
CENTER FOR INTEGRATED FACILITY ENGINEERING

PERSPECTORS:
Automating the Construction and Coordination of

Multidisciplinary 3D Design Representations

By

John Haymaker, Ben Suter, John Kunz, and Martin Fischer

CIFE Technical Report #145
April 2003

STANFORD UNIVERSITY

Copyright © 2003 by
Center for Integrated Facility Engineering

If you would like to contact the authors, please write to:

c/o CIFE, Civil and Environmental Engineering Dept.,
Stanford University

Terman Engineering Center
Mail Code: 4020

Stanford, CA 94305-4020

PERSPECTORS: Automating the Construction and Coordination of

Multidisciplinary 3D Design Representations1

John Haymaker, Ben Suter, John Kunz, and Martin Fischer

Stanford University, Department of Civil and Environmental Engineering
Center for Integrated Facility Engineering (CIFE), Bldg. 550, Rm. 553H,

Stanford, CA, USA 94305
haymaker@stanford.edu, bsuter@stanford.edu, kunz@stanford.edu, fischer@stanford.edu

Keywords: 3D, 4D, Coordination, Design, Process models, Product models, Virtual Design and Construction

1 Presented at the AAAI Spring Symposium 2003

Abstract
We formalize a multidisciplinary project model as a directed
acyclic graph of dependencies between representations. For
the nodes of this graph, we formalize a generic
representation, called a “perspective,” which contains
“features” that describe the design for a specific task. These
features contain data types such as 3D surfaces, lines, and
points, as well as relationships to other features. For the arcs
of this graph, we formalize a generic reasoning mechanism,
called a “perspector,” which analyzes any number of
“source perspectives” to produce one “dependent
perspective.” Engineers from different disciplines use
perspectors to transform source perspectives into dependent
perspectives that are useful for their tasks. Dependent
perspectives serve as source perspectives for other
dependent perspectives, leading to a self-organizing graph
of dependencies between perspectives. We describe this
approach with two multidisciplinary engineering problems
from the Walt Disney Concert Hall (WDCH). Perspectors
and perspectives enable engineers to use design
representations that share a common theoretical foundation.
They allow engineers to automatically generate task-specific
representations from representations produced by other
engineers.

1 Introduction
 When designing and executing a multidisciplinary
project, architects and engineers produce and integrate
graphic and symbolic project representations. While
producing these representations, they use information
contained in the representations of other disciplines. Design
is an iterative process: engineers routinely modify “source”
representations throughout the design process, but without
being able to fully integrate their work with other
disciplines on a daily basis. Engineers responsible for
“dependent” representations therefore need to maintain
consistency with changes made to their “source”
representations. Current practice for producing and
integrating task specific project representations is error-
prone and costly.

Example 1.1- Engineers produce dependent
representations from source representations: A
metal decking contractor receives 3D representations of the
project’s slabs and structural members (source
representations) from the project’s architects and steel
fabricators. He generates a metal deck attachment
representation describing where to install specific types of
attachments that connect metal decking for concrete floor
slabs to the structural beams. When he is finished, cost
estimators, fabricators, and field installers use this metal
decking attachment representation to produce other
representations that help them further plan and execute thei
project.
 As the architect coordinates with design consultants and
subcontractors, the slab and beam representations are
iteratively modified, generating new metal decking
attachment conditions. The metal decking contractor must
notice and annotate these new conditions in the metal deck
attachment representation. Representations that used
information in the metal deck attachment representation
must also be updated.

