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SUMMARY: Architecture, Engineering, and Construction (AEC) professionals typically generate and analyze 
very few design alternatives during the conceptual stage of a project.  One primary cause is limitations in the 
processes and software tools used by the AEC industry.  The aerospace industry has overcome similar 
limitations by using Process Integration and Design Optimization (PIDO) software to support Multidisciplinary 
Design Optimization (MDO), resulting in a significant reduction to design cycle time as well as improved 
product performance. This paper describes a test application of PIDO to an AEC case study: the MDO of a 
classroom building for structural and energy performance. We demonstrate how PIDO can enable orders of 
magnitude improvement in the number of design cycles typically achieved in practice, and assess PIDO’s 
potential to improve AEC MDO processes and products.  
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1. INTRODUCTION 

The advancement of Building Information Modelling (BIM) and analysis methods now allows diverse 
disciplines to simulate building performance in a virtual environment.  The number of performance criteria that 
can be analyzed from product models includes architectural, structural, mechanical (energy), acoustical, lighting 
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and an expanding list of other concerns (Fischer 2006).  Performance-based design supported by product models 
is becoming state-of-the-art practice (Hänninen 2006). 

However, the potential of this technology to inform design decisions has not yet been fully realized because 
current tools and processes do not support the rapid generation and evaluation of design alternatives using 
product models.  According to a survey of a leading firm (Flager and Haymaker 2007), it takes architects and 
engineers over one month to complete a design cycle, which involves generating and analyzing a single design 
alternative using these methods.  During the conceptual design phase, architects and engineers average less than 
three design cycles per project (Fig. 1, left).  The majority of engineers surveyed indicated that they used 
simulation tools primarily to validate a chosen design alternative, not to explore multiple alternatives.  
Consequently, AEC professionals often make design decisions with little or no information about the 
performance of the chosen design compared to alternatives.  

AEC professionals’ restricted exploration of the design space is the result of a number of tool and process 
limitations.  One limitation is that the vast majority of Computer-Aided Design (CAD) tools used in the industry 
do not allow the product to be represented parametrically.  Parametric representations facilitate the rapid change 
of geometric and non-geometric variables according to particular design logic (Shah and Mäntylä 1995; Shea, 
Aish et al. 2005). A second limitation is that these tools do not represent information in a form that facilitates 
multidisciplinary analysis using simulation-based Computer-Aided Engineering (CAE) tools. Many in the field 
have written about the inability of the tools used by different disciplines to share data effectively (Gallaher, 
O’Connor et al. 2004; Wang, Rivard et al. 2005; Holzer, Tengono et al. 2007). As a result of these limitations, 
the same survey shows that design professionals now are spending less than half of their time doing design and 
analytic work where they can use their specialized expertise to add the most value to the project.  The majority of 
their time now is spent managing design information, including manually integrating and coordinating 
discipline-specific design and analytical representations (Fig. 1, right). 

 

FIG. 1: AEC professionals only consider a few design alternatives due to significant time spent managing 
information 

Researchers in the aerospace and automotive industries have developed methods for Multidisciplinary Design 
Optimization (MDO) to address a similar set of limitations in these industries.  MDO attempts to formalize 
problem decomposition and coordination among groups working on the design of complex engineering systems 
(AIAA 1991).  Systematic procedures make it easier to divide work between designers and computers 
(Vandenbrande, Grandine et al. 2006; Pahl, Beitz et al. 2007); including linking separate CAD/CAE tools to 
ensure a rapid and accurate flow of data.  Potential benefits include compressing design cycle time, enabling 
designers to consider many more design options and select designs with improved product quality and 
performance. 

MDO methods have been successfully applied in the aerospace and automotive industries (Sobieszczanski-
Sobieski and Haftka 1997; Chen and Usman 2001), but their application to AEC practice has been comparatively 
modest.  Previous research studied Boeing’s MDO of a hypersonic vehicle, and speculated that the application of 
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these methods and technology to the AEC industry could prove beneficial (Flager and Haymaker 2007).  
Boeing’s MDO process was supported by Process Integration Design Optimization (PIDO), a class of 
commercial software commonly used in the aerospace industry to help engineers automate and manage data flow 
between CAD/CAE tools and to optimize one or more aspects of a product design by iterating across a range of 
input parameters towards a set of target conditions.  

