
 1

 CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

Distributed Coordination of Project Schedule
Changes: An Agent-Based

Compensatory Negotiation Approach

By

Keesoo Kim

CIFE Technical Report #130
December, 2001

STANFORD UNIVERSITY

 2

COPYRIGHT © 2001 BY
Center for Integrated Facility Engineering

If you would like to contact the authors, please write to:

c/o CIFE, Civil and Environmental Engineering Dept.,
Stanford University

Terman Engineering Center
Mail Code: 4020

Stanford, CA 94305-4020

 iii

SUMMARY

CIFE TECHNICAL REPORT # 130

Title: Distributed Coordination of Project Schedule Changes: An Agent-
Based Compensatory Negotiation Approach

Authors: Keesoo Kim (Advisor: Boyd C. Paulson, Jr.)

Publication Date: December 20, 2001

Funding Source: CIFE Seed Project (10/1/99 to 9/30/00) – Agent-Based Project

Scheduling and Control

Abstract:

In the construction industry, projects are becoming increasingly large and complex,

involving multiple subcontractors. Traditional centralized coordination techniques used

by the general contractors become insufficient as subcontractors perform most work and

provide their own resources. When subcontractors cannot provide enough resources, they

hinder their own performance as well as that of other subcontractors and ultimately the

entire project. Thus, construction projects need a new distributed coordination approach

wherein all of the concerned subcontractors can respond to changes and reschedule a

project dynamically.

The focus of this research is rescheduling a project in a distributed manner in order to

lower the sum of all participating subcontractors’ extra costs associated with changes in

their resource constraints, subject to the precedence relationships among project

activities, without assuming that a central coordinator knows all the information needed

for coordination and that subcontractors are benevolent. The challenges are to find a new

distributed approach that enables subcontractors to compensate other affected

subcontractors for disadvantageous agreements so that it enhances the global outcome

while pursuing individual incentives; to identify schedule conflicts, consider alternatives;

and resolve schedule conflicts in a tightly coupled network of related activities; and to

preserve the work logic and ensure convergence of distributed computation.

 iv

To meet the challenges, I developed a new distributed coordination framework for project

schedule changes (DCPSC) and a novel agent-based compensatory negotiation (ABCN)

methodology to enable the framework. The DCPSC-based ABCN methodology has met

challenges fully by using novel definitions of utility-based schedule-change options, by

employing new multi-linked negotiation protocols based on a shared project plan, and by

introducing new mechanisms of directing message-passing based on the Critical Path

Method (CPM).

In addition to this theoretical work, I designed and implemented a new Java-based multi-

agent prototype — distributed subcontractor agent system (DSAS) — to demonstrate the

effectiveness of the DCPSC framework through a series of comparison tests, charrette

tests, and measurements. DSAS solves the problems successfully. Thus, this research

formalizes, implements, and tests the necessary steps to help subcontractors coordinate

schedule changes in order to increase the efficiency of their resource use, which in turn

enhances successful completion of whole projects.

This research describes the research completed by Keesoo Kim at Stanford University’s

Center for Integrated Facility Engineering (CIFE). This research supports CIFE’s goals

by encouraging collaboration over the Internet between distributed project teams during

construction phases of a project by providing them with a novel agent-based

compensatory negotiation approach for distributed coordination of project schedule

changes.

 v

TABLE OF CONTENTS

List of Tables ...ix

List of Figures ..xi

Chapter 1 Introduction...1

1.1 Practical motivation of DCPSC ..2

1.2 Assumptions of DCPSC ..3

1.3 Case example ..4

1.4 Two centralized coordination methodologies...7

1.4.1 Tight "Iron-Fist" centralized coordination ...8

1.4.2 Loose "Laissez-Faire" centralized coordination ..9

1.5 Challenges for DCPSC..11

1.6 Organization of the dissertation ...12

Chapter 2 Points of Departure ...14

2.1 Previous coordination of project planning and scheduling ..14

2.2 Previous distributed agent-based coordination ...16

2.3 Research objectives ...17

2.4 Research questions ..19

2.5 Research methodology ..20

2.6 Summary of points of departure..24

Chapter 3 Distributed Coordination of Project Schedule Changes

Based on Agent-Based Negotiation Approach..25

3.1 Introduction ...25

3.2 Distributed coordination framework for project schedule changes26

3.3 Agent-based negotiation approach ...28

3.3.1 Agent ..28

3.3.2 Agent-based negotiation ..29

3.3.3 Advantages of an agent-based negotiation approach ..32

3.4 Relation to previous coordination of project planning and scheduling32

3.4.1 Agent-based software integration ..33

3.4.2 Cooperative distributed planning model ..33

3.4.3 Distributed job-shop scheduling ...34

 vi

3.4.4 i-AGENTS ..34

3.4.5 PM in ProcessLink ..35

3.4.6 Resource-driven scheduling model...36

3.4.7 Workplan ..37

3.4.8 Capacity constraints ..38

3.5 Summary of DCPSC framework based on agent-based negotiation approach39

Chapter 4 Agent-Based Compensatory Negotiation Methodology

To Facilitate Distributed Coordination of Project Schedule Changes ..40

4.1 Introduction..40

4.2 Compensatory negotiation strategy based on utility ..42

4.2.1 Utility of timing ...42

4.2.2 Uitility transfer for compensatory negotiation...48

4.3 Multi-linked negotiation protocols..49

4.3.1 Multi-linked negotiation performatives...50

4.3.2 Conversation sequence of multi-linked negotiation ..57

4.3.3 Example of multi-linked negotiation ...59

4.4 Message-handling mechanisms...60

4.5 A simple example of agent-based compensatory negotiaiton ..64

4.6 Relation to selected previous work on agent-based coordination67

4.6.1 Generic partial global planning...68

4.6.2 Automated contracting ...69

4.6.3 Agent-based distributed meeting scheduling...70

4.6.4 Distributed constraint-satisfaction problem...70

4.6.5 Coordination as distributed search..71

4.6.6 Rules of encounter: Unified negotiation protocol..72

4.6.7 Clarke tax voting mechanism ...72

4.6.8 Multiagent compromise via negotiation..73

4.6.9 Distributed constrained heuristic search..73

4.6.10 Market-oriented programming..74

4.6.11 Enterprise: A market-like task scheduler ..75

4.6.12 A dynamic theory of incentives in multi-agent systems...75

4.7 Summary of ABCN methodology...76

 vii

Chapter 5 Distributed Subcontractor Agent System: A Multi-Agent System

for Distributed Coordination of Project Schedule Changes ...78

5.1 Introduction..78

5.2 Distributed Subcontractor Agent System (DSAS) ...79

5.2.1 DSAS architecture ...79

5.2.2 Subcontractor agents ..80

5.2.3 Graphic user interfaces...81

5.2.4 Agent message router...82

5.3 Supporting State-of-the-Art Technologies...83

5.3.1 Agent development environments ..83

5.3.2 Agent communication languages..86

5.4 DSAS Implementation ...87

5.5 Summary of DSAS ..88

Chapter 6 Evaluation ...90

6.1 Comparison tests ..90

6.1.1 Schedule-change options..90

6.1.2 Agent-based compensatory negotiation ...91

6.1.3 Tight "Iron-Fist" centralized coordination ...94

6.1.4 Loose "Laissez-Faire" centralized coordination ..95

6.1.5 Comparison of three coordination methodologies...96

6.2 DSAS charrette tests...96

6.2.1 DSAS charrette design ...97

6.2.2 Two DSAS charrette tests ..97

6.2.3 Summary of DSAS charrette tests ..104

6.3 System performance measurements of DSAS ...108

6.4 Summary of evaluation...115

Chapter 7 Conclusions ..116

7.1 Summary of contributions ..118

7.2 Practical demonstrations...120

7.3 Present limitation of research..122

7.4 Future research...123

7.5 Value to industry..124

 viii

Appendix-A Bibliography ...126

Appendix-B Multi-linked negotiation protocols ...137

Appendix-C Message-handling mechanisms ..153

Appendix-D Step-by-step ABCN on DSAS ...167

Appendix-E Mathematical proofs of evaluation results ..180

Appendix-F Handout for DSAS charrette test ...186

Appendix-G Analysis of running time ...194

 ix

LIST OF TABLES

4.1 Multi-linked negotiation performatives and expected responses...............................51

4.2 Pair-wise negotiation performatives..55

4.3 Summary of message handling mechanisms ...61

4.4 Schedule change options of Sub-α, Sub-β, and Sub-δ ...66

4.5 Summary of selected previous work ...68

5.1 Commercial environments for agent development ..83

5.2 Academic and research projects environments for agent development...............................84

6.1 Predefined schedule-change options before coordination ..91

6.2 Selected schedule-change options after ABCN ...93

6.3 Summary of result after ABCN ..93

6.4 Selected schedule-change options after TCC...94

6.5 Summary of results after TCC..94

6.6 Selected schedule-change options after LCC...95

6.7 Summary of results after LCC..95

6.8 Summary of results ..96

6.9 Comparisons of results by group...100

6.10 Selected schedule-change options for Sub-α (Group-A)..101

6.11 Selected schedule-change options for Sub-β (Group-A) ..101

6.12 Selected schedule-change options for Sub-δ (Group-A) ..102

6.13 Selected schedule-change options for Sub-ε (Group-A) ..102

6.14 Selected schedule-change options for GC (Group-A) ..102

6.15 Selected schedule-change options for Sub-α (Group-B)..103

6.16 Selected schedule-change options for Sub-β (Group-B) ..103

6.17 Selected schedule-change options for Sub-δ (Group-B) ..104

6.18 Selected schedule-change options for Sub-ε (Group-B)...104

6.19 Selected schedule-change options for GC (Group-B) ..104

6.20 Test results in terms of number of messages ...111

6.21 Test results in terms of time taken...111

D.1 Initial schedule change options at Step-0..169

D.2 Selected schedule change options at Step-7..171

D.3 Selected schedule change options at Step-15..172

 x

D.4 Selected schedule change options at Step-21..173

D.5 Selected schedule change options at Step-28..174

D.6 Selected schedule change options at Step-33..175

D.7 Selected schedule change options at Step-39..177

D.8 Selected schedule-change options at Step-43 ...177

D.9 Selected schedule change options at Step-50..178

G.1 1-activity case analysis ..194

G.2 2-activity case analysis ..195

G.3 3-activity case analysis ..195

G.4 4-activity case analysis ..196

G.5 5-activity case analysis ..196

G.6 6-activity case analysis ..197

G.7 7-activity case analysis ..197

G.8 N-activity case analysis ...198

 xi

LIST OF FIGURES

1.1 Example network and ERS schedule...4

1.2 Resource requirement histogram...5

1.3 Available resource histogram ...6

1.4 Subcontractors’ preferred schedule...7

1.5 Revised resource histogram after TCC..8

1.6 Revised schedule after TCC ...9

1.7 Revised resource histogram after LCC..10

1.8 Revised schedule after LCC ...11

2.1 Summary of research..18

3.1 Distributed coordination of project schedule changes..25

4.1 Two kinds of acceleration cost..44

4.2 Two kinds of delay cost..46

4.3 Awarding stage of negotiation ..56

4.4 Confirming stage of negotiation..56

4.5 State-transition diagram of multi-linked negotiation protocols ..58

4.6 State transition diagram of pair-wise negotiation ..58

4.7 Conversation sequence diagram..59

4.8 Example schedule...64

4.9 Resource histograms of Sub-α, Sub-β, and Sub-δ ...65

4.10 Preferred schedule..66

4.11 Revised schedule after negotiation..66

4.12 Conversation sequences of distributed coordination..67

4.13 Conceptual diagram of agent-based compensatory negotiation methodology...................76

5.1 DSAS architecture..79

5.2 DSAS classes ...80

5.3 Graphic User Interface (GUI) screen shot ...82

5.4 DSAS screen shot...88

6.1 Revised resource histogram after ABCN ..92

6.2 Revised schedule after ABCN ..93

6.3 Time taken for each session..105

6.4 Total extra costs from each session...106

6.5 3-activity and 3-agent sample schedule ..108

 xii

6.6 7-activity and 3-agent sample schedule...108

6.7 15-activity and 5-agent sample schedule...109

6.8 22-activity and 5-agent sample schedule...109

6.9 27-activity and 5-agent sample schedule...110

6.10 Test results in terms of number of messages ...112

6.11 Test results in terms of time taken...112

6.12 Balanced schedule..113

6.13 Unbalanced schedule..113

6.14 Deadlock in unbalanced schedule ...114

6.15 Making balanced schedule..114

6.16 Checking balanced schedule ...115

C.1 Handling “input” messages ..153

C.2 Handling “ready” messages ...154

C.3 Handling “ask-cost” messages ...155

C.4 Handling “reply-cost” messages...156

C.5 Handling “accept” messages ..157

C.6 Handling “reject” message...158

C.7 Handling “confirm” messages..159

C.8 Handling “renege” messages..160

C.9 Handling “accept-all” messages ...161

C.10 Handling “reject-all” Message ...162

C.11 Handling “confirm-all” Message..163

C.12 Handling “renege-all” messages...164

C.13 Handling “hand-over” messages ..165

C.14 Handling “done” messages ..166

D.1 Example network and ERS schedule..167

D.2 Resource requirement histogram..168

D.3 Available resource histogram...168

D.4 Subcontractors’ preferred schedule ..169

D.5 Final revised schedule ...175

D.6 Final revised resource histogram..175

E.1 Activity precedence diagram..183

F.1. Handout for DSAS charrette test (Sub-α) ..187

G.1 Activity precedence network ...194

 xiii

G.2 1-activity precedence network ...194

G.3 2-activity precedence network ...195

G.4 3-activity precedence network ...195

G.5 4-activity precedence network ...196

G.6 5-activity precedence network ...196

G.7 6-activity precedence network ...197

G.8 7-activity precedence network ...197

G.9 N-activity precedence network ..198

 1

CHAPTER 1

INTRODUCTION

My Ph.D. research began with a scenario where one subcontractor in a construction

project has a problem. He cannot provide enough resources at the originally estimated

cost, and thus is expecting a cost overrun. The underlying assumption is that

subcontractors seek profits from their resource utilization. If making profits becomes

infeasible, then a subcontractor will take actions to mitigate the impacts (O’Brien and

Fischer 2000). One possibility is to re-schedule his work to match his available

resources. Therefore, the subcontractor asks the general contractor whether he can do

this.

However, the general contractor could respond negatively for three reasons: (1)

Coordinating subcontractors’ schedule changes is beyond the capability of the general

contractor in cases of complex projects, involving many subcontractors; (2) the general

contractor cannot access private information held by subcontractors (Choo and

Tommelein 2000), which is needed for coordinating project schedules; and (3) there is a

contractual relationship between the general contractor and the subcontractor. This means

that the general contractor has little incentive to help the subcontractor to re-schedule

(Tommelein and Ballard 1997). Therefore, the subcontractor has to negotiate with other

subcontractors.

There are many interrelationships and interdependencies in project schedules. Therefore,

a schedule change in a subcontractor’s work might affect other subcontractors’ schedules

 2

as well as the project deadline. The subcontractor should resolve schedule conflicts with

other affected subcontractors. This implies that there is a need for a methodology1 for

distributed coordination of project schedule changes (DCPSC).

1.1 PRACTICAL MOTIVATION OF DCPSC

Despite the ubiquity of change in large, complex construction projects, current

approaches to change coordination are mostly reactive, and therefore lead to less than

optimal solutions. If, however, changes in a given schedule were coordinated prior to

execution, then better solutions could be found. Previous researchers have explored the

various causes of schedule changes in construction projects. Discrepancies between the

needed resources for activities and the resources available to subcontractors are one

major cause of change (O'Brien et al. 1995). The resource discrepancies occur when the

timing of the activities is not well matched with the available resources, i.e., when

subcontractors have different perspectives of scheduling. The resource focus in my work

is the local resource which subcontractors provide, not the global resources which general

contractors provide.

Soon after the general contractor awards subcontracts according to the master project

schedule, subcontractors often want to change the master schedule because resource

discrepancies cause additional costs either through over-utilizing currently available

resources or importing new resources (O’Brien and Fischer 2000). Therefore, the

subcontractors may try to change the project schedule in order to accommodate their

wishes. Changes are likely to cause schedule conflicts among subcontractors because any

move affects the activities of other subcontractors in tightly coupled construction project

schedules. A schedule conflict occurs when one subcontractor tries to re-schedule his

activity to the same time interval that another subcontractor has already scheduled the

succeeding activity. Since all activities have precedence relationships, related activities

cannot be overlapped.

1 In this dissertation, methodology means a set or system of methods, principles, and rules used in a given
discipline (Quotation from Webster’s College Dictionary, 2nd ed., Random House Inc., New York, NY,
1997, p. 825)

 3

In most cases, these schedule conflicts cannot easily be resolved simply by delaying the

succeeding activities since such delays would affect the resource profiles of succeeding

subcontractors, which would cause additional costs for them. Delays could also extend

the project completion beyond the deadline. Therefore, there is a need for a methodology

to handle subcontractors’ resource-driven schedule changes.

In current practice, the coordination of subcontractors' resource-driven schedule changes

in complex projects is difficult for general contractors, because general contractors

generally will not know details of each subcontractor's resource constraints. Furthermore,

general contractors have little incentive to accommodate the subcontractors' wishes. This

dilemma in current project schedule coordination stems from a mismatch between

traditional centralized coordination techniques in the industry and current construction

practices employing more and more subcontracting. Subcontractors are competitive by

nature and cannot be coordinated simply by orders from general contractors, a method

that has been used traditionally by general contractors when they performed most work

themselves.

1.2 ASSUMPTIONS OF DCPSC

Before going further, I would like to state three assumptions made for DCPSC:

• Project schedules have fixed work logic and precedence relationships;

• Subcontractors keep their resource and cost information private; and

• Subcontractors are not benevolent in accommodating changes.

My research addressed the coordination of subcontractors’ resource constraints after the

general contractor has made the master schedule. Therefore, I assume that project

schedules have fixed work logic and precedence relations among activities.

I also assume that subcontractors keep their resource information private and want to

enhance their resource utilization by rescheduling their activities without violating the

work logic. Since their activities are interdependent with other subcontractors’ activities,

 4

subcontractors have to consult with other subcontractors when rescheduling their

activities. In most construction projects schedule conflicts are common and must be

negotiated among subcontractors.

Subcontractors work collaboratively to achieve a common project goal, but they are

different organizations. Therefore, they cannot be regarded as “benevolent” in

accommodating changes, i.e., they are unlikely to help without compensation. Rather,

they are competitive, which means they will not let a subcontractor affect their work

without compensation. If reasonable monetary compensation is provided, then they are

likely to help.

1.3 CASE EXAMPLE

I introduce a case example, which I will use throughout this dissertation to illustrate my

research. Consider the example network in Figure 1-1 (a). The results of conventional

CPM calculations appear on the diagram. The resource requirement for each activity

appears on the diagram in Figure 1-1 (a). Activities (A, E and G) are assigned to Sub-α.

Activities (B and D) are assigned to Sub-β. Activities (C and F) are assigned to Sub-δ.

For simplicity, assume each subcontractor uses the same resource for its activities.

(a)

Figure 1-1. Example network and ERS schedule

A
3 8

E
3 8

F
2 6

G
2 8

C
3 6

B
4 10

D
2 10

0 3

3 7

7

7

10

9

3 6

7 9

10 12

12 /0 10 10 /0

10 /1

10 /1

7

8

8

7 /0 3

7 /1 4

3 /0 0

Sub-α Sub -β Sub -δ

Lab
D ur R es

E S E F

LF/T F LS

Legend :

Subcontractors

Project Plan
and
Schedule

 5

A

B

C

D

E

Act. 1 2 3 4 5 6 7 8 9 10 11 12 ES

0

3

7

3

7

F

G

7

10

EF

3

7

9

6

10

9

12

TF

0

0

1

1

0

1

0

Sub

α

β

β

δ

α

δ

α

Legend:
 Initial

(Day)

 (b)

Figure 1-1. Example network and ERS schedule (Continued)

Assume that the subcontractors predicted at the time of bidding that they would have

sufficient resources available for the activity to support the initial schedule. The resource

histogram in Figure 1-2 indicates the initial resource requirements, based on the above

schedule, for completion of the activities. The resource requirements for non-critical

activities, which are not as constrained as the critical activities, are set at their latest start-

finish (LS-LF) schedules. Therefore, the schedule will be feasible.

 (Day)
Sub-α 1 2 3 4 5 6 7 8 9 10 11 12

Activity-A Activity-E Activity-G

Resources

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-B Activity-D

Resources

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-C Activity-F

Resources

Figure 1-2. Resource requirement histogram

8
6
4
2

10
8
6
4
2

8
6
4
2

 6

However, as the actual execution dates approach, the resource availability has become

tighter under changing market conditions. Various reasons could explain why the

resource availability would change: (1) the subcontractors experience a shortage of

workers, break-downs of major equipment, shortage of major materials, etc. (Clough and

Sears 1991); (2) the subcontractors might want to move the committed resources from the

project to more lucrative projects (O’Brien and Fischer 2000). For whatever reasons,

assume that each subcontractor now has revised available resource profiles for each

activity, as shown in Figure 1-3. Bolded resource histograms (A, B, and D) differ from

the required resource diagrams. Note that the resource availability is shown for

explanation purposes only, even though such private information is usually kept within

subcontractors and usually is not available to the general contractor.

(Day)

Sub-α 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-E Activity-G
Activity-A

Resources

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-D
 Activity-B

Resources

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-C Activity-F

Resources

Figure 1-3. Available resource histogram

This resource histogram implies that some subcontractors’ schedules differ from their

original ones. For instance, Sub-α wants to finish Activity-A on Day 4 since Sub-α does

not have enough resources to finish on Day 3. Sub-β wants to finish Activity-B on Day 8

since Sub-β does not have enough resources to finish on Day 7. Based on these revised

8
6
4
2

10
8
6
4
2

8
6
4
2

 7

resource histograms, some of the subcontractors’ preferred schedule shifts are shown by

the diagonally hatched bars in Figure 1-4.

A

B

C

D

E

Act. 1 2 3 4 5 6 7 8 9 10 11 12 ES

1

4

9

5

8

F

G

8

11

EF

4

8

10

7

10

9

12

TF

0

0

0

1

0

1

0

Sub

α

β

β

δ

α

δ

α

Legend:
 Initial

 Preferred

Schedul
e
Schedule
conflicts

(Day)

Figure 1-4. Subcontractors’ preferred schedule

Note that the mere collection of subcontractors’ preferred schedules is not guaranteed to

produce a feasible schedule since subcontractors’ resource availability is independent,

unlike their schedules. Therefore, some activities might violate the network logic in the

schedule. For instance, on Day 4, Activity-B starts before Activity-A has finished.

1.4 TWO CURRENT CENTRALIZED COORDINATION

METHODOLOGIES

As a basis for evaluating the effectiveness of DCPSC, I introduce two centralized

coordination methodologies used in current practice. Under the centralized coordination

methodologies below, the general contractor (GC) is obligated to coordinate the

subcontractors. It is reasonable to assume that the information needed for coordination,

such as the subcontractors’ preferred schedules and resource information, is not

available to the GC but is kept within subcontractors (Choo et al. 2000). Assume that

communication and coordination is kept among subcontractors and the general

contractor under the current contractual GC-subcontractor relationships, not between

subcontractors. I examine two methodologies of centralized coordination — tight and

loose — that I regard as the representation of existing practice.

 8

1.4.1 TIGHT “IRON-FIST” CENTRALIZED COORDINATION

Under tight “Iron-Fist” centralized coordination (TCC), the objective is to finish the

project on time and the subcontractors are instructed to finish their activities before the

latest finish date of each activity respectively. Under TCC, the GC can coordinate the

subcontractors to finish the project on time. However, some subcontractors might

experience cost overruns when their available resources differ from their resource

requirements. For the GC, the cost overruns could be regarded as subcontractors’ faults

for poor management of their resources.

Under TCC, Sub-α has to expedite Activity-A to finish on time in spite of its different

resource availability. Assume that Sub-α will choose overtime to accelerate the Activity-

A while paying extra costs. Other activities will have the same initial schedule. Sub-β

also has to expedite Activity-B to finish on time. Assume that Sub-β will choose

overtime to accelerate Activity-B while paying extra costs. Activity-D will keep the same

initial schedule. Sub-δ can keep its preferred schedule because Sub-δ can finish its

activities before the deadlines. The revised resource histogram following TCC is in

Figure 1-5. The diagonal hatching indicates overtime.

 (Day)
Sub-α 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-E Activity-G
Activity-A

Resources

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-B Activity-D

Resources

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-C Activity-F

Resources

Figure 1-5. Revised resource histogram after TCC

8
6
4
2

8
6
4
2

10
8
6
4
2

 9

In summary, TCC costs more for some subcontractors when they have different resource

availability than their initial resource requirements. This also lowers the resource

utilization, even though TCC would guarantee to finish on time. Note that the GC has no

consideration of subcontractors’ resource utilization in TCC. Figure 1-6 is the revised

schedule after TCC. Note that subcontractors have different schedules than either their

ES schedule or LS schedule.

α

β

β

δ

α

δ

α

1

4

8

5

8

8

11

3

7

10

7

10

9

12

A

B

D

C

E

F

G

1 2 3 4 5 6 7 8 9 10 11 12 Sub S F Act.

Legend:
 Initial

 Selected

(Day)

Figure 1-6. Revised schedule after TCC

1.4.2 LOOSE “LAISSEZ-FAIRE” CENTRALIZED COORDINATION

Under loose “Laissez-Faire” centralized coordination (LCC), the objective is to match the

resources available to produce a workable schedule. The role of the centralized

coordinator is minimal in keeping the original schedule (Tommelein and Ballard 1997).

Under LCC, activities are finished when enough resources are provided, like resource-

driven scheduling (El-Rayes and Moselhi 1996; Choo et. al. 1999). Without knowing

subcontractors’ resource availability, the GC instructs subcontractors to start their

activities when the preceding activities have been finished and when enough resources

are available; i.e., the job is ready for it and its work can proceed unimpeded (Clough and

Sears 1991). LCC usually delays the project and some subcontractors might experience

cost overruns due to delays of preceding activities as well as their resource deviations.

The GC also incurs liquidated damages due to the project delay. Disputes among

 10

subcontractors would follow if the causes of delays are not clearly established and the

cost overruns are not reimbursed properly.

Under LCC, Sub-α can delay the finish of Activity-A, but Activity-B will be delayed

by Activity-A because Activity-B is also allowed to delay its finish. Sub-δ can keep the

schedule of Activity-C. Then, Sub-α, Sub-β and Sub-δ must delay the start dates of

Activities D, E, F, and G while paying extra costs for importing resources. Next, Sub-α

is forced to delay the start date of Activity-G. As a result, the project delays by 2 days.

The GC needs to pay liquidated damages for a 2-day project delay.

Figure 1-7 shows the revised resource histogram after LCC. The diagonal hatching

indicates required overtime.

(Day)

Sub-α 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Activity-E Activity-G
Activity-A

Resources

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Activity-B

Resources

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Activity-C Activity-F

Resources

Figure 1-7. Revised resource histogram after LCC

In summary, LCC costs more for some subcontractors when they have to import new

resources due to delays of preceding activities as well as their resource deviations. The

project missed its completion date and the GC has to pay liquidated damages. Options to

8
6
4
2

10
8
6
4
2

Activit y-D

8
6
4
2

 11

expedite the activities instead of paying liquidated damages, like time-cost tradeoff

analysis (Fondahl 1961, 1991; Antill and Woodhead 1990), are limited because these

need information, such as the cost slope for each activity, that usually is not available to

the GC. The revised schedule after LCC appears in Figure 1-8.

1 2 3 4 5 6 7 8 9 10 11 12 Sub

α

β

β

δ

α

δ

α

S

1

5

10

5

10

10

13

F

4

9

11

7

12

11

14

Act

A

B

D

C

E

F

G

13 14

Legend:
 Initial

 Selected

(Day)

Figure 1-8. Revised schedule after LCC

1.5 CHALLENGES FOR DCPSC

From the shortcomings of two current coordination methodologies, I set practical

challenges for DCPSC to set up the criteria against which I will measure goodness of a

new methodology for DCPSC.

In the example, TCC is equitable in that subcontractors have to pay for their errors in

planning, but LCC forces subcontractors into a worse situation by simply delaying

affected activities. Some subcontractors get benefits and others lose regardless of fault.

The first criterion is whether a new distributed coordination methodology can enable

subcontractors to compensate the affected subcontractors for disadvantageous

agreements.

In the example, neither TCC nor LCC considered alternatives because of the tightly

coupled network of related activities. The second criterion is whether a new methodology

 12

can allow subcontractors to identify schedule conflicts, consider alternatives, and resolve

schedule conflicts in a tightly coupled network of related activities.

In the example, neither TCC nor LCC had schedule conflicts because the GC maintained

work logic during coordination. However, if subcontractors know only their schedules

and relationships to other subcontractors’ activities, maintaining work logic becomes a

big task. The third criterion is whether a new methodology maintains work logic and

ensures convergence of distributed coordination.

These challenges have been ignored in past research on the coordination of project

planning and scheduling because of its dominant orientation to centralized approaches

and the lack of a formal distributed coordination methodology. Current distributed

coordination research in the field of cooperative distributed problem solving and multi-

agent systems did not address the challenges appropriately due to lack of a formal

DCPSC framework and a workable monetary conflict-resolution methodology, as I will

discuss in the next chapter.

1.6 ORGANIZATION OF THE DISSERTATION

This dissertation consists of seven chapters. Chapter 1 presents practical motivation,

assumptions, a case example, two current centralized coordination methodologies, and

challenges for DCPSC. Chapter 2 reviews previous work on coordination of project

planning and scheduling and previous work on distributed coordination in the field of

cooperative distributed problem solving and multi-agent systems research. It states

research objectives, research questions, and research methodology, and then gives a

summary of my research.

Chapter 3 presents a new distributed coordination framework for project schedule

changes (DCPSC) based on an agent-based negotiation approach wherein a project can be

rescheduled dynamically by all of the concerned subcontractors with the help of software

agents that evaluate the impact of changes, simulate decisions, and give advice. This

 13

chapter defines the formal DCPSC framework, introduces an agent-based negotiation

approach, and then discusses relationships to previous work.

Chapter 4 presents a novel agent-based compensatory negotiation (ABCN) methodology

to facilitate the distributed coordination of project schedule changes wherein a project can

be rescheduled dynamically through negotiations by all of the concerned subcontractors.

The methodology consists of a compensatory negotiation strategy based on utility which

agents have, multi-linked negotiation protocols by which agents interact with other

agents, and message-handling mechanisms for agents to evaluate alternatives and

simulate the decision-making. This chapter introduces a new, simpler case example to

illustrate the methodology. It also reviews previous work and states my contributions

compared to the ABCN methodology.

Chapter 5 presents a multi-agent system for DCPSC wherein a project can be rescheduled

dynamically through negotiations by all of the concerned subcontractors. In the multi-

agent system called the Distributed Subcontractor Agent System (DSAS), subcontractors

interact with their software agents to evaluate the impact of changes, simulate decisions,

and get the negotiation results that they need to reschedule the project. It discusses DSAS

architecture, supporting state-of-the-art technologies, and the DSAS implementation.

Chapter 6 demonstrates the significance of the ABCN methodology on DCPSC through

evaluation tests. It compares two centralized coordination methodologies used in current

practice to the ABCN methodology in terms of extra costs and project duration. It

presents charrette test results of the DSAS, which tested the effectiveness of DSAS

compared to manual centralized processes. This chapter shows the results of

measurements on system performance of DSAS that in turn show that DSAS scales

manageably.

Chapter 7 summarizes this dissertation with a summary of the first six chapters,

contributions, practical demonstrations, limitations of the research, possible future

research directions, and value to industry.

 14

CHAPTER 2

POINTS OF DEPARTURE

This chapter reviews previous work on coordination of project planning and scheduling

and previous work on distributed coordination in the field of cooperative distributed

problem solving and multi-agent systems research. It sets research objectives, poses

research questions, and describes research methodology.

2.1 PREVIOUS COORDINATION OF PROJECT PLANNING AND

SCHEDULING

Numerous research papers have recognized a major problem in the Critical Path Method

(CPM) network approach, which assumes unlimited resource supplies, and have provided

frameworks to address various limited-resource issues in construction planning and

scheduling, including resource leveling (Easa 1989; Harris 1990; Seibert and Evans 1991;

Martinez and Ioannou 1993; Russell and Dubey 1995; Son and Skibniewski 1999;

Hiyassat 2000), resource-constrained allocation (Hegazy et al. 2000), and resource-driven

scheduling (Moselhi and Lorterpong 1993; Moselhi and El-Rayes 1993; El-Rayes and

Moselhi 1996 & 2001). Others have applied various techniques such as linear

programming (Shah and Baugh 1993; Mattila and Abraham 1998) and Genetic

Algorithms (Chan et al. 1996; Leu and Yang 1999; Hegazy 1999) to the limited-resource

problem. However, few current frameworks address the difficulties of gathering

information in the coordination of subcontractors' resource-driven schedule changes. The

existing centralized frameworks are insufficient because the information needed for

 15

centralized resource-based scheduling, such as the resource constraints, is usually kept

private by subcontractors (Choo and Tommelein 2000) and is usually not available for

the centralized frameworks, as stated in one of the assumptions of distributed

coordination of project schedule changes (see Section 1.2).

When only some subcontractors benefit from the coordination of their resource-driven

schedule changes and when general contractors are not willing to coordinate the work of

subcontractors (Tommelein and Ballard 1997), subcontractors need to work together with

minimal information sharing. Subcontractors need a new distributed coordination

methodology that allows evaluating the impact of their changes and making appropriate

decisions.

Current distributed frameworks in construction and in the broader project management

and AI research literature have inadequately addressed challenges for distributed

coordination of project schedule changes. They have not provided a monetary conflict-

resolution mechanism, which is their main shortcoming, even though some of them have

provided various conflict-resolution mechanisms for interactions between participants

(Koo 1987; Khedro et al. 1993; Jin and Levitt 1993; Gomes et al. 1994). ProcessLink

(Petrie et al. 1998) identifies dependencies among activities and participants but does not

specify a conflict-resolution mechanism.

As this review of previous literature demonstrates, the distributed coordination with

monetary conflict-resolution mechanism is a new problem domain that current research

does not explore. The problem I am trying to solve is rescheduling activities through

distributed coordination when subcontractors have available resources that differ from the

needed resources. They need a distributed coordination framework that includes a

monetary conflict-resolution methodology, wherein a project can be rescheduled

dynamically by all of the concerned subcontractors, while maintaining schedule logic and

keeping their information private.

 16

2.2 PREVIOUS DISTRIBUTED AGENT-BASED COORDINATION

Many Cooperative Distributed Problem Solving (CDPS) and Multi-Agent Systems

(MAS) papers have proposed various distributed coordination methodologies, but I found

that the research has shortcomings in applications for distributed coordination of project

schedule changes.

First, I found that none of the papers mentioned an explicit method for the transfer of

utility units (“money”) to compensate for disadvantageous agreements. Allowing the

transfer of utility is very important for coordination of project schedule changes. When

subcontractors want to reschedule their activities, the rescheduling has external effects on

succeeding subcontractors’ resource profiles, causing external costs for the affected

subcontractors, similar to externalities in Welfare Economics and Social Choice Theory

(Feldman, 1980). This is not to say that all of the external costs are negative. Some of

them are positive. In case of negative external costs, the external effects destroy the

Pareto optimality (Feldman, 1980) in a construction master schedule. By allowing the

transfer of utility (“money”) to compensate for the external costs, the group of

subcontractors prefers the changed project schedule to the initial project schedule.

Consequently, a new project schedule is “Pareto superior” (Feldman, 1980, p. 140) to the

initial project schedule.

My monetary conflict-resolution methodology is more efficient than using incentives or

reward mechanisms found in some market-based systems (Malone et al. 1988; Wellman

1993; Shoham and Tanaka 1997). The Clarke tax voting mechanism (Ephrati and

Rosenschein 1996) collects taxes centrally, but provides no way to distribute the

collected taxes. The unified negotiation protocol (Rosenschein and Zlotkin 1994) does

not provide an explicit monetary conflict-resolution mechanism, so it uses an implicit

method – working together after flipping a coin.

