
 

 CIFECENTER FOR INTEGRATED FACILITY ENGINEERING 

 
 
 
 
 
 

Decision Making 
for 

Schedule Optimization 
 
 
 
 

By 
 
 

Fabian Märki, Martin Fischer, John Kunz 
& John Haymaker 

 
 
 
 
 

CIFE Technical Report #169 
MARCH 2007 

 

 
STANFORD UNIVERSITY 

 



 

 

 

 

 
 

 
 
 
 
 
 
 

COPYRIGHT © 2007 BY 
Center for Integrated Facility Engineering 

 
 
 
 
 

If you would like to contact the authors, please write to: 
 
 

c/o CIFE, Civil and Environmental Engineering Dept., 
Stanford University 

Terman Engineering Center 
Mail Code: 4020 

Stanford, CA 94305-4020 



 1/23 

Decision Making  
 

for 
 

Schedule Optimization 
 
 

Fabian Märki1, Martin Fischer1, John Kunz1, John Haymaker1 

1 Department of Civil and Environmental Engineering, Center for Integrated Facility Engineering, Stanford University, 
Stanford CA 94305-4020, USA 

markif@stanford.edu 
http://www.i4ds.ch 

fischer@stanford.edu 
kunz@stanford.edu 

haymaker@stanford.edu 
http://www.stanford.edu/group/CIFE/ 

 
Abstract 
This paper presents a novel formulation of scheduling and decision information which allows 
a concurrent optimization of both, the decisions leading to a specific schedule and the 
schedule itself. Our methodology allows a dynamic adaptation of the optimization criteria 
according to the quality measurement criteria of the involved decision making stakeholders. 
Major types of possible quality measurement criteria are project duration considerations, cost 
considerations, resource levelling considerations, safety considerations and some 
miscellaneous considerations like distances resources have to cover from one assignment to 
the next or time space conflicts of resources.  

Decisions and their alternatives are represented in a Decision Breakdown Structure (DBS) 
(Kam, 2006). The DBS defines the search space for the optimization algorithm which is based 
on a Genetic Algorithm (GA) approach. The optimization algorithm uses the novel 
formulation of scheduling and decision information to find a Pareto optimal decision 
alternative combination which leads to a Pareto optimal schedule.  

First tests of the decision and schedule optimization algorithm show that optimizations 
can be performed within one minute. This short latency suggests that the proposed concepts 
about decision optimization could, for instance, be utilized in meetings or in an Integrated 
Concurrent Engineering (ICE) environment where short latency is extremely important 
(Chachere, 2004) because stakeholders need to get a quick idea about good decisions and their 
predicted outcome. 

Keywords: Automated Project Planning, Automated Decision Making, Integrated Concurrent 
Engineering, Resource Modelling, Optimization, Genetic Algorithm 

Introduction 
Have you ever asked yourself how different combinations of decision alternatives like 
decisions about the methodology to build a specific component or specific resource 
assignments could affect the outcome of a project and which of these combinations meet the 
interests of the involved stakeholders in the best possible way? How long are you usually 
waiting for an answer to these questions?  
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An in depth sensitivity analysis can provide an answer to the above questions. 
Unfortunately, such an analysis is usually time consuming and if decision alternatives or 
quality measurement criteria change the analysis has to be redone.  

This work addresses the above questions and problems and describes a concept that 
enables decision makers to improve decision alternative combinations with very short latency 
while preserving the ability to dynamically change the underlying decision quality 
measurement criteria.  

Calvin Kam’s dissertation (Kam 2005) provides the point of departure for the modeling of 
decision alternatives. Kam develops the concept of a Decision Breakdown Structure (DBS) 
which describes all decisions and the alternatives decision makers consider for a specific 
project. The DBS also ensures that each involved stakeholder is aware of interrelationships 
between decisions, so that important interrelated considerations will not be forgotten. Because 
the DBS centralizes decisions in one model, stakeholders can focus on this model which 
drastically simplifies the human interrelationship network (Figure 1).  

 
Figure 1: Decision making interrelationship with and without DBS. The standard procedure consists of a 
complex network which makes it difficult to keep track of decisions and their alternatives. In contrast, the 
DBS centralizes decision alternatives and makes them available for every involved stakeholder. Based on 
this collection of decision alternatives, stakeholders can make sound decisions which consider the interests 
of all involved stakeholders.  

The evaluation of a combination of decision alternatives is based on a Genetic Algorithm 
(GA) approach. GAs are a class of heuristic search methods based on the Darwinian principle 
of evolution1. It mimics and exploits the genetic dynamics underlying natural evolution to 
search for Pareto2 optimal solutions of general combinatorial optimization problems (Coley 
1999). The needs and goals of such an evaluation are illustrated in Figure 2. 

