bindings to support the D L  with the C, C++, 
Smalltalk, and COBOL languages, and some vendors provide additional bindings for other 
languages. 

The communication model supports "synchronous" and "asynchronous" requests. The former 
makes applications easier to write, but it blocks the calling program until the server responds 
through the ORB. Asynchronous communication allows the client to poll the ORB for feedback 
fiom the server, allowing it to perform other computations in the meantime. Service requests are 
either static or dynamic. Static requests are straightforward C code procedure calls, while 
dynamic support is required where some of the service parameters are unknown at the time of 
communication. 

CORBA is part of the migration in application development away from the notion of applications 
being separate entities on single machines to the "network model" of applications built with 



distributed objects. Figure 4-1 shows the distinction between an object-oriented application 
running entirely on a single machine compared with a distributed model of the same application. 

Non-distributed, Object-oriented 
Application: all objects run on the 

same machine 

Figure 4-1: Distributed object computing allows application developers to logically link together 
remote objects to compose a logically-unified network-based program. Distribution of objects 
allows code and data resources to be located on network platforms better suited to their functional 
purpose (e.g., a numerical computation object might be more effective if it executed on a powerful 

Distributed Object Computing (DOC) promotes the assembly of applications from common and 
compatible object types across heterogeneous platforms. CORBA is a standard (without a 
reference implementation) attempting to define the interaction behavior among such objects. 
While the standard attempts to be comprehensive (the OMG is a multinational consortium of 300 
members including Digital, IBM, Sun and HP), many features, such as transaction security, are 
left to developers implementing CORBA compliant systems. Implementations of server 
applications often involve significant extensions to the CORBA API. Furthermore, the API does 
not deal with transactions, concurrency control, and data replication issues; and says little about 
persistent object storage. Three prominent implementations of CORBA are discussed below: 

4.2.1 System Object Model (SOM) 

While most object-oriented systems separate class definitions fiom instances of those classes, in 
SOM object classes are defined as metaclass object instances. They are distinguished fiom 
ordinary object instances by their comprising a table of instance methods to which the latter 
respond. Objects may be written in C or C++ (vendors are currently developing bindings for 
Smalltalk and COBOL). The CORBA IDL is extended to allow additional information about 
object implementations to be defined. 

4.2.2 ObjectBroker 

Digital's ObjectBroker was the first implementation of CORBA. Running on 20 different 
platforms, it can also be integrated with OLE (Digital is working closely with Microsoft), 



allowing PC applications to connect with CORBA servers. To improve security, there is support 
for DEC's Generic Security Services, making ObjectBroker the first secure ORB in the industry. 
Additional enhancements to interfaces and server management, and provision of drag and drop 
support for OLE are available. 

4.2.3 Orbix 

Orbix (from IONA Technologies) is a full and complete implementation of CORBA. First 
released in 1993, it has become the leading CORBA compliant ORB and is in widespread use in 
the telecommunications, engineering and government sectors. It provides C++, Ada95 and Java 
language bindings and is supported on more than 10 UNIX platforms, Windows, OSl2, Mac, 
VMS, QNX, and embedded real-time systems. 

IONA has made numerous extensions to CORBA. An implementation repository services 
requests if there is no active server. Dynamic requests for services can make use of a "stream- 
based" API that is simpler than the standard CORBA interface. Programmers can also create 
local "cached" versions of remote objects, called proxies, to improve application performance. 
Programmers can use filters to control message passing to provide more complex object 
behavior, to integrate thread packages, and to assist in debugging tasks. For a combination of the 
COM and CORBA approaches, integration of Orbix with OLE 2.0 is possible. 

4.3 Distributed computing environment (DCE) 

The OSF (Open Sofhvare Foundation) DCE [OSF 19921 is a comprehensive set of services 
supporting the development, use and maintenance of distributed applications. The services are 
provided independently of operating systems and network interfaces. 

A layered model, illustrated in Figure 4-2, works bottom-up fiom the operating system layer to 
the application layer. The environment, however, appears to the application as a single system 
rather than several disparate services. This integrated architecture encapsulates the physical 
complexity of computer networks and simplifies the design of interoperable applications. 
Services include secure RPC, distributed directories, time, threads, security, and data-sharing. A 
key knowledge-sharing component is a Distributed File System that can interoperate with the 
Network File System (NFS) from Sun Microsystems as well as other distributed file systems. 



Figure 4-2: The OSF DCE model users a layering of services to hide application developers fiom 
low-level issues. The integration of services thus appears to the user as an environment where 

The "fimdamental" distributed services are: remote procedure call, directory service, time 
service, security service, and threads service. These services provide tools for programmers to 
create end-user services for distributed applications. By comparison, the "data-sharing" services 
(distributed file system and diskless workstation support) require no programming and provide 
users with capabilities built upon the fimdamental services. 

The RPC service includes an interface definition language and can be integrated with the threads, 
directory and security services. The distributed directory service provides a single naming model 
across heterogeneous file systems. It allows users to identify resources using a logical name that 
remains constant even if resource characteristics (such as their network addresses) change. The 
time service is a software-based facility that synchronizes system clocks across a network to 
support activity scheduling and the determination of event sequencing and duration. Accurate 
timing is also required in applications that use time-stamped data. The threads service enables 
programmers to create and control multiple application threads in a single process. 

4.4 Knowledge Interchange Format (KIF) 

Several approaches to interoperability have used the abstraction of message passing to model 
"software agents" [Genesereth 19941. An agent is a computer program that shares knowledge 
with other agent programs through an intermediary called a "facilitator" (that is thus hctionally 



equivalent to an ORB). Unlike other middleware technologies that support multiple languages 
across the execution intermediary, agent systems use a single Agent Communication Language 
(ACL) to achieve interoperability. 

KIF, developed by the Interlingua Working Group of the DARPA Knowledge Standards Effort 
[Neches 199:1], is a prominent specification for defining the content of messages within the ACL 
structure. This declarative language is a logically comprehensive, prefix version of first-order 
predicate calculus. It provides for the representation of meta-knowledge and supports a wide 
variety of expressions supporting constraints, rules, disjunctions, etc. with a vocabulary 
comprising variables, operators, functions and relations. KIF is designed for interchange of 
knowledge among disparate programs. 

