

CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

Integration
of a Three Dimensional CAD Environment

into an Interactive Workspace

By

Timo Hartmann, Martin Fischer, Ernst Rank,
Marcus Schreyer, and Frank Neuberg

CIFE Technical Report #146
August 2003

STANFORD UNIVERSITY

COPYRIGHT © 2003 BY
Center for Integrated Facility Engineering

If you would like to contact the authors, please write to:

c/o CIFE, Civil and Environmental Engineering Dept.,
Stanford University

Terman Engineering Center
Mail Code: 4020

Stanford, CA 94305-4020

Martin Fischer, Ernst Rank, Marcus Schreyer, Frank Neuberg, Timo Hartmann

Integration of a Three Dimensional CAD

Environment into an Interactive

Workspace

Authors: Marcus Schreyer, Visiting Scholar, CIFE, Stanford University
Martin Fischer, Associate Professor, Stanford University
Ernst Rank, Professor Technical University Munich
Frank Neuberg, Research Scientist Technical University Munich
Timo Hartmann, Visiting Scholar, CIFE, Stanford University

Publication Date: August 2003
Keywords: Interactive Workspaces, Project Meetings,

Product Model, Virtual Design and Construction
Document Source: http://cife.stanford.edu/online.publications/TR146.pdf

Abstract

In the design and construction process of a building the tasks to accomplish are

distributed to many different participants. All these participants use different

kinds of software applications which all use a different view of the overall project

model.

The project’s participants discuss mutual interactions within their models in

meetings, in order to find the impacts of their work on the work of others. For

example if the architect changes the geometry of parts of the projects building this

will have effects on the cost estimation, as the quantities used in the estimation

have changed. Due to a lack of adequate interfaces between the different used

applications it is common practice within meetings to first explain and describe

different circumstances as the one described above using paper based medias

[Fischer et al, 2000]. Afterwards all participants of the meeting will update their

application models.

Interactive workspaces integrate modern computer technologies in order to

enable data exchange and control between applications. This exchange then will

hopefully be supportive for describing and explaining different problems occur-

ring within a project meeting by using the software applications with which the

participants model their respective views of the building.

The Center for Integrated Facility Engineering (CIFE) is developing such an

interactive workspace. A number of different applications used in civil engineering

are already integrated. Nevertheless it is not yet possible to work with a CAD

i

ii

environment commonly used by architects to model the geometrical aspects of the

project model. This report describes the integration of such a CAD application

within an interactive workspace.

Contents

Abstract i

1 Introduction 1

1.1 Interactive Workspaces in Civil Engineering 2

1.2 Objectives of the Report . 3

1.3 Motivating Test Case: Bay Street Project 4

2 The IRoom as an Interactive Workspace for Civil Engineering

Project Teams 7

2.1 Display and Message Passing System 8

2.2 IRoom Topology . 10

2.3 Using the IRoom in Practice . 11

2.3.1 Case 1: Multiple Microsoft Powerpoint Presentations . . . 12

2.3.2 Case 2: Interaction between CP4D and Microsoft Project . 12

3 Architectural Desktop as CAD Environment for the AEC Sector 14

3.1 Product Model of ADT . 15

3.2 Possibilities to Customize ADT 17

4 Communication Systems between Different IRoom Applications

19

4.1 Possible Database Structures for Shared IRoom Application Data 20

4.2 Information Flow within the IRoom Environment 24

iii

iv

4.3 Solution for the Integration of the ADT into the IRoom 28

4.3.1 XML Data Structure . 29

4.3.2 The Midserver: A Middle Tier Between Applications and

Database . 35

5 Integrating ADT 36

5.1 Hierarchies in ADT Models . 37

5.2 Export of ADT Data to XML Data Files 38

5.3 Establishing Relationships between ADT Objects and Objects from

other Applications . 39

5.4 Connecting Event Heaps . 41

6 Implementation of the ADT Extension Functionalities 43

6.1 Implementation of Zone Objects 45

6.1.1 Display Representation of the Zone Objects 46

6.1.2 Creating the Relationship between Zone Objects and Struc-

tural Elements . 47

6.1.3 Access of Zone Object Data by Using User Interfaces (UI) 48

6.2 Implementation of the Data Export to XML Data Files 53

6.3 Implementation of the Functionality to Create the Relationship

with other Objects . 55

6.4 Connecting ADT to Event Heaps 57

7 Use in Practice 59

7.1 Used Test Models . 59

7.2 Establishing Hierarchies within ADT 63

7.3 Export from ADT to XML Data Files 64

7.4 Creating Mutual Object Relations 65

7.5 Highlighting Related Objects within the IRoom Environment . . . 68

v

8 Generalized Methods to Integrate Other Applications into the

IRoom 72

8.1 Integration into XML data files 72

8.2 Implementing the Event Heap Connection 74

9 Summary 77

9.1 Current Possibilities . 77

9.2 Necessary Further Developments 78

9.3 Conclusions . 80

A The XML Database DTD 81

B Test Model: Simplified Storey of the ”Bay Street Project’s“

Parking Garage 86

B.1 XML Data File . 86

B.2 Tables . 95

Chapter 1

Introduction

During the design and construction of a building, the tasks which have to be ac-

complished are distributed to different participants. Due to mutual interrelations

between the different tasks of one project it is often necessary to find solutions

for problems beyond the scope of a single party. Thus communication between

all involved participants is extraordinarily important.

Research results publicized in [Fischer et al, 2000] show that in current meet-

ings using media which are paper based, 40% of the time is spent on describing

project related information, while only 10% is spent on predictive tasks. For

the finding of qualitatively good solutions the prediction of effects of different

design alternatives on the overall project outcome is extremely important. Thus

more time should be spent in project meetings on predictive tasks. This can be

achieved by reducing the time spent on describing and explaining circumstances.

One reason why the time spent on describing information is exceptionally high

is that all the different parties working together on a project use a different view

on the related project data. For example architects use a geometrical model of

structural elements while project managers use a model describing temporal de-

pendencies between construction activities. Thus, currently, a lot of description

time is necessary to ensure that all participants have a comprehensive under-

1

2

standing of the project.

One approach to solve these problems is to use modern computer based tech-

nologies. Relationships between the different models could be established, by

using modern database and messaging techniques. The established relation-

ships can then be graphically represented in so called interactive workspaces

[Fox et al, 2000]. Interactive workspaces are meeting rooms which integrate a

wide variety of modern hardware technology like projectors and touchscreens to

display project related information.

1.1 Interactive Workspaces in Civil Engineering

The Center for Integrated Facility Engineering (CIFE) of the Stanford Univer-

sity in California created an interactive workspace called IRoom. The IRoom is

intended to create a working environment for group meetings in the construc-

tion sector [CIFE - CIW]. It can be used to point out and graphically represent

the relationships existing between information items needed for the different tasks

which have to be accomplished in the planning process of a building. Thereby the

IRoom is intended to support the decision making during the planning process.

Figure 1.1: Three screen display system of the IRoom

In order to be able to represent the project related data the IRoom provides

3

three smartboards with projectors (Figure 1.1). By using these smartboards

a number of different applications can project their views of the overall model

simultaneously. Additionally, defined relationships between the different objects

of the applications’ data models can be pointed out easily.

Currently, the IRoom already integrates a variety of different software applica-

tions. Project managers can use Microsoft Project [Microsoft - Project] to model

the different construction activities necessary to construct a building. Further-

more a 4D viewer, Commonpoint 4D [CPT Tech. - 4D-Viewer] (CP4D), is inte-

grated, which is able to represent the relations between geometrical properties

of structural elements and the construction activities. For general presentation

purposes the Microsoft Office applications Powerpoint, Excel and Word can be

used.

1.2 Objectives of the Report

Currently, the IRoom is designed for the use of project management teams. Other

persons involved in the planning process who require geometrical project infor-

mation like architects can not use the IRoom adequately. CP4D can represent

geometrical information available in the IRoom environment, but the application

does not offer interactive access to geometrical or architectural properties. Thus,

today the IRoom can hardly be used to support the detection of the comprehen-

sive effects of a change in the architecture or geometry of the building on other

project-related issues.

One of the worlds leading CAD companies, Autodesk, provides Architectural

Desktop (ADT), a three dimensional CAD environment [Autodesk - ADT]. ADT

is product-model based. This means it is working with objects which represent

discrete structural elements of the building like walls, slabs or columns (Figure

1.2). These objects can easily be used to create relationships between other

non geometrical data models used in the project, like for example the already

4

Figure 1.2: Slab and wall objects in the ADT product-model

mentioned project management construction activities. Thus a successful intro-

duction of ADT into the IRoom would enable architects to take part in IRoom

project meetings. It would be possible to undertake geometrical changes within

the interactive workspace. A better understanding of the impacts of geometrical

changes would be possible by using the IRoom display techniques and establishing

relationships with other already introduced software programs.

The main objective of this report is to develop a method of integrating ADT

into the IRoom environment. Besides this major objective the methods used in

the integration process should be generalized. In this way the examined issues

can then be hopefully used for integrating other software applications as well.

1.3 Motivating Test Case: Bay Street Project

The test case used for the validation and testing of the developed methods is the

Bay Street Project. The Bay Street Project is a project of DPR Construction

5

Inc [DPR - Construction], Redwood City, California. The project is located in

Emeryville, California.

Figure 1.3: Bay Street Project partial site overview

Figure 1.3 shows an overview of the project site. There are three main struc-

tures:

• A five level concrete parking structure,

• a two level structural steel retail building, and

• a 15 screen theater, built of structural steel on top of another 3 level concrete

parking structure.

6

The site is very tight due to the neighboring buildings. Thus DPR decided to

work with a single crew per activity, reducing the slack available in the overall

schedule. Official start of the project was in June 2001. According to the schedule

the project had to finish in November 2002, in order to be able to open the shops

for the Thanksgiving and Christmas shopping season.

Soon after the official start of the project hazardous materials were found,

during the excavation works. These findings and the following examinations led

to a two month delay of the critical foundation work activity. All the participating

project parties had to meet again for discussions of the overall schedule. In the

context of these meetings it was realized how difficult it was to determine the

feasibility of a particular schedule adjustment and to find the impacts of changes

in the base schedule on the overall project outcome.

In meetings of the above described kind interactive workspaces can be a great

contribution. The finding of relations between different sub-domains of the overall

project like schedule and cost estimation can be supported. Thus the Bay Street

Project is a suitable test case for the development of interactive workspaces.

Chapter 2

The IRoom as an Interactive

Workspace for Civil Engineering

Project Teams

Since 1998 the Center for Integrated Facility Engineering (CIFE) at the Stanford

University in California has been developing an interactive workspace called the

IRoom. This workspace integrates modern software and hardware technologies

creating an environment which supports the decision making of civil engineering

project teams.

The first research results on the impact of these interactive workspaces on

the time spent in meetings were publicized in [Fischer et al, 2000]. They show

that, using paper based media in meetings, 40% of the time is spent on describing

project-related information, while only 10% is spent on predictive tasks. How-

ever, these predictive tasks are extremely supportive for generating high quality

solutions. [Fischer et al, 2000] suggest that the time spent on describing informa-

tion could be reduced to 10% through the use of interactive workspaces. In this

way, the time spent on predictive tasks could rise up to 50% (Figure 2.1) allow-

ing a qualitatively better decision making process for multi-disciplinary project

7

8

predictive
explanative

evaluative
descriptive

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

paper based IW based

Figure 2.1: Time spent in meetings according to [Fischer et al, 2000]

teams.

To get an understanding of the current possibilities using integrated workspaces,

the following chapter describes the established hardware and software components

of the IRoom. Further research projects should use and extend these technologies.

2.1 Display and Message Passing System

The IRoom uses three Smartboards with corresponding projectors for display

purposes. Smartboards are large screens combined with a touchboard function-

ality, marketed by Smart Technologies Inc. [Smart Technologies Inc.]. Thus it

is possible to use them for the interaction with running software on computers

driving the Smartboard projectors. Further Smart Technologies Inc. provides

special software which enables to draw on the Smartboards using special elec-

tronic pencils. In this way the Smartboards can be used like a normal black

9

board.

Besides the capability of the IRoom to display information on the three Smart-

boards, the most important aspect of the IRoom technology is the message pass-

ing system [Fox et al, 2000]. It enables all the applications of the IRoom to pass

short messages to or receive messages from other applications. These software

programs can run either on the same device or on any other device integrated in

the IRoom environment.

Central

Database

Event Heap Server

ADT

MSP

Excel

Word

…

…

4D

Building object wall

Event Heap Listener

Message

Central

Database

Event Heap Server

ADT

MSP

Excel

Word

…

…

4D

Building object wall

Event Heap Listener

Message

Central

Database

Event Heap Server

ADT

MSP

Excel

Word

…

…

4D

Building object wall

Event Heap Listener

Message

Figure 2.2: Message passing system between the IRoom applications

Figure 2.2 demonstrates the basic system of passing messages between the

different IRoom applications. Using a special software called EventHeap messages

can be sent to a central event heap located on one of the IRoom computers

[Stanford CS - EventHeap]. Here all the messages get collected and stored for a

predefined period.

Any software component on one of the IRoom devices can access these mes-

sages stored on the event heap. To gain this capability they have to be extended

with an event heap “listener”. This “listener” observes the event heap constantly

enabling any application to pick up messages from the event heap. The type of

10

messages which should be picked up can be defined. In this way every application

has the possibility to just react to specific messages.

For example, in Figure 2.2 ADT sends a message to the event heap contain-

ing information about a geometrical structural element object. This message is

then picked up by two applications, which have a ”listener” which was devel-

oped to react to the type of message sent by ADT. CP4D picks up the message

in order to, for example, highlight the respective building component. Further-

more, Microsoft Project can, for example, establish some relationship between

the corresponding construction activity and the related geometrical objects.

2.2 IRoom Topology

The IRoom uses three permanent client computers. All three client workstations

are Pentium III 866 MHz desktops running under Windows 2000. The clients are

used for running common software applications used in civil engineering. These

applications are, for example, Microsoft Word and Excel, Microsoft Project and

CP4D which enables the geometrical and temporal representation of a project.

Furthermore, the three clients drive the three projectors with the correspond-

ing Smartboards which are used for displaying the different models of the used

applications.

Other devices like notebooks or palms can also be integrated as clients into

the IRoom environment, but it is necessary to install the applications for the ba-

sic IRoom technologies. These include the IRoom EventHeap client application,

which enables the client to receive and send messages between the applications.

If applications on these new devices like Microsoft Project, Microsoft Excel, Mi-

crosoft Word and Microsoft Powerpoint have to be integrated within the message

passing system, the listeners for all these programs will have to be installed as

well.

Applications for general functionality of the IRoom are installed on a server.

11

The server of the IRoom environment is a Pentium III 866 MHz workstation. It

contains the software for the message passing system between all of the clients and

their applications. Another useful software application that is used is Pointright

[Johanson et al, 2001]. It enables a set of input devices like a mouse and a key-

board to access all other screens of the integrated IRoom clients. This technique

is especially useful when working on the three Smartboards, as it is no longer

necessary to use the three input devices of the clients running the projectors. For

an overview of the complete IRoom topology refer to figure 2.3.

Client 1 Client 2 Client 3

App

App

App

App

App

App

Server

EventHeap

Pointright

Smartboard Smartboard Smartboard

Client 1 Client 2 Client 3

App

App

App

App

App

App

Client 1 Client 2 Client 3

App

App

App

App

App

App

Server

EventHeap

Pointright

Smartboard Smartboard Smartboard

Figure 2.3: Hardware topology of the IRoom

2.3 Using the IRoom in Practice

Using the previously described technologies, the IRoom workspace can provide

significant support of the communication process in meetings. The different

Smartboards can be used to display different views of the project. The mes-

12

sage passing mechanism can point out relationships between objects in the dif-

ferent views. Furthermore, the views on the different Smartboards controlled by

different computers can be manipulated by a single input device. The two fol-

lowing cases show examples of already realizable scenarios that apply the IRoom

technology.

2.3.1 Case 1: Multiple Microsoft Powerpoint Presenta-

tions

This rather simple example shows how the IRoom supports multi-screen repre-

sentations. Using one Microsoft Powerpoint slide show presentation it is often

not possible to include all information needed to describe a topic on a single slide.

Thus animation techniques or more than one slide are used for the representation

of one issue. This often increases the complexity of the presentation and can

confuse the audience.

The IRoom coordinates two or even three different slide shows on the Smart-

boards. All Microsoft Powerpoint presentations can be controlled by a single

mouse using Pointright. It is possible for example to use one Smartboard to

display the contents of the overall presentation. Another Smartboard might be

used for the main slide show, while the third Smartboard can be used to display

supporting materials.

2.3.2 Case 2: Interaction between CP4D and Microsoft

Project

In large civil engineering projects it is often hard to keep track of structural

elements which are related to a construction activity in the project managers’

schedule. Common practice in meetings is to use one drawing of the specific

part of the construction site while all participants have a copy of the Gantt chart

13

containing the construction activities at hand. Now, the meeting participants

have to manually search for the related construction site position in the drawing.

Often this process is very time consuming, due to the complexity of the two-

dimensional plans used.

By applying IRoom technologies, it is possible to display the Gantt chart with

the construction activities on one Smartboard. An application enabled to show

geometrical information like CP4D displays a view of the construction site on

another Smartboard. Now a previously defined database containing relationships

between the construction activities and the geometric objects can be used to

query the related structural elements.

