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Abstract 
This paper extends theories in finance and economics to compare the cost of a 
long-term contract with a price cap to that of spot purchases in construction material 
procurement. In construction, material procurements are usually short-term, 
project-based, and have a price volatility of up to 30%. These characteristics and the 
competitive nature of the industry lower the profit margin of general contractors. We 
have observed that contractors purchase a stable amount of commodity materials 
such as concrete, structural steel, and lumber throughout the year. For contractors, 
the price cap reduces the price volatility of materials without their being obliged to a 
quantity; for suppliers, the contracts give them steady demand and a bigger market 
share. We evaluate this contract as a real option and solve for the contractor’s 
optimal ordering policy. The challenge is to model price processes when materials 
are not frequently traded. We model price processes by using as much market 
information as possible and then evaluate the idiosyncratic uncertainties in a 
risk-neutral setting. Our methodology does not require market completeness and 
incorporates some of the latest research in finance such as correlation pricing, option 
pricing, and zero level pricing, as well as Monte Carlo simulation.  
 
Keywords: material procurement, real option, pricing, ordering policy, finance. 
 
Introduction 
Research on the finance side of construction management can provide new ways to 
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manage cash flow and increase profit margins. Since the seminal work on pricing 
options by (Black and Scholes, 1973), the financial market of options and other 
derivatives has been growing exponentially, providing numerous ways for 
individuals and corporations to hedge risks and improve the performance of their 
portfolios. An option is valuable because it provides flexibility; it is the right but not 
the obligation to buy (or sell) an asset under specified terms.1 Non-paper assets are 
called real assets and options/flexibilities in acquiring real assets are called real 
options. A material contract with a price cap is similar to a call option because a 
buyer pays the cap price when the spot price is larger than the cap. However, the 
straight application of option pricing to non-financial assets is problematic because 
most option pricing formulae assume that the options and their underlying assets are 
frequently traded in efficient and complete markets such as the NYSE. This 
assumption is needed to construct an artificial replication of the option from the 
underlying traded asset in order to obtain an unequivocal price for the option. Like 
other real assets, construction materials are not traded in a national exchange, but 
there has nevertheless been fruitful research in evaluating real options in oil drilling, 
software sales and semiconductor facility planning (Benavides, Duley et al., 1998). 
To evaluate these options, it is important to circumvent the strong assumption of a 
frictionless and complete market. Our methodology does not require market 
completeness and incorporates some of the latest research in finance such as the 
projection pricing, correlation pricing, option pricing, and zero level pricing, as well 
as Monte Carlo simulation. Our approach is to model the price process of a material 
by using as much market information as possible and then evaluate the idiosyncratic 
risks in a risk neutral setting. In appendix II, we show that this is a more accurate 
model in terms of variance than a simple time series analysis.  

We believe that studying real options can bring great value to the construction 
industry by quantifying the value of managerial flexibility. For example, a contractor 
solicits take-offs (quotes) from suppliers for his bid preparation but does not place 
an order until the developer awards the contract. Therefore, his orders are usually 
short-term, project-based, and subject to fluctuation in price. These characteristics 
and the competitive nature of the industry lead to an extremely low profit margin for 
contractors. This profit margin is typically less than 5%, a rate lower than the return 
on risk free treasury bonds during most of the 1990s. However, through different 
projects, contractors do purchase a stable amount of commodity materials such as 
concrete, structural steel, and lumber throughout the year. It is because contractors 
adjust markup in order to keep the yearly volume relatively stable (Carr, 1982). What 
if a contractor has the right to place a cap on the price of these commodities? This 
option would provide buyers with valuable operating flexibility that would allow 
them to minimize their inventory cost and price volatility. It would also allow 
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suppliers to secure a share of the market and smooth out production schedule. In this 
paper, we focus on materials purchased by large door subcontractors who have the 
volume to realize the value introduced by real options and the power to negotiate 
complicated long-term contracts with suppliers. We believe options like these have a 
significant potential in the construction industry and will increase profit margins for 
many parties along the supply chain by minimizing wastes and increasing efficiency. 
 
Case 
W&W is the largest door distributor and subcontractor on the west coast. It buys 
oriented strand board (OSB) door panels from suppliers like Weyerhaeuser and mills 
the panels into correct dimensions according to architects’ specifications. It then 
attaches hardware such as knobs, hinges, locks, and stops to the panels and make 
frames for the finished doors. W&W either sells the doors to other subcontractors as 
a distributor or installs the doors directly as a subcontractor. The number of doors 
W&W makes and installs every month is not disclosed but is likely to be in the tens 
of thousands. For example, a typical Kaiser hospital has 8000 doors and W&W 
handles most Kaiser hospitals and many Cisco campuses. It turns out that many 
interior doors in commercial buildings are more or less the same, although they look 
different. In the old days, doors were made of solid wood, and so a mahogany door 
had a completely different core from that of a red oak door. Nowadays, solid wood 
doors are rare because they are very expensive. Instead, particle board or OSB is 
often used as the core and then a thin layer of laminate is adhered on top of the core 
to make the door resemble mahogany or red oak. As a result, many doors are only 
different in dimensions and the paper-thin laminates. If W&W buys the same 
materials repeatedly for different projects, then a real option embedded contract 
where the following characteristics hold would be valuable to it:  
1. Where the term of the contract is long (nine months in duration, for example) 

instead of project-based; 
2. Where the price of OSB is capped. If the spot price (current market price) of 

OSB is less than the price cap, W&W pays the spot price. Otherwise, W&W 
pays the price cap; and, 

3. Where the contract terms (such as price) are based on projected order size Q 
every month but W&W has the option to vary order size month to month. 