 This example illustrates a useful and recurring pattern in
multidisciplinary design and construction projects:
Dependent representations depend on source
representations. We formalize a project modeling approach
that exploits this pattern in a way that enables engineers to
automatically generate and integrate task-specific
representations. In example 1, the metal-decking
subcontractor’s job is to construct the “dependent” metal-
deck attachment representation with information in the
“source” concrete and steel representations. He applies
reasoning involving knowledge about his discipline to these
source representations to produce a dependent
representation. We formalize the dependence between
representations as:

 Rd = Fr (RS)
Rd: dependent representation
Fr: reasoning function
RS: one or more source representations

 The dependent representation serves as a source
representation for other dependent representations. A graph

of dependencies is formed. The entire collection of project
representations constitutes a project plan. See Figure 1.
 In traditional document-based practice, the making and
updating of integrated project representations has been a
time-consuming, inconsistent, and error-prone practice.
When source representations are modified, designers
responsible for dependent representations must become
aware of these modifications, and manually represent any
implications of the modification in the dependent
representations.

Figure 1: We conceptualize a project plan as a directed
acyclic graph of representations. Engineers use discipline
specific reasoning to transform source representations
produced by other disciplines into task-specific dependent
representations.

 3D project model databases promise to automate the
process of generating integrated dependent representations
of changing source representations. At the beginning of a
project, a project team adopts a schema that contains the
specified representation conventions that they believe will
be useful to the project. Standards, such as the Industry
Foundation Classes (IFC 2002), are emerging to make
these schemas consistent across projects and throughout the
industry. Professionals add design information to the
project model according to this schema, and use query
languages, such as Structured Query Language (SQL
2002), to transform the information in the project model
(the source representation) into useful views (dependent
representations). However, engineers currently are not able
to formalize much of their discipline reasoning into queries
that quickly and systematically produce many kinds of
explicit, accurate, and up-to-date task-specific project
representations. Single, project-wide schemas do not
provide individual engineers with the representations of
concepts they need for specific tasks. Multiple, discipline-
specific schemas lack computational support to
automatically integrate these representations.
 This research formalizes a computational framework for
the generation and integration of a network of task-specific
project representations. In this framework, we call a
representation a ”perspective.” A perspective contains
project information in the form of features, which can
contain 3D geometry or other information. Designers use
features in one or more source perspectives to produce a

dependent perspective with its own features. The dependent
perspective can then serve as a source perspective for
subsequent dependent perspectives. In this way we
conceptualize a project model as a self-organizing, directed
acyclic graph of perspectives.
 At a minimum, formalizing a project model in this way
allows source perspectives to notify dependent perspectives
when they have been modified. However, this framework
also formalizes modular reasoning mechanisms, which we
call “perspectors,” to automate the transformation of source
perspectives into dependent perspectives. A perspector
inspects the 3D features of source perspectives, and
produces a dependent perspective that contains new
features, describing the project plan for particular criteria.
Features in dependent perspectives contain relationships to
features in source perspectives, providing the expressive
power to represent many types of components, attributes,
and relationships such as specification, association, and
aggregation. Engineers can generate new dependent
perspectives at any time by specifying their dependence on
source perspectives using either predefined or user-defined
perspectors. Perspectors can either use automated
reasoning or require user input, to produce the dependent
perspective. Because of the nature of our formalism, in
which a perspector depend on perspectives, to produce
other perspectives, any one perspective can be defined as a
directed graph of any number of lower level perspectors
(See Figure 4.). This allows for encapsulation of this
complexity into higher-level perspectors.

Figure 2. A perspective contains features that describe
geometric aspects of a design with 3-D surfaces, lines,
points, and relationships to other features. A perspector
analyzes any number of source perspectives to produce one
dependent perspective. Engineers from different disciplines
use perspectors to define how their perspectives depend on
other perspectives. The result is a self-organizing, directed
acyclic graph of self-integrating project representations,
which we call an integrated project plan.

���������
�����	���
����

�����
�����	���
����

��
	�����

���������
��
����

���������
���	�������

���	������

�����
���	�������

�����
��
����

 In the next section we present a test case from the
WDCH that illustrates the difficulties engineers currently

face while constructing and maintaining integrated project
representations from state of the art project models. We
then discuss research in the areas of project model
representation and reasoning, identifying how this research
helps but, alone, does not appease these difficulties. Next
we further elaborate on perspectives and perspectors,
illustrating how they can be used to address the test case.
Finally we look at the limitations, implications, and future
possibilities for perspectives and perspectors.