KIF is not intended as a primary language for interaction with the user. Programs interact with 
their users through whatever languages are appropriate to the applications. KIF is also unsuitable 
for representation of knowledge within a computer or within closely related sets of programs 
(though it can be used for this purpose). Consequently, programs convert knowledge bases fiom 
their own internal formats into KIF simply for the purposes of sharing the knowledge. 

5 INTEROPERABILITY SYSTEMS AND 

ARCHITECTURES 

This section presents several examples of systems and architectures that support software 
interoperability. These examples are described without explicit regard for any underlying 
software tools used to effect the implemented application integration, and they describe both 
systems specifically designed for a particular domain as well as more generic ones. 

5.1 The AAlTT system 

The Advanced Artificial Intelligence Technology Testbed (AAITT), developed by the Air 
Force's Rome Laboratory [GE 19911, is a laboratory testbed for the design, analysis, integration, 
evaluation and exercising of large-scale, complex, software systems composed of both 
knowledge-based and conventional components. 

In the military domain, software decision aids for intelligent command and control (C2) are 
usually developed to solve a relatively narrow problem within the overall C2 decision-making 
problem. Software aids typically use data stored in a local format, problem solving 
methodologies that reason over the data, and support interactive interfaces with the user. 
Difficulties arise in trying to integrate such a tool in a typical application environment with 
several databases and multiple decision aids. AAITT is a distributed environment designed to 
facilitate the integration and testing of multiple decision aids. By tailoring the interface of 
software aids with the testbed, unrelated software components can be integrated without the need 
for extensive re-engineering. This is particularly important where such aids are "black boxes" 
purchased from vendors or downloaded from bulletin boards (where no source code is available 
- only the component's binary image). 



System modules comprise individual software components that are encapsulated with a 
communication "wrapper" that enables connection of the module to a network backplane. 
Modules must support the AAITT modeling and control protocols that are based on input and 
output "ports" for each module. Ports have associated code bodies that process system messages 
and can specifl their own message formats as part of an Application Protocol. The Application 
Protocol is used to send messages between modules or between a module and the testbed 
manager module. Modules are controlled through a State Transition Protocol that supports the 
states: (START, CIh4 LOADED, CIM CONNECTED, LOADED, INITIALIZED, RUNNING, 
PAUSED). The user embedding a module in the AAITT must specifl programmatically how a 
module should react to state transition messages. 

An AAITT application is then built by connecting multiple modules to this network. The 
modules are configured by the user to solve an overall problem. This software controlled 
architecture ("soft architecture") allows for easy reconfiguration, through a graphical interface, 
of the modules and their inputloutput connectivity, thus minimizing the recoding of module 
interfaces. For example, it is relatively easy to reconfigure the system from a "blackboard" 
integration model to a "data-flow" one. The application architect must assign each module to a 
particular network host. The components of the AAITT are shown in Figure 5-1. 

The testbed manager is implemented as a workstation platform called the Modeling, Control and 
Monitoring (MCM) Workstation. Two other major sub-systems are the Distributed Processing 
Substrate @PS) and the Module Framework. The DPS supports a heterogeneous interconnection 
of systems (e.g., databases, simulators, expert systems, conventional software) running on VAX, 
Sun and Symbolics hardware platforms. It is responsible for translating data representation 
between the various systems and programming languages used (C/C++, Common Lisp, and 
Ada). For implementing the DPS, AAITT developers selected the Cronus distributed computing 
environment [BBN 19891. In addition, ABE (A Better Environment) [Erman 19901 is used to 
provide a module-oriented programming capability over the object-oriented model of Cronus; 
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Figure 5-1: An AAITT application comprises various software modules connected to a network 
backplane. These modules act together to solve an overall problem and thus constitute a single 
application. The testbed manager allows the user to reconfigure module interaction very easily 
through a graphical interface. 
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this allows for restructuring of the application architecture at a higher level. The Module 
Framework facilitates the embedding of new software components in the AAITT. A Component 
Interface Manager (CIM) is a software wrapper for interfacing the component with the testbed. A 
library of generic CIMs is available, as well as a semi-automated generator for building and 
managing CIMs. CIMs support both synchronous and asynchronous communication. Software 
components connect with a CIM using a CIM-to-Component Communication (CCC) interface 
based on UNIX sockets, files, Cronus or other IPC mechanisms such as shared-memory. The 
MCM can query the status of various CIM elements through the CIM Query Protocol. 

The MCM Workstation is a central console that provides the user with tools to configure and 
analyze applications. Performance metrics can be gathered through "breakpoint" and "logging" 
taps that are specified in the inputloutput interfaces of the application modules. Configuration 
can be performed using a graphical user interface. Modeling functions are used to define module 
interaction, and control functions allow for the loading, execution and resetting of individual 
components. 

Specific problem scenarios are input to an application from an Oracle database that is also used 
for storing the results of an application run. Heuristics are then used to analyze the quality and 
behavior of the application following which alternative solution strategies can be investigated. 
The database module connects to the AAITT through an SQL interface. 

Generic simulation is provided through the object-oriented simulation language, ERIC [Hilton 
19901, that is based on the Common Lisp Object System (CLOS). ERIC allows for simulation 
halting, modification and resumption without the need for application recompilation. 

AAITT has been demonstrated using three different software components: a tactical database, 
TAC-DB, developed by the Knowledge Systems Corporation in 1989; an ERIC land-air combat 
simulation called LACE; and two decision aids: the Air Force Mission Planning System (AMPS) 
developed by the MITRE Corporation, and portions of the Route Planner Development 
Workstation (RPDW) developed by the Jet Propulsion Laboratory. Initial demonstrations 
realized a 10:l reduction in software integration costs when 9 independent contractor- and 
government-developed components were integrated in just 25 days using AAITT. Figure 5-2 
shows the overall system architecture with the demonstration components included. 



Figure 5-2: The AAITT architecture including the connection of application components to the 
network substrate. The MCM Workstation allows the user to reconfigure and refine the behavior of 
the connected components in the testbed environment. This allows applications to be tested and 

5.2 OpenAccess 

OpenAccess [ATI], originally called EPRIWorks, is a software framework that enables 
applications to access data from a variety of data sources in a distributed environment. Since AT1 
developed the technology in collaboration with EPRI, it is based on the functional requirements 
of the diverse applications in the electric power utilities, specifically domains of maintenance, 
troubleshooting and performance. While the initial focus was on plant information systems, the 
framework has expanded to cover broad scale applications throughout a utility organization. 
OpenAccess is currently in use at more than a dozen utilities and has been licensed by major 
system integrators and OEMs. 

