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Abstract: 
 
In the construction industry, projects are becoming increasingly large and complex, 

involving multiple subcontractors. Traditional centralized coordination techniques used 

by the general contractors become insufficient as subcontractors perform most work and 

provide their own resources. When subcontractors cannot provide enough resources, they 

hinder their own performance as well as that of other subcontractors and ultimately the 

entire project. Thus, construction projects need a new distributed coordination approach 

wherein all of the concerned subcontractors can respond to changes and reschedule a 

project dynamically.  

 

The focus of this research is rescheduling a project in a distributed manner in order to 

lower the sum of all participating subcontractors’ extra costs associated with changes in 

their resource constraints, subject to the precedence relationships among project 

activities, without assuming that a central coordinator knows all the information needed 

for coordination and that subcontractors are benevolent. The challenges are to find a new 

distributed approach that enables subcontractors to compensate other affected 

subcontractors for disadvantageous agreements so that it enhances the global outcome 

while pursuing individual incentives; to identify schedule conflicts, consider alternatives; 

and resolve schedule conflicts in a tightly coupled network of related activities; and to 

preserve the work logic and ensure convergence of distributed computation.   
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To meet the challenges, I developed a new distributed coordination framework for project 

schedule changes (DCPSC) and a novel agent-based compensatory negotiation (ABCN) 

methodology to enable the framework. The DCPSC-based ABCN methodology has met 

challenges fully by using novel definitions of utility-based schedule-change options, by 

employing new multi-linked negotiation protocols based on a shared project plan, and by 

introducing new mechanisms of directing message-passing based on the Critical Path 

Method (CPM). 

 

In addition to this theoretical work, I designed and implemented a new Java-based multi-

agent prototype — distributed subcontractor agent system (DSAS) — to demonstrate the 

effectiveness of the DCPSC framework through a series of comparison tests, charrette 

tests, and measurements. DSAS solves the problems successfully. Thus, this research 

formalizes, implements, and tests the necessary steps to help subcontractors coordinate 

schedule changes in order to increase the efficiency of their resource use, which in turn 

enhances successful completion of whole projects.  

 

This research describes the research completed by Keesoo Kim at Stanford University’s 

Center for Integrated Facility Engineering (CIFE). This research supports CIFE’s goals 

by encouraging collaboration over the Internet between distributed project teams during 

construction phases of a project by providing them with a novel agent-based 

compensatory negotiation approach for distributed coordination of project schedule 

changes.  
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CHAPTER 1 
 

INTRODUCTION 

 

 

 

 

 

 

My Ph.D. research began with a scenario where one subcontractor in a construction 

project has a problem. He cannot provide enough resources at the originally estimated 

cost, and thus is expecting a cost overrun. The underlying assumption is that 

subcontractors seek profits from their resource utilization. If making profits becomes 

infeasible, then a subcontractor will take actions to mitigate the impacts (O’Brien and 

Fischer 2000). One possibility is to re-schedule his work to match his available 

resources. Therefore, the subcontractor asks the general contractor whether he can do 

this. 

 

However, the general contractor could respond negatively for three reasons: (1) 

Coordinating subcontractors’ schedule changes is beyond the capability of the general 

contractor in cases of complex projects, involving many subcontractors; (2) the general 

contractor cannot access private information held by subcontractors (Choo and 

Tommelein 2000), which is needed for coordinating project schedules; and (3) there is a 

contractual relationship between the general contractor and the subcontractor. This means 

that the general contractor has little incentive to help the subcontractor to re-schedule 

(Tommelein and Ballard 1997). Therefore, the subcontractor has to negotiate with other 

subcontractors. 

 

There are many interrelationships and interdependencies in project schedules. Therefore, 

a schedule change in a subcontractor’s work might affect other subcontractors’ schedules 
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as well as the project deadline. The subcontractor should resolve schedule conflicts with 

other affected subcontractors. This implies that there is a need for a methodology1 for 

distributed coordination of project schedule changes (DCPSC).  

 

1.1 PRACTICAL MOTIVATION OF DCPSC 

Despite the ubiquity of change in large, complex construction projects, current 

approaches to change coordination are mostly reactive, and therefore lead to less than 

optimal solutions. If, however, changes in a given schedule were coordinated prior to 

execution, then better solutions could be found. Previous researchers have explored the 

various causes of schedule changes in construction projects. Discrepancies between the 

needed resources for activities and the resources available to subcontractors are one 

major cause of change (O'Brien et al. 1995). The resource discrepancies occur when the 

timing of the activities is not well matched with the available resources, i.e., when 

subcontractors have different perspectives of scheduling. The resource focus in my work 

is the local resource which subcontractors provide, not the global resources which general 

contractors provide.  

 

Soon after the general contractor awards subcontracts according to the master project 

schedule, subcontractors often want to change the master schedule because resource 

discrepancies cause additional costs either through over-utilizing currently available 

resources or importing new resources (O’Brien and Fischer 2000). Therefore, the 

subcontractors may try to change the project schedule in order to accommodate their 

wishes. Changes are likely to cause schedule conflicts among subcontractors because any 

move affects the activities of other subcontractors in tightly coupled construction project 

schedules. A schedule conflict occurs when one subcontractor tries to re-schedule his 

activity to the same time interval that another subcontractor has already scheduled the 

succeeding activity. Since all activities have precedence relationships, related activities 

cannot be overlapped.  

                                                
1 In this dissertation, methodology means a set or system of methods, principles, and rules used in a given 
discipline (Quotation from Webster’s College Dictionary, 2nd ed., Random House Inc., New York, NY, 
1997, p. 825)  
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In most cases, these schedule conflicts cannot easily be resolved simply by delaying the 

succeeding activities since such delays would affect the resource profiles of succeeding 

subcontractors, which would cause additional costs for them. Delays could also extend 

the project completion beyond the deadline. Therefore, there is a need for a methodology 

to handle subcontractors’ resource-driven schedule changes.  

 

In current practice, the coordination of subcontractors' resource-driven schedule changes 

in complex projects is difficult for general contractors, because general contractors 

generally will not know details of each subcontractor's resource constraints. Furthermore, 

general contractors have little incentive to accommodate the subcontractors' wishes. This 

dilemma in current project schedule coordination stems from a mismatch between 

traditional centralized coordination techniques in the industry and current construction 

practices employing more and more subcontracting. Subcontractors are competitive by 

nature and cannot be coordinated simply by orders from general contractors, a method 

that has been used traditionally by general contractors when they performed most work 

themselves. 

 

1.2 ASSUMPTIONS OF DCPSC 

Before going further, I would like to state three assumptions made for DCPSC:  

 

• Project schedules have fixed work logic and precedence relationships;  

• Subcontractors keep their resource and cost information private; and  

• Subcontractors are not benevolent in accommodating changes. 

 

My research addressed the coordination of subcontractors’ resource constraints after the 

general contractor has made the master schedule. Therefore, I assume that project 

schedules have fixed work logic and precedence relations among activities.  

 

I also assume that subcontractors keep their resource information private and want to 

enhance their resource utilization by rescheduling their activities without violating the 

work logic. Since their activities are interdependent with other subcontractors’ activities, 
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subcontractors have to consult with other subcontractors when rescheduling their 

activities. In most construction projects schedule conflicts are common and must be 

negotiated among subcontractors. 

 

Subcontractors work collaboratively to achieve a common project goal, but they are 

different organizations. Therefore, they cannot be regarded as “benevolent” in 

accommodating changes, i.e., they are unlikely to help without compensation. Rather, 

they are competitive, which means they will not let a subcontractor affect their work 

without compensation. If reasonable monetary compensation is provided, then they are 

likely to help.  

 

1.3 CASE EXAMPLE 

I introduce a case example, which I will use throughout this dissertation to illustrate my 

research. Consider the example network in Figure 1-1 (a). The results of conventional 

CPM calculations appear on the diagram. The resource requirement for each activity 

appears on the diagram in Figure 1-1 (a). Activities (A, E and G) are assigned to Sub-α. 

Activities (B and D) are assigned to Sub-β. Activities (C and F) are assigned to Sub-δ. 

For simplicity, assume each subcontractor uses the same resource for its activities.  

 
 

(a) 

Figure 1-1. Example network and ERS schedule 
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 (b)  

Figure 1-1. Example network and ERS schedule (Continued) 
 
Assume that the subcontractors predicted at the time of bidding that they would have 

sufficient resources available for the activity to support the initial schedule. The resource 

histogram in Figure 1-2 indicates the initial resource requirements, based on the above 

schedule, for completion of the activities. The resource requirements for non-critical 

activities, which are not as constrained as the critical activities, are set at their latest start-

finish (LS-LF) schedules. Therefore, the schedule will be feasible.  
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Figure 1-2. Resource requirement histogram 
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However, as the actual execution dates approach, the resource availability has become 

tighter under changing market conditions. Various reasons could explain why the 

resource availability would change: (1) the subcontractors experience a shortage of 

workers, break-downs of major equipment, shortage of major materials, etc. (Clough and 

Sears 1991); (2) the subcontractors might want to move the committed resources from the 

project to more lucrative projects (O’Brien and Fischer 2000). For whatever reasons, 

assume that each subcontractor now has revised available resource profiles for each 

activity, as shown in Figure 1-3. Bolded resource histograms (A, B, and D) differ from 

the required resource diagrams. Note that the resource availability is shown for 

explanation purposes only, even though such private information is usually kept within 

subcontractors and usually is not available to the general contractor.  

       
(Day) 

Sub-α 1 2 3 4 5 6 7 8 9 10 11 12 
            
       Activity-E  Activity-G 
Activity-A           
            

  
 
Resources 
  
             
 

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12 
            
        Activity-D   
   Activity-B        
            
            

 
 
 
Resources 
 
              
 

Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12 
            
               
    Activity-C  Activity-F    
            

  
 
Resources 
 

            

 
Figure 1-3. Available resource histogram 

 

This resource histogram implies that some subcontractors’ schedules differ from their 

original ones. For instance, Sub-α wants to finish Activity-A on Day 4 since Sub-α does 

not have enough resources to finish on Day 3. Sub-β wants to finish Activity-B on Day 8 

since Sub-β does not have enough resources to finish on Day 7. Based on these revised 
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resource histograms, some of the subcontractors’ preferred schedule shifts are shown by 

the diagonally hatched bars in Figure 1-4.  
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Figure 1-4. Subcontractors’ preferred schedule 
 

Note that the mere collection of subcontractors’ preferred schedules is not guaranteed to 

produce a feasible schedule since subcontractors’ resource availability is independent, 

unlike their schedules. Therefore, some activities might violate the network logic in the 

schedule. For instance, on Day 4, Activity-B starts before Activity-A has finished.  

 

1.4 TWO CURRENT CENTRALIZED COORDINATION 

METHODOLOGIES 

As a basis for evaluating the effectiveness of DCPSC, I introduce two centralized 

coordination methodologies used in current practice. Under the centralized coordination 

methodologies below, the general contractor (GC) is obligated to coordinate the 

subcontractors. It is reasonable to assume that the information needed for coordination, 

such as the subcontractors’ preferred schedules and resource information, is not 

available to the GC but is kept within subcontractors (Choo et al. 2000). Assume that 

communication and coordination is kept among subcontractors and the general 

contractor under the current contractual GC-subcontractor relationships, not between 

subcontractors. I examine two methodologies of centralized coordination — tight and 

loose — that I regard as the representation of existing practice. 
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1.4.1 TIGHT “IRON-FIST” CENTRALIZED COORDINATION 

Under tight “Iron-Fist” centralized coordination (TCC), the objective is to finish the 

project on time and the subcontractors are instructed to finish their activities before the 

latest finish date of each activity respectively. Under TCC, the GC can coordinate the 

subcontractors to finish the project on time. However, some subcontractors might 

experience cost overruns when their available resources differ from their resource 

requirements. For the GC, the cost overruns could be regarded as subcontractors’ faults 

for poor management of their resources. 

 

Under TCC, Sub-α has to expedite Activity-A to finish on time in spite of its different 

resource availability. Assume that Sub-α will choose overtime to accelerate the Activity-

A while paying extra costs. Other activities will have the same initial schedule. Sub-β 

also has to expedite Activity-B to finish on time. Assume that Sub-β will choose 

overtime to accelerate Activity-B while paying extra costs. Activity-D will keep the same 

initial schedule. Sub-δ can keep its preferred schedule because Sub-δ can finish its 

activities before the deadlines. The revised resource histogram following TCC is in 

Figure 1-5. The diagonal hatching indicates overtime.      
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Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12 
            
               
    Activity-C  Activity-F    
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Figure 1-5. Revised resource histogram after TCC 
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In summary, TCC costs more for some subcontractors when they have different resource 

availability than their initial resource requirements. This also lowers the resource 

utilization, even though TCC would guarantee to finish on time. Note that the GC has no 

consideration of subcontractors’ resource utilization in TCC.  Figure 1-6 is the revised 

schedule after TCC. Note that subcontractors have different schedules than either their 

ES schedule or LS schedule. 
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Figure 1-6. Revised schedule after TCC 

 

1.4.2 LOOSE “LAISSEZ-FAIRE” CENTRALIZED COORDINATION 

Under loose “Laissez-Faire” centralized coordination (LCC), the objective is to match the 

resources available to produce a workable schedule. The role of the centralized 

coordinator is minimal in keeping the original schedule (Tommelein and Ballard 1997). 

Under LCC, activities are finished when enough resources are provided, like resource-

driven scheduling (El-Rayes and Moselhi 1996; Choo et. al. 1999). Without knowing 

subcontractors’ resource availability, the GC instructs subcontractors to start their 

activities when the preceding activities have been finished and when enough resources 

are available; i.e., the job is ready for it and its work can proceed unimpeded (Clough and 

Sears 1991). LCC usually delays the project and some subcontractors might experience 

cost overruns due to delays of preceding activities as well as their resource deviations. 

The GC also incurs liquidated damages due to the project delay. Disputes among 
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subcontractors would follow if the causes of delays are not clearly established and the 

cost overruns are not reimbursed properly. 

 

Under LCC, Sub-α can delay the finish of Activity-A, but Activity-B will be delayed 

by Activity-A because Activity-B is also allowed to delay its finish. Sub-δ can keep the 

schedule of Activity-C. Then, Sub-α, Sub-β and Sub-δ must delay the start dates of 

Activities D, E, F, and G while paying extra costs for importing resources. Next, Sub-α 

is forced to delay the start date of Activity-G. As a result, the project delays by 2 days. 

The GC needs to pay liquidated damages for a 2-day project delay. 

 

Figure 1-7 shows the revised resource histogram after LCC. The diagonal hatching 

indicates required overtime.  
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Figure 1-7. Revised resource histogram after LCC 

 

In summary, LCC costs more for some subcontractors when they have to import new 
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expedite the activities instead of paying liquidated damages, like time-cost tradeoff 

analysis (Fondahl 1961, 1991; Antill and Woodhead 1990), are limited because these 

need information, such as the cost slope for each activity, that usually is not available to 

the GC. The revised schedule after LCC appears in Figure 1-8.  
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Figure 1-8. Revised schedule after LCC  

 

1.5 CHALLENGES FOR DCPSC 

From the shortcomings of two current coordination methodologies, I set practical 

challenges for DCPSC to set up the criteria against which I will measure goodness of a 

new methodology for DCPSC. 

 

In the example, TCC is equitable in that subcontractors have to pay for their errors in 

planning, but LCC forces subcontractors into a worse situation by simply delaying 

affected activities. Some subcontractors get benefits and others lose regardless of fault. 

The first criterion is whether a new distributed coordination methodology can enable 

subcontractors to compensate the affected subcontractors for disadvantageous 

agreements.  

 

In the example, neither TCC nor LCC considered alternatives because of the tightly 

coupled network of related activities. The second criterion is whether a new methodology 
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can allow subcontractors to identify schedule conflicts, consider alternatives, and resolve 

schedule conflicts in a tightly coupled network of related activities.  

 

In the example, neither TCC nor LCC had schedule conflicts because the GC maintained 

work logic during coordination. However, if subcontractors know only their schedules 

and relationships to other subcontractors’ activities, maintaining work logic becomes a 

big task. The third criterion is whether a new methodology maintains work logic and 

ensures convergence of distributed coordination.      

 

These challenges have been ignored in past research on the coordination of project 

planning and scheduling because of its dominant orientation to centralized approaches 

and the lack of a formal distributed coordination methodology. Current distributed 

coordination research in the field of cooperative distributed problem solving and multi-

agent systems did not address the challenges appropriately due to lack of a formal 

DCPSC framework and a workable monetary conflict-resolution methodology, as I will 

discuss in the next chapter. 

 

1.6   ORGANIZATION OF THE DISSERTATION 

This dissertation consists of seven chapters. Chapter 1 presents practical motivation, 

assumptions, a case example, two current centralized coordination methodologies, and 

challenges for DCPSC. Chapter 2 reviews previous work on coordination of project 

planning and scheduling and previous work on distributed coordination in the field of 

cooperative distributed problem solving and multi-agent systems research. It states 

research objectives, research questions, and research methodology, and then gives a 

summary of my research.  

 

Chapter 3 presents a new distributed coordination framework for project schedule 

changes (DCPSC) based on an agent-based negotiation approach wherein a project can be 

rescheduled dynamically by all of the concerned subcontractors with the help of software 

agents that evaluate the impact of changes, simulate decisions, and give advice. This 
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chapter defines the formal DCPSC framework, introduces an agent-based negotiation 

approach, and then discusses relationships to previous work. 

 

Chapter 4 presents a novel agent-based compensatory negotiation (ABCN) methodology 

to facilitate the distributed coordination of project schedule changes wherein a project can 

be rescheduled dynamically through negotiations by all of the concerned subcontractors. 

The methodology consists of a compensatory negotiation strategy based on utility which 

agents have, multi-linked negotiation protocols by which agents interact with other 

agents, and message-handling mechanisms for agents to evaluate alternatives and 

simulate the decision-making. This chapter introduces a new, simpler case example to 

illustrate the methodology. It also reviews previous work and states my contributions 

compared to the ABCN methodology. 

 

Chapter 5 presents a multi-agent system for DCPSC wherein a project can be rescheduled 

dynamically through negotiations by all of the concerned subcontractors. In the multi-

agent system called the Distributed Subcontractor Agent System (DSAS), subcontractors 

interact with their software agents to evaluate the impact of changes, simulate decisions, 

and get the negotiation results that they need to reschedule the project. It discusses DSAS 

architecture, supporting state-of-the-art technologies, and the DSAS implementation. 

 

Chapter 6 demonstrates the significance of the ABCN methodology on DCPSC through 

evaluation tests. It compares two centralized coordination methodologies used in current 

practice to the ABCN methodology in terms of extra costs and project duration. It 

presents charrette test results of the DSAS, which tested the effectiveness of DSAS 

compared to manual centralized processes. This chapter shows the results of 

measurements on system performance of DSAS that in turn show that DSAS scales 

manageably.  

 

Chapter 7 summarizes this dissertation with a summary of the first six chapters, 

contributions, practical demonstrations, limitations of the research, possible future 

research directions, and value to industry. 
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CHAPTER 2 
 

POINTS OF DEPARTURE 

 

 

 

 

 

 

 

This chapter reviews previous work on coordination of project planning and scheduling 

and previous work on distributed coordination in the field of cooperative distributed 

problem solving and multi-agent systems research. It sets research objectives, poses 

research questions, and describes research methodology. 

 

2.1 PREVIOUS COORDINATION OF PROJECT PLANNING AND 

SCHEDULING 

Numerous research papers have recognized a major problem in the Critical Path Method 

(CPM) network approach, which assumes unlimited resource supplies, and have provided 

frameworks to address various limited-resource issues in construction planning and 

scheduling, including resource leveling (Easa 1989; Harris 1990; Seibert and Evans 1991; 

Martinez and Ioannou 1993; Russell and Dubey 1995; Son and Skibniewski 1999; 

Hiyassat 2000), resource-constrained allocation (Hegazy et al. 2000), and resource-driven 

scheduling (Moselhi and Lorterpong 1993; Moselhi and El-Rayes 1993; El-Rayes and 

Moselhi 1996 & 2001). Others have applied various techniques such as linear 

programming (Shah and Baugh 1993; Mattila and Abraham 1998) and Genetic 

Algorithms (Chan et al. 1996; Leu and Yang 1999; Hegazy 1999) to the limited-resource 

problem. However, few current frameworks address the difficulties of gathering 

information in the coordination of subcontractors' resource-driven schedule changes. The 

existing centralized frameworks are insufficient because the information needed for 
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centralized resource-based scheduling, such as the resource constraints, is usually kept 

private by subcontractors (Choo and Tommelein 2000) and is usually not available for 

the centralized frameworks, as stated in one of the assumptions of distributed 

coordination of project schedule changes (see Section 1.2). 

 

When only some subcontractors benefit from the coordination of their resource-driven 

schedule changes and when general contractors are not willing to coordinate the work of 

subcontractors (Tommelein and Ballard 1997), subcontractors need to work together with 

minimal information sharing. Subcontractors need a new distributed coordination 

methodology that allows evaluating the impact of their changes and making appropriate 

decisions. 

 

Current distributed frameworks in construction and in the broader project management 

and AI research literature have inadequately addressed challenges for distributed 

coordination of project schedule changes. They have not provided a monetary conflict-

resolution mechanism, which is their main shortcoming, even though some of them have 

provided various conflict-resolution mechanisms for interactions between participants 

(Koo 1987; Khedro et al. 1993; Jin and Levitt 1993; Gomes et al. 1994). ProcessLink 

(Petrie et al. 1998) identifies dependencies among activities and participants but does not 

specify a conflict-resolution mechanism. 

 

As this review of previous literature demonstrates, the distributed coordination with 

monetary conflict-resolution mechanism is a new problem domain that current research 

does not explore. The problem I am trying to solve is rescheduling activities through 

distributed coordination when subcontractors have available resources that differ from the 

needed resources. They need a distributed coordination framework that includes a 

monetary conflict-resolution methodology, wherein a project can be rescheduled 

dynamically by all of the concerned subcontractors, while maintaining schedule logic and 

keeping their information private.  
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2.2 PREVIOUS DISTRIBUTED AGENT-BASED COORDINATION 

Many Cooperative Distributed Problem Solving (CDPS) and Multi-Agent Systems 

(MAS) papers have proposed various distributed coordination methodologies, but I found 

that the research has shortcomings in applications for distributed coordination of project 

schedule changes. 

 

First, I found that none of the papers mentioned an explicit method for the transfer of 

utility units (“money”) to compensate for disadvantageous agreements. Allowing the 

transfer of utility is very important for coordination of project schedule changes. When 

subcontractors want to reschedule their activities, the rescheduling has external effects on 

succeeding subcontractors’ resource profiles, causing external costs for the affected 

subcontractors, similar to externalities in Welfare Economics and Social Choice Theory 

(Feldman, 1980). This is not to say that all of the external costs are negative. Some of 

them are positive. In case of negative external costs, the external effects destroy the 

Pareto optimality (Feldman, 1980) in a construction master schedule. By allowing the 

transfer of utility (“money”) to compensate for the external costs, the group of 

subcontractors prefers the changed project schedule to the initial project schedule. 

Consequently, a new project schedule is “Pareto superior” (Feldman, 1980, p. 140) to the 

initial project schedule.   

 

My monetary conflict-resolution methodology is more efficient than using incentives or 

reward mechanisms found in some market-based systems (Malone et al. 1988; Wellman 

1993; Shoham and Tanaka 1997). The Clarke tax voting mechanism (Ephrati and 

Rosenschein 1996) collects taxes centrally, but provides no way to distribute the 

collected taxes. The unified negotiation protocol (Rosenschein and Zlotkin 1994) does 

not provide an explicit monetary conflict-resolution mechanism, so it uses an implicit 

method – working together after flipping a coin. 

 

My compensatory negotiation methodology differs from payment via contracts used in 

other MAS research (Sandholm 1993; Sen and Durfee 1996), in which any profit-seeking 

bid from agents might prevent a system from reaching a better solution. Compromise via 
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negotiation (Sycara 1989) provides a way of transferring utilities between agents through 

a central mediator, but it is implicit and not for compensation of disadvantageous 

agreements. Distributed constraint satisfaction (Yokoo et al. 1992, 1998) and distributed 

search (Durfee and Montgomery 1991; Sycara et al. 1991; Decker and Lesser 1992) find 

a satisfactory solution that needs no disadvantageous agreements for any agent.  

 

Another finding is that most CDPS and MAS applications employ pair-wise negotiation 

or multi-lateral (auction) protocols, which are based on the Contract Net Protocol (Smith 

1980) that would be unsuitable for coordinating the tightly coupled project schedules. 

Pair-wise negotiation or multi-lateral (auction) protocols cannot capture external effects 

of their agreements on other agents because agents do not know the consequences of their 

decision until getting the responses from the succeeding agents. Rather, they implicitly 

assume that there are no externalities. 

 

The third finding is that most CDPS and MAS applications do not guarantee the 

convergence of distributed computation because protocols that cannot ensure consistency 

among agents’ knowledge cannot ensure convergence. Some distributed search 

frameworks use unique ID (Yokoo et al 1992), pecking order (Durfee and Montgomery 

1991), or heuristic order (Sycara et al 1991), but none of them use the Critical Path 

Method (CPM) (Fondahl 1961) for coordination of message passing.  

 

2.3 RESEARCH OBJECTIVES 

To overcome past research limitations for the distributed coordination of project schedule 

changes (DCPSC), the overall purpose of the proposed research was fourfold:  

 

(1) To formalize and generalize a DCPSC framework; 

(2) To formalize and generalize an agent-based compensatory negotiation 

methodology to enable the DCPSC framework;  

(3) To implement a distributed subcontractor agent system to demonstrate the 

DCPSC framework; and 

(4) To test the DCPSC framework 
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Figure 2-1 illustrates the components of the research. I abstracted the practical problem to 

three components: schedule, resource constraint, and extra cost. When a schedule does 

not match resource availabilities, this generates resource constraints and subcontractors 

incur extra costs. Subcontractors will use the extra cost information for distributed 

coordination to re-schedule the project. Therefore, the research goal is to provide a 

distributed coordination framework that reschedules projects to lower the sum of 

subcontractors’ costs associated with their resource constraints in cases of changes in 

subcontractors’ resource availabilities.  
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Figure 2-1. Summary of research  

 

To achieve my research goal, I proposed a distributed coordination framework for project 

schedule changes and an agent-based compensatory negotiation methodology to enable 

the framework. I implemented a distributed subcontractor agent system to demonstrate 
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the effectiveness of the DCPSC framework. Through verification tests, the DCPSC 

framework demonstrates that it solves the problems successfully. Chapters 3 to 6 

elaborate upon certain functionalities of these components. 

 
2.4 RESEARCH QUESTIONS 

I posed six research questions intended to fulfill the research objectives for distributed 

coordination of project schedule changes:  

 

Q1: What formalism and approach can enable every subcontractor to consider its 

own activities, but will also enhance global outcomes?  

My answer to this question presents a new DCPSC framework, wherein all of the 

concerned subcontractors can reschedule a project dynamically, based on the social 

welfare function (Varian 1978) and an agent-based negotiation approach adopting the 

typed-message agent (Petrie 1996). Chapter 3 presents the novel distributed coordination 

framework for project schedule changes and introduces an agent-based negotiation 

approach. 

 

Q2: What formalism can enable agents to compensate other agents for 

disadvantageous agreements? 

My answer to this question formalizes a new compensatory negotiation strategy for 

DCPSC, which is necessary for agents to compensate other agents for disadvantageous 

agreements based on the externalities (Feldman 1980). Chapter 4 presents the novel 

definitions of utility of timing and schedule change options, which allow the transfer of 

utility for compensation of disadvantageous agreements. 

 

Q3: What protocols can enable agents to identify and resolve schedule conflicts in a 

tightly coupled network of related activities? 

My answer to this question formalizes new negotiation protocols for DCPSC, which are 

suitable for coordinating the tightly coupled project schedules, by extending the Contract 

Net Protocol (Smith 1980). Chapter 4 describes novel multi-linked protocols, which can 
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enable agents to identify and resolve schedule conflicts in a tightly coupled network of 

related activities.  

 

Q4: What mechanisms can enable agents to maintain work logic and ensure 

convergence of distributed coordination?

My answer to this question formalizes message-handling mechanisms for DCPSC, which 

coordinate message passing based on the Critical Path Method (CPM) (Fondahl 1961). 

Chapter 4 describes novel message-handling mechanisms, which can enable agents to 

maintain work logic and ensure convergence of distributed coordination.  

 
Q5: How can a multi-agent system be developed to implement the distributed agent-

based coordination methodology?

My answer to this question presents a new Java-based multi-agent system for distributed 

coordination of project schedule change, by using the JATLite (Java Agent Template, 

Lite) (Jeon et al. 2000). Chapter 5 describes agent-based software engineering to 

produces the novel Distributed Subcontractor Agent System (DSAS), which can enable 

human subcontractors to interact with software agents to reschedule projects.  

 

Q6: What are the impacts on DCPSC of a distributed agent-based coordination 

methodology?

My answer to this question presents the significance of the distributed agent-based 

coordination methodology through comparison tests, Charrette tests (Clayton et al. 1998), 

and experimental tests. Chapter 6 presents evaluation results: (1) The distributed agent-

based coordination methodology produces a solution that is better than or equal to either 

of the two current centralized coordination methodologies, in terms of project cost; (2) 

The distributed agent-based coordination methodology produces the solution and finds 

the lower-cost solution faster than conventional manual processes; and (3) The 

distributed agent-based coordination methodology is scalable. 

 

2.5   RESEARCH METHODOLOGY 

To answer the research questions, the research methodology had four major components:  
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(1) Modeling,  

(2) System building,  

(3) Verification through testing, and  

(4) Evaluation.   

 

I modeled a framework and a methodology for distributed coordination of 

subcontractors’ resource-driven schedule changes through the case example and a survey 

of background literature on AI planning, Cooperative Distributed Problem Solving 

(CDPS), and Multi-Agent Systems (MAS) research.  Using the developed model, I built 

an agent-based distributed decision-making system in which I tested and analyzed several 

case examples with changing resource profiles to prove the concept in the theory and 

verify the system. Finally, I evaluated the results of my research according to its 

contributions. 

 

I identified six specific tasks corresponding to the research methodology described above. 

The following sections show the evolutions of the specific tasks. 

 

(1) Build up research background 

The research built on four research foundations: (1) construction planning and 

scheduling, (2) AI planning, (3) cooperative distributed problem solving, and (4) 

coordination theory in multi-agent systems. This chapter and Appendixes B and C review 

the selected previous work related to the specific topics.   

 

(2) Develop a distributed coordination framework for project schedule changes  

A distributed coordination framework for project schedule changes (DCPSC) models the 

coordination of subcontractors’ resource-driven schedule changes as distributed 

coordination processes by subcontractors to enhance the project network schedule for 

lowering the sum of subcontractors’ costs associated with their resource constraints. It 

does this by rescheduling the project subject to the precedence relationships among 

project activities, when changes occur in subcontractors’ resource availabilities.  
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In the new DCPSC framework, I represent the subcontractors as software agents that 

simulate negotiations on behalf of subcontractors. This enhances the project network 

schedule for lowering the sum of subcontractors’ costs associated with their resource 

constraints. Chapter 3 defines the DCPSC framework and the agent-based negotiation 

approach. 