2 Test Case: The Walt Disney Concert Hall
Example 2.1- Engineers can automatically generate
some dependent representations: The architect
produces a 3D model of the concrete slabs. He
represents each slab with a 3D surface. The structural
fabricator produces a 3D model of the structural steel
as a polygon that describes the cross-section and a
point-vector that describes the location, orientation,
and length of extrusion. A cost estimator with
reasonable knowledge of SQL can construct a query
to calculate the approximate cost of metal decking on
the job, even if the metal decking is not explicitly
represented in the project model. In other words, he
can transform the source representation (a
description of the slabs beams) into a dependent
representation that describes the material cost of
metal decking. He knows that, while metal decking is
not represented in the database, wherever there is a
slab, a metal deck is required, He therefore can write
a query to calculate the area of slab, and calculate

metal decking cost as the area of the slab multiplied
by the average cost of metal decking per square foot.

The cost estimator could manually calculate and annotate
the cost for each metal deck. However, using SQL, he
automatically constructs a useful dependent representation
from source representations, assuring accurate, consistent,
task-specific representations at a minimum time and cost.
As the next example suggests, however, current practice
fails to automate the generation and integration of many
types of dependent representations that engineers need.

Example 2.2- Engineers cannot automatically
generate some dependent representations: The
metal decking subcontractor needs to produce a metal
decking attachment representation describing how to
attach the metal deck to each of the beams (see figure
3). Constructing this representation involves
comparing the spatial relationships of the slabs and
beams to determine which beams support individual
slabs and, in these cases, what types of connections
are required. For example, if the slab is not firmly
resting on the top face of the beam, custom support
angles must be added.
 There is no representation of this condition in the
design data, and it is not easy to construct a query
such as, “Select the top edge of the beams that are
below, touching, and not parallel to the bottom face
of the slabs.” Therefore, the metal decking
subcontractor must overlay 3D visualizations of both
slab and concrete representations, annotate every
with a line in each location where a custom deck
support angle is needed. Such work is painstaking
and error-prone. On the WDCH project this task took
approximately 120 hours to complete.

Figure 3. In current practice, designers overlay 3-D visualizations and inspect source representations (here 3-D models of the
steel and floor slabs) to manually create a new dependent representation describing which beams require deck attachment to
connect to the slabs. The metal decking attachment representation is then used by other disciplines.

 After the initial identification of these conditions,
design coordination continues. Whenever any
information in the structural steel or concrete
representations change (for example, if a slab or
beam is added, modified, or deleted) the metal

decking contractor needs to become aware of these
changes, and manually update the (dependent) metal
decking attachment representation. The project goes
through several design iterations. In various phases of
the project, the latest version of the metal deck
attachment representation is useful to the estimator
for determining the cost of the attachments, to the
architect to coordinate slab openings, and to the
fabricator to plan, fabricate, deliver, and install these
angles. Each of these dependent representations must
be updated whenever the metal decking attachment
representation is changed. Missed conditions in this
iterative transformation of information between
representations result in inaccurate cost and time
estimates, design conflicts, change orders, and delays
in the completion of the project.

 Example 2.2 shows that existing methods fail to provide
engineers with the ability to quickly and accurately
generate many types of task-specific dependent
representations from source representations. We therefore
introduce perspectors and perspectives that together enable
practitioners to automatically transform source
representations into dependent representations. When
source perspectives are modified, dependent perspectives
can be regenerated. Figure 4 uses perspectors on the metal

decking test case. In Figure 4, at position A, perspectors
analyze the structural framing and concrete slab
perspectives to generate dependent perspectives describing
the top and bottom face of the beams and slabs. At position
B, these dependent perspectives become source

perspectives for perspectors that produce dependent
perspectives describing relationships between these faces.
At position C, a Perspector generates a perspective
describing which beams satisfy all the relationship
conditions (touching, not parallel, above). All of these
perspectors are encapsulated, at position D, into one
perspector that analyzes one concrete slab perspective and
one structural framing perspective and produces one deck
angle attachment perspective.