Highlighting of the related objects in the geometric viewer is possible by ap-

plying the message passing technique. In this case the Gantt chart viewer pro-

gram sends a message containing the selected construction activity to the event

heap. This message can now be picked up by the geometric viewer and can be

mapped to the related structural elements using the relationship database, and

the corresponding structural elements can be highlighted. Using this highlighting

technique the meeting participants can focus more quickly on the information rel-

evant to a particular issue even though the information is represented in multiple

software applications. The software applications on the other hand do not have

to be aware of the relationships between related objects like structural elements

and construction activities.

Chapter 3

Architectural Desktop as CAD

Environment for the AEC Sector

Autodesk is providing Architectural Desktop (ADT) as a CAD solution for the

Architectural, Engineering and Construction (AEC) industry. Autodesk’s stan-

dard CAD-environment AutoCAD is used as the basis of ADT, as all functions of

AutoCAD can be used in ADT. Autodesk wants to address two different groups

of customers. The first group are the architects, who can use ADT to create

or modify three-dimensional models. These models combine different building

objects like walls, doors, windows, roofs or slabs into complex buildings as can

be seen in Figures 3.1 and 3.2. The second group are software developers who

can use two programming libraries, the Object Modelling Framework (OMF)

[OMF Developer’s Guide, 2002] and ObjectArx [ARX Developer’s Guide, 2000,

MCAULEY, 2000] to access and extend the provided functionality of ADT by

programming new applications.

14

15

Figure 3.1: Example of a building model in ADT

3.1 Product Model of ADT

Product models are describing buildings with discrete objects like walls, doors,

slabs and roofs. A set of these objects is arranged in a hierarchical order. For

example, the different zones of a building are combining rooms bounded by walls

with windows and doors. The characteristic data, which is needed for the abstract

model, are assigned to the individual objects by properties, or in object oriented

terms, member data. Product models are highly extensible. It is only necessary

that data sets, which are representing “real world” properties of objects, are pre-

defined, which means a universal standard has to be introduced by the developers

of the respective product model. ADT is defining such a product model, which

can be used for the creation and representation of the geometric and architectural

properties of a project’s building.

As mentioned before it is important to pre-define properties within product

models to enable access to these data. Within ADT, important properties which

define the objects in the overall project context can be assigned to fixed value

types. Users cannot change these underlying types. This means that each object

16

Figure 3.2: Door object in ADT

provides a pre-defined number of properties. Most of them store the geometric

information of the objects.

Information which is the same for a variety of objects of one type is assigned

to object styles. In the case of walls, for example, the constructional layers are

stored in a wall style. Now it is possible to create many instances of different

walls, which all have a different geometry. The same layers are attributed to all

of the walls which are using the same style. It is no longer necessary to create

these layers for every new instantiated wall, and a lot of time is saved during

the geometric modeling of the building. In ADT, these styles can be exchanged

between different drawings and even between different installations of ADT on

different computers.

17

Arbitrary data needed for the individual design tasks can be attached to

ADT entities by property set objects. These objects can collect a number of fixed

value types. The exact data of these types can then be specified for individual

ADT objects to which they are attached. Furthermore, there is the possibility to

attach the same kind of property sets specifying the same underlying data types

to different kinds of ADT entities. For example, information about the provider

of pre-fabricated structural elements can be attached to different kinds of entities

like walls or slabs.

3.2 Possibilities to Customize ADT

Autocad is known as one of the most programmable, customizable, and extensible

design systems on the market. Statistics released by Autodesk claim that almost

70% of Autocad customers are using LISP, Visual Basic, C++ or menu customiza-

tion to increase the productivity of the basic CAD product [MCAULEY, 2000].

ObjectArx stands for Autocad Runtime eXtension and was introduced with

Autocad R13. Since then many new versions of both Autocad and ObjectArx

have been released. Currently the latest versions are Autocad 2004 and ObjectArx

2004. ObjectArx are programming libraries for C++ for use with Microsoft’s

Visual C++ Compiler. Containing some 220 classes and over 3,000 unique

member functions it is quite a comprehensive application programming inter-

face (API). Further information on the programming of Autodesk products with

ObjectARX can be found in, for example, [ARX Developer’s Guide, 2000] or

[MCAULEY, 2000].

The Autodesk AEC Object Modeling Framework (OMF) is an extension of

ObjectArx. It has been developed to facilitate the programming of Autodesk’s

Architectural, Engineering and Construction (AEC) applications like Architec-

tural Desktop or Autodesk Building Mechanical and Electrical. OMF supplies

classes and functions, which provide the same core technology that is used by

18

these extension products for Autocad. Objects of ADT like doors, windows or

walls can now be shared across diverse Autodesk products or extended while

preserving the compatibility with Autodesk’s common DWG file format.

OMF is a layer wrapping ObjectArx with an extended functionality. It is still

possible to use ObjectArx, but if it is necessary to develop more than trivial ap-

plications, the use of the more powerful OMF is advisable. One of the most chal-

lenging aspects while programming ADT with OMF is to figure out when to im-

plement the normal ObjectArx functionality and when to use the extended func-

tionality of OMF. The OMF Developer’s Guide [OMF Developer’s Guide, 2002]

gives more information about OMF programming.

With the ObjectArx and OMF library it is now possible to create Autocad

extension modules. These modules can be uploaded into ADT during runtime.

Thus it is possible to extend the basic ADT functionality easily. Only the desired

extension modules, containing the wanted functionality, have to be uploaded.

Using ObjectArx and OMF it is possible to implement the necessary IRoom

event heap functionality enabling ADT to pick up messages from the central

message heap with the help of a “listener” and sending messages to it. Further-

more developers can use the programming libraries to create and update a central

database used within the IRoom environment.

Chapter 4

Communication Systems between

Different IRoom Applications

Computer applications used by civil engineers today generally are based on dif-

ferent database structures representing the respective project tasks’ views. The

data structures of the different databases are independent, but most of them con-

tain information which should be shared in the overall project context. To enable

the exchange of the shared data, communication mechanisms between different

programs have to be established. This is only possible using mapping mechanisms

for objects of the different applications’ databases.

Usually all the applications use a variety of common abstract objects. In the

design and construction process of a building some of these objects used are, for

example:

• Building Components,

• Cost Items,

• Material or Labor Resources, and

• Construction Activities.

19

20

The definition of general objects like those mentioned above in a central

database is the basis to establish relationships with objects sharing the same

information in different applications. In this way it is possible to perform a

mapping of objects between different programs. For example, using objects rep-

resenting building components within a central database, the mapping between

elements of different CAD applications and geometric viewers can be performed.

Furthermore, the different object types have interdependencies. For exam-

ple, the object construction activity obviously has relationships with material

and labor resources as well as with building components and cost items. These

interrelations can also be stored in the central database, allowing the mapping

between different object types. These relationships in a database schema can be

modelled in various ways. Another important issue are the access possibilities to

the central database by the different applications.

It is of great importance to thoroughly analyze different possibilities to model

the data and different possibilities to access the chosen model before starting to

implement software. This chapter describes different alternatives of establishing

and communicating these relationships in an interactive workspace environment.

At the end, the used database schema and database access mechanism for the

integration of ADT into the IRoom are introduced.

4.1 Possible Database Structures for Shared IRoom

Application Data

This section describes two possible database schemas for the data mapping be-

tween different applications. The first option is to store only the relationships

in the database. This approach would lead to the smallest possible amount of

information stored within the central database.

On the other hand this approach means that the applications have to store all

21

data concerning these objects. Thus data exchange between different programs

can only be realized by direct communication of the respective applications. Using

such a database schema in the IRoom environment would require that a lot

of different messages have to be exchanged between the applications using the

event heap’s message passing functionality. Furthermore, this would require that

each software program has to understand a great number of different message

types. Software developers would have to spend a lot of time to implement

the functionality for all integrated applications. Hence, the integration of new

applications into the IRoom would be a lot more expensive if a database is used

which just stores the relationships.

Application 1 Application 2

Database

Scheme A

Database

Scheme B

Central

Relationship

Database

Event Heap Server

Data Request – Object B

1.
Data Object A

2.

3.

Parse for

related

Object A

4.

5.

Application 1 Application 2

Database

Scheme A

Database

Scheme B

Central

Relationship

Database

Event Heap Server

Data Request – Object B

1.
Data Object A

2.

3.

Parse for

related

Object A

4.

5.

Event Heap Listener

Message

Data Parsing

Figure 4.1: Necessary communication using a database storing relationships only

Figure 4.1 shows a typical data transaction architecture between two appli-

cations using such a relationship database schema. In this case, Application 2

wants to receive data from a related object of Application 1. As a first step, it

22

has to send a request message to Application 1, containing the Object (B) which

should be related to the data of some Object (A) from Application 1. Application

1 receives the message containing the Object (B) and has to parse the central

database to map Object (B) to the related objects of its own database. After ex-

tracting the requested property from the related Object (A) the data can be sent

again to the event heap, and Application 2 can pick up the respective message

again.

This simple example points out the complexity of the data exchange using

a database schema just modelling the relationships between objects. Therefore

a significant development effort would have to be invested for each application

which is to be integrated into the IRoom. Each application would need to be able

to process a number of different message types picked up from the event heap

and to be able to send back a number of different message types to the event

heap. Another problem is to maintain the data consistency in applications which

are using objects of the same type.

The second data storage possibility is to store all the objects that have to be

shared by the applications directly into the databases. The relationships between

them can be represented as properties of these objects. For example, a building

component object is established which contains information of its related con-

struction activities within the object as relationship properties. References to

the applications’ internal database entities should be stored as well as object re-

lationship properties. Furthermore, it is possible to store data of the applications’

entities which need to be exchanged in the central database. This would reduce

the message passing, as the applications can use the database to gain access to

object related data, which was formerly only available in the applications. Pro-

grams can directly use these data without the need of requesting them from other

applications.

Figure 4.2 shows the communication necessary in order to get a reference to

the related objects of an other application a central database storing relationship

23

Application 1 Application 2

Database

Scheme A

Database

Scheme B

Central Object

Based Database

Event Heap Server

Parse data of

related object

A

Application 1 Application 2

Database

Scheme A

Database

Scheme B

Central Object

Based Database

Event Heap Server

Parse data of

related object

A

Figure 4.2: Necessary communication using a database storing objects

and data properties with objects. The references to the related objects of Appli-

cation A are stored in the central database. Application B just has to query for

the objects related to the respective object of Application A. The properties of

the related objects can then be accessed directly since they are stored as prop-

erties of these objects. No direct message passing between both applications is

necessary any more.

One disadvantage of this database schema is that relationships have to be

stored redundantly with all the objects which are related to each other. Every

object needs information of its related objects as relationship properties. If one

mutual relationship between two of the objects changes, the relationship proper-

ties for both of these objects have to be altered by the database administrator. To

simplify the maintenance of the database, these redundancies should be avoided.

This can be realized by using a database structure which stores objects with

properties, but defines the relationships between these entities in separate re-

lationship objects. In this way all the data concerning the relations between

objects can be normalized. Of course the parsing of databases using this struc-

24

ture is more complex than that of databases which store the relations as object

properties. The reasons for the increased complexity of the database parsing is

the increased number of stored objects and the more complex data storage. On

the other hand the maintenance of the database gets easier and the schema itself

becomes less complex.

4.2 Information Flow within the IRoom Envi-

ronment

In general, there are two different approaches for database access. In the first

approach applications parse the central database directly. An advantage of this

approach is that each application accesses the database independently.

Event Heap Server

ADT

MSP

Excel

Word

…

4D

Building object wall

Central

Database

DB

Parsing

Primavera

Event Heap Server

ADT

MSP

Excel

Word

…

4D

Building object wall

Central

Database

DB

Parsing

Primavera

Event Heap Listener

Message

Data Parsing

Figure 4.3: Multiple database parsing by direct database access

Of course, this approach leads to a lot more database parsing operations. Ev-

25

ery application will have to parse the central database separately. Even if there is

information which could be shared by different applications, all of them have to

perform queries for the shared information independently from each other. Fig-

ure 4.3 illustrates this: Primavera and Microsoft Project are applications which

represent project management schedule information, like for example construc-

tion activities. Thus the related objects representing the construction activities

for a building component sent by ADT are the same in the central database.

Nevertheless, both applications have to parse the database by themselves looking

for the same information. As a result two separated database parsing operations

have to be performed.

Another disadvantage is that parsing functionality implemented in one appli-

cation has to be implemented in all the other applications as well. As most of

the programs use different application programming interfaces (API) which of-

ten support different programming languages, the reuse of already implemented

functions is almost impossible. This again results in more programming effort to

enable the applications to exchange shared data within the IRoom environment.

One solution for the shortcomings of a direct database access is the use of

middle tier software. Such a software application would be responsible for three

tasks:

1. Receive data request messages from the applications.

2. Parse the database for the requested information.

3. Send back the required data to the event heap.

Applications can pick up these messages and process the contained information.

A disadvantage of this solution is the dependency of all applications upon

this middle tier. All the programs need to pass the messages in the format

predetermined by the middle tier application. Furthermore the “listeners” of the

26

IRoom applications have to be programmed to be able to pick up the messages

sent in the specific middle tier format.

Another shortcoming in this respect is that every application has to rely on

the middle tier’s proper functionality. This is especially a problem with regard

to changes within the IRoom environment concerning the central database struc-

ture or changes to the integrated applications. As the middle tier application is

the central component of the message transaction most of these changes would

consequently lead to modifications in the middle tier application as well. Each

alteration can cause instabilities within the middle tier due to implementation er-

rors. Thus every code change has to be implemented with great care with respect

to the overall stability of the middle tier.

If it is possible to maintain the stability of the middle tier software within the

IRoom environment its use offers a wide variety of advantages. As the middle tier

software is the central point of the system for the message passing, the message

receiving and the database parsing code reuse is possible to a large extent. This

means that most of the implemented functionality for integrating one software

application in the communication system can be used for the integration of other

software programs as well. Furthermore the middle tier concentrates a lot of

functionality in one point of the overall system, offering programmers who intend

to change or extend the IRoom environment a central spot for their code changes

or code extensions.

Another side effect of using a middle tier software is the reduction of database

parsing operations and messages sent to the IRoom’s event heap. Figure 4.4

illustrates the concise communication within the IRoom environment using a

middle tier software. ADT sends a message containing the reference to one of

its building component objects to the event heap. This message is picked up

by the middle tier software. As the middle tier program knows which data are

represented by the various applications within the IRoom environment, it can

access the database and extract all objects related to the original entity in one

27

ADT

M
SP

E
x

cel
W

o
rd

Prim
avera

Central

Database

Central

Database

MID

Server

Event Heap Server

Building object wall

Referring Task

Contractor’s Address
Object’s Cost

Referring Task

Contractor’s Address
Object’s Cost

DB ParsingDB Parsing

Event Heap Listener

Message

Data Parsing

Figure 4.4: Data mapping using a middle tier software

single parsing operation. Now it creates messages containing information needed

by the different applications. These messages can then be picked up by the other

programs which can process the data included in the messages.

New applications that should be integrated into the IRoom environment can

decide whether they use the middle tier software functionality or access the

database directly. This offers a great flexibility for the integration of different

new programs. Nevertheless, the more applications which do not use the middle

tier software are integrated, the more complex the overall message passing and

database parsing system gets. Figure 4.5 points out the complexity of message

passing for a simple IRoom setup in which three of six integrated applications

access the central database directly.

28

Central

Database

Event Heap Server

ADT MSP ExcelWord

4D

Building object wall

Primavera

MID

Server

DB

Parsing
Referring Task

Event Heap Listener

Message

Data Parsing

Figure 4.5: Complex communication as result of a combined data base access

solution

4.3 Solution for the Integration of the ADT into

the IRoom

After carefully taking the advantages and disadvantages of the above described

solutions into account an object-based database schema was chosen. Within this

schema the existing relationships are modelled by separate objects. These rela-

tionship objects represent the links between the objects in the central database as

well as the relations to the various representations of these objects in the software

applications.

For testing and validation purposes during the implementation the extensible

markup language (XML) [W3C - XML] was chosen for representing the database

schema and creating simple XML data files. The access to this central XML data

files is through the Midserver program which represents a middle tier application.

29

4.3.1 XML Data Structure

The extensible markup language (XML) is a well established standard for data

exchange between applications via the internet. As XML is “a set of rules for

designing text formats that let you structure your data” [W3C - XML 10Points]

it also can be used to create data files which store information in ASCII format.

ASCII files allow an easy exchange of data between different operating systems

like Microsoft Windows or Red Hat Linux. Furthermore, ASCII files can be edited

by common text editors. This enables the creation and maintenance of XML data

files without using a special software application as a variety of different ASCII

editors exist for all operating systems.

To create the previously described object-based database for the IRoom, we

developed a XML data structure for the integration of ADT representing a va-

riety of different object types, for example, building components or construction

activities. This has been achieved in XML, modeling the different objects as

XML elements. These elements can be arranged hierarchically. More detailed

information can be stored in other hierarchical elements. Thus the information

contained in a XML file can be represented at different levels of detail.

Another technique used by XML is the creation of ”Document Type Defini-

tion” files (DTD). Within these DTDs it is possible to define a general database

structure. Using these DTDs it is possible to validate XML data files. A XML

data file is valid if its underlying structure matches the structure defined within a

DTD. In the IRoom context this technique allows for example to verify whether a

specific XML data file can be used for mapping shared data between applications.