 

(3) Develop an agent-based compensatory negotiation methodology 

Development of an agent-based compensatory negotiation (ABCN) methodology for 

agents started with modeling subcontractors’ resource-driven schedule changes on 

activity performance through extra costs in addition to normal costs. Then, I represent the 

models through the schedule-change options that consist of extra costs associated with 

alternative start/end dates. The compensatory negotiation methodology represents the 

coordination between subcontractors as negotiation between software agents that employ 

the compensatory negotiation strategy based on utility of timing2. 

 

Within the compensatory negotiation methodology, I developed the multi-linked 

negotiation protocols to model the schedule externalities that are natural for tightly 

coupled project schedules. I also developed message-handling mechanisms to model 

decision-making mechanisms of subcontractors in the negotiating agent for the 

methodology. Chapter 4 describes the compensatory negotiation strategy based on utility, 

multi-linked negotiation protocols, and message-handling mechanisms for the ABCN 

methodology. 

 

(4) Develop and implement the distributed subcontractor agent system 

To demonstrate the distributed coordination based on agent-based compensatory 

negotiation methodology, I developed the Distributed Subcontractor Agent System 

(DSAS), which is a Java-based multi-agent system. In DSAS, subcontractor agents that 

implement the agent-based compensatory negotiation methodology negotiate with other 

subcontractors based on schedule-change options for distributed coordination of project 

                                                
2 In this thesis, utility of timing is a real-valued number (“money”), which describes the difference between 
the cost of the initial schedule and the costs of alternatives for the activity (see Section 4.2.1 for a further 
discussion of this definition). 
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schedule changes. Through Graphic User Interfaces (GUIs), human subcontractors can 

interact with their subcontractor agents to provide schedule-change options and get 

negotiation results. The Agent Message Router (AMR) provides a robust message-

passing infrastructure. Chapter 5 shows an architecture and implementation details of 

DSAS. 

 

(5) Verify DCPSC, ABCN methodology, and DSAS 

The verification of my research needed a number of experimental tests to demonstrate the 

effectiveness of the proposed distributed coordination approach. In a test case, I 

compared two centralized coordination methodologies used in current practice — tight 

“Iron-Fist” centralized coordination (TCC) and loose “Laissez-Faire” centralized 

coordination (LCC) — to the DCPSC.  I generalized test results in mathematical proofs 

that show that the proposed distributed coordination approach always finds a solution that 

is better than or equal to those of the two centralized coordination methodologies in 

project performance (cost, duration, and resource utilization).  

 

I conducted charrette tests on a test case to demonstrate that the resulting agent-based 

distributed scheduling system finds the lower-cost solution faster than conventional 

manual processes. I also measured system performance (number of messages and time 

taken) on several test cases to show that the proposed distributed coordination approach 

scales without becoming infeasible for practical applications. Chapter 6 describes test 

methodologies and results. 

 

(6) Evaluate the research results 

Throughout the proposed research, I allocated time for evaluating the research results in 

terms of their contributions to knowledge. I had a number of evaluation meetings at the 

end of each specific task. The evaluations confirmed that my research has distinguishable 

contributions because my resulting DSAS system worked as planned and my 

contributions clearly extend beyond previous work. My research has validity and 

applicability since two groups of users have verified that the resulting system produces a 

solution that is better than or equal to the initial solution and can be applicable to real 
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construction projects. Chapter 7 summarizes the contributions and limitations of my 

research. 

 

2.6 SUMMARY OF POINTS OF DEPARTURE 

This chapter reviewed previous work on project planning and scheduling and previous 

work on distributed coordination in the field of cooperative distributed problem solving 

and multi-agent systems research. It set research objectives to overcome the current 

research limitations of DCPSC, posed research questions to fulfill the research objectives 

for DCPSC, and described the research methodology I used to answer the research 

questions. 
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CHAPTER 3 
 

DISTRIBUTED COORDINATION OF PROJECT SCHEDULE 

CHANGES BASED ON AGENT-BASED NEGOTIATION 

APPROACH  
 

 

 

 

This chapter presents a new distributed coordination framework for project schedule 

changes (DCPSC) based on an agent-based negotiation approach wherein a project can be 

rescheduled dynamically by all of the concerned subcontractors with the help of software 

agents that evaluate the impact of changes, simulate decisions, and give advice. This 

chapter defines the formal DCPSC framework, introduces an agent-based negotiation 

approach, and then discusses relationships to previous work. 

 

3.1 INTRODUCTION 

The distributed coordination of project schedule changes consists of three components 

similar to Oberlender’s (1993) project definition: project schedule, resource constraints, 

and extra costs, as illustrated in Figure 3-1. Note that every subcontractor has its own 

resource constraint and extra cost information. That is, there are multiple resource 

constraints and extra costs for multiple subcontractors, but there is one project schedule 

for a project. 

 
Project 

schedule 

    

conflicts 

determines 

enhances 

  Extra  
cost 

  Resource 
constraint 

 

Figure 3-1. Distributed coordination of project schedule changes 
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Project schedule refers to the schedule that represents the logical sequencing and timing 

of the work to be performed. Usually, a general contractor prepares the project schedule 

and assigns parts of the schedule to specialty contractors, i.e., subcontractors. 

Nonetheless, the separately assigned project schedules interrelate with each other because 

they are a part of the whole project schedule. Resource constraints represent the 

differences between the needed resources and subcontractors’ available resources. 

Therefore, the subcontractors want to change the project schedule in their favor in a way 

that enhances their resource utilization. Resolving resource constraints without violating 

the work logic is the task of subcontractors. Extra cost refers to the subcontractors’ worst 

extra costs determined by their resource constraints.  

 

When there are resource constraints that conflict with the project schedule, the resource 

constraints generate schedule changes and determine the extra cost information. 

Subcontractors will try to lower the extra costs through distributed coordination among 

subcontractors, and accept the schedule changes that lower the extra costs associated with 

the schedule changes, which will enhance the project schedule.  

 

3.2 DISTRIBUTED COORDINATION FRAMEWORK FOR 

PROJECT SCHEDULE CHNAGES 

In order for subcontractors to consider their own activities, and also enhance global 

outcomes, I developed the distributed coordination framework for project schedule 

changes, based on the social welfare function (Varian 1978). The social welfare function 

is “some sort of function that aggregates individual utility functions to come up with 

some sort of social utility.” (Varian 1978, p. 153). Varian also states, “The social welfare 

function is increasing in each of its arguments – if you increase an agent’s utility without 

decreasing anybody else’s utility then society is made better off.” (Varian 1978, p. 153).  

 

I formalize the distributed coordination framework of project schedule changes as 

follows. A set of subcontractors A = {A1, . . ., An} must produce a collective decision 

over a set of activities {a1, . . ., am}. Each subcontractor needs to know a utility for its 

alternatives of its own activity, by taking into consideration the extra costs to others of its 
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course of action and weighing it against its own extra costs. I define a social choice 

function, E, such that E represents the group choice, as follows: 

 

Where E and Cost(i, j) = the sum of the subcontractors’ extra costs for all m 

activities of n subcontractors and the jth activity, which belongs to the ith 

subcontractor. 

 

Unlike the ideals of social choice function, which is the summation of individual utility, 

my social choice function is the summation of individual subcontractor’s extra costs, 

which is indeed the negative utility for subcontractors and social welfare. In my social 

choice function, the utility for subcontractors and social welfare increases when the extra 

costs decrease. 

  

To increase individual utility and social welfare together, therefore, I set the objective of 

distributed coordination of project schedule changes so as to lower E, i.e., the sum of 

subcontractors’ costs associated with their resource constraints, subject to the precedence 

relationship among project activities:  

subject to 

 

Where E and Cost(i, j) = the sum of the subcontractors’ extra costs for all m 

activities of n subcontractors and the jth activity, which belongs to the ith 

subcontractor, respectively; Finishx = finish date of activity x; Starty = start 

date of activity y; and Sx = set of activities which must succeed activity x.  
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One distinguishing feature of the problem definition is that the problem will be solved 

through collaboration of all the concerned subcontractors in a distributed manner, without 

assuming that a central coordinator knows all the information needed for coordination 

and that subcontractors are benevolent. Another notable feature is that every 

subcontractor only considers its own activities, but it will also enhance global outcomes. 

The third feature is that distributed coordination maintains the logical sequencing of the 

work to be performed, subject to the precedence relationship among project activities, 

even though it might change the timing of the work. These features of the distributed 

coordination of project schedule changes overcome shortcomings of the current 

centralized coordination approaches. 

 

3.3 AGENT-BASED NEGOTIATION APPROACH 

The previous section reveals three important issues of distributed coordination for project 

schedule changes: distributed coordination by competitive subcontractors, socially 

rational decision-making, and maintaining the logical sequence of the work. In this 

section, I discuss the adoption of the agent-based negotiation approach, which is needed 

to overcome the difficulties stemming from these issues. 

 

3.3.1  AGENT 

Because of the huge number of interactions among subcontractors throughout the 

distributed coordination for project schedule change, each subcontractor should have a 

software agent, which is a program capable of communicating with other software agents 

using an Agent Communication Language (Khedro et al. 1993). The agent exchanges 

messages with other agents to evaluate changes, and advises its human subcontractor to 

make a decision.  

 

For this research, I adopted the so-called “Typed-Message Agent (TMA)” (Petrie 1996). 

Agent communities define TMA as those agents that must exchange messages to 

accomplish a task. For agent characteristics, TMA stresses peer-to-peer communications 

and message passing based on shared, typed protocols and semantics to which the agent 
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communities have committed, along with other important features for distributed 

coordination of project schedule changes (Jeon 2000): 

 

• Performing a task that would normally be performed by a person 

• Using peer-to-peer communication, which differs from the traditional 

client/server model 

• Communicating with a common agent language, such as Knowledge Query and 

Manipulation Language (KQML) (Finin et al. 1994; Labrou and Finin 1997) and 

the FIPA Agent Communication Language 

• Obeying agent negotiation protocols, the semantics of which the agent community 

shares  

• Maintaining state information, and acting on it, which distinguishes agents from 

other object-oriented software programs 

 

3.3.2  AGENT-BASED NEGOTIATION 

There are many definitions of agent-based negotiation in the cooperative distributed 

problem solving (CDPS) and multi-agent systems (MAS) research communities. In the 

context of this thesis, I define agent-based negotiation as the process of resolving 

conflicts among affected agents by increasing knowledge about others’ intentions through 

the structured exchange of relevant information. The objective of agent-based negotiation 

is to improve mutual agreements for conflicting agents so that the results of negotiations 

should not make any conflicting agent worse off than before the negotiations. My 

definition of agent-based negotiation is limited in the sense of capturing human 

negotiations, but parallels definitions by previous researchers (Davis and Smith 1988; 

Sycara 1989; Adler et al. 1989; Durfee et al. 1989; Rosenschein and Zlotkin 1994; 

Khedro 1996; Glossary 1999) in CDPS and MAS research communities, as quoted 

below. The readers who are familiar with these definitions might want to skip these and 

jump to Section 3.3.3. 
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In “Negotiation as a metaphor for distributed problem solving,” Davis and Smith (1988) 

state: 

 

The central element in our approach to a problem solving protocol is the concept 

of negotiation. By negotiation, I mean a discussion in which the interested parties 

exchange information and come to an agreement. For our purpose, negotiation has 

three important components: (a) there is two-way exchange of information, (b) 

each party to the negotiation evaluates the information from its own perspective, 

and (c) final agreement is achieved by mutual selection (p. 337). 

 

In ”Multiagent compromise via negotiation,” Sycara (1989) writes: 

 

The negotiation process involves identifying potential interactions either through 

communications or by reasoning about the current states and intentions of other 

agents in the system and modifying the intentions of these agents so as to avoid 

harmful interactions or create cooperative situations (p. 120). Negotiation is a 

process in which the parties iteratively propose compromises and argue with each 

other until a settlement is reached (p. 122). 

 

In “Conflict-resolution strategies for nonhierarchical distributed agents,” Adler et al. 

(1989) say: 

 

Negotiation is a process of communication established between two conflicting 

agents in which they try to develop or refine their plans jointly so that the goals of 

each are satisfied. Agents exchange representations of their goals, look for 

conflicts in realizing them, develop understanding of the motivations behind those 

goals, look for actions they can take jointly to meet their own goals while at the 

same time helping other agents achieve their goals. Negotiation is engaged when 

a conflict is obvious to the various parties and no predefined mechanism exists for 

resolving it (p. 147). 
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In “Trends in cooperative distributed problem solving,” Durfee, Lesser, and Corkill 

(1989) state:  

 

We define negotiation as the process of improving agreement (reducing 

inconsistency and uncertainty) on common viewpoints or plans through the 

structured exchange of relevant information. Although these descriptions of 

negotiation capture many of our intuition about human negotiation, they are too 

vague to provide blueprints for how to get AI systems to negotiate (p. 68). 

 

In Rules of Encounter: Designing Conventions for Automated Negotiation among 

Computers, Rosenschein and Zlotkin (1994) say: 

 

Negotiation denotes the process of several agents searching for an agreement. 

Agreement can be about price, about military arrangements, about a meeting 

place, about joint actions, or about a joint objective. The search process may 

involve the exchange of information, the relaxations of initial goals, mutual 

concessions, lies, or threats. The way we use it, the term negotiation is closely 

related to the idea of reaching consensus. Separate agents, with potentially 

disparate interests, attempt to make a group choice over well-defined alternatives 

(p. 19). 

 

In his dissertation, “A distributed problem-solving approach to collaborative facility 

engineering,” Khedro (1996) writes: 

 

Negotiation is a process of resolving conflicts between two conflicting, intelligent 

systems in which these systems attempt to develop or refine their plans jointly so 

that the goals of each are satisfied. In the course of negotiation, intelligent, 

interacting systems typically develop understanding of each other at the goal 

level, and thus can find complex solutions involving trade-offs and novel 

approaches to solving shared problems that neither could have recognized 

independently [Adler 1989]. 
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In Glossary of Multiagent Systems: A Modern Approach to Distributed Artificial 

Intelligence, Huhns, Stephens, and Weiss (1999) state: 

 

Negotiation – interaction among agents based on communication for the purpose 

of coming to an agreement. Negotiation has much to do with distributed conflict 

resolution and decision making, and requires that the agents use a common 

language. In the course of negotiation an agent makes a proposal which then is 

commented by other agents. Negotiation may be interpreted as coordination 

among competitive or simply self-interested agents. Another common 

interpretation of negotiation is that of a distributed, communication-based search 

through a space of possible solutions (p. 598). 

 

3.3.3  ADVANTAGES OF AN AGENT-BASED NEGOTIAITON APPROACH 

TMAs provide several advantages over recent object-oriented approaches and other agent 

systems. The key idea of TMAs is their ability to model distributed coordination among 

subcontractors throughout the conflict-resolution negotiation processes. TMAs can model 

the subcontractors as software agents performing a task on behalf of human 

subcontractors, while modeling the interactions among subcontractors as agent 

negotiation protocols based on agent communication language.  

 

With the ability of modeling distributed coordination, the agent-based negotiation 

approach based on TMA is a powerful tool to overcome the difficulties by the distributed 

approach. Software agents can communicate rapidly with each other over the Internet, 

which allows subcontractors to coordinate project schedule changes in a distributed 

manner with the agent-based compensatory negotiation methodology to be introduced in 

the next chapter. 

 

3.4 RELATION TO PREVIOUS WORK ON COORDINATION OF 

PROJECT PLANNING AND SCHEDULING    

In this section, I review previous work on coordination of project planning and 

scheduling and compare in detail my DCPSC framework and agent-based negotiation 
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approach to previous work, in terms of three important issues: distributed coordination by 

competitive subcontractors, socially rational decision-making, and maintaining the 

logical sequence of the work. 

 

3.4.1  AGENT-BASED SOFTWARE INTEGRATION   

Khedro and others (1993) proposed a framework for collaborative distributed facility 

engineering based on Cooperative Distributed Problem Solving and Agent Software 

Engineering. Their framework allows the integration of existing design software 

applications through the implementation of agent programs in the Federation 

Architecture. They presented the framework for collaboration of designers in the 

integrated distributed environment by providing effective methods for coordinated 

exchange of information and protocols and a strategy for collaboration.  

 

Their distributed-problem-solving approach to the facility design domain inspired me to 

apply a similar approach to the DCPSC framework. While their agents represent the 

cooperative design software, my agents represent competitive subcontractors who 

execute the activities according to the given schedule. Therefore, an addition to their 

agent model will be an agent-based negotiation approach for resolving conflicts between 

agents to make socially rational decisions, rather than resolving conflicts with authority. 

The organization structure in their framework is the Federal Architecture that involves 

facilitators, which are system programs for facilitating and coordinating the interaction of 

agents in an environment. In my DCPSC framework, there is no central facilitator. 

Agents themselves coordinate the interaction of agents. 

 

3.4.2  COOPERATIVE DISTRIBUTED PLANNING MODEL   

Koo (1987) proposed a distributed model for synchronizing and monitoring plans made 

independently by intelligent agents via communication during performance cycles. The 

proposed model allows agents to plan autonomously and then synchronize their plan via a 

commitment-based communication vehicle, while maintaining the logical sequence of the 

work. He formulated his agent model based on these two assumptions: rationality and 
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willingness to compromise.  His thesis included an autonomous nonlinear planning 

algorithm that functions incrementally in a multiagent environment.   

 

The considerations of resource constraints of subcontractors are very important in the 

DCPSC framework, but the resource constraints were not addressed comprehensively in 

his cooperative distributed planning model. An agent-based negotiation approach for 

resolving schedule conflicts among agents that have resource constraints is an addition to 

his framework. The DCPSC framework and an agent-based negotiation approach 

facilitate cooperation by employing monetary compensation as the motivation to 

cooperate with other agents, rather than a simple negotiation process based on an agent’s 

willingness to compromise.  

 

3.4.3  DISTRIBUTED JOB-SHOP SCHEDULING    

Gomes et al. (1994) proposed a distributed scheduling framework by applying a 

distributed-problem-solving approach to job-shop scheduling. They viewed the 

distributed scheduling system as a hierarchical organization with three main levels: the 

strategic level, the tactical level and operational level. This framework is very suitable for 

resolving schedule conflicts by a central coordinator, such as their strategic agent, in the 

manufacturing industry.   

 

My DCPSC framework employs a one-level organization with all agents at the tactical 

level. The main difference is that agents at the tactical level interact with each other with 

their interests and resolve conflicts by themselves with an agent-based negotiation 

approach. Therefore, my DCPSC framework does not need another higher-level of 

coordination to resolve conflicts, such as the strategic level. A new addition to their 

system is an agent-based negotiation approach that resolves conflicts at the same level, 

while making socially rational decisions. 

 

3.4.4  i-AGENT   

Jin and Levitt (1993) proposed the i-AGENTS framework based on organization theory 

and Distributed Artificial Intelligence. i-AGENTS is a computerized framework for 
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studying organizational problem solving in multi-agent teams. i-AGENTS consists of 

high-level concepts: tasks, agents, organization, and communication. i-AGENTS can 

simulate and analyze the organizational behavior of teams in an engineering domain.  

Their approach considers how to organize the communication structure among the set of 

agents, given a set of tasks and agents.   

 

Since my DCPSC framework focuses on distributed coordination of schedule changes 

among subcontractors, and my objective is to explore the relationship between the 

methodology and project performance, my agent model builds expert systems coupled 

with communication capability rather than computer systems based on knowledge and 

mental states like their agent model. Unlike i-AGENTS, which uses agents to study how 

to organize human actors using parameters for task and agent specifications, my agent-

based negotiation approach uses agents to coordinate project schedules using real data for 

task and agent specifications. Therefore, my work is not an organizational design 

approach. I model the organization structure of agents as a virtual organization 

encompassing multiple organizations that participate in a project. Within the virtual 

organization, there is no formal organization structure for agents; rather, agents organize 

dynamically based on their interrelationships with activities. 

 

3.4.5  PM IN PROCESSLINK   

ProcessLink (Petrie, et al., 1998) provided an agent-based framework supporting the 

distributed task interactions of modern enterprise, especially for integrated project 

management, which interleaves design and construction planning. Change notification 

needs to maintain dependency information among plan and design tasks. When 

distributed between designer and planners, no one may have all of the information to 

perform such notification. Since the central problem of distributed interleaved planning is 

change propagation, they proposed a coordination model as a set of dependencies among 

tasks and a computer system to manage the dependency information in order to 

coordinate a distributed project, while maintaining the logical sequence of the work. 

Their ProcessLink system consists of Redux’, which is a general model of design, 

Constraint Manager (CM), which manages Constraints Solvers, Plan Manager (PM), 
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which performs global tracking of plan elements, and the JATLite agent infrastructure as 

a general “bus” for the exchange of messages.      

 

PM is a domain-independent centralized agent of the ProcessLink system for planning 

and scheduling design activities. The PM model consists of scheduling goals and tasks.  

Therefore, it integrates design with planning and scheduling through the PM that 

performs global tracking of the plan elements, using the Redux’ and the CM.  The PM 

allows planning and scheduling to be distributed among project members according to 

their responsibilities and expertise. However, their PM only suggests or makes changes 

when the schedule can be improved in one instance without making it longer in another 

way, i.e., only in cases where the schedule is not Pareto optimal.  

 

My DCPSC framework addresses the issue where one agent wants to make a change that 

will adversely impact others, but is willing to pay for it, i.e., making socially rational 

decisions. That is the main difference between the two systems. In my DCPSC 

framework, the subcontractor agents can interact and negotiate with each other to make a 

better schedule through the agent-based negotiation approach. The agent-based 

negotiation approach is a crucial supplement to the PM in the ProcessLink system, which 

otherwise only provides coordination of schedule changes due to design changes, but 

provides no distributed mechanism for agreeing on change options.   

 

3.4.6  RESOURCE-DRIVEN SCHEDULING MODEL   

El-Rayes and Moselhi (1996) developed a resource-driven scheduling algorithm for 

repetitive activities.  Their algorithm produces a schedule that complies with precedence 

relationships, crew availability, and crew work continuity constraints.  Their algorithm 

works in two stages: the first achieves compliance with logical precedence relationships 

and crew availability constraints, and the second achieves compliance with the crew work 

continuity constraint.  Their focus was to maintain work continuity in repetitive activities 

in a way that enables timely movement of crews from one unit to the next, avoiding crew 

idle time. They developed a computer model, utilizing object-oriented programming, 

where objects represent the activities and their relationships.   
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Their computer model satisfies the issue of maintaining the logical sequence of the work 

using a simpler protocol.  Their model initiates generating the schedule by sending a 

message to the first activity.  The activity schedules resources using the resource-driven 

scheduling algorithm and then sends messages to all the succeeding activities throughout 

the entire project network. However, they did not consider the extra costs associated with 

resource constraints, nor did they provide any conflict-resolution methodology for 

resolving schedule conflicts. In their centralized framework, activities are simply 

scheduled in the order in the network schedule such that resource availability complies 

with resource requirements.  

 

In my DCPSC framework, activities are re-scheduled only if all the succeeding activities 

can be scheduled in a way that is better than or equal to the initial schedule in terms of 

cost for making socially rational decisions. In contrast to their simple resource-driven 

scheduling algorithm, my agent-based negotiation approach allows subcontractors to 

evaluate the impacts of their changes quantitatively, resolve schedule conflicts, and make 

better schedules.   

 

3.4.7  WORKPLAN   

Choo, Tommelein, Ballard, and Zabelle (1999) presented a crew-level planning system as 

the last planner, based on resource availability and other factors. They focused on crew 

work continuity, which is the main objective of job-shop scheduling. Indeed, they were 

trying to apply the techniques of job-shop scheduling to subcontractor planning in the 

construction industry.   

 

Their centralized work plan produces a workable schedule from a “workable backlog,” 

where they check and satisfy all constraints and, therefore, maintain the logical sequence 

of the work. When they considered resource availability, which is one of the constraints 

in their framework, they do not evaluate the impact of the work plan on project 

performance when making a schedule, nor do they present any mechanism for matching 

resource availability to resource requirements, like the resource-driven scheduling model 

(El-Rayes and Moselhi 1996). As a result, their method schedules activities in the order 
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of the network schedule when resource availability matches with resource requirements. 

Lately, they have identified the necessity of interactive coordination of distributed work 

plans in order to better coordinate work (Choo and Tommelein 2000), but do not provide 

a conflict-resolution methodology for coordinating distributed work plans.  

 

In my DCPSC framework, a subcontractor first makes its preferred schedule for its 

activities, then negotiates with other subcontractors. Therefore, in addition to their work, 

my DCPSC framework integrates individual subcontractor’s preferred schedules into a 

project-wide workable schedule for socially rational decision-making. I only constrain 

resource availability in my DCPSC framework, but other constraints would also need 

agent-based negotiation if the schedule decision affects other subcontractors. My agent-

based negotiation approach is an extension to their interactive coordination of distributed 

work plans for resolving conflicts in distributed work plans. 

 

3.4.8  CAPACITY CONSTRAINTS 

O’Brien and Fischer (2000) discuss the importance of capacity constraints to construction 

cost and schedule.  Based on results from case studies, they conclude that capacity 

constraints affect the cost of subcontractors and suppliers. They also show that it is 

necessary to quantitatively model the relationship between capacity allocation and cost, 

but do not provide a quantitative cost model of capacity constraints. Earlier, O’Brien 

(1998) presented a centralized coordination model detailing the interactions between 

resource allocations and productivity for the activities of a subcontractor working on a 

particular project.  His research provides a foundation to help subcontractors make 

decisions on how to allocate their resources across projects while subject to capacity 

constraints.   

 

My DCPSC framework employs a distributed coordination paradigm, unlike their 

centralized coordination model. The reason for employing the distributed coordination 

paradigm is that consideration of each agent’s resource constraints and extra costs will be 

beyond general contractors’ capability in cases involving many agents in complex 

projects. Based on their finding of the importance of capacity constraints to construction 
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cost and schedule, I have introduced an agent-based negotiation approach by which 

subcontractors can use the quantitative capacity constraints, i.e., extra cost information, 

for project schedule coordination in a distributed manner.  

 

3.5 SUMMARY OF DCPSC FRAMEWORK BASED ON AGENT-

BASED NEGOTIATION APPROACH 

This chapter presented a new distributed coordination framework for project schedule 

changes (DCPSC) based on an agent-based negotiation approach wherein a project can be 

rescheduled dynamically by all of the concerned subcontractors with the help of software 

agents that evaluate the impact of changes, simulate decisions, and give advice. This 

chapter formalized the DCPSC framework and revealed three important issues: 

distributed coordination by competitive subcontractors, socially rational decision-making, 

and maintaining the logical sequence of the work. This chapter introduced an agent-based 

negotiation approach to overcome the difficulties stemming from these issues.  This 

chapter reviewed previous work on coordination of project planning and scheduling and 

related in detail the DCPSC framework and agent-based negotiation approach to previous 

work, in terms of these issues.  
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CHAPTER 4 
 

AGENT-BASED COMPENSATORY NEGOTIATION 

METHODOLOGY  

TO FACILITATE DISTRIBUTED COORDINATION OF PROJECT 

SCHEDULE CHANGES 
 

 

 

 

 

This chapter presents a novel agent-based compensatory negotiation (ABCN) 

methodology to facilitate the distributed coordination of project schedule changes 

wherein a project can be rescheduled dynamically through negotiations by all of the 

concerned subcontractors. The methodology consists of a compensatory negotiation 

strategy based on utility which agents have, multi-linked negotiation protocols by which 

agents interact with other agents, and message-handling mechanisms for agents to 

evaluate alternatives and simulate the decision-making. This chapter introduces a new, 

simpler case example to illustrate the methodology. It also reviews previous work and 

states my contributions compared to the ABCN methodology. 

 

4.1   INTRODUCTION 

Subcontractors can reallocate their initially assigned resources whenever timing of the 

activities does not match well with the timing of available resources, which means that 

there are discrepancies between resource requirements and resource availabilities. 

However, this resource reallocation causes extra costs. When they try to change the 

timing of their activities instead of reallocating resources, the changes cause external 

costs to succeeding subcontractors. Therefore, subcontractors have to evaluate the extra 

costs associated with the reallocation of their resources and the external costs for 

changing the timing of activities, and then they can make decisions within the distributed 

coordination framework for the project schedule changes (DCPSC).  
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In the DCPSC framework, activities differ in costs so that extra costs of resource 

reallocation and external costs of changed timing vary greatly with activities.  Therefore, 

without an explicit method for transferring utility units (“money”), they cannot find fair 

deals with other agents. Imagine that a subcontractor would need to pay one million 

dollars for failing to meet his/her schedule, i.e., the extra cost is one million dollars. If the 

subcontractor finds that it costs only ten thousand dollars for delaying succeeding 

activities, i.e., the external cost is ten thousand dollars, he/she will be happy to pay ten 

thousand dollars for the delay. This is an extreme case, but it shows how a subcontractor 

can transfer utility to other subcontractors for compensation of disadvantageous 

agreements. Also, such potential great disparities between overall costs make the split 

option (Sandholm, 1993) and coin tossing (Rosenschein and Zlotkin, 1994) inappropriate 

in the DCPSC framework and make compensatory negotiation the appropriate approach.   

 

The problem of finding external costs in a distributed manner is a major challenge when 

the number of activities is huge. For example, a typical building project has several 

thousand activities to be rescheduled. Furthermore, the activities are tightly linked. No 

subcontractor has complete knowledge of the whole schedule and it is not feasible to send 

private information, such as resource and cost information, to one central coordinator. 

Therefore, I need new negotiation protocols, which subcontractors can use to receive cost 

responses before making decisions.  

 

Since a coordination methodology is needed for subcontractors to interact with other 

subcontractors in the distributed coordination of project schedule changes, and because of 

the huge number of messages to be exchanged among subcontractors for negotiation 

processes, I adopted the agent-based approach to develop a novel coordination 

methodology. By adopting the agent-based approach, I represented the subcontractors in 

the distributed coordination of project schedule changes as agents, which exchange 

messages with other agents to evaluate changes to simulate negotiation processes. 

Therefore, agents need message-handling mechanisms. 

 



 42 

In this chapter, I formalize three main aspects of the agent-based compensatory 

negotiation methodology: (1) the compensatory negotiation strategy based on utility to 

the agents; (2) the multi-linked negotiation protocols by which agents interact with other 

agents; and (3) message-handling mechanisms for agents to evaluate alternatives and 

simulate the decision-making.  

 

4.2 COMPENSATORY NEGOTIATION STRATEGY BASED ON 

UTILITY    

Each agent calculates utility of timing to evaluate the impacts of its schedule changes and 

to compensate other agents for disadvantageous agreements through a utility transfer 

scheme. My utility transfer scheme differs from the monetary transfer schemes developed 

in market-based systems, where agents transfer money in return for goods or services. In 

my research, utility captures the value of timing, which market-based systems have not 

considered as a transferable good or service. Because of the difficulty of capturing the 

value of timing, they assumed that the timing is a risk that all agents should bear. The 

representation of the utility of timing as “transferable money” is one of my key 

contributions. 

 

4.2.1  UTILITY OF TIMING  

In my research, I adopted the definition of utility by Rosenschein and Zlotkin (1998) to 

quantify utility of timing3:  

 

The utility of a deal for an agent is defined as the cost of its original work minus 

the cost of its new work given the deal. The difference is how much it has gained 

from the deal (p. 361). 