3 Related Research
 In this section we discuss related research involving the
representation of project models and reasoning about these
project models.

3.1 Relation of perspectives to prior work in
project model representations

Engineers need to construct task-specific representations.
Figure 5 illustrates that standardized representation
approaches contain many, but not all, of the concepts
required to represent the existence, length or location of the
metal deck attachment. Using the IFC we represent that a
surface of the beam and a surface on the slab are
connected. There are no formalisms to identify which

Figure 4. The deck angle attachment perspector is a combination of perspectors that identify features of slabs and beams
(bottom face, top face, and top edge) and relationships between these features (touching, parallel, and above). The deck angle
attachment perspector automatically generates a perspective from the structural framing and concrete slab perspectives.

���

���

���

�
�
����
���	������

������
�
��
���	�������

���
�
��
���	�������

��������
���	�������

�
�
����
���	�������

���
������
���
������
���	�������

��������
���	������

�����
���	������

�����
���	�������

������
�
��
���	������

�����
��
���	������

 ��������
�

��������
���	������

�������
�
��
����
���	�������

 �������

�
�
���	�������

���
�
����
���
������
���	������

�� ��

��

��

surface is the top face or to represent that the connection
type is one that requires a deck angle attachment. In order
to appropriately represent a deck angle attachment
engineers need to extend these schemas to include concepts
such as bottom face, top face, touching, parallel, above,
and deck attachment.
 The domain of project model representations involves
defining the relevant objects, attributes, and relationships in
a project model to enable information sharing among
disciplines. Some of these approaches use a central shared
model (IFC 2002, STEP 2002), while others use multiple,
domain-specific models with integrity relationships
between them (Turk 2001, Rosenman & Gero 1996,
Mackellar & Peckham 1998). Some (Björk 1987, IAI
2002) explore a semantically explicit approach providing
specific objects (such as a beam), attributes (stating that the
beam is a W12 X 42), and relationships (stating that the
beam supports the slab). Others approach the problem
syntactically, providing abstract structures such as objects,
attributes, and relationships that can be extended to create a
particular schema (Phan 1993, Stouffs 1997, Clayton et al
1999, Van Leeuwen 1999). Some of the above approaches
can be used a priori, or at design time (IAI 2002, Gielingh
1988). Others are intended to be used a posteriori, or
during design inspection (Clayton 1999, Hakim & Garrett
1997).
 Perspectives are a syntactic approach. They allow
engineers to define new conceptual objects, attributes, and
relationships in the project model at any time. We extend
these syntactic approaches by incorporating reasoning in
the form of perspectors, to automate the generation and
integration of instances of these concepts in an existing
project model.

Figure 5: Here we use the IFC to attempt to represent the
relationships between a slab and beam in a way that
facilitates the design of deck angle supports. This
representation states that a slab is connected to a beam.
However, there is no representation of specific aspects of

components (i.e. top face, nor of the spatial relationships
between these aspects (i.e. touching, above, parallel).