Appendix A provides an overview of the general database schema of the cen-

tral database which is used for the integration of ADT into the IRoom. Further-

more, the different objects and relationship objects are described there. Appendix

A also contains the ASCII representation of the DTD file used for this schema.

The ASCII code of an XML file describing a part of the Bay Street Project can

30

be found in Appendix B.

Building Component Object

Id = 13

Unit = CY

Name = volume

Value = 120

MAT_QUANTITY

Id = 12

Name = slab 1 zone A

Parent = zone A

BUILDING_COMP

Id = 14

Unit = SF

Name = SFCA

Value = 210

MAT_QUANTITY

Id = 15

Unit = F

Name = length

Value = 10

MAT_QUANTITY

Figure 4.6: Building component object with quantities

The XML data structure uses building component objects to represent struc-

tural elements of ADT within the central XML data files (Figure 4.6). Every

structural element of one ADT model can be represented by exactly one building

component element in a XML database file. At the moment the properties of

building components stored in the database are:

• a unique id,

• the name of the component,

• the ids of decomposed components, and

• the id of the parent component.

The unique id has to be explicit for all elements throughout a whole XML

data file including elements other than building components. This id can be used

for directly addressing any element contained in one XML data file. The name

of the component can be used for display purposes in different applications. The

31

ids of the decomposing components and the id of the parent component enable

the representation of building component hierarchies within central XML data

files.

Every building component can have several material quantity elements in the

descending hierarchy of the XML database (Figure 4.6). These material quan-

tity elements are used to store geometric information of the building component

objects and can be used, for example, for cost estimation tasks. Examples of

such quantities are the volume of the component or the square feet contact area

(SFCA) of the surfaces of the component in contact with the formwork. Another

example would be the length of pre-manufactured steel columns and beams.

Properties of these quantity elements stored within database files are:

• the unique database id,

• the quantity name (volume, SFCA, length),

• the value of the quantity for the respective building component, and

• the unit of this quantity value.

Other Element Type Objects

COST_ITEM

id

location

costitemname

unit

dailyoutput

materialprice

materialtotalcost

laborprice

labortotalcost

equipmentprice

equipmenttotalcost

totalcost

minimumdaysfortask

RESOURCE

id

name

type

crewmemberno

laborhourcost

equipmenthourcost

labordaycost

equipmentdaycost

hoursperlaborday

id

name

code

ED

EF

overtime

CONSTR_ACT

Figure 4.7: Cost Item, Resource and Construction Activity objects

XML data files can define elements of several other types using the described

32

structure. The XML data file can then use these elements to establish the rela-

tionships with ADT building components.

To model the relations with project management applications integrated within

the IRoom environment like Primavera or Microsoft Project the XML data struc-

ture includes construction activity elements.

Furthermore, the data structure uses cost item elements and resource ele-

ments to support the exchange with cost estimation programs like for example

Timberline [Timberline] or for the interaction with Microsoft Excel spreadsheets

used for the representation of estimation results.

A variety of other elements can also be integrated into the database because

the chosen XML data schema provides compatibility between extended database

schemas and the previous versions. Thus, by including new elements into the

database schema, developers gain the possibility to extend the already imple-

mented IRoom features.

Relationship Objects of the Database

id

object1

object2

RELATIONSET_IROOMDB

id

object1

object2

RELATIONSET_IDMAPPING

id

name

RELATION_MODEL

id

idobject1

idobject2

RELATION

id

idobject1

idobject2

RELATION

id

idobject1

idobject2

RELATION

id

idobject1

idobject2

RELATION

Figure 4.8: Hierarchy of the relationships

As already described, there are two different relationship types to store the

33

relationship information in central XML data files. The first type describes the

relations between objects in the applications’ internal databases and the central

XML data file. The second describes the relations between two different object

types within a central XML data file. A different kind of relationship set can be

defined for both relation types. These relationship sets are a collection of different

relation elements representing one kind of relationship. For example, all relation-

ship objects which relate the building components within ADT with the elements

in the central database are collected within a RELATIONSHIP IROOMDB re-

lationship set. Another example is the RELATIONSHIP IDMAPPING relation-

ship set for the mapping between two objects of the central database like building

components and construction activities.

Information concerning all the relation elements within such a set is defined as

properties of relationship set elements. RELATIONSHIP IROOMDB Relation-

ship sets with relations concerning the mapping between application and central

database objects are storing the following properties:

• the unique database id,

• the application name, and

• the name of the central database element type.

Properties of RELATIONSHIP IDMAPPING relationship sets with relations

concerning the mapping between the central XML data file objects are the unique

database id and both ids of the respective database element types.

As the information of the kind of mapping is already stored within the re-

lationship set elements one type of relation element can be used to define the

specific relationships. These elements have to store information about the unique

identifiers of the objects they are relating. In central XML data files this is the

unique database id. Within every ADT data file the ADT entities can be iden-

tified by a unique database id called handle. Thus the string representation of

34

this handle and the unique database id of the referring object within a central

XML data file is used within the relation elements of the central database. The

following example from a XML data file shows the two different relationship sets

with corresponding relations:

<RELATIONSET_IROOMDB

id="84"

object1="BUILDING_COMP"

object2="CONSTR_ACT">

<RELATION

id="86" idobject1="13"

idobject2="26 29 32"/>

<RELATION

id="87" idobject1="16"

idobject2="22 23 24 25 26 27 28 29 30 31 32"/>

</RELATIONSET_IROOMDB>

<RELATIONSET_IDMAPPING

id="97"

object1="IROOM_ID"

object2="ADT_ID"

objecttype="BUILDING_COMP">

<RELATION id="117" object1="13" object2="DD7"/>

<RELATION id="121" object1="16" object2="DD8"/>

</RELATIONSET_IDMAPPING>

As mentioned before, the exact schema of the database DTD and a complete

example database XML file can be found in Appendix A.

35

4.3.2 The Midserver: A Middle Tier Between Applica-

tions and Database

We implemented the middle tier program as a standard Microsoft Windows appli-

cation. This offers the possibility to use predefined graphical user interface tech-

niques. This speeds up the development of user interfaces for the communication

with the Midserver application. Using graphical user interaction possibilities it is

for example possible to change the underlying XML data file during the runtime

of the Midserver program. The extension of the Midserver application is possible

if further functionality is necessary in future versions.

The Midserver application is intended to receive data request messages, pars-

ing the database upon these requests and sending back reply messages to the

IRoom event heap. Next to the graphical user interface the Midserver needs to

support more basic functionalities. First of all the Midserver needs to have an

event heap ”listener” to be able to pick up the request messages from the event

heap. Furthermore, it needs an interface to send messages back to the event

heap which contain the reply information which have been obtained from the

central database. Both features can be implemented using the event heap software

[Stanford CS - EventHeap]. We used Microsoft’s MSXML Parser [Microsoft - MSXML]

to implement the central database parsing functionality.

Chapter 5

Integrating ADT

In the current state of the IRoom geometrical changes within the context of a

project are hardly possible using the IRoom environment. The CP4D application

[CPT Tech. - 4D-Viewer] can be used in the IRoom environment for visualisa-

tion purposes; a change of the program’s underlying data cannot be performed

adequately with the existing IRoom technology.

ADT can be used within the IRoom environment to represent, export and

change geometrical data. In order to be a contribution to the IRoom, we imple-

mented a software prototypes that extends ADT with the following functionali-

ties:

1. Users have the possibility to create hierarchies of structural elements.

2. The prototype enables ADT to automatically export Building components,

representing ADT structural components and the corresponding RELA-

TIONSET IROOMDB relation set to XML data files.

3. Users have the possibility to link the imported building component ob-

jects with objects of other types within XML data files using RELATION-

SET IDMAPPING relationship sets.

4. ADT is able to communicate with the event heap.

36

37

This chapter describes these extensions in detail. The following chapters cover

the explanation of the implemented prototypes for the ADT extensions and how

users can use these prototypes within the ADT environment.

5.1 Hierarchies in ADT Models

Within the planning and design process it is necessary to create a hierarchy of

the structural elements of a building. These hierarchies represent the building in

different levels of detail. Thus, for example, a more general level of detail can be

used to represent opportunities for possible lay down areas on the construction

site. Another example would be the use of more detailed views of the model for

supporting the installation planning of the building’s mechanical systems. These

different levels are an important contribution to support the different analysis

tasks which have to be accomplished during the overall planning and design

process.

Unfortunately ADT’s original product model structure does not offer a con-

sistent possibility to create these hierarchies. This is due to the absence of an

object which can be used to group structural elements. Thus we implemented a

zone object which can be used to store references to different structural element

objects of ADT. Using these zone objects, it is now easy to create hierarchies.

For example for a multiple storey building all the structural elements of one level

can be collected in a zone object representing one level of the respective building.

A level based view on the building is now possible by creating such a zone object

for each storey of the building.

Using the implemented prototype all zones within ADT can have a variety

of children elements. These elements can be other zones or the common ADT

structural elements. Parent objects can only be zones. Using this technique users

can create an arbitrary number of different levels of detail in their ADT model.

38

5.2 Export of ADT Data to XML Data Files

One of the main problems during the integration of ADT into the IRoom environ-

ment is the export of its underlying objects into the XML data files. As described

before, the XML data structure has an object type building component which is

able to represent structural element objects within ADT. Further XML relation-

ship elements are necessary in order to enable the Midserver to map between

these XML data file objects and the respective objects within the ADT applica-

tion. Hence the implemented prototype should be able to automatically create

relation and building component objects in the used central XML data file for

ADT product models that a user wants to integrate into the IRoom environment.

In order to be able to adequately keep the objects within a XML data file and

ADT consistent we provided export functions. Users can use these export func-

tionalities to create new elements of the types relation and building component

within IRoom XML data files or update already existing objects automatically.

This automatic export function for structural elements from ADT to the XML

data files is performing two tasks. First the function collects all ADT database

elements that are representing structural members or zones. Then it extracts all

the necessary data from these objects and exports the data into a XML data file.

The prototype stores the respective object ids of children and parents of par-

ticular building components as XML-attributes of building component elements

using the attribute names decomposesInto and parent.

Besides the elements that represent building components within central XML

data files, the relationship elements are created as well. These elements store

the unique ADT database handles and the unique ids of the related building

component object in the XML data file. Thus using these relationship objects

the Midserver can perform the mapping between structural elements of ADT

and building components within the XML data file. The details of the mapping

mechanisms in the relationship elements of the XML data file have already been

39

described in detail in chapter 4.

We implemented additional functionalities in order to assist updating of pre-

vious established XML data files. Already existing building component elements

representing ADT structural elements in central XML data files can be detected

automatically. This is easily achieved by validating whether a relationship ele-

ment is already mapping the unique ADT database handle of a building component

within the respective XML data file. Further the implemented prototype is able

to automatically update changed properties of already existing building compo-

nent elements. We realized this by simply comparing the data of the related

building component element in a XML data file with the respective data of the

structural element in the ADT database. For example the volume of a slab within

ADT is compared with the value attribute of the volume Quantity element of the

respective building component within the XML data file.

5.3 Establishing Relationships between ADT Ob-

jects and Objects from other Applications

Another functionality with which ADT has been extended is the possibility to

establish the relations between the building component objects and the other

objects of XML data files, such as cost items, labor/material resources or con-

struction activities. These relationship elements cannot be created automatically

by any of the participating stand alone applications. Users have to specify man-

ually which specific elements have to be linked in the project context. Thus we

provided functionalities which enable users to define these relationships between

objects of different types. The work to accomplish this new functionality can be

described with the following steps:

1. Import all existing XML data file objects of another object type, like

COST ITEM or ACTIVITY which are to be related with ADT structural

40

element or zone objects into ADT.

2. Let the user establish relationships between these objects by providing an

adequate graphical user interface within ADT.

3. Export the created relationships back to the respective XML data file.

Especially the second step is a complicated issue. As objects in different

branches of the hierarchy tree might have the same names, first all the different

objects of two of the above described object types have to be represented hierar-

chically. Thus users have the possibility to determine for example to which zones

different building component objects with the same name belong to. A hierarchi-

cally representation can be achieved by introducing a tree view which adequately

represents the hierarchies in the objects’ data structure.

Another even more difficult issue is how the user can relate the objects in the

tree to objects in the overall project’s context. For example the user needs the ex-

act position of a structural element on the site to establish the necessary relations

with the schedule’s construction activities. For example it is necessary to know

the exact location of a building component on the site to establish a relationship

with the respective construction activity in the schedule. Within the different

applications the used objects are represented in a way which allows users easily

to gain an understanding of the objects’ use in the project’s design and planning

practice. For example construction activities are represented with their mutual

temporal links in schedules and Gantt charts. All the objects in a XML data file,

are decoupled of the objects in the applications. In order to be able to link these

decoupled objects of different types, the objects’ relevance in the project’s design

and planning practice has to be known by the user. For large projects with a

huge number of different objects, users, who want to create object relationships,

should be supported in gaining the understanding of the relevance of the different

objects. The used application for establishing the relations should provide the

41

information required. Thus users can adequately create the relationships which

are existing in the overall project context between the objects in XML data files.

Here again ADT can be a great contribution to the already existing IRoom

environment. As the new implemented relation functionality is working within

the ADT environment, it is possible to introduce a highlighting functionality.

The to building component of a XML data file related structural element objects

can be highlighted in the ADT representation of the model. Thus the user can

easily get a geometrical understanding of one of the building component objects

selected in the application. This understanding can then support the user in

finding the related objects of the other types. For example ADT can display the

location of one of the building component objects on the site by highlighting the

related structural elements. This location and context information can be a great

help in the selection of the related construction activities.

5.4 Connecting Event Heaps

After integrating ADT’s structural elements and all relationships in a XML data

file, other applications within the IRoom environment can access this information.

In order for ADT to communicate with other applications within the IRoom

environment a connection to the IRoom event heap has to be implemented. This

event heap connection can be used by other developers intended to program ADT

extension functionalities to receive information like specific action commands

from other applications.

As described above two different event heap functionalities have to be im-

plemented for every participating application of the IRoom. The first is the

“listener” functionality which enables ADT to pick up specific messages from the

event heap. The second one is needed by ADT to send messages to the event

heap.

Event heap messages which are picked up from the event heap by the “listener”

42

have the following format:

ADT_ID=action:‘...’_app:‘...’_elem:‘...’

In this case the first part of the message “ADT ID” tells the “listener” that

this message is intended for ADT. The first tag “action” in the message describes

the type of action which ADT should perform upon receiving the message. The

second tag “app” holds information about the application which sent the message

to the event heap. The third tag “elem” contains the unique ADT database

handle of the respective object upon which the specific action has to be performed.

Outgoing messages to the event heap which should be picked up by other

applications use the same format. For these outgoing messages the first part of

the message has to be the ID of the application for which the message is intended.

The “app” tag has to contain the ID of ADT, which is the sending application

of the message:

‘...’=action:‘...’_app:ADT_ID_elem:‘...’.

Chapter 6

Implementation of the ADT

Extension Functionalities

We implemented the previously described functions using the object oriented

C++ programming language. Due to the modular character of C++ the cre-

ated functions can be used as basis for other projects, which aim to extend the

prototype.

In addition to the already described ObjectARX and OMF C++ libraries

we used a variety of different other library extensions during the programming

process. Some of them are introduced below.

C++ Standard Library

The C++ standard library is a collection of extension functions to be used with

the basic C++ programming language. As the standard library is part of the offi-

cial C++ standard defined in [C++, 1997], it should be available with each C++

compiler. This ensures that code written in C++ using the standard libraries

is platform independent; the written code can be exchanged without alterations

between different C++ compilers running on different operating systems like Mi-

crosoft Windows or Red Hat Linux.

43

44

The parts of the standard library used within this project are the

• container functions,

• string functions, and

• the stream functions.

The container functions support the storage of arbitrary data objects. The

containers differ in how they provide access to the data stored within them.

For example provided containers are vectors programmers can use to access the

stored objects by a pre-defined index. Another example are maps, which are

comparable with vectors, but provide the ability to access the stored objects

using a user-defined index.

The string library offers the possibility to store ASCII text. There are a

variety of existing functions which can be used with string objects. It is for

example possible to search for a character within a string object, or extract an

arbitrary part of the string object into a new string object.

The last feature of the standard library which we used for the implementation

are the stream functions, which, among other things, support the access to files

on the harddrive or floppy disk of a computer. More detailed information about

the standard library can be found in [Stroustrup, 2000].

Microsoft Foundation Classes (MFC)

The Microsoft Foundation Classes (MFC) are a large collection of C++ func-

tions enabling programmers to access the Microsoft Windows operating system.

All the user interface functions provided by ObjectARX and OMF are built on

top of MFC. Thus the standard Microsoft Windows behavior for graphical user

interfaces is used for extensions of ADT.

In addition to the basic graphical user interface implementation the MFC can

be used for a variety of other tasks concerning the Microsoft Windows operating

45

system. It allows for example the implementation of multithreading. Multithread-

ing combines different stand-alone processes running at the same time in the

same application. Programmers can use these processes to accomplish multiple

tasks within one application which have to be performed simultaneously.

Microsoft MSXML Parser

The MSXML Parser version 4 has been used to parse the underlying XML data

files describing the shared data of the applications integrated in the IRoom envi-

ronment. It is possible to read data or write data to ASCII files in XML format

using the MSXML parser. The parser’s writing functionality ensures automati-

cally that the XML format within the ASCII file is maintained.