 

Therefore, I represent utility of timing of as a real-valued number (“money”), which 

describes the difference between the cost of the initial schedule and the costs of 

alternatives for the activity as units of money based on resource utilization. A reasonable 

                                                
3 In this dissertation, timing represents timing of the work to be performed. I represent timing of work as a 
tuple of (start date, end date) of the work, but it is different from the duration of the work. 
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assumption about resource utilization is that any discrepancy between the resource 

requirements and the available resources causes a subcontractor to incur extra costs of 

either over-utilizing current resources, e.g., paying overtime, or importing new resources.  

These extra costs motivate the search for a better solution. The utility units are common 

for all agents, and agents can transfer their utility units to other agents for compensation.   

 

Each agent uses the following utility function for each activity k 

 

 

Where ACk is the extra “acceleration cost” for accelerating the kth activity; 

DCx is the extra “delay cost” for delaying the succeeding activity x.  

 

In my research, I consider only direct costs of the activity and liquidated damage for 

project delays and ignore other overhead costs or indirect costs. Since the liquidated 

damage for project delays is included in the calculation of AC and DC, the overhead costs 

or indirect costs can be treated as the same way.  

 

Note that the agent, which has activity k, knows ACk, but does not know the summation 

of DCx until getting DCs from the succeeding activities. I discuss the methods for the 

agent to get DCs from the succeeding activities in Section 4.3. The following two 

sections explain the Acceleration Cost (ACk) and the Delay Cost (DCx) in detail. 

 

4.2.1.1 Acceleration Cost  

If an agent cannot meet its schedule with its available resources, the agent has two 

choices. One choice is to complete the activity with the same schedule and a higher cost 

per day. It might incur extra costs to accelerate the kth activity, in addition to the original 

cost (Ck0). The second choice is to extend the schedule with a lower cost per day. There 

might also be extra costs to extend the kth activity. Therefore, agents have to consider two 

kinds of costs for the kth activity to calculate the acceleration cost (ACk): Ck1, the total 

∑
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cost for the kth activity with the same schedule and a higher cost per day; and Ck2, the 

total cost for the kth activity with an extended schedule and a lower cost per day, as 

shown in Figure 4-1. 

 

Days 

Cost/day 
($) 

Ck1 

Ck0 

$6,600 

$6,000 

4 Days 

Ck2 

Ck0 

$6,000 

4 5 

$5,760 

$4,800 

(a) (b) 
 

Figure 4-1. Two kinds of acceleration costs: (a) Ck1 ; (b) Ck2 

 

Then, I calculate ACk as follows: 

 

If Ck1 is bigger than Ck2: 

    ACk = Ck1 – Ck2     

Else: 

    ACk = 0 

 

Note that Ck2 is not always equal to Ck0, even though the same numbers of resource-

days are used in the original and extended schedule. There are many reasons why the cost 

per resource-day would be different day by day, such as bad weather, increase of labor 

costs after collective bargaining, or delays of scheduled move-out, as shown in the 

example below.  

 

Example-1: Suppose an activity k needs 10 resources for 4 days (from Day 1 to Day 4), 

which are expected to be $600 per resource-day at bid, but its agent has only 8 resources 
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at execution. Then the agent either has to work overtime, which would cost $900 per 

resource-day for 8-resource-day shortages (assuming the overtime rate is 150%), or delay 

the work by one extra day while spending $720 per resource-day (assuming the extra rate 

is 120%). If the delay incurs liquidated damages, the agent should include the liquidated 

damages into the extra costs.  

 

In this case, Ck0 is {10 resources*4 days*$600/(resource-day)}  = $24,000;  

Ck1 is {{8 resources*4 days*$600/(resource-day)} + {8 resource-day * $900/(resource-

day)} =  $26,400;  

Ck2 is {(8 resources*4 days*$600/(resource-day)} + {8 resources*1 day*$720/(resource-

day)} = $24,960.  

Since Ck1 is bigger than Ck2, ACk = Ck1 – Ck2 = $26,400 - $24,960 = $1,440, this 

means that the activity K can save $1,440 if the activity would be delayed by one extra 

day. 

 

4.2.1.2 Delay Cost  

If an agent has to change its schedule due to the delays of preceding activities, the agent 

has two choices. One choice is to do the work with the shorter duration and a higher cost 

per day. The agent might incur extra cost to accelerate the xth activity, in addition to the 

original cost (Cx0). The second choice is to do the work with the longer duration and a 

lower cost per day. There might be extra costs to extend the xth activity. Therefore, two 

kinds of costs for the xth activity are considered to calculate a “delay cost” (DC): Cx3, the 

total cost for the xth activity with the shorter duration and a higher cost per day; and Cx4 , 

the total cost for the xth activity with the longer duration and a lower cost per day, as 

shown in Figure 4-2. 
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Days 

Cost/day 
($) 

Cx3 

Cx0 

$9,000 

$6,000 

8 5 6 Days 

Cx4 

Cx0 

$6,000 

8 9 

$7,200 

5 6 

(a) (b) 

Figure 4-2. Two kinds of delay costs: (a) Cx3 ; (b) Cx4 

 

Then, I calculate DCx as follows: 

 

If the start of the activity is delayed: 

 

Example-2: Suppose activity x also needs 10 resources for 4 days (from Day 5 to Day 8) 

at $400 per resource-day. Also assume the start of activity x is delayed due to the 

preceding activity. Then the agent has to work overtime to complete the activity on time, 

which would cost $600 per resource-day for 10 resource-day shortages (assuming the 

overtime rate is 150%), or delay the work by one extra day while bringing in 10 resource-

day shortages at $480 per resource-day (assuming the import rate is 120%).  

 

In this case, Cx0 is {10 resources*4 days*$400/(resource-day)}  = $16,000;  

Cx3 is {{10 resources*3 days*$400/(resource-day)} + {10 resource-days * 

$600/(resource-day)}} =  $18,000;  
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Cx4 is {{10 resources*3 days*$400/(resource-day)} + {10 resource-days * 

$480/(resource-day)}} =   $16,800.  

 

Since DCx cannot be calculated without considering other DCs from succeeding 

activities, let us assume that the activity is the last activity that has no succeeding activity 

and has no liquidated damages. Since the activity is delayed, DCx = min ((Cx3 – Cx0), 

((Cx4 – Cx0))  

= min (($18,000 - $16,000), ($16,800 - $16,000))  

= min ($2,000, $800) = $800. This means that the activity x cost $800 more if the activity 

is delayed by one extra day. 

 

4.2.1.3 Schedule-Change Options  

Agents can calculate the acceleration cost (AC) and the delay cost (DC) by using given 

rates, such as overtime rates, extra rates, or import rates, as shown in the two previous 

examples. However, the assumptions vary by the parameters for characteristics of 

resources, such as units, fixed/variable, timing, and upper limits. Therefore, instead of 

calculating AC and DC based on the parameters, which cannot cover all the different 

situations that should be considered, the software agents are given schedule-change 

options by their “clients” — subcontractors. Agents can calculate the utility of timing for 

their activities from the given schedule-change options.  

 

I represent a schedule-change option as a tuple of the form4: 

 
(startDate endDate extraCost) 

 

The startDate is the possible start date of the activity. The endDate is the possible finish 

date of the activity. The extraCost is the extra cost associated with the timing of the 

activity. An activity has one or more schedule-change options.  

 

                                                
4 The representation of schedule-change options looks very much like the time-cost trade-off (TCT) 
formulation, but it represents the timing of the activity, which TCT ignores, since TCT assumes cost is 
invariant with the temporal position of the activity (O’Brien and Fischer 2000, pp. 367-368).  
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For Example 1, the schedule-change options for activity k are {(1 4 $2,400)(1 5 $960)}. 

The schedule-change options mean that the activity k costs $2,400 more when it starts at 

Day 1 and finish at Day 4, but it costs $960 more when it delays the finish to Day 5. Then 

the acceleration cost for the activity k for going from Day 1 to Day 4 (ACk) = ($2,400 -

$960) = $1,440.  In other words, the activity can save $1,440 if it delays the finish by one 

day. 

 

For Example 2, the schedule-change options for activity x are {(5 8 $0)(6 8 $2,000)(6 9 

$800)}. The schedule-change options mean that the activity x costs $0 more when it starts 

on Day 5 and finishes on Day 8, but it costs $2,000 more when it delays the start by one 

day, but finishes on Day 8. The third option means it costs $800 more when it delays the 

start and finish by one day with the same duration. When the start of activity x is delayed 

by one day, the possible schedule-change options are {(6 8 $2,000)(6 9 $800)}. Then the 

delay cost (DCx) = min {$2,000, $800}= $800 if the activity x is the last activity.  

 

4.2.2  UTILITY TRANSFER FOR COMPENSATORY NEGOTIATION 

The key concept of the compensatory negotiation strategy is to transfer utility (“money”) 

to compensate agents for "playing along" in a situation that, to them, is otherwise locally 

suboptimal. After getting DC through negotiation, if AC is more than DC, i.e., there is 

positive utility, the agent decides to make an extension, and transfers the DC portion of 

the utility to other agents for compensation of disadvantageous agreements.  

 

The compensatory negotiation consists of inner and outer cycles: Inner cycles5 are used 

for an activity to get DCs from succeeding activities, i.e., forward and backward. One 

outer cycle6 is used when an activity finishes its negotiation through the inner cycles. The 

direction of the outer cycle is only forward, i.e., from the start activity to the end activity 

on the project schedule, while each activity negotiates using inner cycles. Since schedule-

change options are defined on the basis of activity, the negotiation is based on activity. 

                                                
5 The state of inner cycle is tracked by agents updating the “flag” state on their activities as further 
discussed in Section 4.3.1 
6 The state of outer cycle is tracked by agents updating the “active” state on their activities as further 
discussed in Section 4.3.1 
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Therefore, agents, which have multiple activities, could experience many cycles of 

negotiations. 

 

Agents will change schedule-change options during the negotiation process to reflect 

compensations among agents. For instance, agent-A can change the schedule-change 

options for activity k from {(1 4 $2,400)(1 5 $960)} to {(1 4 $2,400)(1 5 $1,760)}, if 

agentA compensates agentB for delaying the start of activity x at the cost of $800. This 

will cause agentB to change its schedule-change options from {(5 8 $0)(6 8 $2,000)(6 9 

$800)} to {(5 8 $0)(6 8 $2,000)(6 9 $0)}. After compensating Agent-B’s loss, Agent-A 

still can save $2,400 - $1,760 = $640 and Agent-B has no loss at all.  

 

Except the aforementioned changes by agents, I exclude situations where the human 

subcontractors change their schedule-change options while their agents are engaging in 

the negotiation process, although it is quite common in real-world negotiation situations. 

In the compensatory negotiation, agents evaluate the impacts of changes and simulate 

negotiation based on the given schedule-change options. Therefore, updating change 

options throughout the negotiation process cannot ensure consistency of the negotiation. 

 

After agents finish all negotiation processes based on the given schedule-change options, 

human subcontractors can update their schedule-change options. As it is unknown to 

various subcontractors what kinds of delays they might have to respond to, the schedule-

change options are progressive, which means subcontractors update their schedule-

change options when they notice a delay.  

 

4.3 MULTI-LINKED NEGOTIATION PROTOCOLS 

Negotiation protocols govern the interaction among agents by constraining the way the 

agents interact. In this research, agents need negotiation protocols to get DCs from 

succeeding agents and to transfer utility for compensation of disadvantageous 

agreements.  
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Compensatory negotiation starts with a baseline project schedule and has an agent 

propose to compensate other agents for costs imposed on the latter for the former's 

change of the plan. This is simple when agents can reschedule their activities without 

affecting others or when the counterpart agent is one, which is the case of pairwise 

negotiation. In a more complicated case, an agent needs to negotiate with another agent, 

which in turn needs to negotiate with a third, and so on, until the last agent. I call it 

“multi-linked” negotiations. This multi-linked negotiation is inspired by the work of 

Neiman and others (1994), but it is acyclic and therefore more straightforward than their 

protocol.  

 

Multi-linked negotiation protocols are needed because of the tightly coupled nature of 

construction project schedules. My multi-linked negotiation differs from multilateral 

negotiation (auction) protocols because multi-linked negotiation allows agents to 

negotiate with other agents within precedence relationships rather than restricting them to 

negotiate solely with an auctioneer.  

 

The negotiation protocols provide the performatives, which are shared primitive message 

types for agents to use in negotiation (Finin et al. 1994), and conversation sequence, 

which shows the structured message exchanges between agents while changing states. 

The next two sections formalize the performatives and conversation sequence for the 

multi-linked negotiation protocols.  

 

4.3.1  MULTI-LINKED NEGOTIATION PERFORMATIVES  

My multi-linked negotiation performatives fall into three classes: human interaction, 

negotiation, and negotiation control. The human interaction performatives allow a 

human subcontractor to provide input data to its agent and an agent to inform its 

subcontractor of the current status of negotiation. The negotiation performatives facilitate 

the actual compensatory negotiation processes.  The negotiation control performatives 

manage the states of negotiation processes. For my multi-linked negotiation protocol, 

performatives should be recursive because of the tightly coupled network-like precedence 

relationships, as shown in Table 4-1.  
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Table 4-1.  Multi-linked negotiation performatives and expected responses 

 

Note that agents choose the performative based on the position in the project schedule, 

such as start, middle, or end, and the state of negotiation, such as active or flag (see 

Section 4.3.1.2). This section addresses the semantics of the performatives. Appendix-B 

shows details of the syntax of the performatives.  

confirm-all|renege-accept-all|reject-all�  �accept-all 

 confirm � reply-cost � � confirm 

renege � reject�  � reject 

confirm|renege � accept|reject�  � accept 

 done � & final � final �  � done 

done � & final � ask-cost|hand-over�  � hand-over 

 renege-all � hand-over � � renege-all 

 confirm-all � hand-over �� � confirm-all 

renege-all � reject-all �  � reject-all 

 renege � reply-cost � � renege 

 accept|reject � accept-all|reject-all � � reply-cost 

reply-cost � ask-cost �  � ask-cost 

final � ready� ask-cost|hand-over �  �ready 

sorry � sorry � sorry �   input 

End activity Middle activity(s) Start/Active/Flag Performative 

Receiving a message from its succeeding activity � Performative 

Sending a message to its own agent Performative �� 

Sending a message to its preceding activity Performative � 

Sending a message to its succeeding activity Performative � 

Sending a message to its subcontractor Performative � 

Receiving a message from its preceding activity � Performative 

Receiving a message from its subcontractor  Performative 



 52 

4.3.1.1   Human Interaction Performatives 

These performatives are formal interfaces needed for a human subcontractor to provide 

input data to its agent and for an agent to inform the subcontractor of the results of 

negotiation. The message senders are human subcontractors or agents. The receivers are 

agents or human subcontractors.    

 
input 

This performative allows a subcontractor to provide its agent with agent information and 

activity information, including precedence and schedule-change options. 

 

ready 

This performative allows a subcontractor to inform its agent that input is finished on the 

specific activity.  

 

final 

This performative allows an agent to inform the subcontractor of the final result of 

negotiation on the specific activity.  

 

4.3.1.2  Negotiation Performatives 

The following performatives are used for facilitating compensatory negotiation processes. 

The senders and receivers are agents7. 

 

Since distributed agents have no knowledge about the whole state of negotiation, I 

introduce two states of negotiations marked on activities to promote structured 

communication and ensure consistency among agents during negotiation. One is the 

“active” state, which means the activity is “active” in initiating negotiation. First, the start 

activity becomes “active” and other activities become “active” when the preceding 

activity passes control. When an activity finishes an inner cycle of negotiation, the 

activity changes the state from “active” to NULL. The second is the “flag” state, which 

                                                
7 For simplicity of explaining performatives, I assume that each agent has one activity and the schedule is 
linear. Therefore, an activity means an agent in this section. However, the performatives can be used for 
multiple activities for an agent and multiple succeeding activities for an activity. 
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means the activity is not “active”, but calculates DC based on the cost reply from the 

succeeding activity. An activity becomes “flag” when the preceding activity sends an 

“ask-cost” message and changes the activity’s state from “flag” to NULL after sending a 

“reply-cost” message. 

 
ask-cost 

This performative allows an activity to ask the succeeding activity to find out any cost 

which is incurred by the delay of the proposed start date. This performative makes the 

receiving activity “flag.” 

 

reply-cost 

This performative allows an activity to reply to the preceding activity with the cost, 

which is incurred by the delay. Note that the cost can be its own cost or a sum of 

succeeding activities’ cost so that no agent will be able to figure out how much a delay 

costs for a particular agent. 

 

accept 

This performative allows the “flag” activity to accept the cost response from the 

succeeding activity. This means that the activity chooses to delay rather than accelerate.  

 

reject 

This performative allows the “flag” activity to reject the cost response from the 

succeeding activity. This means that the activity chooses to accelerate rather than delay. 

 

confirm 

This performative allows an activity to confirm the “accept” from the preceding activity. 

This means that its cost reply is accepted, but the final contract is pending. This 

performative makes the receiving activity change the state from “flag” to NULL if the 

receiving activity is the “flag” activity. 
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renege 

This performative allows an activity to renege the “accept” or “reject” from the preceding 

activity. This means that its cost reply is rejected and the activity has to keep the original 

schedule. This performative makes the receiving activity change the state from “flag” to 

NULL if the receiving activity is the “flag” activity. 

 

accept-all 

This performative allows the “active” activity to accept the cost reply from the 

succeeding activity. This means that the activity chooses to delay rather than accelerate.  

 

reject-all 

This performative allows the “active” activity to reject the cost reply from the succeeding 

activity. This means that the activity chooses to accelerate rather than delay.  

 

confirm-all 

This performative allows an activity to confirm the “accept-all” from the preceding 

activity. This means that its cost reply is accepted and the contract is binding.  

 

renege-all 

This performative allows an activity to renege the “accept-all” or “reject-all” from the 

preceding activity. This means that the activity has to keep the original schedule.   

 

4.3.1.3    Negotiation Control Performatives  

These performatives are used for managing the states of negotiation processes. The 

senders and receivers are agents. 

 

ready 

This performative allows an activity to inform the preceding activity that the activity is 

ready for negotiation. Note that the “ready” performative between activities differs from 

the “ready” performative between a human and its agent. This performative makes the 

start activity “active.” 
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hand-over 

This performative allows the “active” activity to pass control to the succeeding activity, 

informing it of starting a negotiation. This performative makes the receiving activity 

“active.” 

 

done 

This performative allows an activity to inform the preceding activity that the activity has 

finished the negotiation. This performative makes the receiving activity change its state 

from “active” to NULL. 

 

4.3.1.4  Comparison to Pair-Wise Negotiation Performatives  

In this section, I compare my negotiation performatives to the “pair-wise negotiation 

performatives” developed by Chen, et al. (1999). The “pair-wise negotiation 

performatives” consist of CFP (Call For Proposal), proposal, accept-proposal, reject-

proposal, and terminate, as shown in Table 4-2.  

 

CFP the action of calling for a proposal to perform a given action 
proposal the action of submitting a proposal to perform a certain action, given 

certain preconditions 
accept-proposal the action of accepting a previously submitted proposal to perform 

an action 
reject-proposal the action of rejecting a previously submitted proposal to perform an 

action 
terminate the action to finish the negotiation process 

 

Table 4-2. Pair-wise negotiation performatives (excerpt from Chen et al (1999)) 

 

The “pair-wise negotiation performatives” are similar to the “announcing-bidding-

awarding” processes in the Contract Net Protocol (CNP) (Smith 1980; Smith and Davis 

1981; Davis and Smith 1988). In fact, CNP is heavily adopted for many “pair-wise” or 

“multi-lateral (auction)” negotiation protocols (Malone et al. 1988; Sandholm 1993; 

Sandholm and Lesser 1995; Sen and Durfee 1996). The CNP is a very general protocol 

for distributing activities in a network of agents. However, the “awarding” process 

requires contract binding. In my research, where multiple agents concurrently try to reach 
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consensus agreements, I need another performative, “confirm/renege,” for binding 

contracts. 

 

Suppose there are three agents who are trying to solve schedule conflicts. Agents A and B 

should precede AgentC, but have no relationship. Therefore, AgentC needs two ”accept-

proposal” messages from Agents A and B to resolve schedule conflicts after sending 

“proposal” messages to Agents A and B according to their CFPs. In a case where AgentA 

sends an “accept-proposal” message to AgentC, but AgentB sends a “reject-proposal” 

message to AgentC, the “awarding” stage should not automatically bind the contract, as 

shown in Figure 4-3. Otherwise, the contract cannot ensure the consistency of the project 

schedule.  

 

 AgentA 
(Announcer) 

Accept-proposal 

Reject-proposal 
? 

AgentB 
(Announcer) 

AgentC 
(Bidder) 

 

Figure 4-3. “Awarding” stage of negotiation 

 

I must allow AgentC to use another performative, “confirm/renege,” to inform Agents A 

and B of the inconsistent messages. AgentC uses the “confirm” performative for contract 

binding when all the messages are “accept-proposal” and uses the “renege” performative 

otherwise. In this example, AgentC sends the “renege” message, which means the 

“awarding” is not valid, as shown in Figure 4-4. Agents A and B need to start a new 

negotiation. 

 

 AgentA 
(Announcer) 

Accept-proposal 

Reject-proposal 

Not 
Valid 

AgentB 
(Announcer) 

AgentC 
(Bidder) 

Renege 

Renege 
 

Figure 4-4. “Confirming” stage of negotiation 
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As shown in the above simple example, the new performatives, “confirm/renege,” are 

necessary where multiple agents are concurrently trying to reach mutual agreements in 

the new “confirming” stage.  This is the addition to CNP.   

 
4.3.2  CONVERSATION SEQUENCE OF MULTI-LINKED NEGOTIATION 

Conversation sequence shows the structured message exchanges between agents based on 

states. It is important to note that the project activity precedence relationships govern the 

agent message exchange. Since I developed the multi-linked negotiation protocols for the 

distributed coordination of project schedule changes, agents should exchange messages 

according to the project schedule. I can guarantee that my protocols will converge, which 

means my protocols will not enter infinite loops of refinement, because agents use static 

activity precedence relationships in the project schedule for message passing among 

agents. The following two sections describe the conversation sequence for the multi-

linked negotiation and compare it to the conversation sequence of pair-wise negotiation. 

 
4.3.2.1  Conversation Sequence Diagram  

A conversation sequence diagram that includes the multi-linked negotiation 

performatives in Section 4.3.1 represents my negotiation process.  For my multi-linked 

negotiations, loops represent recursive sequences of conversation, as shown in Figure 4-

5.   

 

Since agents should exchange messages according to the project schedule, the multi-

linked negotiation process is synchronous, which means agents are allowed to work only 

on replanning a task under the control of a single “active” agent. Neiman and Lesser 

(1996) assert that a synchronous negotiation process is superior to an asynchronous 

process in their cooperative schedule repair method, in which all agents suspend their 

current problem-solving activities and collaboratively search for some reassignment of 

resources that would allow the current scheduling goal to be satisfied without a constraint 

relaxation. 
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Figure 4-5. Conversation sequence diagram of multi-linked negotiation protocols 

 

4.3.2.2  Comparison to Conversation Sequence Diagram of Pair-Wise Negotiation  

In this section, I compare my conversation sequence diagram of multi-linked negotiation 

performatives to the conversation sequence diagram of the “pair-wise negotiation” 

developed by Mudgal and Vassileva (1999).  

 

 

1 2 

3 
4 

AÆB: Offer 

BÆA: Reject 

BÆA: Accept 

BÆA: Counter-propose 

AÆB: Counter-propose 

AÆB: Reject 

AÆB: Accept 

 
 

Figure 4-6. Conversation sequence diagram of pair-wise negotiation  
(Mudgal and Vassileva, 1999) 
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The conversation sequence diagram in Figure 4-6 represents possible sequences of 

conversation that can occur during pair-wise negotiations. Even though their conversation 

sequence is richer than mine in terms of allowing repetitive negotiation using “counter-

propose” messages, their conversation sequence diagram is missing the recursive 

sequences of conversation because they only consider two agents. The recursive 

sequences of conversation are necessary when multiple agents engage in negotiations in a 

tightly coupled schedule.  

 

4.3.3  EXAMPLE OF MULTI-LINKED NEGOTIATION 

This section illustrates the multi-linked negotiation protocols. This simple example 

consists of three agents, in which each has one activity, as shown in Figure 4-7. 

 

A B 

C 

11 

input&ready 

ready 

ask-cost 

reply-cost 

accept/reject 

confirm/renege 

accept-all/reject-all 

confirm-all/renege-all 
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done 
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GUI GUI 
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19 13 12 

20 15 14 

16 21 

25 23 

26 24 22 

 

Figure 4-7. Example conversation sequence diagram 
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A negotiation starts when the subcontractors send “input” and “ready” messages (#1~3) 

to their respective agents. Then agents send “ready” messages (#4~5) to agents backward 

up to the ‘start’ agent, which has the start activity.  

 

Upon receiving a “ready” message, the ‘start’ agent sends an “ask-cost” message (#6) 

forward to the ‘middle’ agent, which will also send an “ask-cost” message (#7) forward 

to the ‘end’ agent. Then the ‘end’ agent sends a “reply-cost” message (#8) backward to 

the ‘middle’ agent, which will send an “accept” or a “reject” message (#9) back to the 

‘end’ agent. Then the ‘end’ agent sends a “confirm” or a “renege” message (#10) 

backward to the ‘middle’ agent, which will send a “reply-cost” message (#11) backward 

to the ‘start’ agent.  

 

The ‘start’ agent sends an “accept-all” or a “reject-all” message (#12) forward to the 

‘middle’ agent, which will also send an “accept-all” or a “reject-all” message (#13) 

forward to the ‘end’ agent. The ‘end’ agent will send a “confirm-all” or a “renege-all” 

message (#14~15) backward up to the ‘start’ agent, which will send a “hand-over” 

message (#16) forward to the ‘middle’ agent. 

 

The conversation sequence will repeat (#17~20) until the ‘middle’ agent sends a “hand-

over” message (#21) to the ‘end’ agent. A cycle of negotiation finishes when the ‘end’ 

agent receives a “done” message (#25) and sends a “final” message (#26) to its 

subcontractor.     

 

4.4 MESSAGE-HANDLING MECHANISMS 

The agent reacts according to what message it gets. Therefore, the agent should have the 

functionality of handling messages for each type of multi-linked message protocol. When 

the agent handles a message, it should also make a decision accordingly. Table 4-3 

summarizes the message handling mechanisms. Appendix-C shows details of the 

message handling mechanisms. 
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Incoming 
message 

Message handling mechanisms 

1. “input” 
 

All activities: 
• If AGENT status is ‘lock,’ send a “sorry” message 
• Else parse and store AGENT or ACTIVITY information 

2. “ready” All activities: 
• Check if all “ready” messages are received 
• If received all, update its AGENT status as ‘lock’ 
• Else wait 

Start activity: 
• Updates ACTIVITY status as ‘active’ 
• Selects AC  
• If it is the ‘end’ activity, sends a “final” message  
• Else if AC = 0, sends “hand-over” messages   
• Else sends “ask-cost” messages 

Middle activity(ies): 
• Forward “ready” messages 

3. “ask-cost” All activities: 
• Update critical activities 
• Check if all “ask-cost” messages are received 
• If received all, select C4 
• Else wait 

Middle activity(ies): 
• Update ACTIVITY status as ‘flag’ 
• Forward “ask-cost” messages  

End activity: 
• Sends “reply-cost” messages according to criticality 

4. “reply-cost” All activities: 
• Accumulate DC 
• Check if all “reply-cost” messages are received 
• If not, wait 

Flag activity(ies): 
• Select C3 
• If C3 > DC, send “reject” messages  
• Else send “accept” messages  

Active activity: 
• Compares AC and DC 
• If AC >= DC, sends “accept-all” messages 
• Else sends “reject-all” messages 

Table 4-3. Summary of message handling mechanisms 
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Incoming 
message 

Message handling mechanisms 

5. “accept” All activities: 
• Update ACTIVITY check as ‘accept’ 
• Check if all “accept” or “reject” messages are received  
• If not, wait 

Middle activity(ies): 
• If any ACTIVITY check is ‘reject,’ send “reject” messages 
• Else send “accept” messages   

End activity: 
• If any ACTIVITY check is ‘reject,’ sends “renege” messages 
• Else sends “confirm” messages  

6. “reject” All activities: 
• Update ACTIVITY check as ‘reject’ 
• Check if all “accept” or “reject” messages are received 
• If not, wait 

Middle activity(ies): 
• Forward “reject” messages   

End activity: 
• Sends “renege” messages  

7. “confirm” All activities: 
• Check if all “confirm” messages are received 
• If not, wait 

Middle activity(ies): 
• Forward “confirm” messages   

Flag activity(ies): 
• Update ACTIVITY status as ‘null’ 
• Send “reply-cost” messages according to criticality 

8. “renege” All activities: 
• Check if all “renege” messages are received 
• If not, wait 

Middle activity(ies): 
• Forward “renege” messages   

Flag activity(ies): 
• Update ACTIVITY status as ‘null’ 
• Send “reply-cost” messages according to criticality 

9. “accept-all” All activities: 
• Update ACTIVITY check as ‘accept-all’ 
• Check if all “accept-all” or “reject-all” messages are received 
• If not, wait 

Middle activity(ies): 
• If any ACTIVITY check is ‘reject-all,’ send “reject-all” messages 
• Else send “accept-all” messages   

End activity(ies): 
• If any ACTIVITY check is ‘reject-all,’ send “renege-all” messages 
• Else send “confirm-all” messages  

Table 4-3. Summary of message handling mechanisms (Continued) 
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Incoming 
message 

Message handling mechanisms 

10. “reject-all” All activities: 
• Update ACTIVITY check as ‘reject-all’ 
• Check if all “accept-all” or “reject-all” messages are received 
• If not, wait 

Middle activity(ies): 
• Forward “reject-all” messages   

End activity: 
• Sends “renege-all” messages  

11. “confirm-all” All activities: 
• Check if all “confirm-all” messages are received 
• If not, wait 

Middle activity(ies): 
• Forward “confirm-all” messages   

Active activity(ies): 
• Update ACTIVITY status as ‘null’ 
• Send “hand-over” messages 

12. “renege-all” All activities: 
• Check if all “renege-all” messages are received 
• If not, wait 

Middle activity(ies): 
• Forward “renege-all” messages   

Flag activity(ies): 
• Update ACTIVITY status as ‘null’ 
• Send “hand-over” messages according to criticality 

13. “hand-over” All activities: 
• Check if all “hand-over” messages are received 
• If received all, update ACTIVITY status as ‘active’ 
• Else wait 

Middle activity(ies): 
• Select AC  
• If AC = 0, send “hand-over” messages   
• Else send “ask-cost” messages 

End activity: 
• Sends a “final”  
• Sends “done” messages  

14. “done” All activities: 
• Check if all “done” messages are received 
• If received all, update AGENT status as ‘unlock’ 
• Else wait 

Middle activity(ies): 
• Forward “done” messages 
• Send a “final” message  

Start activity: 
• Sends a “final” message  

 
Table 4-3. Summary of message handling mechanisms (Continued) 
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4.5 A SIMPLE CASE EXAMPLE OF AGENT-BASED 

COMPENSATORY NEGOTIATION 

This section will demonstrate the agent-based compensatory negotiation methodology 

using a simple case example. Consider the example network8 shown in Figure 4-8(a). The 

results of conventional CPM calculations appear directly on the diagram. For simplicity, 

assume that each activity, which was subcontracted to one of three subcontractors, 

requires just one type of resource. The resource requirement for each activity appears on 

the diagram in Figure 4-8(a). Assume each subcontractor uses the same resource for its 

activities.  