 

                                                 
1 Wikipedia: http://en.wikipedia.org/wiki/Genetic_algorithm (Last accessed: February 07th, 2007) 
2 Given a set of alternative allocations and a set of individuals, a movement from one allocation to another that 
can make at least one individual better off, without making any other individual worse off, is called a Pareto 
improvement or Pareto optimization. An allocation of resources is Pareto efficient or Pareto optimal when no 
further Pareto improvements can be made. Wikipedia: http://en.wikipedia.org/wiki/Pareto_optimal (Last 
accessed: February 07th, 2007) 
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Figure 2: GAPO’s input is a list of activities, a definition of precedence constraints between these 
activities, alternatives of resource groups that can be assigned to the activities, the resources used by the 
resource groups, functions which measure the quality of GAPO’s decisions based on the quality 
measurement criteria of the involved stakeholders and weight factors which reflect how the stakeholders 
prioritize the quality measurement criteria (see chapter on Decision and Schedule Quality for further 
explanations). Based on all the resulting decision alternative combinations, GAPO searches for the 
decision alternative combination which leads to a schedule that meets the quality measurement criteria of 
the involved stakeholders in a Pareto optimal way. 

 
Prior research in schedule optimization done at i4Ds3 (Märki and Suter, 2003) and more 

recent research done at CIFE4 (Märki et al. 2006) provide the point of departure for the 
decision optimization aspect of this research. The Genetic Algorithm Process Optimization 
(GAPO) framework has been extended to accommodate an analysis of all the different 
combinations of decision alternatives concurrently. Consequently, this leads to a Pareto 
optimal decision about which combination of alternatives conforms best to the defined quality 
measurement criteria of the involved stakeholders (Figure 3). 

 
Figure 3: GAPO further simplifies the decision making process (compare with Figure 1). GAPO uses the 
DBS as the search space and concurrently performs an alternative formulation, evaluation, prediction, 
and negotiation of the different combinations of all decision alternatives of the DBS and finally decides 
upon a Pareto optimal decision alternative combination based on decision quality measurement criteria 
which were predefined by the involved stakeholders. 

This research focuses on decision alternatives about resource quantities and resource group 
assignments to activities:  

                                                 
3 Institute 4D–Technologies & DataSpaces, University of Applied Sciences Northwestern Switzerland 
4 Center for Integrated Facility Engineering, Stanford University 
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• A change in the quantities of the resources used within a resource group leads to a 
change in the duration of an activity. 

• A change in the resource group assigned to an activity can affect the process 
method used to perform an activity. An example of such a change is the usage of a 
resource group consisting of builders to erect a wall using bricks. The same wall 
could also be built with alternative materials which would allow a prefabrication 
of the wall. In order to erect the same but prefabricated wall, a resource group 
consisting of a crane operator and a crane to lift it into place would be appropriate.  

GAPO’s particular focus is to find the decision alternative combination for the resource 
quantity decision and the resource group assignment decision which will, combined with the 
concurrently optimized schedule, lead to a Pareto optimal project schedule. Thereby, users 
can adapt the decision quality measurement criteria dynamically according to their needs.  

 
Figure 4: Changes in used resource quantities and resource group are the decisions which are considered 
in this research. 

Consider a simple example that illustrates the possibilities GAPO provides. A project 
manager is compiling a resource leveled project schedule. The decisions he has to make are 
how he wants to schedule the activities, which resource group he should assign to the 
activities and how much of each resource of the resource groups he should use. The decision 
alternative combinations resulting from such a problem can be enormous (Table 1). 
Therefore, the project manager does not have the time to search for the decision alternative 
combination which leads to a good resource leveled schedule. Consequently, the project will 
most likely be preformed with a suboptimal schedule.  

The above problem is a typical case where the project manger could utilize GAPO. The 
input data he would have to provide are illustrated in Figure 2. In our example, the project 
manager would have to provide a quality measurement function which favors schedules with 
good resource leveling. He could also define other quality measurement functions (for 
instance a function that measures project duration) but he would have to prioritize the 
resource leveling function most since it is his major concern. 

When we run GAPO with a sample project (see chapter on Motivating case example), 
GAPO needs about 10 seconds to improve the resource leveling of this project from its initial 
schedule to its final Pareto optimal schedule as it is illustrated in Figure 5. 
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Figure 5: GAPO improves the resource leveling of the resource Laborers within 10 seconds from the initial 
schedule (as shown on the left graph) to its final Pareto optimal schedule (as shown on the right graph). 
This suggests that the algorithm has a short latency to find the Pareto optimal decision alternative 
combinations. 