Further it is possible to validate the underlying XML data structure with

specific DTD files. A short introduction of XML and DTD can be found in

chapter 4. More information about the XML parser can be found on the Microsoft

website [Microsoft - MSXML].

6.1 Implementation of Zone Objects

We used the programming libraries ObjectArx and OMF to integrate a new zone

object type within the ADT. Typical built-in ADT entities like doors, windows

or walls are characterized by the following features:

• Graphical representations of the entities,

• logical and geometrical relationships to other objects, and

• access to the entities data with the help of graphical user interfaces.

We implemented all these characteristics for the new zone entity.

46

6.1.1 Display Representation of the Zone Objects

In conventional CAD systems, graphical primitives like lines, arcs and circles are

used to represent the different objects of a building. Users have to change the

used graphical primitives of the objects in order to change its graphical appear-

ance. The user has to change all objects, which should have the same appearance

as the changed one. Thus he is loosing a lot of time during the creation and

maintenance of the CAD models. Due to its product model the ADT is able

to offer a different approach. With ADT it is possible to attach graphical rep-

resentations to object types. If the appearance of one object type is changed,

the appearance of all objects of the same type is adapted automatically by the

ADT system. These graphical representations within the ADT are called display

representation objects of the ADT entities.

Figure 6.1: Display Representation of a zone object

47

In order to be able to visualize the custom zone entities within the ADT we

implemented a display representation for these new objects. The zone objects are

displayed via a bounding box collecting all the zone’s structural elements within

it (Figure 6.1).

6.1.2 Creating the Relationship between Zone Objects

and Structural Elements

The OMF provides a basic support of relationships between different objects.

There are two different relations integrated in the ADT, direct links and anchors.

Objects, which are related by direct links have a direct knowledge of each other.

For instance a wall has a direct reference to its style. Anchored entities do

not have direct knowledge of each other. The anchor defines the relationship

between both objects; the anchored objects just store a reference to the anchor.

For example a wall and a window do not have a direct relation, but an anchor

defines how the window is integrated into the wall.

The direct relationships are stored within the ADT in an object relationship

graph. This graph is automatically updated by the ADT framework every time

users edit, erase or add objects. All relationships in the graph are stored bi-

directional, that means, that for example a wall is related to a style, and a style

is related to all corresponding wall objects. Without the object relationship graph

ADT would have to perform an extensive data base scan every time it intends to

access a related object. ADT stores the following relationships within the object

relationship graph:

• Object-to-object relationships,

• Class-to-class relationships and

• Objects-to-user interface relationships.

48

Services provided by OMF using the object relationship graph are messag-

ing, delayed notification, object and relationship lookup, and cloning behavior

[OMF Developer’s Guide, 2002].

A technique to store relationships as properties of other objects is provided

by core ObjectArx: the principle of hard and soft pointer ownership. If an entity

needs to store a reference, which is pointing to another entity, this reference

can either be implemented as a hard or soft pointer. The use of a hard pointer

ensures, that the object, which is referenced by the pointer cannot be erased

by a user unless the referencing object is erased itself. For example the layer

an object belongs to is referenced by hard pointers. Trying to erase the layer

is now impossible for users unless all the objects on the layer are purged first.

Storing relations with soft pointers does not define any special behavior between

the related objects.

The zone objects store references to all their structural member objects like

walls, slabs or roofs. Users have the possibility to purge these elements without

erasing the zone first. Hence the structural members are stored directly in the

zone object with soft pointers (Figure 6.2). We have implemented that all these

references are integrated into the relationship graph. Thus we was able to intro-

duce a messaging system which informs the user every time he tries to purge a

structural member of one of the defined zones.

6.1.3 Access of Zone Object Data by Using User Inter-

faces (UI)

One of the most important features in modern software architectures are user

interfaces. The interaction between the user and the computer must be fast

and accurate. ADT already provides a graphical user interface. Any additional

elements should therefore be integrated into it by the programmer. In this way

users do not have to change any of their normal working behaviors they have

49

Figure 6.2: References to other objects stored by Soft Pointers in a zone

developed while working with ADT; they can easily access the functionality of

the new developed applications.

OMF provides classes and functions, that help developers to modify existing

user interfaces or integrate new interfaces within the ADT. Following UI compo-

nents are supported:

• Commands,

• Prompts,

• Dialog Boxes,

• Property Pages,

• Property Sheets and

50

• Context Menus.

Prompts are messages on the command line, that ask the user for input. OMF

provides a variety of different prompt types like prompts for strings, points, inte-

gers or even for entities. Additionally OMF provides functionality to ensure that

user input is in the right format or has valid values. For example programmers

can implement a prompt for ADT entities, which ensures that users can only

select entities of a certain kind, all other selected entities are ignored by the ADT

prompt. Prompts are used by the zone objects for the selection of its elements.

Figure 6.3: ADT standard dialog to add new Zones

Within ADT programmers can use standard Microsoft Windows dialogs in a

great variety ranging from general purposes to predefined dialog boxes for special

purposes. For example they can use the standard ADT Create Entity Dialog for

the creation of new entities. For zone objects we implemented such a create dialog

(Figure 6.3). The user has the possibility to select the elements of the zone by

pressing the Pick the Zone Components button of this dialog. The dialog further

enables users to select a style and a name for the respective zone object.

51

The create entity dialog is a good example of the possibilities of the OMF. It

enables programmers to extend the ADT without changing the basic functionality

provided by Autodesk. Any user who has already gained some experience with the

ADT can use the custom zone entities accurately, without changing his normal

working patterns.

Figure 6.4: ADT standard Edit Property Sheet for zone objects

Table 6.1: Newly added Command Line commands

English Command German Command Activates

ZoneStyle ZonenStil edit property sheet of zone style

addZone erstelleZone create zone dialog

zoneProps ZonenEigenschaften edit property sheet of zone entity

In order to enable users to commit changes of the zone objects’ data after

their creation, we implemented a property sheet. Property sheets are the tabbed

dialog boxes known from Microsoft Windows applications. They can contain

52

Figure 6.5: Added commands to the context menu for zone interaction

numerous different property pages, which allow the user to edit the properties of

an object. We implemented two property pages for the edit property sheet of the

zone object. Users can change the name of the zone with the first page. The

second property page enables users to delete existing or add new references to

structural elements to a zone object (Figure 6.4).

We further implemented a right click context menu (Figure 6.5) in order to

enable users to access the new property sheet. Further they can access the edit

property sheet and the create dialog of the new zone objects via the command

line commands listed in Table 6.1.

53

6.2 Implementation of the Data Export to XML

Data Files

Using the by OMF and the MSXML libraries provided functionality the imple-

mentation of the data export to a central XML data file is straight forward. The

overall functionality can be distributed into two tasks:

1. Processing the required information within ADT.

2. Writing the data to a XML data file.

For the processing of the necessary data that has to be exported to a XML

data file, we implemented a function that collects all the structural elements and

zone objects within an ADT model. For each of these elements the geometrical

data for the quantity sub-elements of the respective building component objects

of the central XML data file are calculated by another function.

The current version of the implemented prototype is able to extract the fol-

lowing quantities:

• volume,

• square foot contact area (SFCA), and

• length.

We implemented the volume extraction for all structural elements by using

ObjectARX. Every structural element object is transformed into an ObjectARX

body object. These ObjectARX body objects store the volume as a property.

Thus we easily could access the volume property and create the corresponding

quantity object using the obtained value.

The calculation for the value of the SFCA is simplified to a great extend. The

implemented prototype subtracts the top surface from the overall surrounding

54

surface of a slab. Thus the function is not working for structural elements like

slabs on grade which do not need a formwork for the bottom surface. Further

the SFCA can only be calculated for structural elements with a horizontal or

a vertical gravity axis and a regular rectangular shape. A better calculation

algorithm should be implemented by programmers for the extraction of the SFCA

values in further versions of the prototype.

The prototype is only able to calculate the length value for beams and columns.

For these elements ADT stores the length value as a property and programmers

can easily extract it using OMF. For the unit element of the length quantities the

prototype uses the length unit of ADT and the name of the style. The name of

the style of structural elements representing beams or columns is commonly used

by architects creating ADT models to describe the type of the beams or columns.

For example steel elements styles are commonly named by their respective cross-

sections, like w16x26, w16x31 or w16x40.

Due to a erroneous function within the ADT version 3.0 the calculation and

extraction of the quantity objects is only working in ADT version 3.3.

After the prototype has processes the data within the ADT, it creates a new

building component object for each of the structural elements. The prototype

adds the respective quantity objects as sub elements to each of these building

component objects:

<BUILDING_COMP id="153" name="DD7" parent="230">

<MAT_QUANTITY id="154" unit="C.Y." name="volume:"

value="71.9" />

<MAT_QUANTITY id="155" unit="S.F." name="area:"

value="625" />

</BUILDING_COMP>

55

In the next step the prototype parses the central XML data file for each of

the created building component objects. If the object already exists within the

XML data file, the prototype updates its properties and quantity sub-elements.

If the building component object does not exist, the prototype creates a new XML

element for the respective object in the XML data file.

Furthermore, for each of the created building component elements within the

central XML data file the prototype has to create a relationship element. These

elements use the unique database ids of the building component in the XML data

file and the unique database handle of the ADT structural element to establish

the relationship between the XML data file object and the object in ADT:

<RELATIONSET_IDMAPPING id="156" object1="IROOM_ID"

object2="ADT_ID" objecttype="BUILDING_COMP">

<RELATION id="157" idobject1="153" idobject2="DD7" />

<RELATION id="161" idobject1="158" idobject2="DD8" />

<RELATION id="166" idobject1="162" idobject2="DD9" />

<RELATION id="171" idobject1="167" idobject2="DDA" />

<RELATION id="176" idobject1="172" idobject2="DDB" />

<RELATION id="181" idobject1="177" idobject2="DDC" />

</RELATIONSET_IDMAPPING>

6.3 Implementation of the Functionality to Cre-

ate the Relationship with other Objects

It is not an easy task for users to create the relationships between objects of XML

data files with different types. For large civil engineering projects the number of

different objects to be linked can easily be more than one thousand. Thus the

56

implementation of an adequate user interface is extremely important. The user

interface has to be able to represent all these objects in a way that the creation

of the mutual relationships is easy for the user.

In order to display the objects of two different types, we implemented a dialog

with two tree view controls using the MFC library. MFC tree view controls offer

the possibility to display hierarchies, in which the XML data file objects are

represented. The different elements use the name and the unique database id of

the objects in the underlying XML data file to be displayed in the tree views

(Figure 6.6). The use of the name is comfortable for the user as it is in most

cases descriptive for the task of the object in the overall context. The unique

id is used because there may be more elements having the same name within a

XML data file, especially in the lower parts of the hierarchy.

Figure 6.6: Dialog to relate XML Data File objects

We implemented a right click context menu using the MFC functions. It

enables the user to get access to further information about the object. Using the

properties entry within this menu all attributes of the object which are stored in

57

a XML data file are displayed (Figure ??).

The implemented relationship application is running within ADT. Thus we

was able to implement a highlighting functionality for structural elements and

zones using OMF. The prototype highlights the corresponding structural elements

in ADT for a selected building component in the tree view. Hence the user

receives information about the position of the specific building component in the

geometrical model.

In order to establish the relations, we implemented a MFC drag and drop

functionality. Users are able to drag a selected object from one tree to the other.

The relationship is created by dropping the selected object over the related object

in the neighboring tree.

Selecting the relations entry in the right click context menu of an object

enables the user to get a list of the already created relationships. Here he has

the possibility to erase accidently created relationships with the delete key.

Finally the prototype is able to store all the established relationships within a

XML data file. We implemented this functionality using the MSXML parser. As

all the relations between objects of the two selected object types are temporally

stored within the relation tool, it is possible for the prototype to erase all the

existing relations of the specific RELATIONSHIP IDMAPPING element of the

XML data file first. Then in a second step the relation tool exports all stored

and eventually altered relations to the data file again.

6.4 Connecting ADT to Event Heaps

We implemented a function to access event heaps using the event heap C++

library. In a first step the prototype parses the already mentioned configuration

file to specify the name of the event heap and the name of the server the event heap

is running on. The configuration file is parsed using the C++ standard library

streams. Then the prototype establishes the connection to the event heap using

58

the event heap C++ library and the parsed information from the configuration

file.

We implemented the event heap “listener” in a stand alone process using the

MFC multithreading technique. In this way the prototype can observe the event

heap constantly without blocking the normal ADT functionality. Every new

message on the event heap is picked up by the “listener”. The prototype then

verifies whether these messages have the right format or not. Then the “listener”

sends the messages with the right format to the ADT main process, which is able

to perform the necessary actions. At the moment the ADT extension prototype

can only process messages for highlighting structural elements or zones related

to building components. The messages use the in chapter 5 introduced message

format. An example for such a message is:

ADT_ID=action:hl_app:MIDSERVER_elem:DD8

The last extension functionality of the prototype is the ability to send mes-

sages to the event heap from ADT. This feature uses the same connection to the

event heap that has been established for the ”listener“. At the current state there

is only one type of message which can be send to the event heap. This message

type is containing information about a structural element for which the related

objects of other applications should be highlighted:

MIDSERVER=action:hl_app:ADT_ID_elem:DD8

For creating these messages the user first has to select the respective ADT

structural element by using the OMF prompt functionality. The prototype ex-

tracts the unique database handle from the selected element and then it processes

the message. Messages of this format can be picked up by the Midserver. Then

new messages are created by the Midserver containing the information of related

objects in other applications. These applications can now use the Midserver mes-

sages to highlight the corresponding objects related to the original ADT structural

element.

Chapter 7

Use in Practice

Throughout this chapter the use of the implemented ADT extension functional-

ities will be described. We will explain the steps which have to be accomplished

by users for exporting the necessary ADT information to a central XML data

file using a test case project in the first part of the chapter. Then we describe

the use of the extension functionalities which integrate ADT into the IRoom

environment.

We accomplished the implementation of the ADT functionality using ADT

extension modules. In order to upload any extension modules ADT is providing

the command line command “appload”. Entering this command the “appload

dialog” appears (Figure 7.1). In the upper part of this dialog it is possible to

choose a specific extension file. Then this selected file can be uploaded by pressing

the dialog’s “load” button.

7.1 Used Test Models

We tested the implemented XML data file export functions on ADT models

of the Bay Street Project’s parking garage consisting of more than 100 different

structural elements. Unfortunately it was not possible to carry out any validation

59

60

Figure 7.1: ADT dialog for uploading ADT extension modules

for the relation tool and the event heap functionality on this large model. This

was due to the fact that other applications in the IRoom environment are not yet

able to automatically export their objects to the structure of the central XML

data files described in chapter 4. The manual generation of such large XML data

files that represent a real world civil engineering problem was not possible in the

scope of this report.

Thus we chose a more simple scenario. Nevertheless, the test model used

throughout this chapter is representing a simplified part of a ”real world” civil

engineering problem. It consists of one level of the Bay Street Project’s parking

garage, considering two kinds of structural elements, slabs and columns. We

purged all other parts in order to keep the size of the model low. Figure 7.2

shows the ADT model of this test case.

We created a schedule for this test case using Microsoft Project. The schedule

61

Figure 7.2: Two storey test case model in ADT

defines different construction activities and organizes these activities in a hierar-

chy. The complete test case schedule is illustrated in Figure 7.3.

Furthermore, we created two Microsoft Excel spreadsheets. The first one

describes different labor resources extracted from the Means collection of Building

and Construction Cost Data tables [RSMeans, 2000]. The second one contains

the information about a variety of different cost items. Tables listing all the labor

resources and cost items used in the test model can be found in Appendix B.

An example XML data file has been created manually. This XML data file

contains the above described objects cost items, resources and construction ac-

tivities. We included no building component objects as they can be created au-

tomatically with the new ADT export functionality as described later on in this

chapter.

Furthermore, we created relationship sets with the respective relation ele-

ments for the object types construction activity, cost item and resource. The

62

Figure 7.3: Two storey test case model in Microsoft Project

mutual relation elements of the different objects with building component objects

can be created automatically using the relation tool as will also be described later

on in this chapter.

The created XML data file now can be used as a basis for testing the ADT

export extensions. All the necessary steps described in this chapter can be per-

formed using the extended ADT export functionality with this basic file. At the

end, a complete XML data file, representing the entire test case should have been

created. Interested readers can now use this file to test the extension functional-

ities for integrating the ADT into the IRoom environment.

63

7.2 Establishing Hierarchies within ADT

Section B

Section A

Figure 7.4: ADT test case model with zones

We distributed the implemented functionalities to integrate zone objects into

ADT into two different ADT extension files. The first, “ProjectZone.dbx”, con-

tains all the underlying data functionality of the zone objects. The second mod-

ule, “ProjectZoneUI.arx”, provides all the graphical user interface functionality.

To use zones within ADT users have to upload both extension modules.

Now users can create a new zone within the existing ADT test case model.

Using the command “addzone” with the ADT command line the “create zone”

dialog pops up. The selection of the structural elements can be performed by

pressing the ”Pick the Zone Components” button. The user is now prompted to

select the respective components. The selection can be finished by pressing enter.

The “create zone” dialog appears again. In a last step, the zone name and style

have to be entered. The created zone is added to the database by pressing the

“Cancel” button of the dialog. Users can change properties of already created

zones with the “edit zone” property sheet. The change dialog can be called using

64

the “zoneprops” command or the context menu.