In a power plant, process information sources include the Distributed Control System (DCS), 
process archives, data acquisition systems, and inspections. Additional data is obtained from 
applications for performance monitoring, vibration equipment, thermography and work order 
systems. DCS systems are specific to each vendor and no. two provide the same data access 
method. Applications for monitoring and diagnosis use proprietary database formats. Client 
applications in current use were developed for specific computer platforms and based on 
particular data access protocols. Different computer platforms require operations and engineering 
staff to move fiom one display to another to perform analyses or view plant status information. 
Consequently, many operators transfer information among applications using a paper and pencil. 



Such dependencies on data sources, formats and access methods, as well as particular hardware 
systems, inhibit the integration of new software into existing plant data systems as well as the 
porting of utility software applications to different plants and next generation computer 
environments. Furthermore, very few applications can access all the available data for a plant 
because of the difficulty in obtaining it from such a wide variety of sources. 

Designed to connect islands of plant automation systems, OpenAccess provides a single access 
mechanism to eliminate the development and maintenance of specialized protocols and drivers 
for these sources. It is ideally suited for data warehousing applications that must deal with 
multifarious data formats that have to be consolidated for analytical purposes. Client applications 
are typically desktop PC programs, and servers can support more than one data source. 

All data points are modeled based on physical pieces of equipment or logic decisions. The model 
then becomes part of the enterprise representation of business information. Associations with 
specific pieces of information are then correlated without the need to centralize the data (which 
is impractical if not impossible). The OpenAccess approach thus allows information to reside in 
different systems. 

Its fi-amework, depicted in Figure 5-3, provides services for modeling utility information, 
uniform data access in a multi-vendor environment, and automated data transfer across the 
network. The open nature of the solution dictated the adoption of WOpen and IS0  standards. 

Information Services 

Computing Environment 

Figure 5-3: The OpenAccess fi-amework collates distributed and varied data sources into a logically 
consistent model through various data and information management services. This allows 

lication developers to rely on a single data access interface to the entire business information 

IS0 defines the Remote Database Access (RDA) protocol for client applications to access data 
fi-om any source independent of a proprietary solution. OpenRDA is a client-server protocol 
compliant with this standard, and provides uniform data access where each source is viewed as 
an SQL-compliant relational database. For data access, client applications use WOpen CLI or 
Microsoft ODBC APIs. Network communication uses WINSOCK TCP/IP andlor 



5.9 CIM-BIOSYS 

Due to a lack of standards, manufacturing control systems (MCS) are typically highly 
fragmented and heterogeneous in terms of hardware, software, communications and data 
management. Proprietary systems are in widespread use, and connectivity among software 
components requires filters for transferring shared knowledge. Within the Computer Integrated 
Manufacturing (CIM) industry, there is a strong demand for interoperability standards. 

A common approach to this problem has been to integrate applications through a shared database 
for whch each application must support "import" and "export" schema. Disadvantages include 
data replication and the repeated translation and reinterpretation of information can cause data 
integrity problems. 

Singh et a1 [Singh et a1 19941 propose an integration architecture that uncouples MCS functions 
from their information repositories. m l e  they recognize that data integration is the first step 
toward interoperability, functional interaction management enables the information to be treated 
independently fiom the functional capabilities realized by software applications. 

The integration module of their system, called the CIM-BIOSYS (Building Integrated Open 
Systems), is an abstract layer above a SQL interface to a RDBM system. The BIOSYS comprises 
a set of tools supporting functional interaction between MCS components. Functions are 
decomposed into information, interaction, and communication services. Above the BIOSYS 
layer is a Functional Interaction Management Module (FIMM) that is SQL-compliant and 
provides the interoperability execution model for applications. Services withm the FIMM are 
provided by way of ANSI C code functions. The execution model uses data-driven inputloutput 
tables, where information models are assigned to MCS functions as either input andfor output 
relationships. An interactive user interface allows MCS functions to be added or deleted through 
a configuration utility. The system uses dedicated window-based displays. UNIX "pipes" are 
used to connect FIMM services in a distributed environment. The system is being modified to 
support the EXPRESS language for definitions of the interoperability schema. 

5.1 0 STARS 

Boeing, as a prime contractor on the U.S. Advanced Research Projects Agency (ARPA) 
Software Technology for Adaptable, Reliable Systems (STARS) program [ARPA 19931, has 
developed and integrated a demonstration software engineering environment, SEE [Boeing 
19931, that supports a process-driven, domain-specific software development environment. The 
STARS system separates development into two life-cycle views: domain engineering and 
application engineering. Multiple applications are supported by a single, ongoing domain 
engineering effort that develops appropriate reusable software assets based on a shared "domain 
model". Development of new applications assumes the existence of a reuse library for the 
domain. A graphical interface model is used for selection of appropriate components. 
Application developers make engineering decisions based on customer requirements for a 
specific project, following which the system identifies the applicable reusable components, 
retrieves them from the library, and adapts them to a specific application. The domain 
engineering effort is responsible for ensuring the quality of the software components. Boeing has 
implemented its library in an object-oriented mechanism called ROAMS. Figure 5-1 1 shows the 
logical relationship between the domain and application engineering efforts with regard to the 
development of applications that can interoperate easily. 



Figure 5-12: The STARS system uses a domain engineering effort to identifl reusable code 
components that application developers can extract from libraries and piece together to build 

5.1 1 Summary Table 

This section summarizes the main characteristics of the above approaches to software 
interoperability in Table 5-2. Column descriptions are as follows: 

' 

Column 1 : Working Demo Implementation (yeslno): An implementation of the methodology 
has been demonstrated at least as a prototype demonstration. 

Column 2: Shared Database (yeslno): a shared database centralizes the management and 
storage of data shared by the integrated applications. The column therefore indicates whether 
the methodologies are centralized or distributed in their management of the model(s) that 
underlie the software integration mechanism. For example, "Software Agents" can 
reasonably maintain very different data models, while an integrated framework such as 
KANON uses a single KBDB with a query engine and semantic network processor. 