 

 

Lab 
Dur Res 

ES EF 

LF/TF LS 

Legend: 

A 
4 10 

0 4 

4/0 0 

B 
4 10 

4 8 

8/0 4 

C 
4 10 

8 12 

12/0 8 

Sub-α Sub-β Sub-δ 

 
(a) 

 
Activity 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B             

C             

 
(b) 

 

Figure 4-8. Example schedule: (a) CPM network schedule; (b) Gantt chart schedule 

 

Assume that the subcontractors predicted at the time of bidding that their activities have 

sufficient resources available to support the initial schedule, as shown in Figure 4-9. The 

                                                
8 It is too complex to show the detailed agent-based compensatory negotiation steps using the case example 
in Section 1.3. Therefore, I use a simpler example here. 
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dotted rectangles indicate the initial resource requirements, based on the above schedule, 

for completion of the activities. Therefore, the above schedule will be feasible. 

However, as the actual execution dates approaches, the resource availability has become 

tighter under changing market conditions. Assume that each subcontractor has revised the 

available resource profile before the actual execution date, as shown in Figure 4-9. The 

shaded boxes indicate the new resource availability for each activity.  

                          
(Day) 

Sub-α 1 2 3 4 5 6 7 8 9 10 11 12 
12             
10             
8             
6             
4             
2             

 
Sub-β 1 2 3 4 5 6 7 8 9 10 11 12 

12             
10             
8             
6             
4             
2             

 
Sub-δ 1 2 3 4 5 6 7 8 9 10 11 12 

14             
12             
10             
8             
6             
4             
2             

 

Figure 4-9. Resource histograms of Sub-α, Sub-β, and Sub-δ 

 

The above resource histogram implies that some subcontractors have different preferred 

schedules than the original schedule. For instance, Sub-α wants to finish Activity-A on 

Day 5 since Sub-α does not have enough resources to finish on Day 4. Based on the 

above resource histograms, the diagonally hatched bars in Figure 4-10 summarize the 

subcontractors’ preferred schedules. Note that Activity-A and Activity-B have a schedule 

conflict on Day 5. 

Resources 

Resources 

Resources 
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                                      (Day) 
Activity 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B             

C             

 
Figure 4-10. Preferred schedule 

 

Based on the resource histogram, assume that each subcontractor prepares schedule-

change options for its activity respectively, as shown in Table 4-4. Schedule-change 

options of activities A and B remain the same as the earlier examples and schedule-

change options of activity-C are constructed to demonstrate the multi-linked negotiations. 

The subcontractors provide their agents with these predefined schedule-change options.  

  
 
 
 
 
 
 
 

Table 4-4. Schedule change options of Sub-α, Sub-β, and Sub-δ 

 

The final schedule appears in Figure 4-11, and Figure 4-12 shows the conversation 

sequences during the negotiation.  

 
                                      (Day) 

Activity 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B             

C             

 
Figure 4-11. Revised schedule after negotiation 
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Sub-α Sub-β Sub-δ 

(1 4 2400) (1 5 960) (5 8 0) (6 9 800) 

ask-cost(A B 6) ask-cost(B C 10) 

reply-cost(C B 200)  

accept(B C) 

confirm(C B) reply-cost(B A 1000)  

accept-all(A B) accept-all(B C) 

A B 

confirm-all(C B) confirm-all(B A) 

1960 0 

hand-over(A B 6) hand-over(B C 10) 

done(C B) done(B A) 

ready(C B) ready(B A) 

(6 8 2000) (9 12 0) (11 13 2000) C (10 12 200) 

0 

 

Figure 4-12. Conversation sequences during the negotiation 

 

To summarize, Activity-A of Sub-α will change to its preferred schedule. Then, Sub-α 

transfers $1,000 to Sub-β for its loss due to the schedule change. Sub-β also transfers 

$200 to Sub-δ for the same reason. Sub-α still gains a profit of $440. Note that Sub-β and 

Sub-δ would not cooperate with Sub-α without compensation for their losses. Sometimes 

Sub-β and Sub-δ have to bear losses due to the schedule change of Activity-A. The case 

example shows that the agent-based compensatory negotiation methodology facilitates 

the distributed coordination of project schedule changes. 

 

4.6 RELATION TO PREVIOUS WORK ON DISTRIBUTED 

AGENT-BASED COORDINATION    

In this section, I relate my ABCN methodology to previous work on distributed agent-

based coordination in terms of coordination strategy, interaction protocols, and 

coordination mechanisms (see Table 4-5).  

. 
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No. Previous work 
(Researcher(s)) 

Coordination 
Strategy 

Interaction 
protocols 

Coordination 
mechanisms 

1 Generic partial global planning 
(Decker and Lesser 1992) 

Non-compensatory Pair-wise 
negotiation 

Random 

2 Automated contracting: 
TRACONET 
(Sandholm and Lesser 1995) 

Compensatory via 
profit-seeking 
bidding 

Multi-lateral 
negotiation 

Random 

3 Agent-based distributed 
meeting scheduling  
(Sen and Durfee 1996) 

Non-compensatory Multi-lateral 
negotiation and 
voting 

Random 

4 Distributed constraint-
satisfaction problem  
(Yokoo et al 1992) 

- - Backtracking Unique ID 

5 Coordination as distributed 
search  
(Durfee and Montgomery 1991) 

- - Backtracking Pecking 
order 

6 Rules of encounter: 
Unified negotiation protocol 
(Rosenschein and Zlotkin 1994) 

Non-compensatory 
via coin flip 

Pair-wise 
negotiation 

Random 

7  Clarke tax voting mechanism 
(Ephrati and Rosenschein 1996) 

Non-compensatory 
and no distribution 
of collected taxes 

Voting Random 

8 Multiagent compromise via 
negotiation  
(Sycara 1989) 

Non-compensatory, 
but implicit utility 
transfer 

Mediation Random 

9 Distributed constrained 
heuristic search  
(Sycara et al 1991) 

- - Backtracking Heuristic 
order 

10 Market-oriented programming 
(Wellman 1993) 

Compensatory via 
profit-seeking 
bidding 

Multi-lateral 
negotiation 

Dependency 

11 Enterprise: A market-like task 
scheduler  
(Malone et al 1988) 

Compensatory via 
profit-seeking 
bidding 

Multi-lateral 
negotiation 

Priority 

12 A dynamic theory of incentives 
in multi-agent systems  
(Shoham and Tanaka 1997) 

Compensatory via 
incentive or reward 
mechanisms 

- - - - 

  Agent-based compensatory 
negotiation  

Compensatory via 
explicit and direct 
utility transfer 

Multi-linked 
negotiation 

Use of 
Sequence 
logic in CPM 

 

Table 4-5. Summary of selected previous work 

 

4.6.1  GENERIC PARTIAL GLOBAL PLANNING 

Decker and Lesser (1992) presented the Generic Partial Global Planning (GPGP) that 

extends the Partial Global Planning (Durfee and Lesser 1991). The GPGP is a domain-
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independent framework for coordinating the real-time activities of small teams of agents. 

In the GPGP framework, each agent constructs its own local view of activities using 

TAEMS (Task Analysis, Environment Modeling and Simulation) task structure (Decker 

1996). The local views of agents are coordinated into a schedule using a family of 

coordination algorithms (Decker et al. 1995) based on the criteria given by a client.  The 

objective of GPGP is to find the best schedule of activities based on hard and soft 

constraints while maximizing the total payoff. 

 

GPGP uses pair-wise negotiations for resolving conflicts between two agents, which 

occurs due to direct consequences of heterogeneous, dynamic, and real-time agents. Since 

GPGP assumes that the agents are cooperative, agents exchange their local views with 

other agents to find a better joint schedule, while relaxing their soft constraints. Even 

though they use utilities for evaluating the solutions toward the total payoff, there is no 

monetary compensation for disadvantageous agreements between agents.   

 

4.6.2  AUTOMATED CONTRACTING 

Sandholm and Lesser (1995) explored automated negotiations among agents that try to 

maximize payoff without concern for the global good (self-interested) in settings where 

computational limitations preclude enumerating and evaluating all possible outcomes. 

    

For automated contracting, they extended the contract-net protocol, which was developed 

for cooperative agents, for self-interested, computationally limited agents. They 

augmented a formal model for announcing, bidding, and awarding decisions based on 

marginal-cost calculations, which was their early work on TRACONET (Sandholm 

1993). The most closely related work is TRACONET, in which agents having very 

different local criteria can interact to distribute tasks so that the network as a whole 

functions more effectively.   

 

TRACONET uses a multi-lateral (auction) protocol for trading surplus tasks among 

agents. TRACONET assumes agents to be self-interested so that they will not accept 

disadvantageous agreements without compensation. Furthermore, agents will seek any 
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possible profit from the announcing-bidding-awarding protocols. Any profit-seeking bid 

from agents might prevent a system from reaching a better global solution. 

 

4.6.3  AGENT-BASED DISTRIBUTED MEETING SCHEDULING 

Sen and Durfee were working toward developing intelligent “surrogate” agent systems 

that automate meeting tasks of their associated humans.  Their approach viewed meeting 

scheduling as a distributed search. However, they were not trying to derive any closed-

form solution to the dynamic meeting scheduling problem because they believed any 

unique optimal solution to this problem does not exist. Rather, they focused on predicting 

the expected efficiency of different reasonable scheduling heuristics under a variety of 

resource constraints, based on a formal model of the distributed meeting problem and 

process (Sen and Durfee 1998), developing a cancellation/rescheduling mechanism (Sen 

and Durfee 1996), and representing and reasoning with preference and bias of associated 

users (Sen et al. 1997). The cancellation/rescheduling mechanism in his work is the focus 

of my methodology, which tries to resolves conflicts when conflict avoidance is not 

possible.   

   

In the Distributed Meeting Scheduling System, a host uses a multi-lateral (auction) 

protocol to schedule a meeting among agents based on user-input preferences or 

priorities. When conflicts occur when scheduling a meeting, the host applies a voting 

mechanism to arrive at consensus choices for the meeting time while balancing different 

preferences. The Distributed Meeting Scheduling System assumes agents to be 

cooperative so that agents will not compensate others for disadvantageous meeting times.  

 

4.6.4  DISTRIBUTED CONSTRAINT-SATISFACTION PROBLEM 

Yokoo and others (1992) proposed a distributed constraint-satisfaction problem (DCSP) 

framework to systemize cooperative distributed problem solving and methods by 

extending traditional constraint-satisfaction methods. For methods for DCSP, they 

introduced and compared three backtracking algorithms: centralized backtracking, 

synchronous backtracking, and their newly developed “asynchronous backtracking.” The 

experimental results showed that their asynchronous backtracking outperformed the 
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synchronous backtracking due to their additional parallelism. In their recent paper 

(Yokoo, et al. 1998), they modified the asynchronous backtracking algorithm into an 

asynchronous weak-commitment search. Their experimental results showed that the new 

algorithm was more efficient than the asynchronous backtracking algorithm. 

DCSP uses asynchronous backtracking or search mechanism to find a set of values for all 

variables such that all constraints are satisfied. Since DCSP assumes that all constraints 

cannot be relaxed, no conflict will occur between agents and, therefore, they did not 

develop a conflict-resolution mechanism. In other words, DCSP finds a satisfactory 

solution that produces no disadvantageous agreement for any agent.   

 

4.6.5  COORDINATION AS DISTRIBUTED SEARCH 

Durfee and Montgomery (1991) identified five key components of the theory of 

coordination: hierarchical behavior representation, metrics, distributed search protocol, 

local search algorithms, and control knowledge and heuristics. In their theory, agents 

form their behavior hierarchies, but do not know with whom they might interact. The 

superior agent, therefore, broadcasts their abstract-level goals according to the given 

authority value and the inferior agents resolve conflicts either by delaying their behaviors 

or by searching for non-conflicting behavior at a more detailed level through interactions 

with other agents.  When the superior knows that no conflict exists, it passes control to 

the next agent in the pecking order. This process repeats to the lowest agent. Agents also 

use control knowledge and heuristics for search reduction. They used the conflict 

avoidance metrics for evaluating collective behaviors.   

 

Their Coordination as Distributed Search method employs pairwise-interaction protocol 

between agents even though agents’ alternative behaviors might affect other agents' 

behaviors. Also, agents might find difficulties in choosing which strategy to use to 

resolve conflicts because they lack monetary metrics. Agents would need the monetary 

metrics for choosing a strategy when agents are in the tightly coupled networks where 

conflicts apparently occur. Like the distributed constraint-satisfaction problem, 

Coordination as Distributed Search finds a satisfactory solution that produces no 

disadvantageous agreement for any agent.   
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4.6.6  RULES OF ENCOUNTER: UNIFIED NEGOTIATION PROTOCOL 

For multiagent systems (MAS) that consist of self-interested heterogeneous agents, 

Rosenschein and Zlotkin (1994) analyzed the attributes of the domain in which the agents 

are operating and discussed the available interaction protocols to satisfy the efficiency, 

stability, simplicity, distribution, and symmetry conditions. They presented the Unified 

Negotiation Protocol to resolve the conflicts as well as to reach cooperative agreements 

between agents. With the Unified Negotiation Protocol, conflicting agents flip a coin to 

decide who is going to achieve one of their goals and, no matter who wins, commit 

themselves to work together in a joint plan.   

 

One of their assumptions is that the Unified Negotiation Protocol does not allow explicit 

utility transfer between agents. Because of this assumption, their agents need a non-

compensatory conflict-resolution strategy to resolve conflicts and to solicit agents to be 

cooperative for reaching an agreement that would be disadvantageous to one of them. 

The Unified Negotiation Protocol is a pairwise-interaction protocol that cannot be used 

for cases where agents’ alternative behaviors might affect other agents' behaviors. 

 

4.6.7  CLARKE TAX VOTING MECHANISM 

Ephrati and Rosenschein (1996) used the Clarke tax voting procedure as a method for 

reaching consensus without negotiation. The Clarke tax voting procedure is non-

manipulative so that using it ensures stability of the system. According to this procedure, 

all agents vote their preferences over a set of alternatives and an alternative that gets the 

highest votes gets selected as a consensus.   

 

Even though their voting procedure assumes an explicit utility transferability from self-

interested agents to the central controller, it does allow a way to distribute the collected 

tax among agents. Distribution of collected tax will undermine the stability of the system. 

This means that their procedure only ensures the stability of the system, and does not 

compensate agents for disadvantageous agreements.  
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4.6.8  MULTIAGENT COMPROMISE VIA NEGOTIATION 

Sycara (1989) presented a general negotiation model based on integration of case-based 

reasoning and multi-attribute utility theory.  She implemented the negotiation model in 

the PERSUADER system to resolve labor-management disputes. The PERSUADER 

system, which modeled human mediators, uses negotiation to find a compromise that is 

acceptable to the agents in conflict. 

 

Humans use pairwise-negotiation protocols via the central PERSUADER system for 

mediating conflicting labor issues in practice.  Therefore, her negotiation model cannot 

be automated and must involve real human entities. The PERSUADER system provides a 

way of transferring utility between agents, but it is implicit and does not provide 

compensation for disadvantageous agreements.   

 

4.6.9  DISTRIBUTED CONSTRAINED HEURISTIC SEARCH 

Sycara and others (1991) presented a distributed problem-solving technique that is called 

Distributed Constrained Heuristic Search (DCHS).  This model views problem solving as 

constraint optimization, incorporates heuristic search, and extends constraint satisfaction 

to optimization problems. Since the general constraint satisfaction problem (CSP) is an 

NP-complete problem, they devised a set of heuristics to reduce the search space, which 

are variable-ordering heuristics to decide which variable to initiate next and value-

ordering heuristics to decide which value to assign to a variable. Another way to reduce 

distributed search space is through distributed asynchronous back jumping, a type of 

distributed dependency-directed backtracking. 

 

DCHS uses an asynchronous search mechanism to find a set of values for all variables 

such that all constraints are satisfied. Since DCHS assumed that all constraints would not 

be relaxed, no conflict will occur between agents and, therefore, no conflict-resolution 

mechanism is presented. In other words, DCHS finds the best solution among satisfactory 

solutions that produce no disadvantageous agreement for any agent.   
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4.6.10 MARKET-ORIENTED PROGRAMMING 

Wellman (1993) presented a market-oriented programming approach to distributed 

problem solving as a way to allocate tasks and resources for a set of computational agents 

by computing the competitive equilibrium of an artificial economy. His market-price 

system focused on effective decentralization of decision making with minimal 

communication overhead. The general equilibrium theory regards agents as consumers 

and producers and defines their tasks in terms of production and consumption of 

commodities. Consumers can buy, sell, and consume goods, and specify their preferences 

by their utility function. Producers can transform some sorts of goods into some others 

according to their technology that specifies the feasible combination of inputs and outputs 

for the producers. They reach competitive equilibrium when the total amount consumed 

equals the total amount produced, plus the total amount the economy started out with.  

Interactions between agents are exchanges, the terms of which are mediated by the 

underlying economic mechanism, or protocol.  

 

Walsh and Wellman (1998) presented a decentralized market protocol for allocating tasks 

among agents that contend for scarce resources. Through a series of experiments with 

profit-maximizing bidding policies by agents, they verified that the decentralized market 

protocol would converge to a solution when one exits.   

 

While Wellman’s market price system provides an efficient way to allocate tasks or 

resources, its auction mechanism substitutes for a direct negotiation protocol between 

agents. Another difference is that his market protocol needs agents’ inputs and outputs to 

be explicitly defined for auctions. It assumes agents in a market-price system to be self-

interested so that they will not accept disadvantageous agreements without compensation. 

Furthermore, agents will seek any possible profit from the auction mechanism. Any 

profit-seeking bid from agents might prevent a system from reaching a better global 

solution. 
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4.6.11 ENTERPRISE: A MARKET-LIKE TASK SCHEDULER 

Malone and others (1988) presented the Enterprise system for sharing tasks among 

personal workstations connected by a local area network (LAN). The system includes a 

distributed scheduling protocol (DSP) that assigns tasks to the best machines available at 

run-time, based on the metaphor of a market. According to DSP, the client sends out a 

“request for bids” that includes the numerical priority of tasks and contractors respond 

with “bids” giving their estimated completion times. After evaluation of bids, the client 

assigns the task to the best bidder. If a later bid is “significantly better” than the best early 

one, the client cancels the task on the early bidder and sends the task to the later bidder.   

 

DSP in the Enterprise system provides an efficient way to assigns tasks to the best 

machines available at run-time, but its auction mechanism substitutes direct negotiation 

protocols between agents.  Like other market systems, the Enterprise system assumes 

agents to be self-interested so that agents will not accept disadvantageous agreements 

without compensation.  

 

4.6.12 A DYNAMIC THEORY OF INCENTIVES IN MULTI-AGENT SYSTEMS 

Shoham and Tanaka (1997) proposed a dynamic model of incentives in multi-agent 

systems by investigating the role of incentives in “public goods” settings, that is, settings 

in which the system’s members supply the value of the system. For the dynamic model 

that is based on decision theory and economics (including game theory), they defined a 

growth function, a reward function, a disutility function, and a utility function, which will 

set the reward mechanism so as to ensure that by optimizing their own objectives the 

agents will also optimize the global objectives.   

 

In their dynamic model of incentives, there is no discussion about interaction protocols. 

The coordination strategy they adopted uses an incentives and reward mechanism to 

optimize global objectives in multi-agent systems. Their indirect control principle by the 

central controller coordinates self-interested agents, but it has to bear overhead costs 

using the indirect control principle.  
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In summary, previous work on distributed agent-based coordination has inadequately 

provided any of the compensatory negotiation strategy, multi-linked interaction 

protocols, and coordination mechanisms based on CPM, which are necessary for the 

agent-based compensatory negotiation methodology, as shown in Table 4-5. 

 

4.7   SUMMARY OF ABCN METHODOLOGY 

This chapter presented a novel agent-based compensatory negotiation (ABCN) 

methodology to facilitate the distributed coordination of project schedule changes. The 

methodology consists of a compensatory negotiation strategy based on utility, multi-

linked negotiation protocols, and message-handling mechanisms. This chapter illustrated 

the methodology using a simple case example. It also reviewed previous work and stated 

my contributions. 
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negotiation w/ 

 

Figure 4-13. Conceptual diagram of agent-based compensatory negotiation methodology 

 

Using the aforementioned agent-based compensatory negotiation methodology, agents 

can accomplish four crucial procedures: (1) calculating utility with a utility function from 

the predefined schedule-change options; (2) exploring feasible alternatives by 

collaboration with other agents using multi-linked negotiation protocols; (3) evaluating 
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the impact of their alternatives; and (4) making appropriate decisions based on the 

evaluation.  When the decisions affect other agents’ activities, agents transfer utility to 

compensate other agents that are forced to make disadvantageous agreements, and, as a 

result, agents cooperatively enhance the overall project schedule in a distributed manner 

(see above Figure 4-13).   

 

I conclude that the proposed agent-based compensatory negotiation methodology 

facilitates the distributed coordination of project schedule changes by meeting the 

practical challenges stated in Section 1.5, as follows:  

 

• By using schedule-change options based on utility of timing, agents on behalf of 

subcontractors can compensate other agents for disadvantageous agreements  

• By employing multi-linked negotiation protocols, agents on behalf of 

subcontractors can identify schedule conflicts, consider alternatives, and resolve 

schedule conflicts in a tightly coupled network of related activities  

• By directing message-passing based on the CPM-based schedule, agents on behalf 

of subcontractors can maintain work logic and ensure convergence of the 

distributed coordination  

 

In the next chapter, I will describe a multi-agent system that implements the ABCN 

methodology for distributed coordination of project schedule changes. 
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CHAPTER 5 
 

DISTRIBUTED SUBCONTRACTOR AGENT SYSTEM: A MULTI-

AGENT SYSTEM FOR DISTRIBUTED COORDINATION OF 

PROJECT SCHEDULE CHANGES 
 

 

 

 

 

 

 

This chapter presents a multi-agent system for distributed coordination of project 

schedule changes (DCPSC) wherein a project can be rescheduled dynamically through 

negotiations by all of the concerned subcontractors. In the multi-agent system called the 

Distributed Subcontractor Agent System (DSAS), subcontractors interact with their 

software agents to evaluate the impact of changes, simulate decisions, and get the 

negotiation results that they need to reschedule the project.  

 

5.1  INTRODUCTION 

This research produced a distributed coordination framework for project schedule 

changes (DCPSC), wherein concerned subcontractors can reschedule a project 

dynamically through negotiations. To enable the DCPSC framework, I developed an 

agent-based compensatory negotiation (ABCN) methodology that allows software agents 

to evaluate the impact of changes and simulate decisions on behalf of human 

subcontractors. I needed to implement a prototype of a multi-agent system in order to 

demonstrate that the DCPSC and the ABCN are formalized enough to develop the DSAS. 

Chapters 3 and 4 provided details of the DCPSC and ABCN methodology, respectively. 

 

The requirements for developing the multi-agent system called Distributed Subcontractor 

Agent System (DSAS) are as follows: 
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• Subcontractor agents should have the functionalities of negotiating agents 

modeled in the ABCN methodology.    

• Human subcontractors can interact with their agents to provide them with the 

needed information for negotiations and to get the negotiation results that they 

needed to reschedule the project, which is the objective of the DCPSC. 

 

5.2 DISTRIBUTED SUBCONTRACTOR AGENT SYSTEM  

According to the aforementioned requirements, we designed and implemented a multi-

agent system called the Distributed Subcontractor Agent System (DSAS). This section 

describes the DSAS architecture, subcontractor agents, graphic user interfaces, and agent 

message router. 

 

5.2.1  DSAS ARCHITECTURE 

DSAS consists of multiple subcontractor agents that have functionalities of the ABCN 

methodology, multiple Graphic User Interfaces (GUIs) for human subcontractors to 

interact with their subcontractor agents, and the Agent Message Router (AMR), which 

routes messages between agents over the Internet, as shown in Figure 5-1. The following 

sections describe details of the subcontractor agents, GUI, and AMR. 

Figure 5-1. DSAS architecture 
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5.2.2  SUBCONTRACTOR AGENTS 

Subcontractor agents, on the basis of the schedule-change options input by the human 

subcontractors, simulate decision-making on behalf of human subcontractors. The 

subcontractor agents consist of three important classes, the Subcontractor class, the 

BookkeepingAgent class, and the NegotiatingAgent class, as well as of other helper 

classes, as shown in Figure 5-2. 

 
Figure 5-2. DSAS classes 

 

5.2.2.1  Subcontractor Class 

The Subcontractor class is the body of the subcontractor agent. It invokes the 

BookkeepingAgent class when the subcontractor agent receives messages from human 

subcontractors. It invokes the NegotiatingAgent class when the subcontractor agent 
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CostItem() 
getAgentName() 
getTaskName() 
getRefTaskName() 
getTaskCost() 

CostItem 
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receives any other messages from subcontractor agents. The NegotiatingAgent class 

conducts actual compensatory negotiations. Only the Subcontractor class sends and 

receives the messages because it has the necessary name and password. 

 

5.2.2.2  BookkeepingAgent Class 

The BookkeepingAgent class handles “input” messages that contain agent or activity 

information. It parses the received message and stores the parsed information 

appropriately.  

 

It uses the MsgInfo class to parse the received message and stores the parsed information 

using the AgentInfo class and the ActivityTable class. The AgentInfo class uses the 

CostItem class to store cost information after negotiation. The ActivityTable class uses the 

ActivityItem class, the AgentActivityItem class, and the SOItem class to store activity 

information. 

 
5.2.2.3  NegotiatingAgent Class 

The NegotiatingAgent class handles “ready,” “ask-cost,” “reply-cost,” “accept,” “reject,” 

“confirm,” “renege,” “accept-all,” “reject-all,” “confirm-all,” “renege-all,” “hand-over,” 

or “done” messages. Based on the received message, it updates the stored information, 

selects an appropriate option, and/or generates outgoing messages. 

 

It uses the OpInfo class to update the status, check, agent, and activity information stored 

in the AgentInfo and the ActivityTable classes. It uses the SOSelector class to select an 

appropriate schedule option based on the received message. It uses the MsgCreator class 

to generate outgoing messages. 

 

5.2.3  GRAPHIC USER INTERFACES  

Since I adopted the so-called “ Typed-Message Agent (TMA)” (Petrie, 1996), which 

stresses message passing based on shared, typed protocols and semantics to which the 

agent communities have committed, human subcontractors need to send “typed” 

messages to communicate with their subcontractor agents. DSAS provides each human 
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subcontractor with a Graphic User Interfaces (GUI) to interact with its subcontractor 

agents. The GUI has the functionality to input “typed” messages for the subcontractor 

agent to handle.  

 

In DSAS, I have only used the basic form of the GUI that is available in my choice of 

agent development environment, JATLite, as shown in Figure 5-3, and have done little 

customization for this particular application. While this has served my needs for research 

purposes, the GUI would need much more development for DSAS to become usable by 

real subcontractors.  

 

 

Figure 5-3. Graphic User Interface (GUI) screen shot 

 

5.2.4  AGENT MESSAGE ROUTER 

In the distributed coordination framework for project schedule changes, the subcontractor 

agents and GUIs can communicate with other agents and with the GUIs. However, if the 

intended receiving agent does not exist at the time of communication, the communication 

will be lost. In fact, agents cannot be assumed to exist all the time in the distributed 

coordination framework for project schedule changes. Therefore, I needed to develop an 
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Agent Message Router (AMR) that buffers and forwards messages, much like an email 

server. The function of the AMR is to update the addresses of registered agents and to 

route messages between agents.   

 

5.3 SUPPORTING STATE-OF-THE-ART TECHNOLOGIES 

This section will review agent development environments and agent communication 

languages. They provide the supporting state-of-the-art technologies needed for 

developing my prototype for a distributed subcontractor agent system. 

  

5.3.1  AGENT DEVELOPMENT ENVIRONMENTS 

Tables 5-1 and 5-2 show many computer environments in various domains for agent 

development.   

 

1 2 3 Name and URL Company Main Characteristics  
 * * AgentBuilder 

(http://agentbuilder.co
m) 

Reticular 
Systems, Inc. 

An integrated software development tool 
to build intelligent agent-based 
applications  

 * * Agentx 
(http://www.iks.com/a
gentx.htm) 

International 
Knowledge 
Systems 

Java-based distributed computing 
libraries that support object request 
broker, RMI and mobile agent services  

*  * Aglets 
(http://www.trl.ibm.co
m/aglets/) 

IBM Japan An environment for programming 
mobile Internet agents in Java 

 *  CABLE 
(http://public.logica.co
m/~grace/Architecture
/Cable/public/) 

Logica 
Corporation 

An environment for developing large and 
complex distributed applications for i) 
intelligent decision support and ii) 
modeling and simulation 

  * JACK 
(http://www.agent-
software.com.au) 

Agent 
Oriented 
Software Pty. 
Ltd 

An environment for building, running 
and integrating JAVA-based multi-agent 
systems using a component-based 
approach. 

  * MadKit 
(http://www.madkit.or
g) 

The MadKit 
Team 

A Java multi-agent platform built upon 
an organizational model  

 * * Voyager 
(http://www.objectspa
ce.com) 

ObjectSpace A Java-based Object Request Broker 
(ORB) designed for mobile agents 

 

Table 5-1.  Commercial environments for agent development 
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1 2 3 Name Research Group Main Characteristics and References 
*  * ABS  Univ. of Toronto 

EIL 
Reusable layers of languages and services for 
building agent systems  
(Barbuceanu and Fox 1995) 

* * * Bee-gent  Toshiba R&D 
Center 

Completely "Agentifies" the communication 
between software applications  
(Kawamura et al. 1999) 

  * BOND  Purdue Univ. A Java-based distributed object system and 
agent framework  
(Bölöni et al. 2000) 

*  * DECAF  Univ. of 
Delaware 

A platform to design, develop, and execute 
intelligent agents to achieve solutions in 
complex software systems  
(Graham et al. 2000) 

*   FarGo Technion - Israel 
Institute of 
Technology 

A Java-based programming environment for the 
development of mobile-component-based 
distributed applications  
(Ben-Shaul et al. 1999) 

*  * FIPA-OS Nortel A component-based architecture to enable the 
development of domain-specific agents which 
can utilize services of FIPA platform agents 
(Poslad et al. 2000) 

*  * Hive MIT Media Lab A Java software platform for creating 
distributed applications  
(Minar et al. 2000) 

*  * JATLite Stanford Univ. 
Center for Design 
Research 

A package of Java classes and programs that 
allow users to create new systems of software 
agents that communicate over the Internet  
(Jeon et al. 2000) 

*  * JIAC  Technical 
University Berlin  
DAI-Lab 

A Java class library for the development of a 
universal architecture of agent-oriented systems  
(Albayrak and Wieczorek 1999) 

  * MAST  Technical 
University of 
Madrid 

A general purpose distributed framework for the 
cooperation of multiple heterogeneous agents  
(Iglesias et al. 1995) 

*  * OAA  SRI AI Center A framework for integrating heterogeneous 
software agents in a distributed environment 
(Martin et al. 1999) 

*  * RETSINA Carnegie Mellon 
Univ. ISA Group 

A system of reusable agent types that can be 
adapted to address a variety of different domain-
specific problems  
(Sycara et al. 1996) 

* * * Zeus  British Telecom 
Lab 
ISR Group 

A library of software components and tools that 
facilitate the design, development and 
deployment of agent systems  
(Nwana et al. 1999) 

 
Table 5-2.  Academic and research project environments for agent development  
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Note the following World Wide Web sources for agent development environments: 

 

• UMBC AgentWeb: Applications and Software: Software: Academic: 

Platforms 

(http://agents.umbc.edu/Applications_and_Software/Software/Academic/Platform

s/index.shtml, 11/15/2001 accessed) 

 

• UMBC AgentWeb: Applications and Software: Software: Commercial 

(http://agents.umbc.edu/Applications_and_Software/Software/Commercial/index.

shtml, 11/15/2001 accessed) 

 

• AgentBulder: Agent Construction Tools 

(http://www.agentbuilder.com/AgentTools/index.html, 11/15/2001 accessed) 

 

Among the many systems, I chose to use JATLite (Java Agent Template Lite) (Jeon et al. 