My compensatory negotiation methodology differs from payment via contracts used in

other MAS research (Sandholm 1993; Sen and Durfee 1996), in which any profit-seeking

bid from agents might prevent a system from reaching a better solution. Compromise via

 17

negotiation (Sycara 1989) provides a way of transferring utilities between agents through

a central mediator, but it is implicit and not for compensation of disadvantageous

agreements. Distributed constraint satisfaction (Yokoo et al. 1992, 1998) and distributed

search (Durfee and Montgomery 1991; Sycara et al. 1991; Decker and Lesser 1992) find

a satisfactory solution that needs no disadvantageous agreements for any agent.

Another finding is that most CDPS and MAS applications employ pair-wise negotiation

or multi-lateral (auction) protocols, which are based on the Contract Net Protocol (Smith

1980) that would be unsuitable for coordinating the tightly coupled project schedules.

Pair-wise negotiation or multi-lateral (auction) protocols cannot capture external effects

of their agreements on other agents because agents do not know the consequences of their

decision until getting the responses from the succeeding agents. Rather, they implicitly

assume that there are no externalities.

The third finding is that most CDPS and MAS applications do not guarantee the

convergence of distributed computation because protocols that cannot ensure consistency

among agents’ knowledge cannot ensure convergence. Some distributed search

frameworks use unique ID (Yokoo et al 1992), pecking order (Durfee and Montgomery

1991), or heuristic order (Sycara et al 1991), but none of them use the Critical Path

Method (CPM) (Fondahl 1961) for coordination of message passing.

2.3 RESEARCH OBJECTIVES

To overcome past research limitations for the distributed coordination of project schedule

changes (DCPSC), the overall purpose of the proposed research was fourfold:

(1) To formalize and generalize a DCPSC framework;

(2) To formalize and generalize an agent-based compensatory negotiation

methodology to enable the DCPSC framework;

(3) To implement a distributed subcontractor agent system to demonstrate the

DCPSC framework; and

(4) To test the DCPSC framework

 18

Figure 2-1 illustrates the components of the research. I abstracted the practical problem to

three components: schedule, resource constraint, and extra cost. When a schedule does

not match resource availabilities, this generates resource constraints and subcontractors

incur extra costs. Subcontractors will use the extra cost information for distributed

coordination to re-schedule the project. Therefore, the research goal is to provide a

distributed coordination framework that reschedules projects to lower the sum of

subcontractors’ costs associated with their resource constraints in cases of changes in

subcontractors’ resource availabilities.

Distributed Coordination
Framework for

Project Schedule Changes
(DCPSC)

Agent-based
Compensatory Negotiation

(ABCN) Methodology

Distributed Subcontractor
Agent System

(DSAS)

Compensatory
negotiation

strategy

Multi-
linked

protocols

Message
handling

mechanisms

Subcontractor
Agent

Comparison tests of
different coordination

methodologies

Multi-agent
prototype

system

Mathematical proofs

Utility
of

timing

Charrette and experimental
tests

 Schedule-
change
options

Schedule

Resource
constraint

Extra
cost

CHAPTER 3

CHAPTER 5 CHAPTER 4

CHAPTER 6 Agent-based negotiation
approach

Figure 2-1. Summary of research

To achieve my research goal, I proposed a distributed coordination framework for project

schedule changes and an agent-based compensatory negotiation methodology to enable

the framework. I implemented a distributed subcontractor agent system to demonstrate

 19

the effectiveness of the DCPSC framework. Through verification tests, the DCPSC

framework demonstrates that it solves the problems successfully. Chapters 3 to 6

elaborate upon certain functionalities of these components.

2.4 RESEARCH QUESTIONS

I posed six research questions intended to fulfill the research objectives for distributed

coordination of project schedule changes:

Q1: What formalism and approach can enable every subcontractor to consider its

own activities, but will also enhance global outcomes?

My answer to this question presents a new DCPSC framework, wherein all of the

concerned subcontractors can reschedule a project dynamically, based on the social

welfare function (Varian 1978) and an agent-based negotiation approach adopting the

typed-message agent (Petrie 1996). Chapter 3 presents the novel distributed coordination

framework for project schedule changes and introduces an agent-based negotiation

approach.

Q2: What formalism can enable agents to compensate other agents for

disadvantageous agreements?

My answer to this question formalizes a new compensatory negotiation strategy for

DCPSC, which is necessary for agents to compensate other agents for disadvantageous

agreements based on the externalities (Feldman 1980). Chapter 4 presents the novel

definitions of utility of timing and schedule change options, which allow the transfer of

utility for compensation of disadvantageous agreements.

Q3: What protocols can enable agents to identify and resolve schedule conflicts in a

tightly coupled network of related activities?

My answer to this question formalizes new negotiation protocols for DCPSC, which are

suitable for coordinating the tightly coupled project schedules, by extending the Contract

Net Protocol (Smith 1980). Chapter 4 describes novel multi-linked protocols, which can

 20

enable agents to identify and resolve schedule conflicts in a tightly coupled network of

related activities.

Q4: What mechanisms can enable agents to maintain work logic and ensure

convergence of distributed coordination?

My answer to this question formalizes message-handling mechanisms for DCPSC, which

coordinate message passing based on the Critical Path Method (CPM) (Fondahl 1961).

Chapter 4 describes novel message-handling mechanisms, which can enable agents to

maintain work logic and ensure convergence of distributed coordination.

Q5: How can a multi-agent system be developed to implement the distributed agent-

based coordination methodology?

My answer to this question presents a new Java-based multi-agent system for distributed

coordination of project schedule change, by using the JATLite (Java Agent Template,

Lite) (Jeon et al. 2000). Chapter 5 describes agent-based software engineering to

produces the novel Distributed Subcontractor Agent System (DSAS), which can enable

human subcontractors to interact with software agents to reschedule projects.

Q6: What are the impacts on DCPSC of a distributed agent-based coordination

methodology?

My answer to this question presents the significance of the distributed agent-based

coordination methodology through comparison tests, Charrette tests (Clayton et al. 1998),

and experimental tests. Chapter 6 presents evaluation results: (1) The distributed agent-

based coordination methodology produces a solution that is better than or equal to either

of the two current centralized coordination methodologies, in terms of project cost; (2)

The distributed agent-based coordination methodology produces the solution and finds

the lower-cost solution faster than conventional manual processes; and (3) The

distributed agent-based coordination methodology is scalable.

2.5 RESEARCH METHODOLOGY

To answer the research questions, the research methodology had four major components:

 21

(1) Modeling,

(2) System building,

(3) Verification through testing, and

(4) Evaluation.

I modeled a framework and a methodology for distributed coordination of

subcontractors’ resource-driven schedule changes through the case example and a survey

of background literature on AI planning, Cooperative Distributed Problem Solving

(CDPS), and Multi-Agent Systems (MAS) research. Using the developed model, I built

an agent-based distributed decision-making system in which I tested and analyzed several

case examples with changing resource profiles to prove the concept in the theory and

verify the system. Finally, I evaluated the results of my research according to its

contributions.

I identified six specific tasks corresponding to the research methodology described above.

The following sections show the evolutions of the specific tasks.

(1) Build up research background

The research built on four research foundations: (1) construction planning and

scheduling, (2) AI planning, (3) cooperative distributed problem solving, and (4)

coordination theory in multi-agent systems. This chapter and Appendixes B and C review

the selected previous work related to the specific topics.

(2) Develop a distributed coordination framework for project schedule changes

A distributed coordination framework for project schedule changes (DCPSC) models the

coordination of subcontractors’ resource-driven schedule changes as distributed

coordination processes by subcontractors to enhance the project network schedule for

lowering the sum of subcontractors’ costs associated with their resource constraints. It

does this by rescheduling the project subject to the precedence relationships among

project activities, when changes occur in subcontractors’ resource availabilities.

 22

In the new DCPSC framework, I represent the subcontractors as software agents that

simulate negotiations on behalf of subcontractors. This enhances the project network

schedule for lowering the sum of subcontractors’ costs associated with their resource

constraints. Chapter 3 defines the DCPSC framework and the agent-based negotiation

approach.

(3) Develop an agent-based compensatory negotiation methodology

Development of an agent-based compensatory negotiation (ABCN) methodology for

agents started with modeling subcontractors’ resource-driven schedule changes on

activity performance through extra costs in addition to normal costs. Then, I represent the

models through the schedule-change options that consist of extra costs associated with

alternative start/end dates. The compensatory negotiation methodology represents the

coordination between subcontractors as negotiation between software agents that employ

the compensatory negotiation strategy based on utility of timing2.

Within the compensatory negotiation methodology, I developed the multi-linked

negotiation protocols to model the schedule externalities that are natural for tightly

coupled project schedules. I also developed message-handling mechanisms to model

decision-making mechanisms of subcontractors in the negotiating agent for the

methodology. Chapter 4 describes the compensatory negotiation strategy based on utility,

multi-linked negotiation protocols, and message-handling mechanisms for the ABCN

methodology.

(4) Develop and implement the distributed subcontractor agent system

To demonstrate the distributed coordination based on agent-based compensatory

negotiation methodology, I developed the Distributed Subcontractor Agent System

(DSAS), which is a Java-based multi-agent system. In DSAS, subcontractor agents that

implement the agent-based compensatory negotiation methodology negotiate with other

subcontractors based on schedule-change options for distributed coordination of project

2 In this thesis, utility of timing is a real-valued number (“money”), which describes the difference between
the cost of the initial schedule and the costs of alternatives for the activity (see Section 4.2.1 for a further
discussion of this definition).

 23

schedule changes. Through Graphic User Interfaces (GUIs), human subcontractors can

interact with their subcontractor agents to provide schedule-change options and get

negotiation results. The Agent Message Router (AMR) provides a robust message-

passing infrastructure. Chapter 5 shows an architecture and implementation details of

DSAS.

(5) Verify DCPSC, ABCN methodology, and DSAS

The verification of my research needed a number of experimental tests to demonstrate the

effectiveness of the proposed distributed coordination approach. In a test case, I

compared two centralized coordination methodologies used in current practice — tight

“Iron-Fist” centralized coordination (TCC) and loose “Laissez-Faire” centralized

coordination (LCC) — to the DCPSC. I generalized test results in mathematical proofs

that show that the proposed distributed coordination approach always finds a solution that

is better than or equal to those of the two centralized coordination methodologies in

project performance (cost, duration, and resource utilization).

I conducted charrette tests on a test case to demonstrate that the resulting agent-based

distributed scheduling system finds the lower-cost solution faster than conventional

manual processes. I also measured system performance (number of messages and time

taken) on several test cases to show that the proposed distributed coordination approach

scales without becoming infeasible for practical applications. Chapter 6 describes test

methodologies and results.

(6) Evaluate the research results

Throughout the proposed research, I allocated time for evaluating the research results in

terms of their contributions to knowledge. I had a number of evaluation meetings at the

end of each specific task. The evaluations confirmed that my research has distinguishable

contributions because my resulting DSAS system worked as planned and my

contributions clearly extend beyond previous work. My research has validity and

applicability since two groups of users have verified that the resulting system produces a

solution that is better than or equal to the initial solution and can be applicable to real

 24

construction projects. Chapter 7 summarizes the contributions and limitations of my

research.

2.6 SUMMARY OF POINTS OF DEPARTURE

This chapter reviewed previous work on project planning and scheduling and previous

work on distributed coordination in the field of cooperative distributed problem solving

and multi-agent systems research. It set research objectives to overcome the current

research limitations of DCPSC, posed research questions to fulfill the research objectives

for DCPSC, and described the research methodology I used to answer the research

questions.

 25

CHAPTER 3

DISTRIBUTED COORDINATION OF PROJECT SCHEDULE

CHANGES BASED ON AGENT-BASED NEGOTIATION

APPROACH

This chapter presents a new distributed coordination framework for project schedule

changes (DCPSC) based on an agent-based negotiation approach wherein a project can be

rescheduled dynamically by all of the concerned subcontractors with the help of software

agents that evaluate the impact of changes, simulate decisions, and give advice. This

chapter defines the formal DCPSC framework, introduces an agent-based negotiation

approach, and then discusses relationships to previous work.

3.1 INTRODUCTION

The distributed coordination of project schedule changes consists of three components

similar to Oberlender’s (1993) project definition: project schedule, resource constraints,

and extra costs, as illustrated in Figure 3-1. Note that every subcontractor has its own

resource constraint and extra cost information. That is, there are multiple resource

constraints and extra costs for multiple subcontractors, but there is one project schedule

for a project.

Project

schedule

conflicts

determines

enhances

 Extra
cost

 Resource
constraint

Figure 3-1. Distributed coordination of project schedule changes

 26

Project schedule refers to the schedule that represents the logical sequencing and timing

of the work to be performed. Usually, a general contractor prepares the project schedule

and assigns parts of the schedule to specialty contractors, i.e., subcontractors.

Nonetheless, the separately assigned project schedules interrelate with each other because

they are a part of the whole project schedule. Resource constraints represent the

differences between the needed resources and subcontractors’ available resources.

Therefore, the subcontractors want to change the project schedule in their favor in a way

that enhances their resource utilization. Resolving resource constraints without violating

the work logic is the task of subcontractors. Extra cost refers to the subcontractors’ worst

extra costs determined by their resource constraints.

When there are resource constraints that conflict with the project schedule, the resource

constraints generate schedule changes and determine the extra cost information.

Subcontractors will try to lower the extra costs through distributed coordination among

subcontractors, and accept the schedule changes that lower the extra costs associated with

the schedule changes, which will enhance the project schedule.

3.2 DISTRIBUTED COORDINATION FRAMEWORK FOR

PROJECT SCHEDULE CHNAGES

In order for subcontractors to consider their own activities, and also enhance global

outcomes, I developed the distributed coordination framework for project schedule

changes, based on the social welfare function (Varian 1978). The social welfare function

is “some sort of function that aggregates individual utility functions to come up with

some sort of social utility.” (Varian 1978, p. 153). Varian also states, “The social welfare

function is increasing in each of its arguments – if you increase an agent’s utility without

decreasing anybody else’s utility then society is made better off.” (Varian 1978, p. 153).

I formalize the distributed coordination framework of project schedule changes as

follows. A set of subcontractors A = {A1, . . ., An} must produce a collective decision

over a set of activities {a1, . . ., am}. Each subcontractor needs to know a utility for its

alternatives of its own activity, by taking into consideration the extra costs to others of its

 27

course of action and weighing it against its own extra costs. I define a social choice

function, E, such that E represents the group choice, as follows:

Where E and Cost(i, j) = the sum of the subcontractors’ extra costs for all m

activities of n subcontractors and the jth activity, which belongs to the ith

subcontractor.

Unlike the ideals of social choice function, which is the summation of individual utility,

my social choice function is the summation of individual subcontractor’s extra costs,

which is indeed the negative utility for subcontractors and social welfare. In my social

choice function, the utility for subcontractors and social welfare increases when the extra

costs decrease.

To increase individual utility and social welfare together, therefore, I set the objective of

distributed coordination of project schedule changes so as to lower E, i.e., the sum of

subcontractors’ costs associated with their resource constraints, subject to the precedence

relationship among project activities:

subject to

Where E and Cost(i, j) = the sum of the subcontractors’ extra costs for all m

activities of n subcontractors and the jth activity, which belongs to the ith

subcontractor, respectively; Finishx = finish date of activity x; Starty = start

date of activity y; and Sx = set of activities which must succeed activity x.

∑∑
= =

=
n

i

m

j
jiCostElower

1 1
),(

{ }y
Sy

x StartFinishx
x∈

<∀ min,

∑∑
= =

=
n

i

m

j
jiCostE

1 1
),(

 28

One distinguishing feature of the problem definition is that the problem will be solved

through collaboration of all the concerned subcontractors in a distributed manner, without

assuming that a central coordinator knows all the information needed for coordination

and that subcontractors are benevolent. Another notable feature is that every

subcontractor only considers its own activities, but it will also enhance global outcomes.

The third feature is that distributed coordination maintains the logical sequencing of the

work to be performed, subject to the precedence relationship among project activities,

even though it might change the timing of the work. These features of the distributed

coordination of project schedule changes overcome shortcomings of the current

centralized coordination approaches.

3.3 AGENT-BASED NEGOTIATION APPROACH

The previous section reveals three important issues of distributed coordination for project

schedule changes: distributed coordination by competitive subcontractors, socially

rational decision-making, and maintaining the logical sequence of the work. In this

section, I discuss the adoption of the agent-based negotiation approach, which is needed

to overcome the difficulties stemming from these issues.

3.3.1 AGENT

Because of the huge number of interactions among subcontractors throughout the

distributed coordination for project schedule change, each subcontractor should have a

software agent, which is a program capable of communicating with other software agents

using an Agent Communication Language (Khedro et al. 1993). The agent exchanges

messages with other agents to evaluate changes, and advises its human subcontractor to

make a decision.

For this research, I adopted the so-called “Typed-Message Agent (TMA)” (Petrie 1996).

Agent communities define TMA as those agents that must exchange messages to

accomplish a task. For agent characteristics, TMA stresses peer-to-peer communications

and message passing based on shared, typed protocols and semantics to which the agent

 29

communities have committed, along with other important features for distributed

coordination of project schedule changes (Jeon 2000):

• Performing a task that would normally be performed by a person

• Using peer-to-peer communication, which differs from the traditional

client/server model

• Communicating with a common agent language, such as Knowledge Query and

Manipulation Language (KQML) (Finin et al. 1994; Labrou and Finin 1997) and

the FIPA Agent Communication Language

• Obeying agent negotiation protocols, the semantics of which the agent community

shares

• Maintaining state information, and acting on it, which distinguishes agents from

other object-oriented software programs

3.3.2 AGENT-BASED NEGOTIATION

There are many definitions of agent-based negotiation in the cooperative distributed

problem solving (CDPS) and multi-agent systems (MAS) research communities. In the

context of this thesis, I define agent-based negotiation as the process of resolving

conflicts among affected agents by increasing knowledge about others’ intentions through

the structured exchange of relevant information. The objective of agent-based negotiation

is to improve mutual agreements for conflicting agents so that the results of negotiations

should not make any conflicting agent worse off than before the negotiations. My

definition of agent-based negotiation is limited in the sense of capturing human

negotiations, but parallels definitions by previous researchers (Davis and Smith 1988;

Sycara 1989; Adler et al. 1989; Durfee et al. 1989; Rosenschein and Zlotkin 1994;

Khedro 1996; Glossary 1999) in CDPS and MAS research communities, as quoted

below. The readers who are familiar with these definitions might want to skip these and

jump to Section 3.3.3.

 30

In “Negotiation as a metaphor for distributed problem solving,” Davis and Smith (1988)

state:

The central element in our approach to a problem solving protocol is the concept

of negotiation. By negotiation, I mean a discussion in which the interested parties

exchange information and come to an agreement. For our purpose, negotiation has

three important components: (a) there is two-way exchange of information, (b)

each party to the negotiation evaluates the information from its own perspective,

and (c) final agreement is achieved by mutual selection (p. 337).

In ”Multiagent compromise via negotiation,” Sycara (1989) writes:

The negotiation process involves identifying potential interactions either through

communications or by reasoning about the current states and intentions of other

agents in the system and modifying the intentions of these agents so as to avoid

harmful interactions or create cooperative situations (p. 120). Negotiation is a

process in which the parties iteratively propose compromises and argue with each

other until a settlement is reached (p. 122).

In “Conflict-resolution strategies for nonhierarchical distributed agents,” Adler et al.

(1989) say:

Negotiation is a process of communication established between two conflicting

agents in which they try to develop or refine their plans jointly so that the goals of

each are satisfied. Agents exchange representations of their goals, look for

conflicts in realizing them, develop understanding of the motivations behind those

goals, look for actions they can take jointly to meet their own goals while at the

same time helping other agents achieve their goals. Negotiation is engaged when

a conflict is obvious to the various parties and no predefined mechanism exists for

resolving it (p. 147).

 31

In “Trends in cooperative distributed problem solving,” Durfee, Lesser, and Corkill

(1989) state:

We define negotiation as the process of improving agreement (reducing

inconsistency and uncertainty) on common viewpoints or plans through the

structured exchange of relevant information. Although these descriptions of

negotiation capture many of our intuition about human negotiation, they are too

vague to provide blueprints for how to get AI systems to negotiate (p. 68).

In Rules of Encounter: Designing Conventions for Automated Negotiation among

Computers, Rosenschein and Zlotkin (1994) say:

Negotiation denotes the process of several agents searching for an agreement.

Agreement can be about price, about military arrangements, about a meeting

place, about joint actions, or about a joint objective. The search process may

involve the exchange of information, the relaxations of initial goals, mutual

concessions, lies, or threats. The way we use it, the term negotiation is closely

related to the idea of reaching consensus. Separate agents, with potentially

disparate interests, attempt to make a group choice over well-defined alternatives

(p. 19).

In his dissertation, “A distributed problem-solving approach to collaborative facility

engineering,” Khedro (1996) writes:

Negotiation is a process of resolving conflicts between two conflicting, intelligent

systems in which these systems attempt to develop or refine their plans jointly so

that the goals of each are satisfied. In the course of negotiation, intelligent,

interacting systems typically develop understanding of each other at the goal

level, and thus can find complex solutions involving trade-offs and novel

approaches to solving shared problems that neither could have recognized

independently [Adler 1989].

 32

In Glossary of Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, Huhns, Stephens, and Weiss (1999) state:

Negotiation – interaction among agents based on communication for the purpose

of coming to an agreement. Negotiation has much to do with distributed conflict

resolution and decision making, and requires that the agents use a common

language. In the course of negotiation an agent makes a proposal which then is

commented by other agents. Negotiation may be interpreted as coordination

among competitive or simply self-interested agents. Another common

interpretation of negotiation is that of a distributed, communication-based search

through a space of possible solutions (p. 598).

3.3.3 ADVANTAGES OF AN AGENT-BASED NEGOTIAITON APPROACH

TMAs provide several advantages over recent object-oriented approaches and other agent

systems. The key idea of TMAs is their ability to model distributed coordination among

subcontractors throughout the conflict-resolution negotiation processes. TMAs can model

the subcontractors as software agents performing a task on behalf of human

subcontractors, while modeling the interactions among subcontractors as agent

negotiation protocols based on agent communication language.

With the ability of modeling distributed coordination, the agent-based negotiation

approach based on TMA is a powerful tool to overcome the difficulties by the distributed

approach. Software agents can communicate rapidly with each other over the Internet,

which allows subcontractors to coordinate project schedule changes in a distributed

manner with the agent-based compensatory negotiation methodology to be introduced in

the next chapter.

3.4 RELATION TO PREVIOUS WORK ON COORDINATION OF

PROJECT PLANNING AND SCHEDULING

In this section, I review previous work on coordination of project planning and

scheduling and compare in detail my DCPSC framework and agent-based negotiation

 33

approach to previous work, in terms of three important issues: distributed coordination by

competitive subcontractors, socially rational decision-making, and maintaining the

logical sequence of the work.

3.4.1 AGENT-BASED SOFTWARE INTEGRATION

Khedro and others (1993) proposed a framework for collaborative distributed facility

engineering based on Cooperative Distributed Problem Solving and Agent Software

Engineering. Their framework allows the integration of existing design software

applications through the implementation of agent programs in the Federation

Architecture. They presented the framework for collaboration of designers in the

integrated distributed environment by providing effective methods for coordinated

exchange of information and protocols and a strategy for collaboration.

Their distributed-problem-solving approach to the facility design domain inspired me to

apply a similar approach to the DCPSC framework. While their agents represent the

cooperative design software, my agents represent competitive subcontractors who

execute the activities according to the given schedule. Therefore, an addition to their

agent model will be an agent-based negotiation approach for resolving conflicts between

agents to make socially rational decisions, rather than resolving conflicts with authority.

The organization structure in their framework is the Federal Architecture that involves

facilitators, which are system programs for facilitating and coordinating the interaction of

agents in an environment. In my DCPSC framework, there is no central facilitator.

Agents themselves coordinate the interaction of agents.

3.4.2 COOPERATIVE DISTRIBUTED PLANNING MODEL

Koo (1987) proposed a distributed model for synchronizing and monitoring plans made

independently by intelligent agents via communication during performance cycles. The

proposed model allows agents to plan autonomously and then synchronize their plan via a

commitment-based communication vehicle, while maintaining the logical sequence of the

work. He formulated his agent model based on these two assumptions: rationality and

 34

willingness to compromise. His thesis included an autonomous nonlinear planning

algorithm that functions incrementally in a multiagent environment.

The considerations of resource constraints of subcontractors are very important in the

DCPSC framework, but the resource constraints were not addressed comprehensively in

his cooperative distributed planning model. An agent-based negotiation approach for

resolving schedule conflicts among agents that have resource constraints is an addition to

his framework. The DCPSC framework and an agent-based negotiation approach

facilitate cooperation by employing monetary compensation as the motivation to

cooperate with other agents, rather than a simple negotiation process based on an agent’s

willingness to compromise.

3.4.3 DISTRIBUTED JOB-SHOP SCHEDULING

Gomes et al. (1994) proposed a distributed scheduling framework by applying a

distributed-problem-solving approach to job-shop scheduling. They viewed the

distributed scheduling system as a hierarchical organization with three main levels: the

strategic level, the tactical level and operational level. This framework is very suitable for

resolving schedule conflicts by a central coordinator, such as their strategic agent, in the

manufacturing industry.

My DCPSC framework employs a one-level organization with all agents at the tactical

level. The main difference is that agents at the tactical level interact with each other with

their interests and resolve conflicts by themselves with an agent-based negotiation

approach. Therefore, my DCPSC framework does not need another higher-level of

coordination to resolve conflicts, such as the strategic level. A new addition to their

system is an agent-based negotiation approach that resolves conflicts at the same level,

while making socially rational decisions.

3.4.4 i-AGENT

Jin and Levitt (1993) proposed the i-AGENTS framework based on organization theory

and Distributed Artificial Intelligence. i-AGENTS is a computerized framework for

 35

studying organizational problem solving in multi-agent teams. i-AGENTS consists of

high-level concepts: tasks, agents, organization, and communication. i-AGENTS can

simulate and analyze the organizational behavior of teams in an engineering domain.

Their approach considers how to organize the communication structure among the set of

agents, given a set of tasks and agents.

Since my DCPSC framework focuses on distributed coordination of schedule changes

among subcontractors, and my objective is to explore the relationship between the

methodology and project performance, my agent model builds expert systems coupled

with communication capability rather than computer systems based on knowledge and

mental states like their agent model. Unlike i-AGENTS, which uses agents to study how

to organize human actors using parameters for task and agent specifications, my agent-

based negotiation approach uses agents to coordinate project schedules using real data for

task and agent specifications. Therefore, my work is not an organizational design

approach. I model the organization structure of agents as a virtual organization

encompassing multiple organizations that participate in a project. Within the virtual

organization, there is no formal organization structure for agents; rather, agents organize

dynamically based on their interrelationships with activities.

3.4.5 PM IN PROCESSLINK

ProcessLink (Petrie, et al., 1998) provided an agent-based framework supporting the

distributed task interactions of modern enterprise, especially for integrated project

management, which interleaves design and construction planning. Change notification

needs to maintain dependency information among plan and design tasks. When

distributed between designer and planners, no one may have all of the information to

perform such notification. Since the central problem of distributed interleaved planning is

change propagation, they proposed a coordination model as a set of dependencies among

tasks and a computer system to manage the dependency information in order to

coordinate a distributed project, while maintaining the logical sequence of the work.

Their ProcessLink system consists of Redux’, which is a general model of design,

Constraint Manager (CM), which manages Constraints Solvers, Plan Manager (PM),

 36

which performs global tracking of plan elements, and the JATLite agent infrastructure as

a general “bus” for the exchange of messages.

PM is a domain-independent centralized agent of the ProcessLink system for planning

and scheduling design activities. The PM model consists of scheduling goals and tasks.

Therefore, it integrates design with planning and scheduling through the PM that

performs global tracking of the plan elements, using the Redux’ and the CM. The PM

allows planning and scheduling to be distributed among project members according to

their responsibilities and expertise. However, their PM only suggests or makes changes

when the schedule can be improved in one instance without making it longer in another

way, i.e., only in cases where the schedule is not Pareto optimal.

My DCPSC framework addresses the issue where one agent wants to make a change that

will adversely impact others, but is willing to pay for it, i.e., making socially rational

decisions. That is the main difference between the two systems. In my DCPSC

framework, the subcontractor agents can interact and negotiate with each other to make a

better schedule through the agent-based negotiation approach. The agent-based

negotiation approach is a crucial supplement to the PM in the ProcessLink system, which

otherwise only provides coordination of schedule changes due to design changes, but

provides no distributed mechanism for agreeing on change options.

3.4.6 RESOURCE-DRIVEN SCHEDULING MODEL

El-Rayes and Moselhi (1996) developed a resource-driven scheduling algorithm for

repetitive activities. Their algorithm produces a schedule that complies with precedence

relationships, crew availability, and crew work continuity constraints. Their algorithm

works in two stages: the first achieves compliance with logical precedence relationships

and crew availability constraints, and the second achieves compliance with the crew work

continuity constraint. Their focus was to maintain work continuity in repetitive activities

in a way that enables timely movement of crews from one unit to the next, avoiding crew

idle time. They developed a computer model, utilizing object-oriented programming,

where objects represent the activities and their relationships.

 37

Their computer model satisfies the issue of maintaining the logical sequence of the work

using a simpler protocol. Their model initiates generating the schedule by sending a

message to the first activity. The activity schedules resources using the resource-driven

scheduling algorithm and then sends messages to all the succeeding activities throughout

the entire project network. However, they did not consider the extra costs associated with

resource constraints, nor did they provide any conflict-resolution methodology for

resolving schedule conflicts. In their centralized framework, activities are simply

scheduled in the order in the network schedule such that resource availability complies

with resource requirements.

In my DCPSC framework, activities are re-scheduled only if all the succeeding activities

can be scheduled in a way that is better than or equal to the initial schedule in terms of

cost for making socially rational decisions. In contrast to their simple resource-driven

scheduling algorithm, my agent-based negotiation approach allows subcontractors to

evaluate the impacts of their changes quantitatively, resolve schedule conflicts, and make

better schedules.

3.4.7 WORKPLAN

Choo, Tommelein, Ballard, and Zabelle (1999) presented a crew-level planning system as

the last planner, based on resource availability and other factors. They focused on crew

work continuity, which is the main objective of job-shop scheduling. Indeed, they were

trying to apply the techniques of job-shop scheduling to subcontractor planning in the

construction industry.

Their centralized work plan produces a workable schedule from a “workable backlog,”

where they check and satisfy all constraints and, therefore, maintain the logical sequence

of the work. When they considered resource availability, which is one of the constraints

in their framework, they do not evaluate the impact of the work plan on project

performance when making a schedule, nor do they present any mechanism for matching

resource availability to resource requirements, like the resource-driven scheduling model

(El-Rayes and Moselhi 1996). As a result, their method schedules activities in the order

 38

of the network schedule when resource availability matches with resource requirements.

Lately, they have identified the necessity of interactive coordination of distributed work

plans in order to better coordinate work (Choo and Tommelein 2000), but do not provide

a conflict-resolution methodology for coordinating distributed work plans.

In my DCPSC framework, a subcontractor first makes its preferred schedule for its

activities, then negotiates with other subcontractors. Therefore, in addition to their work,

my DCPSC framework integrates individual subcontractor’s preferred schedules into a

project-wide workable schedule for socially rational decision-making. I only constrain

resource availability in my DCPSC framework, but other constraints would also need

agent-based negotiation if the schedule decision affects other subcontractors. My agent-

based negotiation approach is an extension to their interactive coordination of distributed

work plans for resolving conflicts in distributed work plans.

3.4.8 CAPACITY CONSTRAINTS

O’Brien and Fischer (2000) discuss the importance of capacity constraints to construction

cost and schedule. Based on results from case studies, they conclude that capacity

constraints affect the cost of subcontractors and suppliers. They also show that it is

necessary to quantitatively model the relationship between capacity allocation and cost,

but do not provide a quantitative cost model of capacity constraints. Earlier, O’Brien

(1998) presented a centralized coordination model detailing the interactions between

resource allocations and productivity for the activities of a subcontractor working on a

particular project. His research provides a foundation to help subcontractors make

decisions on how to allocate their resources across projects while subject to capacity

constraints.

My DCPSC framework employs a distributed coordination paradigm, unlike their

centralized coordination model. The reason for employing the distributed coordination

paradigm is that consideration of each agent’s resource constraints and extra costs will be

beyond general contractors’ capability in cases involving many agents in complex

projects. Based on their finding of the importance of capacity constraints to construction

 39

cost and schedule, I have introduced an agent-based negotiation approach by which

subcontractors can use the quantitative capacity constraints, i.e., extra cost information,

for project schedule coordination in a distributed manner.

3.5 SUMMARY OF DCPSC FRAMEWORK BASED ON AGENT-

BASED NEGOTIATION APPROACH

This chapter presented a new distributed coordination framework for project schedule

changes (DCPSC) based on an agent-based negotiation approach wherein a project can be

rescheduled dynamically by all of the concerned subcontractors with the help of software

agents that evaluate the impact of changes, simulate decisions, and give advice. This

chapter formalized the DCPSC framework and revealed three important issues:

distributed coordination by competitive subcontractors, socially rational decision-making,

and maintaining the logical sequence of the work. This chapter introduced an agent-based

negotiation approach to overcome the difficulties stemming from these issues. This

chapter reviewed previous work on coordination of project planning and scheduling and

related in detail the DCPSC framework and agent-based negotiation approach to previous

work, in terms of these issues.

 40

CHAPTER 4

AGENT-BASED COMPENSATORY NEGOTIATION

METHODOLOGY

TO FACILITATE DISTRIBUTED COORDINATION OF PROJECT

SCHEDULE CHANGES

This chapter presents a novel agent-based compensatory negotiation (ABCN)

methodology to facilitate the distributed coordination of project schedule changes

wherein a project can be rescheduled dynamically through negotiations by all of the

concerned subcontractors. The methodology consists of a compensatory negotiation

strategy based on utility which agents have, multi-linked negotiation protocols by which

agents interact with other agents, and message-handling mechanisms for agents to

evaluate alternatives and simulate the decision-making. This chapter introduces a new,

simpler case example to illustrate the methodology. It also reviews previous work and

states my contributions compared to the ABCN methodology.

4.1 INTRODUCTION

Subcontractors can reallocate their initially assigned resources whenever timing of the

activities does not match well with the timing of available resources, which means that

there are discrepancies between resource requirements and resource availabilities.

However, this resource reallocation causes extra costs. When they try to change the

timing of their activities instead of reallocating resources, the changes cause external

costs to succeeding subcontractors. Therefore, subcontractors have to evaluate the extra

costs associated with the reallocation of their resources and the external costs for

changing the timing of activities, and then they can make decisions within the distributed

coordination framework for the project schedule changes (DCPSC).

 41

In the DCPSC framework, activities differ in costs so that extra costs of resource

reallocation and external costs of changed timing vary greatly with activities. Therefore,

without an explicit method for transferring utility units (“money”), they cannot find fair

deals with other agents. Imagine that a subcontractor would need to pay one million

dollars for failing to meet his/her schedule, i.e., the extra cost is one million dollars. If the

subcontractor finds that it costs only ten thousand dollars for delaying succeeding

activities, i.e., the external cost is ten thousand dollars, he/she will be happy to pay ten

thousand dollars for the delay. This is an extreme case, but it shows how a subcontractor

can transfer utility to other subcontractors for compensation of disadvantageous

agreements. Also, such potential great disparities between overall costs make the split

option (Sandholm, 1993) and coin tossing (Rosenschein and Zlotkin, 1994) inappropriate

in the DCPSC framework and make compensatory negotiation the appropriate approach.

The problem of finding external costs in a distributed manner is a major challenge when

the number of activities is huge. For example, a typical building project has several

thousand activities to be rescheduled. Furthermore, the activities are tightly linked. No

subcontractor has complete knowledge of the whole schedule and it is not feasible to send

private information, such as resource and cost information, to one central coordinator.