Column 3: Synchronous Communication (yeslno): Tightly-coupled systems inherently 
require a synchronization of the communication between integrated applications. Loosely 
coupled systems allow but do not require synchronous communication. 

Column 4: Domain Specific (yeslno): A domain specific methodology has been designed to 
integrated applications with a limited scope. 

Column 5: Level of Abstraction (data-type/specification/semantic/variable): This column 
indicates the level of abstraction at which applications share information. 

Column 6: Software Component Model (yeslno): A model based on software components 
achieves interoperability by controlling the interconnection of various components adapted 
for use in the integration environment. 



Table 5-2: Summary of a variety of different methodologies and systems aimed at software 
1 interoperability. 

Software Agents 

Loosely-coupled 

KANON 

Level of 
Abstraction 

data-type 

data-type 

data-type 

variable 

Domain 
specific 

Y 

Y 

Y 

N 

Methodology 

AAITT 

OpenAccess 

IRTMM 

Circle Intemation 

POLY LITH 

UTM-0 

Ssfavvare 
component 

model 
Y 

N 

Y 

N 

Y 

Y 

Y 

CIM-BIOSY S 

STARS 

IFC 

COM 

CORBA 

6 THE FUTURE AND SOFTWARE INTEROPERABILITY 

Y 

Y 

DCE 

KIF 

When computer networks were first established, the computational machine was still the 
workstation itself - the network was merely a communication medium with which workstations 
could access remote resources. The more recent adoption of client-server technology has moved 
the computational function of applications out onto the network, normally to a remote "server" 
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processing. The clustering of servers has changed the computing model to a "networked" one in 
which an application logically spans more than one physical device. Networking makes the 
interface boundary between programs less distinct and demands even greater accommodation of 
heterogeneous computing platforms. The networked computing model is driven even further by 
the rapidly growing "wireless computing" market, and wireless solutions increase the demand 
for networked infrastructures. Wireless telecommunications spending is expected to reach $60 
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billion by 1999 based on a compound annual growth rate of 30% [Dell'Acqua 19961. 
Furthermore, the growing number of virtual enterprises and the demand for "groupware" 
products is stretching the interoperability horizon even further. This section speculates about 
how current advances in networking, application design, and ontologies are affecting the future 
of software interoperability. 

6.1 Network Protocols 

Numerous low-level network protocols exist for managing communication among networked 
computers. Common examples are the Internet Protocol (IP), Xerox Networking Systems (XNS), 
and IBM's Systems Network Architecture (SNA) and NetBIOS (for PC networks). These 
protocols are the foundation on which higher level protocols like SMTP (for electronic mail) and 
FTP (for remote file transfer) are built. The wide variety of protocols available inhibits software 
interoperability because applications that do not support a particular protocol cannot 
communicate with other programs which do. This leads to clumsy and esoteric knowledge 
translation mechanisms at the network level. However, the popularity of the Internet is creating 
enormous momentum behind IP, and present and future network architectures will simply 
encapsulate other protocols within IP packets thereby simplifying the design of interoperable 
systems. 

IP is about 20 years old and its current version (version 4, i.e., IPv4) has severe limitations for 
today's Internet environment. One problem is that its 32-bit address space no longer supports the 
number of users wishing to get "on-line". The Internet Engineering Task Force (IETF) has 
responded by working on the next generation IP: version 6 (Pv6). This version will support 128- 
bit addresses. This large address space should support interconnecting more communication 
devices than will ever be needed. Field devices such as pumps and control switches will then be 
able to have their own network addresses, so the networked computing model expands beyond 
just interconnected workstations and mainframes to one in whch software runs across a wide 
variety of hardware platforms. 

Another feature of future protocols like IPv6 is the support for "flow specification" parameters. 
These will be used to prioritize information communicated among applications, an effect that 
will support more sophisticated execution models for software interoperability. For example, 
faster network processing of "real-time" or "control" packets will improve the performance 
capabilities of distributed systems and will encourage interoperability architectures to 
accommodate the consequent quality services emerging at the communication level. 

Currently, higher level protocols running on top of IP (e.g., TCP and UDP) support only unicast 
(point to point) communication. An application wishing to integrate with multiple remote 
applications must send the same unicast messages to each one. With a "multicast" protocol, an 
application can communicate with many destinations by making a single call on the 
communication service. Multicast protocols both simplify the design of interoperable systems 
and greatly improve network performance (especially for media protocols like Ethernet that 
support multicast packets). Real-time applications such as "video conferencing" will greatly 
benefit from a multicast protocol. IP Multicast is a protocol that supports multicast 
communication in IP networks. This protocol can already be used in systems (such as UNIX) 
that support network "sockets". Another significant protocol under development is Real-time 
Transport Protocol (RTP). Ths  provides real-time service on top of UDPAP and chiefly is 
targeted at distributed systems managing interactive audio, video, and simulation. 



6.2 Client-Server systems 

Current developments in network architecture and computer design are leading to client-server 
systems based on a 3-layer approach that supports "thin" clients and "fat" servers (i.e., the data 
processing is performed at the server). Historically, client machines were "dumb" terminals that 
connected to a centralized mainframe computer in a 2-layer system. Today's 3-layer design, as 
shown in Figure 6-1, allows intermediate server machines to balance the processing load on the 
main servers. 

Intermediate 

Figure 6-1: Modem client-server archtectures are moving from a 2-tier (client-database server) 
model to a 3-tier approach that allows intermediate servers (often on desktop platforms) to support 
load-balancing across the main, mission critical servers. The intermediate level can also provide less 
important application services. 

In market terms, the significance of this approach is that less reliable server platforms (like 
Windows NT from Microsoft) can be used at the middle level while the mission critical, legacy 
systems run on mainframes and UNIX servers at the bottom level. This architecture is designed 
to exploit the computing power of emerging symmetric multi-processor (SMP) server systems, 
while also supporting simpler client machines. Enormous efforts are currently underway by 
companies such as Oracle, IBM, and Sun Microsystems to produce a very simple client device 
(colloquially referred to as a Network Computer, or NC) that will run distributed applications in 
the 3-tier environment. 