This contract has a real option because W&W has the option to pay the cap price 
when the spot price is higher than the cap price. When the spot price is lower than 
the cap price, W&W pays the spot price. Therefore, it can be seen as a bundle of 
American call options.  
The benefits of such a contract are as follows: 
1. W&W can minimize the price volatility of OSB and have a more predictable 
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cost structure and return on investment. A smoothed-out ROI of 10% per 
annum for two years is better than 15% for the first year followed by 5% for the 
second year, especially when the company is publicly traded. 

2. W&W can use orders from different projects to diversify and smooth out the 
order size for each month. Therefore, W&W can make larger commitments and 
negotiate lower the cap price with suppliers. 

3. Flexible order size reduces inventory cost for W&W because there will be less 
excess material and less buffer inventory needed. 

4. W&W can transform cost savings into lower bids to general contractors or 
developers in order to win more projects. 

5. The supplier can increase its market share by signing contracts with multiple 
buyers like W&W. The supplier can expect W&W always to buy from her 
because even when the spot price is lower than the cap price, W&W will order 
from her to avoid loss of goodwill.    

6. The supplier can save costs by better forecasting resource allocation, hiring, 
maintenance, and capacity expansion/contraction. 

 
Formulation and Modeling 
We are going to quantify the benefits of the price cap and reduced inventory cost in 
the following sections. Before we do that, we need to  
1. Model the demand dynamics of interior commercial doors that use OSB as core.  
2. Model the price dynamics of OSB.  
3. Find out the optimal policy for a buyer to exercise the option by minimizing the 

expected total cost. 
 
A Model for Demand Dynamics 
We model the demand for W&W’s interior door as a private risk that is independent 
of the price of OSB. From historical demand data, we model the demand as a 
geometric Brownian motion (GBM) (see chapter 11 of (Luenberger, 1998) or 
chapter 2 of (Oksendal, 1998)) because like GBM, demand is never negative, 
proportional to the length of the period, and has fluctuations that appear to be 
independent from those of other periods. We denote the demand for time t to be Dt, 
which has the following forms in continuous time: 

t t t tdD Ddt DdBµ σ= + 2 and ( )2( 0.5 )
0

tt B
tD D e µ σ σ− +
=  

For this particular example, demand is expected to be stationary and lognormally 
distributed. Therefore, 0µ = and t t tdD D dBσ= . In discrete time, demand 

has 1mean equal to tD − and standard deviation equal to ( )0.52

1
1

t
D eσ

−
−  for period t.  

 
A Model for Price Dynamics 
In order to evaluate the option objectively, we would like to find the market price for 
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OSB. According to the famed Capital Asset Pricing Model (CAPM), price of a 
market asset is determined by its beta: 

2
),cov(

folioMarketport

foliomarketportasset
σ

β =  

However, OSB is not traded in any market. It is also difficult to model the price 
dynamics of OSB (especially the expected growth rate of price) if we do not have 
sufficient historical data. Nevertheless, we can model the price of OSB using the 
Correlation Pricing Formula (CPF) (see Appendix I) and the Nested Projection 
Theorem (Luenberger, 2001). Furthermore, under CPF, the expected growth rate of 
price of OSB will have a smaller variance than in a simple time series analysis (see 
Appendix II). 

CPF states that an asset W, which is not frequently traded, should be priced by 
a market asset which is most correlated with it. It turns out that the payoff of the 
market asset is the orthogonal projection of the payoff of W, Wf, onto the market 
space and CPF has the same form as the CAPM formula. The only difference 
between CPF and CAPM is that the market asset in CPF does not need to be the 
market portfolio and can be made up by any linear combination of existing market 
assets (stocks, bonds, derivatives, etc). The form of CPF is: 

,
1 *( * )

fW W Y YP w y P R
R

β = − −   

The Nested Projection Theorem states that if K and M are subspaces of a 
Hilbert space and M is a subspace of K, the projections of Wf onto M and K, WM 
and WK respectively, have the following relationship: ( )M K MW W= 3. The elements 
of the vector, Wf, in the Hilbert space are the payoff of W in different states one 
period later, each with a different probability of happening.  

OSB is made of generic lumber strands bonded together by resin. Both lumber 
and resin are commodities that have much broader applications and market than 
doors. Although, lumber and resin may not be traded in an efficient market, regional 
price indices for lumber and resin exist in some parts of the country. We are 
therefore able to compute the beta of the price of lumber with respect to P (P can be 

either the market portfolio or an efficient portfolio in the market space), βL,P, as 

well as the beta of the price of resin with respect to P, βS,P4. If we find a linear 

combination of lumber and resin, a*L + b*S=T, which has the biggest correlation 
with the price of OSB5 (a and b probably being the proportions of lumber and resin 
in OSB), we can find the beta of T with respect to P by, 
co v ( , ) co v ( * * , ) * co v ( , ) * co v ( , )T P a L b S P a L P b T P= + = +  
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, , ,2 2

cov( , ) *cov( , ) *cov( , ) * *T P L P S P
P P

T P a L P b S P a bβ β β
σ σ

+
= = = +  

Suppose L and S are not in the subspace spanned by market assets but are most 
correlated to market assets Lm and Sm respectively. From Appendix I, the prices of 
Lm and Sm are:  

, ,
1 1*( * ) ;  *( * )Lm Lm P P Sm Sm P PP lm p P R P ls p P R
R R

β β   = − − = − −     

, , ,
1 1*( * ) *( *( * ))L L Lm Lm L Lm Lm P PP l lm P R l p P R
R R

β β β   ∴ = − − = − −     

Since , , , ,cov( , ) *cov( , ) *L P L Lm Lm P L P L Lm Lm PP P P Pβ β β β= ⇒ = , we have  