2000), which was developed by the Center for Design Research (CDR) at Stanford 

University, to create my DSAS. JATLite is a package of programs written in the Java 

language that allow users to quickly create new software agents that communicate 

robustly over the Internet. JATLite provides a basic infrastructure in which agents 

register with an Agent Message Router facilitator using a name and password, 

connect/disconnect from the Internet, send and receive messages, transfer files, and 

invoke other programs or actions on the various computers where they are running. The 

advantages of adopting JATLite were: 

 

• JATLite provides an agent template for developing agents. It enabled me to 

focus on implementing the functionality of the subcontractor agent in the Java 

language, without having to consider low-level message-passing details. 

• JATLite provides a simple GUI. It enabled me to develop and test a prototype 

of DSAS without developing special GUIs.   
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• JATLite provides a robust AMR. It enabled me to develop and test a prototype 

of DSAS, without developing a special AMR.   

• JATLite is open-source free software. It enabled me to modify the source code 

if necessary and it costs nothing. A disadvantage was the lack of technical 

support, but I could seek help from the developers directly because JATLite was 

developed at Stanford. The CDR also maintains JATLite user groups that can be 

consulted. 

 

5.3.2  AGENT COMMUNICATION LANGUAGES 

Currently, two standards exist for the agent communication languages: Knowledge Query 

and Manipulation Language (KQML) (Finin et al. 1994; Labrou and Finin 1997) and 

FIPA ACL (FIPA specification 2000). I chose to use KQML because JATLite, which is 

my choice of environment for agent development, currently uses KQML for its standard 

agent communication language.  

 

KQML is a language and protocol for exchanging information and knowledge. It is part 

of a larger effort, the ARPA Knowledge Sharing Effort, which is aimed at developing 

techniques and methodology for building large-scale knowledge bases that are sharable 

and reusable. KQML is both a message format9 and a message-handling protocol that 

supports run-time knowledge sharing among agents. KQML can allow an application 

                                                        
9 The KQML string syntax in BNF is as follows (Labrou and Finin 1997): 

<performative> ::=(<word> {<whitespace> :<word> <whitespace> <expression>}*) 

<expression> ::= <word> | <quotation> | <string> | (<word> { <whitespace> <expression>}*) 

<word> ::=<character><character>* 

<character> ::= <alphabetic> | <numeric> | <special>  

<special> ::= < | > | = | + | - | * | / | & | ^ | ~ | _ | @ | $ | % | : | . | ! | ? 

<quotation> ::= '<expression> | `<comma-expression> 

<comma-expression> ::= <word> | <quotation> | <string> | ,<comma-expression> (<word> 

{<whitespace> <comma-expression>}*) 

<string> ::="<stringchar>*" | #<digit><digit>*"<ascii>* 

<stringchar> ::= \<ascii> | <ascii> -\-<double-quote> 
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program to interact with an intelligent system, or enable two or more intelligent systems 

to share knowledge in support of cooperative problem solving. 

 

I used KQML to define the message format like: 

(performative 
:sender  <word> 
:receiver: <word> 
:language <word> 
:content: <expression>) 

 

For example, an agent (Sub-A) sends a message to another agent (Sub-B) to find out the 

cost for starting activity B late because of a delay in activity A. The corresponding 

KQML message is: 

(ask-cost 
:sender  Sub-A 
:receiver: Sub-B 
:language KQML 
:content: (A B 5)) 

 

In summary, KQML allowed me to construct the messages for subcontractor agents in the 

distributed coordination framework for project schedule changes. 

 

5.4 DSAS IMPLEMENTATION 

I implemented the subcontractor agents in the Java language, which is object-oriented 

and portable across platforms, by extending JATLite’s 

RouterLayer.AgentClient.RouterClientAction. Consequently, subcontractor agents can 

run on any machine that supports JDK. The subcontractor agent development is also 

facilitated by JATLite, which provides Graphic User Interfaces (GUIs) — JATLite’s 

ProtocolLayer.IPRCApplet — and the Agent Message Router (AMR) — JATLite’s 

ProtocolLayer.IPRouterAction — for a robust message-passing infrastructure.  Figure 5-4 

shows a screen shot of DSAS. 
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Figure 5-4. DSAS screen shot 

 

Since the GUI complies with the JATLite AMR, human subcontractors can download the 

GUIs from Internet web browsers, such as Microsoft Internet Explorer, Netscape 

Navigator, or Microsystems appletviewer. Thus, human subcontractors can interact 

with their agents without geographic restrictions. Combined with the portability of the 

subcontractor agents, human subcontractors can use DSAS to coordinate project schedule 

changes anywhere in the world.  

 

5.5 SUMMARY OF DSAS 

The objective of my work was to demonstrate that the distributed coordination of project 

schedule changes based on the agent-based compensatory negotiation methodology is 

formalized enough to develop a multi-agent system called Distributed Subcontractor 

Agent System (DSAS). DSAS is a multi-agent system that consists of multiple 

subcontractor agents, multiple graphic user interfaces, and an agent message router.  

 

In DSAS, subcontractor agents negotiate with other subcontractor agents based on 

schedule-change options for distributed coordination of project schedule changes using 

KQML messages over the Internet. Through Graphic User Interfaces (GUIs), human 

subcontractors can interact with their subcontractor agents to provide schedule-change 
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options and get negotiation results. The Agent Message Router (AMR) provides a robust 

message-passing infrastructure. I implemented the subcontractor agents in the Java 

language. JATLite (Java Agent Template) facilitated the development of subcontractor 

agents and provided Graphic User Interfaces (GUIs) and the Agent Message Router 

(AMR).  

 

Using the developed DSAS, the next chapter will describe test methodologies and test 

results to demonstrate the effectiveness of the distributed coordination of project schedule 

changes based on the agent-based compensatory negotiation methodology.  
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CHAPTER 6 
 

EVALUATION 

 

 

 

 

 

 

 

This chapter demonstrates the effectiveness of the agent-based compensatory negotiation 

(ABCN) methodology for distributed coordination of project schedule changes through 

evaluation tests. It compares two centralized coordination methodologies used in current 

practice to the DCPSC-based ABCN methodology in terms of extra costs and project 

duration. I conducted charrette tests of the distributed subcontractor agent system 

(DSAS), which is a multi-agent system employing DCPSC-based ABCN methodology, 

to test the effectiveness compared to manual centralized processes. I also conducted a 

series of experimental tests with different schedules to measure the system performance 

of DSAS.  

 

6.1 COMPARISON TESTS 

As a basis for evaluating the effectiveness of ABCN methodology, I compared the results 

of two centralized coordination methodologies used in current practice with the results of 

ABCN methodology in terms of extra costs and project duration.  

 

6.1.1  SCHEDULE CHANGE OPTIONS 

From the available resource histograms in the case example (see Section 1.3), assume 

that schedule change options are pre-defined in the format of (startDate(day) 

endDate(day) extraCost($)), as shown in Table 6-1. Note that options marked ‘*’ are 

initially available options, which are feasible because the start date of an activity is later 
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than the end dates of the preceding activities. The option marked ‘**’includes liquidated 

damages ($4,000) for a 2-day project delay, which the GC needs to pay. Keep in mind 

that the predefined schedule-change options are prepared by each subcontractor and are 

initially kept private by each subcontractor.   

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480)  (1 4 0)    
B (4 7 1920)  (4 8 0) (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0)     
D (8 10 0)  (9 10 0) (10 11 960)   
E (8 10 0) (9 10 640)  (10 12 0)   
F (8 9 0) (9 10 384)  (10 11 768)   
G (11 12 0) (13 14 4512)**    

 

Table 6-1. Predefined schedule-change options before coordination 

 

6.1.2  AGENT-BASED COMPENSATORY NEGOTIATION 

Under the agent-based compensatory negotiation (ABCN), Sub-α evaluates the 

acceleration cost (AC) ($480) for Activity-A, which is the difference between the option 

of A1 (1 3 480) and the option of A2 (1 4 0), and the delay cost (DC) ($5,760), which is 

the cost response from the succeeding activities of Activity-A. Then Sub-α decides to 

expedite Activity-A to finish on time as the option of A1 (1 3 480) because DC is much 

more than AC. Note that the cost overrun will not be reimbursed since Sub-α has to 

decide first according to its position in the network schedule. However, if AC was more 

than DC, Sub-α could keep its new preferred schedule while reimbursing the costs for 

succeeding activities.  

 

Then Sub-β and Sub-δ, which have activities succeeding Activity-A, evaluate the options 

of their activities — Activity-B and Activity-C. Sub-β can use its new preferred schedule 

as the option of B2 (4 8 0) because the AC ($1,920) for expediting Activity-B is more 

than the DC ($1,024) for expediting Activity-E and delaying Activity-F. Sub-β will 

compensate the cost to Sub-α and Sub-δ, $640 for Activity-E and $384 for Activity-F 

respectively. Note that the initial options are changed due to the compensation. That is, 

B2’ (4 8 1024) from B2 (4 8 0), E2’ (9 10 0) from E2 (9 10 680), and F2’ (9 10 0) from 
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F2 (9 10 384). Sub-δ will keep Activity-C the same as the initial schedule as the option of 

C1 (5 7 0) because its schedule is good. 

 

Next, Sub-α, Sub-β and Sub-δ evaluate the options of their activities — Activity-E, 

Activity-D, and Activity-F. Due to changed options of Activity-E and Activity-F, all of 

subcontractors will keep the changed schedule as E2’ (9 10 0), D2’ (9 10 0), and F2’ (9 

10 0) because their schedules are good.  Finally, Sub-α evaluates the options of Activity-

G and decides to keep the schedule as F1 (11 12 0). Appendix-D shows step-by-step 

ABCN on DSAS. 

 

Figure 6-1 shows revised resource histogram after ABCN. The diagonal hatching 

indicates the overtime. Figure 6-2 shows the revised schedule after ABCN.  

          
(Day) 

Sub-α 1 2 3 4 5 6 7 8 9 10 11 12 
            
            
        Activity-E Activity-G 
Activity-A           
            

 
 
 
Resources 

            
 

Sub-β 1 2 3 4 5 6 7 8 9 10 11 12 
            
        Activity-D   
   Activity-B        
            
            

  
 
 
Resources 
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Figure 6-1. Revised resource histogram after ABCN 
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Figure 6-2. Revised schedule after ABCN  

 

The chosen schedule change options after ABCN are shown marked “3” in Table 6-2, 

and Table 6-3 summarizes the results after ABCN.  

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480) 3 (1 4 0)    
B (4 7 1920)  (4 8 1024) 3 (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0) 3     
D (8 10 0)  (9 10 0) 3 (10 11 960)   
E (8 10 0) (9 10 0) 3 (10 12 0)   
F (8 9 0) (9 10 0) 3 (10 11 768)   
G (11 12 0) 3 (13 14 4512)**    

 

Table 6-2. Selected schedule-change options after ABCN 

 

Extra cost  
 
Coordination methodology  

Sub-α 
($) 

Sub-β 
($) 

Sub-δ 
($) 

GC 
($) 

Total 
($) 

Duration 
 

(days) 
Distributed ABCN +480 +1,024 0 0 +1,504 12  

 

Table 6-3. Summary of result after ABCN  

 

In the ABCN above, subcontractors make agreements only if the agreements can lower 

the sum of subcontractors’ costs while compensating others for disadvantageous 

agreements. In summary, ABCN enhances the project network schedule that has schedule 
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conflicts, while lowering the sum of subcontractors’ costs associated with their resource 

constraints by rescheduling the project subject to the precedence relationship among 

project activities in cases of changes in subcontractors’ resource availabilities. Next, I 

evaluate the effectiveness of the ABCN by showing whether it can find a solution which 

is better than or equal to results from current practice.   

 

6.1.3  TIGHT “IRON-FIST” CENTRALIZED COORDINATION 

Under TCC, Sub-α has to choose the option of A1 (1 3 480). Other activities remain the 

same as options of E1 (8 10 0) and G1 (11 12 0). Sub-β also has to choose the option of 

B1 (4 7 1920). Activity-D will keep the same as option D1 (8 9 0). Sub-δ can keep its 

preferred schedule as the options of C1 (5 7 0) and F1 (8 9 0).  

 

Chosen schedule change options after TCC are shown marked “3” in Table 6-4. Table 6-

5 summarizes the results after TCC.  

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480) 3 (1 4 0)    
B (4 7 1920) 3 (4 8 0) (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0) 3     
D (8 10 0) 3 (9 10 0) (10 11 960)   
E (8 10 0) 3 (9 10 640)  (10 12 0)   
F (8 9 0) 3 (9 10 384)  (10 11 768)   
G (11 12 0) 3 (13 14 4512)**    

 

Table 6-4. Selected schedule-change options after TCC 

 
Extra cost  

 
Coordination methodology 

Sub-α 
($) 

Sub-β 
($) 

Sub-δ 
($) 

GC 
($) 

Total 
($) 

Duration 
 

(days) 
Centralized TCC +480 +1,920 0 0 +2,400 12 

 

Table 6-5. Summary of results after TCC 

 

In summary, TCC costs more for some subcontractors when they have different resource 

availability than their initial resource requirements. TCC lowers the resource utilization, 
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even though TCC would guarantee to finish on time. Note that the central coordinator has 

no consideration of subcontractors’ resource utilization in TCC.  

 

6.1.4  LOOSE “LAISSEZ-FAIRE” CENTRALIZED COORDINATION 

Under LCC, Sub-α can choose the option of A2 (1 4 0), but Activity-B has to choose the 

option of B5 (5 9 0) because of the option A2. Sub-δ can keep the option of C1 (5 7 0). 

Then, Sub-α, Sub-β and Sub-δ must select their options for their other activities — E3 

(10 12 0) for Activity-E, D3 (10 11 960) for Activity-D, and F3 (10 11 768) for Activity-

F. Next, Sub-α is forced to select the option of G2 (13 14 4512). Note the option includes 

liquidated damages for a 2-day project delay, which the GC needs to pay.  

 

The chosen schedule change options after LCC are marked “3” in Table 6-6, and Table 

6-7 summarizes the results after LCC.  

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480)  (1 4 0) 3    
B (4 7 1920)  (4 8 0) (5 7 5760)  (5 8 1920) (5 9 0) 3 
C (5 7 0) 3     
D (8 10 0)  (9 10 0) (10 11 960) 3   
E (8 10 0) (9 10 640)  (10 12 0) 3   
F (8 9 0) (9 10 384)  (10 11 768) 3   
G (11 12 0) (13 14 4512)** 3    

 

Table 6-6. Selected schedule-change options after LCC 

 
Extra cost  

 
Coordination methodology 

Sub-α 
($) 

Sub-β 
($) 

Sub-δ 
($) 

GC 
($) 

Total 
($) 

Duration 
 

(days) 
Centralized LCC +512 +960 +768 +4,000 +6,240 14 

 

Table 6-7. Summary of results after LCC 

 

In summary, LCC costs more for some subcontractors when they have to employ new 

resources due to delays of preceding activities as well as their resource deviations. The 

project missed its completion date and the central coordinator has to pay liquidated 

damages of $4,000 in this case. Options to expedite the activities instead of paying 
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liquidated damages, like time-cost tradeoff analysis (Fondahl 1961, 1991; Antill and 

Woodhead 1990), are limited because these need information, such as the cost slope for 

each activity, that usually is not available to the central controller.  

 

6.1.5  COMPARISON OF THREE COORDINATION METHODOLOGIES 

Table 6-8 summarizes the comparison among three different coordination methodologies 

in terms of cost and duration. 

 

Extra cost  
 
Coordination methodology 

Sub-α 
($) 

Sub-β 
($) 

Sub-δ 
($) 

GC 
($) 

Total 
($) 

Duration 
 

(days) 
Distributed ABCN +480 +1,024 0 0 +1,504 12 

TCC +480 +1,920 0 0 +2,400 12 Centralized 
LCC +512 +960 +768 +4,000 +6,240 14 

 

Table 6-8. Summary of results 
 

ABCN can find a solution that is better than or equal to any of the results from the 

centralized coordination methodologies. In these examples, it is better. However, it does 

not eliminate all extra costs for some subcontractors in cases where some subcontractors 

have to expedite their activities by working overtime to avoid large costs for delaying or 

expediting succeeding activities. Note that, under ABCN, the project can be flexible on 

finish time if any subcontractor is willing to pay the project delay penalty in return for a 

delay. Appendix-E shows the generalization of these evaluation results with 

mathematical proofs. 

 

6.2 DSAS CHARRETTE TESTS 

In order to test the effectiveness of DSAS, I used the charrette test method (Clayton et al. 

1998), which the Center for Integrated Facility Engineering (CIFE) at Stanford 

University has used to test the effectiveness of software systems. I conducted the 

charrette tests to compare two processes: one was a “manual” centralized coordination 

process and another was a computer-aided ABCN process on DSAS. The propositions to 

be tested are whether a computerized DSAS coordination produces the lower cost 
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solution faster than a manual centralized coordination. The task of the participants was to 

find a better project schedule from schedule options, which were given to participants, in 

terms of costs and time taken. The reason why I used the charrette test method was that it 

could test the effectiveness of the prototype system from the human perspective. The 

human subjects of the charrette were graduate students at Stanford University. Since I 

used human subjects in the DSAS charrette tests, I applied for a review and approval 

from the Human Subject Panel at Stanford University (Protocol no: 0001-375).  

 

6.2.1  DSAS CHARRETTE DESIGN 

A group of five participants represented a hypothetical project team, which consisted of a 

general contractor (GC) and four subcontractors (Sub-α, Sub-β, Sub-δ, and Sub-ε). I 

provided each participant with a 27-activity CPM network schedule, a separate resource 

histogram, and schedule-change options for his or her activities.  

 

I asked a group to remedy the given schedule while selecting the best combination among 

given schedule-change options subject to precedence, under one condition: They were not 

allowed to share their private schedule-change options with others. At first, I asked them 

to remedy the schedule manually in a 30-minute time frame. This means that they needed 

to find a better schedule using their collective knowledge and experience. Then, they 

used the DSAS system to find a computerized ABCN solution in another 20-minute time 

frame. I gave a 10-minute tutorial of DSAS before the DSAS session. They did not need 

any prior programming skills in using DSAS. Appendix-F shows the 27-activity and 5-

agent schedule, a separate resource histogram, and separate schedule-change options for 

Sub-α. Other subcontractors and GC have similar information, except their respective 

resource histograms and schedule-change options. 

 

6.2.2  TWO DSAS CHARRETTE TESTS   

I conducted two DSAS charrette tests with two groups of five graduate students at 

Stanford University. Group-A’s self-rated average skills in construction and computers 

were 2.8 and 3.6 respectively in the scale of 1 (novice) to 5 (expert), but one participant 

of this group had no prior construction experience, but had some knowledge about the 
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principles of CPM scheduling. Group-B’s average skills in construction and computers 

were 2.4 and 3.0 respectively, but one participant of this group had no prior construction 

experience and no knowledge about the principles of CPM scheduling. 

 

Before the manual centralized coordination session, I spent about 30 minutes explaining 

the example schedule, the resource histogram, and especially the schedule-change 

options. The predicted total incremented costs and total duration for subcontractors were 

$2,000 and 44 days if all subcontractors would choose Option-1 for their activities, which 

maintained the initial schedule. 

 

6.2.2.1  Manual Centralized Coordination Sessions 

In the manual centralized coordination sessions, these two groups acted differently. 

Subcontractors in Group-A were more competitive, which meant they were seeking 

compensation for disadvantageous agreements. In contrast, subcontractors in Group-B 

were more cooperative, which means they did not seek compensation for 

disadvantageous agreements.  

 

Group-A 

For the manual trial, Group-A selected a GC whose skills in construction and computers 

were 3 and 3 respectively in the scale of 1 (novice) to 5 (expert). The GC centrally 

coordinated other participants who acted like subcontractors (Sub-α, Sub-β, Sub-δ, and 

Sub-ε).  

 

When a subcontractor reported a change, the GC got the extra-cost information from the 

affected subcontractors directly and made decisions in a way to lower the sum of 

subcontractors’ extra costs. The GC considered precedence relationships among activities 

during coordination, like the multi-linked negotiation protocols in Chapter 4. Then 

subcontractors compensated other competitive subcontractors for disadvantageous 

agreements by changing extra-cost information, like the compensatory negotiation 

strategy in Chapter 4. Indeed, the GC used a centralized coordination methodology 

similar to the agent-based compensatory negotiation methodology in Chapter 4. When the 
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GC had considered the final activity, it ended the trial. The manual centralized 

coordination session lasted 37 minutes and the solution was $540, with the same 44-day 

duration.       

 

Group-B 

Group-B selected a GC whose skills in construction and computers were 1 and 5 

respectively in the scale of 1 (novice) to 5 (expert). Like Group-A, the GC centrally 

coordinated other subcontractors, but heavily relied on suggestions by more experienced 

subcontractors. Group-B’s GC coordinated subcontractors similar to Group-A’s GC, but 

cooperative subcontractors in Group-B did not seek compensation for disadvantageous 

agreements. Rather, they accepted their extra costs when they found that another’s cost 

was more than theirs. Like Group-A, the GC forced participants to reveal their 

confidential schedule-change options and other subcontractors present could get that 

information. The manual centralized coordination session lasted 30 minutes and the 

solution was $620 with the same 44-day duration.       

 

6.2.2.2  Computerized DSAS Sessions 

In the computerized DSAS session, subcontractors coordinated themselves without the 

aid of a GC. In fact, the GC acted like another subcontractor who had only root and final 

activities. Before the computerized DSAS session, I gave 10-minute DSAS tutorials 

using the data of Sub-α, as shown in Appendix-F.  

 

Group-A 

This group used the DSAS system, whose subcontractor agents were running in the 

different computers, to find a better solution. They used the Graphic User Interface, by 

copying and pasting data from a given text file to provide their agents (Sub-α, Sub-β, 

Sub-δ, and Sub-ε) with the information needed for agent-based compensatory 

negotiations, such as the activity name, the initial schedule information, and the schedule-

change options. Then they sent “input” messages to their agents. When they finished the 

inputs, they sent “ready” messages to their agents in order to start negotiations. All 

participants interacted with their agents at the same time. When a participant sent the last 
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“ready” message to his agent, the agent started negotiations. Participants waited until 

their agents sent “final” messages to them. 

 

After agents had sent all “final” messages, participants checked the negotiation results, by 

reading the contents of the “final” messages. Since no participant was responsible for 

collecting the results, I collected the negotiation results for my research purpose. The 

computerized DSAS session lasted for 17 minutes, including 11 minutes for data inputs, 

and the solution was $420 with the same duration.  

 

Group-B 

Group-B did not finish the computerized DSAS session due to various reasons: 

inappropriate preparation, errant data inputs, and time pressures.  

 

6.2.2.3  Results of DSAS charrette Tests 

Table 6-9 compared two groups’ results. Group-A performed better than Group-B in 

manual centralized coordination in terms of cost, even though Group-B found their 

solution faster. Only Group-A produced results in the computerized DSAS session. 

 

Group-A Group-B  

 

Processes 

Time 

(min) 

Extra Cost 

($) 

Duration 

(days) 

Time 

(min) 

Extra Cost 

($) 

Duration 

(days) 

Manual Centralized 37  540 44 30 620 44 

Computerized DSAS 17  420 44 Not available  

 

Table 6-9. Comparisons of results by group 

 

Group-A 

Table 6-10 shows the selected schedule-change options by Sub-α. Sub-α selected 

schedule-change options marked “�” in the manual session. Sub-α selected schedule-

change options marked “3” by using the DSAS system. The total costs for Sub-α in 

manual and DSAS were $200 and $80, respectively. Sub-α chose Option-2 for Activity-
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M because he thought Option-3 might affect some succeeding activities, but the 

succeeding activity, Activity-Q, could start one day later. Therefore, Option-3 was 

available without any cost. Note that Activity-I’s Option-2 marked “*” changed from (11 

14 120) to (11 14 0) because Sub-ε compensated Sub-α for delaying Activity-H. 

 

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
B (2 4) (2 4 80) �3 (4 6 0)   
E (6 9) (7 9 0) �3    
I (10 13) (10 13 0) *(11 14 0) �3 (12 15 240)  

M (14 26) (14 16 0) (20 22 120) � (25 27 0) 3  
Q (27 30) (28 30 0) �3    
U (31 38) (31 34 0) �3 (32 35 80)   

 
Table 6-10. Selected schedule-change options for Sub-α (Group-A) 

 

Table 6-11 shows the selected schedule-change options by Sub-β. The total costs for Sub-

β by manual and DSAS methods were $0 and $0, respectively. Sub-β chose different 

options for Activity-V and -Y in manual and DSAS, but the results are the same from 

Day 35 to Day 43. Note that Activity-V and -Y’s Option-2 marked “*” changed from (35 

38 100) (40 43 100) to (35 38 0) (40 43 0) because of compensation by Sub-δ for 

delaying Activity-S. 

 

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
F (10 15) (13 15 0) �3    
J (16 23) (16 17 0) �3    
N (24 25) (24 25 0) �3 (25 26 40)   
R (26 27) (26 27 0) �3 (27 28 40)   
V (34 38) (34 38 0) *(35 38 0) � (35 39 0) 3   
Y (39 43) (39 43 0) � *(40 43 0) 3 (40 44 40)  

 
Table 6-11. Selected schedule-change options for Sub-β (Group-A) 

 

Table 6-12 shows the selected schedule-change options by Sub-δ. The total costs for Sub-

δ by manual and DSAS methods were $100 and $100, respectively. Note that Activity-

S’s Option-2 marked “*” changed from (27 34 0) to (27 34 100) after compensating Sub-

β for delaying Activity-V or -Y.  
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Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
C (2 9) (2 9 0) �3    
G (10 15) (10 15 0) �3    
K (10 13) (10 13 1200) (12 15 900) (16 19 0) �3  
O (24 26) (24 26 0) �3 (25 27 300)   
S (26 33) (26 33 300) *(27 34 100) �3   
W (31 38) (35 37 0) �3    
Z (34 43) (38 40 0) �3    

 
Table 6-12. Selected schedule-change options for Sub-δ (Group-A) 

 

Table 6-13 shows the selected schedule-change options by Sub-ε. The total costs for Sub-

ε by manual and DSAS methods were $120 and $120, respectively. Note that Activity-

S’s Option-2 marked “*” changed from (6 10 0) to (6 10 120) after compensating Sub-α 

for delaying Activity-I.  

 

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
D (2 5) (2 5 0) �3    
H (5 9) (5 9 300) *(6 10 120) �3 (7 11 120)  
L (16 23) (16 23 120) �3 (17 24 0)   
P (24 25) (24 25 0) �3 (25 26 0)   
T (27 30) (27 30 0) �3 (28 31 300)   
X (28 38) (31 32 0) �3    

 
Table 6-13. Selected schedule-change options for Sub-ε (Group-A) 

 

Table 6-14 shows the selected schedule-change options by GC. The total costs for GC by 

manual and DSAS methods were $0 and $0, respectively. 

 

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
A (1 1) (1 1 0) �3    
Ω (44 44) (44 44 0) �3 (45 45 2000) (46 46 4000) (47 47 6000) 

 
Table 6-14. Selected schedule-change options for GC (Group-A)  

 

Group-B 

Table 6-15 shows the selected schedule-change options by Sub-α. Sub-α selected 

schedule-change options marked “�.”  The current DSAS could not produce results that 

are compatible with the manual results by cooperative Sub-α because I assumed agents in 
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DSAS were competitive. Therefore, I prepared manually the compatible results marked 

“3”  for Group-B’s Sub-α, by ignoring the compensation in the results by Group-A’s 

Sub-α.  The total costs for Sub-α by manual and DSAS methods were $320 and $200, 

respectively. Note that, like Group-A’s Sub-α, Group-B’s Sub-α also chose Option-2 

manually for Activity-M for the same reason.   

 

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
B (2 4) (2 4 80) �3 (4 6 0)   
E (6 9) (7 9 0) �3    
I (10 13) (10 13 0) (11 14 120)�3 (12 15 240)  

M (14 26) (14 16 0) (20 22 120) � (25 27 0) 3  
Q (27 30) (28 30 0) �3    
U (31 38) (31 34 0) �3 (32 35 80)   

 

Table 6-15. Selected schedule-change options for Sub-α (Group-B) 
 

Table 6-16 shows the selected schedule-change options by Sub-β. Like Sub-α, I 

manually prepared the compatible results marked “3”  for Sub-β, by ignoring the 

compensation in the results by Group-A’s Sub-β. The total costs for Sub-β by manual 

and DSAS methods were $180 and $100, respectively. Note that Sub-β chose Option-2 

for Activity-N and -R to resolve conflicts under time pressure since Sub-ε already chose 

the delay of Activity-P, which is the preceding activity of Activity-N.  

 

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
F (10 15) (13 15 0) �3    
J (16 23) (16 17 0) �3    
N (24 25) (24 25 0) 3 (25 26 40) �   
R (26 27) (26 27 0) 3 (27 28 40) �   
V (34 38) (34 38 0) (35 38 100)  (35 39 0)�3  
Y (39 43) (39 43 0) (40 43 100) �3 (40 44 40)  

 
Table 6-16. Selected schedule-change options for Sub-β (Group-B) 

 

Table 6-17 shows the selected schedule-change options by Sub-δ. The total costs for Sub-

δ by manual and DSAS methods were $0 and $0, respectively. 
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Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
C (2 9) (2 9 0) �3    
G (10 15) (10 15 0) �3    
K (10 13) (10 13 1200) (12 15 900) (16 19 0) �3  
O (24 26) (24 26 0) �3 (25 27 300)   
S (26 33) (26 33 300) (27 34 0) �3   
W (31 38) (35 37 0) �3    
Z (34 43) (38 40 0) �3    

 

Table 6-17. Selected schedule-change options for Sub-δ (Group-B) 
 

Table 6-18 shows the selected schedule-change options by Sub-ε. The total costs for Sub-

ε by manual and DSAS methods were $120 and $120, respectively. 

 

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
D (2 5) (2 5 0) �3    
H (5 9) (5 9 300) (6 10 0) �3 (7 11 120)  
L (16 23) (16 23 120)�3 (17 24 0)   
P (24 25) (24 25 0) 3 (25 26 0) �   
T (27 30) (27 30 0) �3 (28 31 300)   
X (28 38) (31 32 0) �3    

 

Table 6-18. Selected schedule-change options for Sub-ε (Group-B) 
 

Table 6-19 shows the selected schedule-change options by GC. The total costs for GC by 

manual and DSAS methods were $0 and $0, respectively. 