These developments in client-server architecture have two significant impacts on software 
interoperability. First, the execution model of applications must be "partitioned" for better 
alignment with the underlying hardware resources. In most cases, it will no longer be necessary 
for client machines to cache data and software as they will take advantage of powerful, remote 
processing facilities. Second, interoperable software modules can be tuned to specific server 
platforms without the complication of having to integrate with logic on the wide variety of 
desktop systems. For those applications that are to run across multiple servers, middleware 
technology is being developed to simplify the interoperability issues. 



6.3 Application Design 

Several issues affect the future of interoperable application design. 

6.3.1 Software Components 

Software engineering techniques are embracing a "software component" model as an alternative 
to the development of large applications and systems. Software components, whether object- 
oriented or not, solve a number of application development problems [Grimes 19951. Uncoupling 
applications in terms of time allows later modifications to interoperate with earlier code. Further 
geographic uncoupling allows loosely-connected interoperability where applications can be 
integrated with no more than an understanding of their interfaces. Another motivation for 
component-based software is the scaling up to large systems. Traditional, structured 
programming techniques become unwieldy when systems scale to several hundred thousand 
lines of code. Components with standardized and published interfaces allow their functionality to 
be uncoupled fiom their interfaces. Software vendors can ship specific components that can be 
integrated easily into existing applications and systems. To simplify the interface specifications, 
IDLs are becoming more prominent. Interoperability technologies like CORBA, DCE and COM 
will support the interconnection of components across networks. Like any change in paradigm, 
the move to distributed, component-based applications will take time. 

6.3.2 Code reuse 

Many organizations are implementing software reuse programs. Such programs will have to be 
effective if component-based applications are to be engineered. A survey [Frakes 19951 of 
software engineers, managers, and educators investigated beliefs and practices in reusing code 
and other life-cycle objects. 

The survey found that reuse of software assets is varied, based largely on the development 
environment. For example, development on UNIX platforms had greater support for and belief in 
reusable code and tools. No reasons were given as to why some assets are more accepted for 
reuse than others, though perception of the relevant functionality is a factor. Reuse levels differ 
across industries. For example, telecommunications companies reported the highest level of 
reuse while aerospace companies had the lowest, possibly because the former type of industries 
are at the leading edge of computing technology and so are more informed of latest software 
engineering tools and practices. 

The choice of programming language appears to have no effect on aspects of the development 
process. In fact, the marketing of languages such as Ada and C++, usually thought to promote 
reuse, showed no significant correlation with reuse levels. Another finding was that higher level 
languages were no more reused than lower level ones like assembly and C. 

Many people believe that software engineers prefer to build their own code rather than reuse 
someone else's - which is referred to as the "Not Invented Here" (NIH) syndrome. However, the 
survey found that 72% of developers report that they prefer to reuse code rather than develop it 
fiom scratch. To this extent, however, it was found that CASE tools and component 
repositories/libraries currently have little effect in the engineering of new applications. 
Conclusions for this finding include the possibility that such tools are either considered 
ineffective or are not being used properly. 



Perceived economic feasibility does appear to influence reusability of code, as does corporate 
education on reuse, although at present very few companies have reuse training programs. The 
lack of education and training is given as a factor in why software engineering experience has no 
effect on reuse. The study of the software process, a growing area of research, shows that a 
defined process does affect reuse levels. Thus, gains in process maturity can translate into gains 
in software reuse. Developers also appear generally to be uninhibited by legal problems 
surrounding component reuse, especially since legal issues regarding contracting, ownership and 
liability for reusable components are still unresolved; in addition, most reuse presently takes 
place within companies where legal issues are less of a concern. 

6.3.3 Legacy s o h a r e  

"Reverse software engineering" comprises tasks that are aimed at understanding and modifying 
legacy software systems, principally the identification of software components and their 
relationships to one another. As it is unreasonable to expect a system to be developed properly 
the first time, and as future technological developments require system upgrades, so reverse 
engineering is a new field of research (the first conference was in May, 1993) playing a more 
important role in integrating old and new software applications. A large application of reverse 
engineering tasks is currently underway in the upgrading of software systems used by the U.S. 
Department of Defense [Aiken et a1 19941; considered are over a billion lines of code defining 
thousands of systems running at more than 1700 data centers. 

One method of migrating legacy so.ftware is to encapsulate it in "wrapper" code that then allows 
it to be used in a new execution environment. Such an approach preserves original 
functionalities, is cheap (old hardware need not be replaced), and no deep analysis of the code is 
required thus producing a short migration cycle. The disadvantage of interface wrappers is they 
yield no performance gain and provide no flexibility (the legacy system has to be used as a 
whole). Reverse engineering thus attempts reusable component recovery. The principle is that 
functional components of systems are recognized, recovered, adapted and reused in new systems. 
Recovered components are smaller and thus more readily distributed across networks. 

A major challenge for cross-functional integration in reverse engineering is to identify what data 
elements are related to the integration. For example, "calculate pay" must access policy 
information fiom "personnel" and apply a "pay" function. A complete understanding of data 
sharing requirements demands that reverse engineering analysis determine both how interface 
elements are generated and also identify any non-interface data elements that are synonymous 
among modules and are therefore sharable. This task is hard because many legacy systems were 
designed for obsolete hardware platforms and do not support data and process models necessary 
for data standardization. Complicating this process is the common misconception that data 
standardization is achieved merely through identification of associated data elements and 
consistent naming in each system. Correct use of information fiom data elements requires that 
the business rules, policies, and functional dependencies be identified and represented in a data 
model for each system. Model integration must then be achieved before standardization is 
possible. Ning et a1 [Ning et a1 19941 describe automated tools developed by Andersen 
Consulting for understanding legacy code. 



6.3.4 Middleware 

Middleware may become one of the key network industries for the rest of this decade [King 
19921. Middleware technology [Bernstein 19961 provides an enabling layer of software between 
the network and an application, allowing programmers to focus on business problems rather than 
communication. Middleware provides network services to the programmer, just as an operating 
system provides local resources such as disk, memory, and other peripherals. It offers a way for 
software vendors to solve heterogeneity and distribution problems by using standard protocols 
that enable applications to interoperate. Middleware services provide these standard 
programming interfaces and protocols. Legacy applications can be encapsulated with 
middleware services to provide access to remote functions, or modem, graphic user interface 
tools. Some middleware services allow for replacement of internal components within a legacy 
program, for example application-specific database functions can be replaced with more generic 
middleware database services. 