Motivating case example 
The case example is based on a drywall installation case of an office building project (Staub-
French et al. 2002)5.  

The drywall (Table 1) can be installed by using a resource group consisting of laborers 
and rolling scaffolding or by a resource group consisting of laborers and a scissor lift. The 
estimator has a preference to use the same type of equipment for all the drywall activities. We 
made the following further assumptions: 

• There are a total of 10 rooms 
• There are three rolling scaffoldings available and the usage of rolling scaffolding 

is cheaper than the usage of a scissor lift. 
• There are three scissor lifts available and the usage of a scissor lift is more 

expansive than the usage of rolling scaffolding. However, through the usage of 
scissor lifts, the activities can be performed faster.  

Figure 6 illustrates the Organization Breakdown Structure (OBS) and the Work Breakdown 
Structure for this scope of work. Table 1 summarizes all possible decision alternatives. 
GAPO’s task is to find the best combination of these alternatives based on different decision 
quality measurement criteria defined by the involved stakeholders. 

 

 
Figure 6: Organization Breakdown Structure (OBS) and Work Breakdown Structure (WBS) for the scope 
of the motivating case example. Each activity in the WBS can be performed by laborers and rolling 
scaffolding or laborers and scissor lift. The estimator prefers to use the same type of equipment for all 
activities. 
                                                 
5 Further details about this project can be obtained from http://cife.stanford.edu/online.publications/WP071.pdf 
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The calculation of the duration of the activities is based on the quantity of materials to install 
and on the resource group and resource quantities assigned to the activity (see chapter on 
Considered Decision for further explanations).  

Table 1 illustrates that this case example has approximately 1062 possible decision 
alternative combinations. This is a enormous search space and a human project manager will 
never have the time to explore the whole search space to find an optimal schedule. More 
likely, he will search for the first schedule he believes to be feasible and the project will be 
performed according to this schedule.  
 

 
Table 1: From the Decision Breakdown Structure (DBS – see Figure 10), we can derive that each activity 
can be performed by laborers using rolling scaffolding or a scissor lift. The duration of an activity changes 
depending on the assigned resource group and the amount of assigned resources. This results in a specific 
number of possible decision alternatives for each activity. The total number of possible decision 

alternative combinations can be derived from the formula ∏
=

snActivitie

i
iDA

1

 (the product of the number of 

decision alternatives of each activity over all activities). Consequently, the case example has approximately 
1062 possible decision alternative combinations.  
 

Optimization of schedules 
Compiling schedules is a time consuming and complex task. Due to time constraints and the 
NP-hardness of the scheduling optimization problem6, one does usually not implement a 
sensitivity analysis and projects are performed with the first found feasible schedule. With 
Genetic Algorithm Process Optimization (GAPO7), we want to address this problem and show 

                                                 
6 Wikipedia: http://en.wikipedia.org/wiki/Scheduling (Last accessed: 19th of February 2006) 
7 GAPO was initially developed at i4Ds (Märki and Suter 2003). It is programmed in JavaTM and consists of 
about 270 classes. 
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the potential of a software application that supports the compilation of a sound Pareto optimal 
schedule. 

Genetic Algorithm Process Optimization (GAPO) 
GAPO is based on a Genetic Algorithm (GA) approach to optimize schedules in terms of 
time, cost and resource management (Märki and Suter 2003). GAs are a class of heuristic 
search methods based on the Darwinian principle of evolution8. It mimics and exploits the 
genetic dynamics underlying natural evolution to search for Pareto optimal solutions of 
general combinatorial optimization problems (Coley 1999). 

GAs start from a pool of individuals which are scored by fitness functions9 measuring 
their quality as a candidate solution of a given problem. By some probabilistic mechanism, 
these solutions are exposed to an artificial evolution consisting of selection, recombination 
and mutation yielding a new generation of candidate solutions which are expected to have a 
higher quality of fitness. GAs have been successfully applied to a wide variety of practical 
problems in diverse fields like chemistry, biology, operations research, and many engineering 
disciplines (Koza et al. 2003, Coley 1999, KHosraviani et al. 2004). 

GAPO Evolution Model 
The evolution model starts with an initial population of randomly generated schedule 
individuals. A subsequent population will then be assembled using five strategies which can 
be weighed by the user.  