3.2 Relation of perspectors to prior work in
reasoning about project model
 Most research involving reasoning about project models
has been done in the context of a single discipline, or
between disciplines. This work involves generating
instances of objects, attributes, and relationships for
specific tasks. This work is useful because it specifies many
types of reasoning and representations required for task-
specific criteria, which can be implemented as perspectors
and perspectives. Among some projects at CIFE: Darwiche
et al (1988) perform model-based reasoning to produce a
construction schedule; Akinci (2000) analyzes a 4D model
to infer time-space conflicts for workspaces; Akbas et al
(2001) analyze project geometry with productivity
constraints to determine daily work zones; Fischer (1993)
analyzes project models for constructability concerns; Han
et al (2000) analyze an IFC-based project model for
handicapped accessibility; Korman et al (2001) perform
MEP coordination, and Staub-French et al (2002)
formalizes the automation of cost analysis. Outside of CIFE
many others have created similar model-based reasoning
systems. Dym et al (1988) performs automated
architectural code checking. Others focus on performing a
series of tasks around an integrated project model (Aouad
et al 1997). These systems require a fully developed
explicit building project model schema and instance, which
represents all of the required information for each
discipline. Reasoning transforms instances of the source
schema into instances in the target schema. These systems
are not designed to allow engineers to construct new
instances of new concepts.
 Query languages like SQL enable the automatic
transformation of source representations into dependent
representations that contain instances of new concepts.
However, the test cases suggests that existing query
languages are not suited to multidisciplinary design, and
therefore are not used broadly in either practice or research.
This is in part there because SQL does not define many of
the transformations designers would find useful, and in part
because there is not a framework to facilitate the assembly
and management of transformations to generate integrated
representations for multidisciplinary teams. Other syntactic
approaches to reasoning about project models (IAI 2002,
Eastman 1995) define constraints between objects that
include tests for validity of these constraints. For example,
Figure 5 illustrates an “ifcconnectionconstraint” that
monitors the slab and beam, assuring that their attributes -
such as their geometric descriptions - match predefined
criteria. If the constraint is violated, the relationship is
terminated. However, these constraints are applied in an a
priori fashion as part of the concept definition, not allowing
for a posteriori automated analysis of the implicit
conditions in the existing project model.
 In the mechanical engineering domain, many have
worked “feature recognition”. (Rosen et al 1994, Mantyla

et al 1996). For example, Rosen and Dixon formalize
feature recognition as a process of filtration, annotation,
and aggregation, allowing for the detection of ‘primitive
features’ from component geometry. Most of this work is
primarily focused on analyzing component features aspects
of those components. Summers et al (2002) formalize a
“design exemplar,” in which they use generic
representation of entities and their relationships, evaluating
a database of design cases using a general algorithm based
on constraint satisfaction to search for cases that match a
defined “exemplar.” Wilson et al (1995) reason about how
an assembly of mechanical components can be
disassembled, using what they call a “non-directional
blocking graph.” They geometrically analyze the
configuration of components, and then organize the
components in a graph that describes the order in which the
components can be removed.
 Prior research provides useful points of departure in
terms of the specific representations and reasoning that are
useful for specific disciplines. We formalize perspectors
and perspectives that allow engineers to generate a self-
organizing, integrated project model, and thus allow them
to define their representations as a collection of
transformations of other representations.

4 The Perspector Framework
 We formalize generic reasoning and representation that
is arranged in a graph to automate the construction of
dependent representations from source representations. We
explain these concepts in the context of another WDCH
test case.

Example 4.1: Engineers can use perspectors to
automatically generate dependent perspectives:
Architects, engineers, contractors, and subcontractors
all collaboratively design the ceiling system of the
WDCH. Ducts, catwalks, fire sprinklers, theater
lighting, and several other systems vie for a tight
space above 200 3m x 4m ceiling panels that weigh in
excess of 1 ton each, and hang from the roof trusses.
“Cantilever’ conditions occur where the edge of a
panel extends significantly beyond the vertical steel
tube hanger support. The engineer responsible for
framing the panels wants to keep track of the location,
number, and severity of these conditions as he decides
how to frame the panels. Generally, keeping these
cantilever conditions to a minimum is desirable.

 a Panel with edge supports b Panel with two cantilevers

Figure 6 The WDCH ceiling, consisting of over 200 panels,
from above. Panels with cantilever supports are
highlighted. The ductwork is overlaid. Insets a and b show
individual panels, with connection to steel hangers that are
connected to roof trusses above. Only the bottom surface of
the panel, as the panel framing has not been designed. The
hangers shown in a are directly over the corners of the
panel, therefore there is no cantilever. In b two hangers
were moved to make room for a duct, creating two
cantilever conditions.