Therefore, I need new negotiation protocols, which subcontractors can use to receive cost

responses before making decisions.

Since a coordination methodology is needed for subcontractors to interact with other

subcontractors in the distributed coordination of project schedule changes, and because of

the huge number of messages to be exchanged among subcontractors for negotiation

processes, I adopted the agent-based approach to develop a novel coordination

methodology. By adopting the agent-based approach, I represented the subcontractors in

the distributed coordination of project schedule changes as agents, which exchange

messages with other agents to evaluate changes to simulate negotiation processes.

Therefore, agents need message-handling mechanisms.

 42

In this chapter, I formalize three main aspects of the agent-based compensatory

negotiation methodology: (1) the compensatory negotiation strategy based on utility to

the agents; (2) the multi-linked negotiation protocols by which agents interact with other

agents; and (3) message-handling mechanisms for agents to evaluate alternatives and

simulate the decision-making.

4.2 COMPENSATORY NEGOTIATION STRATEGY BASED ON

UTILITY

Each agent calculates utility of timing to evaluate the impacts of its schedule changes and

to compensate other agents for disadvantageous agreements through a utility transfer

scheme. My utility transfer scheme differs from the monetary transfer schemes developed

in market-based systems, where agents transfer money in return for goods or services. In

my research, utility captures the value of timing, which market-based systems have not

considered as a transferable good or service. Because of the difficulty of capturing the

value of timing, they assumed that the timing is a risk that all agents should bear. The

representation of the utility of timing as “transferable money” is one of my key

contributions.

4.2.1 UTILITY OF TIMING

In my research, I adopted the definition of utility by Rosenschein and Zlotkin (1998) to

quantify utility of timing3:

The utility of a deal for an agent is defined as the cost of its original work minus

the cost of its new work given the deal. The difference is how much it has gained

from the deal (p. 361).

Therefore, I represent utility of timing of as a real-valued number (“money”), which

describes the difference between the cost of the initial schedule and the costs of

alternatives for the activity as units of money based on resource utilization. A reasonable

3 In this dissertation, timing represents timing of the work to be performed. I represent timing of work as a
tuple of (start date, end date) of the work, but it is different from the duration of the work.

 43

assumption about resource utilization is that any discrepancy between the resource

requirements and the available resources causes a subcontractor to incur extra costs of

either over-utilizing current resources, e.g., paying overtime, or importing new resources.

These extra costs motivate the search for a better solution. The utility units are common

for all agents, and agents can transfer their utility units to other agents for compensation.

Each agent uses the following utility function for each activity k

Where ACk is the extra “acceleration cost” for accelerating the kth activity;

DCx is the extra “delay cost” for delaying the succeeding activity x.

In my research, I consider only direct costs of the activity and liquidated damage for

project delays and ignore other overhead costs or indirect costs. Since the liquidated

damage for project delays is included in the calculation of AC and DC, the overhead costs

or indirect costs can be treated as the same way.

Note that the agent, which has activity k, knows ACk, but does not know the summation

of DCx until getting DCs from the succeeding activities. I discuss the methods for the

agent to get DCs from the succeeding activities in Section 4.3. The following two

sections explain the Acceleration Cost (ACk) and the Delay Cost (DCx) in detail.

4.2.1.1 Acceleration Cost

If an agent cannot meet its schedule with its available resources, the agent has two

choices. One choice is to complete the activity with the same schedule and a higher cost

per day. It might incur extra costs to accelerate the kth activity, in addition to the original

cost (Ck0). The second choice is to extend the schedule with a lower cost per day. There

might also be extra costs to extend the kth activity. Therefore, agents have to consider two

kinds of costs for the kth activity to calculate the acceleration cost (ACk): Ck1, the total

∑
∈

−=
kactivitiessuceedingallx

xkk DCACUtility
__

 44

cost for the kth activity with the same schedule and a higher cost per day; and Ck2, the

total cost for the kth activity with an extended schedule and a lower cost per day, as

shown in Figure 4-1.

Days

Cost/day
($)

Ck1

Ck0

$6,600

$6,000

4 Days

Ck2

Ck0

$6,000

4 5

$5,760

$4,800

(a) (b)

Figure 4-1. Two kinds of acceleration costs: (a) Ck1 ; (b) Ck2

Then, I calculate ACk as follows:

If Ck1 is bigger than Ck2:

 ACk = Ck1 – Ck2

Else:

 ACk = 0

Note that Ck2 is not always equal to Ck0, even though the same numbers of resource-

days are used in the original and extended schedule. There are many reasons why the cost

per resource-day would be different day by day, such as bad weather, increase of labor

costs after collective bargaining, or delays of scheduled move-out, as shown in the

example below.

Example-1: Suppose an activity k needs 10 resources for 4 days (from Day 1 to Day 4),

which are expected to be $600 per resource-day at bid, but its agent has only 8 resources

 45

at execution. Then the agent either has to work overtime, which would cost $900 per

resource-day for 8-resource-day shortages (assuming the overtime rate is 150%), or delay

the work by one extra day while spending $720 per resource-day (assuming the extra rate

is 120%). If the delay incurs liquidated damages, the agent should include the liquidated

damages into the extra costs.

In this case, Ck0 is {10 resources*4 days*$600/(resource-day)} = $24,000;

Ck1 is {{8 resources*4 days*$600/(resource-day)} + {8 resource-day * $900/(resource-

day)} = $26,400;

Ck2 is {(8 resources*4 days*$600/(resource-day)} + {8 resources*1 day*$720/(resource-

day)} = $24,960.

Since Ck1 is bigger than Ck2, ACk = Ck1 – Ck2 = $26,400 - $24,960 = $1,440, this

means that the activity K can save $1,440 if the activity would be delayed by one extra

day.

4.2.1.2 Delay Cost

If an agent has to change its schedule due to the delays of preceding activities, the agent

has two choices. One choice is to do the work with the shorter duration and a higher cost

per day. The agent might incur extra cost to accelerate the xth activity, in addition to the

original cost (Cx0). The second choice is to do the work with the longer duration and a

lower cost per day. There might be extra costs to extend the xth activity. Therefore, two

kinds of costs for the xth activity are considered to calculate a “delay cost” (DC): Cx3, the

total cost for the xth activity with the shorter duration and a higher cost per day; and Cx4 ,

the total cost for the xth activity with the longer duration and a lower cost per day, as

shown in Figure 4-2.

 46

Days

Cost/day
($)

Cx3

Cx0

$9,000

$6,000

8 5 6 Days

Cx4

Cx0

$6,000

8 9

$7,200

5 6

(a) (b)

Figure 4-2. Two kinds of delay costs: (a) Cx3 ; (b) Cx4

Then, I calculate DCx as follows:

If the start of the activity is delayed:

Example-2: Suppose activity x also needs 10 resources for 4 days (from Day 5 to Day 8)

at $400 per resource-day. Also assume the start of activity x is delayed due to the

preceding activity. Then the agent has to work overtime to complete the activity on time,

which would cost $600 per resource-day for 10 resource-day shortages (assuming the

overtime rate is 150%), or delay the work by one extra day while bringing in 10 resource-

day shortages at $480 per resource-day (assuming the import rate is 120%).

In this case, Cx0 is {10 resources*4 days*$400/(resource-day)} = $16,000;

Cx3 is {{10 resources*3 days*$400/(resource-day)} + {10 resource-days *

$600/(resource-day)}} = $18,000;

() () 















+−−= ∑

∈ xactivitysucally
yxxxxx DCCCCCDC

__
0403 ,min

0: =xDCElse

 47

Cx4 is {{10 resources*3 days*$400/(resource-day)} + {10 resource-days *

$480/(resource-day)}} = $16,800.

Since DCx cannot be calculated without considering other DCs from succeeding

activities, let us assume that the activity is the last activity that has no succeeding activity

and has no liquidated damages. Since the activity is delayed, DCx = min ((Cx3 – Cx0),

((Cx4 – Cx0))

= min (($18,000 - $16,000), ($16,800 - $16,000))

= min ($2,000, $800) = $800. This means that the activity x cost $800 more if the activity

is delayed by one extra day.

4.2.1.3 Schedule-Change Options

Agents can calculate the acceleration cost (AC) and the delay cost (DC) by using given

rates, such as overtime rates, extra rates, or import rates, as shown in the two previous

examples. However, the assumptions vary by the parameters for characteristics of

resources, such as units, fixed/variable, timing, and upper limits. Therefore, instead of

calculating AC and DC based on the parameters, which cannot cover all the different

situations that should be considered, the software agents are given schedule-change

options by their “clients” — subcontractors. Agents can calculate the utility of timing for

their activities from the given schedule-change options.

I represent a schedule-change option as a tuple of the form4:

(startDate endDate extraCost)

The startDate is the possible start date of the activity. The endDate is the possible finish

date of the activity. The extraCost is the extra cost associated with the timing of the

activity. An activity has one or more schedule-change options.

4 The representation of schedule-change options looks very much like the time-cost trade-off (TCT)
formulation, but it represents the timing of the activity, which TCT ignores, since TCT assumes cost is
invariant with the temporal position of the activity (O’Brien and Fischer 2000, pp. 367-368).

 48

For Example 1, the schedule-change options for activity k are {(1 4 $2,400)(1 5 $960)}.

The schedule-change options mean that the activity k costs $2,400 more when it starts at

Day 1 and finish at Day 4, but it costs $960 more when it delays the finish to Day 5. Then

the acceleration cost for the activity k for going from Day 1 to Day 4 (ACk) = ($2,400 -

$960) = $1,440. In other words, the activity can save $1,440 if it delays the finish by one

day.

For Example 2, the schedule-change options for activity x are {(5 8 $0)(6 8 $2,000)(6 9

$800)}. The schedule-change options mean that the activity x costs $0 more when it starts

on Day 5 and finishes on Day 8, but it costs $2,000 more when it delays the start by one

day, but finishes on Day 8. The third option means it costs $800 more when it delays the

start and finish by one day with the same duration. When the start of activity x is delayed

by one day, the possible schedule-change options are {(6 8 $2,000)(6 9 $800)}. Then the

delay cost (DCx) = min {$2,000, $800}= $800 if the activity x is the last activity.

4.2.2 UTILITY TRANSFER FOR COMPENSATORY NEGOTIATION

The key concept of the compensatory negotiation strategy is to transfer utility (“money”)

to compensate agents for "playing along" in a situation that, to them, is otherwise locally

suboptimal. After getting DC through negotiation, if AC is more than DC, i.e., there is

positive utility, the agent decides to make an extension, and transfers the DC portion of

the utility to other agents for compensation of disadvantageous agreements.

The compensatory negotiation consists of inner and outer cycles: Inner cycles5 are used

for an activity to get DCs from succeeding activities, i.e., forward and backward. One

outer cycle6 is used when an activity finishes its negotiation through the inner cycles. The

direction of the outer cycle is only forward, i.e., from the start activity to the end activity

on the project schedule, while each activity negotiates using inner cycles. Since schedule-

change options are defined on the basis of activity, the negotiation is based on activity.

5 The state of inner cycle is tracked by agents updating the “flag” state on their activities as further
discussed in Section 4.3.1
6 The state of outer cycle is tracked by agents updating the “active” state on their activities as further
discussed in Section 4.3.1

 49

Therefore, agents, which have multiple activities, could experience many cycles of

negotiations.

Agents will change schedule-change options during the negotiation process to reflect

compensations among agents. For instance, agent-A can change the schedule-change

options for activity k from {(1 4 $2,400)(1 5 $960)} to {(1 4 $2,400)(1 5 $1,760)}, if

agentA compensates agentB for delaying the start of activity x at the cost of $800. This

will cause agentB to change its schedule-change options from {(5 8 $0)(6 8 $2,000)(6 9

$800)} to {(5 8 $0)(6 8 $2,000)(6 9 $0)}. After compensating Agent-B’s loss, Agent-A

still can save $2,400 - $1,760 = $640 and Agent-B has no loss at all.

Except the aforementioned changes by agents, I exclude situations where the human

subcontractors change their schedule-change options while their agents are engaging in

the negotiation process, although it is quite common in real-world negotiation situations.

In the compensatory negotiation, agents evaluate the impacts of changes and simulate

negotiation based on the given schedule-change options. Therefore, updating change

options throughout the negotiation process cannot ensure consistency of the negotiation.

After agents finish all negotiation processes based on the given schedule-change options,

human subcontractors can update their schedule-change options. As it is unknown to

various subcontractors what kinds of delays they might have to respond to, the schedule-

change options are progressive, which means subcontractors update their schedule-

change options when they notice a delay.

4.3 MULTI-LINKED NEGOTIATION PROTOCOLS

Negotiation protocols govern the interaction among agents by constraining the way the

agents interact. In this research, agents need negotiation protocols to get DCs from

succeeding agents and to transfer utility for compensation of disadvantageous

agreements.

 50

Compensatory negotiation starts with a baseline project schedule and has an agent

propose to compensate other agents for costs imposed on the latter for the former's

change of the plan. This is simple when agents can reschedule their activities without

affecting others or when the counterpart agent is one, which is the case of pairwise

negotiation. In a more complicated case, an agent needs to negotiate with another agent,

which in turn needs to negotiate with a third, and so on, until the last agent. I call it

“multi-linked” negotiations. This multi-linked negotiation is inspired by the work of

Neiman and others (1994), but it is acyclic and therefore more straightforward than their

protocol.

Multi-linked negotiation protocols are needed because of the tightly coupled nature of

construction project schedules. My multi-linked negotiation differs from multilateral

negotiation (auction) protocols because multi-linked negotiation allows agents to

negotiate with other agents within precedence relationships rather than restricting them to

negotiate solely with an auctioneer.

The negotiation protocols provide the performatives, which are shared primitive message

types for agents to use in negotiation (Finin et al. 1994), and conversation sequence,

which shows the structured message exchanges between agents while changing states.

The next two sections formalize the performatives and conversation sequence for the

multi-linked negotiation protocols.

4.3.1 MULTI-LINKED NEGOTIATION PERFORMATIVES

My multi-linked negotiation performatives fall into three classes: human interaction,

negotiation, and negotiation control. The human interaction performatives allow a

human subcontractor to provide input data to its agent and an agent to inform its

subcontractor of the current status of negotiation. The negotiation performatives facilitate

the actual compensatory negotiation processes. The negotiation control performatives

manage the states of negotiation processes. For my multi-linked negotiation protocol,

performatives should be recursive because of the tightly coupled network-like precedence

relationships, as shown in Table 4-1.

 51

Legend:

Table 4-1. Multi-linked negotiation performatives and expected responses

Note that agents choose the performative based on the position in the project schedule,

such as start, middle, or end, and the state of negotiation, such as active or flag (see

Section 4.3.1.2). This section addresses the semantics of the performatives. Appendix-B

shows details of the syntax of the performatives.

confirm-all|renege-accept-all|reject-all� �accept-all

 confirm � reply-cost � � confirm

renege � reject� � reject

confirm|renege � accept|reject� � accept

 done � & final � final � � done

done � & final � ask-cost|hand-over� � hand-over

 renege-all � hand-over � � renege-all

 confirm-all � hand-over �� � confirm-all

renege-all � reject-all � � reject-all

 renege � reply-cost � � renege

 accept|reject � accept-all|reject-all � � reply-cost

reply-cost � ask-cost � � ask-cost

final � ready� ask-cost|hand-over � �ready

sorry � sorry � sorry � input

End activity Middle activity(s) Start/Active/Flag Performative

Receiving a message from its succeeding activity � Performative

Sending a message to its own agent Performative ��

Sending a message to its preceding activity Performative �

Sending a message to its succeeding activity Performative �

Sending a message to its subcontractor Performative �

Receiving a message from its preceding activity � Performative

Receiving a message from its subcontractor Performative

 52

4.3.1.1 Human Interaction Performatives

These performatives are formal interfaces needed for a human subcontractor to provide

input data to its agent and for an agent to inform the subcontractor of the results of

negotiation. The message senders are human subcontractors or agents. The receivers are

agents or human subcontractors.

input

This performative allows a subcontractor to provide its agent with agent information and

activity information, including precedence and schedule-change options.

ready

This performative allows a subcontractor to inform its agent that input is finished on the

specific activity.

final

This performative allows an agent to inform the subcontractor of the final result of

negotiation on the specific activity.

4.3.1.2 Negotiation Performatives

The following performatives are used for facilitating compensatory negotiation processes.

The senders and receivers are agents7.

Since distributed agents have no knowledge about the whole state of negotiation, I

introduce two states of negotiations marked on activities to promote structured

communication and ensure consistency among agents during negotiation. One is the

“active” state, which means the activity is “active” in initiating negotiation. First, the start

activity becomes “active” and other activities become “active” when the preceding

activity passes control. When an activity finishes an inner cycle of negotiation, the

activity changes the state from “active” to NULL. The second is the “flag” state, which

7 For simplicity of explaining performatives, I assume that each agent has one activity and the schedule is
linear. Therefore, an activity means an agent in this section. However, the performatives can be used for
multiple activities for an agent and multiple succeeding activities for an activity.

 53

means the activity is not “active”, but calculates DC based on the cost reply from the

succeeding activity. An activity becomes “flag” when the preceding activity sends an

“ask-cost” message and changes the activity’s state from “flag” to NULL after sending a

“reply-cost” message.

ask-cost

This performative allows an activity to ask the succeeding activity to find out any cost

which is incurred by the delay of the proposed start date. This performative makes the

receiving activity “flag.”

reply-cost

This performative allows an activity to reply to the preceding activity with the cost,

which is incurred by the delay. Note that the cost can be its own cost or a sum of

succeeding activities’ cost so that no agent will be able to figure out how much a delay

costs for a particular agent.

accept

This performative allows the “flag” activity to accept the cost response from the

succeeding activity. This means that the activity chooses to delay rather than accelerate.

reject

This performative allows the “flag” activity to reject the cost response from the

succeeding activity. This means that the activity chooses to accelerate rather than delay.

confirm

This performative allows an activity to confirm the “accept” from the preceding activity.

This means that its cost reply is accepted, but the final contract is pending. This

performative makes the receiving activity change the state from “flag” to NULL if the

receiving activity is the “flag” activity.

 54

renege

This performative allows an activity to renege the “accept” or “reject” from the preceding

activity. This means that its cost reply is rejected and the activity has to keep the original

schedule. This performative makes the receiving activity change the state from “flag” to

NULL if the receiving activity is the “flag” activity.

accept-all

This performative allows the “active” activity to accept the cost reply from the

succeeding activity. This means that the activity chooses to delay rather than accelerate.

reject-all

This performative allows the “active” activity to reject the cost reply from the succeeding

activity. This means that the activity chooses to accelerate rather than delay.

confirm-all

This performative allows an activity to confirm the “accept-all” from the preceding

activity. This means that its cost reply is accepted and the contract is binding.

renege-all

This performative allows an activity to renege the “accept-all” or “reject-all” from the

preceding activity. This means that the activity has to keep the original schedule.

4.3.1.3 Negotiation Control Performatives

These performatives are used for managing the states of negotiation processes. The

senders and receivers are agents.

ready

This performative allows an activity to inform the preceding activity that the activity is

ready for negotiation. Note that the “ready” performative between activities differs from

the “ready” performative between a human and its agent. This performative makes the

start activity “active.”

 55

hand-over

This performative allows the “active” activity to pass control to the succeeding activity,

informing it of starting a negotiation. This performative makes the receiving activity

“active.”

done

This performative allows an activity to inform the preceding activity that the activity has

finished the negotiation. This performative makes the receiving activity change its state

from “active” to NULL.

4.3.1.4 Comparison to Pair-Wise Negotiation Performatives

In this section, I compare my negotiation performatives to the “pair-wise negotiation

performatives” developed by Chen, et al. (1999). The “pair-wise negotiation

performatives” consist of CFP (Call For Proposal), proposal, accept-proposal, reject-

proposal, and terminate, as shown in Table 4-2.

CFP the action of calling for a proposal to perform a given action
proposal the action of submitting a proposal to perform a certain action, given

certain preconditions
accept-proposal the action of accepting a previously submitted proposal to perform

an action
reject-proposal the action of rejecting a previously submitted proposal to perform an

action
terminate the action to finish the negotiation process

Table 4-2. Pair-wise negotiation performatives (excerpt from Chen et al (1999))

The “pair-wise negotiation performatives” are similar to the “announcing-bidding-

awarding” processes in the Contract Net Protocol (CNP) (Smith 1980; Smith and Davis

1981; Davis and Smith 1988). In fact, CNP is heavily adopted for many “pair-wise” or

“multi-lateral (auction)” negotiation protocols (Malone et al. 1988; Sandholm 1993;

Sandholm and Lesser 1995; Sen and Durfee 1996). The CNP is a very general protocol

for distributing activities in a network of agents. However, the “awarding” process

requires contract binding. In my research, where multiple agents concurrently try to reach

 56

consensus agreements, I need another performative, “confirm/renege,” for binding

contracts.

Suppose there are three agents who are trying to solve schedule conflicts. Agents A and B

should precede AgentC, but have no relationship. Therefore, AgentC needs two ”accept-

proposal” messages from Agents A and B to resolve schedule conflicts after sending

“proposal” messages to Agents A and B according to their CFPs. In a case where AgentA

sends an “accept-proposal” message to AgentC, but AgentB sends a “reject-proposal”

message to AgentC, the “awarding” stage should not automatically bind the contract, as

shown in Figure 4-3. Otherwise, the contract cannot ensure the consistency of the project

schedule.

 AgentA
(Announcer)

Accept-proposal

Reject-proposal
?

AgentB
(Announcer)

AgentC
(Bidder)

Figure 4-3. “Awarding” stage of negotiation

I must allow AgentC to use another performative, “confirm/renege,” to inform Agents A

and B of the inconsistent messages. AgentC uses the “confirm” performative for contract

binding when all the messages are “accept-proposal” and uses the “renege” performative

otherwise. In this example, AgentC sends the “renege” message, which means the

“awarding” is not valid, as shown in Figure 4-4. Agents A and B need to start a new

negotiation.

 AgentA
(Announcer)

Accept-proposal

Reject-proposal

Not
Valid

AgentB
(Announcer)

AgentC
(Bidder)

Renege

Renege

Figure 4-4. “Confirming” stage of negotiation

 57

As shown in the above simple example, the new performatives, “confirm/renege,” are

necessary where multiple agents are concurrently trying to reach mutual agreements in

the new “confirming” stage. This is the addition to CNP.

4.3.2 CONVERSATION SEQUENCE OF MULTI-LINKED NEGOTIATION

Conversation sequence shows the structured message exchanges between agents based on

states. It is important to note that the project activity precedence relationships govern the

agent message exchange. Since I developed the multi-linked negotiation protocols for the

distributed coordination of project schedule changes, agents should exchange messages

according to the project schedule. I can guarantee that my protocols will converge, which

means my protocols will not enter infinite loops of refinement, because agents use static

activity precedence relationships in the project schedule for message passing among

agents. The following two sections describe the conversation sequence for the multi-

linked negotiation and compare it to the conversation sequence of pair-wise negotiation.

4.3.2.1 Conversation Sequence Diagram

A conversation sequence diagram that includes the multi-linked negotiation

performatives in Section 4.3.1 represents my negotiation process. For my multi-linked

negotiations, loops represent recursive sequences of conversation, as shown in Figure 4-

5.

Since agents should exchange messages according to the project schedule, the multi-

linked negotiation process is synchronous, which means agents are allowed to work only

on replanning a task under the control of a single “active” agent. Neiman and Lesser

(1996) assert that a synchronous negotiation process is superior to an asynchronous

process in their cooperative schedule repair method, in which all agents suspend their

current problem-solving activities and collaboratively search for some reassignment of

resources that would allow the current scheduling goal to be satisfied without a constraint

relaxation.

 58

14 3

12

13 11 5

4 10

ready

ready

ask-cost

ask-cost

reply-cost accept-all

reject-all

confirm-all

reject-all

hand-over

renege-all hand-over

ask-cost

input
sorry final

final

15

done

 2 16

reject-all

6

7

accept

reject

reject

accept

8

9

confirm

renege

confirm

reject renege reply-cost

renege-all renege

final

renege-all

hand-over

hand-over
done

accept-all confirm-all

0

1

Figure 4-5. Conversation sequence diagram of multi-linked negotiation protocols

4.3.2.2 Comparison to Conversation Sequence Diagram of Pair-Wise Negotiation

In this section, I compare my conversation sequence diagram of multi-linked negotiation

performatives to the conversation sequence diagram of the “pair-wise negotiation”

developed by Mudgal and Vassileva (1999).

1 2

3
4

AÆB: Offer

BÆA: Reject

BÆA: Accept

BÆA: Counter-propose

AÆB: Counter-propose

AÆB: Reject

AÆB: Accept

Figure 4-6. Conversation sequence diagram of pair-wise negotiation
(Mudgal and Vassileva, 1999)

 59

The conversation sequence diagram in Figure 4-6 represents possible sequences of

conversation that can occur during pair-wise negotiations. Even though their conversation

sequence is richer than mine in terms of allowing repetitive negotiation using “counter-

propose” messages, their conversation sequence diagram is missing the recursive

sequences of conversation because they only consider two agents. The recursive

sequences of conversation are necessary when multiple agents engage in negotiations in a

tightly coupled schedule.

4.3.3 EXAMPLE OF MULTI-LINKED NEGOTIATION

This section illustrates the multi-linked negotiation protocols. This simple example

consists of three agents, in which each has one activity, as shown in Figure 4-7.

A B

C

11

input&ready

ready

ask-cost

reply-cost

accept/reject

confirm/renege

accept-all/reject-all

confirm-all/renege-all

hand-over

done

final

GUI GUI

GUI

1

26

5

6

12

15

16

25

2

24

4

3

7 8

9 10

13 14

17 18 19 20

21

22

23

3 2 1

4 5

6 7 17

8 11 18

9

10

19 13 12

20 15 14

16 21

25 23

26 24 22

Figure 4-7. Example conversation sequence diagram

 60

A negotiation starts when the subcontractors send “input” and “ready” messages (#1~3)

to their respective agents. Then agents send “ready” messages (#4~5) to agents backward

up to the ‘start’ agent, which has the start activity.

Upon receiving a “ready” message, the ‘start’ agent sends an “ask-cost” message (#6)

forward to the ‘middle’ agent, which will also send an “ask-cost” message (#7) forward

to the ‘end’ agent. Then the ‘end’ agent sends a “reply-cost” message (#8) backward to

the ‘middle’ agent, which will send an “accept” or a “reject” message (#9) back to the

‘end’ agent. Then the ‘end’ agent sends a “confirm” or a “renege” message (#10)

backward to the ‘middle’ agent, which will send a “reply-cost” message (#11) backward

to the ‘start’ agent.

The ‘start’ agent sends an “accept-all” or a “reject-all” message (#12) forward to the

‘middle’ agent, which will also send an “accept-all” or a “reject-all” message (#13)

forward to the ‘end’ agent. The ‘end’ agent will send a “confirm-all” or a “renege-all”

message (#14~15) backward up to the ‘start’ agent, which will send a “hand-over”

message (#16) forward to the ‘middle’ agent.

The conversation sequence will repeat (#17~20) until the ‘middle’ agent sends a “hand-

over” message (#21) to the ‘end’ agent. A cycle of negotiation finishes when the ‘end’

agent receives a “done” message (#25) and sends a “final” message (#26) to its

subcontractor.

4.4 MESSAGE-HANDLING MECHANISMS

The agent reacts according to what message it gets. Therefore, the agent should have the

functionality of handling messages for each type of multi-linked message protocol. When

the agent handles a message, it should also make a decision accordingly. Table 4-3

summarizes the message handling mechanisms. Appendix-C shows details of the

message handling mechanisms.

 61

Incoming
message

Message handling mechanisms

1. “input”

All activities:
• If AGENT status is ‘lock,’ send a “sorry” message
• Else parse and store AGENT or ACTIVITY information

2. “ready” All activities:
• Check if all “ready” messages are received
• If received all, update its AGENT status as ‘lock’
• Else wait

Start activity:
• Updates ACTIVITY status as ‘active’
• Selects AC
• If it is the ‘end’ activity, sends a “final” message
• Else if AC = 0, sends “hand-over” messages
• Else sends “ask-cost” messages

Middle activity(ies):
• Forward “ready” messages

3. “ask-cost” All activities:
• Update critical activities
• Check if all “ask-cost” messages are received
• If received all, select C4
• Else wait

Middle activity(ies):
• Update ACTIVITY status as ‘flag’
• Forward “ask-cost” messages

End activity:
• Sends “reply-cost” messages according to criticality

4. “reply-cost” All activities:
• Accumulate DC
• Check if all “reply-cost” messages are received
• If not, wait

Flag activity(ies):
• Select C3
• If C3 > DC, send “reject” messages
• Else send “accept” messages

Active activity:
• Compares AC and DC
• If AC >= DC, sends “accept-all” messages
• Else sends “reject-all” messages

Table 4-3. Summary of message handling mechanisms

 62

Incoming
message

Message handling mechanisms

5. “accept” All activities:
• Update ACTIVITY check as ‘accept’
• Check if all “accept” or “reject” messages are received
• If not, wait

Middle activity(ies):
• If any ACTIVITY check is ‘reject,’ send “reject” messages
• Else send “accept” messages

End activity:
• If any ACTIVITY check is ‘reject,’ sends “renege” messages
• Else sends “confirm” messages

6. “reject” All activities:
• Update ACTIVITY check as ‘reject’
• Check if all “accept” or “reject” messages are received
• If not, wait

Middle activity(ies):
• Forward “reject” messages

End activity:
• Sends “renege” messages

7. “confirm” All activities:
• Check if all “confirm” messages are received
• If not, wait

Middle activity(ies):
• Forward “confirm” messages

Flag activity(ies):
• Update ACTIVITY status as ‘null’
• Send “reply-cost” messages according to criticality

8. “renege” All activities:
• Check if all “renege” messages are received
• If not, wait

Middle activity(ies):
• Forward “renege” messages

Flag activity(ies):
• Update ACTIVITY status as ‘null’
• Send “reply-cost” messages according to criticality

9. “accept-all” All activities:
• Update ACTIVITY check as ‘accept-all’
• Check if all “accept-all” or “reject-all” messages are received
• If not, wait

Middle activity(ies):
• If any ACTIVITY check is ‘reject-all,’ send “reject-all” messages
• Else send “accept-all” messages

End activity(ies):
• If any ACTIVITY check is ‘reject-all,’ send “renege-all” messages
• Else send “confirm-all” messages

Table 4-3. Summary of message handling mechanisms (Continued)

 63

Incoming
message

Message handling mechanisms

10. “reject-all” All activities:
• Update ACTIVITY check as ‘reject-all’
• Check if all “accept-all” or “reject-all” messages are received
• If not, wait

Middle activity(ies):
• Forward “reject-all” messages

End activity:
• Sends “renege-all” messages

11. “confirm-all” All activities:
• Check if all “confirm-all” messages are received
• If not, wait

Middle activity(ies):
• Forward “confirm-all” messages

Active activity(ies):
• Update ACTIVITY status as ‘null’
• Send “hand-over” messages

12. “renege-all” All activities:
• Check if all “renege-all” messages are received
• If not, wait

Middle activity(ies):
• Forward “renege-all” messages

Flag activity(ies):
• Update ACTIVITY status as ‘null’
• Send “hand-over” messages according to criticality

13. “hand-over” All activities:
• Check if all “hand-over” messages are received
• If received all, update ACTIVITY status as ‘active’
• Else wait

Middle activity(ies):
• Select AC
• If AC = 0, send “hand-over” messages
• Else send “ask-cost” messages

End activity:
• Sends a “final”
• Sends “done” messages

14. “done” All activities:
• Check if all “done” messages are received
• If received all, update AGENT status as ‘unlock’
• Else wait

Middle activity(ies):
• Forward “done” messages
• Send a “final” message

Start activity:
• Sends a “final” message

Table 4-3. Summary of message handling mechanisms (Continued)

 64

4.5 A SIMPLE CASE EXAMPLE OF AGENT-BASED

COMPENSATORY NEGOTIATION

This section will demonstrate the agent-based compensatory negotiation methodology

using a simple case example. Consider the example network8 shown in Figure 4-8(a). The

results of conventional CPM calculations appear directly on the diagram. For simplicity,

assume that each activity, which was subcontracted to one of three subcontractors,

requires just one type of resource. The resource requirement for each activity appears on

the diagram in Figure 4-8(a). Assume each subcontractor uses the same resource for its

activities.

Lab
Dur Res

ES EF

LF/TF LS

Legend:

A
4 10

0 4

4/0 0

B
4 10

4 8

8/0 4

C
4 10

8 12

12/0 8

Sub-α Sub-β Sub-δ

(a)

Activity 1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

(b)

Figure 4-8. Example schedule: (a) CPM network schedule; (b) Gantt chart schedule

Assume that the subcontractors predicted at the time of bidding that their activities have

sufficient resources available to support the initial schedule, as shown in Figure 4-9. The

8 It is too complex to show the detailed agent-based compensatory negotiation steps using the case example
in Section 1.3. Therefore, I use a simpler example here.

 65

dotted rectangles indicate the initial resource requirements, based on the above schedule,

for completion of the activities. Therefore, the above schedule will be feasible.

However, as the actual execution dates approaches, the resource availability has become

tighter under changing market conditions. Assume that each subcontractor has revised the

available resource profile before the actual execution date, as shown in Figure 4-9. The

shaded boxes indicate the new resource availability for each activity.

(Day)

Sub-α 1 2 3 4 5 6 7 8 9 10 11 12
12
10
8
6
4
2

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12

12
10
8
6
4
2

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12

14
12
10
8
6
4
2

Figure 4-9. Resource histograms of Sub-α, Sub-β, and Sub-δ

The above resource histogram implies that some subcontractors have different preferred

schedules than the original schedule. For instance, Sub-α wants to finish Activity-A on

Day 5 since Sub-α does not have enough resources to finish on Day 4. Based on the

above resource histograms, the diagonally hatched bars in Figure 4-10 summarize the

subcontractors’ preferred schedules. Note that Activity-A and Activity-B have a schedule

conflict on Day 5.

Resources

Resources

Resources

 66

 (Day)
Activity 1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

Figure 4-10. Preferred schedule

Based on the resource histogram, assume that each subcontractor prepares schedule-

change options for its activity respectively, as shown in Table 4-4. Schedule-change

options of activities A and B remain the same as the earlier examples and schedule-

change options of activity-C are constructed to demonstrate the multi-linked negotiations.

The subcontractors provide their agents with these predefined schedule-change options.

Table 4-4. Schedule change options of Sub-α, Sub-β, and Sub-δ

The final schedule appears in Figure 4-11, and Figure 4-12 shows the conversation

sequences during the negotiation.

 (Day)

Activity 1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

Figure 4-11. Revised schedule after negotiation

(11 13 2000) (10 12 200) (9 12 0) (9 12) C

(6 9 800) (6 8 2000) (5 8 0) (5 8) B

 (1 5 960) (1 4 2400) (1 4) A

Option-3 Option-2 Option-1 ES-LF Activit y

(startDate endDate extraCost)

 Initial

 Selected
Schedule
Conflict

 Initial

 Revised

 67

Sub-α Sub-β Sub-δ

(1 4 2400) (1 5 960) (5 8 0) (6 9 800)

ask-cost(A B 6) ask-cost(B C 10)

reply-cost(C B 200)

accept(B C)

confirm(C B) reply-cost(B A 1000)

accept-all(A B) accept-all(B C)

A B

confirm-all(C B) confirm-all(B A)

1960 0

hand-over(A B 6) hand-over(B C 10)

done(C B) done(B A)

ready(C B) ready(B A)

(6 8 2000) (9 12 0) (11 13 2000) C (10 12 200)

0

Figure 4-12. Conversation sequences during the negotiation

To summarize, Activity-A of Sub-α will change to its preferred schedule. Then, Sub-α

transfers $1,000 to Sub-β for its loss due to the schedule change. Sub-β also transfers

$200 to Sub-δ for the same reason. Sub-α still gains a profit of $440. Note that Sub-β and

Sub-δ would not cooperate with Sub-α without compensation for their losses. Sometimes

Sub-β and Sub-δ have to bear losses due to the schedule change of Activity-A. The case

example shows that the agent-based compensatory negotiation methodology facilitates

the distributed coordination of project schedule changes.