,
1 *( * )L L P PP l p P R
R

β = − −  . Similarly, ,
1 *( * )S S P PP s p P R
R

β = − −   

If we add L and S to the market space, from CPT, 

,
1 *( * )OSB OSB T TP osb t P R
R

β = − −    <1> 

where * *t a l b s= +  
By linear pricing, * *T L SP a P b P= +  

, ,* * *( * ) * *( * )T L P P S P Pt P R a p P R b p P Rβ β∴ − = − + −  

, ,( * * )*( * )L P S P Pa b p P Rβ β= + −  

Putting back into equation <1> for POSB, we have, 

, , ,
1 *( * * )*( * )OSB OSB T L P S P PP osb a b p P R
R

β β β = − + −   

, ,
1 * *( * )OSB OSB T T P PP osb p P R
R

β β = − −    <2> 

Equation <2> is consistent with the Nested Projection Theorem in that we find the 
price of OSB by first projecting the random vector of OSB onto the plane LS 
spanned by vectors of lumber (L) and resin (S). The resulting vector T on LS is a 
linear combination of L and S and correlates most closely with OSB among vectors 
on LS as well as the market space. We then further project T onto the space M 
spanned by market assets and the resulting vector Tm is a linear combination of 
projections of L on M, Lm, and S on M, Sm. The price of Tm is found by linear 
pricing and its beta is also a linear combination of betas of L and S. As a result, the 
price of OSB by projection and correlation pricing is really the price of Tm in the 
market space plus the expected non-market payoffs discounted by the risk free rate. 
Expressing the last equation in terms of growth rates, we have6, 
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, ,2 2

* *1 * * * * *( )
OSB T T P

OSB T T P
f R R R R P p f

OSB T P

P P P PR OSB P R R
P P P

β β
 

= − − 
 

 

, ,* *( )
OSB T T POSB f R R R R P fR R R Rβ β∴ = + −   <3> 

Equation <3> has the similar form to the CAPM formula. If we collect data on 

, ,,  ,  ,  and ,
OSB T T PR R R R p fR Rβ β  we can find OSBR , the expected growth rate of price of 

OSB. The CPF gives us the foundation to work with a risk neutral martingale 
measure rather than real probabilities because the price of OSB is determined by its 
replicable projection onto the expanded albeit incomplete market space. Therefore, 
we can discount cash flows according to a risk-free interest rate in a risk neutral 
world.7 Otherwise, we would have to find the risk-adjusted discount rate for OSB. 
Due to storage cost, in the risk neutral world, [ ] /OSB L LE R F P=  where FL and PL are 
the forward and the spot prices of lumber respectively.8  
 
An Optimal Exercising Policy 
We now solve for the optimal policy for W&W to order OSB because the value of 
the contract to W&W depends on how much she orders. We first construct a simple 
model to describe the fulfillment of demand, handling of inventory and backorder, 
and various cost factors with the following conditions: 

1. The contract is for nine periods. Each period (∆t) is one month. 
2. The demand in each month is Dt and comes at the beginning of each month. It is 

independent from month to month and is log-normally distributed as described 
above. 

3. The cost of each OSB door panel is $ct and is governed by the price dynamics 
described above. 

4. The cap price for each door panel is $c with option.  
5. The discount factor is constant at 1/R per month. 
6. The order size for each month is yt, which is determined by the optimal policy. 
7. The initial inventory of doors for each month is xt and unfulfilled demand is 

back ordered. Therefore, xt+1= yt+ xt - Dt (see Figure 1). 
8. The storage cost is $h/panel/month, and the shortage cost is $p/panel/month.9 

The shortage cost should be understood as either the loss of goodwill to W&W’s 
customers or as a discount given to a customer to ensure her patience.The 
contract involves a volume requirement and will therefore result in a loss of 
goodwill if the buyer orders less than expected. The supplier expects the buyer to 
order on average Q door panels every month for a total of 9Q over nine months. 
If the buyer orders less than 9Q, the supplier will be disappointed. The loss and 

gain of goodwill is modeled as 
9

+
t

t=1
$w*(9Q- y )  ∑ where $w is the cost/loss of 
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goodwill quantified in monetary terms and is discounted in the same way as 
other costs are. We use goodwill because monetary penalty for not making an 
order quota is hard to implement in a long-term business relationship as every 
buyer finds it objectionable and supplier does not want to force the buyer to pay. 

9. The order and delivery times are at the beginning of each month. 
10. The inventory at the end of the 9th month can be salvaged for no more than the 

cap price. 
We assume that W&W has the ability to carry a small inventory and that the terms of 
the contract (length, price cap, expected monthly order size, and so on) are the result 
of a negotiation between W&W and the supplier. The cost of goodwill is an estimate 
made by W&W.  

We now solve for the optimal policy for W&W to order OSB because the value 
of the contract to W&W depends on how much she orders. With option, the expected 
cost at the beginning of the ninth month is: 

[ ]

( )

( )

( )

9 9 9 9 9 9 9 9

'8
10

9 9 1 9 9 9 9
1

10
9 9 9

' * ( ) * ( ) *

* 9 *

*

t
t

c y p h y x D p y x D

c
E Cost E w Q x x y D y x D

R

c
D y x

R

+

+
+

=

+

 
 + + + − − + − 
 
   = + − − + + − + −   

   
 
 + − −  

∑  <4> 

In <4>, the first term in the bracket is the purchase cost and the second and the third 
terms are the storage and the shortage costs. The fourth term is the goodwill cost and 
the fifth term is the salvage value of the ending inventory. The last term is the 
backorder cost in case not all demand can be fulfilled in the ninth month. Since we 

have the option to buy the panel at $c with the option, ' min( , )t tc c c= . 

Since [ ]9E Cost  is a convex function, finding the first order condition is sufficient. 