We created two different zone objects for the test case example. The first

zone called “Section A” is collecting the two larger slabs with the corresponding

columns. The second zone called “Section B” is assembling the two smaller slabs

with their corresponding columns. Figure 7.4 shows the newly created zones in

the test case ADT model.

7.3 Export from ADT to XML Data Files

The previously described XML data file that contains all necessary data except

of the building components, can now be used to test and describe the export of

the ADT structural elements and zones and their respective quantities. To be

able to have access to the export functionality within ADT the extension module

”IRoomExport.arx” has to be uploaded.

Figure 7.5: Dialog box to select a XML data file for the export

After the uploading of the respective extension module users can start the ex-

port function by typing the command “iroomxmlout”. All the user has to do now

is to choose the XML data file for the ADT export. This can be easily performed

in a dialog for selecting files, known from other Microsoft Windows applications

65

(Figure 7.5). ADT automatically exports all the building components with their

respective quantities to the selected XML data file. Furthermore the automatic

export function creates a relation set RELATIONSET IDMAPPING relating the

unique ADT handles of the structural elements with the newly created building

components’ ids of the XML data file.

7.4 Creating Mutual Object Relations

After successfully importing the building component objects from the ADT into

the XML data file, the test case file contains all the necessary objects, needed to

describe the project. In a next step the mutual relationships between the objects

of type cost item, resource, construction activity and building component have to

be established by the user. We implemented the Relation Tool to support this

sophisticated and time consuming task.

Figure 7.6: The Relation Tool after startup

66

To be able to start the Relation Tool, the Autocad extension “relateInADT.arx”

has to be uploaded into ADT first. The relation tool itself can be started with

the ADT command line command “relateObj”. A dialog similar to the one il-

lustrated in Figure 7.6 pops up. The first step in using the Relation Tool is to

load a XML data file using the “Load XML data file” button, containing the

objects which need to be related. Users can again select the respective file using

a standard Microsoft Windows file selection dialog box. The left tree control of

the Relation Tool now already displays the hierarchy of the building components

in the XML file.

The type name of the objects which are to be related with the building com-

ponents can now be entered in the edit box on the right side of the dialog. For

example after entering “COST ITEM” the right tree control displays the hierar-

chy of the cost item objects of the XML data file (Figure 7.7).

Users can establish the relations between two objects of the trees by simply

dragging one object of one tree over another object of the other tree holding

the left mouse button down. The relation is created by releasing the left mouse

button.

The Relation Tool offers several possibilities to support users in establishing

the relations. First, the Relation Tool highlights all related structural elements

within the ADT model if the user selects a building component within the left

tree control (Figure 7.7).

Second, users can gain additional information of a selected object in one of the

trees utilizing the implemented right click context menu. There are two different

entries within the menu. The complete additional attribute information of an

object stored within the XML data file is displayed by selecting the “Properties”

entry of the menu. The already related objects of the respective object type in

the other tree of the dialog box are displayed by selecting the second menu entry

“Related Objects”. In both cases a dialog pops up containing the additional

information of the object (Figure 7.8).

67

Figure 7.7: Highlighting of structural elements in ADT while working with the

Relation Tool

Users can delete wrong relations within the “Related Objects” dialog box by

selecting the respective relation and pressing the “delete” key.

In the last step the user can store the created or altered relations within

the respective XML file by pressing the “Save XML” button of the Relation Tool

dialog. A new object type for the relation with the building component objects can

be selected by pressing the “New Object Selection” button. The “Cancel” button

can be used to exit the dialog without saving the created or altered relations to

the XML data file.

68

Figure 7.8: Dialogs showing additional object information

7.5 Highlighting Related Objects within the IRoom

Environment

After exporting all the necessary information from ADT to a central XML data

file, users can now use ADT with the IRoom communication environment. To

enable ADT to access the event heap services we implemented another Autodesk

extension module, “IRoom.arx”. After the user has uploaded the module into

ADT the event heap “listener” functionality of ADT is started automatically.

ADT can now pick up messages from the event heap, containing information to

highlight construction elements or zones within the ADT. An example of the

format of these messages can be found below:

ADT_ID=action:hl_app:MIDSERVER_elem:DD8

This message is then processed by the implemented ADT extension in order

to highlight the structural element with the unique database handle “DD8”.

Furthermore it is now possible to select a structural element or zone within

the ADT for which the related resources, cost items and construction activities

should be highlighted within Microsoft Excel or Microsoft Project. An example of

the overall message passing between ADT, the Midserver and Microsoft Project

is illustrated by Figure 7.10.

69

In order to be able to send messages which the Midserver is able to trans-

fer into a format understood by Microsoft Project or Excel, users can use the

command “highlightSel”. After entering the command, the prototype prompts

the user to select a set of structural element or zone objects within the ADT.

After finishing the selection with the enter key, the ADT extension functionality

creates the necessary messages and sends them to the event heap. There they

can be picked up by the Midserver, which creates new messages for the other

applications.

70

X
M

L

M
S

 P
r
o

je
c
t

M
id

s
e
r
v
e
r

A
u

to
d

e
s
k
 A

D
T

A
D
T
_
I
D

=

A
D
T
_
I
D
=
a
c
t
i
o
n
:
h
l
_
a
p
p
:
M
I
D
S
E
R
V
E
R
_
I
D
.
.
.

A
D
T
_
I
D

=

A
D
T
_
I
D
=
a
c
t
i
o
n
:
h
l
_
a
p
p
:
M
I
D
S
E
R
V
E
R
_
I
D
.
.
.

Figure 7.9: Communication between ADT and the Midserver

71

X
M

L

M
S

 P
r
o

je
c
t

M
id

s
e
r
v
e
r

A
u

to
d

e
s
k
 A

D
T

M
I
D
S
E
R
V
E
R
_
I
D
=
a
c
t
i
o
n
:
h
l
_
a
p
p
:
M
S
P
R
O
J
E
C
T
_
I
D
.
.
.

M
I
D
S
E
R
V
E
R
_
I
D
=
a
c
t
i
o
n
:
h
l
_
a
p
p
:
M
S
P
R
O
J
E
C
T
_
I
D
.
.
.

Figure 7.10: Communication between the Midserver and Microsoft Project

Chapter 8

Generalized Methods to

Integrate Other Applications into

the IRoom

This chapter discusses how to generalize the methods used for the integration of

ADT into the IRoom environment. Recapitulating, the ADT integration has been

performed in two steps. In the first step, the necessary functions to enable ADT

to work with XML data files were developed. In the second step, the necessary

functions to allow ADT to communicate with other applications within the IRoom

environment were implemented.

8.1 Integration into XML data files

There are two main tasks to be performed for the integration of a new application

into the IRoom environment concerning the central XML data file:

• adjusting the XML data file structure and

• implementing an export function for the application.

72

73

In the first step the existing XML data structure has to be examined whether

it is able to model the new application’s objects that need to be shared within the

IRoom environment. For the integration of ADT the building component object

of the data file structure could be used to model the ADT structural elements.

Nevertheless it is likely that an application represents objects, which cannot be

modelled with the current data structure. In this case a new object type has to

be introduced. This is possible without affecting the compatibility with former

versions of the data file structure.

For example an application can represent the different participants of a project,

like owner, architect, contractor and the sub-contractors. The current structure

is not able to represent any of these participants with its existing object types

building component, cost item, construction activity or resource. Hence the un-

derlying data structure has to be extended by a new object type, like for example

participant.

Every non-relation object within a XML data file needs two attributes, name

and id, to conform with the overall data structure. Hierarchies of the objects

should be modelled with the attributes decomposesInto and parent. There are

no other requirements concerning the integration of new object types into the

data structure than the two described above. Nevertheless additional object

information can be attached as attributes. This additional information can then

be used by applications like for example the relate tool, to ease the classification

of the object in the overall project context. Additional data necessary for the

exchange with other applications can be attached to the objects by using sub-

elements, like the quantity elements used for building component objects.

After the data structure has been adjusted it is important to provide auto-

matic export functions from the new application to XML data files. As seen in

the test case of the previous chapter, even a really simplified model is already

consisting of a large number of different objects. Thus the manual creation of

data files with text editors would be very time consuming and error prone. The

74

implementation of these export functions is easily possible using XML parsers.

Generally the export has to be performed in two different steps. First, all the

XML elements representing the application’s objects have to be exported. Only

after the completion of this first step the relation elements of the relation set

type RELATIONSET OBJECTMAPPING can be created. This is due to the

fact that the objects’ unique XML data file ids have to be available in order to

create the relations. The export function can create the relation elements by using

these unique XML data file ids of the already exported objects. These relation

elements are relating the XML data file objects with the respective objects of the

applications.

Furthermore, a unique id of the objects within the application should be used

with the relation elements, like for example the unique database handle of ADT.

In this way, naming conflicts between different objects within an application can

be avoided.

Users can apply the relate tool to create the relation elements of the relation

set type RELATIONSET IROOMMAPPING of the new objects with building

components within the ADT. If users intend to create relations with other objects

they can apply an ADT independent relate tool version.

8.2 Implementing the Event Heap Connection

The already mentioned EventHeap technology [Stanford CS - EventHeap] includes

an API which can be used to extend the different IRoom applications with the

message passing functionality. The implementation of this extension can be car-

ried out using either the C++ or the Java programming language.

There are three different tasks to accomplish for the integration of a new

application in the IRoom communication system. First of all the connection

to the event heap server has to be established. Using the provided API the

implementation of this connection is rather simple.

75

Message

Reactor

Event Heap Server

MAIN APPLICATION

PROCESS

Seperated

Listener

Process

Message

Reactor

Event Heap ServerEvent Heap Server

MAIN APPLICATION

PROCESS

Seperated

Listener

Process

Figure 8.1: Main Application - Listener interaction

The C++ and Java programming languages can be used as well to send mes-

sages to the event heap. Furthermore, the sending of messages is possible by

using standard URL commands, like they are used with internet browsers:

http://cife-32.stanford.edu:8080/iwork/servlet/submitevent?

dest=http://cife-32.stanford.edu:8080/submit.htm&

tuplespace=cife&name0=EventType&type0=int&

name1=TargetID&type1=int&name2=GroupID&type2=int&

value2=1200&name3=NumAccesses&type3=int&

value3=1&name4=TimeToLive&type4=int&value4=-1&

name5=CommandToExecute&type5=string&value1=&

value5=4DViewer\%20&value0=2350

Hence it is not even necessary to use any programming language for the send-

ing of messages to the event heap.

76

The most important task to accomplish is the implementation of the ”listener“

functionality. The ”listener” has to observe the event heap constantly. That

means it has to run separately from the main application so it does not block

the main program’s basic functions. The main program and the ”listener” have

to run simultaneously in two different processes. If the ”listener” now picks up a

message it can inform the main program which then has the possibility to react

to the message (Figure 8.1).

Unfortunately, most of the Microsoft products like Microsoft Project, Mi-

crosoft Excel or Microsoft Word only offer adequate possibility to be programmed

by using the Microsoft API Visual Basic (VB) [Microsoft - MSDN]. As the

EventHeap API [Stanford CS - EventHeap] does not offer functionality which

supports VB another approach was chosen for the integration of the above-

mentioned applications. First of all the event heap “listener” was implemented

using Java. If the Java ”listener” now picks up a message from the event heap,

it dynamically starts a VB application. This application in turn remotely drives

the Microsoft application to perform the respective reaction. One shortcoming

of this solution is that the independent Java “listener” has to be started first in

order to enable the Microsoft application to react to messages. Programs offering

Java or C++ APIs are able to integrate the “listener” directly into the program

by using so called “thread” technologies, which support two different processes

running simultaneously in one application. Thus the listener can be started di-

rectly by the application, which is of course more preferable. The code details of

implementing an integrated C++ “listener” and a combined VB/Java ”listener“

can be found as well in the appendix.

The sending of messages from applications whose APIs do not support Java

or C++ can be performed with the message passing functionality via URLs.

Since VB is supporting the sending of URL messages, the passing of event heap

messages can be implemented with VB working within the respective application.

Chapter 9

Summary

9.1 Current Possibilities

To be able to use ADT adequately within the IRoom environment four different

functionalities have to be provided:

• functionality to create hierarchies of the model,

• functionality to export ADT objects to a central XML data file,

• functionality to relate the exported ADT objects with the other objects

available in the respective IRoom setting and

• functionality to use the event heap connection to communicate with other

applications within the IRoom environment.

The implemented software prototype extend ADT with these four function-

alities. Thus the main objective for this report mentioned in the introduction

has been reached. ADT is integrated into the IRoom environment enabling the

participation of persons who require geometrical information in IRoom supported

meetings.

77

78

Therefore it is now possible to use ADT models of the project within IRoom

supported project meetings. Using the IRoom highlighting functionality, geo-

metrical information represented by ADT can for example be easily related to

schedule information in Microsoft Project or resource information in a Microsoft

Excel spreadsheet. Due to these new IRoom functionalities which support de-

scriptive tasks in civil engineering project meetings hopefully more time can be

spent on the important predictive tasks in these meetings.

9.2 Necessary Further Developments

One main shortcoming of the current IRoom environment is the missing possibil-

ity to automatically export data from other applications like Microsoft Project

to the used XML data structure. While ADT export functionality can be used

to create the building components of XML data files, the XML elements repre-

senting other objects have to be created manually using text editors. This is only

applicable for small simplified parts of overall civil engineering projects and is

very time consuming and error prone.

Thus as the first step in the further development of the IRoom environment

adequate export functionality should be implemented for the already integrated

applications. The generalization of the export functions used by ADT can be

hopefully a great contribution to this task.

The next problem in the IRoom environment is that more commercial civil

engineering applications should be integrated. Especially the Microsoft Excel

spreadsheets used for the representation of the cost item and resource objects

should be replaced. Instead applications like SFIRION [SFIRION] or Timberline

[Timberline] which are used for estimating civil engineering project costs should

be integrated. In further steps other commercial applications can be integrated

as well. For example ArchiCAD [Graphisoft] is another three-dimensional CAD

environment used in civil engineering which may be enabled to run in the IRoom

79

environment. Thus architects who are using ArchiCAD for the geometrical rep-

resentation of project models could participate in IRoom meetings as well. An-

other example would be the integration of Primavera which is, next to Microsoft

Project, another commercial software application representing construction ac-

tivities in schedules.

Summarizing, it is especially important to have a variety of different integrated

applications available in the IRoom environment. This is mainly due to the many

different participants working on one civil engineering project, which may all use

different kinds of applications. Thus the IRoom can only be supportive in most

of the meetings if it is offering a wide range of applicable applications.

Another possibility to extend the IRoom environment’s functionality would

be the enhancement of the information communicated between the applications.

At the current state ADT is only able to receive and send messages in order to

highlight its objects or respectively highlight objects in other applications.

In further development steps it would be possible to create messages which

could be used to change data in the applications. Thus it would be possible to

examine the impacts of changes of the properties of one object on properties of

other related objects.

For example in a simple scenario, the thickness of one slab of a building might

have to be changed according to a new structural analysis of the building. The

change of the thickness automatically would lead to a different volume of the

respective slab. The volume again is used by the cost estimation, which again

is determining, depending on the labor resource used for the specific estimation

item, the duration of the construction activity in the projects schedule.

In the IRoom environment, ADT could send a specific message that a quan-

tity of one of its structural elements has been changed. This message could now

be translated by the Midserver, which creates a new message which tells the

Microsoft Excel sheet to update the related cost item’s quantity. After the cal-

culation within the respective cost item has been performed and a change in the

80

duration of one construction activity is occurring, Excel could again send a new

message to the Midserver, which is then translated to tell Microsoft Project to

change the duration of the related construction activity.

9.3 Conclusions

In the current state, the use of ADT in meetings within the IRoom environment

is already possible. Due to its geometrical representation possibilities, ADT can

be a great contribution within IRoom supported meetings. Especially if problems

which need detailed information about geometrical details are discussed, ADT

can be very useful. For the finding of solutions which require an overview of the

project, the use of the CP4D application is more appropriate.

Nevertheless, the main problem with the current IRoom state is the miss-

ing possibility to easily create the XML data files needed for the communication

between the different integrated applications. In the current state, an adequate

export functionality is only existing for the ADT and the CP4D applications.

Unfortunately, the CP4D application is supporting a different data structure

which is not compatible with the chosen structure for the ADT export. All other

currently integrated applications do not support automatic export functionality.

Thus the creation of most parts of a XML data file can only be performed man-

ually using ASCII text editors. This approach is very time consuming and error

prone and thus not applicable during the planning and building process of a “real

world” project.

This report tried to clarify the steps necessary to completely integrate an ap-

plication within the IRoom environment. Hopefully the developed techniques can

be used for the adequate integration of other applications. These new integrated

applications then would enable the IRoom to be supportive in meetings of project

teams throughout a whole “real world” civil engineering project.