4.6 RELATION TO PREVIOUS WORK ON DISTRIBUTED

AGENT-BASED COORDINATION

In this section, I relate my ABCN methodology to previous work on distributed agent-

based coordination in terms of coordination strategy, interaction protocols, and

coordination mechanisms (see Table 4-5).

.

 68

No. Previous work
(Researcher(s))

Coordination
Strategy

Interaction
protocols

Coordination
mechanisms

1 Generic partial global planning
(Decker and Lesser 1992)

Non-compensatory Pair-wise
negotiation

Random

2 Automated contracting:
TRACONET
(Sandholm and Lesser 1995)

Compensatory via
profit-seeking
bidding

Multi-lateral
negotiation

Random

3 Agent-based distributed
meeting scheduling
(Sen and Durfee 1996)

Non-compensatory Multi-lateral
negotiation and
voting

Random

4 Distributed constraint-
satisfaction problem
(Yokoo et al 1992)

- - Backtracking Unique ID

5 Coordination as distributed
search
(Durfee and Montgomery 1991)

- - Backtracking Pecking
order

6 Rules of encounter:
Unified negotiation protocol
(Rosenschein and Zlotkin 1994)

Non-compensatory
via coin flip

Pair-wise
negotiation

Random

7 Clarke tax voting mechanism
(Ephrati and Rosenschein 1996)

Non-compensatory
and no distribution
of collected taxes

Voting Random

8 Multiagent compromise via
negotiation
(Sycara 1989)

Non-compensatory,
but implicit utility
transfer

Mediation Random

9 Distributed constrained
heuristic search
(Sycara et al 1991)

- - Backtracking Heuristic
order

10 Market-oriented programming
(Wellman 1993)

Compensatory via
profit-seeking
bidding

Multi-lateral
negotiation

Dependency

11 Enterprise: A market-like task
scheduler
(Malone et al 1988)

Compensatory via
profit-seeking
bidding

Multi-lateral
negotiation

Priority

12 A dynamic theory of incentives
in multi-agent systems
(Shoham and Tanaka 1997)

Compensatory via
incentive or reward
mechanisms

- - - -

 Agent-based compensatory
negotiation

Compensatory via
explicit and direct
utility transfer

Multi-linked
negotiation

Use of
Sequence
logic in CPM

Table 4-5. Summary of selected previous work

4.6.1 GENERIC PARTIAL GLOBAL PLANNING

Decker and Lesser (1992) presented the Generic Partial Global Planning (GPGP) that

extends the Partial Global Planning (Durfee and Lesser 1991). The GPGP is a domain-

 69

independent framework for coordinating the real-time activities of small teams of agents.

In the GPGP framework, each agent constructs its own local view of activities using

TAEMS (Task Analysis, Environment Modeling and Simulation) task structure (Decker

1996). The local views of agents are coordinated into a schedule using a family of

coordination algorithms (Decker et al. 1995) based on the criteria given by a client. The

objective of GPGP is to find the best schedule of activities based on hard and soft

constraints while maximizing the total payoff.

GPGP uses pair-wise negotiations for resolving conflicts between two agents, which

occurs due to direct consequences of heterogeneous, dynamic, and real-time agents. Since

GPGP assumes that the agents are cooperative, agents exchange their local views with

other agents to find a better joint schedule, while relaxing their soft constraints. Even

though they use utilities for evaluating the solutions toward the total payoff, there is no

monetary compensation for disadvantageous agreements between agents.

4.6.2 AUTOMATED CONTRACTING

Sandholm and Lesser (1995) explored automated negotiations among agents that try to

maximize payoff without concern for the global good (self-interested) in settings where

computational limitations preclude enumerating and evaluating all possible outcomes.

For automated contracting, they extended the contract-net protocol, which was developed

for cooperative agents, for self-interested, computationally limited agents. They

augmented a formal model for announcing, bidding, and awarding decisions based on

marginal-cost calculations, which was their early work on TRACONET (Sandholm

1993). The most closely related work is TRACONET, in which agents having very

different local criteria can interact to distribute tasks so that the network as a whole

functions more effectively.

TRACONET uses a multi-lateral (auction) protocol for trading surplus tasks among

agents. TRACONET assumes agents to be self-interested so that they will not accept

disadvantageous agreements without compensation. Furthermore, agents will seek any

 70

possible profit from the announcing-bidding-awarding protocols. Any profit-seeking bid

from agents might prevent a system from reaching a better global solution.

4.6.3 AGENT-BASED DISTRIBUTED MEETING SCHEDULING

Sen and Durfee were working toward developing intelligent “surrogate” agent systems

that automate meeting tasks of their associated humans. Their approach viewed meeting

scheduling as a distributed search. However, they were not trying to derive any closed-

form solution to the dynamic meeting scheduling problem because they believed any

unique optimal solution to this problem does not exist. Rather, they focused on predicting

the expected efficiency of different reasonable scheduling heuristics under a variety of

resource constraints, based on a formal model of the distributed meeting problem and

process (Sen and Durfee 1998), developing a cancellation/rescheduling mechanism (Sen

and Durfee 1996), and representing and reasoning with preference and bias of associated

users (Sen et al. 1997). The cancellation/rescheduling mechanism in his work is the focus

of my methodology, which tries to resolves conflicts when conflict avoidance is not

possible.

In the Distributed Meeting Scheduling System, a host uses a multi-lateral (auction)

protocol to schedule a meeting among agents based on user-input preferences or

priorities. When conflicts occur when scheduling a meeting, the host applies a voting

mechanism to arrive at consensus choices for the meeting time while balancing different

preferences. The Distributed Meeting Scheduling System assumes agents to be

cooperative so that agents will not compensate others for disadvantageous meeting times.

4.6.4 DISTRIBUTED CONSTRAINT-SATISFACTION PROBLEM

Yokoo and others (1992) proposed a distributed constraint-satisfaction problem (DCSP)

framework to systemize cooperative distributed problem solving and methods by

extending traditional constraint-satisfaction methods. For methods for DCSP, they

introduced and compared three backtracking algorithms: centralized backtracking,

synchronous backtracking, and their newly developed “asynchronous backtracking.” The

experimental results showed that their asynchronous backtracking outperformed the

 71

synchronous backtracking due to their additional parallelism. In their recent paper

(Yokoo, et al. 1998), they modified the asynchronous backtracking algorithm into an

asynchronous weak-commitment search. Their experimental results showed that the new

algorithm was more efficient than the asynchronous backtracking algorithm.

DCSP uses asynchronous backtracking or search mechanism to find a set of values for all

variables such that all constraints are satisfied. Since DCSP assumes that all constraints

cannot be relaxed, no conflict will occur between agents and, therefore, they did not

develop a conflict-resolution mechanism. In other words, DCSP finds a satisfactory

solution that produces no disadvantageous agreement for any agent.

4.6.5 COORDINATION AS DISTRIBUTED SEARCH

Durfee and Montgomery (1991) identified five key components of the theory of

coordination: hierarchical behavior representation, metrics, distributed search protocol,

local search algorithms, and control knowledge and heuristics. In their theory, agents

form their behavior hierarchies, but do not know with whom they might interact. The

superior agent, therefore, broadcasts their abstract-level goals according to the given

authority value and the inferior agents resolve conflicts either by delaying their behaviors

or by searching for non-conflicting behavior at a more detailed level through interactions

with other agents. When the superior knows that no conflict exists, it passes control to

the next agent in the pecking order. This process repeats to the lowest agent. Agents also

use control knowledge and heuristics for search reduction. They used the conflict

avoidance metrics for evaluating collective behaviors.

Their Coordination as Distributed Search method employs pairwise-interaction protocol

between agents even though agents’ alternative behaviors might affect other agents'

behaviors. Also, agents might find difficulties in choosing which strategy to use to

resolve conflicts because they lack monetary metrics. Agents would need the monetary

metrics for choosing a strategy when agents are in the tightly coupled networks where

conflicts apparently occur. Like the distributed constraint-satisfaction problem,

Coordination as Distributed Search finds a satisfactory solution that produces no

disadvantageous agreement for any agent.

 72

4.6.6 RULES OF ENCOUNTER: UNIFIED NEGOTIATION PROTOCOL

For multiagent systems (MAS) that consist of self-interested heterogeneous agents,

Rosenschein and Zlotkin (1994) analyzed the attributes of the domain in which the agents

are operating and discussed the available interaction protocols to satisfy the efficiency,

stability, simplicity, distribution, and symmetry conditions. They presented the Unified

Negotiation Protocol to resolve the conflicts as well as to reach cooperative agreements

between agents. With the Unified Negotiation Protocol, conflicting agents flip a coin to

decide who is going to achieve one of their goals and, no matter who wins, commit

themselves to work together in a joint plan.

One of their assumptions is that the Unified Negotiation Protocol does not allow explicit

utility transfer between agents. Because of this assumption, their agents need a non-

compensatory conflict-resolution strategy to resolve conflicts and to solicit agents to be

cooperative for reaching an agreement that would be disadvantageous to one of them.

The Unified Negotiation Protocol is a pairwise-interaction protocol that cannot be used

for cases where agents’ alternative behaviors might affect other agents' behaviors.

4.6.7 CLARKE TAX VOTING MECHANISM

Ephrati and Rosenschein (1996) used the Clarke tax voting procedure as a method for

reaching consensus without negotiation. The Clarke tax voting procedure is non-

manipulative so that using it ensures stability of the system. According to this procedure,

all agents vote their preferences over a set of alternatives and an alternative that gets the

highest votes gets selected as a consensus.

Even though their voting procedure assumes an explicit utility transferability from self-

interested agents to the central controller, it does allow a way to distribute the collected

tax among agents. Distribution of collected tax will undermine the stability of the system.

This means that their procedure only ensures the stability of the system, and does not

compensate agents for disadvantageous agreements.

 73

4.6.8 MULTIAGENT COMPROMISE VIA NEGOTIATION

Sycara (1989) presented a general negotiation model based on integration of case-based

reasoning and multi-attribute utility theory. She implemented the negotiation model in

the PERSUADER system to resolve labor-management disputes. The PERSUADER

system, which modeled human mediators, uses negotiation to find a compromise that is

acceptable to the agents in conflict.

Humans use pairwise-negotiation protocols via the central PERSUADER system for

mediating conflicting labor issues in practice. Therefore, her negotiation model cannot

be automated and must involve real human entities. The PERSUADER system provides a

way of transferring utility between agents, but it is implicit and does not provide

compensation for disadvantageous agreements.

4.6.9 DISTRIBUTED CONSTRAINED HEURISTIC SEARCH

Sycara and others (1991) presented a distributed problem-solving technique that is called

Distributed Constrained Heuristic Search (DCHS). This model views problem solving as

constraint optimization, incorporates heuristic search, and extends constraint satisfaction

to optimization problems. Since the general constraint satisfaction problem (CSP) is an

NP-complete problem, they devised a set of heuristics to reduce the search space, which

are variable-ordering heuristics to decide which variable to initiate next and value-

ordering heuristics to decide which value to assign to a variable. Another way to reduce

distributed search space is through distributed asynchronous back jumping, a type of

distributed dependency-directed backtracking.

DCHS uses an asynchronous search mechanism to find a set of values for all variables

such that all constraints are satisfied. Since DCHS assumed that all constraints would not

be relaxed, no conflict will occur between agents and, therefore, no conflict-resolution

mechanism is presented. In other words, DCHS finds the best solution among satisfactory

solutions that produce no disadvantageous agreement for any agent.

 74

4.6.10 MARKET-ORIENTED PROGRAMMING

Wellman (1993) presented a market-oriented programming approach to distributed

problem solving as a way to allocate tasks and resources for a set of computational agents

by computing the competitive equilibrium of an artificial economy. His market-price

system focused on effective decentralization of decision making with minimal

communication overhead. The general equilibrium theory regards agents as consumers

and producers and defines their tasks in terms of production and consumption of

commodities. Consumers can buy, sell, and consume goods, and specify their preferences

by their utility function. Producers can transform some sorts of goods into some others

according to their technology that specifies the feasible combination of inputs and outputs

for the producers. They reach competitive equilibrium when the total amount consumed

equals the total amount produced, plus the total amount the economy started out with.

Interactions between agents are exchanges, the terms of which are mediated by the

underlying economic mechanism, or protocol.

Walsh and Wellman (1998) presented a decentralized market protocol for allocating tasks

among agents that contend for scarce resources. Through a series of experiments with

profit-maximizing bidding policies by agents, they verified that the decentralized market

protocol would converge to a solution when one exits.

While Wellman’s market price system provides an efficient way to allocate tasks or

resources, its auction mechanism substitutes for a direct negotiation protocol between

agents. Another difference is that his market protocol needs agents’ inputs and outputs to

be explicitly defined for auctions. It assumes agents in a market-price system to be self-

interested so that they will not accept disadvantageous agreements without compensation.

Furthermore, agents will seek any possible profit from the auction mechanism. Any

profit-seeking bid from agents might prevent a system from reaching a better global

solution.

 75

4.6.11 ENTERPRISE: A MARKET-LIKE TASK SCHEDULER

Malone and others (1988) presented the Enterprise system for sharing tasks among

personal workstations connected by a local area network (LAN). The system includes a

distributed scheduling protocol (DSP) that assigns tasks to the best machines available at

run-time, based on the metaphor of a market. According to DSP, the client sends out a

“request for bids” that includes the numerical priority of tasks and contractors respond

with “bids” giving their estimated completion times. After evaluation of bids, the client

assigns the task to the best bidder. If a later bid is “significantly better” than the best early

one, the client cancels the task on the early bidder and sends the task to the later bidder.

DSP in the Enterprise system provides an efficient way to assigns tasks to the best

machines available at run-time, but its auction mechanism substitutes direct negotiation

protocols between agents. Like other market systems, the Enterprise system assumes

agents to be self-interested so that agents will not accept disadvantageous agreements

without compensation.

4.6.12 A DYNAMIC THEORY OF INCENTIVES IN MULTI-AGENT SYSTEMS

Shoham and Tanaka (1997) proposed a dynamic model of incentives in multi-agent

systems by investigating the role of incentives in “public goods” settings, that is, settings

in which the system’s members supply the value of the system. For the dynamic model

that is based on decision theory and economics (including game theory), they defined a

growth function, a reward function, a disutility function, and a utility function, which will

set the reward mechanism so as to ensure that by optimizing their own objectives the

agents will also optimize the global objectives.

In their dynamic model of incentives, there is no discussion about interaction protocols.

The coordination strategy they adopted uses an incentives and reward mechanism to

optimize global objectives in multi-agent systems. Their indirect control principle by the

central controller coordinates self-interested agents, but it has to bear overhead costs

using the indirect control principle.

 76

In summary, previous work on distributed agent-based coordination has inadequately

provided any of the compensatory negotiation strategy, multi-linked interaction

protocols, and coordination mechanisms based on CPM, which are necessary for the

agent-based compensatory negotiation methodology, as shown in Table 4-5.

4.7 SUMMARY OF ABCN METHODOLOGY

This chapter presented a novel agent-based compensatory negotiation (ABCN)

methodology to facilitate the distributed coordination of project schedule changes. The

methodology consists of a compensatory negotiation strategy based on utility, multi-

linked negotiation protocols, and message-handling mechanisms. This chapter illustrated

the methodology using a simple case example. It also reviewed previous work and stated

my contributions.

Project Schedule

Schedule-
Change
Options

Resource
Constraints

Negotiating
Agent

Schedule-
Change
Options

Resource
Constraints

Negotiating
Agent

Schedule-
Change
Options

Resource
Constraints

Negotiating
Agent

Multi-linked
Negotiation
Protocols

Multi-linked
Negotiation
Protocols Selects Selects Selects

Determine Determine Determine

Enhances Enhances Enhances

Compensatory
negotiation w/

Compensatory
negotiation w/

Figure 4-13. Conceptual diagram of agent-based compensatory negotiation methodology

Using the aforementioned agent-based compensatory negotiation methodology, agents

can accomplish four crucial procedures: (1) calculating utility with a utility function from

the predefined schedule-change options; (2) exploring feasible alternatives by

collaboration with other agents using multi-linked negotiation protocols; (3) evaluating

 77

the impact of their alternatives; and (4) making appropriate decisions based on the

evaluation. When the decisions affect other agents’ activities, agents transfer utility to

compensate other agents that are forced to make disadvantageous agreements, and, as a

result, agents cooperatively enhance the overall project schedule in a distributed manner

(see above Figure 4-13).

I conclude that the proposed agent-based compensatory negotiation methodology

facilitates the distributed coordination of project schedule changes by meeting the

practical challenges stated in Section 1.5, as follows:

• By using schedule-change options based on utility of timing, agents on behalf of

subcontractors can compensate other agents for disadvantageous agreements

• By employing multi-linked negotiation protocols, agents on behalf of

subcontractors can identify schedule conflicts, consider alternatives, and resolve

schedule conflicts in a tightly coupled network of related activities

• By directing message-passing based on the CPM-based schedule, agents on behalf

of subcontractors can maintain work logic and ensure convergence of the

distributed coordination

In the next chapter, I will describe a multi-agent system that implements the ABCN

methodology for distributed coordination of project schedule changes.

 78

CHAPTER 5

DISTRIBUTED SUBCONTRACTOR AGENT SYSTEM: A MULTI-

AGENT SYSTEM FOR DISTRIBUTED COORDINATION OF

PROJECT SCHEDULE CHANGES

This chapter presents a multi-agent system for distributed coordination of project

schedule changes (DCPSC) wherein a project can be rescheduled dynamically through

negotiations by all of the concerned subcontractors. In the multi-agent system called the

Distributed Subcontractor Agent System (DSAS), subcontractors interact with their

software agents to evaluate the impact of changes, simulate decisions, and get the

negotiation results that they need to reschedule the project.

5.1 INTRODUCTION

This research produced a distributed coordination framework for project schedule

changes (DCPSC), wherein concerned subcontractors can reschedule a project

dynamically through negotiations. To enable the DCPSC framework, I developed an

agent-based compensatory negotiation (ABCN) methodology that allows software agents

to evaluate the impact of changes and simulate decisions on behalf of human

subcontractors. I needed to implement a prototype of a multi-agent system in order to

demonstrate that the DCPSC and the ABCN are formalized enough to develop the DSAS.

Chapters 3 and 4 provided details of the DCPSC and ABCN methodology, respectively.

The requirements for developing the multi-agent system called Distributed Subcontractor

Agent System (DSAS) are as follows:

 79

• Subcontractor agents should have the functionalities of negotiating agents

modeled in the ABCN methodology.

• Human subcontractors can interact with their agents to provide them with the

needed information for negotiations and to get the negotiation results that they

needed to reschedule the project, which is the objective of the DCPSC.

5.2 DISTRIBUTED SUBCONTRACTOR AGENT SYSTEM

According to the aforementioned requirements, we designed and implemented a multi-

agent system called the Distributed Subcontractor Agent System (DSAS). This section

describes the DSAS architecture, subcontractor agents, graphic user interfaces, and agent

message router.

5.2.1 DSAS ARCHITECTURE

DSAS consists of multiple subcontractor agents that have functionalities of the ABCN

methodology, multiple Graphic User Interfaces (GUIs) for human subcontractors to

interact with their subcontractor agents, and the Agent Message Router (AMR), which

routes messages between agents over the Internet, as shown in Figure 5-1. The following

sections describe details of the subcontractor agents, GUI, and AMR.

Figure 5-1. DSAS architecture

Internet

Graphic
User

Interface
(GUI)

Graphic
User

Interface
(GUI)

Graphic
User

Interface
(GUI)

Agent
Message
Router

Subcontractor
Agent

Negotiating
Agent

Bookkeeping
Agent

Subcontractor
Agent

Negotiating
Agent

Bookkeeping
Agent

Subcontractor
Agent

Negotiating
Agent

Bookkeeping
Agent

Human
Subcontractor

 80

5.2.2 SUBCONTRACTOR AGENTS

Subcontractor agents, on the basis of the schedule-change options input by the human

subcontractors, simulate decision-making on behalf of human subcontractors. The

subcontractor agents consist of three important classes, the Subcontractor class, the

BookkeepingAgent class, and the NegotiatingAgent class, as well as of other helper

classes, as shown in Figure 5-2.

Figure 5-2. DSAS classes

5.2.2.1 Subcontractor Class

The Subcontractor class is the body of the subcontractor agent. It invokes the

BookkeepingAgent class when the subcontractor agent receives messages from human

subcontractors. It invokes the NegotiatingAgent class when the subcontractor agent

Subcontractor()
Act()
sendSorryMessage()
sendMessageWithSender()
ProcessMessage()

Subcontractor

BookkeepingAgent()
register()
registerAgent()
registerTask()
deleteTask()

BookkeepingAgent

NegotiatingAgent()
negotiate()
handlingReadyMsg()
handlingAskCostMsg()
handlingReplyCostMsg()
handlingAcceptMsg()
handlingRejectMsg()
handlingConfirmMsg()
handlingRenegeMsg()
handlingAcceptAllMsg()
handlingRejectAllMsg()
handlingConfirmAllMsg()
handlingRenegeAllMsg()
handlingHandOverMsg()
handlingDoneMsg()

NegotiatingAgent

ActivityTable()
addActivity()
deleteActivity()
getActivityItem()
getPreActList()
getSucActList()
getSOList()

ActivityTable

main()
printUsage()

RunSubcontractor

MsgInfo()
getMessageType()
getAgentInfo()
getTaskInfo()
getPreAgentTaskList()
getSucAgentTaskList()
getScheduleOptionList()

MsgInfo

AgentInfo()
addAgentInfo()
getAgentInfo()

AgentInfo

AgentActivityItem()
getAgentName()
getActivityName()
update()

AgentActivityItem

SOItem()
getStartDate()
getEndDate()
getExtraCost()

SOItem

ActivityItem()
getActivityName()
getStartDate()
getEndDate()

ActivityItem

MsgCreator()
createReadyMsg()
createAslCostMsg()
createReplyCostMsg()
createAcceptMsg()
createRejectMsg()
createConfirmMsg()
createRenegeMsg()
createAcceptAllMsg()
createRejectAllMsg()
createConfirmAllMsg()
createRenegeAllMsg()
createHandOverMsg()
createDoneAndFinalMsg()
createFinalMsg()

MsgCreator

OpInfo()
updateOpinfo()
getOpInfo()

OpInfo

SOSelector()
selectS1()
selectS2()
selectS3()
selectS4()

SOSelector

CostItem()
getAgentName()
getTaskName()
getRefTaskName()
getTaskCost()

CostItem

 81

receives any other messages from subcontractor agents. The NegotiatingAgent class

conducts actual compensatory negotiations. Only the Subcontractor class sends and

receives the messages because it has the necessary name and password.

5.2.2.2 BookkeepingAgent Class

The BookkeepingAgent class handles “input” messages that contain agent or activity

information. It parses the received message and stores the parsed information

appropriately.

It uses the MsgInfo class to parse the received message and stores the parsed information

using the AgentInfo class and the ActivityTable class. The AgentInfo class uses the

CostItem class to store cost information after negotiation. The ActivityTable class uses the

ActivityItem class, the AgentActivityItem class, and the SOItem class to store activity

information.

5.2.2.3 NegotiatingAgent Class

The NegotiatingAgent class handles “ready,” “ask-cost,” “reply-cost,” “accept,” “reject,”

“confirm,” “renege,” “accept-all,” “reject-all,” “confirm-all,” “renege-all,” “hand-over,”

or “done” messages. Based on the received message, it updates the stored information,

selects an appropriate option, and/or generates outgoing messages.

It uses the OpInfo class to update the status, check, agent, and activity information stored

in the AgentInfo and the ActivityTable classes. It uses the SOSelector class to select an

appropriate schedule option based on the received message. It uses the MsgCreator class

to generate outgoing messages.

5.2.3 GRAPHIC USER INTERFACES

Since I adopted the so-called “ Typed-Message Agent (TMA)” (Petrie, 1996), which

stresses message passing based on shared, typed protocols and semantics to which the

agent communities have committed, human subcontractors need to send “typed”

messages to communicate with their subcontractor agents. DSAS provides each human

 82

subcontractor with a Graphic User Interfaces (GUI) to interact with its subcontractor

agents. The GUI has the functionality to input “typed” messages for the subcontractor

agent to handle.

In DSAS, I have only used the basic form of the GUI that is available in my choice of

agent development environment, JATLite, as shown in Figure 5-3, and have done little

customization for this particular application. While this has served my needs for research

purposes, the GUI would need much more development for DSAS to become usable by

real subcontractors.

Figure 5-3. Graphic User Interface (GUI) screen shot

5.2.4 AGENT MESSAGE ROUTER

In the distributed coordination framework for project schedule changes, the subcontractor

agents and GUIs can communicate with other agents and with the GUIs. However, if the

intended receiving agent does not exist at the time of communication, the communication

will be lost. In fact, agents cannot be assumed to exist all the time in the distributed

coordination framework for project schedule changes. Therefore, I needed to develop an

 83

Agent Message Router (AMR) that buffers and forwards messages, much like an email

server. The function of the AMR is to update the addresses of registered agents and to

route messages between agents.

5.3 SUPPORTING STATE-OF-THE-ART TECHNOLOGIES

This section will review agent development environments and agent communication

languages. They provide the supporting state-of-the-art technologies needed for

developing my prototype for a distributed subcontractor agent system.

5.3.1 AGENT DEVELOPMENT ENVIRONMENTS

Tables 5-1 and 5-2 show many computer environments in various domains for agent

development.

1 2 3 Name and URL Company Main Characteristics
 * * AgentBuilder

(http://agentbuilder.co
m)

Reticular
Systems, Inc.

An integrated software development tool
to build intelligent agent-based
applications

 * * Agentx
(http://www.iks.com/a
gentx.htm)

International
Knowledge
Systems

Java-based distributed computing
libraries that support object request
broker, RMI and mobile agent services

* * Aglets
(http://www.trl.ibm.co
m/aglets/)

IBM Japan An environment for programming
mobile Internet agents in Java

 * CABLE
(http://public.logica.co
m/~grace/Architecture
/Cable/public/)

Logica
Corporation

An environment for developing large and
complex distributed applications for i)
intelligent decision support and ii)
modeling and simulation

 * JACK
(http://www.agent-
software.com.au)

Agent
Oriented
Software Pty.
Ltd

An environment for building, running
and integrating JAVA-based multi-agent
systems using a component-based
approach.

 * MadKit
(http://www.madkit.or
g)

The MadKit
Team

A Java multi-agent platform built upon
an organizational model

 * * Voyager
(http://www.objectspa
ce.com)

ObjectSpace A Java-based Object Request Broker
(ORB) designed for mobile agents

Table 5-1. Commercial environments for agent development

 84

1 2 3 Name Research Group Main Characteristics and References
* * ABS Univ. of Toronto

EIL
Reusable layers of languages and services for
building agent systems
(Barbuceanu and Fox 1995)

* * * Bee-gent Toshiba R&D
Center

Completely "Agentifies" the communication
between software applications
(Kawamura et al. 1999)

 * BOND Purdue Univ. A Java-based distributed object system and
agent framework
(Bölöni et al. 2000)

* * DECAF Univ. of
Delaware

A platform to design, develop, and execute
intelligent agents to achieve solutions in
complex software systems
(Graham et al. 2000)

* FarGo Technion - Israel
Institute of
Technology

A Java-based programming environment for the
development of mobile-component-based
distributed applications
(Ben-Shaul et al. 1999)

* * FIPA-OS Nortel A component-based architecture to enable the
development of domain-specific agents which
can utilize services of FIPA platform agents
(Poslad et al. 2000)

* * Hive MIT Media Lab A Java software platform for creating
distributed applications
(Minar et al. 2000)

* * JATLite Stanford Univ.
Center for Design
Research

A package of Java classes and programs that
allow users to create new systems of software
agents that communicate over the Internet
(Jeon et al. 2000)

* * JIAC Technical
University Berlin
DAI-Lab

A Java class library for the development of a
universal architecture of agent-oriented systems
(Albayrak and Wieczorek 1999)

 * MAST Technical
University of
Madrid

A general purpose distributed framework for the
cooperation of multiple heterogeneous agents
(Iglesias et al. 1995)

* * OAA SRI AI Center A framework for integrating heterogeneous
software agents in a distributed environment
(Martin et al. 1999)

* * RETSINA Carnegie Mellon
Univ. ISA Group

A system of reusable agent types that can be
adapted to address a variety of different domain-
specific problems
(Sycara et al. 1996)

* * * Zeus British Telecom
Lab
ISR Group

A library of software components and tools that
facilitate the design, development and
deployment of agent systems
(Nwana et al. 1999)

Table 5-2. Academic and research project environments for agent development

 85

Note the following World Wide Web sources for agent development environments:

• UMBC AgentWeb: Applications and Software: Software: Academic:

Platforms

(http://agents.umbc.edu/Applications_and_Software/Software/Academic/Platform

s/index.shtml, 11/15/2001 accessed)

• UMBC AgentWeb: Applications and Software: Software: Commercial

(http://agents.umbc.edu/Applications_and_Software/Software/Commercial/index.

shtml, 11/15/2001 accessed)

• AgentBulder: Agent Construction Tools

(http://www.agentbuilder.com/AgentTools/index.html, 11/15/2001 accessed)

Among the many systems, I chose to use JATLite (Java Agent Template Lite) (Jeon et al.

2000), which was developed by the Center for Design Research (CDR) at Stanford

University, to create my DSAS. JATLite is a package of programs written in the Java

language that allow users to quickly create new software agents that communicate

robustly over the Internet. JATLite provides a basic infrastructure in which agents

register with an Agent Message Router facilitator using a name and password,

connect/disconnect from the Internet, send and receive messages, transfer files, and

invoke other programs or actions on the various computers where they are running. The

advantages of adopting JATLite were:

• JATLite provides an agent template for developing agents. It enabled me to

focus on implementing the functionality of the subcontractor agent in the Java

language, without having to consider low-level message-passing details.

• JATLite provides a simple GUI. It enabled me to develop and test a prototype

of DSAS without developing special GUIs.

 86

• JATLite provides a robust AMR. It enabled me to develop and test a prototype

of DSAS, without developing a special AMR.

• JATLite is open-source free software. It enabled me to modify the source code

if necessary and it costs nothing. A disadvantage was the lack of technical

support, but I could seek help from the developers directly because JATLite was

developed at Stanford. The CDR also maintains JATLite user groups that can be

consulted.

5.3.2 AGENT COMMUNICATION LANGUAGES

Currently, two standards exist for the agent communication languages: Knowledge Query

and Manipulation Language (KQML) (Finin et al. 1994; Labrou and Finin 1997) and

FIPA ACL (FIPA specification 2000). I chose to use KQML because JATLite, which is

my choice of environment for agent development, currently uses KQML for its standard

agent communication language.

KQML is a language and protocol for exchanging information and knowledge. It is part

of a larger effort, the ARPA Knowledge Sharing Effort, which is aimed at developing

techniques and methodology for building large-scale knowledge bases that are sharable

and reusable. KQML is both a message format9 and a message-handling protocol that

supports run-time knowledge sharing among agents. KQML can allow an application

9 The KQML string syntax in BNF is as follows (Labrou and Finin 1997):

<performative> ::=(<word> {<whitespace> :<word> <whitespace> <expression>}*)

<expression> ::= <word> | <quotation> | <string> | (<word> { <whitespace> <expression>}*)

<word> ::=<character><character>*

<character> ::= <alphabetic> | <numeric> | <special>

<special> ::= < | > | = | + | - | * | / | & | ^ | ~ | _ | @ | $ | % | : | . | ! | ?

<quotation> ::= '<expression> | `<comma-expression>

<comma-expression> ::= <word> | <quotation> | <string> | ,<comma-expression> (<word>

{<whitespace> <comma-expression>}*)

<string> ::="<stringchar>*" | #<digit><digit>*"<ascii>*

<stringchar> ::= \<ascii> | <ascii> -\-<double-quote>

 87

program to interact with an intelligent system, or enable two or more intelligent systems

to share knowledge in support of cooperative problem solving.

I used KQML to define the message format like:

(performative
:sender <word>
:receiver: <word>
:language <word>
:content: <expression>)

For example, an agent (Sub-A) sends a message to another agent (Sub-B) to find out the

cost for starting activity B late because of a delay in activity A. The corresponding

KQML message is:

(ask-cost
:sender Sub-A
:receiver: Sub-B
:language KQML
:content: (A B 5))

In summary, KQML allowed me to construct the messages for subcontractor agents in the

distributed coordination framework for project schedule changes.

5.4 DSAS IMPLEMENTATION

I implemented the subcontractor agents in the Java language, which is object-oriented

and portable across platforms, by extending JATLite’s

RouterLayer.AgentClient.RouterClientAction. Consequently, subcontractor agents can

run on any machine that supports JDK. The subcontractor agent development is also

facilitated by JATLite, which provides Graphic User Interfaces (GUIs) — JATLite’s

ProtocolLayer.IPRCApplet — and the Agent Message Router (AMR) — JATLite’s

ProtocolLayer.IPRouterAction — for a robust message-passing infrastructure. Figure 5-4

shows a screen shot of DSAS.

 88

Figure 5-4. DSAS screen shot

Since the GUI complies with the JATLite AMR, human subcontractors can download the

GUIs from Internet web browsers, such as Microsoft Internet Explorer, Netscape

Navigator, or Microsystems appletviewer. Thus, human subcontractors can interact

with their agents without geographic restrictions. Combined with the portability of the

subcontractor agents, human subcontractors can use DSAS to coordinate project schedule

changes anywhere in the world.

5.5 SUMMARY OF DSAS

The objective of my work was to demonstrate that the distributed coordination of project

schedule changes based on the agent-based compensatory negotiation methodology is

formalized enough to develop a multi-agent system called Distributed Subcontractor

Agent System (DSAS). DSAS is a multi-agent system that consists of multiple

subcontractor agents, multiple graphic user interfaces, and an agent message router.

In DSAS, subcontractor agents negotiate with other subcontractor agents based on

schedule-change options for distributed coordination of project schedule changes using

KQML messages over the Internet. Through Graphic User Interfaces (GUIs), human

subcontractors can interact with their subcontractor agents to provide schedule-change

G U I

S u b c o n tra c to r
A g en t

A M R

 89

options and get negotiation results. The Agent Message Router (AMR) provides a robust

message-passing infrastructure. I implemented the subcontractor agents in the Java

language. JATLite (Java Agent Template) facilitated the development of subcontractor

agents and provided Graphic User Interfaces (GUIs) and the Agent Message Router

(AMR).

Using the developed DSAS, the next chapter will describe test methodologies and test

results to demonstrate the effectiveness of the distributed coordination of project schedule

changes based on the agent-based compensatory negotiation methodology.

 90

CHAPTER 6

EVALUATION

This chapter demonstrates the effectiveness of the agent-based compensatory negotiation

(ABCN) methodology for distributed coordination of project schedule changes through

evaluation tests. It compares two centralized coordination methodologies used in current

practice to the DCPSC-based ABCN methodology in terms of extra costs and project

duration. I conducted charrette tests of the distributed subcontractor agent system

(DSAS), which is a multi-agent system employing DCPSC-based ABCN methodology,

to test the effectiveness compared to manual centralized processes. I also conducted a

series of experimental tests with different schedules to measure the system performance

of DSAS.

6.1 COMPARISON TESTS

As a basis for evaluating the effectiveness of ABCN methodology, I compared the results

of two centralized coordination methodologies used in current practice with the results of

ABCN methodology in terms of extra costs and project duration.