Minimizing <4> with respect to 9y by differentiation gives10:  

[ ]( ) [ ]
( )( )

( ) ( )( )

( )( )
9

9 9 9 9

'
9 10

9 9 9 9 9
9

10
9 9 9

' ( )*

* * 0

*

y

c p h I y D x p

dE Cost cMin E Cost E w I y L I y D x
dy R

c I y D x
R

 
+ + > − − 

 
 ⇒ = − < − > − = 
 
 − ≤ −  

 

8

9 1 8
1

where 9
t

L Q x x y
=

 = − − + 
 

∑  

( )( ) ( ) ( )( )
'
10

9 9 9 9 9 9 9 9' ( )* * *
E c

c p h P D y x p w I y L P D y x
R

  ∴ + + < + − − < − < +  
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( )( )( )10
9 9 9* 1 0

E c
P D y x

R

  − − < + =  

( )( )
( )

'
10

9 9
*

9 9 9 '
10 10

* '
E c

p w I y L c
RP D y x

E c E c
p h

R R

  + + < −
∴ < + =

      + − +

 <5> 

( )( )9 9 9I y D x> −  is the indicator variable that is one when ( )9 9 9y D x> − and zero 

otherwise. Then the derivative of ( )( )9 9 9y D x
+

> − with respect to 9y  is equal to 

( )( )9 9 9I y D x> − except at 9 9 9y D x= − , which occurs with probability zero. Finally, 

( )( ) ( )( )9 9 9 9 9 9E I y D x P D y x > − = < +  . Since [ ]'
10 10E c E c  ≤  , <4> is convex 

and *
9y  is the order size that minimizes the expected cost. In words, W&W should 

order *
9y doors such that the probability that the demand does not exceed *

9 9y x+  is 

equal to the right hand side of <5>. 
We will analyze <5> by setting cases: 
Case 1: 0L ≤  

( )( )
'
10

9
*

9 9 9 '
10 10

'
E c

p c
RP D y x

E c E c
p h

R R

  + −
⇒ < + =

      + − +

 

( )( )
'
10

9

9 9 9 '
10 10

'
Case 2: 0,  y , and 

E c
p c

RL M M P D M x
E c E c

p h
R R

+ +

    + − = > = < + ≤
       + − +

 

*
9y L M⇒ > =  

( )( )
( )

'
10

9 9

9 9 9 '
10 10

* '
Case 3: 0,  y , and 

E c
p w I y L c

RL M M P D M x
E c E c

p h
R R

− −

    + + < − = > = < + ≥
       + − +

*
9y L M⇒ < =  
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( )( )

( )( )
( )

'
10

9

9 9 9 '
10 10

'
10

9 9

9 9 '
10 10

'
0,  y ,  

Case 4:

* '
but   

E c
p c

RL M M P D M x
E c E c

p h
R R

E c
p w I y L c

RP D M x
E c E c

p h
R R

+ +

−

    + −
 = > = < + >
        + − +



   + + < −
< + <

       + − +

 

*
9y L M⇒ = =  

At the beginning of the eighth month, the expected cost is: 

[ ]
( )

( )( )
8 8 8 8 8 8 8 8

*
8 9 9 8

' * ( ) * ( ) *c y p h y D x p y D x
E Cost E E Cost y y

R

+ + + − + − − +
 

=     +
 

 

Since [ ]8E Cost  is a convex function, finding the first order condition is sufficient. 

Minimizing with respect to 8y by differentiation gives: 

[ ]( ) [ ] ( )( )
9

'
8 9

8 8 8 8 8
8

' ( ) * 0
y

E Cost c
Min E Cost E c p h I y D x p

y R
δ

δ
 

⇒ = + + > − − − = 
 

 

because <4> and cases 1 to 4 implies that 8y increases one to one with 9x , and 

9 9x y+ is independent of 8y . For example in case 2, 

suppose ( )( )
'
10

9

9 9 '
10 10

'
E c

p c
RP D M x

E c E c
p h

R R

+

  + −
< + =

      + − +

, 

9 9increases by one  decreases by one  decreases by one. x L y M +⇒ ⇒ =  

( )( )

( )( )

'
9 8*

8 8 8

'
1*

( ) / '

( ) / '
For other months,  for 1 8t t

t t t

p E c R c
P D y x

p h

p E c R c
P D y x t

p h
+

 + − ∴ < + =
+

 + − < + = =
+

…

 

Similarly, the ordering policy without the price cap is: 
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( ) 1*
( ) /

for 1...9t t
t t t

p E c R c
P y x D t

p h
+ + − + > = =
+

 

To find out the value of the contract, we use Monte Carlo simulation to generate 
100,000 sample pairs of total costs (with and without price cap) over nine months.11 
We assume that the demand for OSB core doors has two properties. First, it is 
independent of the price movements. Second, it is a private uncertainty and the OSB 
doors business only makes up a small portion of the total W&W business (which 
encompasses, amongst other things, other types of doors, exterior GFRC and glass 
walls, and windows.). The second property allows us to use zero level pricing (see 
chapter 16 of (Luenberger, 1998)) and the risk neutral probabilities for OSB demand is 
the same as the real probabilities. Aside from the demand distribution and the 
shortage, goodwill, and holding costs (which are specific to W&W), we estimate the 
σ’s, risk free interest rate, and other parameters using market data (see Appendix III). 
The value of the option is then estimated by the mean of percentage cost savings:12 