 

Activity ES-(EF+FF) Option-1 Option-2 Option-3 Option-4 
A (1 1) (1 1 0) �3    
Ω (44 44) (44 44 0) �3 (45 45 2000) (46 46 4000) (47 47 6000) 

 
Table 6-19. Selected schedule-change options for GC (Group-B)  

 

6.2.3  SUMMARY OF DSAS CHARRETTE TESTS   

In summary, computerized DSAS coordination produced a lower cost solution faster than 

any of the manual centralized coordination efforts by two groups. In this section, I compare 

the results of the DSAS charrette tests to check whether a computerized DSAS coordination 

produces the lower cost solution faster than a manual centralized coordination. 
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DSAS produced the solution faster 

Based on the time results in Section 6.2.2.3, Figure 6-3 shows the comparison results on 

the time taken to find its final solution among three cases. The computerized DSAS 

coordination produced the solution faster than any of the manual centralized coordination 

by two groups. 

Figure 6-3.  Time taken for each session 

 

The reason is that computerized DSAS coordination used software agents that could 

communicate rapidly, and reasoning mechanisms inside software agents made decisions 

automatically. If the number of subcontractors and activities in schedules grows, the 

power of DSAS to produce a solution quickly will be more evident.  

 

DSAS found a lower-cost solution 

Based on the cost results in Section 6.2.2.3, Figure 6-4 shows the comparison results 

based on the total of extra costs among three cases. The computerized DSAS 

coordination produced a lower-cost solution than any of the manual centralized 

coordination efforts by the two groups. 
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Figure 6-4.  Total extra costs from each session 

 

The reason is that computerized DSAS coordination considered more schedule-change 

options than manual centralized coordination because humans’ bounded rationality 

limited them. Tables 6-10 and 6-15 show that Sub-α excluded the lower-cost option for 

activity-M, (25 27 0), because the finish date was outside of the allowable duration, (14 

26), but the succeeding activity could start late without any extra cost so that the option 

should be chosen.  

 

DSAS confirmed other advantages of ABCN  

Besides showing the above quantitative benefits, a computerized DSAS coordination 

session confirmed the other advantages of ABCN: 

 

• Computerized DSAS coordination maintained work logic better than manual 

centralized coordination because of human errors. Even though the final selection 

of schedule-change options do not show, several intermediate manual solutions by 

test groups violated the work logic so that the group had to choose unfavorable 

schedule-change options under time pressure, as shown in Table 6-16. 
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• Computerized DSAS coordination found a solution that was better than or equal 

to the initial solution. This test showed the differences between competitive 

groups and cooperative groups. Competitive subcontractors in Group-A selected 

options that were better than or equal to their initial options. In contrast, 

cooperative subcontractors in Group-B did not ask for compensation and, as a 

result, sometimes chose worse options than their initial options to select a better 

group solution, as shown in Figure 6-15. ABCN supports competitive 

subcontractors.  

 

• Computerized DSAS coordination allowed subcontractors to keep the confidential 

information private. In manual centralized coordination, the GC forced 

subcontractors to reveal the confidential schedule-change options and other 

present subcontractors could get that information. In computerized DSAS 

coordination, no GC or subcontractor could get others’ confidential information 

because the cost information was “scrambled” by agents. Every agent could reply 

with one of two different costs so that no one could guess a particular 

subcontractor’s costs. 

 

This DSAS charrette tests also revealed two limitations of applying the current DSAS 

system to real construction projects:  

 

• One failure in a distributed agent in the DSAS system can cause the whole system 

to crash because of the tightly coupled nature of construction project schedules. I 

have experienced failures only when a user has provided wrong input data to his 

agent. When the agent crashes, it loses its data. The other agents are then not able 

to continue the negotiation processes. Since the AMR keeps messages but not 

data, the AMR does not help the agent to recover the lost data. I should upgrade 

the DSAS system so that agents can recover their data if one of them fails during 

the negotiation process.  
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• Human subcontractors may not trust their agents nor accept the results from 

DSAS until they fully understand the inside algorithms of their agents. 

Subcontractors would need intensive training about the ABCN. 

 

6.3 SYSTEM PERFORMANCE MEASUREMENTS OF DSAS 

In this section, I describe the test results of DSAS performance on the following five 

sample schedules from various sources.  

 

• 3-activity & 3-agent case (constructed) 
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Figure 6-5. 3-activity and 3-agent sample schedule 

 

• 7-activity & 3-agent case (constructed) 

 

Figure 6-6. 7-activity and 3-agent sample schedule 
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• 15-activity & 5-agent case (adapted from Son et al. (1999))  
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Figure 6-7. 15-activity and 5-agent sample schedule 

 

• 22-activity & 5-agent case (adapted from Hegazy et al. (2000)) 
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Figure 6-8. 22-activity and 5-agent sample schedule 
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• 27-activity & 5-agent case (adapted from Davis (1968)) 
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Figure 6-9. 27-activity and 5-agent sample schedule 

 

I constructed the following test scenarios for each schedule and tested each case. A 

change means that an activity does not have enough resources for following the initial 

schedule: 

  

• 3-activity & 3-agent case: 0 to 3 changes 

• 7-activity & 3-agent case: 0 to 6 changes 

• 15-activity & 5-agent case: 0 to 7 and 11 changes 

• 22-activity & 5-agent case: 0 to 7 and 19 changes 

• 27-activity & 5-agent case: 0 to 7 and 26 changes 

 

I conducted tests on a Toshiba laptop computer equipped with a 400 MHz Mobile 

Intel Celeron processor. Tables 6-20 and 6-21 show the test results in terms of the 
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number of messages and the time taken in minutes, and Figures 6-10 and 6-11 show the 

test results in graphical form. 

 

                       (Unit: no. of Messages) 
 No. of changes 

No. of activities 0 1 2 3 4 5 6 7 14 20 26 

3 11 27 33         

7  43 122 162 174 181 187 192     

15  83 152 233 284 298 338 352 350 405   

22  142 403 413 509 529 614 665 685  906  

27   167 653 774 1,048 1,055 1,119 1,180 1,344   1,904 

 

Table 6-20. Test results in terms of number of messages 

 
                    (Unit: minutes) 

 No. of changes 

No. of activities 0 1 2 3 4 5 6 7 14 20 26 

3 1 1 1         

7  1 2 2 2 2 3 2     

15  2 2 2 3 2 3 3 3 3   

22  2 3 3 4 3 5 5 5  8  

27   1 4 6 6 6 7 8 8   11 

 

Table 6-21. Test results in terms of time taken 

 

In summary, the test results show that the system performance of DSAS does not grow 

exponentially with the number of activities or with the number of changes. As shown in 

Appendix-G, I estimate that the worst-case computational complexity of DSAS is O(n3), 

where O is the approximate running time of DSAS, measured as a function of the number 

of activities, n, in a schedule. However, since under 3 changes at a time is common, the 

common computational complexity is O(n2), as shown in Figures 6-10 and 6-11. The 

linear plots show the number of messages or time taken in the cases of no change in each 

schedule. The quadratic plots show the number of messages or time taken in the cases of 
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three changes in each schedule. The cubic plots show the number of messages or time 

taken in the cases of maximum changes in each schedule. 
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Figure 6-10. Test results in terms of number of messages 

 

 
Figure 6-11. Test results in terms of time taken 
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A few limitations of DSAS also became more evident in this phase of testing. For 

example:  

 

• DSAS is only applicable to “balanced” schedules. A “balanced” schedule is a 

schedule in which paths between two nodes have the same number of nodes if 

there are multiple paths. Otherwise, DSAS stops due to “deadlocks.” I can modify 

“unbalanced” schedules by adding 0-duration dummy nodes.  

 

• Every schedule should have one start node and one finish node. Otherwise, 

DSAS stops due to “deadlocks.” I can easily modify schedules without these by 

adding 0-duration start and end nodes. 

 

Figure 6-12 shows an example of “balanced” schedule. This schedule has two paths 

between Node1 and Node 6: 1-2-4-6 and 1-2-5-6. These two paths have the same number 

of nodes (4). 

 

 

 

 

 

Figure 6-12. Balanced schedule 

 

Figure 6-13 shows an example of “unbalanced” schedule. Node 4 is missing from Figure 

6-12. Therefore, a path (1-3-5-6) has one more node than the other path (1-2-6). 

 

 

 

 

 

Figure 6-13. Unbalanced schedule 
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In this unbalanced schedule, DSAS stops due to “deadlocks.” Deadlocks happen in the 

following situation: Node 1 is infinitely waiting for a “reply-cost” message from Node 3 

and Node 6 is infinitively waiting for an “accept/reject” message from Node 5, as shown 

in Figure 6-14. 

 

 

 

 

 

Figure 6-14. Deadlock in unbalanced schedule 

 

I can modify “unbalanced” schedules by adding 0-duration dummy nodes. In this case I 

add Node 4 to convert an “unbalanced” schedule to a “balanced” schedule, as shown in 

Figure 6-15.  

 

 

 

 

 

Figure 6-15. Making balanced schedule 

 

Inserting dummy activities can minimize these limitations, but identifying these 

situations before using DSAS is additional computational overhead. I need to check every 

node and relationship to identify unbalanced paths in the schedule. Like forward 

propagation, the first node is 0 and adds one (+1) to its relationships to the succeeding 

activities. When two or more relationships come to one node, the node checks if the 

numbers are the same. If the numbers are the same, the schedule is balanced, as shown in 

Figure 6-16.  
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Figure 6-16. Checking balanced schedule 

 

Therefore, the estimated computational complexity for identifying these situations is 

O(n+m), where n is the number of activities and m is the number of relationships in a 

schedule.  

 

6.4 SUMMARY OF EVALUATION 

This chapter demonstrated the effectiveness of the ABCN methodology through 

evaluation tests. It compared two centralized coordination methodologies used in current 

practice to the ABCN methodology. I demonstrated through mathematical proofs (see 

Appendix-E) that the ABCN methodology always finds a solution that is better than or 

equal to those of two centralized coordination methodologies. Charrette tests 

demonstrated that DSAS produces the lower-cost results faster than manual centralized 

processes. Results of experimental tests with different schedules showed that DSAS finds 

a solution in a reasonable time.  
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CHAPTER 7 
 

CONCLUSIONS 

 

 

 

 

 

 

In this dissertation, I have introduced a framework for distributed coordination of project 

schedule changes (DCPSC). The framework emphasizes the distributed nature of 

coordinating project schedule changes, particularly subcontractors’ resource-driven 

schedule coordination. In the framework, subcontractors have their own activities and 

schedules for the activities. Subcontractors optimize their schedules based on their 

available resources and, as a result, schedule conflicts arise.  

 

The dissertation introduces a methodology for negotiation called the agent-based 

compensatory negotiation (ABCN) methodology. The methodology assumes that 

subcontractors are competitive and they need monetary compensation for 

disadvantageous agreements. The methodology preserves the sequence logic in the 

original project plan, and guarantees that subcontractors always reach a consensus, since 

the methodology uses the project plan to guide the negotiations.  

 

The research presented in this dissertation shows a distributed approach to coordination 

of project schedule changes and demonstrates agent-based compensatory negotiation as a 

vehicle for enabling this approach. The approach emphasizes the distributed nature of 

coordination of subcontractors’ resource-driven project schedule changes and the 

autonomy of subcontractors while it provides effective methods for coordinated exchange 

of information and negotiation protocols and a negotiation methodology for resolving 

schedule conflicts. This in itself is a significant departure from prior and recent research, 
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particularly in the area of construction project planning and scheduling, which has 

traditionally attempted to centralize the coordination process to enhance a project 

schedule. 

 

I tested the framework by developing a prototype of the Distributed Subcontractor Agent 

System (DSAS) that implemented the framework in a multi-agent environment. I 

compared the project schedules simulated on the prototype of the DSAS with those of 

two centralized coordination methodologies used in current practice, and concluded that 

that DCPSC produced a solution that is better than or equal to the initial solution, without 

revealing the subcontractor’s private information. DCPSC performed better than or equal 

to either of the two centralized coordination methodologies.  

 

I conducted a series of charrette tests that show DCPSC produced a solution that is better 

than or equal to the initial solution, without the need for subcontractors to reveal private 

information, and DSAS is faster, more accurate, and more usable than conventional 

manual processes. These comparison studies, experimental tests, and charrette tests 

provide evidence of the power, generality, and practical value of my work. Consequently, 

the results of the research contribute to the current knowledge of construction project 

planning and scheduling and distributed coordination of complex systems. I also 

measured the system performance of DSAS by comparing results of several different 

schedules, and concluded that DSAS finds a solution in a reasonable time. 

 

I conclude that the DCPSC framework enhances the project network schedule (in terms 

of lowering the sum of subcontractors’ costs associated with their resource constraints) 

by rescheduling the project subject to the precedence relationship among project 

activities in cases of changes in subcontractors’ resource availabilities. I also conclude 

that the proposed agent-based compensatory negotiation methodology facilitates the 

distributed coordination of project schedule changes by enabling subcontractors to 

compensate the affected subcontractors for disadvantageous agreements (see Section 

1.5); by allowing subcontractors to identify and resolve schedule conflicts in a tightly 

coupled network of related activities (see Section 1.5); and by enabling subcontractors to 
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maintain work logic and ensure convergence of distributed coordination (see Section 

1.5).  Section 7.1 will review the contributions. 

 

This research presents a new agent-based distributed approach for resolving schedule 

conflicts in project schedules. The distributed subcontractor agent system implemented in 

this research, together with schedule-change options, suggests that this new approach 

enables proactive coordination of various conflicts by subcontractors. Thus, this research 

would help construction project participants to increase efficiency in their resource use in 

a distributed manner, which will lead to successful completion of whole projects. Section 

7.2 of this chapter will discuss the practical demonstrations of this research. 

 

To make solid contributions and validate those contributions within a reasonable period 

of time, I limited the focus of my study in several ways. For example, I limited the 

contributions to the coordination of project schedule changes after the general contractor 

makes a master schedule and assigns parts of the master schedule to subcontractors. 

Section 7.3 of this chapter discusses the current limitations of the research 

accomplishments. Section 7.4 of this chapter suggests several directions for future 

research. 

 

This research can improve the competitive performance of construction projects to 

improve schedules, enhance resource utilization, and support cooperative relationships 

among subcontractors. General contractors as well as subcontractors get benefits from 

employing the research results. Industry can apply this research to many important areas 

of project management. Section 7.5 of this chapter explains the value of the research to 

industry. 

 

7.1 SUMMARY OF CONTRIBUTIONS 

In general, this research contributes to the field of construction project management and 

multi-agent systems through the introduction of a distributed coordination framework for 

project schedule changes by subcontractors in a construction project, the investigation of 

an agent-based compensatory negotiation methodology for distributed coordination of 
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project schedule changes, and the development of a prototype of a multi-agent system for 

distributed coordination of project schedule changes. The specific contributions answers 

the research questions (see Section 2.4) as follows: 

 

• Formal problem definition for the distributed coordination of project schedule 

changes: I defined the objective function of the distributed coordination of project 

schedule changes. This shows a new way to enhance the global outcome while 

pursuing individual incentives.  

 

• Formal definitions for the agent-based compensatory negotiation methodology: I 

defined utility of timing as real money. I also defined schedule-change options to 

represent the impacts on project schedule of resource constraints. 

  

• Negotiation protocols and algorithms of various message-handling mechanisms 

for subcontractor agents.  I defined negotiation protocols and algorithms for 

subcontractor agents so that subcontractor agents can negotiate with other agents.  

 

• Message-handling mechanisms that use the project plan for coordination of 

message passing among agents: I exploited the sequence logic in the project plan for 

agents to coordinate message passing and to ensure successful completion of 

distributed computation. 

 

• Linking CPM to agent-based distributed negotiation: I have shown how the 

subcontractors’ individual utility function for resource allocation over time can be 

rigorously combined with the critical path method (CPM) to propagate changes in 

individual activities to the activities performed by other subcontractors. This allows 

researchers to go beyond a simplistic representation of the “utility of timing” to a 

rigorous and operational representation of time. This is a key contribution from 

linking CPM to agent-based distributed negotiation. 
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• A multi-agent system for distributed coordination of project schedule changes 

that demonstrates various aspects of the framework: I developed a prototype of 

the Distributed Subcontractor Agent System (DSAS). The comparison test results on 

a prototype implementation of DSAS showed that DCPSC produced a solution that is 

better than or equal to the initial solution, without revealing any subcontractor’s 

private information. DCPSC performed better than or equal to either of two 

centralized coordination methodologies. A series of charrette tests also demonstrated 

that DSAS produces the lower-cost results faster than manual centralized processes. 

Experimental test results showed that DSAS scales in a way that makes its use 

feasible in real projects.  

 

Thus, this research provides a distributed coordination methodology that can improve 

interaction and collaboration among agents and people.   

 

7.2 PRACTICAL DEMONSTRATIONS 

This section discusses benefits of the distributed coordination of project schedule changes 

(DCPSC) compared to the centralized coordination methodologies, which most 

practitioners employ in current project management practice. DCPCS has benefits as 

noted below: 

 

• DCPSC handles change problems proactively. Most centralized coordination 

methodologies try to solve already-incurred delay problems and, therefore, lose many 

opportunities to find a solution proactively. DCPCS identifies change problems and 

opportunities beforehand and finds a solution proactively. 

 

• DCPSC finds a more equitable solution among all participants in a project. Most 

centralized coordination methodologies make the general contractors and 

subcontractors together pay for a delay, but the sources of trouble are difficult to 

define, which leads to an unfair cost distribution. DCPCS can identify the sources of 

possible delays beforehand and charge the sources when they decide to delay their 
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activities. DCPCS does not ask the central coordinator or the owners for extra costs 

for subcontractors’ faults, and costs will be distributed in an equitable manner so that 

disputes among participants can be resolved easily before becoming worse. 

 

• DCPSC promotes distributed decision-making to the level where accurate 

information exists. The general contractors employing the centralized coordination 

methodologies usually do not have the needed information for coordinating 

subcontractors because most of the needed information, such as resource and cost 

information, is kept within subcontractors. The general contractors could get the 

needed information through bids, but this would lead to opportunistic behaviors by 

subcontractors. DCPCS provides a methodology for subcontractors to make their 

decisions in collaboration with other subcontractors who hold accurate local 

information. Accordingly, most computation is carried out at distributed sites with 

relatively light message traffic among them.  

 

• DCPSC frees central coordinators from having to control changes directly. This 

means that the central coordinator takes less time and uses fewer resources to control 

the project. More importantly, it means a distributed system scales where a 

centralized system will not. There is also a revolution inherent in my work. The 

central coordinator no longer has to control directly but rather can do so indirectly by 

incentives (bonuses and penalties) in the contracts with the subcontractors.  My 

system allows subcontractors to work with each other in their own best interests, 

since it allows bonuses and penalties to be included in the calculation of "extra costs." 

 

The significance of these practical demonstrations is that DCPSC employs the agent-

based approach, which is a powerful tool to explore and exploit the opportunities offered 

by the distributed approach. Software agents have capabilities of fast communication 

with each other over the Internet, which supports project participants without geographic 

restrictions. Thus, this research can help construction project participants to increase the 

efficiency of their resource utilization in a distributed manner, and thus enhance 

successful completions of whole projects.  
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7.3   PRESENT LIMITATIONS OF RESEARCH 

DCPSC has some present limitations, as noted below, some of which are shared with 

centralized coordination methodologies: 

 

• DCPSC does not guarantee an optimal solution for the changes. Considering all 

alternatives in DCPSC is infeasible in a large network, because the number of 

alternatives grows exponentially with the number of succeeding activities, even with 

only a few options. Therefore, my methodology requires subcontractors to make 

quick decisions, i.e., choosing the best option of all, without considering all 

possibilities, thus the decision might eliminate a globally optimal solution. However, 

given that the needed information is available, centralized coordination 

methodologies can use optimization tools like integer programming to find an optimal 

solution in some cases, but these optimization tools are not applicable to the 

distributed coordination situation, where the needed information for optimization is 

distributed and private.  

 

• DCPSC does not allow changes of work logic in a project schedule. Because of 

the limited capability of its subcontractor agents, the current DCPSC can only 

evaluate impacts of proposed delays. The impacts are found by delaying affected 

activities. In the project context, some activities can shorten their durations for their 

purposes and the saved duration can be exploited for enhancing resource utilization of 

other activities. DCPSC does not allow subcontractors to change work logic in a 

project schedule, but only finds a better schedule with the fixed work logic.  

 

• DCPSC does not provide direct relationships between resource constraints and 

schedule-change options. There are too many parameters to determine the 

relationships between resource constraints and schedule-change options. Therefore, 

DCPSC uses a set of schedule-change options given by subcontractors. 
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7.4   FUTURE RESEARCH 

Researchers need to do the following future research to overcome limitations stated 

above: 

 

• Apply heuristic distributed search techniques for producing an optimal or near-

optimal solution. A better approach to produce an optimal or near-optimal solution 

would take into account the reduction of the distributed search space effectively.  

 

• Develop a more general distributed coordination methodology for allowing 

changes in work logic in project schedules. A more general distributed coordination 

methodology would take into account a different representation of activities, such as 

input and output requirements for each activity. The input/output requirements that 

allow it to be dynamic is an advance over the traditional project CPM model that only 

includes fixed precedence relationships between activities. 

 

• Accommodate “counter-offers” for richer negotiation protocols. Richer 

negotiation protocols would take into account mechanisms to detect the termination 

of negotiations because accommodating protocols like “counter-offers” would lead to 

infinite loops. 

 

• Investigate direct relationships between resource constraints and schedule-

change options. Direct relationships between resource constraints and schedule-

change options would take into account the investigation and parameterization of 

many factors that would relate resource constraints to schedule-change options, such 

as units, fixed/variable, timing, and upper limits of resources. 

 

• Extend the framework to allow distributed coordination/negotiation for 

variables other than time. Researchers can extend this research to help 

subcontractors resolve conflicts among competitive actors in other areas, such as 

mechanical, electrical, and plumbing (MEP) coordination and workspace 

management, e.g., HVAC, mechanical, electrical contractors negotiate for access to 
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space for straight pipe or duct runs in ceiling planning, etc. These involve spatial as 

well as temporal constraints between the activities performed by different 

subcontractors, and would require conceptual extensions to time constraints in this 

research.  

 

7.5 VALUE TO INDUSTRY 

This research could impact the industry by improving the competitive performance of 

construction projects to improve schedules, enhance resource utilization, and support 

cooperative relationships among subcontractors. My research provides a foundation to 

develop a distributed scheduling and control system that helps subcontractors represent 

resource requirements of activities and consider the timing of activities; helps them 

identify and analyze their resource constraints in a given schedule; helps them predict the 

behavior of activities; helps them incorporate the schedule impacts of those behaviors; 

and helps them coordinate their different scheduling perspectives by working together 

toward a better solution.   

 

This approach has the potential to free the central coordinator from having to control 

schedule changes directly while getting better schedules. The project schedule gets better 

because all the subcontractors have committed to their parts of the project schedule.  

Thus, this research will help project participants increase efficiency of their resource uses 

in a distributed manner, which should lead to more successful completions of whole 

projects.  

 

Industry can apply this research to improve the efficiency of coordinating complex 

distributed systems, such as electronic supply-chain and e-markets, where subcontractors 

interact and transact with other subcontractors within supply-chain networks with the 

assistance of software agents. Subject to external changes, subcontractors could use e-

markets to trade not only their timing with other subcontractors through multi-agent 

negotiation, but also their activities with the similarly qualified specialty contractors, 

which may be in better positions to execute the activities in a given time. Agent-based e-
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markets will allow specialty contractors to trade their activities with other specialty 

contractors to improve their resource utilization.  

 

There has been a long effort to improve resource utilization in the construction industry, 

whose project nature is a centralized constraint-satisfaction problem. Since the 

subcontractors in current practice manage the resources, subcontractors should play 

important roles in improving their resource utilization in a distributed manner. Agent-

based e-markets leverage agent technology to facilitate activity reallocation among 

specialty contractors, resulting in better resource utilization. Through transactions in the 

e-markets, agents will trade activities on behalf of human specialty contractors.  

 

An agent-based distributed approach has the potential to impact the performance of the 

construction industry significantly, through Internet-based project management, 

distributed control of large-scale engineering systems, and management of complex 

distributed systems. As project participants are provided with software agents that can 

communicate over the Internet, Internet-based project management, including routing of 

construction material and information flows, and dispatching of pickup and delivery 

systems, will become possible. Since the software agent can represent any participant in 

construction projects, researchers can develop the distributed coordination framework 

further for the real-time monitoring and control of large-scale civil and environmental 

engineering systems, e.g., bridges and water systems. Researchers could even further 

extend the distributed coordination methodology to the management of complex 

distributed systems, such as air traffic control, highway traffic operations, and disaster 

response.        

 

Although the focus of this research has been placed on the construction industry, this 

approach is valid for any project where a system integration (“prime”) contractor 

develops a project schedule, but subcontracts much of direct work to other firms, as in 

aerospace or custom network solution projects. 
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APPENDIX-B.  MULTI-LINKED NEGOTIATION PROTOCOLS  

 

In this section, I express Multi-linked negotiation (MLN) protocols based on Knowledge 

Query and Manipulation Language (KQML) (Finn et al 1993), along with extended 

performatives and a restrictive format for the message content consisting of field name 

and value pairs specific to the predefined performatives. I used BNF but avoided special 

symbols for repetition for readability. Strings are not case-sensitive. 

 

I classified the multi-linked negotiation protocols into three classes: human interaction, 

negotiation, and negotiation control. The human interaction performatives allow a human 

subcontractor to provide input data to its agent and an agent to inform its subcontractor of 

the current status of negotiation. The negotiation performatives facilitate the actual 

compensatory negotiation processes.  The negotiation control performatives manage the 

states of negotiation processes. 

 

B.1  SYNTAX 
 

B.1.1  Outer Syntax 

KQML-MLN-EPLMessage := "(" <performative> <mandatory> <otherfields> <content> ")"  

performative := <string> 

mandatory := ":" "Sender" <name> ":" "Receiver" <name> ":" "Language" "KQML"  

otherfields := ":" <name> <value> | ":" <name> <value> <otherfields> | NIL  

content := ":" "Content" "(" <content_fields> ")"  

content_fields := <name> "|" <value> "&" <content_fields> | <name> "|" <value> "&" | NIL  

value := <string> | "(" <string> <value> ")"  

name := <string>  

string := ASCII string  

 

B.1.2  Semantics 

This is the general form of a KQML message understood by MLN-compliant agents and 

defines the MLN general message syntax. 
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B.2  HUMAN INTERACTION PROTOCOLS 

These performatives are formal interfaces needed for a human subcontractor to provide 

input data to its agent and for an agent to inform the subcontractor of the results of 

negotiation.  

 

B.2.1  Input 

This is a MLN protocol message with <performative> “input”. The <receiver> is agent 

and the <sender> is a human GUI. 

 

• Syntax 

:content := “(“AGENT”(“<projStartDate>” “<projEndDate>” “<projPenalty>” “ 

<subName>”))” 

 

or 

:content := “(“ACTIVITY”(“<activityName>” “ <startDate>” “ 

<endDate>”){“”(“<preSubName>” “ 

<preActivityName>”)””}{“”(“<sucSubName>” “ 

<sucActivityName>”)””}{“”(“<optionStartDate>” 

“<optionEndDate>” “ <optionExtraCost>”)””})” 

 

• Semantics 

This performative allows a human subcontractor to provide its agent with agent 

information and activity information, including precedence and schedule-change 

options. 

 

• Field description 

projStartDate: Project start date 

projEndDate: Project end date 

projPenalty: project delay penalty 

subName: Name of human GUI 

activityName: Activity name 
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startDate: Activity start date 

endDate: Activity end date 

preSubName: Name of subcontractor agent that has a preceding activity  

preActivityName: Name of preceding activity 

sucSubName: Name of subcontractor agent that has a succeeding activity 

sucActivityName: Name of preceding activity 

optionStartDate: Alternative activity start date of a schedule-change option 

optionEndDate: Alternative activity end date of a schedule-change option 

optionExtraCost: Extra cost for a schedule-change option 

 

• Example 

(input 
:sender kim 
:receiver SubA 
:content  (AGENT(1 12 2000.0 kim)) 

 

This example shows that a human subcontractor (kim) provides it agent (SubA) with 

agent information that consists of project start date (Day 1), project end date (Day 

12), project delay penalty ($2,000), and name of human subcontractor (kim). 

 

(input 
:sender kim 
:receiver SubA 
:content  (ACTIVITY(E 8 10){(SubB B)(SubC C)}{(SubA G)}{(8 10 0)(9 10 

640)(10 12 0)})) 
  

This example shows that a human subcontractor (kim) provides it agent (SubA) with 

activity information that consists of a tuple of activity name (E), activity start date 

(Day 8), activity end date (Day 10); tuples of names of subcontractor agents (SubB 

and SubC) and name of preceding activities (C and G); a tuple of name of 

subcontractor agent (SubA), name of a succeeding activity (G); tuples of alternative 

activity start dates (Day 8, Day 9, and Day 10), alternative activity end dates (Day 10, 

Day 10, and Day 12), and extra costs for a schedule-change options ($0, $640, and 

$0). 
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B.2.2  Ready 

This is a MLN protocol message with <performative> “ready”. The <receiver> is agent 

and the <sender> is a human GUI. 

• Syntax 

:content := “(“<activityName>”)” 

 

• Semantics 

This performative allows a human subcontractor to inform its agent that input is 

finished on the specific activity. 

 

• Field description 

activityName: Activity name 

 

• Example 

(ready 
:sender kim 
:receiver SubA 
:content   (E))  

 

This example shows that the human subcontractor (kim) inform it agent (SubA) that 

input of activity information (E) is finished.  

 

B.2.3  Final 

This is a MLN protocol message with <performative> “final”. The <receiver> is a human 

GUI and the <sender> is an agent. 

 

• Syntax 

:content := “(“<activityName>” “NewStartDate: “<newStartDate>” “NewEndDate: “ 

<newEndDate>” “ActivityBenefit: “<activityBenefit>” “Receivable: “ 

“((“<preSubName>” “<preActivityName>” “<receivable>”))”” “ 

“Payable: ““((“<sucSubName>” “<sucActivityName>”“<payable>”))”” “ 
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“Schedule Options: “”((“<optionStartDate>” “<optionEndDate>” “ 

<optionExtraCost>”)))” 

 

• Semantics 

This performative allows an agent to inform the human subcontractor of the final 

result of negotiation on the specific activity.  

 

• Field description 

activityName: Activity name 

newStartDate: New activity start date 

newEndDate: New activity end date 

activityBenefit: Benefit for an activity from the negotiation 

preSubName: Name of subcontractor agent that has a preceding activity  

preActivityName: Name of preceding activity 

receivable: Amount to be received from the subcontractor agent that has a preceding   

activity 

sucSubName: Name of subcontractor agent that has a succeeding activity 

sucActivityName: Name of succeeding activity 

payable: Amount to be paid to the subcontractor agent that has a succeeding activity 

optionStartDate: Changed activity start date of a selected schedule-change option 

optionEndDate: Changed activity end date of a selected schedule-change option 

optionExtraCost: Extra cost for a selected schedule-change option 

 

• Example 

(final 
:sender SubA 
:receiver kim 
:content  (E NewStartDate: 9 NewEndDate: 10 ActivityBenefit: 0 Receivable:  

((SubB B 640)) Payable: ( ) Schedule Options: ((8 10 0)(9 10 0)(10 12 0))) 
 

This example shows that the agent (SubA) inform its human subcontractor (kim) of 

the final result of negotiation that the agent agreed to change its schedule-change 

option for activity (E), which consists of new start date (Day 9); new end date (Day 
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10); activity benefit ($0); a tuple of preceding agent name (SubB), preceding activity 

name (B), and receivable ($640); an empty tuple of payable; and tuples of changed 

activity start dates (Day 8, Day 9, and Day 10), changed activity end dates (Day 10, 

Day 10, and Day 12), and extra costs for a schedule-change options ($0, $0, and $0). 