An engineer responsible for addressing these conditions
could, in a user-interface as shown in figure 7, assembles
perspectors like those shown in figure 8. In this perspector
graph, he wants to determine which supports are
supporting which panels, and of these, which are in
cantilever position. To do this, he converts each panel
feature (which contains a triangular mesh representing the
surface of the ceiling panel) into a feature that represents
the edges of the panel, with a poly line describing this
edge. He then converts each hanger feature into a feature
with one point representing the center point of the hanger.
Next, he determines which hanger center points are inside
which panel poly line. The result is a representation of
which hangers are supporting which panels. The final step
is to measure the shortest two distances of each of these

points to each of the edges of the polygon. If this distance
is greater than a user defined value, this condition
classifies as a cantilever. There are probably several ways
to describe a cantilever condition, but if standardization is
required, one algorithm can be specified.

Figure 7: A prototype: engineers arrange a graph of
perspectors in the lower left window. They can navigate
through a 3D view of the features of any selected
perspectives in the top window. They can traverse a tree
view of all perspectives, features and the data of features in
the lower right window.

����
��
�����	

 ����!
"���	

 ������
�
���
"
����	

 ������
�
���	

�����	
#�
���$���

���������
%���	

��������
�
��
�����
�����	

��������
��!

����
��
�����	

Figure 8: A perspector graph that constructs a perspective
describing cantilever conditions.

4.1 Perspectives: Generic concepts
A perspective has references to its source perspectives

and contains any number of features. A perspective
also has a reference to its perspector and to it’s
status, which states whether this perspective has been
integrated with its source perspectives. The
semantics of the perspective determine whether to
interpret its features as instances of components,
attributes, or relationships.

The “PointInPolygon” perspective is represented as:
Name: pv_HangerSupportsCeilingPanel_01
Description: Each feature contains a polygon, which
represents the edges of a “ceiling panel,” and any
number of points, each of which represents a
“hanger”.

Perspector: cife.perspector.geom..PointInPolygonXY
Source Perspectives:pv_AvgPnt01, pv_SclAbtPnt01;
Status: integrated
Features: pf_PntInPgonXY_01,
 pf_PntInPgonXY_02

4.2 Features: Generic instances of a concept
A feature has source features, dependent features, and is

used to describe a concept in terms of any number
of surfaces, lines, or points or other data types.
Through recursive source and dependent features,
engineers can construct complex concepts such as
objects (a ceiling panel feature), relationships (The
hangers support the ceiling panel), and attributes
(the edges of the panel). For example, perspector
cife.perspector.geom.PointInPolygonXY represents
one of it’s features in this context as:

Name: f_Supp_01
Perspective:pv_Support_01
Sourcefeatures:f_AvPt1,f_AvPt7,f_AvPt2,f_SclAbtPt4;
Surfaces: null
Lines: line01
Points: point02, point05, point23, point21, point02

4.3 Perspectors: Generic reasoning
A perspector encodes the reasoning to analyze features

in source perspectives to produce features in the
dependent perspective. This idea is applied
recursively, allowing for complex, nested,
reasoning. Perspectives pass parameters to
perspectors allowing more generality for each
perspector. For example, the scaleAboutPoint
perspector accepts a parameter to specify how
much to scale the geometry in the feature.

 The PointInPolygon perspector takes two perspectives as
source perspectives. The algorithm takes the first line in
each feature of the first perspective, and compares it to
every point in every feature of the second perspective. The
perspector returns a dependent feature in the dependent
perspective for every line it analyzes. This feature contains
this line, and every point that is inside this line. Such a
feature is represented in Section 4.2.