A fraction q of the best individuals will be directly passed to the next population. This 
guarantees that the quality of the most suited candidates will monotonically increase from 
generation to generation. A second fraction r of individuals will be passed to the next 
population after a mutation. On one side, this process opposes early convergence in a local 
optimum and thereby helps to open new search regions. On the other side, it also allows a fine 
tuning of suitable solutions by applying small changes on them. A third fraction s of the new 
population is created by recombining individuals from the old generation. This process forces 
convergence into an optimum. A fourth fraction t is also created by recombining individuals 
but instead of passing them directly into the new population the new individual is mutated 
beforehand. Last, a fraction u of the new population is created randomly. This process also 
helps to open new search regions and prevents early convergence in a local optimum 
(Gonçalves 2002). 

 

                                                 
8 Wikipedia: http://en.wikipedia.org/wiki/Genetic_algorithm (Last accessed: February 07th, 2007) 
9 A fitness function is a particular type of objective function that quantifies the optimality of a candidate solution 
so that that particular solution can be ranked against all the other solutions. Wikipedia: 
http://en.wikipedia.org/wiki/Fitness_function (Last accessed: February 11th, 2007) 
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Figure 7: GAPO Evolution Model (Märki et al. 2006). It describes how a new population is formed based 
on an old population. This process uses five different strategies which are Elitism Bypass, Direct 
Mutation, Recombination, Recombination combined with a Mutation and Random Generation. Prior to 
each run of a strategy, it randomly chooses the appropriate operators (selectors, recombinator, mutator 
and random generator) from their pools. The number of new individuals generated by each strategy can 
be weighed.  

GAPO Data Structure 
The success of GAs crucially depends on an appropriate encoding of all the different 
parameters. Additionally, schedule optimization has to consider activity sequencing 
constraints which have to be satisfied. Based on prior experience we decided to use a 
genotype data structure that is kept as simple as possible. By genotype we refer to the genetic 
encoding of a schedule as it is represented in the computer’s memory. The genotype 
representation allows the application of operators like mutators and recombinators. The 
counterpart of the genotype is the phenotype. In our optimization problem the phenotype is 
the actual schedule represented in CPM format. 

The genotype representation consists of four arrays whose length is equal to the number of 
activities contained in the schedule. The first two arrays are used for the schedule encoding 
and the second two arrays are used to represent chosen decision alternatives (see Figure 8 and 
the chapter on Project Planning Decision Making for more details about the genetic encoding 
of decisions).  
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Figure 8: Probabilistic mechanisms create candidate solutions in the form of a genotype as shown in this 
figure. The artificial evolution process applies mutation and recombination operations on the genotype 
encoding which is then used to form the actual schedule. This figure illustrates how the schedule 
optimization genotype (first two arrays) is combined with the decision genotype encoding for the decision 
about the resource group assignment (third array) and the decision about the activity duration (fourth 
array). Through this combination, GAPO is able to concurrently expose the schedule and the decisions to 
an optimization process. 

 

The first array of the genotype encoding represents the sequence of how the scheduling 
algorithm should schedule the activities. The second array defines the position where the 
scheduling algorithm starts to search for a location where the activity can be performed 
without violating a resource constraint. By definition, this position is between the end of the 
latest predecessor of the handled activity and the end of the latest scheduled activity. If it is 
not possible to schedule the activity within this range, it will be added to the end of the 
schedule as the last activity.  
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Figure 9: This figure focuses on the first two arrays of the genotype encoding. These two arrays encode 
how the activities are scheduled. The basis for this encoding builds an activity network (activities with 
precedence constraints). The first array encodes the sequence of how the scheduling algorithm should 
schedule the activities. The second array defines the position where the scheduling algorithm starts to 
search for a location where the activity can be performed without violating a resource constraint. 
 

Project Planning Decision Making 
This chapter describes how we combine schedule optimization with project planning decision 
making.  

Kam’s dissertation (Kam, 2005) shows how decision alternatives can be represented and 
related to each other. Kam develops a dynamic Decision Breakdown Structure (DBS) which 
describes decisions project managers consider when they decide about how to perform a 
specific project (Figure 10). At the same time, the DBS also incorporates alternatives for each 
decision. Kam emphasizes that there exist interrelationships between pairs of alternatives of 
different decisions. He refers to these interrelationships as impact relationship and 
requirement relationship. If one wants to come up with a sound decision, he has to consider 
these interrelationships because they might exclude alternatives of other decisions.  

This explicit description of decisions and their alternatives gives project managers a sound 
information basis to make the actual decision. Because crucial information is at hand, it 
becomes unlikely that decisions are invalid because important aspects were forgotten. 
However, the decision must still be made by human beings and due to the tremendous number 
of decision alternative combinations and the complexity of the interrelationships it is very 
unlikely that decisions will be made which lead to a Pareto optimal project schedule. 