Note that the second extra cost is changed from $640 to $0 because of receivable. 

 

B.3  NEGOTIATION PROTOCOLS  

The following performatives are used for facilitating compensatory negotiation processes.  

 

B.3.1  Ask-cost 

This is a MLN protocol message with <performative> “ask-cost”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>” 
“<proposedStartDate>”)” 

 

• Semantics 

This performative allows an agent to ask its ‘succeeding’ agent, which has the 

succeeding activity, to find out any cost which is incurred by the delay of the 

proposed start date. This performative makes the receiving activity “flag.”  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

proposedStartDate: Proposed start date for the activity of receiving agent 

 

• Example 

(ask-cost 
:sender SubB 
:receiver SubA 
:content   (B E 9))  
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This example shows that the agent (SubB) ask its ‘succeeding’ agent (SubA) to find 

out any cost, which is incurred by the delay of its activity (B), to the succeeding 

activity (E) with the proposed start date (Day 9). 

 

B.3.2  Reply-cost 

This is a MLN protocol message with <performative> “reply-cost”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>” 
“<cost>”)” 

 

• Semantics 

This performative allows an agent to reply to its ‘preceding’ agent, which has the 

preceding activity, with the cost which is incurred by the delay.  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

cost: Its own activity’ cost or a sum of succeeding activities’ cost 

 

• Example 

(reply-cost 
:sender SubA 
:receiver SubB 
:content   (E B 640))  

 

This example shows that the  agent (SubA) replies to its ‘preceding’ agent (SubB) 

with the cost ($640), which is incurred by the delay of the preceding activity (B), to 

its activity (E). 
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B.3.3  Accept 

This is a MLN protocol message with <performative> “accept”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
 

• Semantics 

This protocol allows an agent, which has “flag” activity, to accept the cost response 

from its ‘succeeding’ agent that has the succeeding activity. This means that the agent 

chooses to delay its activity rather than accelerate it.  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(accept 
:sender SubB 
:receiver SubA 
:content   (B E))  

 

This example shows that the agent (SubB), which has “flag” activity (B), accepts the 

cost response from its ‘succeeding’ agent (SubA) for the succeeding activity (E). This 

means that the agent (SubB) chooses to delay its activity (B) rather than accelerate it.  

 

B.3.4  Reject 

This is a MLN protocol message with <performative> “reject”. The <receiver> is an 

agent and the <sender> is an agent. 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
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• Semantics 

This protocol allows an agent, which has “flag” activity, to reject the cost response 

from its ‘succeeding’ agent that has the succeeding activity. This means that the agent 

chooses to accelerate its activity rather than delay it. 

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(reject 
:sender SubB 
:receiver SubA 
:content   (B E))  

 

This example shows that the agent (SubB), which has “flag” activity (B), rejects the 

cost response from its ‘succeeding’ agent (SubA) for the succeeding activity (E). This 

means that the agent (SubB) chooses to accelerate its activity (B) rather than delay it. 

 

B.3.5  Confirm 

This is a MLN protocol message with <performative> “confirm”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
 

• Semantics 

This protocol allows an agent to confirm the “accept” for its activity from its 

‘preceding’ agent that has the preceding activity. This means that its cost reply is 

accepted, but the final contract is pending.  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 
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receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(confirm 
:sender SubA 
:receiver SubB 
:content   (E B))  

 

This example shows that the agent (SubA) confirms the “accept” for its activity (E) 

from its ‘preceding’ agent (SubB) that has the preceding activity (B). This means that 

its cost reply is accepted, but the final contract is pending.  

 

B.3.6  Renege 

This is a MLN protocol message with <performative> “renege”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
 

• Semantics 

This protocol allows an agent to renege the “accept” or “reject” for its activity from 

its ‘preceding’ agent that has the preceding activity. This means that its cost reply is 

rejected and the agent has to keep the original schedule.  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(confirm 
:sender SubA 
:receiver SubB 
:content   (E B))  
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This example shows that the agent (SubA) reneges the “reject” for its activity (E) 

from the  ‘preceding’ agent (SubB) that has the preceding activity (B). This means 

that its cost reply is rejected and the agent has to keep the original schedule.  

 

B.3.7  Accept-all 

This is a MLN protocol message with <performative> “accept-all”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
 

• Semantics 

This protocol allows an agent, which has “active” activity, to accept the cost response 

from its ‘succeeding’ agent that has the succeeding activity. This means that the agent 

chooses to delay its activity rather than accelerate it.  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(accept-all 
:sender SubB 
:receiver SubA 
:content   (B E))  

 

This example shows that the agent (SubB), which has “active” activity (B), accepts 

the cost response from its ‘succeeding’ agent (SubA) that has the succeeding activity 

(E). This means that the initiating agent (SubB) chooses to delay its activity (B) rather 

than accelerate it. 
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B.3.8  Reject-all 

This is a MLN protocol message with <performative> “reject-all”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
 

• Semantics 

This protocol allows an agent, which has “active” activity, to reject the cost response 

from its ‘succeeding’ agent that has the succeeding activity. This means that the agent 

chooses to accelerate its activity rather than delay it.  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(reject-all 
:sender SubB 
:receiver SubA 
:content   (B E))  

 

This example shows that the agent (SubB), which has “active” activity (B), rejects the 

cost response from its ‘succeeding’ agent (SubA) that has the succeeding activity (E). 

This means that the initiating agent (SubB) chooses to accelerate its activity (B) 

rather than delay it. 

 

B.3.9  Confirm-all 

This is a MLN protocol message with <performative> “confirm-all”. The <receiver> is 

an agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
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• Semantics 

This protocol allows an agent to confirm the “accept-all” for its activity from its 

‘preceding’ agent that has the preceding activity. This means that its cost reply is 

accepted and the contract is binding.  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(confirm-all 
:sender SubA 
:receiver SubB 
:content   (E B))  

 

This example shows that the agent (SubA) confirms the “accept-all” for its activity 

(E) from its ‘preceding’ agent (SubB) that has the preceding activity (B). This means 

that its cost reply is accepted and the contract is binding.  

 

B.3.10  Renege-all 

This is a MLN protocol message with <performative> “renege-all”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
 

• Semantics 

This protocol allows an agent to renege the “accept-all” or “reject-all” for its activity 

from its ‘preceding’ agent that has the preceding activity. This means that its cost 

reply is rejected and the agent has to keep the original schedule of its activity.  

 

• Field description 

sendingSub_activityName: Activity name of sending agent 
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receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(renege-all 
:sender SubA 
:receiver SubB 
:content   (E B))  

 

This example shows that the agent (SubA) reneges the “accept-all” or “reject-all” for 

its activity (E) from its ‘preceding’ agent (SubB) that has the preceding activity (B). 

This means that its cost reply is rejected and the agent (SubA) has to keep the original 

schedule of its activity (E).  

 

B.4  NEGOTIATION CONTROL PROTOCOLS  

These performatives are used for managing the states of negotiation processes.  

 

B.4.1  Ready 

This is a MLN protocol message with <performative> “ready”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
 

• Semantics 

This protocol allows an agent to inform its ‘preceding’ agent, which has the preceding 

activity, that its activity is ready for negotiation. 

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 
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• Example 

(ready 
:sender SubA 
:receiver SubB 
:content   (E B))  

 

This example shows that the agent (SubA) informs its ‘preceding’ agent (SubB), 

which has the preceding activity (B), that its activity (E) is ready for negotiation. 

 

B.4.2  Hand-over 

This is a MLN protocol message with <performative> “hand-over”. The <receiver> is an 

agent and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>” 
“<proposedStartDate>”)” 

 

• Semantics 

This protocol allows an agent, which has the active activity, to inform its 

‘succeeding’ agent, which has the succeeding activity, of starting a negotiation. 

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

proposedStartDate: Proposed start date for the activity of receiving agent 

 

• Example 

(hand-over 
:sender SubB 
:receiver SubA 
:content   (B E 9))  
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This example shows that the agent (SubB), which has the active activity (B), to 

inform the ‘succeeding’ agent (SubA), which has the succeeding activity (E), of 

starting a negotiation at Day 9. 

 

B.4.3  Done 

This is a MLN protocol message with <performative> “done”. The <receiver> is an agent 

and the <sender> is an agent. 

 

• Syntax 

:content := “(“<sendingSub_activityName>” “<receivingSub_activityName>”)” 
 

• Semantics 

This protocol allows an agent to inform its ‘preceding’ agent, which has the preceding 

activity, that its activity is finished the negotiation. 

 

• Field description 

sendingSub_activityName: Activity name of sending agent 

receivingSub_activityName: Activity name of receiving agent 

 

• Example 

(done 
:sender SubA 
:receiver SubB 
:content   (E B))  

 

This example shows that the agent (SubA) informs its ‘preceding’ agent (SubB), 

which has the preceding activity (B), that its activity (E) is finished the negotiation 
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APPENDIX-C.  MESSAGE-HANDLING MECHANISMS 

 

The subcontractor agent reacts according to what message it receives. Therefore, the 

subcontractor agent should have the functionality of handling messages for each type of 

multi-linked message protocols. When the agent receives a message, it should also make 

a decision accordingly. Note that agents do not have to react to “final” or “sorry” 

messages because those messages are sent only to human subcontractors. 

 

C.1   Handling “input” Messages 

As shown in Figure C-1, when an agent receives an “input” message, it should check 

whether it is allowed to handle the message. The agent is not allowed to handle the 

message when the agent is currently involved in the negotiation, which means that the 

agent is ‘lock’. In that case, it sends a “sorry” message back to its human subcontractor. 

When the agent is not ‘lock’, it parses the content of the message and handles it 

according to the content type: AGENT or ACTIVITY. The agent stores the parsed 

information in the table for negotiation using activity ID as a key. The agent updates 

information when the same activity ID exists already. When the agent fails to parse the 

content of message due to typos, it sends a “sorry” message back to its human 

subcontractor.      

 

  input 

unLocked?  
No 

Yes 
sorry � 

updateAgentInfo 

wait 

isAgentInfo? 
No 

Yes 

isActivityInfo? 

updateActivityInfo 

wait 

Yes 

sorry � 

No 

 
   

Figure C-1. Handling “input” messages 
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C.2   Handling “ready” Messages 

As shown in Figure C-2, when an agent receives a “ready” message, whether it comes 

from its human subcontractor or an agent, it checks whether all the possible “ready” 

messages for the activity are received, which is necessary in order to ensure the 

synchronous negotiation. When the agent has received all the possible “ready” messages, 

it updates its status as ‘lock’ that prevents the agent from receiving any “input” message. 

Then the agent handles the message according to the position of its activity.  

 

 

 � ready 

AC = 0 

receivedAll? 

hand-over � ask-cost � 

selectAC 

wait 
No 

Yes 

No 

Yes 

updateAgentStatus <<“lock”>>  

isStartActivity? 

isEndActivity? 
No 

ready � 

No 

Yes 

final � 

updateActivityStatus <<“active”>>  

Yes 

 

  Figure C-2. Handling “ready” messages 

 

If the activity is the ‘start’ activity, the agent becomes the ‘active’ agent for the activity. 

Unless the activity is also the ‘end’ activity, in which the agent sends a “final” message to 

its human subcontractor to inform it of the result, the agent finds the best option to pursue 

and sends “ask-cost” messages to the agents that have succeeding activities if AC is 

positive. This means the agent has an opportunity to save money, or sends “hand-over” 

messages to the agents that have succeeding activities, which means the agent decides to 
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keep the original schedule. If the activity is the ‘middle’ activity, the agent sends “ready” 

messages to the agents that have preceding activities. 

 

C.3   Handling “ask-cost” Messages 

As shown in Figure C-3, when an agent receives an “ask-cost” message for its activity 

from an agent that has a preceding activity, it checks whether all the possible “ask-cost” 

messages for the activity are received. A “hand-over” message will be handled as a 

possible “ask-cost” message because there will be no “ask-cost” from the activity. When 

the agent has received all the possible “ask-cost” messages, the agent handles the 

message according to the position of its activity. One important feature of handling “ask-

cost” messages is finding a critical activity or critical activities, which will dictate the 

start date of the receiving activity.  

 

 

� ask-cost 

receivedAll? 

ask-cost � 

selectC4 = min(options) 

wait 
No 

Yes 

No 

updateCritical 

isCritical? 

reply-cost(0)� 

Yes 

Yes 

No 

reply-cost(DC)� 

updateActivityStatus 

<<“flag”>>  

IsEndActivity? 

 

  Figure C-3. Handling “ask-cost” messages 

 

If the activity is the ‘end’ activity, the agent selects the lowest cost option (minimum of 

(C3, C4)) and sends “reply-cost” messages with the costs incurred by the “ask-cost” 

message. The aforementioned criticality is used here to reply with the costs to multiple 
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activities: zero-cost for non-critical activities and full-cost for a critical activity. If there 

are multiple critical activities, the costs will be shared equally among them. For other 

‘middle’ activities, the agent updates its activity’s status as ‘flag’ for handling “reply-

cost” messages, which means the ‘flag’ activity will determine the best option for 

replying cost (minimum of (C3, C4)) when it receives all the “reply-cost” messages. It 

also selects the lowest cost option (C4) and sends “ask-cost” messages to the agents that 

have succeeding activities according to its C4 option, which means that the agents want 

to know the consequence of delaying its activity schedule.  

 

C.4   Handling “reply-cost” Messages 

As shown in Figure C-4, when an agent receives a “reply-cost” message for its activity 

from an agent that has a succeeding activity, it checks whether all the “reply-cost” 

messages for the activity are received. When the agent has received all the “reply-cost” 

messages, it handles the message according to the position of its activity.  
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wait 
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No 
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 Figure C-4. Handling “reply-cost” messages 
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If the activity is the ‘flag’ activity, it selects the C3 and determines the best option for 

replying with the cost (minimum of (C3, C4)) and sends “accept” messages to the agents 

that have succeeding activities if C3 is bigger than the accumulated C4, which means 

delaying costs less than accelerating costs, or sends “reject” messages, which means the 

agent decides to accelerate its activity schedule. If the activity is the ‘active’ activity, the 

agent compares AC and DC and sends “accept-all” messages, which means the agent 

decides to change the original schedule and transfers (the DC portion of) utility to the 

succeeding activities, or “reject-all” messages, which means the agent decides to keep the 

original schedule, to the agents that have succeeding activities according to the results of 

comparison. 

 

C.5   Handling “accept” Messages 

As shown in Figure C-5, when an agent receives an “accept” message for its activity from 

an agent that has a preceding activity, it checks whether all the possible “accept” or 

“reject” messages for the activity are received. When the agent has received all the 

possible “accept” or “reject” messages, it handles the message according to the position 

of its activity.  
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  Figure C-5. Handling “accept” messages 
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If the activity is the ‘end’ activity, the agent checks whether a “reject” message is 

received and sends one of two messages to the agents that have sent “accept” or “reject” 

messages: a “confirm” message, which means the agent freezes the selected option for 

replying costs; or a “renege” message, which means the agent has to go back to the 

original option. For other ‘middle’ activities, the agent checks whether a “reject” message 

is received and sends “accept” or “reject” messages to the agents that have succeeding 

activities. Note that any “reject” message will cause the agent to nullify the “accept” 

messages, which results in consensus decisions. 

 

C.6   Handling “reject” Messages 

As shown in Figure C-6, when an agent receives a “reject” message for its activity from 

an agent that has a preceding activity, it checks whether all the possible “accept” or 

“reject” messages for the activity are received. When the agent has received all the 

possible “accept” or “reject” messages, it handles the message according to the position 

of its activity.  
 

� reject 

isEndActivity? 

receivedAll?
*

wait 

Yes 

Yes 

updatePreCheck 

No 

<<“reject”>>  

No 

reject � 

freezeOption 

renege � 

 

  Figure C-6. Handling “reject” message 

 

If the activity is the ‘end’ activity, without checking whether any “reject” message is 

received, the agent sends “renege” messages to the agents that have sent “accept” or 
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“reject” messages, which means the agent has to go back to the original option. For other 

‘middle’ activities, without checking whether any “reject” message is received, the agent 

sends “reject” messages to the agents that have succeeding activities. Although any 

“reject” message will cause the agent to nullify the “accept” messages, “reject” messages 

should be propagated to the end activity in order to avoid deadlocks, instead of sending 

“renege” messages immediately.  

 

C.7   Handling “confirm” Messages 

As shown in Figure C-7, when an agent receives a “confirm” message for its activity 

from an agent that has a succeeding activity, it checks whether all the “confirm” 

messages for the activity are received. When the agent has received all the “confirm” 

messages, it handles the message according to the position of its activity. Although any 

“confirm” message implies that all the “confirm” messages will be received, the agent 

should wait until all the “confirm” messages are received in order to avoid deadlocks. 
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isFlagActivity? 
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receivedAll?
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No 
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wait 
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confirm � 

No 

<<“null”>>  

reply-cost(0) � 

No 

reply-cost(ΣC4) � 

isCriticalActivity? 
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  Figure C-7. Handling “confirm” messages 

 

If the activity is the ‘flag’ activity, it selects the C4 and sends “reply-cost” messages to 

the agents that have succeeding activities with the same principle of criticality. Then the 

agent updates its activity’s status to ‘null’, which means the agent is no longer the ‘flag’ 
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activity. For other ‘middle’ activities, the agent sends “confirm” messages to the agents 

that have preceding activities.  

 

C.8   Handling “renege” Messages 

As shown in Figure C-8, when an agent receives a “renege” message for its activity from 

an agent that has a succeeding activity, it checks whether all the “renege” messages for 

the activity are received. When the agent has received all the “renege” messages, it 

handles the message according to the position of its activity. Although any “renege” 

message implies that all the “renege” messages will be received, the agent should wait 

until all the “renege” messages are received in order to avoid deadlocks. 
 

� renege 
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No 
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reply-cost(0) � 

No 

reply-cost(C3) � 
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  Figure C-8. Handling “renege” messages 

 

If the activity is the ‘flag’ activity, it selects the C3 and sends “reply-cost” messages as 

like handling “confirm” messages. The other procedures are same as handling “confirm” 

messages except sending “renege” messages.  

 

C.9   Handling “accept-all” Message 

As shown in Figure C-9, when an agent receives an “accept-all” message for its activity 

from an agent that has a preceding activity, it checks whether all the possible “accept-all” 

or “reject-all” messages for the activity are received. When the agent has received all the 
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possible “accept-all” or “reject-all” messages, it handles the messages according to the 

position of its activity.  
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  Figure C-9. Handling “accept-all” messages 

 

If the activity is the ‘end’ activity, the agent checks whether a “reject-all” message is 

received and sends one of two messages to the agents that have sent “accept-all” or 

“reject-all” messages: a “confirm-all,” which means the agent updates the selected option 

for replying costs; or a “renege-all” message, which means the agent has to go back to the 

original option. For other ‘middle’ activities, the agent checks whether a “reject” message 

is received and sends “accept-all” or “reject-all” messages to the agents that have 

succeeding activities. Note that any “reject-all” message will cause the agent to nullify 

the “accept-all” messages, which results in consensus decisions. 

 

C.10   Handling “reject-all” Messages 

As shown in Figure C-10, when an agent receives a “reject-all” message for its activity 

from an agent that has a preceding activity, it checks whether all the possible “accept-all” 

or “reject-all” messages for the activity are received. When the agent has received all the 
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possible “accept-all” or “reject-all” messages, it handles the message according to the 

position of its activity.  

 

 

� reject-all 
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wait 
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  Figure C-10. Handling “reject-all” Message 

 

If the activity is the ‘end’ activity, without checking whether any “reject-all” message is 

received, the agent send “renege-all” messages to the agents that have succeeding 

activities, which means the agent has to go back to the original option. Then the agent 

updates its schedule change options accordingly. For other ‘middle’ activities, without 

checking whether any “reject-all” message is received, the agent sends “reject-all” 

messages. Although any “reject-all” message will cause the agent to nullify the “accept-

all” messages, “reject-all” messages should be propagated to the end activity in order to 

avoid deadlocks, instead of sending “renege-all” messages immediately. 

 

C.11   Handling “confirm-all” Message 

As shown in Figure C-11, when an agent receives a “confirm-all” message for its activity 

from an agent that has a succeeding activity, it checks whether all the “confirm-all” 

messages for the activity have been received. When the agent has received all the 

“confirm-all” messages, it handles the message according to the position of its activity. 

Although any “confirm-all” message implies that all the “confirm-all” messages will be 
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received, the agent should wait until all the “confirm-all” messages are received in order 

to avoid deadlocks.  

 
 

� confirm-all 

isActiveActivity? 
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No 

updateOption 

confirm-all � hand-over�� 

receivedAll?
*

wait 

Yes 

No 

 

  Figure C-11. Handling “confirm-all” Message 

 

If the activity is the ‘active’ activity, it sends a “hand-over” message to itself to initiate 

another cycle of negotiation because any “confirm-all” message implies that its schedule 

change options are changed. Then the agent updates its status to ‘null’, which means the 

agent is no longer the ‘active’ activity. For other ‘middle’ activities, the agent sends 

“confirm-all” messages to the agents that have preceding activities.  

 

C.12   Handling “renege-all” Messages 

As shown in Figure C-12, when an agent receives a “renege-all” message for its activity 

from an agent that has a succeeding activity, it checks whether all the “renege-all” 

messages for the activity are received. When the agent has received all the “renege-all” 

messages, it handles the messages according to the position of its activity. Although any 

“renege-all” message implies that all the “renege-all” messages will be received, the 

agent should wait until all the “renege-all” messages are received in order to avoid 

deadlocks. 
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  Figure C-12. Handling “renege-all” messages 

 

If the activity is the ‘active’ activity, it sends a “hand-over” message to the agents that 

have the succeeding activities because any “renege-all” message implies that its schedule 

change options are not changed. Then the agent updates its status to ‘null’, which means 

the agent is no longer the ‘active’ activity. For other ‘middle’ activities, the agent sends 

“renege-all” messages to the agents that have preceding activities.  

 

C.13   Handling “hand-over” Message 

As shown in Figure C-13, when an agent receives a “hand-over” message for its activity 

from an agent that has a preceding activity, it checks whether all the “hand-over” 

messages for the activity are received. When the agent has received all the “hand-over” 

messages, which is necessary in order to ensure the synchronous negotiation, it updates 

the status as “active” and handles the messages according to the position of its activity.  

 

If the activity is the ‘end’ activity, the agent sends a “final” message to its human 

subcontractor to inform the result and send “done” messages to the agents that have 

preceding agents. It also updates its status as “unlock” to allow its human subcontractor 

to provide inputs.  For the ‘middle’ activities, the agent finds the best option to pursue 

and sends “ask-cost” messages to the agents that have succeeding activities if AC is 

positive, which means the agent has an opportunity to save money, or sends “hand-over” 
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messages to the agents that have the succeeding activities, which means the agent decides 

to keep the original schedule.  
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  Figure C-13. Handling “hand-over” messages 

 

C.14   Handling “done” Message 

As shown in Figure C-14, when an agent receives a “done” message for its activity from 

an agent that has a succeeding activity, it checks whether all the “done” messages for the 

activity are received. When the agent has received all the “done” messages, it updates its 

status as “unlock” and handles the messages according to the position of its activity. 

Although any “done” message implies that all the “done” messages will be received, the 

agent should wait until all the “done” messages are received in order to avoid deadlocks. 

 

If the activity is the ‘start’ activity, it sends a “final” message to its human subcontractor. 

For other ‘middle’ activities, the agent sends “done” messages to the agents which have 

preceding activities and sends a “final” message to its human subcontractor.  
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  Figure C-14. Handling “done” messages 
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APPENDIX-D.  STEP-BY-STEP ABCN ON DSAS 
 

A step-by-step Agent-based Compensatory Negotiation (ABCN) methodology on 

Distributed Subcontractor Agent System (DSAS) example will verify that the DSAS 

demonstrates the effectiveness of the distributed coordination of project schedule 

changes. 

 

Step-0: Consider the example network in Figure D-1(a). The results of conventional 

CPM calculations appear on the diagram. The resource requirement for each 

activity appears on the diagram in Figure D-1(a). Activities (A, E and G) are 

assigned to Sub-α. Activities (B and D) are assigned to Sub-β. Activities (C and 

F) are assigned to Sub-δ. 
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Figure D-1. Example network and ERS schedule 
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The resource histogram in Figure D-2 indicates the initial resource requirements.  
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Figure D-2. Resource requirement histogram 

 

The resource histogram in Figure D-3 indicates the available resources. 
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Figure D-3. Available resource histogram 
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This resource histogram implies that some subcontractors’ schedules differ from 

their original ones. Based on these available resource histograms, some of the 

subcontractors’ preferred schedules shift, as shown by the diagonal pattern in 

Figure D-4.      
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Figure D-4. Subcontractors’ preferred schedule 

 

 Human subcontractors provide their agents with agent and activity information 

by sending “input” messages. Table D-1 shows the initial schedule-change 

options in the format of (startDate(day) endDate(day) extraCost($)). Note that 

options marked ‘*’ are initially available options, which are feasible because the 

start date of an activity is later than the end dates of the preceding activities. The 

option marked ‘**’includes liquidated damages ($4,000) for a 2-day project 

delay. 

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480)  (1 4 0)    
B (4 7 1920)  (4 8 0) (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0)     
D (8 10 0)  (9 10 0) (10 11 960)   
E (8 10 0) (9 10 640)  (10 12 0)   
F (8 9 0) (9 10 384)  (10 11 768)   
G (11 12 0) (13 14 4512)**    

 

Table D-1. Initial schedule change options at Step-0 
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Step-1: The Distributed Coordination of Project Schedule Changes (DCPSC) starts with 

“ready” messages from its human subcontractors through distributed Graphic 

User Interfaces (GUIs). Agents propagate the “ready” messages backward to the 

agents that have preceding activities, based on the project plan.   

Step-2: The agents propagate “ready” messages backward to the agents that have the 

preceding activities. 

Step-3: The agents propagate “ready” messages backward to the agent that has the start 

activity. 

Step-4: After receiving all “ready” messages, the agent (Sub-α) that has the start activity 

(A) selects an option (A2) to be explored and finds AC ($480), the difference 

between the selected option ($0) and the initial option ($480). To find the extra 

cost for the succeeding activities from the change, Sub-α sends “ask-cost” 

messages to agents (Sub-β and Sub-δ) that have succeeding activities (B and C), 

which ask the succeeding activities to start at Day 5. 

Step-5: After receiving all “ask-cost” messages, the agents (Sub-β and Sub-δ) select the 

lowest-cost possible options (B5 and C1) and find the DC, which are the extra 

costs of selected options. They then send “ask-cost” messages to the agents (Sub-

α, Sub-β, and Sub-δ) that have succeeding activities (D, E, and F). Note that 

Sub-β and Sub-δ send messages to themselves, but for different activities. 

Step-6: The “ask-cost” messages are propagated forward to the end activity, with 

selecting options (E3, D3, F3). 

Step-7: After receiving all “ask-cost” messages, the agent (Sub-α) that has the end 

activity (G) selects the lowest possible option (G2) as DC. The agent also finds 

which activity is a critical activity (E), which asks (G) to start on the latest date. 

And then Sub-α sends “reply-cost” messages with DC to the agent (Sub-α) that 

has critical activity (E) and sends zero (0) cost to the other agents (Sub-β and 

Sub-δ). Table D-2 shows the selected schedule-change options, which is marked 

“3.” 
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Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480)  (1 4 0) 3    
B (4 7 1920)  (4 8 0) (5 7 5760)  (5 8 1920) (5 9 0) 3 
C (5 7 0) 3     
D (8 10 0)  (9 10 0) (10 11 960) 3   
E (8 10 0) (9 10 640)  (10 12 0) 3   
F (8 9 0) (9 10 384)  (10 11 768) 3   
G (11 12 0) (13 14 4512)** 3    

 

Table D-2. Selected schedule change options at Step-7 
 

Step-8: After receiving all “reply-cost” messages, the agents (Sub-α, Sub-β, and Sub-δ) 

accumulate DC and compare them with AC, which can be finished within the 

initial end date. In this case, there are no other possible options; therefore, the 

agents send “accept” messages to the agent (Sub-α) that has a succeeding 

activity (G). 

Step-9: After receiving all “accept” messages, the agent (Sub-α) sends “confirm” 

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities 

(D, E, and F). 

Step-10:  After receiving all “confirm” messages, the agents (Sub-α, Sub-β, and Sub-δ) 

send “reply-cost” messages with accumulated DC to the agents (Sub-β and Sub-

δ) that have preceding activities (D, E, and F). 

Step-11: Similar to Step-8. But Sub-β finds the lower-cost AC ($5,760) for Activity-B 

than the accumulated DC ($6,240). Therefore, Sub-β sends “reject” messages to 

the agents (Sub-α and Sub-β) that have succeeding activities (D and E). On the 

other hand, Sub-δ cannot find another option for Activity-C and sends “accept” 

messages to the other agents (Sub-α and Sub-δ). 

Step-12: After receiving all “accept/reject” messages, the agents (Sub-α, Sub-β, and Sub-

δ) send “reject” messages to the agent (Sub-α) that has succeeding activities (G). 

Note that “accept” messages are sent only if all messages are “accept”, which 

makes them consensus agreements.  



 172

Step-13: After receiving all “reject” messages, the agent (Sub-α) sends “renege” 

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have sent “accept/reject” 

messages for activities (D, E, and F). 

Step-14: The “renege” messages propagate backward to the agents (Sub-β and Sub-δ) 

that initially sent “accept” or “reject” messages. 

Step-15:  After receiving all “renege” messages, the agents (Sub-β and Sub-δ) send 

“reply-cost” messages with their AC to the agent (Sub-α) that has sent “ask-cost” 

messages for activity (A). Table D-3 shows the selected schedule-change 

options. 

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480)  (1 4 0) 3    
B (4 7 1920)  (4 8 0) (5 7 5760) 3 (5 8 1920) (5 9 0) 
C (5 7 0) 3     
D (8 10 0) 3 (9 10 0) (10 11 960)   
E (8 10 0) 3 (9 10 640)  (10 12 0)   
F (8 9 0) 3 (9 10 384)  (10 11 768)   
G (11 12 0) 3 (13 14 4512)**    

 

Table D-3. Selected schedule change options at Step-15 
 

Step-16:  After receiving all “reply-cost” messages, the agent (Sub-α) accumulates DC 

and compares them with its AC, which can be finished within the initial end 

dates. In this case, DC ($5,760) is more than AC ($480). Therefore it sends 

“reject-all” messages to the agents (Sub-β and Sub-δ) that have succeeding 

activities (B and C). Note that “reject-all” messages are authorative compared to 

tentative “reject” messages. 

Step-17: The agents (Sub-β and Sub-δ) propagate “reject-all” messages forward to the 

agents (Sub-α, Sub-β, and Sub-δ), which have activities (E, E, and F). 

Step-18: The agents (Sub-α, Sub-β, and Sub-δ) propagate “reject-all” messages forward 

to the agent (Sub-α), which has the end activity (G). 
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Step-19: After receiving all “reject-all” messages, the agent (Sub-α) sends “renege-all” 

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities 

(D, E, and F).  