&' "'()

 ����!
"���	

 ������
�
���	

&' �'(*

�
��
�����
�����	

&'
��'(*

&'��'()

����
��
�����	

 ������
�
���
"
����	

&' �"'(+ &'
���'(*

������	
����������	
�
�����	�������$���

Figure 9 A PointInPolygon feature (f_Supp_01) relates
what points are in each polygon. Through the source feature
relationships, this feature also represents which ceiling
panel hangers support which ceiling panels. Therefore, the
PointsInPolygon perspective and its features can be
renamed, “supports,” in the context of the graph. Two
hangers are shown supporting one panel. This feature is
then analyzed to determine which supports are cantilevered.

5 Limitations, Future Work, Implications
 We present a syntactic framework in which engineers
define dependent representations as a graph of
dependencies on source representations. The approach
provides integrated, task-specific representations of an
evolving design. The examples given involve representing
the spatial relationships between building components in
useful ways on a multidisciplinary building design and
construction project.
 Limitations of the approach may stem from the
formalization of the dependence between representations as
a directed acyclic graph. The implication is that dependent
representations, and the reasoning used to create dependent
representations from source representation, have no effect
on these source representations. While the usefulness of
this abstraction has yet to be fully validated, the test cases
provide evidence that formalizing the dependence as an
acyclic graph provides the ability to generate dependent
representations more quickly, accurately, and
systematically than without them. Another potential
limitation is that many types of discipline reasoning may
prove difficult to formalize using perspectors. The
framework allows for both manual and automated
generation of perspectives. A perspector can simply ask the
user for input. A perspector graph with just user input
perspectors is still valuable. It can be used to notify
dependent perspectives that the source perspectives have
been modified.
 Future work involves developing specific feature
representations and specific perspectors for different types
of multidisciplinary design problems. Doing so will further
the understanding of the types of representations that can
be automated using this approach and the types of
reasoning needed to construct these representations. It is
possible that a finite set of different types of perspectors
could emerge, allowing the systematic specification of
representations. Understanding the project needs for
management of the graph, developing a more intuitive user
interface for constructing these graphs, and working with
non-geometric data in features are areas of future work.
 Implications of the approach lie in the systematic
specification of representations through their dependence
on other representations. Generating dependent
representations from source representations may be of
interest to multicriteria automated design systems, and to
any application that needs multiple, task-specific
representations of a changing 3D scene. Finally, the
process of generating dependent representations from
source representations can be used for design generation.