Many major middleware products (e.g., OLE, CORBA, DCE) are based on the RPC model while 
others such as DECmessageQ and Pipes Platfonn use a message-based communication (often 
called message-oriented middleware, or MOM). The effect on the interoperable execution model 
was described in Section 3.1. Other issues are the degree of platfonn independence offered, the 
degree of encapsulation, the number of communication modes and the number of supporting 
utilities and services such as security, transaction, and time services. 

Despite their advantages, middleware services are not a complete solution, especially if they are 
based on proprietary APIs and protocols (as is the case with many relational DBMSs.) Some 
vendors offer middleware services on popular platfonns, thus limiting the customer's ability to 
integrate applications in heterogeneous systems. Furthermore, adoption of middleware solutions 
is inhibited by the number of services,. a factor that greatly complicates application development, 
especially considering that the application programmer must still make hard design decisions 
such as how to partition functionality between the various application modules. 

To simplify the use of middleware services, vendors also provide frameworks. These are 
software environments developed for specialized domains that simplifl the APIs of the 
underlying middleware services they abstract. Frameworks can also be built for situations where 
middleware services cannot meet the requirements of new applications. 

Examples of popular frameworks currently available are Microsoft Office, Lotus Notes (for 
office systems), Digital's Powerfiame (for CAD), and IBM7s NetView (for system 
management). 

The future growth of the middleware market will probably be very aggressive, and major 
companies are already delivering products [Eckerson 19951. While DCE is very popular with 
many IS managers, it is highly complex (having more than 400 APIs) and has no robust 
secondary market for DCE-based tools. It does not support asynchronous communication, 
though its RPC model can mimic asynchrony. The restructuring of the OSF may further weaken 
it. Many developers see a better solution with an object-oriented based middleware such as 
CORBA or OLE. However, object-based middleware is hampered by the lack of widely 
available object technology - many companies still operate procedural systems rather than 
object-oriented ones. Also OLE is currently limited to Microsoft platforms, though Microsoft's 
cooperation with Digital enables OLE connection with CORBA-compliant systems (as OLE has 
no ORB) - such a development raises the concern of the need for building "middleware for 



middleware". When Microsoft shps the next version of Windows NT (codenamed Cairo), all 
OLE-compliant applications will automatically become distributed on this platform and reliant 
on Microsoft middleware, that could lead to OLE becoming the de facto industry standard. To 
protect applications for changes in underlying middleware technology, developers can provide 
in-house wrapper APIs that can be layered over third-party middleware. Other developers [Kador 
19961 are using interfaces like the World Wide Web to connect to servers, thus bypassing the 
complexities and costs of middleware solutions. 

6.4 Ontologies 

Software components, widely supported network protocols, and middleware all help to 
interconnect software modules in heterogeneous environments. However, such technologies do 
not solve interoperability except in the simplest cases (such as document sharing). Engineering 
industries are currently developing sophisticated "shared models" to provide at least data type 
interoperability among the more advanced applications, for example STEP. For applications that 
require more sophisticated (semantic level) interoperability, research in agent-based systems and 
interlingua such as KIF is ongoing. 

STEP [IS0 103031 is a multinational effort aimed at producing a methodology for exchanging 
product and process models among users in industries such as aerospace, aeronautics, process, 
mechanical, electrical and automotive, where it has strong support. Work on STEP is also 
underway in architecture and construction. A STEP industry standard is defined by one or more 
application protocols (APs). An AP defines the scope and information requirements of a specific 
industry need and provides a map from them to an information model defined in the EXPRESS 
language. The AP also specifies software application conformance requirements for the standard. 
STEP follows an incremental methodology and STEP models support information sharing and 
hence interoperability. However, it is based on a static exchange of information as it was 
designed for data integration and not data interoperation; also, it does not support object behavior 
and the formalization of design knowledge that are required for improved business work 
processes. An overview of STEP (including motivation for extending it to support object 
behavior) and other standards (such as ED1 and DXF) in the AEC industries is given in [Arnold 
19961. Other object-based models such as EDM [Eastman 19931 and MDS [Sause 19921 have 
also been proposed. 

The Industry Alliance for Interoperability has issued an initial specification for semantic 
definition of a set of several hundred "foundation classes" for the Architecture Engineering 
Construction (AEC) industry. The Industry Foundation Class (IFC) specification describes a set 
of entities and their attributes. The initial release acknowledges the difficulty of enabling 
"interoperability" among software applications in a large and highly fragmented industry. (The 
AEC industry in the US has over 1,000,000 contractors, none of which has even a 5% industry 
share.) The initial specifications provide: 

Standard definitions for the attributes of entities that comprise an AEC project model; 

Structure and relationships among entities, fiom the perspective of AEC disciplines; 

Standard formats for data sharing, including static file data exchange and dynamic data 
exchange via CORBA. 

Based on industry needs and the STEP standard, the IFC model describes four fundamental 
categories of entities: 



Products: physical elements in a building or facility, such as spaces, wells, doors, windows, 
equipment; 

Processes: the steps that are required to design, construct and manage a design, construction 
or operations project; 

Resources: the labor, material and equipment that are used to design, construct or operate a 
facility. Resources are used, but they do not become part of the facility itself. 

Controls: constraints on use of products, processes or resources. 

The IFC-defined entity descriptions include some very specific entity types, such as 
Ifclnsulation. Thus, at a simple level, IFC specifies some semantics. However, the IFC 
convention does not yet explicitly represent the design function of entities or many of their 
engineering behaviors, such as those that would be used to compute beam deflection or pump 
performance. 

The IFC defines a number of industry-specific, i.e., semantic, datatypes. For example, the 
IfcActor object as one of an employee, person, department or organization; the 
IfcApplicance is one of a telephone, facsimile, copier, computer or printer. 

The IFC standard is one example of emerging effort to enable semantic interoperability and use 
existing datatype and physical interoperability standards, e.g., CORBA. By integrating standards 
such as STEP or IFC's and CORBA, it may become possible for virtual enterprises to share 
manufacturing information. Hardwick et a1 [Hardwick et a1 19961 describe a system (illustrated 
in Figure 6-2) that uses a World Wide Web interface to allow client applications to retrieve 
enterprise data modeled using STEP through application and database servers. 