6.1.1 SCHEDULE CHANGE OPTIONS

From the available resource histograms in the case example (see Section 1.3), assume

that schedule change options are pre-defined in the format of (startDate(day)

endDate(day) extraCost($)), as shown in Table 6-1. Note that options marked ‘*’ are

initially available options, which are feasible because the start date of an activity is later

 91

than the end dates of the preceding activities. The option marked ‘**’includes liquidated

damages ($4,000) for a 2-day project delay, which the GC needs to pay. Keep in mind

that the predefined schedule-change options are prepared by each subcontractor and are

initially kept private by each subcontractor.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) (1 4 0)
B (4 7 1920) (4 8 0) (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0)
D (8 10 0) (9 10 0) (10 11 960)
E (8 10 0) (9 10 640) (10 12 0)
F (8 9 0) (9 10 384) (10 11 768)
G (11 12 0) (13 14 4512)**

Table 6-1. Predefined schedule-change options before coordination

6.1.2 AGENT-BASED COMPENSATORY NEGOTIATION

Under the agent-based compensatory negotiation (ABCN), Sub-α evaluates the

acceleration cost (AC) ($480) for Activity-A, which is the difference between the option

of A1 (1 3 480) and the option of A2 (1 4 0), and the delay cost (DC) ($5,760), which is

the cost response from the succeeding activities of Activity-A. Then Sub-α decides to

expedite Activity-A to finish on time as the option of A1 (1 3 480) because DC is much

more than AC. Note that the cost overrun will not be reimbursed since Sub-α has to

decide first according to its position in the network schedule. However, if AC was more

than DC, Sub-α could keep its new preferred schedule while reimbursing the costs for

succeeding activities.

Then Sub-β and Sub-δ, which have activities succeeding Activity-A, evaluate the options

of their activities — Activity-B and Activity-C. Sub-β can use its new preferred schedule

as the option of B2 (4 8 0) because the AC ($1,920) for expediting Activity-B is more

than the DC ($1,024) for expediting Activity-E and delaying Activity-F. Sub-β will

compensate the cost to Sub-α and Sub-δ, $640 for Activity-E and $384 for Activity-F

respectively. Note that the initial options are changed due to the compensation. That is,

B2’ (4 8 1024) from B2 (4 8 0), E2’ (9 10 0) from E2 (9 10 680), and F2’ (9 10 0) from

 92

F2 (9 10 384). Sub-δ will keep Activity-C the same as the initial schedule as the option of

C1 (5 7 0) because its schedule is good.

Next, Sub-α, Sub-β and Sub-δ evaluate the options of their activities — Activity-E,

Activity-D, and Activity-F. Due to changed options of Activity-E and Activity-F, all of

subcontractors will keep the changed schedule as E2’ (9 10 0), D2’ (9 10 0), and F2’ (9

10 0) because their schedules are good. Finally, Sub-α evaluates the options of Activity-

G and decides to keep the schedule as F1 (11 12 0). Appendix-D shows step-by-step

ABCN on DSAS.

Figure 6-1 shows revised resource histogram after ABCN. The diagonal hatching

indicates the overtime. Figure 6-2 shows the revised schedule after ABCN.

(Day)

Sub-α 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-E Activity-G
Activity-A

Resources

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-D
 Activity-B

Resources

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-C

Resources

Figure 6-1. Revised resource histogram after ABCN

10
8
6
4
2

10
8
6
4
2

Activit y-F

8
6
4
2

 93

A

B

C

D

E

Act. 1 2 3 4 5 6 7 8 9 10 11 12 S

1

4

9

5

9

F

G

9

11

F

3

8

10

7

10

10

12

+

480

1024

0

0

0

0

0

Sub

α

β

β

δ

α

δ

α

Legend:
 Initial

 Selected

(Day)

Figure 6-2. Revised schedule after ABCN

The chosen schedule change options after ABCN are shown marked “3” in Table 6-2,

and Table 6-3 summarizes the results after ABCN.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) 3 (1 4 0)
B (4 7 1920) (4 8 1024) 3 (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0) 3
D (8 10 0) (9 10 0) 3 (10 11 960)
E (8 10 0) (9 10 0) 3 (10 12 0)
F (8 9 0) (9 10 0) 3 (10 11 768)
G (11 12 0) 3 (13 14 4512)**

Table 6-2. Selected schedule-change options after ABCN

Extra cost

Coordination methodology

Sub-α
($)

Sub-β
($)

Sub-δ
($)

GC
($)

Total
($)

Duration

(days)
Distributed ABCN +480 +1,024 0 0 +1,504 12

Table 6-3. Summary of result after ABCN

In the ABCN above, subcontractors make agreements only if the agreements can lower

the sum of subcontractors’ costs while compensating others for disadvantageous

agreements. In summary, ABCN enhances the project network schedule that has schedule

 94

conflicts, while lowering the sum of subcontractors’ costs associated with their resource

constraints by rescheduling the project subject to the precedence relationship among

project activities in cases of changes in subcontractors’ resource availabilities. Next, I

evaluate the effectiveness of the ABCN by showing whether it can find a solution which

is better than or equal to results from current practice.

6.1.3 TIGHT “IRON-FIST” CENTRALIZED COORDINATION

Under TCC, Sub-α has to choose the option of A1 (1 3 480). Other activities remain the

same as options of E1 (8 10 0) and G1 (11 12 0). Sub-β also has to choose the option of

B1 (4 7 1920). Activity-D will keep the same as option D1 (8 9 0). Sub-δ can keep its

preferred schedule as the options of C1 (5 7 0) and F1 (8 9 0).

Chosen schedule change options after TCC are shown marked “3” in Table 6-4. Table 6-

5 summarizes the results after TCC.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) 3 (1 4 0)
B (4 7 1920) 3 (4 8 0) (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0) 3
D (8 10 0) 3 (9 10 0) (10 11 960)
E (8 10 0) 3 (9 10 640) (10 12 0)
F (8 9 0) 3 (9 10 384) (10 11 768)
G (11 12 0) 3 (13 14 4512)**

Table 6-4. Selected schedule-change options after TCC

Extra cost

Coordination methodology

Sub-α
($)

Sub-β
($)

Sub-δ
($)

GC
($)

Total
($)

Duration

(days)
Centralized TCC +480 +1,920 0 0 +2,400 12

Table 6-5. Summary of results after TCC

In summary, TCC costs more for some subcontractors when they have different resource

availability than their initial resource requirements. TCC lowers the resource utilization,

 95

even though TCC would guarantee to finish on time. Note that the central coordinator has

no consideration of subcontractors’ resource utilization in TCC.

6.1.4 LOOSE “LAISSEZ-FAIRE” CENTRALIZED COORDINATION

Under LCC, Sub-α can choose the option of A2 (1 4 0), but Activity-B has to choose the

option of B5 (5 9 0) because of the option A2. Sub-δ can keep the option of C1 (5 7 0).

Then, Sub-α, Sub-β and Sub-δ must select their options for their other activities — E3

(10 12 0) for Activity-E, D3 (10 11 960) for Activity-D, and F3 (10 11 768) for Activity-

F. Next, Sub-α is forced to select the option of G2 (13 14 4512). Note the option includes

liquidated damages for a 2-day project delay, which the GC needs to pay.

The chosen schedule change options after LCC are marked “3” in Table 6-6, and Table

6-7 summarizes the results after LCC.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) (1 4 0) 3
B (4 7 1920) (4 8 0) (5 7 5760) (5 8 1920) (5 9 0) 3
C (5 7 0) 3
D (8 10 0) (9 10 0) (10 11 960) 3
E (8 10 0) (9 10 640) (10 12 0) 3
F (8 9 0) (9 10 384) (10 11 768) 3
G (11 12 0) (13 14 4512)** 3

Table 6-6. Selected schedule-change options after LCC

Extra cost

Coordination methodology

Sub-α
($)

Sub-β
($)

Sub-δ
($)

GC
($)

Total
($)

Duration

(days)
Centralized LCC +512 +960 +768 +4,000 +6,240 14

Table 6-7. Summary of results after LCC

In summary, LCC costs more for some subcontractors when they have to employ new

resources due to delays of preceding activities as well as their resource deviations. The

project missed its completion date and the central coordinator has to pay liquidated

damages of $4,000 in this case. Options to expedite the activities instead of paying

 96

liquidated damages, like time-cost tradeoff analysis (Fondahl 1961, 1991; Antill and

Woodhead 1990), are limited because these need information, such as the cost slope for

each activity, that usually is not available to the central controller.

6.1.5 COMPARISON OF THREE COORDINATION METHODOLOGIES

Table 6-8 summarizes the comparison among three different coordination methodologies

in terms of cost and duration.

Extra cost

Coordination methodology

Sub-α
($)

Sub-β
($)

Sub-δ
($)

GC
($)

Total
($)

Duration

(days)
Distributed ABCN +480 +1,024 0 0 +1,504 12

TCC +480 +1,920 0 0 +2,400 12 Centralized
LCC +512 +960 +768 +4,000 +6,240 14

Table 6-8. Summary of results

ABCN can find a solution that is better than or equal to any of the results from the

centralized coordination methodologies. In these examples, it is better. However, it does

not eliminate all extra costs for some subcontractors in cases where some subcontractors

have to expedite their activities by working overtime to avoid large costs for delaying or

expediting succeeding activities. Note that, under ABCN, the project can be flexible on

finish time if any subcontractor is willing to pay the project delay penalty in return for a

delay. Appendix-E shows the generalization of these evaluation results with

mathematical proofs.

6.2 DSAS CHARRETTE TESTS

In order to test the effectiveness of DSAS, I used the charrette test method (Clayton et al.

1998), which the Center for Integrated Facility Engineering (CIFE) at Stanford

University has used to test the effectiveness of software systems. I conducted the

charrette tests to compare two processes: one was a “manual” centralized coordination

process and another was a computer-aided ABCN process on DSAS. The propositions to

be tested are whether a computerized DSAS coordination produces the lower cost

 97

solution faster than a manual centralized coordination. The task of the participants was to

find a better project schedule from schedule options, which were given to participants, in

terms of costs and time taken. The reason why I used the charrette test method was that it

could test the effectiveness of the prototype system from the human perspective. The

human subjects of the charrette were graduate students at Stanford University. Since I

used human subjects in the DSAS charrette tests, I applied for a review and approval

from the Human Subject Panel at Stanford University (Protocol no: 0001-375).

6.2.1 DSAS CHARRETTE DESIGN

A group of five participants represented a hypothetical project team, which consisted of a

general contractor (GC) and four subcontractors (Sub-α, Sub-β, Sub-δ, and Sub-ε). I

provided each participant with a 27-activity CPM network schedule, a separate resource

histogram, and schedule-change options for his or her activities.

I asked a group to remedy the given schedule while selecting the best combination among

given schedule-change options subject to precedence, under one condition: They were not

allowed to share their private schedule-change options with others. At first, I asked them

to remedy the schedule manually in a 30-minute time frame. This means that they needed

to find a better schedule using their collective knowledge and experience. Then, they

used the DSAS system to find a computerized ABCN solution in another 20-minute time

frame. I gave a 10-minute tutorial of DSAS before the DSAS session. They did not need

any prior programming skills in using DSAS. Appendix-F shows the 27-activity and 5-

agent schedule, a separate resource histogram, and separate schedule-change options for

Sub-α. Other subcontractors and GC have similar information, except their respective

resource histograms and schedule-change options.

6.2.2 TWO DSAS CHARRETTE TESTS

I conducted two DSAS charrette tests with two groups of five graduate students at

Stanford University. Group-A’s self-rated average skills in construction and computers

were 2.8 and 3.6 respectively in the scale of 1 (novice) to 5 (expert), but one participant

of this group had no prior construction experience, but had some knowledge about the

 98

principles of CPM scheduling. Group-B’s average skills in construction and computers

were 2.4 and 3.0 respectively, but one participant of this group had no prior construction

experience and no knowledge about the principles of CPM scheduling.

Before the manual centralized coordination session, I spent about 30 minutes explaining

the example schedule, the resource histogram, and especially the schedule-change

options. The predicted total incremented costs and total duration for subcontractors were

$2,000 and 44 days if all subcontractors would choose Option-1 for their activities, which

maintained the initial schedule.

6.2.2.1 Manual Centralized Coordination Sessions

In the manual centralized coordination sessions, these two groups acted differently.

Subcontractors in Group-A were more competitive, which meant they were seeking

compensation for disadvantageous agreements. In contrast, subcontractors in Group-B

were more cooperative, which means they did not seek compensation for

disadvantageous agreements.

Group-A

For the manual trial, Group-A selected a GC whose skills in construction and computers

were 3 and 3 respectively in the scale of 1 (novice) to 5 (expert). The GC centrally

coordinated other participants who acted like subcontractors (Sub-α, Sub-β, Sub-δ, and

Sub-ε).

When a subcontractor reported a change, the GC got the extra-cost information from the

affected subcontractors directly and made decisions in a way to lower the sum of

subcontractors’ extra costs. The GC considered precedence relationships among activities

during coordination, like the multi-linked negotiation protocols in Chapter 4. Then

subcontractors compensated other competitive subcontractors for disadvantageous

agreements by changing extra-cost information, like the compensatory negotiation

strategy in Chapter 4. Indeed, the GC used a centralized coordination methodology

similar to the agent-based compensatory negotiation methodology in Chapter 4. When the

 99

GC had considered the final activity, it ended the trial. The manual centralized

coordination session lasted 37 minutes and the solution was $540, with the same 44-day

duration.

Group-B

Group-B selected a GC whose skills in construction and computers were 1 and 5

respectively in the scale of 1 (novice) to 5 (expert). Like Group-A, the GC centrally

coordinated other subcontractors, but heavily relied on suggestions by more experienced

subcontractors. Group-B’s GC coordinated subcontractors similar to Group-A’s GC, but

cooperative subcontractors in Group-B did not seek compensation for disadvantageous

agreements. Rather, they accepted their extra costs when they found that another’s cost

was more than theirs. Like Group-A, the GC forced participants to reveal their

confidential schedule-change options and other subcontractors present could get that

information. The manual centralized coordination session lasted 30 minutes and the

solution was $620 with the same 44-day duration.

6.2.2.2 Computerized DSAS Sessions

In the computerized DSAS session, subcontractors coordinated themselves without the

aid of a GC. In fact, the GC acted like another subcontractor who had only root and final

activities. Before the computerized DSAS session, I gave 10-minute DSAS tutorials

using the data of Sub-α, as shown in Appendix-F.

Group-A

This group used the DSAS system, whose subcontractor agents were running in the

different computers, to find a better solution. They used the Graphic User Interface, by

copying and pasting data from a given text file to provide their agents (Sub-α, Sub-β,

Sub-δ, and Sub-ε) with the information needed for agent-based compensatory

negotiations, such as the activity name, the initial schedule information, and the schedule-

change options. Then they sent “input” messages to their agents. When they finished the

inputs, they sent “ready” messages to their agents in order to start negotiations. All

participants interacted with their agents at the same time. When a participant sent the last

 100

“ready” message to his agent, the agent started negotiations. Participants waited until

their agents sent “final” messages to them.

After agents had sent all “final” messages, participants checked the negotiation results, by

reading the contents of the “final” messages. Since no participant was responsible for

collecting the results, I collected the negotiation results for my research purpose. The

computerized DSAS session lasted for 17 minutes, including 11 minutes for data inputs,

and the solution was $420 with the same duration.

Group-B

Group-B did not finish the computerized DSAS session due to various reasons:

inappropriate preparation, errant data inputs, and time pressures.

6.2.2.3 Results of DSAS charrette Tests

Table 6-9 compared two groups’ results. Group-A performed better than Group-B in

manual centralized coordination in terms of cost, even though Group-B found their

solution faster. Only Group-A produced results in the computerized DSAS session.

Group-A Group-B

Processes

Time

(min)

Extra Cost

($)

Duration

(days)

Time

(min)

Extra Cost

($)

Duration

(days)

Manual Centralized 37 540 44 30 620 44

Computerized DSAS 17 420 44 Not available

Table 6-9. Comparisons of results by group

Group-A

Table 6-10 shows the selected schedule-change options by Sub-α. Sub-α selected

schedule-change options marked “�” in the manual session. Sub-α selected schedule-

change options marked “3” by using the DSAS system. The total costs for Sub-α in

manual and DSAS were $200 and $80, respectively. Sub-α chose Option-2 for Activity-

 101

M because he thought Option-3 might affect some succeeding activities, but the

succeeding activity, Activity-Q, could start one day later. Therefore, Option-3 was

available without any cost. Note that Activity-I’s Option-2 marked “*” changed from (11

14 120) to (11 14 0) because Sub-ε compensated Sub-α for delaying Activity-H.

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
B (2 4) (2 4 80) �3 (4 6 0)
E (6 9) (7 9 0) �3
I (10 13) (10 13 0) *(11 14 0) �3 (12 15 240)

M (14 26) (14 16 0) (20 22 120) � (25 27 0) 3
Q (27 30) (28 30 0) �3
U (31 38) (31 34 0) �3 (32 35 80)

Table 6-10. Selected schedule-change options for Sub-α (Group-A)

Table 6-11 shows the selected schedule-change options by Sub-β. The total costs for Sub-

β by manual and DSAS methods were $0 and $0, respectively. Sub-β chose different

options for Activity-V and -Y in manual and DSAS, but the results are the same from

Day 35 to Day 43. Note that Activity-V and -Y’s Option-2 marked “*” changed from (35

38 100) (40 43 100) to (35 38 0) (40 43 0) because of compensation by Sub-δ for

delaying Activity-S.

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
F (10 15) (13 15 0) �3
J (16 23) (16 17 0) �3
N (24 25) (24 25 0) �3 (25 26 40)
R (26 27) (26 27 0) �3 (27 28 40)
V (34 38) (34 38 0) *(35 38 0) � (35 39 0) 3
Y (39 43) (39 43 0) � *(40 43 0) 3 (40 44 40)

Table 6-11. Selected schedule-change options for Sub-β (Group-A)

Table 6-12 shows the selected schedule-change options by Sub-δ. The total costs for Sub-

δ by manual and DSAS methods were $100 and $100, respectively. Note that Activity-

S’s Option-2 marked “*” changed from (27 34 0) to (27 34 100) after compensating Sub-

β for delaying Activity-V or -Y.

 102

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
C (2 9) (2 9 0) �3
G (10 15) (10 15 0) �3
K (10 13) (10 13 1200) (12 15 900) (16 19 0) �3
O (24 26) (24 26 0) �3 (25 27 300)
S (26 33) (26 33 300) *(27 34 100) �3
W (31 38) (35 37 0) �3
Z (34 43) (38 40 0) �3

Table 6-12. Selected schedule-change options for Sub-δ (Group-A)

Table 6-13 shows the selected schedule-change options by Sub-ε. The total costs for Sub-

ε by manual and DSAS methods were $120 and $120, respectively. Note that Activity-

S’s Option-2 marked “*” changed from (6 10 0) to (6 10 120) after compensating Sub-α

for delaying Activity-I.

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
D (2 5) (2 5 0) �3
H (5 9) (5 9 300) *(6 10 120) �3 (7 11 120)
L (16 23) (16 23 120) �3 (17 24 0)
P (24 25) (24 25 0) �3 (25 26 0)
T (27 30) (27 30 0) �3 (28 31 300)
X (28 38) (31 32 0) �3

Table 6-13. Selected schedule-change options for Sub-ε (Group-A)

Table 6-14 shows the selected schedule-change options by GC. The total costs for GC by

manual and DSAS methods were $0 and $0, respectively.

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
A (1 1) (1 1 0) �3
Ω (44 44) (44 44 0) �3 (45 45 2000) (46 46 4000) (47 47 6000)

Table 6-14. Selected schedule-change options for GC (Group-A)

Group-B

Table 6-15 shows the selected schedule-change options by Sub-α. Sub-α selected

schedule-change options marked “�.” The current DSAS could not produce results that

are compatible with the manual results by cooperative Sub-α because I assumed agents in

 103

DSAS were competitive. Therefore, I prepared manually the compatible results marked

“3” for Group-B’s Sub-α, by ignoring the compensation in the results by Group-A’s

Sub-α. The total costs for Sub-α by manual and DSAS methods were $320 and $200,

respectively. Note that, like Group-A’s Sub-α, Group-B’s Sub-α also chose Option-2

manually for Activity-M for the same reason.

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
B (2 4) (2 4 80) �3 (4 6 0)
E (6 9) (7 9 0) �3
I (10 13) (10 13 0) (11 14 120)�3 (12 15 240)

M (14 26) (14 16 0) (20 22 120) � (25 27 0) 3
Q (27 30) (28 30 0) �3
U (31 38) (31 34 0) �3 (32 35 80)

Table 6-15. Selected schedule-change options for Sub-α (Group-B)

Table 6-16 shows the selected schedule-change options by Sub-β. Like Sub-α, I

manually prepared the compatible results marked “3” for Sub-β, by ignoring the

compensation in the results by Group-A’s Sub-β. The total costs for Sub-β by manual

and DSAS methods were $180 and $100, respectively. Note that Sub-β chose Option-2

for Activity-N and -R to resolve conflicts under time pressure since Sub-ε already chose

the delay of Activity-P, which is the preceding activity of Activity-N.

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
F (10 15) (13 15 0) �3
J (16 23) (16 17 0) �3
N (24 25) (24 25 0) 3 (25 26 40) �
R (26 27) (26 27 0) 3 (27 28 40) �
V (34 38) (34 38 0) (35 38 100) (35 39 0)�3
Y (39 43) (39 43 0) (40 43 100) �3 (40 44 40)

Table 6-16. Selected schedule-change options for Sub-β (Group-B)

Table 6-17 shows the selected schedule-change options by Sub-δ. The total costs for Sub-

δ by manual and DSAS methods were $0 and $0, respectively.

 104

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
C (2 9) (2 9 0) �3
G (10 15) (10 15 0) �3
K (10 13) (10 13 1200) (12 15 900) (16 19 0) �3
O (24 26) (24 26 0) �3 (25 27 300)
S (26 33) (26 33 300) (27 34 0) �3
W (31 38) (35 37 0) �3
Z (34 43) (38 40 0) �3

Table 6-17. Selected schedule-change options for Sub-δ (Group-B)

Table 6-18 shows the selected schedule-change options by Sub-ε. The total costs for Sub-

ε by manual and DSAS methods were $120 and $120, respectively.

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
D (2 5) (2 5 0) �3
H (5 9) (5 9 300) (6 10 0) �3 (7 11 120)
L (16 23) (16 23 120)�3 (17 24 0)
P (24 25) (24 25 0) 3 (25 26 0) �
T (27 30) (27 30 0) �3 (28 31 300)
X (28 38) (31 32 0) �3

Table 6-18. Selected schedule-change options for Sub-ε (Group-B)

Table 6-19 shows the selected schedule-change options by GC. The total costs for GC by

manual and DSAS methods were $0 and $0, respectively.

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4
A (1 1) (1 1 0) �3
Ω (44 44) (44 44 0) �3 (45 45 2000) (46 46 4000) (47 47 6000)

Table 6-19. Selected schedule-change options for GC (Group-B)

6.2.3 SUMMARY OF DSAS CHARRETTE TESTS

In summary, computerized DSAS coordination produced a lower cost solution faster than

any of the manual centralized coordination efforts by two groups. In this section, I compare

the results of the DSAS charrette tests to check whether a computerized DSAS coordination

produces the lower cost solution faster than a manual centralized coordination.

 105

DSAS produced the solution faster

Based on the time results in Section 6.2.2.3, Figure 6-3 shows the comparison results on

the time taken to find its final solution among three cases. The computerized DSAS

coordination produced the solution faster than any of the manual centralized coordination

by two groups.

Figure 6-3. Time taken for each session

The reason is that computerized DSAS coordination used software agents that could

communicate rapidly, and reasoning mechanisms inside software agents made decisions

automatically. If the number of subcontractors and activities in schedules grows, the

power of DSAS to produce a solution quickly will be more evident.

DSAS found a lower-cost solution

Based on the cost results in Section 6.2.2.3, Figure 6-4 shows the comparison results

based on the total of extra costs among three cases. The computerized DSAS

coordination produced a lower-cost solution than any of the manual centralized

coordination efforts by the two groups.

0

5

10

15

20

25

30

35

40

T
im

e
(m

in
.)

Manual (Group-A) Manual (Group-B) DSAS (Group-A)

 106

Figure 6-4. Total extra costs from each session

The reason is that computerized DSAS coordination considered more schedule-change

options than manual centralized coordination because humans’ bounded rationality

limited them. Tables 6-10 and 6-15 show that Sub-α excluded the lower-cost option for

activity-M, (25 27 0), because the finish date was outside of the allowable duration, (14

26), but the succeeding activity could start late without any extra cost so that the option

should be chosen.

DSAS confirmed other advantages of ABCN

Besides showing the above quantitative benefits, a computerized DSAS coordination

session confirmed the other advantages of ABCN:

• Computerized DSAS coordination maintained work logic better than manual

centralized coordination because of human errors. Even though the final selection

of schedule-change options do not show, several intermediate manual solutions by

test groups violated the work logic so that the group had to choose unfavorable

schedule-change options under time pressure, as shown in Table 6-16.

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

T
ot

al
 E

xt
ra

 C
os

t (
$)

Manual (Group-A) Manual (Group-B) DSAS (Group-A)

 107

• Computerized DSAS coordination found a solution that was better than or equal

to the initial solution. This test showed the differences between competitive

groups and cooperative groups. Competitive subcontractors in Group-A selected

options that were better than or equal to their initial options. In contrast,

cooperative subcontractors in Group-B did not ask for compensation and, as a

result, sometimes chose worse options than their initial options to select a better

group solution, as shown in Figure 6-15. ABCN supports competitive

subcontractors.

• Computerized DSAS coordination allowed subcontractors to keep the confidential

information private. In manual centralized coordination, the GC forced

subcontractors to reveal the confidential schedule-change options and other

present subcontractors could get that information. In computerized DSAS

coordination, no GC or subcontractor could get others’ confidential information

because the cost information was “scrambled” by agents. Every agent could reply

with one of two different costs so that no one could guess a particular

subcontractor’s costs.

This DSAS charrette tests also revealed two limitations of applying the current DSAS

system to real construction projects:

• One failure in a distributed agent in the DSAS system can cause the whole system

to crash because of the tightly coupled nature of construction project schedules. I

have experienced failures only when a user has provided wrong input data to his

agent. When the agent crashes, it loses its data. The other agents are then not able

to continue the negotiation processes. Since the AMR keeps messages but not

data, the AMR does not help the agent to recover the lost data. I should upgrade

the DSAS system so that agents can recover their data if one of them fails during

the negotiation process.

 108

• Human subcontractors may not trust their agents nor accept the results from

DSAS until they fully understand the inside algorithms of their agents.

Subcontractors would need intensive training about the ABCN.

6.3 SYSTEM PERFORMANCE MEASUREMENTS OF DSAS

In this section, I describe the test results of DSAS performance on the following five

sample schedules from various sources.

• 3-activity & 3-agent case (constructed)

L ab
D ur R es

E S E F

L F/T F L S

L eg en d :

A
4 10

0 4

4 /0 0

B
4 10

4 8

8 /0 4

C
4 10

8 1 2

1 2 /0 8

S u b -α S u b -β S u b -δ

Figure 6-5. 3-activity and 3-agent sample schedule

• 7-activity & 3-agent case (constructed)

Figure 6-6. 7-activity and 3-agent sample schedule

A
3 8

E
3 8

F
2 6

G
2 8

C
3 6

B
4 10

D
2 10

0 3

3 7

7

7

10

9

3 6

7 9

10 12

12/0 10 10/0

10/1

10/1

7

8

8

7/0 3

7/1 4

3 /0 0

Sub -α Sub-β Sub -δ

Lab
D ur R es

ES EF

LF/TF LS

Legend:

 109

• 15-activity & 5-agent case (adapted from Son et al. (1999))

5

C
10 5

Start
0 0

0 0

0/0 0

A
5 6

0 5

10/5

B
10 3

0 10

D
5 4

G
5 7

H
10 0

I
5 5

F
10 4

15 25

30/5 20

L
10 8

K
5 8

25 30

35/5 30

M
5 9

5 15 15 20

20/5 10 25/5 20

15 25 25 35 35 40

25/0 15 35/0 25 40/0 35

0 10/0

10 15 15 20

15/0 10 25/5 20

Sub-ε

GC

Lab

Dur Res

ES EF

LF/TF LS

Legend:

E
5 6

J
10 6

N
1 0

10 15 15 25 25 26

20/5 15 34/9 24 35/9 34

Sub-δ

Sub-β

Sub-α

Figure 6-7. 15-activity and 5-agent sample schedule

• 22-activity & 5-agent case (adapted from Hegazy et al. (2000))

B
3 3

0

9/6 6

E
7 3

U
1 0

Start
0 0

0 0

0/0 0

A
6 5

0 6

6/0 0

D
6 5

0 6

H
2 5

G
2 4

C
4 2

6 10

10/0 6

K
1 3

L
2 3

I
2 3

F
5 4

10 15

15/0 10

N
2 1

O
2 5

M
4 2

J
6 1

15 21

21/0 15

P
5 3

Q
3 4

R
2 5

S
6 2

T
2 1

6 13 13 14 15 17 21 26 26 32

16/3 9 17/3 16 21/4 19 26/0 21 32/0 26 32 33

32 33/0 6 8 13 15 15 18 18 26 26 28

15/7 13 19/4 17 22/4 19 30/4 22 32/4 30

3

7 13/7
6 8 8 10 14 18 18 20

15/5 13 17/7 15 21/3 17 26/6 24

Sub-α Sub-β

Sub-ε Sub-δ

GC GC

Lab

Dur Res

ES EF

LF/TF LS

Legend:

Figure 6-8. 22-activity and 5-agent sample schedule

 110

• 27-activity & 5-agent case (adapted from Davis (1968))

C
8 10

1

9/0 1

F
3 10

Y
5 10

Ω
1 0

A
1 0

0 1

1/0 0

B
3 10

1 4

19/15 16

D
4 10

1 5

G
6 10

H
5 10

E
3 10

5 8

24/16 21

J
2 10

K
4 10

L
8 10

I
4 10

9 13

28/15 24

N
2 10

O
3 10

P
2 10

M
3 10

13 16

31/15 28

R
2 10

S
8 10

T
4 10

Q
3 10

26 29

34/5 31

V
5 10

W
3 10

X
2 10

U
4 10

30 34

38/4 34

Z
3 10

9 12 15 17 23 25 25 27 33 38

21/8 18 23/6 21 25/0 23 34/7 32 38/0 33

38 43

43/0 38 43 44

43 44/0 9 15 9 13 23 26 25 33 30 33 33 36

15/0 9 28/15 24 30/4 27 33/0 25 38/5 35 43/7 40

9

17 21/16
4 9 15 23 23 25 26 30 27 29

24/15 19 23/0 15 32/7 30 34/4 30 38/9 36

Sub-α

Sub-β

Sub-ε Sub-δ

GC GC

Lab

Dur Res

ES EF

LF/TF LS

Legend:

Figure 6-9. 27-activity and 5-agent sample schedule

I constructed the following test scenarios for each schedule and tested each case. A

change means that an activity does not have enough resources for following the initial

schedule:

• 3-activity & 3-agent case: 0 to 3 changes

• 7-activity & 3-agent case: 0 to 6 changes

• 15-activity & 5-agent case: 0 to 7 and 11 changes

• 22-activity & 5-agent case: 0 to 7 and 19 changes

• 27-activity & 5-agent case: 0 to 7 and 26 changes

I conducted tests on a Toshiba laptop computer equipped with a 400 MHz Mobile

Intel Celeron processor. Tables 6-20 and 6-21 show the test results in terms of the

 111

number of messages and the time taken in minutes, and Figures 6-10 and 6-11 show the

test results in graphical form.

 (Unit: no. of Messages)
 No. of changes

No. of activities 0 1 2 3 4 5 6 7 14 20 26

3 11 27 33

7 43 122 162 174 181 187 192

15 83 152 233 284 298 338 352 350 405

22 142 403 413 509 529 614 665 685 906

27 167 653 774 1,048 1,055 1,119 1,180 1,344 1,904

Table 6-20. Test results in terms of number of messages

 (Unit: minutes)

 No. of changes

No. of activities 0 1 2 3 4 5 6 7 14 20 26

3 1 1 1

7 1 2 2 2 2 3 2

15 2 2 2 3 2 3 3 3 3

22 2 3 3 4 3 5 5 5 8

27 1 4 6 6 6 7 8 8 11

Table 6-21. Test results in terms of time taken

In summary, the test results show that the system performance of DSAS does not grow

exponentially with the number of activities or with the number of changes. As shown in

Appendix-G, I estimate that the worst-case computational complexity of DSAS is O(n3),

where O is the approximate running time of DSAS, measured as a function of the number

of activities, n, in a schedule. However, since under 3 changes at a time is common, the

common computational complexity is O(n2), as shown in Figures 6-10 and 6-11. The

linear plots show the number of messages or time taken in the cases of no change in each

schedule. The quadratic plots show the number of messages or time taken in the cases of

 112

three changes in each schedule. The cubic plots show the number of messages or time

taken in the cases of maximum changes in each schedule.

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

No. of Activities

N
o.

 o
f M

es
sa

ge
s

0 change

1 change

2 changes

3 changes

4 changes

5 changes

6 changes

7 changes

Max. changes

Linear (0 change)

Quadratic (3 changes)

Cubic (Max. changes)

Figure 6-10. Test results in terms of number of messages

Figure 6-11. Test results in terms of time taken

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30
No. of Activities

T
im

e
T

ak
en

 (
M

in
.)

0 change

1 change

2 changes

3 changes

4 changes

5 changes

6 changes

7 changes

Max. changes

Linear (0 change)

Quadratic (3 changes)

Cubic (Max. changes)

 113

A few limitations of DSAS also became more evident in this phase of testing. For

example:

• DSAS is only applicable to “balanced” schedules. A “balanced” schedule is a

schedule in which paths between two nodes have the same number of nodes if

there are multiple paths. Otherwise, DSAS stops due to “deadlocks.” I can modify

“unbalanced” schedules by adding 0-duration dummy nodes.

• Every schedule should have one start node and one finish node. Otherwise,

DSAS stops due to “deadlocks.” I can easily modify schedules without these by

adding 0-duration start and end nodes.

Figure 6-12 shows an example of “balanced” schedule. This schedule has two paths

between Node1 and Node 6: 1-2-4-6 and 1-2-5-6. These two paths have the same number

of nodes (4).

Figure 6-12. Balanced schedule

Figure 6-13 shows an example of “unbalanced” schedule. Node 4 is missing from Figure

6-12. Therefore, a path (1-3-5-6) has one more node than the other path (1-2-6).

Figure 6-13. Unbalanced schedule

1 2 6

3 5

4

1 2 6

3 5

 114

In this unbalanced schedule, DSAS stops due to “deadlocks.” Deadlocks happen in the

following situation: Node 1 is infinitely waiting for a “reply-cost” message from Node 3

and Node 6 is infinitively waiting for an “accept/reject” message from Node 5, as shown

in Figure 6-14.

Figure 6-14. Deadlock in unbalanced schedule

I can modify “unbalanced” schedules by adding 0-duration dummy nodes. In this case I

add Node 4 to convert an “unbalanced” schedule to a “balanced” schedule, as shown in

Figure 6-15.

Figure 6-15. Making balanced schedule

Inserting dummy activities can minimize these limitations, but identifying these

situations before using DSAS is additional computational overhead. I need to check every

node and relationship to identify unbalanced paths in the schedule. Like forward

propagation, the first node is 0 and adds one (+1) to its relationships to the succeeding

activities. When two or more relationships come to one node, the node checks if the

numbers are the same. If the numbers are the same, the schedule is balanced, as shown in

Figure 6-16.

1 2 6

3 5

reply-cost

accept accept

1 2 6

3 5

4

 115

Figure 6-16. Checking balanced schedule

Therefore, the estimated computational complexity for identifying these situations is

O(n+m), where n is the number of activities and m is the number of relationships in a

schedule.

6.4 SUMMARY OF EVALUATION

This chapter demonstrated the effectiveness of the ABCN methodology through

evaluation tests. It compared two centralized coordination methodologies used in current

practice to the ABCN methodology. I demonstrated through mathematical proofs (see

Appendix-E) that the ABCN methodology always finds a solution that is better than or

equal to those of two centralized coordination methodologies. Charrette tests

demonstrated that DSAS produces the lower-cost results faster than manual centralized

processes. Results of experimental tests with different schedules showed that DSAS finds

a solution in a reasonable time.