6 References
Ragip R. Akbas, Martin A. Fischer, John C. Kunz (2001).
“Formalizing Domain Knowledge for Construction Zone
Generation.” Proceedings of the CIB-W78 International
Conference IT in Construction in Africa 2001, Pretoria,
South Africa, pp. 30-1 to 30-16.
Akinci, B., Fischer, M., Levitt, R., Carlson, B. (2002).
"Formalization and Automation of Time-Space Conflict
Analysis." Journal of Computing in Civil Engineering,
ASCE.
Aouad. G, Marir. F, Child. T, Brandon. P & Kawooya. A.
Construction Integrated Databases- Linking design,
planning and estimating. Proceedings of the international
conference on the rehabilitation and development of civil
engineering infrastructures. American University of Beirut,
June 1997, pp 51-60.
Bjork B-C (1987). RATAS: A proposed Finnish building
product model, Studies in Environmental Research No. T6,
Helsinki University of Technology, Otaneimi, Finland.
Clayton, M. J., Teicholz, P., Fischer, M.A., Kunz J.C.,
“Virtual components consisting of form, function, and
behavior”, 1999, Automation in Construction, 8, 351-367,
Darwiche, A., Levitt, R.E., and Hayes-Roth, B. “Oarplan:
Generating project plans in a blackboard system by
reasoning about objects, actions, and resources.” Journal of
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 2(3):169-181, 1988.
Dym, C.L; Henchey, R.P.; and Gonick, S. (1988). "A
Knowledge-based System for Automated Architectural
Code Checking." Computer Aided Design, 20(3), 137-145.
Eastman, C., Jeng, T-S., Assal, H., Cho, M. and Chase, S.
EDM-2 Reference Manual, Center for Design and
Computation, UCLA, Los Angeles, USA, 50pp, 1995
Fischer, Martin A., Automating Constructability Reasoning
with a Geometrical and Topological Project Model, 1993,
Computing Systems in Engineering, 4(2-3), 179-192.
Gielingh, W. General AEC Reference Model, ISO TC
184/SC4/WG1 doc. 3.2.2.1, TNO report BI-88-150, 1988
IAI (2002), “Industry Foundation Classes, Version 2.X”,
International Alliance for Interoperability
Han, C.S., Law, K., Kunz J.: "Computer Models and
Methods for a Disabled Access Analysis Design
Environment", Technical Report Nr 123, CIFE, Stanford
University (2000)
Hakim, M.M. and Garrett Jr., J.H., "An Object-Centered
Approach for Modeling Engineering Design Products:
Combining Description Logic and Object-Oriented
Models," Journal of AI in Engineering Design and
Manufacturing (AI EDAM), Vol. 11, pp. 187-198, 1997.
Korman, Thomas M., Tatum C.B. (2001) “Development of
a Knowledge-Based System to Improve Mechanical,
Electrical, and Plumbing Coordination" Technical Report
Nr 129, CIFE, Stanford University
Leeuwen, J.P. van. 1999. Modelling Architectural Design
Information by Features. PhD. Thesis. Eindhoven, NL:
Eindhoven University of Technology.

MacKellar, B. & Peckam, J., ‘Multiple Perspectives of
Design Objects’, Artificial Intelligence in Design ’98, ed.
John Gero and Fay Sudweeks, Klewer Academic
Publishers (1998) pp. 87 – 106
Mantyla, M., Nau, D., Shah, J., (1996) 'Research
Challenges in Feature Based Manufacturing',
Communications of ACM, Feb.
Phan, D.H. Douglas, Howard, H. Craig (1983) "The
Primitive-Composite (P-C) Approach: A Methodology for
Developing Sharable Object Oriented Data Representations
for Facility Engineering Integration" Technical Report Nr
85, CIFE, Stanford University
Rosenman, M. A. and Gero, J. S. ‘Modeling multiple views
of design objects in a collaborative CAD environment’,
CAD, Special Issue on AI in Design 28(3) (1996) pp 207-
21
Staub-French, Sheryl, and Fischer, Martin A. “Formalisms
and mechanisms needed to maintain cost estimates based
on an IFC product model”, 2000, Stanford Univ., Eighth
International Conference on Computing in Civil and
Building Engineering (ICCCBE-VIII), Renate Fruchter,
Feniosky Pena-Mora and W.M. Kim Roddis (Eds.), 716
STEP (1999), ISO 10303, Standard for the Exchange of
Product Model Data
Stouffs R. and Krishnamurti R., Sorts: a concept for
representational flexibility, CAAD Futures 1997 (ed. R.
Junge), pp.553-564, Kluwer Academic, Dordrecht, The
Netherlands
Summers, J., Lacroix, Z., Shah, J., 2002, "Case-Based
Design Facilitated by the Design Exemplar", Seventh
International Conference on Artificial Intelligence in
Design, '02, ed. J. Gero, Kluwer Academic Press,
Netherlands, pp. 453-76, ISBN 1-4020-0716-7.
Turk, Z. (2001). "Phenomenological foundations of
conceptual product modeling in architecture, engineering
and construction." Artificial Intelligence in Engineering;
15(2), 83-92.

Acknowledgements:
We appreciate the support of the Center for Integrated Facility
Engineering at Stanford University, M.A. Mortenson Company,
Frank Ghery and Associates and Walt Disney Imagineering.