It is possible to come up with the decision alternative combinations which result in a 
Pareto optimal project schedule by concurrently exposing scheduling and decision making to 
an optimization process. The quality of the decision alternatives is measured by schedule 
quality measurement criteria. This gives an insight about the quality of a decision alternative 
combination in terms of project planning criteria. 
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Figure 10: A DBS for all the possible decision alternatives of the activities Install Insulation and Hang 
Drywall. Hang Drywall can be performed by using the resource group laborers and rolling scaffolding or 
laborers and scissor lift. In this example, the decision was made to use laborers and rolling scaffolding. 
Within the resource group laborers and rolling scaffolding it is possible to assign resource quantities which 
will result in activity durations of 4, 5, 7, or 10 days. In this example, the decision was made to assign 
resource quantities which result in an activity duration of 4 days as shown by the decision choice arrow 
link (Kam, 2006).  
 

Incorporation of DBS into GAPO 
The information contained in the DBS describes the search space for all possible decision 
alternative combinations. Thereby, the interrelationships between decision alternatives are of 
importance because they make it impossible to combine some alternatives with some other 
alternatives. A concrete decision alternative combination must not violate any of these 
interrelationships because otherwise it will not be sound. 

Decision alternatives and their interrelationships can be transformed into a Constraint 
Satisfaction Problem (CSP). This has the advantage that standard CSP solving algorithms 
(Prosser, 1993; Bacchus and Run, 1995) can be used to generate concrete and sound decision 
alternative combinations.  

Genetic Encoding of Decisions 
A decision is encoded as an array of integer values (Figure 11). A position of this array 
represents a specific decision and the integer value assigned to this position defines which 
alternative of this decision is used. 
 

 
Figure 11: Decision encoding into an integer array. The array position determines the specific decision 
and the integer value of the position specifies the used alternative. 
 

After a decision encoding undergoes a mutation or recombination operation, the decision 
alternatives might violate interdependency constraints and consequently the decision might 
not be sound anymore (Figure 12). Therefore, a post-processing step is necessary which 
checks decision arrays for violations and, if necessary, corrects them. These corrections must 
be as minimal as possible because otherwise a recombination operation will be blurred into a 
mutation operation.   
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Figure 12: Correction of interdependency violation between decision 2 and 4 provoked by a swap 
mutation operation. 

Accordingly, we adapted the standard CSP solving algorithm to provide an initialization with 
any valid or invalid solution. Thereafter, the adapted CSP solver starts a local search for a 
new valid solution.  

Considered Decisions 
This research focuses on decision alternatives about resource quantities and resource group 
assignments to activities and the combinations of these decision alternatives that lead to a 
Pareto optimal project schedule (see Figure 10 for a DBS example for these decisions).  

Resource Group 
An activity might need more than one resource in order to be performed. The resources 
necessary to perform an activity are combined in a resource group. A change in the resource 
group assigned to an activity can affect the process method used to perform an activity. An 
example of such a change is the usage of a resource group consisting of builders to erect a 
wall using bricks. The same wall could also be built with alternative materials which would 
allow a prefabrication of the wall. In order to erect the same but prefabricated wall, a resource 
group consisting of a crane operator and a crane to lift it into place would be appropriate. 

In the case example it is possible to perform the activity Hang Drywall by using laborers 
with rolling scaffolding or laborers with a scissor lift. Accordingly, the activity Hang Drywall 
has two resource group alternatives and the construction planner will have to decide which 
one to use (Figure 13).  

 

 
Figure 13: The decision alternatives between the resource groups laborers and rolling scaffolding and 
laborers and scissor lift which can be used to perform the activity Hang Drywall. 
 

The cost estimator of the case example stated a preference to use the same type of equipment 
for all the activities. This is a typical interrelationship between decision alternatives. It has the 
implication that if one decides to use the resource group laborers and rolling scaffolding for 
the activity Hang Drywall one also has to use the same resource group for the activity Install 
Insulation and vice versa (Figure 14). 
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Figure 14: Interrelationships between decisions about resource group alternatives are modeled as 
exclusions. If Hang Drywall is performed by using laborers and rolling scaffolding the alternative laborers 
and scissor lift of the activity Install Insulation is automatically excluded and vice versa. 

These decision alternatives and their interrelationships are encoded as described in the chapter 
Genetic Encoding of Decisions.  

Resource Quantities 
The resource quantity defines the amount of a resource used to perform a specific activity.  
This information is necessary to conclude about the activity duration. The relationships 
between resources are described in the resource group. We illustrate this on the case example. 