[ ] [ ]
[ ] %100*

NO

ONO

TCE
TCETCE −

= .13 

 
Sensitivity Analysis 
We perform a sensitivity analysis for two reasons. First, we would like to find out 
how the expected costs savings would change as the parameters vary because we 
estimate the parameters from market data, which may not be abundant (see 
Appendix III) or the most closely correlated ones. Second, we would like to identify 
the sensitive parameters—those that affect the value of the contract more than others. 
The two most sensitive parameters are the cap price and the volatility of the price of 
OSB. We tabulate the percentage of savings over a range of cap prices and a range 
of the volatility of the price of OSB (see Figure 2). Not surprisingly, the value of 
option increases with the volatility of the price of OSB and decreases with the cap 
price. Furthermore, the savings are quite significant when compared with the current 
profit margin of contractors. For example, if volatility is 0.1 and the cap price is 
$105 (that is, higher than the initial OSB price and about the same as the expected 
OSB price at the end of nine months), the cost savings will be 13.16%. If material 
costs making up half of the bid, a 13.16% increase in margin becomes a 6.58% 
increase in margin for the whole project. For many contractors, this could mean 
increasing the margin for projects by 100%. On the other hand, suppliers, who 
absorb the price volatility risk, may want to share the cost savings with contractors 
in the form of contract fees. 
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Conclusion 
We have shown a method to quantify the cost savings of a long-term material 
contract with a price cap over spot purchases. The contract has a real option because 
it provides the flexibility to buy at the cap price when the price is high and the 
option to buy at the spot price when the price is low. We evaluate the contract using 
correlation pricing and Monte Carlo simulation. The correlation pricing formula 
allows us to calculate the price of OSB more accurately when the historical pricing 
data of OSB is limited. We avoid the assumption that the market is complete and we 
did not find the value of the option by replicating the material contract. Instead, we 
price OSB by pricing something that closely correlates with it. The process is similar 
to pricing one’s home by checking out the sale prices of one’s neighbors’ homes. We 
believe the value of the option is larger than what we have presented here as we 
have only quantified two of the six benefits listed above. In the future, we would 
like to take account of the fact that some contractors, unlike W&W, are unwilling to 
take any inventory. We aim to construct a model in which contractors estimate their 
need K in advance and can later order any quantity less than K while suppliers use 
lumber futures and call options to create “stack and roll” minimum variance hedge 
positions to minimize price risk. Furthermore, we will investigate how we can 
design the contracts so that contractors do not have the incentive to overestimate the 
demand. Finally, we would also like to quantify how such a long-term contract with 
a price cap can increase a company’s market share as well as the impact on cost 
savings when the demand and the price of OSB are correlated.
 
Appendix I—Projection Pricing and the Correlation Pricing Formula 
This is a derivation of the Correlation Pricing Formula (CPF) through a simple one 
period example in a general n-dimension Hilbert space. It is analogous to 
Luenberger’s (Luenberger, 2001) in the L2 space of random variables but is easier to 
visualize and interpret. It also states the CPF in terms of rates of return, which 
obliterates the need to determine the expected values of assets. In the vector space, a 
vector represents the uncertain value of an asset one period from now. The k-tuple of 
a k-dimensional vector (k <= n) corresponds to the k possible states of the value of 
the asset one period from now. Each state has a probability of occurring and the 
probabilities of the states sum to one. The states belong to two main groups, the 
market states and the private states. Market states form the subspace of the 
n-dimension space and are spanned by assets traded in financial markets. Private 
states are states specific to some non-traded assets and are independent of the market 
states. All future values mean the values one period from now and are denoted by 
the subscript f, while the present values are denoted by the subscript p. For example, 
suppose Wf, the future value of a lumber mill W, depends on the price of lumber and 
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the cost of its maintenance. Lumber is a traded commodity and therefore a market 
asset. Suppose there are three possible future market states with probabilities 0.3, 0.3, 
and 0.4 respectively14. The portion of the future value of the mill related to the price 
of lumber will be x1, x2, or x3 depending on which of the market states will happen. 
On the other hand, the cost of maintenance will be in one of two different states with 
probabilities 0.4 and 0.6 respectively. The portion of the future value of the mill 
related to maintenance will be z1 or z2, depending on which of the private states will 
occur. Assuming that the two portions are additive and that the market states and 
private statues are independent of each other, there are six possible values for Wf 
(see Figure 3). On the other hand, suppose there are three market assets, two stocks, 
Y1 and Y2, and one risk free asset, R. Y1f, Y2f, and Rf form the basis of the three 
dimensional market space one period from now (see their representation in the 
six-dimensional vector space in Figure 4). Any market asset can be represented as a 
linear combination of the basis assets, Y1f, Y2f, and Rf such as a*Y1f+b*Y2f+c*Rf. Its 
price will be the same linear combination of the prices of the basis assets and its 
future value will be the linear combination of Y1f, Y2f, and Rf. 
 We define the weighted inner product of vectors W and Y to be 

( )
1

| cos
n

i i i
i

W Y p w y w y
=

= ⋅ ⋅ = Θ∑ , where ( | )W W W= , θ is the angle between 

W and Y, yi is the future value of Y in state i, and pi is the probability of realizing 

state i. Therefore, the projection of vector W on vector Y is ( )( )2| /W Y Y Y . Two 

vectors are orthogonal to each other if their weighted inner product is equal to zero. 
We define  

1

1

2'

2

3

3

j j

j j

j j
jf

j j

j j

j j

y y

y y

y y
Y

y y

y y

y y

 −
 

− 
 − =  − 
 −
 
 − 

 where 
3

1
*j i ji

i
y q y

=

=∑ , the expected value of Yj one period from 

now. 

It is easy to verify that ( )' | 0jf fY R = . Let Rf, Y1f, and Y2f span a space M and let '
1 fY  

and '
2 fY  span a space 'M  that is orthogonal to Rf. Therefore, the projection of Wf 

onto M can be expressed as the sum of the projection of Wf onto 'M  and the 
projection of Wf onto Rf.  

If W is only a small portion of our asset portfolio, we can price the private 
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portion of Wf in a risk-neutral way regardless of our utility function—it is equal to 

1 1 2 2* *z v z v z= + . On the other hand, we can find the linear combination of market 

assets which replicates and therefore has the same price as the market portion of Wf. 
We will show that the sum of the prices of the private and market portions is equal to 
that of the projection of Wf onto M, which can be split into two additive parts.   