Appendix A

The XML Database DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT CIFE_IROOM_PROJECT

(FOURD_MODEL*, DESIGN_MODEL*,

SCHEDULE_MODEL*, RESOURCE_MODEL*,

COST_MODEL*, RELATION_MODEL*)>

<!ATTLIST CIFE_IROOM_PROJECT

id CDATA #REQUIRED

name CDATA #REQUIRED

color CDATA #IMPLIED

numElements CDATA #REQUIRED

projectStart CDATA #IMPLIED

projectEnd CDATA #IMPLIED

xmlfile CDATA #REQUIRED

desc CDATA #IMPLIED

>

<!ELEMENT FOURD_MODEL (ACTIVITY_TYPE_MODEL*)>

<!ATTLIST FOURD_MODEL

id CDATA #REQUIRED

name CDATA #REQUIRED

vfeFile CDATA #IMPLIED

>

<!ELEMENT ACTIVITY_TYPE_MODEL (ACTIVITY_TYPE*)>

<!ATTLIST ACTIVITY_TYPE_MODEL

id CDATA #REQUIRED

name CDATA #REQUIRED

>

<!ELEMENT ACTIVITY_TYPE EMPTY>

<!ATTLIST ACTIVITY_TYPE

id CDATA #REQUIRED

name CDATA #REQUIRED

color CDATA #IMPLIED

type CDATA #IMPLIED

81

82

>

<!ELEMENT DESIGN_MODEL

(BUILDING_COMP*,GEOM_MODEL*,DEFINED_VIEWS*)>

<!ATTLIST DESIGN_MODEL

id CDATA #REQUIRED

>

<!ELEMENT BUILDING_COMP (MAT_QUANTITY*)>

<!ATTLIST BUILDING_COMP

id CDATA #REQUIRED

name CDATA #REQUIRED

decomposesInto CDATA #IMPLIED

parent CDATA #IMPLIED

>

<!ELEMENT MAT_QUANTITY EMPTY>

<!ATTLIST MAT_QUANTITY

id CDATA #REQUIRED

unit (Inch | Ft | Y | L.F. | S.F. | SFCA | C.Y. | Ton) #REQUIRED

name CDATA #REQUIRED

value CDATA #REQUIRED

>

<!ELEMENT GEOM_MODEL EMPTY>

<!ATTLIST GEOM_MODEL

id CDATA #REQUIRED

name CDATA #REQUIRED

type CDATA #IMPLIED

filename CDATA #IMPLIED

>

<!ELEMENT DEFINED_VIEWS (DEF_VIEW*)>

<!ATTLIST DEFINED_VIEWS

id CDATA #REQUIRED

name CDATA #REQUIRED

>

<!ELEMENT DEF_VIEW EMPTY>

<!ATTLIST DEF_VIEW

id CDATA #REQUIRED

name CDATA #REQUIRED

camLoc CDATA #IMPLIED

camDir CDATA #IMPLIED

upDir CDATA #IMPLIED

>

<!ELEMENT SCHEDULE_MODEL (CONST_ACT*, PRED_REL*, SCHED_FIELD*)>

<!ATTLIST SCHEDULE_MODEL

id CDATA #REQUIRED

name CDATA #REQUIRED

>

83

<!ELEMENT CONST_ACT EMPTY>

<!ATTLIST CONST_ACT

id CDATA #REQUIRED

name CDATA #REQUIRED

code CDATA #IMPLIED

ES CDATA #IMPLIED

EF CDATA #IMPLIED

overtimework CDATA #IMPLIED

>

<!ELEMENT PRED_REL EMPTY>

<!ATTLIST PRED_REL

id CDATA #REQUIRED

name CDATA #REQUIRED

relConstAct CDATA #IMPLIED

lag CDATA #IMPLIED

type (FS | SS) #IMPLIED

>

<!ELEMENT SCHED_FIELD EMPTY>

<!ATTLIST SCHED_FIELD

id CDATA #REQUIRED

name (ACTIVITY | CODE | Duration |

EF | ES | TF | TYPE)

#REQUIRED

isRequired (0 | 1) #IMPLIED

sortType (0 | 4) #IMPLIED

colW (100 | 280 | 80 | 90) #IMPLIED

>

<!ELEMENT RESOURCE_MODEL (RESOURCE*)>

<!ATTLIST RESOURCE_MODEL

id CDATA #REQUIRED

name CDATA #REQUIRED

>

<!ELEMENT RESOURCE EMPTY>

<!ATTLIST RESOURCE

id CDATA #REQUIRED

name CDATA #REQUIRED

type (crew | equipment) #IMPLIED

crewmemberno CDATA #IMPLIED

laborhourcost CDATA #IMPLIED

equipmenthourcost CDATA #IMPLIED

labordaycost CDATA #IMPLIED

equipmentdaycost CDATA #IMPLIED

hoursperlaborday CDATA #IMPLIED

>

<!ELEMENT COST_MODEL (COST_ITEM*)>

<!ATTLIST COST_MODEL

id CDATA #REQUIRED

84

name CDATA #REQUIRED

>

<!ELEMENT COST_ITEM EMPTY>

<!ATTLIST COST_ITEM

id CDATA #REQUIRED

location CDATA #IMPLIED

name CDATA #REQUIRED

unit (Inch | Ft | Y | L.F. | S.F. | SFCA | C.Y. | Ton) #IMPLIED

dailyoutput CDATA #IMPLIED

materialprice CDATA #IMPLIED

materialtotalcost CDATA #IMPLIED

laborprice CDATA #IMPLIED

labortotalcost CDATA #IMPLIED

equipmprice CDATA #IMPLIED

equipmtotcost CDATA #IMPLIED

totalcost CDATA #IMPLIED

minimumdaysfortask CDATA #IMPLIED

>

<!ELEMENT RELATION_MODEL

(RELATIONSET_IROOMDB*,

RELATIONSET_IDMAPPING*)>

<!ATTLIST RELATION_MODEL

id CDATA #REQUIRED

name CDATA #IMPLIED

>

<!ELEMENT RELATIONSET_IROOMDB (RELATION*)>

<!ATTLIST RELATIONSET_IROOMDB

id CDATA #REQUIRED

object1 CDATA #REQUIRED

object2 CDATA #REQUIRED

>

<!ELEMENT RELATIONSET_IDMAPPING (RELATION*)>

<!ATTLIST RELATIONSET_IDMAPPING

id CDATA #REQUIRED

object1 CDATA #FIXED "IROOM_ID"

object2 CDATA #REQUIRED

objecttype CDATA #REQUIRED

>

<!ELEMENT RELATION EMPTY>

<!ATTLIST RELATION

id CDATA #REQUIRED

idobject1 CDATA #REQUIRED

idobject2 CDATA #REQUIRED

>

85

Appendix B

Test Model: Simplified Storey of

the ”Bay Street Project’s“

Parking Garage

B.1 XML Data File

<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE

CIFE_IROOM_PROJECT SYSTEM "iRoom.dtd"> <CIFE_IROOM_PROJECT id="1"

name="" color="#0000FF" numElements="387" projectStart=""

projectEnd="" xmlfile="Empty.xml" desc="">

<DESIGN_MODEL id="2">

<BUILDING_COMP id="153" name="DD7" parent="230">

<MAT_QUANTITY id="154" unit="C.Y." name="volume:" value="71.9"/>

<MAT_QUANTITY id="155" unit="S.F." name="area:" value="625"/>

</BUILDING_COMP>

<BUILDING_COMP id="158" name="DD8" parent="232">

<MAT_QUANTITY id="159" unit="C.Y." name="volume:" value="115."/>

<MAT_QUANTITY id="160" unit="S.F." name="area:" value="625"/>

</BUILDING_COMP>

<BUILDING_COMP id="162" name="DD9" parent="232">

<MAT_QUANTITY id="163" unit="C.Y." name="volume:" value="1.01"/>

<MAT_QUANTITY id="164" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="165" unit="Ftsquare col 1-8" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="167" name="DDA" parent="232">

<MAT_QUANTITY id="168" unit="C.Y." name="volume:" value="1.01"/>

<MAT_QUANTITY id="169" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="170" unit="Ftsquare col 1-8" name="length:" value="10.0"/>

</BUILDING_COMP>

86

87

<BUILDING_COMP id="172" name="DDB" parent="232">

<MAT_QUANTITY id="173" unit="C.Y." name="volume:" value="1.01"/>

<MAT_QUANTITY id="174" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="175" unit="Ftsquare col 1-8" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="177" name="DDC" parent="232">

<MAT_QUANTITY id="178" unit="C.Y." name="volume:" value="1.01"/>

<MAT_QUANTITY id="179" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="180" unit="Ftsquare col 1-8" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="182" name="DDD" parent="230">

<MAT_QUANTITY id="183" unit="C.Y." name="volume:" value="456"/>

<MAT_QUANTITY id="184" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="185" unit="Ftcirc col 1-4" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="187" name="DDE" parent="230">

<MAT_QUANTITY id="188" unit="C.Y." name="volume:" value="456"/>

<MAT_QUANTITY id="189" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="190" unit="Ftcirc col 1-4" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="192" name="DE1" parent="232">

<MAT_QUANTITY id="193" unit="C.Y." name="volume:" value="456"/>

<MAT_QUANTITY id="194" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="195" unit="Ftcirc col 1-4" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="197" name="DE2" parent="232">

<MAT_QUANTITY id="198" unit="C.Y." name="volume:" value="456"/>

<MAT_QUANTITY id="199" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="200" unit="Ftcirc col 1-4" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="202" name="DE3" parent="232">

<MAT_QUANTITY id="203" unit="C.Y." name="volume:" value="456"/>

<MAT_QUANTITY id="204" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="205" unit="Ftcirc col 1-4" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="207" name="DE4" parent="232">

<MAT_QUANTITY id="208" unit="C.Y." name="volume:" value="1.01"/>

<MAT_QUANTITY id="209" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="210" unit="Ftsquare col 1-8" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="212" name="DE5" parent="232">

<MAT_QUANTITY id="213" unit="C.Y." name="volume:" value="456"/>

<MAT_QUANTITY id="214" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="215" unit="Ftcirc col 1-4" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="217" name="DE6" parent="232">

<MAT_QUANTITY id="218" unit="C.Y." name="volume:" value="456"/>

<MAT_QUANTITY id="219" unit="S.F." name="area:" value="625"/>

<MAT_QUANTITY id="220" unit="Ftcirc col 1-4" name="length:" value="10.0"/>

</BUILDING_COMP>

<BUILDING_COMP id="222" name="DF8" parent="232">

<MAT_QUANTITY id="223" unit="C.Y." name="volume:" value="115."/>

<MAT_QUANTITY id="224" unit="S.F." name="area:" value="625"/>

</BUILDING_COMP>

<BUILDING_COMP id="226" name="DF9" parent="230">

<MAT_QUANTITY id="227" unit="C.Y." name="volume:" value="71.9"/>

<MAT_QUANTITY id="228" unit="S.F." name="area:" value="625"/>

</BUILDING_COMP>

<BUILDING_COMP id="230" name="FF8" decomposesInto="153 182 187 226 " decomposes="true"/>

88

<BUILDING_COMP id="232" name="FF9" decomposesInto="158 162 167 172 177 192 197 202 207 212 217 222

" decomposes="true"/>

</DESIGN_MODEL>

<SCHEDULE_MODEL id="3" name="">

<CONST_ACT id="4" name="Test Case" intid="1" code="1" ES="2002-10-08" EF="2002-10-25" activityType="48"

decomposesInto="5 14 23 28"/>

<CONST_ACT id="5" name="Slabs Level 2" intid="2" code="2" ES="2002-10-08" EF="2002-10-17" activityType="48"

parent="4" decomposesInto="6 10"/>

<CONST_ACT id="6" name="Deck Level 2 Zone A" intid="3" code="3" ES="2002-10-08" EF="2002-10-17"

activityType="48" parent="5" decomposesInto="7 8 9"/>

<CONST_ACT id="7" name="Formwork Deck L2ZA" intid="4" code="4" ES="2002-10-08" EF="2002-10-11"

activityType="48" parent="6"/>

<CONST_ACT id="8" name="Rebar Deck L2ZA" intid="5" code="5" ES="2002-10-14" EF="2002-10-14"

activityType="48" parent="6"/>

<CONST_ACT id="9" name="Placing Concrete Deck L2ZA" intid="6" code="6" ES="2002-10-15" EF="2002-10-17"

activityType="48" parent="6"/>

<CONST_ACT id="10" name="Deck Level 2 Zone B" intid="7" code="7" ES="2002-10-08" EF="2002-10-10"

activityType="48" parent="5" decomposesInto="11 12 13"/>

<CONST_ACT id="11" name="Formwork Deck L2ZB" intid="8" code="8" ES="2002-10-08" EF="2002-10-08"

activityType="48" parent="10"/>

<CONST_ACT id="12" name="Rebar Deck L2ZB" intid="9" code="9" ES="2002-10-09" EF="2002-10-09"

activityType="48" parent="10"/>

<CONST_ACT id="13" name="Placing Concrete Deck L2ZB" intid="10" code="10" ES="2002-10-10"

EF="2002-10-10" activityType="48" parent="10"/>

<CONST_ACT id="14" name="Columns Level 2 Zone A" intid="11" code="11" ES="2002-10-18"

EF="2002-10-22" activityType="48" parent="4" decomposesInto="15 19"/>

<CONST_ACT id="15" name="Round Columns" intid="12" code="12" ES="2002-10-18" EF="2002-10-22"

activityType="48" parent="14" decomposesInto="16 17 18"/>

<CONST_ACT id="16" name="Formwork Columns L2ZA ROU" intid="13" code="13" ES="2002-10-18"

EF="2002-10-18" activityType="48" parent="15"/>

<CONST_ACT id="17" name="Rebar L2ZA ROU" intid="14" code="14" ES="2002-10-21" EF="2002-10-21"

activityType="48" parent="15"/>

<CONST_ACT id="18" name="Placing Concrete L2ZA ROU" intid="15" code="15" ES="2002-10-22"

EF="2002-10-22" activityType="48" parent="15"/>

<CONST_ACT id="19" name="Rectangular Columns" intid="16" code="16" ES="2002-10-18"

EF="2002-10-22" activityType="48" parent="14" decomposesInto="20 21 22"/>

<CONST_ACT id="20" name="Formwork L2ZA REC" intid="17" code="17" ES="2002-10-18"

EF="2002-10-18" activityType="48" parent="19"/>

<CONST_ACT id="21" name="Rebar L2ZA REC" intid="18" code="18" ES="2002-10-21" EF="2002-10-21"

activityType="48" parent="19"/>

<CONST_ACT id="22" name="Placing Concrete L2ZA REC" intid="19" code="19" ES="2002-10-22"

EF="2002-10-22" activityType="48" parent="19"/>

<CONST_ACT id="23" name="Columns Level 2 Zone B" intid="20" code="20" ES="2002-10-11"

EF="2002-10-15" activityType="48" parent="4" decomposesInto="24"/>

<CONST_ACT id="24" name="Round Columns" intid="21" code="21" ES="2002-10-11" EF="2002-10-15"

activityType="48" parent="23" decomposesInto="25 26 27"/>

<CONST_ACT id="25" name="Formwork Columns L2 L2ZB ROU" intid="22" code="22" ES="2002-10-11"

EF="2002-10-11" activityType="48" parent="24"/>

<CONST_ACT id="26" name="Rebar Columns L2 L2ZB ROU" intid="23" code="23" ES="2002-10-14"

EF="2002-10-14" activityType="48" parent="24"/>

<CONST_ACT id="27" name="Placing Concrete Columns L2 L2ZB ROU" intid="24" code="24"

ES="2002-10-15" EF="2002-10-15" activityType="48" parent="24"/>

<CONST_ACT id="28" name="Slabs Level 3" intid="25" code="25" ES="2002-10-15" EF="2002-10-25"

activityType="48" parent="4" decomposesInto="29 33"/>

<CONST_ACT id="29" name="Deck Level 3 Zone A" intid="26" code="26" ES="2002-10-23"

EF="2002-10-25" activityType="48" parent="28" decomposesInto="30 31 32"/>

<CONST_ACT id="30" name="Formwork Deck L3ZA" intid="27" code="27" ES="2002-10-23"

EF="2002-10-23" activityType="48" parent="29"/>

<CONST_ACT id="31" name="Rebar Deck L3ZA" intid="28" code="28" ES="2002-10-24" EF="2002-10-24"

89

activityType="48" parent="29"/>

<CONST_ACT id="32" name="Placing Concrete Deck L3ZA" intid="29" code="29" ES="2002-10-25"

EF="2002-10-25" activityType="48" parent="29"/>

<CONST_ACT id="33" name="Deck Level 3 Zone B" intid="30" code="30" ES="2002-10-15" EF="2002-10-17"

activityType="48" parent="28" decomposesInto="34 35 36"/>

<CONST_ACT id="34" name="Formwork Deck L3ZB" intid="31" code="31" ES="2002-10-15"

EF="2002-10-15" activityType="48" parent="33"/>

<CONST_ACT id="35" name="Rebar Deck L3ZB" intid="32" code="32" ES="2002-10-16" EF="2002-10-16"

activityType="48" parent="33"/>

<CONST_ACT id="36" name="Placing Concrete Deck L3ZB" intid="33" code="33" ES="2002-10-17"

EF="2002-10-17" activityType="48" parent="33"/>

</SCHEDULE_MODEL>

<RESOURCE_MODEL id="37">

<RESOURCE id="38" name="C-2" type="crew" crewmemberno="6" hoursperlaborday="8"

laborhourcost="27.50" labordaycost="840.64" equipmenthourcost="0" equipmentdaycost="0"/>

<RESOURCE id="39" name="4 Rodm" type="crew" crewmemberno="4" hoursperlaborday="8" l

aborhourcost="31.50" labordaycost="1320.00" equipmenthourcost="0" equipmentdaycost="0"/>