1 2 6

3 5

4

0
+1

1 2 3/3
+1 +1

+1

+1

+1
1 2

 116

CHAPTER 7

CONCLUSIONS

In this dissertation, I have introduced a framework for distributed coordination of project

schedule changes (DCPSC). The framework emphasizes the distributed nature of

coordinating project schedule changes, particularly subcontractors’ resource-driven

schedule coordination. In the framework, subcontractors have their own activities and

schedules for the activities. Subcontractors optimize their schedules based on their

available resources and, as a result, schedule conflicts arise.

The dissertation introduces a methodology for negotiation called the agent-based

compensatory negotiation (ABCN) methodology. The methodology assumes that

subcontractors are competitive and they need monetary compensation for

disadvantageous agreements. The methodology preserves the sequence logic in the

original project plan, and guarantees that subcontractors always reach a consensus, since

the methodology uses the project plan to guide the negotiations.

The research presented in this dissertation shows a distributed approach to coordination

of project schedule changes and demonstrates agent-based compensatory negotiation as a

vehicle for enabling this approach. The approach emphasizes the distributed nature of

coordination of subcontractors’ resource-driven project schedule changes and the

autonomy of subcontractors while it provides effective methods for coordinated exchange

of information and negotiation protocols and a negotiation methodology for resolving

schedule conflicts. This in itself is a significant departure from prior and recent research,

 117

particularly in the area of construction project planning and scheduling, which has

traditionally attempted to centralize the coordination process to enhance a project

schedule.

I tested the framework by developing a prototype of the Distributed Subcontractor Agent

System (DSAS) that implemented the framework in a multi-agent environment. I

compared the project schedules simulated on the prototype of the DSAS with those of

two centralized coordination methodologies used in current practice, and concluded that

that DCPSC produced a solution that is better than or equal to the initial solution, without

revealing the subcontractor’s private information. DCPSC performed better than or equal

to either of the two centralized coordination methodologies.

I conducted a series of charrette tests that show DCPSC produced a solution that is better

than or equal to the initial solution, without the need for subcontractors to reveal private

information, and DSAS is faster, more accurate, and more usable than conventional

manual processes. These comparison studies, experimental tests, and charrette tests

provide evidence of the power, generality, and practical value of my work. Consequently,

the results of the research contribute to the current knowledge of construction project

planning and scheduling and distributed coordination of complex systems. I also

measured the system performance of DSAS by comparing results of several different

schedules, and concluded that DSAS finds a solution in a reasonable time.

I conclude that the DCPSC framework enhances the project network schedule (in terms

of lowering the sum of subcontractors’ costs associated with their resource constraints)

by rescheduling the project subject to the precedence relationship among project

activities in cases of changes in subcontractors’ resource availabilities. I also conclude

that the proposed agent-based compensatory negotiation methodology facilitates the

distributed coordination of project schedule changes by enabling subcontractors to

compensate the affected subcontractors for disadvantageous agreements (see Section

1.5); by allowing subcontractors to identify and resolve schedule conflicts in a tightly

coupled network of related activities (see Section 1.5); and by enabling subcontractors to

 118

maintain work logic and ensure convergence of distributed coordination (see Section

1.5). Section 7.1 will review the contributions.

This research presents a new agent-based distributed approach for resolving schedule

conflicts in project schedules. The distributed subcontractor agent system implemented in

this research, together with schedule-change options, suggests that this new approach

enables proactive coordination of various conflicts by subcontractors. Thus, this research

would help construction project participants to increase efficiency in their resource use in

a distributed manner, which will lead to successful completion of whole projects. Section

7.2 of this chapter will discuss the practical demonstrations of this research.

To make solid contributions and validate those contributions within a reasonable period

of time, I limited the focus of my study in several ways. For example, I limited the

contributions to the coordination of project schedule changes after the general contractor

makes a master schedule and assigns parts of the master schedule to subcontractors.

Section 7.3 of this chapter discusses the current limitations of the research

accomplishments. Section 7.4 of this chapter suggests several directions for future

research.

This research can improve the competitive performance of construction projects to

improve schedules, enhance resource utilization, and support cooperative relationships

among subcontractors. General contractors as well as subcontractors get benefits from

employing the research results. Industry can apply this research to many important areas

of project management. Section 7.5 of this chapter explains the value of the research to

industry.

7.1 SUMMARY OF CONTRIBUTIONS

In general, this research contributes to the field of construction project management and

multi-agent systems through the introduction of a distributed coordination framework for

project schedule changes by subcontractors in a construction project, the investigation of

an agent-based compensatory negotiation methodology for distributed coordination of

 119

project schedule changes, and the development of a prototype of a multi-agent system for

distributed coordination of project schedule changes. The specific contributions answers

the research questions (see Section 2.4) as follows:

• Formal problem definition for the distributed coordination of project schedule

changes: I defined the objective function of the distributed coordination of project

schedule changes. This shows a new way to enhance the global outcome while

pursuing individual incentives.

• Formal definitions for the agent-based compensatory negotiation methodology: I

defined utility of timing as real money. I also defined schedule-change options to

represent the impacts on project schedule of resource constraints.

• Negotiation protocols and algorithms of various message-handling mechanisms

for subcontractor agents. I defined negotiation protocols and algorithms for

subcontractor agents so that subcontractor agents can negotiate with other agents.

• Message-handling mechanisms that use the project plan for coordination of

message passing among agents: I exploited the sequence logic in the project plan for

agents to coordinate message passing and to ensure successful completion of

distributed computation.

• Linking CPM to agent-based distributed negotiation: I have shown how the

subcontractors’ individual utility function for resource allocation over time can be

rigorously combined with the critical path method (CPM) to propagate changes in

individual activities to the activities performed by other subcontractors. This allows

researchers to go beyond a simplistic representation of the “utility of timing” to a

rigorous and operational representation of time. This is a key contribution from

linking CPM to agent-based distributed negotiation.

 120

• A multi-agent system for distributed coordination of project schedule changes

that demonstrates various aspects of the framework: I developed a prototype of

the Distributed Subcontractor Agent System (DSAS). The comparison test results on

a prototype implementation of DSAS showed that DCPSC produced a solution that is

better than or equal to the initial solution, without revealing any subcontractor’s

private information. DCPSC performed better than or equal to either of two

centralized coordination methodologies. A series of charrette tests also demonstrated

that DSAS produces the lower-cost results faster than manual centralized processes.

Experimental test results showed that DSAS scales in a way that makes its use

feasible in real projects.

Thus, this research provides a distributed coordination methodology that can improve

interaction and collaboration among agents and people.

7.2 PRACTICAL DEMONSTRATIONS

This section discusses benefits of the distributed coordination of project schedule changes

(DCPSC) compared to the centralized coordination methodologies, which most

practitioners employ in current project management practice. DCPCS has benefits as

noted below:

• DCPSC handles change problems proactively. Most centralized coordination

methodologies try to solve already-incurred delay problems and, therefore, lose many

opportunities to find a solution proactively. DCPCS identifies change problems and

opportunities beforehand and finds a solution proactively.

• DCPSC finds a more equitable solution among all participants in a project. Most

centralized coordination methodologies make the general contractors and

subcontractors together pay for a delay, but the sources of trouble are difficult to

define, which leads to an unfair cost distribution. DCPCS can identify the sources of

possible delays beforehand and charge the sources when they decide to delay their

 121

activities. DCPCS does not ask the central coordinator or the owners for extra costs

for subcontractors’ faults, and costs will be distributed in an equitable manner so that

disputes among participants can be resolved easily before becoming worse.

• DCPSC promotes distributed decision-making to the level where accurate

information exists. The general contractors employing the centralized coordination

methodologies usually do not have the needed information for coordinating

subcontractors because most of the needed information, such as resource and cost

information, is kept within subcontractors. The general contractors could get the

needed information through bids, but this would lead to opportunistic behaviors by

subcontractors. DCPCS provides a methodology for subcontractors to make their

decisions in collaboration with other subcontractors who hold accurate local

information. Accordingly, most computation is carried out at distributed sites with

relatively light message traffic among them.

• DCPSC frees central coordinators from having to control changes directly. This

means that the central coordinator takes less time and uses fewer resources to control

the project. More importantly, it means a distributed system scales where a

centralized system will not. There is also a revolution inherent in my work. The

central coordinator no longer has to control directly but rather can do so indirectly by

incentives (bonuses and penalties) in the contracts with the subcontractors. My

system allows subcontractors to work with each other in their own best interests,

since it allows bonuses and penalties to be included in the calculation of "extra costs."

The significance of these practical demonstrations is that DCPSC employs the agent-

based approach, which is a powerful tool to explore and exploit the opportunities offered

by the distributed approach. Software agents have capabilities of fast communication

with each other over the Internet, which supports project participants without geographic

restrictions. Thus, this research can help construction project participants to increase the

efficiency of their resource utilization in a distributed manner, and thus enhance

successful completions of whole projects.

 122

7.3 PRESENT LIMITATIONS OF RESEARCH

DCPSC has some present limitations, as noted below, some of which are shared with

centralized coordination methodologies:

• DCPSC does not guarantee an optimal solution for the changes. Considering all

alternatives in DCPSC is infeasible in a large network, because the number of

alternatives grows exponentially with the number of succeeding activities, even with

only a few options. Therefore, my methodology requires subcontractors to make

quick decisions, i.e., choosing the best option of all, without considering all

possibilities, thus the decision might eliminate a globally optimal solution. However,

given that the needed information is available, centralized coordination

methodologies can use optimization tools like integer programming to find an optimal

solution in some cases, but these optimization tools are not applicable to the

distributed coordination situation, where the needed information for optimization is

distributed and private.

• DCPSC does not allow changes of work logic in a project schedule. Because of

the limited capability of its subcontractor agents, the current DCPSC can only

evaluate impacts of proposed delays. The impacts are found by delaying affected

activities. In the project context, some activities can shorten their durations for their

purposes and the saved duration can be exploited for enhancing resource utilization of

other activities. DCPSC does not allow subcontractors to change work logic in a

project schedule, but only finds a better schedule with the fixed work logic.

• DCPSC does not provide direct relationships between resource constraints and

schedule-change options. There are too many parameters to determine the

relationships between resource constraints and schedule-change options. Therefore,

DCPSC uses a set of schedule-change options given by subcontractors.

 123

7.4 FUTURE RESEARCH

Researchers need to do the following future research to overcome limitations stated

above:

• Apply heuristic distributed search techniques for producing an optimal or near-

optimal solution. A better approach to produce an optimal or near-optimal solution

would take into account the reduction of the distributed search space effectively.

• Develop a more general distributed coordination methodology for allowing

changes in work logic in project schedules. A more general distributed coordination

methodology would take into account a different representation of activities, such as

input and output requirements for each activity. The input/output requirements that

allow it to be dynamic is an advance over the traditional project CPM model that only

includes fixed precedence relationships between activities.

• Accommodate “counter-offers” for richer negotiation protocols. Richer

negotiation protocols would take into account mechanisms to detect the termination

of negotiations because accommodating protocols like “counter-offers” would lead to

infinite loops.

• Investigate direct relationships between resource constraints and schedule-

change options. Direct relationships between resource constraints and schedule-

change options would take into account the investigation and parameterization of

many factors that would relate resource constraints to schedule-change options, such

as units, fixed/variable, timing, and upper limits of resources.

• Extend the framework to allow distributed coordination/negotiation for

variables other than time. Researchers can extend this research to help

subcontractors resolve conflicts among competitive actors in other areas, such as

mechanical, electrical, and plumbing (MEP) coordination and workspace

management, e.g., HVAC, mechanical, electrical contractors negotiate for access to

 124

space for straight pipe or duct runs in ceiling planning, etc. These involve spatial as

well as temporal constraints between the activities performed by different

subcontractors, and would require conceptual extensions to time constraints in this

research.

7.5 VALUE TO INDUSTRY

This research could impact the industry by improving the competitive performance of

construction projects to improve schedules, enhance resource utilization, and support

cooperative relationships among subcontractors. My research provides a foundation to

develop a distributed scheduling and control system that helps subcontractors represent

resource requirements of activities and consider the timing of activities; helps them

identify and analyze their resource constraints in a given schedule; helps them predict the

behavior of activities; helps them incorporate the schedule impacts of those behaviors;

and helps them coordinate their different scheduling perspectives by working together

toward a better solution.

This approach has the potential to free the central coordinator from having to control

schedule changes directly while getting better schedules. The project schedule gets better

because all the subcontractors have committed to their parts of the project schedule.

Thus, this research will help project participants increase efficiency of their resource uses

in a distributed manner, which should lead to more successful completions of whole

projects.

Industry can apply this research to improve the efficiency of coordinating complex

distributed systems, such as electronic supply-chain and e-markets, where subcontractors

interact and transact with other subcontractors within supply-chain networks with the

assistance of software agents. Subject to external changes, subcontractors could use e-

markets to trade not only their timing with other subcontractors through multi-agent

negotiation, but also their activities with the similarly qualified specialty contractors,

which may be in better positions to execute the activities in a given time. Agent-based e-

 125

markets will allow specialty contractors to trade their activities with other specialty

contractors to improve their resource utilization.

There has been a long effort to improve resource utilization in the construction industry,

whose project nature is a centralized constraint-satisfaction problem. Since the

subcontractors in current practice manage the resources, subcontractors should play

important roles in improving their resource utilization in a distributed manner. Agent-

based e-markets leverage agent technology to facilitate activity reallocation among

specialty contractors, resulting in better resource utilization. Through transactions in the

e-markets, agents will trade activities on behalf of human specialty contractors.

An agent-based distributed approach has the potential to impact the performance of the

construction industry significantly, through Internet-based project management,

distributed control of large-scale engineering systems, and management of complex

distributed systems. As project participants are provided with software agents that can

communicate over the Internet, Internet-based project management, including routing of

construction material and information flows, and dispatching of pickup and delivery

systems, will become possible. Since the software agent can represent any participant in

construction projects, researchers can develop the distributed coordination framework

further for the real-time monitoring and control of large-scale civil and environmental

engineering systems, e.g., bridges and water systems. Researchers could even further

extend the distributed coordination methodology to the management of complex

distributed systems, such as air traffic control, highway traffic operations, and disaster

response.

Although the focus of this research has been placed on the construction industry, this

approach is valid for any project where a system integration (“prime”) contractor

develops a project schedule, but subcontracts much of direct work to other firms, as in

aerospace or custom network solution projects.

126

APPENDIX-A. BIBLIOGRAPHY

Adler, M. R., Davis, A. B., Weihmayer, R., and Worrest, R. W. (1989). “Conflict-

resolution strategies for nonhierarchical distributed agents.” Distributed Artificial

Intelligence, vol. 2., Gasser, L. and Huhns, M. eds., Morgan Kaufman, San Francisco,

139-161.

Albayrak, S., and Wieczorek, D. (1999). “JIAC-a toolkit for telecommunication

applications.” Proceedings of the Third International Workshop on Intelligent Agents for

Telecommunication Applications (IATA'99), Stockholm, Sweden, Springer-Verlag,

Berlin, Germany, 1-18

Antill, J. M., and Woodhead, R. W. (1990). Critical Path Methods In Construction

Practice, 4th ed., Wiley, New York.

Barbuceaue, M., and Fox, M. (1996). “The Agent Building Shell: A tool for building

enterprise multi-agent systems.” Canadian Artificial Intelligence, Canadian Society for

Computational Studies of Intelligence, Toronto, Canada, 40, 9-11.

Ben-Shaul, I., Gazit, H., Gidron, Y., Holder, O., and Lavva, B. (1999). “FarGo: A system

for mobile component-based application development.” Proceedings of The Twenty-First

International Conference on Software Engineering (ICSE '99), Los Angeles, CA, ACM,

New York, 658-659.

Bölöni, L., and Marinescu, D. C. (2000). “An object-oriented framework for building

collaborative network agents.” Intelligent Systems and Interfaces, A. Kandel, K.

Hoffmann, D. Mlynek, and N.H. Teodorescu, eds., Kluwer Publishing, Dordrecht, the

Netherlands, 31-64.

Chan, W., Chua D., and Kannam, G. (1996). “Construction resource scheduling with

genetic algorithms.” Journal of Construction Engineering and Management, ASCE,

122(2), 125-132.

127

Chen, Y., Peng, Y., Finin, T., Labrou, Y., Cost, S., Chu B., Yao, J., Sun, R., and

Wilhelm, B. (1999). “A negotiation-based multi-agent system for supply chain

management.” Proceedings of Agents 99 Workshop on Agent Based Decision-Support for

Managing the Internet-Enabled Supply-Chain, Seattle, Washington, ACM Press, New

York, 15-20.

Choo, H. J., and Tommelein, I. D. (2000). “Interactive coordination of distributed work

plan.” Proceedings of the Sixth Construction Congress, Orlando, FL, ASCE, 11-20.

Choo, H. J., Tommelein, I. D., Ballard, G., and Zabelle, T. D. (1999). “WorkPlan:

Constraint-based database for work package scheduling.” Journal of Construction

Engineering and Management, ASCE, 125(3), 151-160.

Clayton, M. J., Kunz, J. C., and Fischer, M. A. (1998). “The Charrette test method.”

Technical Paper, No. 120, CIFE, Stanford Univ., Stanford, Calif.

Cliff, D., and Bruten, J. (1998). “Simple bargaining agents for decentralized market-

based control.” Technical Report, HPL-98-17, Hewlett Packard Laboratories, Bristol.

Clough, R. H., and Sears, G. A. (1991). Construction Project Management, 3rd ed., John

Wiley & Sons, Inc., New York.

Davis, E. W. (1968). “An exact algorithm for the multiple constrained resource project

scheduling program.” PhD thesis, Department of Administrative Science, Yale

University, New Haven, Conn.

Davis, R., and Smith, R. G. (1988). “Negotiation as a metaphor for distributed problem

solving.” Readings in Distributed Artificial Intelligence, A. H. Bond and L. Gasser, eds.,

Morgan Kaufmann Publishers, San Francisco, 333-356.

Decker, K. S., and Lesser, V (1992). “Generalizing the partial global planning

algorithm.” International Journal on Intelligent Cooperative Information Systems, World

Scientific Publishing Company, Singapore, 1(2), 319-346.

128

Decker, K. S., and Lesser, V. (1995). “Designing a family of coordination algorithms.”

Proceedings of the First International Conference on Multi-Agent Systems, AAAI Press,

Menlo Park, 73-80.

Decker, K. S. (1996). “TAEMS: A framework for Analysis and design of coordination

mechanisms.” Foundations of Distributed Artificial Intelligence, G. O’Hare and N.

Jennings, eds., John Wiley & Sons, Inc., New York, 429-447.

Dijkstra, W., and Sholten, C. S. (1980). “Termination detection for diffusing

computation.” Information Processing Letters, North-Holland Pub. Co., Amsterdam,

11(1), 1-4.

Durfee, E. H., Lesser, V. R., and Corkill, D. D. (1989). “Trends in cooperative distributed

problem solving.” IEEE Transactions on Knowledge and Data Engineering, IEEE, 1(1),

63-83.

Durfee, E. H., and Lesser, V. R. (1991). “Partial global planning: A coordination

framework for distributed hypothesis formation.” IEEE Transactions on Systems, Man,

and Cybernetics, IEEE, 21(5), 1176-1183.

Durfee, E. H., and Montgomery, T. A. (1991). “Coordination as distributed search in a

hierarchical behavior space.” IEEE Transactions on Systems, Man, and Cybernetics,

IEEE, 21(6), 1363-1378.

Easa, S. M. (1989). “Resource leveling in construction by optimization.” Journal of

Construction Engineering and Management, ASCE, 115(2), 302-316.

El-Rayes, K., and Moselhi, O. (1996). “Resource-driven scheduling of repetitive

activities on construction projects.” Construction Management and Economics, E & FN

Spon, London, 16, 433-446.

El-Rayes, K., and Moselhi, O. (2001). “Optimizing resource utilization for repetitive

construction projects.” Journal of Construction Engineering and Management, ASCE,

127(1), 18-27.

129

Ephrati, E., and Rosenschein, J. S. (1996). “Deriving consensus in multi-agent systems.”

Artificial Intelligence, Elsevier Science BV, Amsterdam, 87(1-2), 21-74.

Feldman, A. M. (1980). Welfare Economics and Social Choice Theory, Martinus Nijhoff

Publishing, Boston.

Finin, T., Fritzson, R., McKay, D., and McEntire, R., (1994). “KQML as an agent

communication language.” Proceedings of the Third International Conference On

Information and Knowledge Management, ACM Press, New York, 456-463.

FIPA Specification. (2000). “Agent Communication Language.” The Foundation for

Intelligent Physical Agents.

Fondahl, J. M. (1961). “A non-computer approach to the critical path method for the

construction industry.” Technical Report, No. 9, Construction Institute, Dept. of Civ.

Engrg., Stanford University, Stanford, Calif.

Fondahl, J. W. (1991). “The development of the construction engineer: Past progress and

future problems.” Journal of Construction Engineering and Management, ASCE, 117(3),

380-392.

Glossary. (1999). Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, G. Weiss, ed., MIT Press, Cambridge.

Gomes, C.P., Tate A., and Thomas, L. (1994). “Distributed scheduling framework.”

Proceedings of the International Conference on Tools with Artificial Intelligence, IEEE

Press, Piscataway, 49-55.

Graham, J., Windley, V., McHugh, D., McGeary, F., Cleaver, D., and Decker, K. (2000).

“A programming and execution environment for distributed multi agent systems.”

Proceedings of Workshop on Infrastructure for Scalable Multi-agent Systems at the

Fourth International Conference on Autonomous Agents, Barcelona, ACM Press, New

York.

130

Harris, R. B. (1990). “Packing method for resource leveling (pack).” Journal of

Construction Engineering and Management, ASCE, 116(2), 331-350.

Hegazy, T. (1999). “Optimization of resource allocation and leveling using genetic

algorithms.” Journal of Construction Engineering and Management, ASCE, 125(3), 167-

175.

Hegazy, T., Shabeeb, A. K., Elbeltagi, E., and Cheema, T. (2000). “Algorithm for

scheduling with multi-skilled constrained resources.” Journal of Construction

Engineering and Management, ASCE, 126(6), 414-421.

Hiyassat, M. A. (2000). “Modification of minimum moment approach in resource

leveling.” Journal of Construction Engineering and Management, ASCE, 126(4), 278-

284.

Iglesias, C. A., González, J. C., and Velasco, J. R. (1995). “MIX: A general purpose

multiagent architecture.” Proceedings of the IJCAI'95 Workshop on Agent Theories,

Architectures and Languages, Montréal, Canada, ACM Press, 216-224.

Jeon, H. (2000). “Dynamic constraint management in collaborative design.” PhD thesis,

Dept. of Mechanical Engineering, Stanford Univ., Stanford, Calif.

Jeon, H., Petrie, C., and Cutkosky, M. R. (2000). “JATLite: A Java agent infrastructure

with message routing.” IEEE Internet Computing, IEEE, 4(2), 87-96.

Jin, Y., and Levitt, R. E. (1993). “i-AGENTS: Modeling organizational problem solving

in multi-agent teams.” Intelligent Systems in Accounting, Finance and Management, John

Wiley & Sons, Ltd., New York, 2, 247-270.

Kawamura, T., Tahara, Y., Hasegawa, T., Ohsuga, A., and Honiden, S. (2000). “Bee-

gent: Bonding and encapsulation enhancement agent framework for development of

distributed systems.” Systems and Computers in Japan, Scripta Technica, 31(13), 42-56.

131

Khedro, T., Genesereth, M.R., and Teicholz, P.M. (1993). “Agent-based framework for

integrated facility engineering.” Engineering with Computers, Springer Verlag, New

York, 9(2), 94-107.

Khedro, T. (1996). “A distributed problem-solving approach to collaborative facility

engineering.” Advances in Engineering Software, Elsevier Applied Science, Barking,

Essex, England, 25, 243-252.

Koo, C. C. (1987). “A distributed model for performance systems.” PhD thesis, Dept. of

Civil Engineering, Stanford Univ., Stanford, Calif.

Labrou, Y., and Finin, T. (1997). “A proposal for a new KQML specification.” TR CS-

97-03, Computer Science and Electrical Engineering Department, Univ. of Maryland,

Baltimore.

Leu, S., and Yang, C. (1999). “GA-Based multicriteria optimal model for construction

scheduling.” Journal of Construction Engineering and Management, ASCE, 125(6), 420-

427.

Malone, T. W., Fikes, R. E., and Howard, M. T. (1988). “Enterprise: A market like task

scheduler for distributed computing environment.” The Ecology of Computation, B. A.

Huberman, ed., Elsevier Science BV, Amsterdam, 177-205.

Martin, D. L., Cheyer, A. J., and Moran, D. B. (1999). “Open Agent Architecture: A

framework for building distributed software systems.” Applied Artificial Intelligence,

Taylor & Francis Ltd, London, 13(1-2), 91-128.

Martinez, J., and Ioannou, P. G. (1993). “Resource leveling based on the modified

minimum moment heuristics.” Computing in Civil and Building Engineering, ASCE,

New York, 287-294.

Mattila, K. G., and Abraham, D. M.. (1998). “Resource leveling of linear scheduling

using integer linear programming.” Journal of Construction Engineering and

Management, ASCE, 124(3), 232-244.

132

Minar, N., Gray, M., Poop, O., Krikorian, R., and Maes, P. (2000). “Hive: Distributed

agents for networking things.” IEEE Concurrency, IEEE, 8(2):24-33.

Moselhi, O., and El-Rayes, K. (1993). “Scheduling of repetitive projects with cost

optimization.” Journal of Construction Engineering and Management, ASCE, 119(4),

681-697.

Moselhi, O., and Lorterapong, P. (1993). “Near optimal solutions for resource-

constrained scheduling problems.” Construction Management and Economics, E & FN

Spon, London, 11(4), 293-303.

Mudgal, C., and Vassieva, J. (1999). “Negotiation among agents in a multi-agent

environment supporting peer-help: A decision-theoretic approach.” Proceedings of

Agents 99 Workshop on Agent Based Decision-Support for Managing the Internet-

Enabled Supply-Chain, Seattle, Washington, ACM Press, New York, 35-43.

Neiman, D., Hildum, D., Lesser, V., and Sandholm, T. (1994). “Exploiting meta-level

information in a distributed scheduling system.” Proceedings of the Twelfth National

Conference on Artificial Intelligence, AAAI, 394-400.

Neiman, D., and Lesser, V. (1996). “A cooperative repair method for a distributed

scheduling system.” Proceedings of the Third International Conference on Artificial

Intelligence Planning Systems, Edinburgh, Scotland, AAAI, Menlo Park, 166-173.

Nwana, H. S., Ndumu, D. T., Lee, L. C., and Collis, J. C. (1999). “ZEUS: A toolkit for

building distributed multiagent systems.” Applied Artificial Intelligence, Taylor &

Francis, London, 13(1-2):129-85.

Oberlender, G. D. (1993). Project Management for Engineering and Construction,

McGraw-Hill, New York.

O’Brien, W., Fischer, M. A., and Jucker, J. V. (1995). “An economic view of project

coordination.” Construction Management and Economics, E & FN Spon, London, 13(5),

393-400.

133

O’Brien, W. J. (1998). “Capacity costing approaches for construction supply-chain

management.” PhD thesis, Dept. of Civil Engineering, Stanford Univ., Stanford, Calif.

O’Brien, W., and Fischer, M. A. (2000). “Importance of capacity constraints to

construction cost and schedule.” Journal of Construction Engineering and Management,

ASCE, 126(5), 366-373.

Petrie, C., Goldmann, S., and Raquet, A. (1998). “Agent-based project management.”

Technical Report, #19981118, Center for Design Research, Stanford Univ., Stanford,

Calif.

Petrie, C. (1996). “Agent-based engineering, the Web, and intelligence.” IEEE Expert,

IEEE, 11(6), 24-29.

Poslad, S., Buckle, P., and Hadingham R. (2000). “The FIPA-OS agent platform: Open

source for open standards.” Proceedings of the Fifth International Conference and

Exhibition on the Practical Application of Intelligent Agents and Multi-Agents,

Manchester, UK, Practical Application Company, Blackpool, UK, 355-368.

Rosenschein, J. S., and Zlotkin. G. (1994). Rules of Encounter: Designing Conventions

for Automated Negotiation Among Computers, MIT Press, Cambridge.

Rosenschein, J. S., and Zlotkin. G. (1998). “Designing conventions for automated

negotiation.” Readings in Agents, M. N. Huhn and M. P. Singh, eds., Morgan Kaufmann

Publishers, San Francisco.

Russell, A., and Dubey, A. (1995). “Resource leveling and linear scheduling.” Computing

in Civil Engineering, ASCE, New York, 1134-1141.

Sandholm, T. (1993). “An implementation of the contract net protocol based on marginal

cost calculations.” Proceedings of the Eleventh National Conference on Artificial

Intelligence, AAAI, Menlo Park, 256-262.

134

Sandholm, T., and Lesser, V. (1995). “Issues in automated negotiation and electronic

commerce: Extending the contract net framework.” Proceedings of the First

International Conference on Multiagent Systems (ICMAS-95), San Francisco, Calif., MIT

Press, Cambridge, 328-335.

Seibert, J. E., and Evans, G. W. (1991). “Time-constrained resource leveling.” Journal of

Construction Engineering and Management, ASCE, 117(3), 503-520.

Sen, S., and Durfee, E. H. (1996). “A contracting model for flexible distributed

scheduling.” Annals of Operations Research, J.C. Baltzer, Basel, Switzerland, 65, 195-

222.

Sen, S., Haynes, T., and Arora, N. (1997). “Satisfying user preferences while negotiating

meetings.” International Journal of Human-Computer Studies, Academic Press, London,

47, 407-427.

Sen, S., and Durfee E. H. (1998). “A formal study of distributed meeting scheduling.''

Group Decision and Negotiation, Kluwer Academic Publishers, Dordrecht, the

Netherlands, 7, 265-289.

Shah, K. A., and Baugh, J. W. (1993). “Optimal resource leveling using integer-linear

programming.” Computing in Civil and Building Engineering, ASCE, New York, 501-

508.

Shoham, Y., and Tanaka, K. (1997). “A dynamic theory of incentives in multi-agent

systems.” Proceedings of the Fifteenth International Joint Conference on Artificial

Intelligence, International Joint Conferences on Artificial Intelligence, Inc., Menlo Park,

626-631.

Smith, R. G. (1980). “The contract net protocol: high level communication and control in

a distributed problem solver.” IEEE Transactions on Computers, IEEE, C-29, 1104-1113.

Smith, R. G., and Davis R. (1981). “Frameworks for cooperation in a distributed problem

solver.” IEEE Transactions on Systems, Man, and Cybernetics, IEEE, SMC-11(1), 61-70.

135

Son, J., and Skibniewski, M. J. (1999). “Multiheuristic approach for resource leveling

problem in construction engineering: Hybrid approach.” Journal of Construction

Engineering and Management, ASCE, 125(1), 23-31.

Sycara, K. (1989). “Multi-agent compromise via negotiation.” Distributed Artificial

Intelligence, vol. 2., Gasser, L. and Huhns, M. eds., Morgan Kaufman, San Francisco,

119-137.

Sycara, K., Roth, S., Sadeh, N., and Fox, M. (1991). “Distributed constrained heuristic

search.” IEEE Transactions on Systems, Man, and Cybernetics, IEEE press, 21(6), 1446-

1461.

Sycara, K., and Pannu, A. (1998). “The RETSINA multiagent system: Towards

integrating planning, execution and information gathering.” Proceedings of the Second

International Conference on Autonomous Agents, Minneapolis, MN, ACM Press, New

York, 350-351.

Tommelein, I. D., and Ballard, G. (1997). “Coordinating specialists.” Technical Report,

No. 97-8, Dept. of Civil and Environmental Engineering, Univ. of Calif., Berkeley, Calif.

Varian, H. R. (1978). Microeconomic Analysis. W.W. Norton & Company, New York.

Walsh, W. E., and Wellman, M. P. (1998). “A market protocol for decentralized task

allocation.” Proceeding of the Third International Conference on Multiagent Systems,

IEEE Computer Society, Los Alamitos, California, 325-332.

Wellman, M. P. (1993). “A market-oriented programming environment and its

application to distributed multicommodity flow problems.” Journal of Artificial

Intelligence Research, Morgan Kaufmann Publishers, San Francisco, 1, 1-23.

Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K. (1992). “Distributed constraint

satisfaction for formalizing distributed problem solving.” Proceedings of the Twelfth

IEEE International Conference on Distributed Computing Systems, IEEE Press,

Piscataway, NJ, 614-621.

136

Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K. (1998). “Distributed constraint

satisfaction problem: Formalization and algorithms.” IEEE Transactions on Knowledge

and Data Engineering, IEEE, 10(5), 673-685.

 137

APPENDIX-B. MULTI-LINKED NEGOTIATION PROTOCOLS

In this section, I express Multi-linked negotiation (MLN) protocols based on Knowledge

Query and Manipulation Language (KQML) (Finn et al 1993), along with extended

performatives and a restrictive format for the message content consisting of field name

and value pairs specific to the predefined performatives. I used BNF but avoided special

symbols for repetition for readability. Strings are not case-sensitive.

I classified the multi-linked negotiation protocols into three classes: human interaction,

negotiation, and negotiation control. The human interaction performatives allow a human

subcontractor to provide input data to its agent and an agent to inform its subcontractor of

the current status of negotiation. The negotiation performatives facilitate the actual

compensatory negotiation processes. The negotiation control performatives manage the

states of negotiation processes.

B.1 SYNTAX

B.1.1 Outer Syntax

KQML-MLN-EPLMessage := "(" <performative> <mandatory> <otherfields> <content> ")"

performative := <string>

mandatory := ":" "Sender" <name> ":" "Receiver" <name> ":" "Language" "KQML"

otherfields := ":" <name> <value> | ":" <name> <value> <otherfields> | NIL

content := ":" "Content" "(" <content_fields> ")"

content_fields := <name> "|" <value> "&" <content_fields> | <name> "|" <value> "&" | NIL

value := <string> | "(" <string> <value> ")"

name := <string>

string := ASCII string

B.1.2 Semantics

This is the general form of a KQML message understood by MLN-compliant agents and

defines the MLN general message syntax.

 138

B.2 HUMAN INTERACTION PROTOCOLS

These performatives are formal interfaces needed for a human subcontractor to provide

input data to its agent and for an agent to inform the subcontractor of the results of

negotiation.

B.2.1 Input

This is a MLN protocol message with <performative> “input”. The <receiver> is agent

and the <sender> is a human GUI.

• Syntax

:content := “(“AGENT”(“<projStartDate>” “<projEndDate>” “<projPenalty>” “

<subName>”))”

or

:content := “(“ACTIVITY”(“<activityName>” “ <startDate>” “

<endDate>”){“”(“<preSubName>” “

<preActivityName>”)””}{“”(“<sucSubName>” “

<sucActivityName>”)””}{“”(“<optionStartDate>”

“<optionEndDate>” “ <optionExtraCost>”)””})”

• Semantics

This performative allows a human subcontractor to provide its agent with agent

information and activity information, including precedence and schedule-change

options.

• Field description

projStartDate: Project start date

projEndDate: Project end date

projPenalty: project delay penalty

subName: Name of human GUI

activityName: Activity name

 139

startDate: Activity start date

endDate: Activity end date

preSubName: Name of subcontractor agent that has a preceding activity

preActivityName: Name of preceding activity

sucSubName: Name of subcontractor agent that has a succeeding activity

sucActivityName: Name of preceding activity

optionStartDate: Alternative activity start date of a schedule-change option

optionEndDate: Alternative activity end date of a schedule-change option

optionExtraCost: Extra cost for a schedule-change option

• Example

(input
:sender kim
:receiver SubA
:content (AGENT(1 12 2000.0 kim))

This example shows that a human subcontractor (kim) provides it agent (SubA) with

agent information that consists of project start date (Day 1), project end date (Day

12), project delay penalty ($2,000), and name of human subcontractor (kim).