The projection of Wf onto M= P(Wf,M) 2

( | )
( | ') 'f f f

f

f

W R R
W Y Y

R
= +  

where '

a

a

b

b

c

c

y
y
y

Y
y
y
y

 
 
 
 

=  
 
 
 
  

 is a linear combination of '
1 fY  and '

2 fY  and is proportional to 

the projection of Wf onto 'M . Also, 
6

1

' * ' 0i i
i

y p y
=

= =∑  and we scale 'Y  so that 

'Y =1. By the dual projection theorem, 'Y  is also the unique unit vector in 'M  

that maximize 'cov( , )fW Y .  

1 1 1 2 2 1( | ) 0.12* ( ) * 0.18* ( ) * 0.12* ( ) *f fW R x z R x z R x z R= + + + + +  

2 2 3 1 3 20.18* ( ) * 0.16* ( ) * 0.24* ( ) *x z R x z R x z R+ + + + + +  

( )
3 2

1 1

* * * * * * *i i i i
i i

q x R v z R x R z R x z R
= =

= + = + = +∑ ∑  

1 1 1 2 2 1( | ') 0.12* ( ) * 0.18* ( ) * 0.12* ( ) *f a a bW Y x z Y x z Y x z Y= + + + + +  

2 2 3 1 3 20.18* ( ) * 0.16* ( ) * 0.24* ( ) *b c cx z Y x z Y x z Y+ + + + + +  

( | ') * ' ( | ') cov( , ') cov( , ')fX Y z y X Y X Y W Y= + = = =  

( )2

( | )
( | ') ' cov( , ') 'f f f f

f
ff

W R R R
W Y Y x z X Y Y

RR
∴ + = + +  

From the above, we can see that the length of the projection of the private part onto 
Rf and 'M  is z and 0 respectively; and that the length of the projection of the 

market part onto Rf and 'M  is x  and ( )'cov ,X Y  respectively. 
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If ' ' '
1 2* * ,Y a Y b Y= +  

( ) ( ) ( ) ( )' '
1 2cov , cov , cov , * * cov ,f f fX Y W Y W a Y b Y W Y= = + =   

Furthermore,  
62' 2 2 2

1

( | ) *( ) ( ) var( )j j j j j i ji j j j j
i

Y Y y Y y p y y y y Y
=

= − − = − = − =∑  

Define ,
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( )f

f
W Y

W Y
Var Y

β =  

( ) , 1 1 2 22
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( | ') ' *( ) *( )

f

f f f f
f W Y

ff

W R R R
W Y Y x z a Y y b Y y

RR
β  ∴ + = + + − + −   

The price of R, Y1, and Y2 are 1, P1, and P2 respectively. As a result, the price of  

( ) 1 2
, 1 2

( * * )( , ) * *
ff W Y

x z a y b yP W M a P b P
R R

β
+  +

= + + − 
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Let Y=a* Y1+b*Y2 and 1 2y=a* +b*y y . Since 
6

1

*i i
i

x z w p w
=

+ = =∑ , price of 

P(Wf,M) ,
1 *

fW Y Yw y P R
R

β  = − −    

Therefore, the Correlation Pricing Formula for Wf is 

,
1 *

fW W Y YP w y P R
R

β  = − −   . In other words, the formula posits that the price of 

Wf is equal to the expected payoff of the private uncertainty plus the price of Y, 
which is the market asset most correlated with Wf.  

Let , , , f
Y W Y W

Y W Y W

Wy w YR R R R
P P P P

= = = = . Therefore, , 2 2

*cov( , )*
*f

Y

w W Y Y
W Y

Y R

P R R P
P

β
σ

=  

Rearranging the CPF, we have, 

,

2 2

* * cov( , ) *
* *

* *
f

Y

W Y Y w W Y Y
Y Y Y

W W W Y R

y P R P R R Pw R R R P P R
P P P P

β

σ

 −   = + = + −   

,2

cov( , )
W Y

Y

W Y
W Y R R Y

R

R R
R R R R R R Rβ

σ
   ∴ = + − = + −      

The benefit of expressing CPF in terms of rates of return is that we do not have to 

define the market and private states nor calculate w . The CPF determines WR from 
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the interest rates, correlation between W and Y, and YR . On the other hand, if W lies 

in the market space and we have an optimal portfolio P15, we have the CAPM:  

,W PW R R PR R R Rβ  = + −  (see page 178 of (Luenberger, 1998) for proof). Therefore, 

,
1 *

fW W P PP w p P R
R

β  = − −    

 
Appendix II---Variance Reduction  
The CPF is a more accurate model in terms of variance than a simple time series 
analysis. One of the problems of pricing a non-traded asset is the scarcity of past 
price data. This makes the forecasting of the growth rates of prices difficult. The 
problem is exacerbated when the length of the time period is short or when trying to 
estimate the expected growth rate of a price. Suppose ri is the growth rate of price 
per month and the growth rates are identically distributed and independent of each 
other from month to month. Then the yearly growth rate ryr is given by: 

1 2 3 121 (1 ) * (1 ) * (1 ) (1 )yrr r r r r+ = + + + +"  

1 2 3 121 r r r r≈ + + + + +"  
12

1
yr i

i
r r
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∑ ∑ ∑ ∑  

12
2 2

1
12

i ir r
i
σ σ

=

= =∑  

12
yr

i

r
r

σ
σ∴ =  

This shows that the standard deviation of the growth rate decreases slower than the 
growth rate itself as the length of the time period shortens. This implies that we need 
to collect more data to estimate the monthly growth rate than for a yearly growth 
rate. Similar problem arises when we try to estimate the expected growth rate as 
shown below.  