Such an approach allows manufacturers to use different tools to process each other's data. While 
such a proposal does not address software interoperability per se but rather how applications can 
share data, Hardwick's findings include issues relevant to application integration. The authors 
point out that the communication medium between integrated applications must be cost- 
effective, portable and flexible; it must also have high performance (as STEP models can. be 
large - they cite a case example of a simple model that required 2 megabytes of storage) and 
should not deliver unnecessary information (otherwise concurrent model access by other 
applications is inhibited). They note that barriers hindering effective inter-application 

Web 
Client 

\ I 

CORBA over Internet 

Application Application 

Figure 6-2: Virtual enterprises can use the STEP and C O M A  standards to share product data 
through databases integrated via the World Wide Web. 
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communication include insufficient security controls, loss of control over projects (especially 
when communicating across corporate boundaries), lack of data and semantic interoperability 
among the applications. 

An ontology for engineering analysis [Brooke et a1 19951 is required if more direct application 
interconnection is to be possible. The typically unstructured development of analytical software 
complicates the integration of applications and the information they manipulate. In engineering 
analysis, the large number of physical and chemical phenomena typically require their own 
separate analysis application. The challenge of integrating such programs arises not just from the 
number of analyses required, but also their variety, particularly in the information processed. 
However, many such applications can be found to share common elements. The authors describe 
an approach to improve the integration of analytical tools and information by exploiting such 
commonality. 

Engineering products are analyzed using models that predict behavior of physical phenomena, 
such as "thermal analysis". Traditional software design tends to implement analyses for 
individual classes of components or at most, in subsystems. The applications frequently adopt 
specific models and solution techniques - in engineering, for example, the finite element method 
is popular for stress and thermal analysis. Limits of component and subsystem models include 
the difficulty of applying them at different stages in the product life cycle or applying them at 
varying levels of detail. 

Figure 6-3 shows that "software interoperability" is a broad term that covers three general 
approaches to interoperability. The first approach considers the level of abstraction at which 
applications or databases will share information. In other words, the focus is on the content and 
structure of the information exchanged or shared, not on the design of the applications or their 
behavior. The second approach attempts to integrate software components that are distributed 
across a network so that the integration of those components defines a logical application. 
Distributed object computing is the main thrust in this area at present with aggressive 
development behind standards such as OLE, CORBA and DCE. A third view of software 
interoperability has the objective of integrating distributed applications without regard for 
whether or not they comprise distributed objects or components - the level of abstraction at 
which data will be exchanged is not the principal focus of the research, perhaps because of a 
widely adopted standard that governs the level of abstraction at which knowledge among domain 
applications will be shared. "Interaction" interoperability combines a universal data-type 
interaction protocol with the evolving "network computer" model described earlier in this 
section. 
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Figure 6-3: Software interoperability can be considered from three different viewpoints. The most 
common approach is to investigate the level of abstraction at which databases andlor applications 
can be integrated (view 1). A more recent development is to extend the object-oriented (or software 
component) paradigm so that objects can be distributed across network machines and still constitute 
a logical application (view 2). This is at a fine level of granularity and deals with the technical 
issues of integration software. By contrast, a third view is to consider the integration of applications, 
regardless of whether they are distributed or even object-oriented. Such an approach assumes an 
agreed abstraction level at which knowledge is shared or communicated (view 3). It focuses on the 
integration of network-based applications and assumes the functional and behavioral requirements 

The 'strength of a "network computer" model is the sharing and integration of distributed 
resources such as CPUs and memory, particularly by using a client-server protocol. There is 
already a large body of research in distributed and parallel computing for such applications in 
numerical analysis and large-scale simulations. However, these applications typically spread the 
computational load across the network within the scope of a single application. Future 
integration frameworks will provide software interoperability among multiple applications in a 
network environment where the information exchanged across machines is not a subset of the 
computational load for a single application but rather a sub-model in the applications' domain. 

In many engineering industries, the emerging STEP standard enables creation of suites of 
application protocols that use defined STEP datatypes as part of their software integration. For 
engineering industries, a new interaction interoperability among network-applications will 
therefore focus on developing an integration framework based on STEP. As STEP focuses on 
specific industries, for example with AP227 for plant spatial configuration, interaction 
interoperability will also have specific implementations for different industries such as the 
process industries. In engineering, STEP has developed many definitions for knowledge 
exchange, and an IS0 standard should be available by the end of the decade. Adopting STEP as 
the standard for information exchange among distributed engineering applications may or may 
not be sufficient for data-type integration of plant applications in an individual industry. 
However, representation of the semantics of industrial component behavior (e.g., "pump curves" 
or thermodynamic models) is outside of current STEP standard efforts. Thus, attempting to 
share semantics will be difficult, particularly given the failure of advanced knowledge 
representation approaches like Expert Systems to reach broad acceptance in industry practice. 



Due to the investment in legacy software systems, application developers in the plant industries 
are not extracting shared components from their applications and building traditional client- 
server systems. Instead, legacy software is being network-enabled through communication 
interface "wrappers". The process industries, for example, already have numerous design 
applications created to perform such specialized tasks as pipeline analysis and construction 
planning. It is therefore most practical to propose integration solutions that use legacy solutions 
when possible, rather than creating large numbers of new fine-grained applications using 
distributed object computing. For software interaction interoperability to work effectively, STEP 
models will need to represent enough form and function content so that individual applications 
can compute behaviors as necessary for particular purposes. 

Existing and emerging applications for process facility design and maintenance comprise 
sufficient behavioral knowledge that exchanging STEP models in an integration framework 
should provide the necessary interoperability to enable the use of such resources in a tightly- 
coupled environment consistent with the notion of a "network computer". Figure 6-4 illustrates 
how a STEP model for a "centrifugal pump" component can be used to exchange form and 
functional information between an application for "pipe routing" and one for "instrumentation 
system design" without either application requiring complex behavioral views of the pump itself. 
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In software interaction interoperability, analytical applications provide the behavioral 
information to add to the description of component form and function modeled in STEP. An 
example of direct integration of network-applications is illustrated in Figure 6-5. Such an 
integration framework would allow applications to share STEP models directly and so operate in 
a synchronized client-server manner. Figure 6-5 shows a hypothetical example of software 
interaction interoperability for a simple plant subsystem design. 
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Figure 6-5: A software integration framework for network-applications will allow applications for 
engineering system design and management to exchange information directly using a client-server 
model. In this example, an application for pipe design passes information to a second application 
that adds instrumentation detailing and then passes that back to the piping design application via a 
third program that checks for safety compliance in the model. 