To perform the activity Hang Drywall it is necessary that two laborers work together. 
This resource is the driving resource of the resource group laborers and rolling scaffolding 
and we shall call it the master resource. These two laborers need one rolling scaffolding to do 
their work properly. Consequently, they have a two to one relationship.  
 

 
Figure 15: This figure illustrates the relationship between the laborers and the rolling scaffolding. There 
are two laborers necessary to perform the activity Hang Drywall. These two laborers together need one 
rolling scaffolding to do their work properly. Accordingly, one laborer occupies 50% of the rolling 
scaffolding. 

From Staub-French et al. (2002) we know that this combination of resources can hang 520 sf 
of drywall per day. This results in a performance of 520 sf/day for this resource group. Since 
we know that there are 4,800 sf of drywall, we can conclude that the resource group needs 
9.23 days (~10 days) to do the task. 

From this information we can come up with three different equations (Figure 16) which 
describe the relationship between an activity and a resource group (A), between a resource 
group and a master resource (B), and between resources of a resource group (C). 

• Function A defines the relationship between the resource group amount and the 
activity duration and vice versa. It defines the duration of an activity if one 
resource group entity is used. We decided to provide the possibility to specify an 
arbitrary function to describe the dependency between resource group and activity 
duration because an increase in resources does not necessarily lead to a 
proportional decrease in activity duration (Jenkins, 2006).  
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• Function B defines the relationship between the resource group amount and the 
master resource of the resource group. It defines how much of the master resource 
is used by one resource group entity. The master resource is the resource which is 
at the root of a resource tree. It is usually the resource which defines the 
performance of a resource group. There is only one master resource per resource 
group.  

• Function C defines the relationship between parent and child resources. By 
definition, it defines how much of the child resource is used by one parent 
resource.  

 

 
 

Figure 16: The left side of this figure illustrates how the relationships between activity, resource group, 
and resources are seen in the real world. The figure on the right shows how we convert these relationships 
into three distinct functions. Function A defines the relationship between the resource group amount and 
the activity duration (and vice versa). Function B describes the relationship between the resource group 
amount and the master resource of the resource group. Function C describes the relationship between the 
parent and child resources. All these functions are normalized for one entity. 

The resource model as it is described above is very flexible and can model complex resource 
relationships which can, for instance, also contain material resources or resources which 
model space requirements (Figure 17).  
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Figure 17: Resource model describing the relationship between a pour concrete activity and the resource 
group containing the necessary resources to perform this kind of activity. 

Because we know the maximal available amount of each resource, we can calculate the 
minimal and maximal duration of each activity and its feasible durations in between. 
Consequently, we can choose between different duration decision alternatives for each 
activity.  

Combining decision genotype with schedule genotype 
The final genotype encoding used by GAPO contains the two arrays of the schedule 
optimization encoding (see chapter on GAPO Data Structure), one array for the decision 
about the assigned resource group and one array for the decision about the activity duration. 
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Figure 18: This figure illustrates how the schedule optimization genotype is combined with the decision 
genotype encoding for the decision about the resource group assignment and the decision about the 
activity duration. Through this combination, GAPO is able to concurrently expose the schedule and the 
decisions to an optimization process.  

GAPO concurrently exposes these four arrays of the genotype encoding to an optimization 
process. The quality of the resulting schedule is then measured according to the preferences of 
the involved stakeholders. Consequently, GAPO will come up with the decision alternative 
combination which results in a Pareto optimal project schedule. 

 

Decision and Schedule Quality 
The stakeholders have the possibility to measure the quality of the schedule and consequently 
the quality of the underlying decisions by using different criteria which can be dynamically 
adapted to the needs of the stakeholders. Our quality measurement model allows a grouping 
of the quality measurement criteria according to the stakeholders’ preferences. Depending on 
the stakeholders’ priorities, they can also weigh the quality measurement functions as well as 
the groupings against each other (Figure 19). Specific aspects of the quality of a candidate 
schedule solution are measured by fitness functions. A fitness function is a particular type of 
objective function that quantifies the optimality of a candidate solution so that that particular 
solution can be ranked against all the other solutions10.   
 