Step-20: The agents (Sub-α, Sub-β, and Sub-δ) propagate “renege-all” messages 

backward to the agents (Sub-β and Sub-δ), which have activities (B and C). 

Step-21: The agents (Sub-β and Sub-δ) propagate “renege-all” messages backward to the 

agent (Sub-α) that initially sent a “reject-all” message. Table D-4 shows the 

selected schedule-change options. Note that all agents have to stick with the 

initial options. 

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480) 3 (1 4 0)    
B (4 7 1920) 3 (4 8 0) (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0) 3     
D (8 10 0) 3 (9 10 0) (10 11 960)   
E (8 10 0) 3 (9 10 640)  (10 12 0)   
F (8 9 0) 3 (9 10 384)  (10 11 768)   
G (11 12 0) 3 (13 14 4512)**    

 
Table D-4. Selected schedule change options at Step-21 

 

Step-22: After receiving all “renege-all” messages, the agent (Sub-α) fixes its option 

(A1) and sends “hand-over” messages to the agents (Sub-β and Sub-δ) that have 

succeeding activities (B and C).  

Step-23: After receiving all “hand-over” messages, the agents (Sub-β and Sub-δ) select 

an option (B2 and C1) to be explored and find AC. Sub-β finds AC ($1,980) and 

sends “ask-cost” messages to agents (Sub-α, Sub-β, and Sub-δ) that have 

succeeding activities (D, E, and F), which ask the succeeding activities to start at 

Day 9. Meantime, Sub-δ sends “hand-over” messages to agents (Sub-α and Sub-

δ) that have succeeding activities (E and F) because its AC is zero (0), which 

means there is no better option. 
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Step-24: After receiving all “ask-cost” messages, the agents (Sub-α, Sub-β, and Sub-δ) 

select the options that are the lowest possible options (E2, D2, and F2). And then 

sends “ask-cost” messages to the agent (Sub-α) that has succeeding activities 

(G). Note that Sub-α and Sub-δ handle “ask-cost” messages even though they 

have also received “hand-over” messages.  

Step-25: After receiving all “ask-cost” messages, the agent (Sub-α), which has the end 

activity (G), selects the lowest possible option (G1). And then Sub-α sends 

“reply-cost” messages to the agents (Sub-α, Sub-β, and Sub-δ), which have sent 

“ask-cost” messages for activities (D, E, and F).  

Step-26: After receiving all “reply-cost” messages, the agents (Sub-α, Sub-β, and Sub-δ) 

accumulate DC and compare them with AC, which can be finished within the 

initial end date. In this case, there are no other possible options; therefore, the 

agents send “accept” messages to the agent (Sub-α) that has a succeeding 

activity (G). 

Step-27: After receiving all “accept” messages, the agent (Sub-α) sends “confirm” 

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities 

(D, E, and F). 

Step-28:  After receiving all “confirm” messages, the agents (Sub-α, Sub-β, and Sub-δ) 

send “reply-cost” messages with accumulated DC to the agents (Sub-α, Sub-β, 

and Sub-δ) that have preceding activities (D, E, and F). Table D-5 shows the 

selected schedule-change options. 

 
Activity Option 1* Option 2 Option 3 Option 4 Option 5 

A (1 3 480) 3 (1 4 0)    
B (4 7 1920)  (4 8 0) 3 (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0) 3     
D (8 10 0)  (9 10 0) 3 (10 11 960)   
E (8 10 0) (9 10 640) 3 (10 12 0)   
F (8 9 0) (9 10 384) 3 (10 11 768)   
G (11 12 0) 3 (13 14 4512)**    

 
 

Table D-5. Selected schedule change options at Step-28 
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Step-29: After receiving all “reply-cost” messages, the agent (Sub-β) accumulates DC 

and compares them with AC, which needs to finish within the initial end date. In 

this case, DC ($1,024) is less than AC ($1,960). Therefore, it sends “accept-all” 

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have succeeding activities 

(D, E, and F).  

Step-30: The agents (Sub-α, Sub-β, and Sub-δ) propagate “accept-all” messages forward 

to the agent (Sub-α), which has the end activity (G). 

Step-31: After receiving all “accept-all” messages, the agent (Sub-α) sends “confirm-all” 

messages to the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities 

(D, E, and F).  

Step-32: The agents (Sub-α, Sub-β, and Sub-δ) change their option from (E2 (9 10 640), 

F2 (9 10 384)) to (E2’ (9 10 0), F2’ (9 10 0)) and propagate “confirm-all” 

messages backward to the agent (Sub-β), which has activity (B). Note that 

sending “confirm-all” messages means contract binding between them. 

Step-33:  After receiving all “confirm-all” messages, the agent (Sub-β) changes its option 

from (B2 (4 8 0)) to (B2’ (4 8 1024)) and sends “hand-over” messages to its 

agent (Sub-β) that has the same activity (B) because schedule-cost options 

change after the compensation. Table C-6 shows the selected schedule-change 

options. Note that options (B2, E2, and F2) change after compensation. Table D-

6 shows the selected schedule-change options. 

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480) 3 (1 4 0)    
B (4 7 1920)  (4 8 1024) 3 (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0) 3     
D (8 10 0)  (9 10 0) 3 (10 11 960)   
E (8 10 0) (9 10 0) 3 (10 12 0)   
F (8 9 0) (9 10 0) 3 (10 11 768)   
G (11 12 0) 3 (13 14 4512)**    

 
 

Table D-6. Selected schedule change options at Step-33 
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Step-34: After receiving the “hand-over” message, Sub-β selects an option (B5) to 

explore and finds AC. Sub-β finds AC ($1,024) and sends “ask-cost” messages 

to agents (Sub-α, Sub-β, and Sub-δ) that have succeeding activities (D, E, and 

F), which ask the succeeding activities to start at Day 10.  

Step-35: After receiving the “ask-cost” message, the agents (Sub-α, Sub-β, and Sub-δ) 

select the options that are the lowest possible options (E3, D3, and F3). And then 

sends “ask-cost” messages to the agent (Sub-α) that has succeeding activities 

(G).  

Step-36: After receiving all “ask-cost” messages, the agent (Sub-α), which has the end 

activity (G), selects the lowest possible option (G2). And then Sub-α sends 

“reply-cost” messages to the agents (Sub-α, Sub-β, and Sub-δ), which have sent 

“ask-cost” messages for activities (D, E, and F).  

Step-37: After receiving all “reply-cost” messages, the agents (Sub-α, Sub-β, and Sub-δ) 

accumulate DC and compare them with AC, which can be finished within the 

initial end date. In this case, there are no other possible options; therefore, the 

agents send “accept” messages to the agent (Sub-α) that has a succeeding 

activity (G). 

Step-38: After receiving all “accept” messages, Sub-α sends “confirm” messages to the 

agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities (D, E, and F). 

Step-39: After receiving all “confirm” messages, the agents (Sub-α, Sub-β, and Sub-δ) 

send “reply-cost” messages with accumulated DC to the agents (Sub-α, Sub-β, 

and Sub-δ) that have preceding activities (D, E, and F). Table D-7 shows the 

selected schedule-change options. 

Step-40: After receiving all “reply-cost” messages, Sub-β accumulates DC and compares 

them with an AC that can be finished within the initial end dates. In this case, 

DC ($6,240) is more than AC ($1,024). Therefore it sends “reject-all” messages 

to the agents (Sub-α, Sub-β, and Sub-δ) that have succeeding activities (D, E, 

and F).  
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Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480) 3 (1 4 0)     
B (4 7 1920)  (4 8 0) (5 7 5760)  (5 8 1920) (5 9 0) 3 
C (5 7 0) 3     
D (8 10 0)  (9 10 0) (10 11 960) 3   
E (8 10 0) (9 10 640)  (10 12 0) 3   
F (8 9 0) (9 10 384)  (10 11 768) 3   
G (11 12 0) (13 14 4512)** 3    

 

Table D-7. Selected schedule change options at Step-39 
 
Step-41: The agents (Sub-α, Sub-β, and Sub-δ) propagate “reject-all” messages forward 

to Sub-α, which has the end activity (G). 

Step-42: After receiving all “reject-all” messages, Sub-α sends “renege-all” messages to 

the agents (Sub-α, Sub-β, and Sub-δ) that have preceding activities (D, E, and 

F).  

Step-43: The agents (Sub-α, Sub-β, and Sub-δ) propagate “renege-all” messages 

backward to Sub-β, which has an activity (B). Table D-8 shows the selected 

schedule-change options. 

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480) 3 (1 4 0)    
B (4 7 1920)  (4 8 1024) 3 (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0) 3     
D (8 10 0)  (9 10 0) 3 (10 11 960)   
E (8 10 0) (9 10 0) 3 (10 12 0)   
F (8 9 0) (9 10 0) 3 (10 11 768)   
G (11 12 0) 3 (13 14 4512)**    

 
 

Table D-8. Selected schedule-change options at Step-43 
 

Step-44: After receiving all “renege-all” messages, Sub-β sends “hand-over” messages to 

the agents (Sub-α, Sub-β, and Sub-δ) that have succeeding activities (D, E, and 

F). 

 Step-45: After receiving all “hand-over” messages, the agents (Sub-α, Sub-β, and Sub-

δ) select an option (E2’, D2 and F2’) to be explored. However, since their ACs 
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are zero (0), agents (Sub-α, Sub-β, and Sub-δ) send “hand-over” messages to 

Sub-α that has the succeeding activity (G). 

Step-46: After receiving all “hand-over” messages, Sub-α, which has the end activity, 

sends a “final” message that informs its human subcontractor of the negotiation 

result, which includes new activity duration, activity benefit from the 

negotiation, receivable, payable, and new schedule-change options. Also Sub-α 

sends “done” message to the agents (Sub-α, Sub-β, and Sub-δ) that have 

preceding activities.  

Step-47: After receiving all “done” messages, the agents (Sub-α, Sub-β, and Sub-δ) send 

“final” messages that informs their human subcontractors of the negotiation 

results, and propagate “done” messages backward to the agents (Sub-β and Sub-

δ), which have activities (B and C).  

Step-48: After receiving all “done” messages, the agents (Sub-β and Sub-δ) send “final” 

messages that informs their human subcontractors of the negotiation results, and 

propagate “done” messages backward to Sub-α, which has the start activity (A).  

Step-49: After receiving all “done” messages, Sub-α, which has the start activity, sends a 

“final” message to its human subcontractor.  

Step-50: A cycle of negotiation is finished. Table D-9 shows the selected schedule-

change options. 

 

Activity Option 1* Option 2 Option 3 Option 4 Option 5 
A (1 3 480) 3 (1 4 0)    
B (4 7 1920)  (4 8 1024) 3 (5 7 5760)  (5 8 1920) (5 9 0) 
C (5 7 0) 3     
D (8 10 0)  (9 10 0) 3 (10 11 960)   
E (8 10 0) (9 10 0) 3 (10 12 0)   
F (8 9 0) (9 10 0) 3 (10 11 768)   
G (11 12 0) 3 (13 14 4512)**    

 
 

Table D-9. Selected schedule change options at Step-50 
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Diagonal patterns in Figure D-5 shows the final revised schedule at Step-50. 
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Figure D-5. Final revised schedule  

 

Figure D-6 shows the final revised resource histogram at Step-50. The diagonal 

pattern indicates the overtime or importing extra resources.  
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APPENDIX-E.  MATHEMATICAL PROOFS OF EVALUATION 

RESULTS 

 

E.1 Definitions of Total Cost Overruns of TCC, LCC, and DCPSC 

This section shows the definitions of total cost overruns of TCC (CTCC), LCC (CLCC), and 

DCPSC (CDCPSC). 

 

E.1.1 Definition of total cost overruns of TCC 

A naïve formulation of the total cost overruns (CTCC ) after TCC is as follows: 

0,
1

≥= ∑
=

i

n

i
iTCC ACACC  

 

Where ACi = the cost for expediting the ith activity, over and above the original 

cost, denoted “Ci1 – Ci0” on page 40.   

 
However, examining the actual process of getting ACi on any project plan produces a 

more complex formulation as below: 
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Where k is the order of Wave, which is a set of activities to be considered at the 

same time. I.e., Wave1 = the first (only one) activity and Wavei = {succeeding 

activities of Wave(i-1)} for i � �� 

k
iAC  = the cost for expediting the ith activity, over and above the original cost  

within the kth Wave.  

 

Since i
k
i ACACk =∀ , , because there is only one AC for each activity, the following 

formula generalize the total cost overruns (CTCC) after TCC: 
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E.1.2 Definition of total cost overruns of LCC 

A naïve formulation of the total cost overruns (CLCC ) after LCC is as follows: 

0,
11
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i
i
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i
iLCC CBCBLCCC  

 

Where LCCi = CBi = the cost for delaying the ith activity, over and above the 

original cost, denoted “Ci2 – Ci0”  on page 40 for i=1 and “Ci4 – Ci0” on page 41 for 

i>2. This includes the cost of unscheduled resources and liquidated damages. 

 
However, examining the actual process of getting CBi on any project plan produces a 

more complex formulation as below: 
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Where LCCk = the cost for delaying all the activities with the kth wave; 

k
iLCC = the cost for delaying the ith activity with the the kth wave;  

k
iCB = the cost for delaying the ith activity, over and above the original cost within 

the kth wave; 

k
iCD = the cost for delaying succeeding activities of the ith activity, over and 

above the original cost within the kth Wave.  

 
Since CBi is the cost for delaying the ith activity, which accumulates all the k

iCB , 

i
k

k
i CBCB

wave

=∑ . Therefore, the following formula generalize CLCC: 
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E.1.3 Definition of total cost overruns of DCPSC 

The following formula generalizes the total cost overruns (CDCPSC) after DCPSC: 
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Where DCPSCk = the minimum cost between the cost for expediting and the costs 

for delaying activities with the kth wave; 

k
iDCPSC = the minimum cost between the cost for expediting and the costs for 

delaying activities from the ith activity with the kth wave;  

k
iDC = the minimum cost between the cost for expediting and the costs for 

delaying succeeding activities of the ith activity, over and above the original cost 

within the kth Wave.   

 
E.2 Comparisons of Total Cost Overruns of TCC, LCC, and DCPSC 

 

Theorem 1: CDCPSC  ≤  CTCC  
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Theorem 2: CDCPSC  ≤  CLCC   

 

LEMMA 1 : CDCPSC  ≤  CLCC  when the activities follow a linear sequence, which means 

the nth activity follows the (n-1)th activity, so on, as shown in Figure E-1. 

 

 

 

Figure E-1. Activity precedence network 
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With the same procedure, we can simplify CDCPSC as follows: 
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Now we compare CDCPSC with CLCC. 

 
Basis: k = n: 
 
Because 0, 1 =∀ +

k
nDCPSCk , because there is no succeeding activity, 01 =+
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When k = k: 
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The conclusion we draw is that DCPSCk is less than or equal to LCCk for any activity 

number for k ≤ i ≤ n. 
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Therefore, CDCPSC  ≤  CLCC  when the activities follow a linear sequence. 

 
LEMMA 2 : If CDCPSC  ≤  CLCC  for each string of linear activities, then this is so for the 

xth activity where they fork also. 
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Since CDCPSC  ≤  CLCC  for each string of linear activities, then this is so for the activity 

where they fork also because the summation of  CDCPSC  is less than or equal to the 

summation of CLCC for the xth activity where they fork. 

 

Lemmas 1 and 2 show that CDCPSC  ≤  CLCC  within any project plan where the activities 

follow a linear sequence and the activity where they fork also.  

 

Theorems 1 and 2 show that DCPSC always finds a solution that is better than or equal to 

that of any of two centralized coordination methodologies (TCC and LCC) since DCPSC 

selects the minimum value among the cost of expediting the activity (AC) and the cost 

for delaying the activity (CB). 
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APPENDIX-F. HANDOUT FOR DSAS CHARRETTE TEST  
 
Figure F-1 shows a copy of handout for DSAS charrette test, which was prepared for 
Sub-α. 
 

Sub-α-1 
 
A. DSAS Charrette Test       Date: ____________ 
 
1. Objective: To test the effectiveness of Distributed Subcontractor Agent System 

(DSAS) 
 

2. Processes to be tested 
 
(a) Manual Centralized Coordination of Project Schedule Changes  
(b) Computerized Distributed Coordination of Project Schedule Changes (DCPSC)  
 

3. Tasks: To find a better project schedule from the given schedule-cost options 
 

4. Pre-conditions 
 
(a) Use an example CPM schedule in Section B. 
(b) Use resource histogram in Section C. 
(c) The participants are not allowed to share schedule-cost options. 
 

5. Trial-1 (Manual)     Start Time: _____________                 
 
Use the following schedule-cost options to find a better project schedule, if it is 
possible. Mark the selected options.  
 

(startDate endDate extraCost) 
Activity ES-LF ES-FF Option-1 Option-2 Option-3 Option-4 

B (2 19) (2 4) (2 4 80) (4 6 0)   
E (6 24) (6 9) (7 9 0)    
I (10 28) (10 13) (10 13 0) (11 14 120) (12 15 240)  

M (14 31) (14 26) (14 16 0) (20 22 120) (25 27 0)  
Q (27 34) (27 30) (28 30 0)    
U (31 38) (31 38) (31 34 0) (32 35 80)   
 

       Total extra cost: $________________   End Time: _____________   
 
 

Figure F-1. Handout for DSAS charrette test (Sub-α) 
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Sub-α-2 
 
6. Trial-2 (Computerized DSAS)     Start Time: _____________ 

 
Based on the tutorials in Section D, use the data in Section E to find a better schedule, 
if it is possible. Mark and correct the selected schedule-cost options based on the 
“final” messages, if it is changed. 

 
                                                                                         (startDate endDate extraCost) 
Activity ES-LF ES-FF Option-1 Option-2 Option-3 Option-4 

B (2 19) (2 4) (2 4 80) (4 6 0)   
E (6 24) (6 9) (7 9 0)    
I (10 28) (10 13) (10 13 0) (11 14 120) (12 15 240)  

M (14 31) (14 26) (14 16 0) (20 22 120) (25 27 0)  
Q (27 34) (27 30) (28 30 0)    
U (31 38) (31 38) (31 34 0) (32 35 80)   
 

       Total extra cost: $________________   End Time: _____________   
 
 
7. Questionnaire 
 
Please answer the following questions: 
 

7.1 Your backgrounds 
  Years? Novice  Expert 
Construction experience  yrs. M N O P Q 
Computer experience yrs. M N O P Q 

 
7.2 How hard do you think were the following trials? 

 Easy  Hard 
Trial-1 Manual   M N O P Q 
Trial-2 Computerized DCPSC  M N O P Q 

 
7.3 How well are you convinced on the results from the following trials? 

  Little  Much 
Trial-1 Manual  M N O P Q 
Trial-2 Computerized DCPSC   M N O P Q 

 
7.4 How well do you think the subcontractor will accept the results? 

  Little   Much 
Trial-1 Manual   M N O P Q 
Trial-2 Computerized DCPSC   M N O P Q 

 

Figure F-1. (Continued) 
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Sub-α-3 
 

7.5 How much do you think the following inputs would be confidential to 
subcontractors? 

  Little   Much 
a) Start date/End date  M N O P Q 
b) Precedence relationships M N O P Q 
c) Schedule-cost options M N O P Q 

 
7.6 Schedule options 

  No  Yes 
a) Are schedule-cost options reasonable?  M N O P Q 
b) Can you guess others’ schedule-cost options? M N O P Q 

 
7.7 Other comments for improvement of DSAS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THANK YOU FOR YOUR TIME AND EFFORT 
 

 Figure F-1. (Continued) 
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Sub-α-4 
 
B. CPM Schedule 
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C. Resource Histogram 
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Figure F-1. (Continued) 
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Sub-α-5 
 
D. Tutorial 
 
This DSAS tutorial explains step-by-step instructions to run DSAS for Trial-2. 
 
1. Flow Chart 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-1. (Continued) 

Start 

Step-1:  
Start a Subcontractor Agent 

Step-2:  
Run a JATLite Router Client 

Step-3:  
Connect to the router 

Check 
connection 

No 

Step-4:  
Register to the router 

Step-5:  
Send “input” messages 

Step-6:  
Send “ready” messages 

Step-7:  
Check sent and received 
messages 

End 

Yes 
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Sub-α-6 

2. Step-by-Step Instructions 

Step-1: Start a Subcontractor Agent 

� Click Start, point to Programs, and then click MS-DOS Prompt. 
� Type the following command in the root directory. 

   C:/>java dsas/subcontractor/RunSubcontractor dsas/SUBAADDRESS 

� You will see following message (the last four lines) on the Command Prompt 
window.  

 
Step-2: Run a JATLite IPLayer Router Client 

� Click Start, point to Programs, point to JATLiteBeta , and then click IPRCApplet . 
� If successful, you can see JATLite IPLayer Router Client  window as below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure F-1. (Continued) 
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Sub-α-7 
 

Step-3: Connect to the router in the JATLite IPLayer Router Client window 

� In ‘Request’ panel, fill in AgentName (koo) and Password (koo) and click ‘Connect’ 
button to connect to router. 

� If successful, you will see ‘Connection established ’ message is received. Then 
skip Step-4 and go to Step-5. 

Step-4: Register to the router in the JATLite IPLayer Router Client window 

� Go to ‘Register’ panel and fill in AgentName (koo) and Password (koo). AgentName 
and Password are case sensitive and there should be no white space. 

� Click ‘Register’ button 
� Go to ‘Request’ panel and make sure that ‘Register accepted ’ message is received 

in the text area. 

Step-5: Send “input” messages in the JATLite IPLayer Router Client window 

� Go to ‘Compose’ panel and fill in Performative (input ) and Receiver (Sub-α). 
� Copy and paste one of DSAS input data in Content field from the top. Note that you 

do not need to type in open and close parenthesis in the content filed. 
� Click ‘Send’ button and check the Command Prompt window.  
� Repeat the previous two processes until there is no new input data. 
�� Check whether all “input” messages are sent. 

Step-6: Send “ready” messages in the JATLite IPLayer Router Client window 

� Change Performative (ready) in the ‘Compose’ panel. 
� Copy and paste one of DSAS ready data in Content field from the top. Note that you 

do not need to type in open and close parenthesis in the content filed.  
� Click ‘Send’ button and check the Command Prompt window.  
� Repeat the previous two processes until there is no new input data. 
� If completed, the subcontractor will start negotiation and does not allow any input 

until the negotiation cycle is finished, when your subcontractor agent will send ‘final’ 
messages to your IPRCApplet. 

Step-7: Check sent and received messages in the JATLite IPLayer Router Client 
window 

� Click once to select the message in the list box (upper right). Then click “show” 
button.  

� Click once to un-select the read message. 
� Click ‘final’ messages to check the results 
� If New Start Date/ New End Date differs from the Option-1, check Receivable, 

Payable, and Schedule Options. 
 

Figure F-1. (Continued) 
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Sub-α-8 
 

E. Data 
 
1. input  human subcontractor Æ agent 

 (input 
  :sender  koo 
  :receiver Sub-α 

:content  (AGENT(projStartDate projEndDate projPenalty subName)) 
(ACTIVITY(activityName startDate endDate){(preSubName 
preActivityName)*}{(sucSubName 
sucActivityName)*}{(startDate endDate extraCost)*}) 

 
Test inputs: 
[Sub-α]-------------------------------------------------------------------- 
 
AGENT(1 44 2000.0 koo)  
ACTIVITY(B 2 4){(GC A)}{(Sub- α E)(Sub-ε H)}{(2 4 80)(4 6 
0)} 
ACTIVITY(E 6 9){(Sub-α  B)(Sub-ε D)}{(Sub-α  I)}{(7 9 0)} 
ACTIVITY(I 10 13){(Sub-α  E)(Sub-ε H)}{(Sub-α  M)}{(10 13 
0)(11 14 120)(12 15 240)} 
ACTIVITY(M 14 25){(Sub-α  I)(Sub-δ K)}{(Sub-α  Q)}{(14 
16 0)(20 22 120)(25 27 0)} 
ACTIVITY(Q 27 30){(Sub-α  M)(Sub-δ O)}{(Sub-α  U)}{(28 
30 0)} 
ACTIVITY(U 31 38){(Sub-α  Q)(Sub-β R)(Sub-ε T)}{(Sub-β 
Y)}{(31 34 0)(32 35 80)} 

 
 
2. ready  human subcontractor Æ agent 

 (ready 
  :sender  koo 
  :receiver Sub-α 

:content   activityName)  
 

Test inputs: 
[Sub-α]-------------------------------------------------------------------- 
 
B 
E 
I 
M 
Q 
U 

 

Figure F-1. (Continued) 
 



 194 

APPENDIX-G. ANAYSIS OF RUNNING TIME 

 

I estimate that the worst-case computational complexity of DSAS. The worst-case 

schedule is the schedule where all activities are sequential. This means that the nth activity 

follows the (n-1)th activity, so on, as shown in Figure G-1. 

 

 

 

Figure G-1. Activity precedence network 

 

Now I can use the inductive rules to analyze the approximate running time of a program, 

which is measured number of messages as a function of the number of activities, n, in a 

schedule. For this analysis of running time, I consider only the following message by 

agents: ready, ask-cost, reply-cost, accept/reject, confirm/renege, accept-all/renege-all, 

hand-over, done, and final. I exclude the input and ready messages because those 

messages are human-dependent. I also exclude inform messages because the inform 

messages are dependent to the negotiation messages. 

 
Basis: n = 1: 
 
 

 

Figure G-2. 1-activity precedence network 
 

Message type No. of message Relationship with n 
ready 0  
ask-cost 0  
reply-cost 0  
accept/reject 0  
confirm/renege 0  
accept-all/reject-all 0  
confirm-all/renege-all 0  
hand-over 0  
done 0  
final 1 n 

Table G-1. 1-activity case analysis 

1 Activity 

1 2 3 n-1 n Activities .  .   .  .   .   .   .   .   .    . . . 
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Next n = 2: 
 
 

 

Figure G-3. 2-activity precedence network 

 
 

Message type No. of message Relationship with n 
ready 1 (n-1) 
ask-cost 1 (n-1)+T(n-1) 
reply-cost 1 (n-1)+T(n-1) 
accept/reject 0  
confirm/renege 0  
accept-all/reject-all 1 (n-1) 
confirm-all/renege-all 1 (n-1) 
hand-over 1 (n-1) 
done 1 (n-1) 
final 2 n 

 
Table G-2. 2-activity case analysis 

 
Next n = 3: 
 
 

 

Figure G-4. 3-activity precedence network 

 
Message type No. of message Relationship with n 

ready 2 (n-1) 
ask-cost 3 (n-1)+T(n-1)  
reply-cost 3 (n-1)+T(n-1) 
accept/reject 1 (n-2)+T(n-1) 
confirm/renege 1 (n-2)+T(n-1) 
accept-all/reject-all 3 (n-1)+T(n-1) 
confirm-all/renege-all 3 (n-1)+T(n-1) 
hand-over 2 (n-1) 
done 2 (n-1) 
final 3 n 

 
Table G-3. 3-activity case analysis 

 
 

1 2 Activities 

1 2 3 Activities 
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Next n = 4: 
 
 

 

Figure G-5. 4-activity precedence network 

 

Message type No. of message Relationship with n 
ready 3 (n-1) 
ask-cost 6 (n-1)+T(n-1) 
reply-cost 6 (n-1)+T(n-1) 
accept/reject 4 {(n-3)+(n-2)}+T(n-1) 
confirm/renege 4 {(n-3)+(n-2)}+T(n-1) 
accept-all/reject-all 6 (n-1)+T(n-1) 
confirm-all/renege-all 6 (n-1)+T(n-1) 
hand-over 3 (n-1) 
done 3 (n-1) 
final 4 n 

 
Table G-4. 4-activity case analysis 

 
Next n = 5: 
 
 

 

Figure G-6. 5-activity precedence network 

 
Message type No. of message Relationship with n 

ready 4 (n-1) 
ask-cost 10 (n-1)+T(n-1) 
reply-cost 10 (n+1)+T(n-1) 
accept/reject 10 {(n-4)+(n-3)+(n-2)}+T(n-1) 
confirm/renege 10 {(n-4)+(n-3)+(n-2)}+T(n-1) 
accept-all/reject-all 10 (n-1)+T(n-1) 
confirm-all/renege-all 10 (n-1)+T(n-1) 
hand-over 4 (n-1) 
done 4 (n-1) 
final 5 n 

 
Table G-5. 5-activity case analysis 

 
 

Activities 1 2 3 4 

Activities 1 2 3 4 5 
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Next n = 6: 
 
 

 

Figure G-7. 6-activity precedence network 

 
Message type No. of message Relationship with n 

ready 5 (n-1) 
ask-cost 15 (n-1)+T(n-1) 
reply-cost 15 (n-1)+T(n-1) 
accept/reject 20 {(n-5)+(n-4)+(n-3)+(n-2)}+T(n-1) 
confirm/renege 20 {(n-5)+(n-4)+(n-3)+(n-2)}+T(n-1) 
accept-all/reject-all 15 (n-1)+T(n-1) 
confirm-all/renege-all 15 (n-1)+T(n-1) 
hand-over 5 (n-1) 
done 5 (n-1) 
final 6 n 

 
Table G-6. 6-activity case analysis 

 
Next n = 7: 
 
 

 

Figure G-8. 7-activity precedence network 

 
Message type No. of message Relationship with n 

ready 6 (n-1) 
ask-cost 21 (n-1)+T(n-1) 
reply-cost 21 (n-1)+T(n-1) 
accept/reject 35 {(n-6)+(n-5)+(n-4)+(n-3)+(n-2)}+T(n-1) 
confirm/renege 35 {(n-6)+(n-5)+(n-4)+(n-3)+(n-2)}+T(n-1) 
accept-all/reject-all 21 (n-1)+T(n-1) 
confirm-all/renege-all 21 (n-1)+T(n-1) 
hand-over 6 (n-1) 
done 6 (n-1) 
final 7 n 

 
Table G-7. 7-activity case analysis 

 
 
 

Activities 1 2 3 4 5 6 

Activities 1 2 3 4 5 6 7 
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By this point, I can guess for n = n: 
 

 

 

Figure G-9. N-activity precedence network 

 
Message type No. of message Relationship with n 
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hand-over (n-1) (n-1) 
Done (n-1) (n-1) 
Final N n 

 
Table G-8. N-activity case analysis 

 
Therefore,  
 
T(n) for ready = (n-1) = O(n); 

T(n) for ask-cost = (1 + n)(1 + (n –1))/2 = O(n2); 

T(n) for reply-cost = (1 + n)(1 + (n –1))/2 = O(n2); 

T(n)for accept/reject = (2 + n)[{( n - 2)(1 + (n – 2))/2}+1]/2 = O(n3);  

T(n) for confirm/renege = (2 + n)[{( n - 2)(1 + (n – 2))/2}+1]/2 = O(n3);  

T(n) for accept-all/reject-all = (1 + n)(1 + (n –1))/2 = O(n2); 

T(n) for confirm-all/renege-all = (1 + n)(1 + (n –1))/2 = O(n2); 

T(n) for hand-over = (n-1) = O(n); 

T(n) for done = (n-1) = O(n); 

1 2 3 n-1 n Activities .  .   .  .   .   .   .   .   .    . . . 
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T(n) for final = (n) = O(n). 

 

Therefore, the sum of T(n) is O(n3) because T(n) for “accept/reject” or “confirm/renege” 

grows rapidly so that we can neglect other lower O(n2) or O(n). 

 

 