<RESOURCE id="40" name="C-20" type="crew" crewmemberno="6" hoursperlaborday="8" l

aborhourcost="26.27" labordaycost="2104.96" equipmenthourcost="11.44" equipmentdaycost="91.52"/>

<RESOURCE id="41" name="C-1" type="crew" crewmemberno="4" hoursperlaborday="8"

laborhourcost="27.50" labordaycost="2104.96" equipmenthourcost="11.44" equipmentdaycost="91.52"/>

</RESOURCE_MODEL>

<COST_MODEL id="42">

<COST_ITEM id="43" location="Level 2" name="Level 2" unit="" dailyoutput=""

materialprice="" laborprice="" equipmprice="" decomposesInto="44 48 52 56 60"/>

<COST_ITEM id="44" location="Level 2 Deck Zone A" name="Level 2 Deck Zone A"

unit="" dailyoutput="" materialprice="" laborprice="" equipmprice="" parent="43"

decomposesInto="45 46 47"/>

<COST_ITEM id="45" location="Level 2 Deck Zone A" name="Formwork" unit="S.F."

dailyoutput="520" materialprice="1.44" laborprice="2.54" equipmprice="0" parent="44"/>

<COST_ITEM id="46" location="Level 2 Deck Zone A" name="Reinforcement" unit="Ton"

dailyoutput="2.9" materialprice="590" laborprice="350" equipmprice="0" parent="44"/>

<COST_ITEM id="47" location="Level 2 Deck Zone A" name="Placing Concrete" unit="C.Y."

dailyoutput="160" materialprice="9.55" laborprice="4.58" equipmprice="14.13" parent="44"/>

<COST_ITEM id="48" location="Level 2 Deck Zone B" name="Level 2 Deck Zone B" unit=""

dailyoutput="" materialprice="" laborprice="" equipmprice="" parent="43"

decomposesInto="49 50 51"/>

<COST_ITEM id="49" location="Level 2 Deck Zone B" name="Formwork" unit="S.F."

dailyoutput="520" materialprice="1.44" laborprice="2.54" equipmprice="0" parent="48"/>

<COST_ITEM id="50" location="Level 2 Deck Zone B" name="Reinforcement" unit="Ton"

dailyoutput="2.9" materialprice="590" laborprice="350" equipmprice="0" parent="48"/>

<COST_ITEM id="51" location="Level 2 Deck Zone B" name="Placing Concrete" unit="C.Y."

dailyoutput="160" materialprice="9.55" laborprice="4.58" equipmprice="14.13" parent="48"/>

<COST_ITEM id="52" location="Level 2 Deck Zone A" name="Level 2 Columns 1-5 Zone A Rect."

unit="" dailyoutput="" materialprice="" laborprice="" equipmprice="" parent="43"

decomposesInto="53 54 55"/>

<COST_ITEM id="53" location="Level 2 Deck Zone A" name="Formwork" unit="SFCA"

dailyoutput="187" materialprice="1.77" laborprice="4.55" equipmprice="0" parent="52"/>

<COST_ITEM id="54" location="Level 2 Deck Zone A" name="Reinforcement" unit="Ton"

dailyoutput="2.3" materialprice="560" laborprice="375" equipmprice="0" parent="52"/>

<COST_ITEM id="55" location="Level 2 Deck Zone A" name="Placing Concrete" unit="C.Y."

dailyoutput="91" materialprice="83" laborprice="16.9" equipmprice="8.05" parent="52"/>

<COST_ITEM id="56" location="Level 2 Deck Zone A" name="Level 2 Columns 1-5 Zone A Round"

unit="" dailyoutput="" materialprice="" laborprice="" equipmprice="" parent="43"

decomposesInto="57 58 59"/>

<COST_ITEM id="57" location="Level 2 Deck Zone A" name="Formwork" unit="L.F." dailyoutput="150"

materialprice="2.25" laborprice="5.70" equipmprice="0" parent="56"/>

<COST_ITEM id="58" location="Level 2 Deck Zone A" name="Reinforcement" unit="Ton"

dailyoutput="2.3" materialprice="560" laborprice="375" equipmprice="0" parent="56"/>

90

<COST_ITEM id="59" location="Level 2 Deck Zone A" name="Placing Concrete" unit="C.Y."

dailyoutput="90" materialprice="83" laborprice="17" equipmprice="8.05" parent="56"/>

<COST_ITEM id="60" location="Level 2 Deck Zone B" name="Level 2 Columns 1-5 Zone B Round"

unit="" dailyoutput="" materialprice="" laborprice="" equipmprice="" parent="43"

decomposesInto="61 62 63"/>

<COST_ITEM id="61" location="Level 2 Deck Zone A" name="Formwork" unit="L.F." dailyoutput="150"

materialprice="2.25" laborprice="5.70" equipmprice="0" parent="60"/>

<COST_ITEM id="62" location="Level 2 Deck Zone A" name="Reinforcement" unit="Ton"

dailyoutput="2.3" materialprice="560" laborprice="375" equipmprice="0" parent="60"/>

<COST_ITEM id="63" location="Level 2 Deck Zone A" name="Placing Concrete" unit="C.Y."

dailyoutput="90" materialprice="83" laborprice="17" equipmprice="8.05" parent="60"/>

<COST_ITEM id="64" location="Level 3" name="Level 3" unit="" dailyoutput="" materialprice=""

laborprice="" equipmprice="" decomposesInto="65 69"/>

<COST_ITEM id="65" location="Level 3 Deck Zone A" name="Level 2 Deck Zone A" unit=""

dailyoutput="" materialprice="" laborprice="" equipmprice="" parent="64" decomposesInto="66 67 68"/>

<COST_ITEM id="66" location="Level 3 Deck Zone A" name="Formwork" unit="S.F."

dailyoutput="520" materialprice="1.44" laborprice="2.54" equipmprice="0" parent="65"/>

<COST_ITEM id="67" location="Level 3 Deck Zone A" name="Reinforcement" unit="Ton"

dailyoutput="2.9" materialprice="590" laborprice="350" equipmprice="0" parent="65"/>

<COST_ITEM id="68" location="Level 3 Deck Zone A" name="Placing Concrete" unit="C.Y."

dailyoutput="160" materialprice="9.55" laborprice="4.58" equipmprice="14.13" parent="65"/>

<COST_ITEM id="69" location="Level 3 Deck Zone B" name="Level 2 Deck Zone B" unit=""

dailyoutput="" materialprice="" laborprice="" equipmprice="" parent="64" decomposesInto="70 71 72"/>

<COST_ITEM id="70" location="Level 3 Deck Zone B" name="Formwork" unit="S.F."

dailyoutput="520" materialprice="1.44" laborprice="2.54" equipmprice="0" parent="69"/>

<COST_ITEM id="71" location="Level 3 Deck Zone B" name="Reinforcement" unit="Ton"

dailyoutput="2.9" materialprice="590" laborprice="350" equipmprice="0" parent="69"/>

<COST_ITEM id="72" location="Level 3 Deck Zone B" name="Placing Concrete" unit="C.Y."

dailyoutput="160" materialprice="9.55" laborprice="4.58" equipmprice="14.13" parent="69"/>

</COST_MODEL>

<RELATION_MODEL id="73" name="">

<RELATIONSET_IROOMDB object1="COST_ITEM" object2="CONST_ACT" id="76">

<RELATION idobject1="43" idobject2="14" id="77"/>

<RELATION idobject1="43" idobject2="23" id="78"/>

<RELATION idobject1="43" idobject2="5" id="79"/>

<RELATION idobject1="44" idobject2="6" id="80"/>

<RELATION idobject1="45" idobject2="7" id="81"/>

<RELATION idobject1="46" idobject2="8" id="82"/>

<RELATION idobject1="47" idobject2="9" id="83"/>

<RELATION idobject1="48" idobject2="10" id="84"/>

<RELATION idobject1="49" idobject2="11" id="85"/>

<RELATION idobject1="50" idobject2="12" id="86"/>

<RELATION idobject1="51" idobject2="13" id="87"/>

<RELATION idobject1="52" idobject2="19" id="88"/>

<RELATION idobject1="53" idobject2="20" id="89"/>

<RELATION idobject1="54" idobject2="21" id="90"/>

<RELATION idobject1="55" idobject2="22" id="91"/>

<RELATION idobject1="56" idobject2="15" id="92"/>

<RELATION idobject1="57" idobject2="16" id="93"/>

<RELATION idobject1="58" idobject2="17" id="94"/>

<RELATION idobject1="59" idobject2="18" id="95"/>

<RELATION idobject1="60" idobject2="24" id="96"/>

<RELATION idobject1="61" idobject2="25" id="97"/>

<RELATION idobject1="62" idobject2="26" id="98"/>

<RELATION idobject1="63" idobject2="27" id="99"/>

<RELATION idobject1="64" idobject2="28" id="100"/>

<RELATION idobject1="65" idobject2="29" id="101"/>

<RELATION idobject1="66" idobject2="30" id="102"/>

<RELATION idobject1="67" idobject2="31" id="103"/>

91

<RELATION idobject1="68" idobject2="32" id="104"/>

<RELATION idobject1="69" idobject2="33" id="105"/>

<RELATION idobject1="70" idobject2="34" id="106"/>

<RELATION idobject1="71" idobject2="35" id="107"/>

<RELATION idobject1="72" idobject2="36" id="108"/>

</RELATIONSET_IROOMDB>

<RELATIONSET_IROOMDB object1="COST_ITEM" object2="RESOURCE" id="109">

<RELATION idobject1="45" idobject2="38" id="110"/>

<RELATION idobject1="46" idobject2="39" id="111"/>

<RELATION idobject1="47" idobject2="40" id="112"/>

<RELATION idobject1="49" idobject2="38" id="113"/>

<RELATION idobject1="50" idobject2="39" id="114"/>

<RELATION idobject1="51" idobject2="40" id="115"/>

<RELATION idobject1="53" idobject2="41" id="116"/>

<RELATION idobject1="54" idobject2="39" id="117"/>

<RELATION idobject1="55" idobject2="40" id="118"/>

<RELATION idobject1="57" idobject2="41" id="119"/>

<RELATION idobject1="58" idobject2="39" id="120"/>

<RELATION idobject1="59" idobject2="40" id="121"/>

<RELATION idobject1="61" idobject2="41" id="122"/>

<RELATION idobject1="62" idobject2="39" id="123"/>

<RELATION idobject1="63" idobject2="40" id="124"/>

<RELATION idobject1="66" idobject2="38" id="125"/>

<RELATION idobject1="67" idobject2="39" id="126"/>

<RELATION idobject1="68" idobject2="40" id="127"/>

<RELATION idobject1="70" idobject2="38" id="128"/>

<RELATION idobject1="71" idobject2="39" id="129"/>

<RELATION idobject1="72" idobject2="40" id="130"/>

</RELATIONSET_IROOMDB>

<RELATIONSET_IROOMDB object1="RESOURCE" object2="CONST_ACT" id="131">

<RELATION idobject1="38" idobject2="11" id="132"/>

<RELATION idobject1="38" idobject2="30" id="133"/>

<RELATION idobject1="38" idobject2="34" id="134"/>

<RELATION idobject1="38" idobject2="7" id="135"/>

<RELATION idobject1="39" idobject2="12" id="136"/>

<RELATION idobject1="39" idobject2="17" id="137"/>

<RELATION idobject1="39" idobject2="21" id="138"/>

<RELATION idobject1="39" idobject2="26" id="139"/>

<RELATION idobject1="39" idobject2="31" id="140"/>

<RELATION idobject1="39" idobject2="35" id="141"/>

<RELATION idobject1="39" idobject2="8" id="142"/>

<RELATION idobject1="40" idobject2="13" id="143"/>

<RELATION idobject1="40" idobject2="18" id="144"/>

<RELATION idobject1="40" idobject2="22" id="145"/>

<RELATION idobject1="40" idobject2="27" id="146"/>

<RELATION idobject1="40" idobject2="32" id="147"/>

<RELATION idobject1="40" idobject2="36" id="148"/>

<RELATION idobject1="40" idobject2="9" id="149"/>

<RELATION idobject1="41" idobject2="16" id="150"/>

<RELATION idobject1="41" idobject2="20" id="151"/>

<RELATION idobject1="41" idobject2="25" id="152"/>

</RELATIONSET_IROOMDB>

<RELATIONSET_IDMAPPING id="156" object1="IROOM_ID" object2="ADT_ID" objecttype="BUILDING_COMP">

<RELATION id="157" idobject1="153" idobject2="DD7"/>

<RELATION id="161" idobject1="158" idobject2="DD8"/>

<RELATION id="166" idobject1="162" idobject2="DD9"/>

<RELATION id="171" idobject1="167" idobject2="DDA"/>

<RELATION id="176" idobject1="172" idobject2="DDB"/>

<RELATION id="181" idobject1="177" idobject2="DDC"/>

92

<RELATION id="186" idobject1="182" idobject2="DDD"/>

<RELATION id="191" idobject1="187" idobject2="DDE"/>

<RELATION id="196" idobject1="192" idobject2="DE1"/>

<RELATION id="201" idobject1="197" idobject2="DE2"/>

<RELATION id="206" idobject1="202" idobject2="DE3"/>

<RELATION id="211" idobject1="207" idobject2="DE4"/>

<RELATION id="216" idobject1="212" idobject2="DE5"/>

<RELATION id="221" idobject1="217" idobject2="DE6"/>

<RELATION id="225" idobject1="222" idobject2="DF8"/>

<RELATION id="229" idobject1="226" idobject2="DF9"/>

<RELATION id="231" idobject1="230" idobject2="FF8"/>

<RELATION id="233" idobject1="232" idobject2="FF9"/>

</RELATIONSET_IDMAPPING>

<RELATIONSET_IDMAPPING id="234" object1="IROOM_ID" object2="MSEXCEL_COSTITEMID" objecttype="COST_ITEM">

<RELATION id="235" idobject1="43" idobject2="1"/>

<RELATION id="236" idobject1="44" idobject2="2"/>

<RELATION id="237" idobject1="45" idobject2="3"/>

<RELATION id="238" idobject1="46" idobject2="4"/>

<RELATION id="239" idobject1="47" idobject2="5"/>

<RELATION id="240" idobject1="48" idobject2="6"/>

<RELATION id="241" idobject1="49" idobject2="7"/>

<RELATION id="242" idobject1="50" idobject2="8"/>

<RELATION id="243" idobject1="51" idobject2="9"/>

<RELATION id="244" idobject1="52" idobject2="10"/>

<RELATION id="245" idobject1="53" idobject2="11"/>

<RELATION id="246" idobject1="54" idobject2="12"/>

<RELATION id="247" idobject1="55" idobject2="13"/>

<RELATION id="248" idobject1="56" idobject2="14"/>

<RELATION id="249" idobject1="57" idobject2="15"/>

<RELATION id="250" idobject1="58" idobject2="16"/>

<RELATION id="251" idobject1="59" idobject2="17"/>

<RELATION id="252" idobject1="60" idobject2="18"/>

<RELATION id="253" idobject1="61" idobject2="19"/>

<RELATION id="254" idobject1="62" idobject2="20"/>

<RELATION id="255" idobject1="63" idobject2="21"/>

<RELATION id="256" idobject1="64" idobject2="22"/>

<RELATION id="257" idobject1="65" idobject2="23"/>

<RELATION id="258" idobject1="66" idobject2="24"/>

<RELATION id="259" idobject1="67" idobject2="25"/>

<RELATION id="260" idobject1="68" idobject2="26"/>

<RELATION id="261" idobject1="69" idobject2="27"/>

<RELATION id="262" idobject1="70" idobject2="28"/>

<RELATION id="263" idobject1="71" idobject2="29"/>

<RELATION id="264" idobject1="72" idobject2="30"/>

</RELATIONSET_IDMAPPING>

<RELATIONSET_IDMAPPING id="265" object1="IROOM_ID" object2="MSPROJECT_ID" objecttype="CONST_ACT">

<RELATION id="266" idobject1="4" idobject2="1"/>

<RELATION id="267" idobject1="5" idobject2="2"/>

<RELATION id="268" idobject1="6" idobject2="3"/>

<RELATION id="269" idobject1="7" idobject2="4"/>

<RELATION id="270" idobject1="8" idobject2="5"/>

<RELATION id="271" idobject1="9" idobject2="6"/>

<RELATION id="272" idobject1="10" idobject2="7"/>

<RELATION id="273" idobject1="11" idobject2="8"/>

<RELATION id="274" idobject1="12" idobject2="9"/>

<RELATION id="275" idobject1="13" idobject2="10"/>

<RELATION id="276" idobject1="14" idobject2="11"/>

<RELATION id="277" idobject1="15" idobject2="12"/>

<RELATION id="278" idobject1="16" idobject2="13"/>

93

<RELATION id="279" idobject1="17" idobject2="14"/>

<RELATION id="280" idobject1="18" idobject2="15"/>

<RELATION id="281" idobject1="19" idobject2="16"/>

<RELATION id="282" idobject1="20" idobject2="17"/>

<RELATION id="283" idobject1="21" idobject2="18"/>

<RELATION id="284" idobject1="22" idobject2="19"/>

<RELATION id="285" idobject1="23" idobject2="20"/>

<RELATION id="286" idobject1="24" idobject2="21"/>

<RELATION id="287" idobject1="25" idobject2="22"/>

<RELATION id="288" idobject1="26" idobject2="23"/>

<RELATION id="289" idobject1="27" idobject2="24"/>

<RELATION id="290" idobject1="28" idobject2="25"/>

<RELATION id="291" idobject1="29" idobject2="26"/>

<RELATION id="292" idobject1="30" idobject2="27"/>

<RELATION id="293" idobject1="31" idobject2="28"/>

<RELATION id="294" idobject1="32" idobject2="29"/>

<RELATION id="295" idobject1="33" idobject2="30"/>

<RELATION id="296" idobject1="34" idobject2="31"/>

<RELATION id="297" idobject1="35" idobject2="32"/>

<RELATION id="298" idobject1="36" idobject2="33"/>

</RELATIONSET_IDMAPPING>

<RELATIONSET_IDMAPPING id="299" object1="IROOM_ID" object2="MSEXCEL_RESOURCEID" objecttype="RESOURCE">