                                                 
10 Wikipedia: http://en.wikipedia.org/wiki/Fitness_function (Last accessed: February 11th, 2007) 
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Figure 19: The quality of a schedule candidate solution can be measured by a weighted combination of 
different fitness functions and fitness function collections. This figure shows a possible grouping of several 
plausible fitness functions. The Duration Collection contains fitness functions that measure the duration of 
a schedule. In the particular quality measurement function illustrated in this figure, the ProjectDuration 
fitness function is weighed double the amount than the ResourceDuration fitness function and the whole 
collection together has a weight factor of 2. This means that the involved stakeholders prioritize the 
ProjectDuration fitness function twice the amount than the ResourceDuration fitness function and that 
they prioritize the Duration Collection twice the amount than, e.g., the Cost Collection. The Cost 
Collection contains a fitness function that measures the cost of a schedule. There is no other fitness 
function in the Cost Collection and therefore there is no need to apply a weight factor. The Resource 
Leveling Collection contains fitness functions which measure how well the resources of a schedule are 
leveled. The Safety Collection contains a fitness function that penalizes schedules which use work areas 
simultaneously. This is done to improve safety on the construction site.  The fifth and last collection 
contains some additional functions.  

The user can choose between five major types of fitness functions which make statements 
about the schedule duration, the cost, the resource leveling, safety considerations and some 
additional fitness functions. 

Schedule duration 
ProjectDuration: Measures the total project duration. A schedule is considered superior to 
another schedule if its duration is shorter. 

ResourceDuration: Measures the total duration each resource is employed. A schedule is 
considered superior if these durations are as short as possible. It is possible to weigh the 
duration of each resource differently (e.g., to make the employment of an expensive crane as 
short as possible). 

Cost 
Cost: Integrates the amount of resources used during the project over time and multiplies this 
amount with a distinct resource cost factor. 

Resource levelling  
ResourceChange: Integrates changes in the amount of used resources and penalizes these 
changes. It is possible to weigh the changes of each resource differently.  
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ResouceGap: Penalizes durations where resources are idle between assignments. It is possible 
to weigh the idle time of each resource differently.  

ResouceWaste: Identifies and penalizes resources which are not used to their full capacity. It 
is possible to weigh each resource differently. 

Safety 
WorkAreaUsage: Penalizes schedules which use work areas simultaneously.  

Miscellaneous 
ActivityTypeGap: Penalizes schedules where activities with the same type are not performed 
in one sequence. The more often the sequence is interrupted the higher the penalty. This 
prioritizes schedules where a work force can move in, do its work and leave without having to 
return again.   

WorkAreaGap: Penalizes schedules where activities assigned to a work area are not 
performed in one sequence. The more often the sequence is interrupted the higher the penalty. 
This prioritizes schedules where work in one location of the construction site is finished 
before work forces move on to the next location.  

ResourceDistance: Measures the distance resources have to cover between assignments. A 
schedule is considered superior to another schedule if the overall distance is shorter. It is 
possible to weigh the distance of each resource differently. If activities and consequently 
resources are assigned to 3D components, the distance resources have to cover between 
assignments is defined by the distance between the 3D components. If the activities are not 
assigned to 3D components, the distance is defined by the distance between work areas.  

TimeSpaceConflict: Measures the duration where resources assigned to a specific activity 
have space conflicts with other resources assigned to other activities. A schedule is considered 
superior to another schedule if the time space conflict duration is shorter. Space requirements 
are computed based on the 3D component an activity is assigned to and the resources used to 
perform the activity. 
 

Results 
Formalizing a decision scenario as described so far in this paper allows construction planners 
to optimize the schedule and resource allocations with GAPO. We will illustrate the process 
and results of this optimization process using the case example 
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Figure 20: GUI to configure GAPO and run the optimization process. The top part of the GUI illustrates 
how the GAPO Evolution model is configured (see chapter on GAPO Evolution Model). The middle part 
shows a graph which describes the development of the best fitness value over time.  The fact that the 
graph starts to level out indicates that a Pareto optimal solution has been found. The bottom part of the 
GUI shows the actual fitness value of the so far best found solution, the actual generation of the GA 
optimization process, and how many new solutions each major evolution strategy has produced in the 
current generation.  

 
The first objective is to find those decisions which lead to the shortest project schedule as 
defined by the ProjectDuration fitness function. GAPO finds the shortest schedule by using 
the resource group laborers and scissor lift for all activities and making activities whose 
durations are as short as possible. Consequently, the maximal possible amount of each 
resource is used for most of the activities. This results in a schedule whose activities have to 
be done in sequence. According to the DBS, some activities can have durations of one or one 
and two days. These activities do not consume the maximum amount of resources. Therefore, 
if resource constraints allow it, GAPO appropriately schedules these activities in parallel 
(Figure 21) making the schedule duration as short as possible. 
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Figure 21: Resulting schedule if GAPO is configured to search for the decisions which lead to the shortest 
schedule as defined by the ProjectDuration fitness function.  

Our second objective is to find the cheapest project schedule as defined by the Cost fitness 
function. GAPO finds a schedule which uses the resource group laborers and scissor lift for 
all activities. GAPO decides about the duration of the activities in such a way that it is 
possible to schedule the activities concurrently (Figure 22).  
 