[ ] [ ]
1 1

1 1n n

i i i i
i i

r E r E r r
n n= =

= = =∑ ∑  
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The CPF says the expected growth rate of the price of a non-traded asset W is given 

by ,W PW R R PR R R Rβ  = + −  . As with a linear regression model, we can forecast the 

future expected growth rate of the price using the following equation: 

l
,W PW PR RR R R Rβ  = + −   

where lβ is an estimator of β . Therefore, l l2
, ,var( ) ( ) var( )

W P W PW PR R R RR Var R Rβ β= +  

In a linear regression model, let i i iY X uα β= + +  where ui is the iid error term 
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Then we calculate l
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We assume that we can observe PR , the growth rate of a market asset, much more 
often than the price of OSB. Suppose that we have N data points for PR , but only n 
data points for OSB, where N>>n. We can separate the data for PR into two sets, a 

smaller set (n) for calculating l l
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, and 
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Therefore, we can use the fact that there are many more data points for PR than WR to 

reduce the variance when we are estimating WR .  

 
Appendix III—Market Data 
This section presents some market data to show that the parameters we have used in 
the Monte Carlo simulation are reasonable.  

1. The historical annual return of the Dow Jones Industrial Average (INDU) is 
12%. If we use INDU to approximate the efficient market asset P, the 
monthly return of P is 1%.  

2. Oriented strand boards are made of strands of southern pine (or poplar or 
aspen) bonded together by resin (phenol formaldehyde or isocyanate) under 
intense pressure and heat. Each panel is 3” thick, 12’x12’ in area, and weighs 
44lbs. Resin comes in liquid form in which 50% of the weight is water and 
costs about 20 cents per pound in early April, 2002. After processing, all the 
water is vaporized and resin makes up about 3.5%-5% of the weight of an 
OSB. Therefore, the cost of resin is about $4.9 per thousand square feet of 
OSB if we assume resin makes up 4% of the weight of an OSB. On April 5, 
2002, the price index of OSB in New York is $182.5 per thousand square 
board feet. As a result, the cost of resin makes up 3.44% of the cost of good 
sold of OSB if we assume that the gross margin of the seller is 22%.17 We 
interviewed OSB manufacturers and they estimated labor and lumber each 
makes up 35% of the total cost.18 As a result, the ratio of the cost of lumber 
to the cost of resin is ten to one and we use T=10*L+S as the product that 
correlates most closely with OSB.19 

3. After studying the yields of US Treasury bonds (see Table 1), we use 2% as 
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the annual return of the risk free asset during the next nine months. The 
monthly return is therefore 0.167%.  

4. On April 5,2002, the price of the lumber future expiring on May 15, 2002 
closes at $299.5 on the Chicago Mercantile Exchange. On the other hand, the 
spot price of lumber closes at $289.5 on April 5, 2002 in New York. 
Therefore, we use the ratio of the price of the lumber future to the spot price 
of lumber to calculate the expected return of OSB in the risk neutral world: 

      $299.5 30 days1 1 1.026
$289.5 40 days

  − + =  
  

 

 
5. Volatility is the annualized (260 weekdays) standard deviation of the 

day-to-day logarithmic price changes. After the market close on April 5, 
2002, the volatilities calculated using the closing prices of the last 100 days 
are shown in Table2.20 Therefore, the volatility of OSB per month is: 
0.395 / 12 0.114= . 

6. The annualized standard deviation of the returns of the prices of 
LUMBOSB1, LUMBSP24, LBK2, INDU, and BFK2 are listed in Table 3. 
We calculate them using the closing prices between Oct. 19, 2001 and April 
16, 2002. 
The correlation matrix of the returns of the prices of LUMBOSB1, LBK2, 
INDU, and BFK2 and the corresponding t-statistics are shown in Table 4 and 
Table 5. We calculate the matrices using the closing prices between Oct. 19, 
2001 and April 16, 2002. Finally, if we use benzene, which is a principal 
component of many resins, to approximate phenol formaldehyde and LBK2 

to approximate lumber, we can calculate ,OSB PR Rβ in the following way: 

MLet the projection of ,  ( , ),  be OSBf fW P W M  

, * ( )f
M OSB T

f

R
OSB OSB T T

R
β− = −  

( ) ( )( ), *f
M OSB T

f

R
OSB OSB P T P T P

R
β

 
 − = −
 
 

 

[ ] [ ] [ ] [ ] [ ] [ ],* * *M OSB TE OSB P E OSB E P E T P E T E Pβ− = −  

[ ] [ ]But * *ME OSB P E OSB P=  
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,cov( , ) *cov( , )OSB TOSB P T Pβ∴ =  

,
2 2

*cov( , )cov( , ) OSB T

P P

T POSB P β
σ σ

=  

, , ,*OSB P OSB T T Pβ β β∴ =  

, , ,2 2 2

* * *
* * * *

OSB P OSB T T P

OSB P OSB T T P
R R R R R R

P T P

P P P P P P
P P P

β β β⇒ =  

, , ,*
OSB P OSB T T PR R R R R Rβ β β⇒ =  

T LBK2 SR , R , R , where 0.91* 0.09*
P P PR R Rβ β β= +  

0.91*0.700*0.287 0.09*0.653*0.449 1.209
0.173 0.173

= + =  

OSB T OSB LBK2 OSB SR ,R R ,R R ,Rand 0.91* 0.09*β β β= +  

2 2

0.91*0.878*0.287 *0.392 0.09*0.758*0.392*0.449  
T TR Rσ σ

= +  

( ) ( )2 22 0.91*0.287 0.09*0.449 0.0698
TRσ = + =  

OSB T OSBR ,R R ,1.460 and 1.460*1.209 1.765
PRβ β∴ = = =  



 23

Figures 
 
 
 
 
 
 
 

Figure 1. Relationship among xt, yt, and Dt 
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Price Cap Volatility of the price of OSB
0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