(input
:sender kim
:receiver SubA
:content (ACTIVITY(E 8 10){(SubB B)(SubC C)}{(SubA G)}{(8 10 0)(9 10

640)(10 12 0)}))

This example shows that a human subcontractor (kim) provides it agent (SubA) with

activity information that consists of a tuple of activity name (E), activity start date

(Day 8), activity end date (Day 10); tuples of names of subcontractor agents (SubB

and SubC) and name of preceding activities (C and G); a tuple of name of

subcontractor agent (SubA), name of a succeeding activity (G); tuples of alternative

activity start dates (Day 8, Day 9, and Day 10), alternative activity end dates (Day 10,

Day 10, and Day 12), and extra costs for a schedule-change options ($0, $640, and

$0).

 140

B.2.2 Ready

This is a MLN protocol message with <performative> “ready”. The <receiver> is agent

and the <sender> is a human GUI.

• Syntax

:content := “(“<activityName>”)”

• Semantics

This performative allows a human subcontractor to inform its agent that input is

finished on the specific activity.

• Field description

activityName: Activity name

• Example

(ready
:sender kim
:receiver SubA
:content (E))

This example shows that the human subcontractor (kim) inform it agent (SubA) that

input of activity information (E) is finished.

B.2.3 Final

This is a MLN protocol message with <performative> “final”. The <receiver> is a human

GUI and the <sender> is an agent.

• Syntax

:content := “(“<activityName>” “NewStartDate: “<newStartDate>” “NewEndDate: “

<newEndDate>” “ActivityBenefit: “<activityBenefit>” “Receivable: “

“((“<preSubName>” “<preActivityName>” “<receivable>”))”” “

“Payable: ““((“<sucSubName>” “<sucActivityName>”“<payable>”))”” “

 141

“Schedule Options: “”((“<optionStartDate>” “<optionEndDate>” “

<optionExtraCost>”)))”

• Semantics

This performative allows an agent to inform the human subcontractor of the final

result of negotiation on the specific activity.

• Field description

activityName: Activity name

newStartDate: New activity start date

newEndDate: New activity end date

activityBenefit: Benefit for an activity from the negotiation

preSubName: Name of subcontractor agent that has a preceding activity

preActivityName: Name of preceding activity

receivable: Amount to be received from the subcontractor agent that has a preceding

activity

sucSubName: Name of subcontractor agent that has a succeeding activity

sucActivityName: Name of succeeding activity

payable: Amount to be paid to the subcontractor agent that has a succeeding activity

optionStartDate: Changed activity start date of a selected schedule-change option

optionEndDate: Changed activity end date of a selected schedule-change option

optionExtraCost: Extra cost for a selected schedule-change option

• Example

(final
:sender SubA
:receiver kim
:content (E NewStartDate: 9 NewEndDate: 10 ActivityBenefit: 0 Receivable:

((SubB B 640)) Payable: () Schedule Options: ((8 10 0)(9 10 0)(10 12 0)))

This example shows that the agent (SubA) inform its human subcontractor (kim) of

the final result of negotiation that the agent agreed to change its schedule-change

option for activity (E), which consists of new start date (Day 9); new end date (Day

 142

10); activity benefit ($0); a tuple of preceding agent name (SubB), preceding activity

name (B), and receivable ($640); an empty tuple of payable; and tuples of changed

activity start dates (Day 8, Day 9, and Day 10), changed activity end dates (Day 10,

Day 10, and Day 12), and extra costs for a schedule-change options ($0, $0, and $0).

Note that the second extra cost is changed from $640 to $0 because of receivable.

B.3 NEGOTIATION PROTOCOLS

The following performatives are used for facilitating compensatory negotiation processes.

B.3.1 Ask-cost

This is a MLN protocol message with <performative> “ask-cost”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”
“<proposedStartDate>”)”

• Semantics

This performative allows an agent to ask its ‘succeeding’ agent, which has the

succeeding activity, to find out any cost which is incurred by the delay of the

proposed start date. This performative makes the receiving activity “flag.”

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

proposedStartDate: Proposed start date for the activity of receiving agent

• Example

(ask-cost
:sender SubB
:receiver SubA
:content (B E 9))

 143

This example shows that the agent (SubB) ask its ‘succeeding’ agent (SubA) to find

out any cost, which is incurred by the delay of its activity (B), to the succeeding

activity (E) with the proposed start date (Day 9).

B.3.2 Reply-cost

This is a MLN protocol message with <performative> “reply-cost”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”
“<cost>”)”

• Semantics

This performative allows an agent to reply to its ‘preceding’ agent, which has the

preceding activity, with the cost which is incurred by the delay.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

cost: Its own activity’ cost or a sum of succeeding activities’ cost

• Example

(reply-cost
:sender SubA
:receiver SubB
:content (E B 640))

This example shows that the agent (SubA) replies to its ‘preceding’ agent (SubB)

with the cost ($640), which is incurred by the delay of the preceding activity (B), to

its activity (E).

 144

B.3.3 Accept

This is a MLN protocol message with <performative> “accept”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

• Semantics

This protocol allows an agent, which has “flag” activity, to accept the cost response

from its ‘succeeding’ agent that has the succeeding activity. This means that the agent

chooses to delay its activity rather than accelerate it.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

• Example

(accept
:sender SubB
:receiver SubA
:content (B E))

This example shows that the agent (SubB), which has “flag” activity (B), accepts the

cost response from its ‘succeeding’ agent (SubA) for the succeeding activity (E). This

means that the agent (SubB) chooses to delay its activity (B) rather than accelerate it.

B.3.4 Reject

This is a MLN protocol message with <performative> “reject”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

 145

• Semantics

This protocol allows an agent, which has “flag” activity, to reject the cost response

from its ‘succeeding’ agent that has the succeeding activity. This means that the agent

chooses to accelerate its activity rather than delay it.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

• Example

(reject
:sender SubB
:receiver SubA
:content (B E))

This example shows that the agent (SubB), which has “flag” activity (B), rejects the

cost response from its ‘succeeding’ agent (SubA) for the succeeding activity (E). This

means that the agent (SubB) chooses to accelerate its activity (B) rather than delay it.

B.3.5 Confirm

This is a MLN protocol message with <performative> “confirm”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

• Semantics

This protocol allows an agent to confirm the “accept” for its activity from its

‘preceding’ agent that has the preceding activity. This means that its cost reply is

accepted, but the final contract is pending.

• Field description

sendingSub_activityName: Activity name of sending agent

 146

receivingSub_activityName: Activity name of receiving agent

• Example

(confirm
:sender SubA
:receiver SubB
:content (E B))

This example shows that the agent (SubA) confirms the “accept” for its activity (E)

from its ‘preceding’ agent (SubB) that has the preceding activity (B). This means that

its cost reply is accepted, but the final contract is pending.

B.3.6 Renege

This is a MLN protocol message with <performative> “renege”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

• Semantics

This protocol allows an agent to renege the “accept” or “reject” for its activity from

its ‘preceding’ agent that has the preceding activity. This means that its cost reply is

rejected and the agent has to keep the original schedule.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

• Example

(confirm
:sender SubA
:receiver SubB
:content (E B))

 147

This example shows that the agent (SubA) reneges the “reject” for its activity (E)

from the ‘preceding’ agent (SubB) that has the preceding activity (B). This means

that its cost reply is rejected and the agent has to keep the original schedule.

B.3.7 Accept-all

This is a MLN protocol message with <performative> “accept-all”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

• Semantics

This protocol allows an agent, which has “active” activity, to accept the cost response

from its ‘succeeding’ agent that has the succeeding activity. This means that the agent

chooses to delay its activity rather than accelerate it.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

• Example

(accept-all
:sender SubB
:receiver SubA
:content (B E))

This example shows that the agent (SubB), which has “active” activity (B), accepts

the cost response from its ‘succeeding’ agent (SubA) that has the succeeding activity

(E). This means that the initiating agent (SubB) chooses to delay its activity (B) rather

than accelerate it.

 148

B.3.8 Reject-all

This is a MLN protocol message with <performative> “reject-all”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

• Semantics

This protocol allows an agent, which has “active” activity, to reject the cost response

from its ‘succeeding’ agent that has the succeeding activity. This means that the agent

chooses to accelerate its activity rather than delay it.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

• Example

(reject-all
:sender SubB
:receiver SubA
:content (B E))

This example shows that the agent (SubB), which has “active” activity (B), rejects the

cost response from its ‘succeeding’ agent (SubA) that has the succeeding activity (E).

This means that the initiating agent (SubB) chooses to accelerate its activity (B)

rather than delay it.

B.3.9 Confirm-all

This is a MLN protocol message with <performative> “confirm-all”. The <receiver> is

an agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

 149

• Semantics

This protocol allows an agent to confirm the “accept-all” for its activity from its

‘preceding’ agent that has the preceding activity. This means that its cost reply is

accepted and the contract is binding.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

• Example

(confirm-all
:sender SubA
:receiver SubB
:content (E B))

This example shows that the agent (SubA) confirms the “accept-all” for its activity

(E) from its ‘preceding’ agent (SubB) that has the preceding activity (B). This means

that its cost reply is accepted and the contract is binding.

B.3.10 Renege-all

This is a MLN protocol message with <performative> “renege-all”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

• Semantics

This protocol allows an agent to renege the “accept-all” or “reject-all” for its activity

from its ‘preceding’ agent that has the preceding activity. This means that its cost

reply is rejected and the agent has to keep the original schedule of its activity.

• Field description

sendingSub_activityName: Activity name of sending agent

 150

receivingSub_activityName: Activity name of receiving agent

• Example

(renege-all
:sender SubA
:receiver SubB
:content (E B))

This example shows that the agent (SubA) reneges the “accept-all” or “reject-all” for

its activity (E) from its ‘preceding’ agent (SubB) that has the preceding activity (B).

This means that its cost reply is rejected and the agent (SubA) has to keep the original

schedule of its activity (E).

B.4 NEGOTIATION CONTROL PROTOCOLS

These performatives are used for managing the states of negotiation processes.

B.4.1 Ready

This is a MLN protocol message with <performative> “ready”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

• Semantics

This protocol allows an agent to inform its ‘preceding’ agent, which has the preceding

activity, that its activity is ready for negotiation.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

 151

• Example

(ready
:sender SubA
:receiver SubB
:content (E B))

This example shows that the agent (SubA) informs its ‘preceding’ agent (SubB),

which has the preceding activity (B), that its activity (E) is ready for negotiation.

B.4.2 Hand-over

This is a MLN protocol message with <performative> “hand-over”. The <receiver> is an

agent and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”
“<proposedStartDate>”)”

• Semantics

This protocol allows an agent, which has the active activity, to inform its

‘succeeding’ agent, which has the succeeding activity, of starting a negotiation.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

proposedStartDate: Proposed start date for the activity of receiving agent

• Example

(hand-over
:sender SubB
:receiver SubA
:content (B E 9))

 152

This example shows that the agent (SubB), which has the active activity (B), to

inform the ‘succeeding’ agent (SubA), which has the succeeding activity (E), of

starting a negotiation at Day 9.

B.4.3 Done

This is a MLN protocol message with <performative> “done”. The <receiver> is an agent

and the <sender> is an agent.

• Syntax

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)”

• Semantics

This protocol allows an agent to inform its ‘preceding’ agent, which has the preceding

activity, that its activity is finished the negotiation.

• Field description

sendingSub_activityName: Activity name of sending agent

receivingSub_activityName: Activity name of receiving agent

• Example

(done
:sender SubA
:receiver SubB
:content (E B))

This example shows that the agent (SubA) informs its ‘preceding’ agent (SubB),

which has the preceding activity (B), that its activity (E) is finished the negotiation

 153

APPENDIX-C. MESSAGE-HANDLING MECHANISMS

The subcontractor agent reacts according to what message it receives. Therefore, the

subcontractor agent should have the functionality of handling messages for each type of

multi-linked message protocols. When the agent receives a message, it should also make

a decision accordingly. Note that agents do not have to react to “final” or “sorry”

messages because those messages are sent only to human subcontractors.

C.1 Handling “input” Messages

As shown in Figure C-1, when an agent receives an “input” message, it should check

whether it is allowed to handle the message. The agent is not allowed to handle the

message when the agent is currently involved in the negotiation, which means that the

agent is ‘lock’. In that case, it sends a “sorry” message back to its human subcontractor.

When the agent is not ‘lock’, it parses the content of the message and handles it

according to the content type: AGENT or ACTIVITY. The agent stores the parsed

information in the table for negotiation using activity ID as a key. The agent updates

information when the same activity ID exists already. When the agent fails to parse the

content of message due to typos, it sends a “sorry” message back to its human

subcontractor.

 input

unLocked?
No

Yes
sorry �

updateAgentInfo

wait

isAgentInfo?
No

Yes

isActivityInfo?

updateActivityInfo

wait

Yes

sorry �

No

Figure C-1. Handling “input” messages

 154

C.2 Handling “ready” Messages

As shown in Figure C-2, when an agent receives a “ready” message, whether it comes

from its human subcontractor or an agent, it checks whether all the possible “ready”

messages for the activity are received, which is necessary in order to ensure the

synchronous negotiation. When the agent has received all the possible “ready” messages,

it updates its status as ‘lock’ that prevents the agent from receiving any “input” message.

Then the agent handles the message according to the position of its activity.

 � ready

AC = 0

receivedAll?

hand-over � ask-cost �

selectAC

wait
No

Yes

No

Yes

updateAgentStatus <<“lock”>>

isStartActivity?

isEndActivity?
No

ready �

No

Yes

final �

updateActivityStatus <<“active”>>

Yes

 Figure C-2. Handling “ready” messages

If the activity is the ‘start’ activity, the agent becomes the ‘active’ agent for the activity.

Unless the activity is also the ‘end’ activity, in which the agent sends a “final” message to

its human subcontractor to inform it of the result, the agent finds the best option to pursue

and sends “ask-cost” messages to the agents that have succeeding activities if AC is

positive. This means the agent has an opportunity to save money, or sends “hand-over”

messages to the agents that have succeeding activities, which means the agent decides to

 155

keep the original schedule. If the activity is the ‘middle’ activity, the agent sends “ready”

messages to the agents that have preceding activities.

C.3 Handling “ask-cost” Messages

As shown in Figure C-3, when an agent receives an “ask-cost” message for its activity

from an agent that has a preceding activity, it checks whether all the possible “ask-cost”

messages for the activity are received. A “hand-over” message will be handled as a

possible “ask-cost” message because there will be no “ask-cost” from the activity. When

the agent has received all the possible “ask-cost” messages, the agent handles the

message according to the position of its activity. One important feature of handling “ask-

cost” messages is finding a critical activity or critical activities, which will dictate the

start date of the receiving activity.

� ask-cost

receivedAll?

ask-cost �

selectC4 = min(options)

wait
No

Yes

No

updateCritical

isCritical?

reply-cost(0)�

Yes

Yes

No

reply-cost(DC)�

updateActivityStatus

<<“flag”>>

IsEndActivity?

 Figure C-3. Handling “ask-cost” messages

If the activity is the ‘end’ activity, the agent selects the lowest cost option (minimum of

(C3, C4)) and sends “reply-cost” messages with the costs incurred by the “ask-cost”

message. The aforementioned criticality is used here to reply with the costs to multiple

 156

activities: zero-cost for non-critical activities and full-cost for a critical activity. If there

are multiple critical activities, the costs will be shared equally among them. For other

‘middle’ activities, the agent updates its activity’s status as ‘flag’ for handling “reply-

cost” messages, which means the ‘flag’ activity will determine the best option for

replying cost (minimum of (C3, C4)) when it receives all the “reply-cost” messages. It

also selects the lowest cost option (C4) and sends “ask-cost” messages to the agents that

have succeeding activities according to its C4 option, which means that the agents want

to know the consequence of delaying its activity schedule.

C.4 Handling “reply-cost” Messages

As shown in Figure C-4, when an agent receives a “reply-cost” message for its activity

from an agent that has a succeeding activity, it checks whether all the “reply-cost”

messages for the activity are received. When the agent has received all the “reply-cost”

messages, it handles the message according to the position of its activity.

� reply-cost

receivedAll?

accept �

wait
No

No

No

Yes

accumulateDC

accept-all �

Yes

AC >= DC?

reject-all �

No

Yes

C3 > DC

Yes

reject �

selectC3

isActiveActivity?
?

 Figure C-4. Handling “reply-cost” messages

 157

If the activity is the ‘flag’ activity, it selects the C3 and determines the best option for

replying with the cost (minimum of (C3, C4)) and sends “accept” messages to the agents

that have succeeding activities if C3 is bigger than the accumulated C4, which means

delaying costs less than accelerating costs, or sends “reject” messages, which means the

agent decides to accelerate its activity schedule. If the activity is the ‘active’ activity, the

agent compares AC and DC and sends “accept-all” messages, which means the agent

decides to change the original schedule and transfers (the DC portion of) utility to the

succeeding activities, or “reject-all” messages, which means the agent decides to keep the

original schedule, to the agents that have succeeding activities according to the results of

comparison.

C.5 Handling “accept” Messages

As shown in Figure C-5, when an agent receives an “accept” message for its activity from

an agent that has a preceding activity, it checks whether all the possible “accept” or

“reject” messages for the activity are received. When the agent has received all the

possible “accept” or “reject” messages, it handles the message according to the position

of its activity.

� accept

isEndActivity?

receivedAll?
*

wait
No

No

Yes

updatePreCheck

Yes

reject �

<<“accept”>>

freezeOption

renege �

isRejected?
No

Yes

accept �

isRejected?

Yes

freezeOption

confirm �

No

 Figure C-5. Handling “accept” messages

 158

If the activity is the ‘end’ activity, the agent checks whether a “reject” message is

received and sends one of two messages to the agents that have sent “accept” or “reject”

messages: a “confirm” message, which means the agent freezes the selected option for

replying costs; or a “renege” message, which means the agent has to go back to the

original option. For other ‘middle’ activities, the agent checks whether a “reject” message

is received and sends “accept” or “reject” messages to the agents that have succeeding

activities. Note that any “reject” message will cause the agent to nullify the “accept”

messages, which results in consensus decisions.

C.6 Handling “reject” Messages

As shown in Figure C-6, when an agent receives a “reject” message for its activity from

an agent that has a preceding activity, it checks whether all the possible “accept” or

“reject” messages for the activity are received. When the agent has received all the

possible “accept” or “reject” messages, it handles the message according to the position

of its activity.

� reject

isEndActivity?

receivedAll?
*

wait

Yes

Yes

updatePreCheck

No

<<“reject”>>

No

reject �

freezeOption

renege �

 Figure C-6. Handling “reject” message

If the activity is the ‘end’ activity, without checking whether any “reject” message is

received, the agent sends “renege” messages to the agents that have sent “accept” or

 159

“reject” messages, which means the agent has to go back to the original option. For other

‘middle’ activities, without checking whether any “reject” message is received, the agent

sends “reject” messages to the agents that have succeeding activities. Although any

“reject” message will cause the agent to nullify the “accept” messages, “reject” messages

should be propagated to the end activity in order to avoid deadlocks, instead of sending

“renege” messages immediately.

C.7 Handling “confirm” Messages

As shown in Figure C-7, when an agent receives a “confirm” message for its activity

from an agent that has a succeeding activity, it checks whether all the “confirm”

messages for the activity are received. When the agent has received all the “confirm”

messages, it handles the message according to the position of its activity. Although any

“confirm” message implies that all the “confirm” messages will be received, the agent

should wait until all the “confirm” messages are received in order to avoid deadlocks.

� confirm

isFlagActivity?
Yes

receivedAll?
*

No

freezeOption

wait
Yes

confirm �

No

<<“null”>>

reply-cost(0) �

No

reply-cost(ΣC4) �

isCriticalActivity?

Yes

updateActivityStatus

 Figure C-7. Handling “confirm” messages

If the activity is the ‘flag’ activity, it selects the C4 and sends “reply-cost” messages to

the agents that have succeeding activities with the same principle of criticality. Then the

agent updates its activity’s status to ‘null’, which means the agent is no longer the ‘flag’

 160

activity. For other ‘middle’ activities, the agent sends “confirm” messages to the agents

that have preceding activities.

C.8 Handling “renege” Messages

As shown in Figure C-8, when an agent receives a “renege” message for its activity from

an agent that has a succeeding activity, it checks whether all the “renege” messages for

the activity are received. When the agent has received all the “renege” messages, it

handles the message according to the position of its activity. Although any “renege”

message implies that all the “renege” messages will be received, the agent should wait

until all the “renege” messages are received in order to avoid deadlocks.

� renege

isFlagActivity?
Yes

receivedAll?
*

No

freezeOption

wait
Yes

renege�

No

updateActivityStatus <<“null”>>

reply-cost(0) �

No

reply-cost(C3) �

isCriticalActivity?

Yes

 Figure C-8. Handling “renege” messages

If the activity is the ‘flag’ activity, it selects the C3 and sends “reply-cost” messages as

like handling “confirm” messages. The other procedures are same as handling “confirm”

messages except sending “renege” messages.

C.9 Handling “accept-all” Message

As shown in Figure C-9, when an agent receives an “accept-all” message for its activity

from an agent that has a preceding activity, it checks whether all the possible “accept-all”

or “reject-all” messages for the activity are received. When the agent has received all the

 161

possible “accept-all” or “reject-all” messages, it handles the messages according to the

position of its activity.

� accept-all

isEndActivity?

receivedAll?
*

wait
No

No

Yes

Update PreCheck

Yes

reject-all �

<<“accept-all”>>

resetOption

renege-all �

isRejectedAll?
No

Yes Yes

accept-all �

isRejectedAll?

Yes

updateOption

confirm-all �

No

 Figure C-9. Handling “accept-all” messages

If the activity is the ‘end’ activity, the agent checks whether a “reject-all” message is

received and sends one of two messages to the agents that have sent “accept-all” or

“reject-all” messages: a “confirm-all,” which means the agent updates the selected option

for replying costs; or a “renege-all” message, which means the agent has to go back to the

original option. For other ‘middle’ activities, the agent checks whether a “reject” message

is received and sends “accept-all” or “reject-all” messages to the agents that have

succeeding activities. Note that any “reject-all” message will cause the agent to nullify

the “accept-all” messages, which results in consensus decisions.

C.10 Handling “reject-all” Messages

As shown in Figure C-10, when an agent receives a “reject-all” message for its activity

from an agent that has a preceding activity, it checks whether all the possible “accept-all”

or “reject-all” messages for the activity are received. When the agent has received all the

 162

possible “accept-all” or “reject-all” messages, it handles the message according to the

position of its activity.

� reject-all

isEndActivity?

receivedAll?
*

wait

Yes

Yes

updatePreCheck

No

<<“reject-all”>>

No

reject-all�

resetOption

renege-all �

 Figure C-10. Handling “reject-all” Message

If the activity is the ‘end’ activity, without checking whether any “reject-all” message is

received, the agent send “renege-all” messages to the agents that have succeeding

activities, which means the agent has to go back to the original option. Then the agent

updates its schedule change options accordingly. For other ‘middle’ activities, without

checking whether any “reject-all” message is received, the agent sends “reject-all”

messages. Although any “reject-all” message will cause the agent to nullify the “accept-

all” messages, “reject-all” messages should be propagated to the end activity in order to

avoid deadlocks, instead of sending “renege-all” messages immediately.

C.11 Handling “confirm-all” Message

As shown in Figure C-11, when an agent receives a “confirm-all” message for its activity

from an agent that has a succeeding activity, it checks whether all the “confirm-all”

messages for the activity have been received. When the agent has received all the

“confirm-all” messages, it handles the message according to the position of its activity.

Although any “confirm-all” message implies that all the “confirm-all” messages will be

 163

received, the agent should wait until all the “confirm-all” messages are received in order

to avoid deadlocks.

� confirm-all

isActiveActivity?

Yes

No

updateOption

confirm-all � hand-over��

receivedAll?
*

wait

Yes

No

 Figure C-11. Handling “confirm-all” Message

If the activity is the ‘active’ activity, it sends a “hand-over” message to itself to initiate

another cycle of negotiation because any “confirm-all” message implies that its schedule

change options are changed. Then the agent updates its status to ‘null’, which means the

agent is no longer the ‘active’ activity. For other ‘middle’ activities, the agent sends

“confirm-all” messages to the agents that have preceding activities.

C.12 Handling “renege-all” Messages

As shown in Figure C-12, when an agent receives a “renege-all” message for its activity

from an agent that has a succeeding activity, it checks whether all the “renege-all”

messages for the activity are received. When the agent has received all the “renege-all”

messages, it handles the messages according to the position of its activity. Although any

“renege-all” message implies that all the “renege-all” messages will be received, the

agent should wait until all the “renege-all” messages are received in order to avoid

deadlocks.

 164

� renege-all

isActiveActivity?

Yes

No

resetOption

renege-all � hand-over��

receivedAll?
*

wait

Yes

No

 Figure C-12. Handling “renege-all” messages

If the activity is the ‘active’ activity, it sends a “hand-over” message to the agents that

have the succeeding activities because any “renege-all” message implies that its schedule

change options are not changed. Then the agent updates its status to ‘null’, which means

the agent is no longer the ‘active’ activity. For other ‘middle’ activities, the agent sends

“renege-all” messages to the agents that have preceding activities.

C.13 Handling “hand-over” Message

As shown in Figure C-13, when an agent receives a “hand-over” message for its activity

from an agent that has a preceding activity, it checks whether all the “hand-over”

messages for the activity are received. When the agent has received all the “hand-over”

messages, which is necessary in order to ensure the synchronous negotiation, it updates

the status as “active” and handles the messages according to the position of its activity.

If the activity is the ‘end’ activity, the agent sends a “final” message to its human

subcontractor to inform the result and send “done” messages to the agents that have

preceding agents. It also updates its status as “unlock” to allow its human subcontractor

to provide inputs. For the ‘middle’ activities, the agent finds the best option to pursue

and sends “ask-cost” messages to the agents that have succeeding activities if AC is

positive, which means the agent has an opportunity to save money, or sends “hand-over”

 165

messages to the agents that have the succeeding activities, which means the agent decides

to keep the original schedule.

� hand-over

isEndActivity? AC = 0

receivedAll?

hand-over � ask-cost �

selectAC

wait
No

Yes

No No

Yes Yes

final �

updateActivityStatus <<“active”>>

done �

 Figure C-13. Handling “hand-over” messages

C.14 Handling “done” Message

As shown in Figure C-14, when an agent receives a “done” message for its activity from

an agent that has a succeeding activity, it checks whether all the “done” messages for the

activity are received. When the agent has received all the “done” messages, it updates its

status as “unlock” and handles the messages according to the position of its activity.

Although any “done” message implies that all the “done” messages will be received, the

agent should wait until all the “done” messages are received in order to avoid deadlocks.

If the activity is the ‘start’ activity, it sends a “final” message to its human subcontractor.

For other ‘middle’ activities, the agent sends “done” messages to the agents which have

preceding activities and sends a “final” message to its human subcontractor.

 166

� done

isStartActivity?

receivedAll?

done �

wait
No

Yes

No

Yes

updateAgentStatus <<“unlock”>>

end final �

 Figure C-14. Handling “done” messages

 167

APPENDIX-D. STEP-BY-STEP ABCN ON DSAS

A step-by-step Agent-based Compensatory Negotiation (ABCN) methodology on

Distributed Subcontractor Agent System (DSAS) example will verify that the DSAS

demonstrates the effectiveness of the distributed coordination of project schedule

changes.

Step-0: Consider the example network in Figure D-1(a). The results of conventional

CPM calculations appear on the diagram. The resource requirement for each

activity appears on the diagram in Figure D-1(a). Activities (A, E and G) are

assigned to Sub-α. Activities (B and D) are assigned to Sub-β. Activities (C and

F) are assigned to Sub-δ.

(a)

A

B

C

D

E

Act. 1 2 3 4 5 6 7 8 9 10 11 12 ES

0

3

7

3

7

F

G

7

10

EF

3

7

9

6

10

9

12

TF

0

0

1

1

0

1

0

Sub

α

β

β

δ

α

δ

α

Legend:
 Initial

(Day)

 (b)

Figure D-1. Example network and ERS schedule

A
3 8

E
3 8

F
2 6

G
2 8

C
3 6

B
4 1 0

D
2 1 0

0 3

3 7

7

7

1 0

9

3 6

7 9

1 0 1 2

1 2 /0 1 0 1 0 /0

1 0 /1

1 0 /1

7

8

8

7 /0 3

7 /1 4

3 /0 0

S u b -α S u b -β S u b-δ

L a b
D u r R es

E S E F

L F /T F L S

L eg en d :

 168

The resource histogram in Figure D-2 indicates the initial resource requirements.

 (Day)
Sub-α 1 2 3 4 5 6 7 8 9 10 11 12

Activity-A Activity-E Activity-G

Resources

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-B Activity-D

Resources

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-C Activity-F

Resources

Figure D-2. Resource requirement histogram

The resource histogram in Figure D-3 indicates the available resources.

 (Day)
Sub-α 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-E Activity-G
Activity-A

Resources

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-D
 Activity-B

Resources

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-C Activity-F

Resources

Figure D-3. Available resource histogram

8
6
4
2

10
8
6
4
2

8
6
4
2

8
6
4
2

10
8
6
4
2

8
6
4
2

 169

This resource histogram implies that some subcontractors’ schedules differ from

their original ones. Based on these available resource histograms, some of the

subcontractors’ preferred schedules shift, as shown by the diagonal pattern in

Figure D-4.

A

B

C

D

E

Act. 1 2 3 4 5 6 7 8 9 10 11 12 ES

1

4

9

5

8

F

G

8

11

EF

4

8

10

7

10

9

12

TF

0

0

0

1

0

1

0

Sub

α

β

β

δ

α

δ

α

Legend:
 Initial

 Preferred

Schedul
e
Schedule
conflicts

(Day)

Figure D-4. Subcontractors’ preferred schedule

 Human subcontractors provide their agents with agent and activity information

by sending “input” messages. Table D-1 shows the initial schedule-change

options in the format of (startDate(day) endDate(day) extraCost($)). Note that

options marked ‘*’ are initially available options, which are feasible because the

start date of an activity is later than the end dates of the preceding activities. The

option marked ‘**’includes liquidated damages ($4,000) for a 2-day project

delay.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) (1 4 0)
B (4 7 1920) (4 8 0) (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0)
D (8 10 0) (9 10 0) (10 11 960)
E (8 10 0) (9 10 640) (10 12 0)
F (8 9 0) (9 10 384) (10 11 768)
G (11 12 0) (13 14 4512)**

Table D-1. Initial schedule change options at Step-0

 170

Step-1: The Distributed Coordination of Project Schedule Changes (DCPSC) starts with

“ready” messages from its human subcontractors through distributed Graphic

User Interfaces (GUIs). Agents propagate the “ready” messages backward to the

agents that have preceding activities, based on the project plan.

Step-2: The agents propagate “ready” messages backward to the agents that have the

preceding activities.

Step-3: The agents propagate “ready” messages backward to the agent that has the start

activity.

Step-4: After receiving all “ready” messages, the agent (Sub-α) that has the start activity

(A) selects an option (A2) to be explored and finds AC ($480), the difference

between the selected option ($0) and the initial option ($480). To find the extra

cost for the succeeding activities from the change, Sub-α sends “ask-cost”

messages to agents (Sub-β and Sub-δ) that have succeeding activities (B and C),

which ask the succeeding activities to start at Day 5.

Step-5: After receiving all “ask-cost” messages, the agents (Sub-β and Sub-δ) select the

lowest-cost possible options (B5 and C1) and find the DC, which are the extra

costs of selected options. They then send “ask-cost” messages to the agents (Sub-

α, Sub-β, and Sub-δ) that have succeeding activities (D, E, and F). Note that

Sub-β and Sub-δ send messages to themselves, but for different activities.

Step-6: The “ask-cost” messages are propagated forward to the end activity, with

selecting options (E3, D3, F3).

Step-7: After receiving all “ask-cost” messages, the agent (Sub-α) that has the end

activity (G) selects the lowest possible option (G2) as DC. The agent also finds

which activity is a critical activity (E), which asks (G) to start on the latest date.

And then Sub-α sends “reply-cost” messages with DC to the agent (Sub-α) that

has critical activity (E) and sends zero (0) cost to the other agents (Sub-β and

Sub-δ). Table D-2 shows the selected schedule-change options, which is marked

“3.”

 171

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) (1 4 0) 3
B (4 7 1920) (4 8 0) (5 7 5760) (5 8 1920) (5 9 0) 3
C (5 7 0) 3
D (8 10 0) (9 10 0) (10 11 960) 3
E (8 10 0) (9 10 640) (10 12 0) 3
F (8 9 0) (9 10 384) (10 11 768) 3
G (11 12 0) (13 14 4512)** 3

Table D-2. Selected schedule change options at Step-7

Step-8: After receiving all “reply-cost” messages, the agents (Sub-α, Sub-β, and Sub-δ)

accumulate DC and compare them with AC, which can be finished within the

initial end date. In this case, there are no other possible options; therefore, the

agents send “accept” messages to the agent (Sub-α) that has a succeeding

activity (G).

Step-9: After receiving all “accept” messages, the agent (Sub-α) sends “confirm”

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities

(D, E, and F).

Step-10: After receiving all “confirm” messages, the agents (Sub-α, Sub-β, and Sub-δ)

send “reply-cost” messages with accumulated DC to the agents (Sub-β and Sub-

δ) that have preceding activities (D, E, and F).

Step-11: Similar to Step-8. But Sub-β finds the lower-cost AC ($5,760) for Activity-B

than the accumulated DC ($6,240). Therefore, Sub-β sends “reject” messages to

the agents (Sub-α and Sub-β) that have succeeding activities (D and E). On the

other hand, Sub-δ cannot find another option for Activity-C and sends “accept”

messages to the other agents (Sub-α and Sub-δ).

Step-12: After receiving all “accept/reject” messages, the agents (Sub-α, Sub-β, and Sub-

δ) send “reject” messages to the agent (Sub-α) that has succeeding activities (G).

Note that “accept” messages are sent only if all messages are “accept”, which

makes them consensus agreements.

 172

Step-13: After receiving all “reject” messages, the agent (Sub-α) sends “renege”

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have sent “accept/reject”

messages for activities (D, E, and F).

Step-14: The “renege” messages propagate backward to the agents (Sub-β and Sub-δ)

that initially sent “accept” or “reject” messages.

Step-15: After receiving all “renege” messages, the agents (Sub-β and Sub-δ) send

“reply-cost” messages with their AC to the agent (Sub-α) that has sent “ask-cost”

messages for activity (A). Table D-3 shows the selected schedule-change

options.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) (1 4 0) 3
B (4 7 1920) (4 8 0) (5 7 5760) 3 (5 8 1920) (5 9 0)
C (5 7 0) 3
D (8 10 0) 3 (9 10 0) (10 11 960)
E (8 10 0) 3 (9 10 640) (10 12 0)
F (8 9 0) 3 (9 10 384) (10 11 768)
G (11 12 0) 3 (13 14 4512)**

Table D-3. Selected schedule change options at Step-15

Step-16: After receiving all “reply-cost” messages, the agent (Sub-α) accumulates DC

and compares them with its AC, which can be finished within the initial end

dates. In this case, DC ($5,760) is more than AC ($480). Therefore it sends

“reject-all” messages to the agents (Sub-β and Sub-δ) that have succeeding

activities (B and C). Note that “reject-all” messages are authorative compared to

tentative “reject” messages.

Step-17: The agents (Sub-β and Sub-δ) propagate “reject-all” messages forward to the

agents (Sub-α, Sub-β, and Sub-δ), which have activities (E, E, and F).

Step-18: The agents (Sub-α, Sub-β, and Sub-δ) propagate “reject-all” messages forward

to the agent (Sub-α), which has the end activity (G).

 173

Step-19: After receiving all “reject-all” messages, the agent (Sub-α) sends “renege-all”

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities

(D, E, and F).

Step-20: The agents (Sub-α, Sub-β, and Sub-δ) propagate “renege-all” messages

backward to the agents (Sub-β and Sub-δ), which have activities (B and C).