<RELATION id="300" idobject1="38" idobject2="2"/>

<RELATION id="301" idobject1="39" idobject2="3"/>

<RELATION id="302" idobject1="40" idobject2="4"/>

<RELATION id="303" idobject1="41" idobject2="1"/>

</RELATIONSET_IDMAPPING>

<RELATIONSET_IROOMDB object1="BUILDING_COMP" object2="COST_ITEM" id="304">

<RELATION idobject1="153" idobject2="48" id="305"/>

<RELATION idobject1="182" idobject2="60" id="306"/>

<RELATION idobject1="187" idobject2="60" id="307"/>

<RELATION idobject1="226" idobject2="69" id="308"/>

<RELATION idobject1="158" idobject2="44" id="309"/>

<RELATION idobject1="162" idobject2="52" id="310"/>

<RELATION idobject1="167" idobject2="52" id="311"/>

<RELATION idobject1="172" idobject2="52" id="312"/>

<RELATION idobject1="177" idobject2="52" id="313"/>

<RELATION idobject1="192" idobject2="56" id="314"/>

<RELATION idobject1="197" idobject2="56" id="315"/>

<RELATION idobject1="202" idobject2="56" id="316"/>

<RELATION idobject1="207" idobject2="52" id="317"/>

<RELATION idobject1="212" idobject2="56" id="318"/>

<RELATION idobject1="217" idobject2="56" id="319"/>

<RELATION idobject1="222" idobject2="65" id="320"/>

</RELATIONSET_IROOMDB>

<RELATIONSET_IROOMDB object1="BUILDING_COMP" object2="CONST_ACT" id="321">

<RELATION idobject1="153" idobject2="10" id="322"/>

<RELATION idobject1="182" idobject2="23" id="323"/>

<RELATION idobject1="187" idobject2="23" id="324"/>

<RELATION idobject1="226" idobject2="33" id="325"/>

<RELATION idobject1="158" idobject2="6" id="326"/>

<RELATION idobject1="162" idobject2="19" id="327"/>

<RELATION idobject1="167" idobject2="19" id="328"/>

<RELATION idobject1="172" idobject2="19" id="329"/>

<RELATION idobject1="177" idobject2="19" id="330"/>

<RELATION idobject1="192" idobject2="15" id="331"/>

<RELATION idobject1="197" idobject2="15" id="332"/>

<RELATION idobject1="202" idobject2="15" id="333"/>

<RELATION idobject1="207" idobject2="19" id="334"/>

94

<RELATION idobject1="212" idobject2="15" id="335"/>

<RELATION idobject1="217" idobject2="15" id="336"/>

<RELATION idobject1="222" idobject2="29" id="337"/>

</RELATIONSET_IROOMDB>

<RELATIONSET_IROOMDB object1="BUILDING_COMP" object2="RESOURCE" id="338">

<RELATION idobject1="153" idobject2="38" id="339"/>

<RELATION idobject1="153" idobject2="39" id="340"/>

<RELATION idobject1="182" idobject2="39" id="341"/>

<RELATION idobject1="182" idobject2="40" id="342"/>

<RELATION idobject1="182" idobject2="41" id="343"/>

<RELATION idobject1="187" idobject2="39" id="344"/>

<RELATION idobject1="187" idobject2="40" id="345"/>

<RELATION idobject1="187" idobject2="41" id="346"/>

<RELATION idobject1="226" idobject2="38" id="347"/>

<RELATION idobject1="226" idobject2="39" id="348"/>

<RELATION idobject1="226" idobject2="40" id="349"/>

<RELATION idobject1="153" idobject2="40" id="350"/>

<RELATION idobject1="153" idobject2="41" id="351"/>

<RELATION idobject1="158" idobject2="38" id="352"/>

<RELATION idobject1="158" idobject2="39" id="353"/>

<RELATION idobject1="158" idobject2="40" id="354"/>

<RELATION idobject1="162" idobject2="39" id="355"/>

<RELATION idobject1="162" idobject2="40" id="356"/>

<RELATION idobject1="162" idobject2="41" id="357"/>

<RELATION idobject1="167" idobject2="39" id="358"/>

<RELATION idobject1="167" idobject2="40" id="359"/>

<RELATION idobject1="167" idobject2="41" id="360"/>

<RELATION idobject1="172" idobject2="39" id="361"/>

<RELATION idobject1="172" idobject2="40" id="362"/>

<RELATION idobject1="172" idobject2="41" id="363"/>

<RELATION idobject1="177" idobject2="39" id="364"/>

<RELATION idobject1="177" idobject2="40" id="365"/>

<RELATION idobject1="177" idobject2="41" id="366"/>

<RELATION idobject1="192" idobject2="39" id="367"/>

<RELATION idobject1="192" idobject2="40" id="368"/>

<RELATION idobject1="192" idobject2="41" id="369"/>

<RELATION idobject1="197" idobject2="39" id="370"/>

<RELATION idobject1="197" idobject2="40" id="371"/>

<RELATION idobject1="197" idobject2="41" id="372"/>

<RELATION idobject1="202" idobject2="39" id="373"/>

<RELATION idobject1="202" idobject2="40" id="374"/>

<RELATION idobject1="202" idobject2="41" id="375"/>

<RELATION idobject1="207" idobject2="39" id="376"/>

<RELATION idobject1="207" idobject2="40" id="377"/>

<RELATION idobject1="207" idobject2="41" id="378"/>

<RELATION idobject1="212" idobject2="39" id="379"/>

<RELATION idobject1="212" idobject2="40" id="380"/>

<RELATION idobject1="212" idobject2="41" id="381"/>

<RELATION idobject1="217" idobject2="39" id="382"/>

<RELATION idobject1="217" idobject2="40" id="383"/>

<RELATION idobject1="217" idobject2="41" id="384"/>

<RELATION idobject1="222" idobject2="38" id="385"/>

<RELATION idobject1="222" idobject2="39" id="386"/>

<RELATION idobject1="222" idobject2="40" id="387"/>

</RELATIONSET_IROOMDB>

</RELATION_MODEL>

</CIFE_IROOM_PROJECT>

95

B.2 Tables
Test Case: Cost Items, General Overview

ID Location Name Comment Total Cost

1 Level 2

2 Deck Zone A

3 Formwork Means p.93, 1050, 2use $18,913.00

4 Reinforcement Means p.106, 0400, 7% $15,266.00

5 Placing Concrete Means p.111, 1500, 2use $3,278.00

6 Deck Zone B

7 Formwork Means p.93, 1050, 2use $11,844.00

8 Reinforcement Means p.106, 0400, 7% $9,670.00

9 Placing Concrete Means p.111, 1500, 2use $2,063.00

10 Columns Rect. Zone A

11 Formwork Means p.93, 6000 & 6500 $2,111.00

12 Reinforcement Means p.106, 0250, 7% $683.00

13 Placing Concrete Means p.111, 0600 & 0800, Material

p.517

$561.00

14 Columns Round Zone A

15 Formwork Means p.92, 0550 $398.00

16 Reinforcement Means p.106, 0250, 7% $327.00

17 Placing Concrete Means p.111, 0600 & 0800, Material

p.517

$274.00

18 Columns Round Zone B

19 Formwork Means p.92, 0550 $398.00

20 Reinforcement Means p.106, 0250, 7% $131.00

21 Placing Concrete Means p.111, 0600 & 0800, Material

p.517

$109.00

22 Level 3

23 Deck Zone A

24 Formwork Means p.93, 1050, 2use $18,913.00

25 Reinforcement Means p.106, 0400, 7% $15,266.00

26 Placing Concrete Means p.111, 1500, 2use $3,278.00

27 Deck Zone B

28 Formwork Means p.93, 1050, 2use $11,844.00

29 Reinforcement Means p.106, 0400, 7% $9,670.00

30 Placing Concrete Means p.111, 1500, 2use $2,063.00

96

Test Case: Cost Items, Composition
ID Location Name Unit Cost Mat. Unit Cost Labor Unit Cost Equipm. Total Unit Cost Quantity Unit Overall Cost

1 Level 2

2 Deck Zone A

3 Formwork $1.44 $2.54 $0.00 $3.98 4752 S.F. $18,193.00

4 Reinforcement $590.00 $350.00 $0.00 $940.00 16.24 Ton $15,266.00

5 Placing Concrete $67.00 $9.55 $4.58 $71.13 116 C.Y. $9,411.00

6 Deck Zone B

7 Formwork $1.44 $2.54 $0.00 $3.98 2976 S.F. $11,844.00

8 Reinforcement $590.00 $350.00 $0.00 $940.00 10.22 Ton $9,607.00

9 Placing Concrete $67.00 $9.55 $4.58 $71.13 73 C.Y. $5,922.00

10 Columns Rect. Zone A

11 Formwork $1.77 $4.55 $0.00 $6.32 334 SFCA $2,111.00

12 Reinforcement $560.00 $440.00 $0.00 $1000.00 0.73 Ton $730.00

13 Placing Concrete $67.00 $16.90 $8.05 $81.95 5.2 C.Y. $478.00

14 Columns Round Zone A

15 Formwork $2.25 $5.70 $0.00 $7.95 50 L.F. $398.00

16 Reinforcement $560.00 $440.00 $0.00 $1000.00 0.35 Ton $350.00

17 Placing Concrete $67.00 $17.00 $8.15 $82.15 2.53 C.Y. $233

18 Columns Round Zone B

19 Formwork $2.25 $5.70 $0.00 $7.95 20 L.F. $159.00

20 Reinforcement $560.00 $440.00 $0.00 $1000.00 0.14 Ton $140.00

21 Placing Concrete $67.00 $17.00 $8.15 $82.15 1.01 C.Y. $93

22 Level 3

23 Deck Zone A

24 Formwork $1.44 $2.54 $0.00 $3.98 4752 S.F. $18,193.00

25 Reinforcement $590.00 $350.00 $0.00 $940.00 16.24 Ton $15,266.00

26 Placing Concrete $67.00 $9.55 $4.58 $71.13 116 C.Y. $9,411.00

27 Deck Zone B

28 Formwork $1.44 $2.54 $0.00 $3.98 2976 S.F. $11,844.00

29 Reinforcement $590.00 $350.00 $0.00 $940.00 10.22 Ton $9,607.00

30 Placing Concrete $67.00 $9.55 $4.58 $71.13 73 C.Y. $5,922.00

97

Test Case: Labor Resources, Used Crews

ID Name Comment Labor Hour

Cost

Equipment

Hour Cost

Number Crew

Members

Hours/Labor

Day

Labor

Cost/day

Equipment

Cost/day

1 C-1 Crew Formwork

Columns

$26.27 $0.00 4 8 $840.64 $0.00

2 C-2 Crew Formwork

Slabs

$27.50 $0.00 6 8 $1,320.00 $0.00

3 4

Rodm

Crew Rebar $31.50 $0.00 4 8 $1,008.00 $0.00

4 C-20 Concrete Crew $23.92 $11.44 11 8 $2,104.96 $91.52

List of Figures

1.1 Three screen display system of the IRoom 2

1.2 Slab and wall objects in the ADT product-model 4

1.3 Bay Street Project partial site overview 5

2.1 Time spent in meetings according to [Fischer et al, 2000] 8

2.2 Message passing system between the IRoom applications 9

2.3 Hardware topology of the IRoom 11

3.1 Example of a building model in ADT 15

3.2 Door object in ADT . 16

4.1 Necessary communication using a database storing relationships

only . 21

4.2 Necessary communication using a database storing objects 23

4.3 Multiple database parsing by direct database access 24

4.4 Data mapping using a middle tier software 27

4.5 Complex communication as result of a combined data base access

solution . 28

4.6 Building component object with quantities 30

4.7 Cost Item, Resource and Construction Activity objects 31

4.8 Hierarchy of the relationships . 32

6.1 Display Representation of a zone object 46

98

99

6.2 References to other objects stored by Soft Pointers in a zone . . . 49

6.3 ADT standard dialog to add new Zones 50

6.4 ADT standard Edit Property Sheet for zone objects 51

6.5 Added commands to the context menu for zone interaction 52

6.6 Dialog to relate XML Data File objects 56

7.1 ADT dialog for uploading ADT extension modules 60

7.2 Two storey test case model in ADT 61

7.3 Two storey test case model in Microsoft Project 62

7.4 ADT test case model with zones 63

7.5 Dialog box to select a XML data file for the export 64

7.6 The Relation Tool after startup 65

7.7 Highlighting of structural elements in ADT while working with the

Relation Tool . 67

7.8 Dialogs showing additional object information 68

7.9 Communication between ADT and the Midserver 70

7.10 Communication between the Midserver and Microsoft Project . . 71

8.1 Main Application - Listener interaction 75

List of Tables

6.1 Newly added Command Line commands 51

100

Bibliography

[Fox et al, 2000] Armando Fox, Brad Johanson, Pat Hanrahan,

Terry Winograd. Integrating Information

Appliances into an Interactive Workspace.

IEEE Computer Graphics & Applications,

Vol. 20, No. 3, May/June 2000. Avaiable

online at http://graphics.stanford.edu/

projects/iwork/papers/ieee-pda00/ ieee-

pda00.pdf

[CIFE - CIW] Center for Integrated Facility Engineer-

ing. Interactive Information Workspace. Ava-

iable online at http://www.stanford.edu/

group/4D/workspace/ workspace-main.htm

[Microsoft - Project] Microsoft. Microsoft Office - Microsoft

Project Homepage. Avaiable online at

http://www.microsoft.com/office/project/default.asp

[DPR - Construction] DPR Construction Company.

Webpages. Avaiable online at

http://www.dprinc.com/about/index.cfm.

101

102

[Autodesk - ADT] Autodesk. Architectural Desktop. Ava-

iable online at http://usa.autodesk.com/

adsk/section/ 0,,630501-123112,00.html

[Fischer et al, 2000] Fischer, Martin; Liston, Kathleen; Kuntz,

John. Requirements and Benefits of Interactive

Workspaces in Construction. The 8th Interna-

tional Conference on Computing in Civil and

Building Engineering. August, 2000 Stanford

University Silicon Valley, CA, USA

[CPT Tech. - 4D-Viewer] Common Point Technologies, Inc. So-

lutions - 4DViewer. Avaiable online at

http://www.commonpointinc.com

[Smart Technologies Inc.] Smart Technologies, Inc. Online at

http://www.smarttech.com/products/index.asp

[Stanford CS - EventHeap] Stanford University - Computer Sci-

ence. Interactive Workspaces - Event

Heap Documentation. Avaiable online

at http://graphics.stanford.edu/projects/

iwork/software /html-

pages/documentation.html

[Johanson et al, 2001] Stanford University.Brad Johanson, Greg

Hutchins, Terry Winograd. PointRight:

Pointer/Keyboard Redirection for In-

teractive Workspaces. Avaiable online at

http://graphics.stanford.edu/ stone/ steel-

case/pointright ubicomp.PDF

103

[ARX Developer’s Guide, 2000] Autodesk Inc. ObjectArx Developer Guide.

2000. http://usa.autodesk.com

[MCAULEY, 2000] C. McAuley. Programming AutoCAD 2000 Us-

ing ObjectArx. Autodesk Press. United States.

2000.

[OMF Developer’s Guide, 2002] Object Modeling Framework Developer’s

Guide. Autodesk. 2002.

[Microsoft - MSDN] Microsoft. Developer Network. Avaiable online

at http://msdn.microsoft.com/

[W3C - XML] W3C. Extensible Markup Language. Avaiable

online at http://www.w3.org/XML/

[W3C - XML 10Points] W3C. XML in 10 Points. Avaiable on-

line at http://www.w3.org/XML/1999/XML-

in-10-points

[Timberline] Timberline Software Cooperation. Avaiable

online at http://www.timberline.com

[Microsoft - MSXML] Microsoft. XML Webservices. Avaiable online

at http://msdn.microsoft.com/

[C++, 1997] X3 Secretariat. Draft Standard - The C++

Language. X3J16/97-14882. Information Tech-

nology Council (NSITC). Washington DC.

USA.

[Stroustrup, 2000] Bjarne Stroustrup. The C++ Programming

Language - Special Edition. Addison-Wesley.

Florham Park, New Jersey. 2000.

104

[RSMeans, 2000] RSMeans. Building Construction Cost Data.

58th Annual Edition. RSMeans. Kingston,

MA. 2000.

[SFIRION] SFIRION Projektleitsysteme. Avaiable online

at http://www.sfirion.de/

[Graphisoft] Graphisoft Deutschland GmbH. Avaiable on-

line at http://www.graphisoft.com/