85 25.91% 26.24% 26.60% 26.96% 27.32% 27.67% 28.00% 28.33% 28.64% 28.95% 29.24%
90 21.61% 21.97% 22.36% 22.76% 23.17% 23.58% 23.98% 24.38% 24.77% 25.14% 25.50%
95 17.36% 17.78% 18.25% 18.74% 19.24% 19.75% 20.24% 20.73% 21.20% 21.66% 22.10%
100 13.27% 13.80% 14.38% 14.98% 15.59% 16.19% 16.77% 17.34% 17.89% 18.42% 18.93%
105 9.74% 10.40% 11.09% 11.79% 12.48% 13.16% 13.82% 14.46% 15.08% 15.67% 16.24%
110 6.86% 7.57% 8.31% 9.04% 9.77% 10.49% 11.18% 11.85% 12.50% 13.12% 13.72%
115 4.77% 5.49% 6.23% 6.98% 7.72% 8.44% 9.15% 9.83% 10.50% 11.14% 11.76%
120 3.19% 3.87% 4.58% 5.29% 6.00% 6.70% 7.39% 8.07% 8.72% 9.36% 9.97%
125 2.08% 2.69% 3.34% 4.00% 4.67% 5.33% 6.00% 6.64% 7.27% 7.89% 8.49%
130 1.31% 1.86% 2.44% 3.04% 3.66% 4.28% 4.90% 5.52% 6.13% 6.73% 7.32%

Figure 2. Sensitivity of expected cost saving in percentage.
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 Maturity Three 
months 

Six 
months 

Two 
years 

Five 
years 

Ten 
years 

Thirty 
years 

Yield 1.64 1.85 3.38 4.52 5.18 5.65 
Table 1. Maturities and yields of treasury bills, notes, and bonds 
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Figure 4.  Y1f, Y2f, and Rf in three and six 
dimensional vector space.
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Table 2. Annualized volatilities of market assets. 
 

Table 3. Anualized standard deviations of the prices of market assets 
 
 
 

 LUMBOSB1 INDU LBK2 BFK2 
LUMBOSB1 1 0.636 0.878 0.758 

INDU 0.636 1 0.700 0.653 
LBK2 0.878 0.700 1 0.697 
BFK2 0.758 0.653 0.697 1 

Table 4. Correlation matrix of market assets. 
 

 LUMBOSB1 INDU LBK2 BFK2 
LUMBOSB1  8.99 20.00 12.67 

INDU 8.99  10.68 9.39 
LBK2 20.00 10.68  10.61 
BFK2 12.67 9.39 10.61  

Table5. t-statistics of the correlation matrix of market assets. 

End of Figures 

Market Asset Annualized Volatility 
OSB price index in NY (Bloomberg ticker: LUMBOSB1) 0.395  
Lumber future expiring on 5/15/02 and traded in Chicago 
Mercantile Exchange (Bloomberg ticker: LBK2) 

0.294 

Dow Jones Industrial Average (Bloomberg ticker: INDU) 0.166 
Benzene future expiring on 5/16/02 and traded in Chicago 
Mercantile Exchange (Bloomberg ticker: BFK2) 

0.437 

Market Asset 
Annualized Rσ  

Spot OSB traded in NY (Bloomberg ticker: LUMBOSB1) 0.392  
Lumber future expiring on 5/15/02 and traded in Chicago 
Mercantile Exchange (Bloomberg ticker: LBK2) 

0.287 

Dow Jones Industrial Average (Bloomberg ticker: INDU) 0.173 
Benzene future expiring on 5/16/02 and traded in Chicago 
Mercantile Exchange (Bloomberg ticker: BFK2) 

0.449 
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Endnotes 
 
1 A right to buy is called a call option and a right to sell is called a put option. 
2 In geometric Brownian motion, µ is called the drift and σ is called the volatility. 
3 Hilbert space is a complete inner product vector space.  

4 We estimate , , and L P S Pβ β  by past prices of lumber, resin , and P. 

5 It is reasonable to assume that a linear combination of lumber and resin has the biggest correlation 

with the OSB among all market assets.  

6 We estimate , , and OSB T T Pβ β  by past prices of OSB, lumber, resin , and P. 

7 See chapter 9 of (Luenberger, 1998) for the prerequisite of the existence and the uniqueness of risk 

neutral probabilities/measures. 
8 We use the prices of lumber because we assume that lumber and OSB have the same storage costs. 
9 Since W&W has limited storage space, we assume that she has a higher average holding cost than 

that implied by the forward prices. 
10 We minimize the expected cost because we assume W&W is risk neutral. 
11 See (Boyle, 1995) for an introduction of Monte Carlo simulation of GBM in equivalent martingale 

or risk neutral measure. 
12 The percentages are independent of the mean of demand and the initial price of OSB at the 

beginning of the contract. 
13 E[TCO] and E[TCNO] are the estimators of the expected total costs over nine months with and 
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without the price cap respectively. 
14 In this simple example, the market space has three dimensions. In the general case, the market 

space can have as many dimensions as there are linearly independent assets that are traded in the 

market. Similarly, there can be many private states. 
15 Optimal in terms of maximizing utility or rate of return given a certain level of volatility  

16
l 2 2 2

, , ,  and R are less than two in most cases. , ,  and  are comaparable 

in magnitude. 
P i WW P P R u RR R Rβ σ σ σ

 

17 Weyerhaeuser and Georgia Pacific, both sellers of OSB, have gross margins of 21.46% and 

22.54% respectively in the past 12 months. 
18 Total cost includes sales and market as well as general and administrative. 
19 We use the assumption that operating margin is 5% (the same as that of Weyerhaeuser). 
20 The daily volumes of LUMBOSB1 and BFK2 are not available. Therefore, we have no idea of the 

their liquidity. The volume and open interest of LBK2 on April 16, 2002 are 737 and 1189 

respectively. When compared with the volume (2383) and open interest (8375) of the May cotton 

future traded on the Chicago Mercantile Exchange on April 17, 2002, LBK2 has limited liquidity. 