Step-21: The agents (Sub-β and Sub-δ) propagate “renege-all” messages backward to the

agent (Sub-α) that initially sent a “reject-all” message. Table D-4 shows the

selected schedule-change options. Note that all agents have to stick with the

initial options.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) 3 (1 4 0)
B (4 7 1920) 3 (4 8 0) (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0) 3
D (8 10 0) 3 (9 10 0) (10 11 960)
E (8 10 0) 3 (9 10 640) (10 12 0)
F (8 9 0) 3 (9 10 384) (10 11 768)
G (11 12 0) 3 (13 14 4512)**

Table D-4. Selected schedule change options at Step-21

Step-22: After receiving all “renege-all” messages, the agent (Sub-α) fixes its option

(A1) and sends “hand-over” messages to the agents (Sub-β and Sub-δ) that have

succeeding activities (B and C).

Step-23: After receiving all “hand-over” messages, the agents (Sub-β and Sub-δ) select

an option (B2 and C1) to be explored and find AC. Sub-β finds AC ($1,980) and

sends “ask-cost” messages to agents (Sub-α, Sub-β, and Sub-δ) that have

succeeding activities (D, E, and F), which ask the succeeding activities to start at

Day 9. Meantime, Sub-δ sends “hand-over” messages to agents (Sub-α and Sub-

δ) that have succeeding activities (E and F) because its AC is zero (0), which

means there is no better option.

 174

Step-24: After receiving all “ask-cost” messages, the agents (Sub-α, Sub-β, and Sub-δ)

select the options that are the lowest possible options (E2, D2, and F2). And then

sends “ask-cost” messages to the agent (Sub-α) that has succeeding activities

(G). Note that Sub-α and Sub-δ handle “ask-cost” messages even though they

have also received “hand-over” messages.

Step-25: After receiving all “ask-cost” messages, the agent (Sub-α), which has the end

activity (G), selects the lowest possible option (G1). And then Sub-α sends

“reply-cost” messages to the agents (Sub-α, Sub-β, and Sub-δ), which have sent

“ask-cost” messages for activities (D, E, and F).

Step-26: After receiving all “reply-cost” messages, the agents (Sub-α, Sub-β, and Sub-δ)

accumulate DC and compare them with AC, which can be finished within the

initial end date. In this case, there are no other possible options; therefore, the

agents send “accept” messages to the agent (Sub-α) that has a succeeding

activity (G).

Step-27: After receiving all “accept” messages, the agent (Sub-α) sends “confirm”

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities

(D, E, and F).

Step-28: After receiving all “confirm” messages, the agents (Sub-α, Sub-β, and Sub-δ)

send “reply-cost” messages with accumulated DC to the agents (Sub-α, Sub-β,

and Sub-δ) that have preceding activities (D, E, and F). Table D-5 shows the

selected schedule-change options.

Activity Option 1* Option 2 Option 3 Option 4 Option 5

A (1 3 480) 3 (1 4 0)
B (4 7 1920) (4 8 0) 3 (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0) 3
D (8 10 0) (9 10 0) 3 (10 11 960)
E (8 10 0) (9 10 640) 3 (10 12 0)
F (8 9 0) (9 10 384) 3 (10 11 768)
G (11 12 0) 3 (13 14 4512)**

Table D-5. Selected schedule change options at Step-28

 175

Step-29: After receiving all “reply-cost” messages, the agent (Sub-β) accumulates DC

and compares them with AC, which needs to finish within the initial end date. In

this case, DC ($1,024) is less than AC ($1,960). Therefore, it sends “accept-all”

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have succeeding activities

(D, E, and F).

Step-30: The agents (Sub-α, Sub-β, and Sub-δ) propagate “accept-all” messages forward

to the agent (Sub-α), which has the end activity (G).

Step-31: After receiving all “accept-all” messages, the agent (Sub-α) sends “confirm-all”

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities

(D, E, and F).

Step-32: The agents (Sub-α, Sub-β, and Sub-δ) change their option from (E2 (9 10 640),

F2 (9 10 384)) to (E2’ (9 10 0), F2’ (9 10 0)) and propagate “confirm-all”

messages backward to the agent (Sub-β), which has activity (B). Note that

sending “confirm-all” messages means contract binding between them.

Step-33: After receiving all “confirm-all” messages, the agent (Sub-β) changes its option

from (B2 (4 8 0)) to (B2’ (4 8 1024)) and sends “hand-over” messages to its

agent (Sub-β) that has the same activity (B) because schedule-cost options

change after the compensation. Table C-6 shows the selected schedule-change

options. Note that options (B2, E2, and F2) change after compensation. Table D-

6 shows the selected schedule-change options.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) 3 (1 4 0)
B (4 7 1920) (4 8 1024) 3 (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0) 3
D (8 10 0) (9 10 0) 3 (10 11 960)
E (8 10 0) (9 10 0) 3 (10 12 0)
F (8 9 0) (9 10 0) 3 (10 11 768)
G (11 12 0) 3 (13 14 4512)**

Table D-6. Selected schedule change options at Step-33

 176

Step-34: After receiving the “hand-over” message, Sub-β selects an option (B5) to

explore and finds AC. Sub-β finds AC ($1,024) and sends “ask-cost” messages

to agents (Sub-α, Sub-β, and Sub-δ) that have succeeding activities (D, E, and

F), which ask the succeeding activities to start at Day 10.

Step-35: After receiving the “ask-cost” message, the agents (Sub-α, Sub-β, and Sub-δ)

select the options that are the lowest possible options (E3, D3, and F3). And then

sends “ask-cost” messages to the agent (Sub-α) that has succeeding activities

(G).

Step-36: After receiving all “ask-cost” messages, the agent (Sub-α), which has the end

activity (G), selects the lowest possible option (G2). And then Sub-α sends

“reply-cost” messages to the agents (Sub-α, Sub-β, and Sub-δ), which have sent

“ask-cost” messages for activities (D, E, and F).

Step-37: After receiving all “reply-cost” messages, the agents (Sub-α, Sub-β, and Sub-δ)

accumulate DC and compare them with AC, which can be finished within the

initial end date. In this case, there are no other possible options; therefore, the

agents send “accept” messages to the agent (Sub-α) that has a succeeding

activity (G).

Step-38: After receiving all “accept” messages, Sub-α sends “confirm” messages to the

agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities (D, E, and F).

Step-39: After receiving all “confirm” messages, the agents (Sub-α, Sub-β, and Sub-δ)

send “reply-cost” messages with accumulated DC to the agents (Sub-α, Sub-β,

and Sub-δ) that have preceding activities (D, E, and F). Table D-7 shows the

selected schedule-change options.

Step-40: After receiving all “reply-cost” messages, Sub-β accumulates DC and compares

them with an AC that can be finished within the initial end dates. In this case,

DC ($6,240) is more than AC ($1,024). Therefore it sends “reject-all” messages

to the agents (Sub-α, Sub-β, and Sub-δ) that have succeeding activities (D, E,

and F).

 177

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) 3 (1 4 0)
B (4 7 1920) (4 8 0) (5 7 5760) (5 8 1920) (5 9 0) 3
C (5 7 0) 3
D (8 10 0) (9 10 0) (10 11 960) 3
E (8 10 0) (9 10 640) (10 12 0) 3
F (8 9 0) (9 10 384) (10 11 768) 3
G (11 12 0) (13 14 4512)** 3

Table D-7. Selected schedule change options at Step-39

Step-41: The agents (Sub-α, Sub-β, and Sub-δ) propagate “reject-all” messages forward

to Sub-α, which has the end activity (G).

Step-42: After receiving all “reject-all” messages, Sub-α sends “renege-all” messages to

the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities (D, E, and

F).

Step-43: The agents (Sub-α, Sub-β, and Sub-δ) propagate “renege-all” messages

backward to Sub-β, which has an activity (B). Table D-8 shows the selected

schedule-change options.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) 3 (1 4 0)
B (4 7 1920) (4 8 1024) 3 (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0) 3
D (8 10 0) (9 10 0) 3 (10 11 960)
E (8 10 0) (9 10 0) 3 (10 12 0)
F (8 9 0) (9 10 0) 3 (10 11 768)
G (11 12 0) 3 (13 14 4512)**

Table D-8. Selected schedule-change options at Step-43

Step-44: After receiving all “renege-all” messages, Sub-β sends “hand-over” messages to

the agents (Sub-α, Sub-β, and Sub-δ) that have succeeding activities (D, E, and

F).

 Step-45: After receiving all “hand-over” messages, the agents (Sub-α, Sub-β, and Sub-

δ) select an option (E2’, D2 and F2’) to be explored. However, since their ACs

 178

are zero (0), agents (Sub-α, Sub-β, and Sub-δ) send “hand-over” messages to

Sub-α that has the succeeding activity (G).

Step-46: After receiving all “hand-over” messages, Sub-α, which has the end activity,

sends a “final” message that informs its human subcontractor of the negotiation

result, which includes new activity duration, activity benefit from the

negotiation, receivable, payable, and new schedule-change options. Also Sub-α

sends “done” message to the agents (Sub-α, Sub-β, and Sub-δ) that have

preceding activities.

Step-47: After receiving all “done” messages, the agents (Sub-α, Sub-β, and Sub-δ) send

“final” messages that informs their human subcontractors of the negotiation

results, and propagate “done” messages backward to the agents (Sub-β and Sub-

δ), which have activities (B and C).

Step-48: After receiving all “done” messages, the agents (Sub-β and Sub-δ) send “final”

messages that informs their human subcontractors of the negotiation results, and

propagate “done” messages backward to Sub-α, which has the start activity (A).

Step-49: After receiving all “done” messages, Sub-α, which has the start activity, sends a

“final” message to its human subcontractor.

Step-50: A cycle of negotiation is finished. Table D-9 shows the selected schedule-

change options.

Activity Option 1* Option 2 Option 3 Option 4 Option 5
A (1 3 480) 3 (1 4 0)
B (4 7 1920) (4 8 1024) 3 (5 7 5760) (5 8 1920) (5 9 0)
C (5 7 0) 3
D (8 10 0) (9 10 0) 3 (10 11 960)
E (8 10 0) (9 10 0) 3 (10 12 0)
F (8 9 0) (9 10 0) 3 (10 11 768)
G (11 12 0) 3 (13 14 4512)**

Table D-9. Selected schedule change options at Step-50

 179

Diagonal patterns in Figure D-5 shows the final revised schedule at Step-50.

A

B

C

D

E

Act. 1 2 3 4 5 6 7 8 9 10 11 12 S

1

4

9

5

9

F

G

9

11

F

3

8

10

7

10

10

12

+

480

1024

0

0

0

0

0

Sub

α

β

β

δ

α

δ

α

Legend:
 Initial

 Selected

(Day)

Figure D-5. Final revised schedule

Figure D-6 shows the final revised resource histogram at Step-50. The diagonal

pattern indicates the overtime or importing extra resources.

 (Day)
Sub-α 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-E Activity-G
Activity-A

Resources

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-D
 Activity-B

Resources

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12

 Activity-C

Resources

Figure D-6. Final revised resource histogram

10
8
6
4
2

10
8
6
4
2

Activit y-F

8
6
4
2

 180

APPENDIX-E. MATHEMATICAL PROOFS OF EVALUATION

RESULTS

E.1 Definitions of Total Cost Overruns of TCC, LCC, and DCPSC

This section shows the definitions of total cost overruns of TCC (CTCC), LCC (CLCC), and

DCPSC (CDCPSC).

E.1.1 Definition of total cost overruns of TCC

A naïve formulation of the total cost overruns (CTCC) after TCC is as follows:

0,
1

≥= ∑
=

i

n

i
iTCC ACACC

Where ACi = the cost for expediting the ith activity, over and above the original

cost, denoted “Ci1 – Ci0” on page 40.

However, examining the actual process of getting ACi on any project plan produces a

more complex formulation as below:

0,
{}1

≥





= ∑ ∑

≠≥ ∈

k
i

Wavek Wavei

k
iTCC ACACC

k k�

Where k is the order of Wave, which is a set of activities to be considered at the

same time. I.e., Wave1 = the first (only one) activity and Wavei = {succeeding

activities of Wave(i-1)} for i � ��

k
iAC = the cost for expediting the ith activity, over and above the original cost

within the kth Wave.

Since i
k
i ACACk =∀ , , because there is only one AC for each activity, the following

formula generalize the total cost overruns (CTCC) after TCC:

{ }
0,,

1 1

≥=







= ∑ ∑∑

≠≥ =∈
i

k
i

Wavek

n

i
i

Wavei

k
iTCC ACACACACC

k k�

 181

E.1.2 Definition of total cost overruns of LCC

A naïve formulation of the total cost overruns (CLCC) after LCC is as follows:

0,
11

≥== ∑∑
==

i

n

i
i

n

i
iLCC CBCBLCCC

Where LCCi = CBi = the cost for delaying the ith activity, over and above the

original cost, denoted “Ci2 – Ci0” on page 40 for i=1 and “Ci4 – Ci0” on page 41 for

i>2. This includes the cost of unscheduled resources and liquidated damages.

However, examining the actual process of getting CBi on any project plan produces a

more complex formulation as below:

()

()
{ }

0,,,,

,

_

{}11{}1

≥+=







+=





==

∑

∑ ∑∑ ∑∑

∈

≠≥ ∈≥ ∈≠≥

k
j

k
j

k
i

k
i

activitiessucceedingj

k
j

k
j

k
i

Wavek Wavei

k
i

k
i

Wavek Wavei

k
i

Wavek

k
LCC

CDCBCDCBCDCBCD

CDCBLCCLCCC

i

k kk kk ���

Where LCCk = the cost for delaying all the activities with the kth wave;

k
iLCC = the cost for delaying the ith activity with the the kth wave;

k
iCB = the cost for delaying the ith activity, over and above the original cost within

the kth wave;

k
iCD = the cost for delaying succeeding activities of the ith activity, over and

above the original cost within the kth Wave.

Since CBi is the cost for delaying the ith activity, which accumulates all the k

iCB ,

i
k

k
i CBCB

wave

=∑ . Therefore, the following formula generalize CLCC:

()

()
{ }

0,,,,,

,

_

1 1 1

{}11{}1

≥+=

==





=







+=





==

∑

∑ ∑ ∑∑

∑ ∑∑ ∑∑

∈

= = =

≠≥ ∈≥ ∈≠≥

k
j

k
ji

k
i

k
i

activitiessucceedingj

k
j

k
j

k
i

n

i

n

i

n

i
ii

k

k
i

Wavek Wavei

k
i

k
i

Wavek Wavei

k
i

Wavek

k
LCC

CDCBCBCDCBCDCBCD

LCCCBCB

CDCBLCCLCCC

i

wave

k kk kk ���

 182

E.1.3 Definition of total cost overruns of DCPSC

The following formula generalizes the total cost overruns (CDCPSC) after DCPSC:

()()

()()
{ }

0,,,,min

,0,,,,min

_

{}1

1{}1

≥+=

≥





+

=





==

∑

∑ ∑

∑ ∑∑

∈

≠≥ ∈

≥ ∈≠≥

k
j

k
j

k
j

activitiessucceedingj

k
j

k
j

k
j

k
i

k
i

k
i

k
i

Wavek Wavei

k
i

k
i

k
i

Wavek Wavei

k
i

Wavek

k
DCPSC

DCCBACDCCBACDC

DCCBACDCCBAC

DCPSCDCPSCC

i

k k

k kk

�

��

Where DCPSCk = the minimum cost between the cost for expediting and the costs

for delaying activities with the kth wave;

k
iDCPSC = the minimum cost between the cost for expediting and the costs for

delaying activities from the ith activity with the kth wave;

k
iDC = the minimum cost between the cost for expediting and the costs for

delaying succeeding activities of the ith activity, over and above the original cost

within the kth Wave.

E.2 Comparisons of Total Cost Overruns of TCC, LCC, and DCPSC

Theorem 1: CDCPSC ≤ CTCC

Because ()() k
i

k
i

k
i

k
i ACDCCBAC ≤+,min by the definition of min,

()()
{ }

{ }

...0,,,

,min

11

1

DEQACDCCBAC

CACAC

DCCBACC

i
k
i

k
i

k
i

n

i
TCCi

Wavek Wavei

k
i

Wavek Wavei

k
i

k
i

k
iDCPSC

k k

k k

≥

==





≤







+=

∑∑ ∑

∑ ∑

=≠≥ ∈

≠≥ ∈

�

�

 183

Theorem 2: CDCPSC ≤ CLCC

LEMMA 1 : CDCPSC ≤ CLCC when the activities follow a linear sequence, which means

the nth activity follows the (n-1)th activity, so on, as shown in Figure E-1.

Figure E-1. Activity precedence network

1 2 3 n-1 n Activities

Because Wavek = the kth activity, then i = k. Then we can simplify CLCC as follows:

,0,,,

,
111

≥






=== ∑ ∑∑∑

= ===

i
k
i

k
k

k
k

n

k

n

ki

k
i

n

k

k
k

n

k

k
LCC

CBCBDCCB

CBLCCLCCC

With the same procedure, we can simplify CDCPSC as follows:

()() ,0,,,,min
1

1

11

≥+=

==

∑

∑∑

=
+

==

k
k

k
k

k
k

n

k

k
k

k
k

k
k

n

k

k
k

n

k

k
DCPSC

DCCBACDCPSCCBAC

DCPSCDCPSCC

Now we compare CDCPSC with CLCC.

Basis: k = n:

Because 0, 1 =∀ +

k
nDCPSCk , because there is no succeeding activity, 01 =+

n
nDCPSC .

()() ()

nn
n

n

ni

n
i

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n

LCCLCCCBCB

CBACDCPSCCBACDCPSCDCPSC

===≤

=+==

∑
=

+ ,min,min 1

When k = n-1:

Because 01

1 =−
+

n
nDCPSC ,

 184

()() ()

()()
()()()

()() () 11
1

1

111
1

111
1

111
1

1
1

11
1

1
1

1
1

1

111
1

111

,min

,min,min

,min

,,min,min

−−
−

−=

−−−
−

−−−
−

−−−
−

−
−

−−
−

−
−

−
−

−

−−−
+

−−−

===+≤+≤

+=

+==

=+=

∑ nn
n

n

ni

n
i

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n

n
n

n
n

n
n

n
n

n
n

n
n

LCCLCCCBCBCBCBACCB

CBACCBAC

DCPSCCBACDCPSCDCPSC

CBACDCPSCCBACDCPSC

When k = k:

Given ∑
=

=≤≤≤∀
n

ii

k
i

k
i

k
i CBLCCDCPSCnili ,, , we prove that k

l
k
l LCCDCPSC 11 −− ≤

by induction on the activity number within the same wave k.

()()
() k

l

n

li

k
i

n

li

k
i

k
l

k
l

k
l

k
l

k
l

k
l

k
l

LCCCBCBCBDCPSCCB

DCPSCCBACDCPSC

1
1

11

111 ,min

−
−==

−−

−−−

∑∑ ==




 +≤+≤

+=

The conclusion we draw is that DCPSCk is less than or equal to LCCk for any activity

number for k ≤ i ≤ n.

Therefore, kk
k

k
k

k LCCLCCDCPSCDCPSC =≤=

Then,

...,
111

DEQCLCCCBDCPSCC LCC

n

i
i

n

k

n

ki

k
i

n

k

k
DCPSC ==





≤= ∑∑ ∑∑

== ==

Therefore, CDCPSC ≤ CLCC when the activities follow a linear sequence.

LEMMA 2 : If CDCPSC ≤ CLCC for each string of linear activities, then this is so for the

xth activity where they fork also.

jj

x x

jj LCCDCPSC
activitieslinearsucallj activitieslinearsucallj

LCCDCPSC CCCC ≤≤∑ ∑
∈ ∈___ ___

 185

Since CDCPSC ≤ CLCC for each string of linear activities, then this is so for the activity

where they fork also because the summation of CDCPSC is less than or equal to the

summation of CLCC for the xth activity where they fork.

Lemmas 1 and 2 show that CDCPSC ≤ CLCC within any project plan where the activities

follow a linear sequence and the activity where they fork also.

Theorems 1 and 2 show that DCPSC always finds a solution that is better than or equal to

that of any of two centralized coordination methodologies (TCC and LCC) since DCPSC

selects the minimum value among the cost of expediting the activity (AC) and the cost

for delaying the activity (CB).

 186

APPENDIX-F. HANDOUT FOR DSAS CHARRETTE TEST

Figure F-1 shows a copy of handout for DSAS charrette test, which was prepared for
Sub-α.

Sub-α-1

A. DSAS Charrette Test Date: ____________

1. Objective: To test the effectiveness of Distributed Subcontractor Agent System

(DSAS)

2. Processes to be tested

(a) Manual Centralized Coordination of Project Schedule Changes
(b) Computerized Distributed Coordination of Project Schedule Changes (DCPSC)

3. Tasks: To find a better project schedule from the given schedule-cost options

4. Pre-conditions

(a) Use an example CPM schedule in Section B.
(b) Use resource histogram in Section C.
(c) The participants are not allowed to share schedule-cost options.

5. Trial-1 (Manual) Start Time: _____________

Use the following schedule-cost options to find a better project schedule, if it is
possible. Mark the selected options.

(startDate endDate extraCost)
Activity ES-LF ES-FF Option-1 Option-2 Option-3 Option-4

B (2 19) (2 4) (2 4 80) (4 6 0)
E (6 24) (6 9) (7 9 0)
I (10 28) (10 13) (10 13 0) (11 14 120) (12 15 240)

M (14 31) (14 26) (14 16 0) (20 22 120) (25 27 0)
Q (27 34) (27 30) (28 30 0)
U (31 38) (31 38) (31 34 0) (32 35 80)

 Total extra cost: $________________ End Time: _____________

Figure F-1. Handout for DSAS charrette test (Sub-α)

 187

Sub-α-2

6. Trial-2 (Computerized DSAS) Start Time: _____________

Based on the tutorials in Section D, use the data in Section E to find a better schedule,
if it is possible. Mark and correct the selected schedule-cost options based on the
“final” messages, if it is changed.

 (startDate endDate extraCost)
Activity ES-LF ES-FF Option-1 Option-2 Option-3 Option-4

B (2 19) (2 4) (2 4 80) (4 6 0)
E (6 24) (6 9) (7 9 0)
I (10 28) (10 13) (10 13 0) (11 14 120) (12 15 240)

M (14 31) (14 26) (14 16 0) (20 22 120) (25 27 0)
Q (27 34) (27 30) (28 30 0)
U (31 38) (31 38) (31 34 0) (32 35 80)

 Total extra cost: $________________ End Time: _____________

7. Questionnaire

Please answer the following questions:

7.1 Your backgrounds
 Years? Novice Expert
Construction experience yrs. M N O P Q
Computer experience yrs. M N O P Q

7.2 How hard do you think were the following trials?

 Easy Hard
Trial-1 Manual M N O P Q
Trial-2 Computerized DCPSC M N O P Q

7.3 How well are you convinced on the results from the following trials?

 Little Much
Trial-1 Manual M N O P Q
Trial-2 Computerized DCPSC M N O P Q

7.4 How well do you think the subcontractor will accept the results?

 Little Much
Trial-1 Manual M N O P Q
Trial-2 Computerized DCPSC M N O P Q

Figure F-1. (Continued)

 188

Sub-α-3

7.5 How much do you think the following inputs would be confidential to
subcontractors?

 Little Much
a) Start date/End date M N O P Q
b) Precedence relationships M N O P Q
c) Schedule-cost options M N O P Q

7.6 Schedule options

 No Yes
a) Are schedule-cost options reasonable? M N O P Q
b) Can you guess others’ schedule-cost options? M N O P Q

7.7 Other comments for improvement of DSAS

THANK YOU FOR YOUR TIME AND EFFORT

 Figure F-1. (Continued)

 189

Sub-α-4

B. CPM Schedule

C
8 10

1

9/0 1

F
3 10

Y
5 10

Ω
1 0

A
1 0

0 1

1/0 0

B
3 10

1 4

19/15 16

D
4 10

1 5

G
6 10

H
5 10

E
3 10

5 8

24/16 21

J
2 10

K
4 10

L
8 10

I
4 10

9 13

28/15 24

N
2 10

O
3 10

P
2 10

M
3 10

13 16

31/15 28

R
2 10

S
8 10

T
4 10

Q
3 10

26 29

34/5 31

V
5 10

W
3 10

X
2 10

U
4 10

30 34

38/4 34

Z
3 10

9 12 15 17 23 25 25 27 33 38

21/8 18 23/6 21 25/0 23 34/7 32 38/0 33

38 43

43/0 38 43 44

43 44/0 9 15 9 13 23 26 25 33 30 33 33 36

15/0 9 28/15 24 30/4 27 33/0 25 38/5 35 43/7 40

9

17 21/16
4 9 15 23 23 25 26 30 27 29

24/15 19 23/0 15 32/7 30 34/4 30 38/9 36

Sub-α

Sub-β

Sub-ε Sub-δ

GC GC

Lab

Dur Res

ES EF

LF/TF LS

Legend:

C. Resource Histogram

 0 10 20 30 40

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

 0 10 20 30 40

U B E I M Q

Figure F-1. (Continued)

 190

Sub-α-5

D. Tutorial

This DSAS tutorial explains step-by-step instructions to run DSAS for Trial-2.

1. Flow Chart

Figure F-1. (Continued)

Start

Step-1:
Start a Subcontractor Agent

Step-2:
Run a JATLite Router Client

Step-3:
Connect to the router

Check
connection

No

Step-4:
Register to the router

Step-5:
Send “input” messages

Step-6:
Send “ready” messages

Step-7:
Check sent and received
messages

End

Yes

 191

Sub-α-6

2. Step-by-Step Instructions

Step-1: Start a Subcontractor Agent

� Click Start, point to Programs, and then click MS-DOS Prompt.
� Type the following command in the root directory.

 C:/>java dsas/subcontractor/RunSubcontractor dsas/SUBAADDRESS

� You will see following message (the last four lines) on the Command Prompt
window.

Step-2: Run a JATLite IPLayer Router Client

� Click Start, point to Programs, point to JATLiteBeta , and then click IPRCApplet .
� If successful, you can see JATLite IPLayer Router Client window as below.

Figure F-1. (Continued)

 192

Sub-α-7

Step-3: Connect to the router in the JATLite IPLayer Router Client window

� In ‘Request’ panel, fill in AgentName (koo) and Password (koo) and click ‘Connect’
button to connect to router.

� If successful, you will see ‘Connection established ’ message is received. Then
skip Step-4 and go to Step-5.

Step-4: Register to the router in the JATLite IPLayer Router Client window

� Go to ‘Register’ panel and fill in AgentName (koo) and Password (koo). AgentName
and Password are case sensitive and there should be no white space.

� Click ‘Register’ button
� Go to ‘Request’ panel and make sure that ‘Register accepted ’ message is received

in the text area.

Step-5: Send “input” messages in the JATLite IPLayer Router Client window

� Go to ‘Compose’ panel and fill in Performative (input) and Receiver (Sub-α).
� Copy and paste one of DSAS input data in Content field from the top. Note that you

do not need to type in open and close parenthesis in the content filed.
� Click ‘Send’ button and check the Command Prompt window.
� Repeat the previous two processes until there is no new input data.
�� Check whether all “input” messages are sent.

Step-6: Send “ready” messages in the JATLite IPLayer Router Client window

� Change Performative (ready) in the ‘Compose’ panel.
� Copy and paste one of DSAS ready data in Content field from the top. Note that you

do not need to type in open and close parenthesis in the content filed.
� Click ‘Send’ button and check the Command Prompt window.
� Repeat the previous two processes until there is no new input data.
� If completed, the subcontractor will start negotiation and does not allow any input

until the negotiation cycle is finished, when your subcontractor agent will send ‘final’
messages to your IPRCApplet.

Step-7: Check sent and received messages in the JATLite IPLayer Router Client
window

� Click once to select the message in the list box (upper right). Then click “show”
button.

� Click once to un-select the read message.
� Click ‘final’ messages to check the results
� If New Start Date/ New End Date differs from the Option-1, check Receivable,

Payable, and Schedule Options.

Figure F-1. (Continued)

 193

Sub-α-8

E. Data

1. input human subcontractor Æ agent

 (input
 :sender koo
 :receiver Sub-α

:content (AGENT(projStartDate projEndDate projPenalty subName))
(ACTIVITY(activityName startDate endDate){(preSubName
preActivityName)*}{(sucSubName
sucActivityName)*}{(startDate endDate extraCost)*})

Test inputs:
[Sub-α]--

AGENT(1 44 2000.0 koo)
ACTIVITY(B 2 4){(GC A)}{(Sub- α E)(Sub-ε H)}{(2 4 80)(4 6
0)}
ACTIVITY(E 6 9){(Sub-α B)(Sub-ε D)}{(Sub-α I)}{(7 9 0)}
ACTIVITY(I 10 13){(Sub-α E)(Sub-ε H)}{(Sub-α M)}{(10 13
0)(11 14 120)(12 15 240)}
ACTIVITY(M 14 25){(Sub-α I)(Sub-δ K)}{(Sub-α Q)}{(14
16 0)(20 22 120)(25 27 0)}
ACTIVITY(Q 27 30){(Sub-α M)(Sub-δ O)}{(Sub-α U)}{(28
30 0)}
ACTIVITY(U 31 38){(Sub-α Q)(Sub-β R)(Sub-ε T)}{(Sub-β
Y)}{(31 34 0)(32 35 80)}

2. ready human subcontractor Æ agent

 (ready
 :sender koo
 :receiver Sub-α

:content activityName)

Test inputs:
[Sub-α]--

B
E
I
M
Q
U

Figure F-1. (Continued)

 194

APPENDIX-G. ANAYSIS OF RUNNING TIME

I estimate that the worst-case computational complexity of DSAS. The worst-case

schedule is the schedule where all activities are sequential. This means that the nth activity

follows the (n-1)th activity, so on, as shown in Figure G-1.

Figure G-1. Activity precedence network

Now I can use the inductive rules to analyze the approximate running time of a program,

which is measured number of messages as a function of the number of activities, n, in a

schedule. For this analysis of running time, I consider only the following message by

agents: ready, ask-cost, reply-cost, accept/reject, confirm/renege, accept-all/renege-all,

hand-over, done, and final. I exclude the input and ready messages because those

messages are human-dependent. I also exclude inform messages because the inform

messages are dependent to the negotiation messages.

Basis: n = 1:

Figure G-2. 1-activity precedence network

Message type No. of message Relationship with n
ready 0
ask-cost 0
reply-cost 0
accept/reject 0
confirm/renege 0
accept-all/reject-all 0
confirm-all/renege-all 0
hand-over 0
done 0
final 1 n

Table G-1. 1-activity case analysis

1 Activity

1 2 3 n-1 n Activities

 195

Next n = 2:

Figure G-3. 2-activity precedence network

Message type No. of message Relationship with n
ready 1 (n-1)
ask-cost 1 (n-1)+T(n-1)
reply-cost 1 (n-1)+T(n-1)
accept/reject 0
confirm/renege 0
accept-all/reject-all 1 (n-1)
confirm-all/renege-all 1 (n-1)
hand-over 1 (n-1)
done 1 (n-1)
final 2 n

Table G-2. 2-activity case analysis

Next n = 3:

Figure G-4. 3-activity precedence network

Message type No. of message Relationship with n

ready 2 (n-1)
ask-cost 3 (n-1)+T(n-1)
reply-cost 3 (n-1)+T(n-1)
accept/reject 1 (n-2)+T(n-1)
confirm/renege 1 (n-2)+T(n-1)
accept-all/reject-all 3 (n-1)+T(n-1)
confirm-all/renege-all 3 (n-1)+T(n-1)
hand-over 2 (n-1)
done 2 (n-1)
final 3 n

Table G-3. 3-activity case analysis

1 2 Activities

1 2 3 Activities

 196

Next n = 4:

Figure G-5. 4-activity precedence network

Message type No. of message Relationship with n
ready 3 (n-1)
ask-cost 6 (n-1)+T(n-1)
reply-cost 6 (n-1)+T(n-1)
accept/reject 4 {(n-3)+(n-2)}+T(n-1)
confirm/renege 4 {(n-3)+(n-2)}+T(n-1)
accept-all/reject-all 6 (n-1)+T(n-1)
confirm-all/renege-all 6 (n-1)+T(n-1)
hand-over 3 (n-1)
done 3 (n-1)
final 4 n

Table G-4. 4-activity case analysis

Next n = 5:

Figure G-6. 5-activity precedence network

Message type No. of message Relationship with n

ready 4 (n-1)
ask-cost 10 (n-1)+T(n-1)
reply-cost 10 (n+1)+T(n-1)
accept/reject 10 {(n-4)+(n-3)+(n-2)}+T(n-1)
confirm/renege 10 {(n-4)+(n-3)+(n-2)}+T(n-1)
accept-all/reject-all 10 (n-1)+T(n-1)
confirm-all/renege-all 10 (n-1)+T(n-1)
hand-over 4 (n-1)
done 4 (n-1)
final 5 n

Table G-5. 5-activity case analysis

Activities 1 2 3 4

Activities 1 2 3 4 5

 197

Next n = 6:

Figure G-7. 6-activity precedence network

Message type No. of message Relationship with n

ready 5 (n-1)
ask-cost 15 (n-1)+T(n-1)
reply-cost 15 (n-1)+T(n-1)
accept/reject 20 {(n-5)+(n-4)+(n-3)+(n-2)}+T(n-1)
confirm/renege 20 {(n-5)+(n-4)+(n-3)+(n-2)}+T(n-1)
accept-all/reject-all 15 (n-1)+T(n-1)
confirm-all/renege-all 15 (n-1)+T(n-1)
hand-over 5 (n-1)
done 5 (n-1)
final 6 n

Table G-6. 6-activity case analysis

Next n = 7:

Figure G-8. 7-activity precedence network

Message type No. of message Relationship with n

ready 6 (n-1)
ask-cost 21 (n-1)+T(n-1)
reply-cost 21 (n-1)+T(n-1)
accept/reject 35 {(n-6)+(n-5)+(n-4)+(n-3)+(n-2)}+T(n-1)
confirm/renege 35 {(n-6)+(n-5)+(n-4)+(n-3)+(n-2)}+T(n-1)
accept-all/reject-all 21 (n-1)+T(n-1)
confirm-all/renege-all 21 (n-1)+T(n-1)
hand-over 6 (n-1)
done 6 (n-1)
final 7 n

Table G-7. 7-activity case analysis

Activities 1 2 3 4 5 6

Activities 1 2 3 4 5 6 7

 198

By this point, I can guess for n = n:

Figure G-9. N-activity precedence network

Message type No. of message Relationship with n

ready (n-1) (n-1)
ask-cost

∑
=

−
n

i

i
2

)1(
(n-1)+T(n-1)

reply-cost
∑

=
−

n

i

i
2

)1(
(n-1)+T(n-1)

accept/reject
∑∑

−

==
=

2

13

)(,)(
i

j

n

i

jigig
{(1)+(2)+(3)++(n-2)}+T(n-1)

confirm/renege
∑∑

−

==
=

2

13

)(,)(
i

j

n

i

jigig
{(1)+(2)+(3)++(n-2)}+T(n-1)

accept-all/reject-all
∑

=
−

n

i

i
2

)1(
(n-1)+T(n-1)

confirm-all/renege-all
∑

=
−

n

i

i
2

)1(
(n-1)+T(n-1)

hand-over (n-1) (n-1)
Done (n-1) (n-1)
Final N n

Table G-8. N-activity case analysis

Therefore,

T(n) for ready = (n-1) = O(n);

T(n) for ask-cost = (1 + n)(1 + (n –1))/2 = O(n2);

T(n) for reply-cost = (1 + n)(1 + (n –1))/2 = O(n2);

T(n)for accept/reject = (2 + n)[{(n - 2)(1 + (n – 2))/2}+1]/2 = O(n3);

T(n) for confirm/renege = (2 + n)[{(n - 2)(1 + (n – 2))/2}+1]/2 = O(n3);

T(n) for accept-all/reject-all = (1 + n)(1 + (n –1))/2 = O(n2);

T(n) for confirm-all/renege-all = (1 + n)(1 + (n –1))/2 = O(n2);

T(n) for hand-over = (n-1) = O(n);

T(n) for done = (n-1) = O(n);

1 2 3 n-1 n Activities

 199

T(n) for final = (n) = O(n).

Therefore, the sum of T(n) is O(n3) because T(n) for “accept/reject” or “confirm/renege”

grows rapidly so that we can neglect other lower O(n2) or O(n).