 
Figure 22: Resulting schedule if GAPO is configured to search for the decisions which lead to the cheapest 
schedule as defined by the Cost fitness function. 

This result does not match our initial intuition. The cost of the resource scissor lift with $130 
per day is much higher than the cost of the resource rolling scaffolding with $40 per day. 
However, the fact that the activities can be performed faster by using scissor lifts affects the 
overall cost of the schedule in two ways. First, the cost increase of using scissor lifts is 
smaller then the factor of four as one might expect from the cost ratio. Second, the 
employment duration of the resource laborers decreases by using scissor lifts. This results in a 
further reduction of the overall costs. This illustrates how GAPO’s optimization method and 
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exhaustive search for an optimal decision given the user’s criteria can find solutions whose 
benefits are not immediately apparent. 

A subsequent sensitivity analysis shows that the cost of scissor lifts would have to rise to 
approximately $145 per day to make it worthwhile to choose the cheaper but less effective 
rolling scaffolding. 

Limitations 
Changes in the process methods can also lead to changes in activities. Consider the example 
about the erection of a wall using a resource group consisting of builders or a resource group 
consisting of a crane operator and a crane which lifts a prefabricated wall in place. If this case 
is planned in more detail, one would have to add an activity which makes sure that the bricks 
and cement mix are ready when they are needed by the builders. This is not necessary for the 
resource group which uses the prefabricated wall. Our genotype encoding builds on the 
assumption that the underlying activity network (activities with precedence constraints) does 
not change. This allows preprocessing steps which help to speed up the overall optimization 
process. This makes it impossible to delete or replace existing activities or introduce new 
activities into the network. In order to support any kind of process method changes, it would 
be necessary to support changes in activities. 

Currently, GAPO only supports activity networks with finish-start constraints. Project 
planners also use start-start, finish-finish, and start-finish constraints with different lag 
durations. This limitation will need to be eliminated for GAPO to become a tool that can be 
used in industry. However, this adaptation should be straightforward since it is possible to 
transform an activity network with any kind of constraint into an activity network having only 
finish-start constraints. This procedure implies that the durations of newly introduced 
activities are dependent on durations of other activities. Because GAPO can change resource 
amount assignments which results in activity duration changes, it becomes necessary to 
introduce a new kind of constraint which makes durations of activities dependant on durations 
of other activities.  

Practical significance 
GAPO needs approximately 30 to 40 seconds to find a Pareto optimal decision combination 
for the case example which leads to a Pareto optimal schedule which conforms to the quality 
measurement criteria defined by the involved stakeholders. This speed and the ability to 
dynamically adjust and combine the quality measurement criteria the decisions are based on 
shows the power of the scheduling decision optimization tool described in this paper. It allows 
stakeholders to determine good decisions quickly and negotiations or alternative exploration 
leading to the final decision can be done in real time, for instance during a meeting, such  as 
Integrated Concurrent Engineering (ICE) sessions where short latency is extremely important 
(Chachere, 2004). 

The decision genotype encoding as it is described in this research can be used to represent 
arbitrary decision problems. This makes it possible to reuse the described concept for decision 
optimization problems which focus on other problems than project planning. 

Next Steps 
Next to eliminating the limitations described in the chapter on Limitations we are also 
considering building the decision genotype encoding and the optimization algorithm into 
Kam’s Decision Dashboard (Kam, 2006). This would enhance the Decision Dashboard’s 
functionality and a quick optimization of arbitrary decisions would become possible. 
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The next level in automated project planning and automated decision making would be to 
include design alternatives in the optimization. Having the computer generate new design 
alternatives promises to be a very interesting further research topic. Koza et al. (2003) have 
already demonstrated that the computer is capable of generating new patentable innovations. 
Their findings might provide useful ideas about how computers could be used to generate new 
construction process designs. 

Summary 
This paper illustrates how a Genetic Algorithm is used to concurrently optimize schedule 
decision alternatives as well as the schedule itself. The decision making stakeholders can 
dynamically adapt the quality measurement criteria according to their preferences. This 
research focuses on decisions alternatives about resource quantities and resource group 
assignments to activities. Nonetheless, the decision genotype encoding is generalized in such 
a way that it could be reused to optimize arbitrary decision optimization problems. The 
overall performance of the optimization algorithm shows a short latency in acquiring a Pareto 
optimal decision alternative combination. This suggests that the algorithm could be utilized 
for decision optimization assignments where short latency is extremely important like 
meetings or ICE sessions.  
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