The principle by which application behavior is integrated with the form and function of shared 
STEP models is more formally illustrated in Figure 6-6 using IDEF notation. The example 
shows how the piping application in Figure 6-5 would use its internal behavior to add form to an 
input functional specification. The integration fiamework would then coordinate this application 
output with the instrumentation application. The fiamework thus supports general integration of 
application behavior in the iterative development of a design model in a distributed environment 
to augment the form and functional content of STEP. 
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Figure 6-6: A STEP-interoperability framework will integrate application behavior among network- 
applications in specific engineering domains. The above IDEF diagram shows how application 
behavior is combined with the functional representation from a STEP model to produce form- 
function descriptions that can be provided to other applications during the iterative design process. 

The integration framework will be based on a communication protocol for linking both legacy 
and new applications. The'need for a formal communication protocol is critical in any distributed 
system. For example, the Hypertext Transfer Protocol (HTTP) is the driving force behind the 
World Wide Web (a virtual network based on a shared document model specified by HTML - 
the Hypertext Markup Language). While HTML is crudely analogous to the STEP specification, 
there is no equivalent to HTTP for managing software integration in the plant engineering 
industry. An integration protocol for the process industries must not only manage the exchange 
of STEP-compliant information but should also reflect current (and preferably improved future) 
work processes in the design and management of plant facilities. 

7 CONCLU ONS 

The distribution of applications across modern networked environments has increased the 
complexity of attaining software interoperability. Tight coupling of software components on 
largely homogeneous machines is no longer sufficient as an interaction model. As more 
sophisticated network protocols become available and as software logic is embedded in a range 
of electronic devices, the boundary of an application and its interaction with other programs 
becomes less discernible. Integration across disparate platforms necessitates that distributed 
programs support at least a shared data-type model and preferably agree upon semantic level 
issues, especially since middleware technologies simply provide an encapsulated means of 
communication. The role of emerging ontologies in this regard is a key factor in the future of 
interoperable applications. However, for those environments in whch there are widely-adopted 
standards and established legacy applications, it may be possible to formulate integration 
frameworks that can provide interoperability among distributed applications where information 



exchange is at a traditional "type" level and the domain behavior is captured in the applications 
themselves, thus obviating the need for explicit exchange of semantic knowledge. 

8 GLOSSARY 

AAITT: The Advanced Artificial Intelligence Technology Testbed. A testbed developed by the 
USAF Rome Laboratory for the design, analysis, integration, evaluation and exercising of large- 
scale, complex software systems. 

AP: An Application Protocol defined within the STEP (IS0 10303) standard that specifies the 
scope and information requirements of a specific engineering industry need (e.g., process plant 
layout) and provides a map fiom such requirements to an information model defined in the 
EXPRESS language (also part of IS0 10303). 

API: Applications program interface: the specification of the way one program can send input to 
or receive output fiom another. Most systems today provide APIs to support systems interfaces 
in a networked environment, at least at the level of simple data types. 

Asynchronous/synchronous: Synchronous communication assumes a well-defined and 
regularly timed exchange of information between the two applications (RPCs, for example). An 
asynchronous model allows communication without the need for a coordinated communication 
channel. For example, with an "off-line" queuing facility, one application can pass information 
to another that need not be running at the time. 

Client-Server: A model of distributed computing where an application (the client) invokes a 
software service provided by a remote application (the server). The two applications are 
perceived as part of a single application. 

CORBA: Common Object Request Broker Architecture. An object-oriented multi-platform 
software interoperability standard being developed by the OMG (Object Management Group). 

EXPRESS: An object modeling language defined as part of STEP (IS0 1303). 

Front-endhack-end: The "front end" of an application handles input and pre-processing; the 
"back end" performs analytical processing or handles data management requests on behalf of the 
fiont end. 

IDL: Interface Definition Language. A high-level language that allows software developers to 
define the interfaces for object-oriented software components. 

Interoperability: The ability for multiple software components to interact regardless of their 
implementation programming language or hardware platform. 

IP: The Internet Protocol - a network communications specification used in common protocols 
such as TCPm and UDP/IP. 

IRTMM: The Intelligent Real-Time Maintenance Management developed at Stanford 
University for application in process plants. 



KIF: The Knowledge Interchange Format. A declarative language based on predicate calculus 
for the interchange of knowledge among disparate programs. 

Middleware: A range of productslservices that shield applications and their developers kom a 
multitude of network communication protocols and database APIs. 

Object: The basic element in the object-oriented programming (OOP) paradigm. An object 
comprises both data and code (procedures; usually called methods) that defines a behavioral 
interface to the encapsulated data. Properties of objects can usually be inherited by other related 
objects. 

Object Request Broker (ORB): A logical entity responsible for establishing and managing 
communication between a client application and a remote object in a distributed environment. 

OLE: Object Linking and Embedding. A proprietary interoperability technology developed by 
Microsoft Corporation to enable the interaction of embedded data objects across application 
boundaries. 

Ontology: A shared vocabulary; an explicit specification using a formal and declarative 
representation for a particular topic. An ontology defines a shared understanding of a view of a 
domain, often describing entities, attributes, and relationships. An ontology will typically include 
classes, relations, facts, formal definitions, and informal descriptions (to aid people in 
understanding it). An effective ontology supports computational processes as well as a shared 
vocabulary between software and people. 

OpenAccess: A software framework developed by the Electric Power Research Institute (EPRI) 
that enables applications to access data from various sources; it was formerly called EPRIWorks. 

Process: The active component (as opposed to its binary image) of a program managed by an 
operating system. 

Remote Procedure Call (RPC): An extension of the paradigm of a "local" procedure call that 
enables a client application to invoke a procedure in a remote (server) application as if the 
remote procedure were resident on the local machine. RPCs distribute application execution. 

STEP: The Standard for the Exchange of Product data. Formerly known as IS0  10303, it is an 
emerging international standard for neutral data exchange in a wide variety of engineering 
disciplines. 

Tightlloose coupling: Tightly coupled applications rely on each other for input and output, and 
they usually communicate synchronously. Loosely-coupled programs do not depend on each 
other for input or output and often communicate asynchronously. 
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