The purpose of this paper is to assess the potential of PIDO tools to facilitate more effective MDO processes in 
the AEC industry.  There are significant differences between AEC and the aerospace and automotive industries 
in terms of both their organizational structure and the products they produce.  The next section of this paper 
presents a partial list of requirements for applying MDO to AEC projects, and a brief evaluation of relevant 
existing tools with respect to these requirements.  The third section presents a case study that is designed to test 
the application of PIDO on an AEC project.  The case study is a MDO of a classroom building for structural and 
energy performance.  We conclude with an evaluation of the case study results and discuss the potential for using 
PIDO to support MDO on AEC projects.   

2. MDO PROCESS REQUIREMENTS AND EXISTING TOOLS 

2.1 Requirements for Multidisciplinary Optimization Processes in AEC  

This section lists partial requirements that an MDO method for AEC should meet. We developed the 
requirements from literature and our own industry experience. 

2.1.1 Rapidly Generate Design Alternatives 

Researchers argue that the ability to investigate a large number of design alternatives is critical to finding 
successful designs (Akin 2002).  Practitioners must therefore be able to define and modify geometric and non-
geometric parameters of a design alternative in a flexible user-friendly environment without significant effort to 
regenerate geometry and re-assign attributes.  Parameterization of design increases complexity of both the design 
task and the software interface since designers must model not only the artefact being designed, but also a 
conceptual structure that guides variation. Once design intent has been captured by parametric relationships, 
however, software automation can significantly reduce the time required for change and reuse (Aish and 
Woodbury 2005).   

2.1.2 Rapidly Analyze Design Alternatives 

Once an alternative is generated, practitioners must be able to assess the performance of the alternative across a 
wide range of criteria in order to make an informed design decision.  To manage the large number of alternatives 
generated, practitioners must be able to automate the analysis of parametrically generated design alternatives.  
Increased automation frees practitioners from the repetitive task of manually integrating analytical 
representations, allowing them to spend more time evaluating the results and making design decisions (Pahl, 
Beitz et al. 2007). 

2.1.3 Integrate Conventional CAD/CAE Tools 

Practitioners select CAD/CAE tools based on a variety of criteria including capability, performance, usability 
and cost.  In an MDO environment, practitioners need to be able to use tools they trust and with which they are 
familiar.  Therefore, the MDO method should support the effective automation and exchange of information 
between tools of the practitioner’s choice. Such interoperability may occur through either proprietary or open 
standards-based data models such as Industry Foundation Classes (IAI 2008), or through direct access to 
Application Programming Interfaces (Myers and Rosson 1992). 

2.1.4 Customize Optimization Strategies  

The selection of an appropriate optimization strategy depends upon the formulation of the optimization problem, 
including the objective, constraints, and the number and type (i.e. discrete or continuous) of design variables.  A 
variety of optimization strategies exist to solve different types of problem formulations.  For example, formal 
methods such as mathematical programming (Fleury and Braibant 1986) and optimality criteria (Berke and Khot 
1987) generally perform well when the problem can be assumed to be continuous, while heuristic methods such 
as evolutionary algorithms (EAs) (Deb 1999; Machwe, Parmee et al. 2005; Parmee, Abraham et al. 2008) tend to 
be superior when applied to problems with non-linear, stochastic, or chaotic components.  Practitioners therefore 
need to customize optimization strategies based on the particular requirements of the design problem. 
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2.1.5 Visualize Trade Spaces 

Applying computational optimization methods to conceptual design has proven difficult because a problem 
typically has multiple objectives and is imprecise with respect to one or more of these objectives (Shaw, Miles et 
al. 2008).  In addition, design objectives and constraints often change during the design process based on 
observations and interpretations of results (Gero and Kannengiesser 2004).  The interaction of human expertise 
and computer-based exploration therefore is essential for the process to be successful.  Designers need to be able 
to understand general performance trends as well as variable sensitivities in order to make informed decisions in 
guiding the optimization process. Advanced plotting tools that enable multi-dimensional data visualization such 
as Pareto (Grierson and Khajehpour 2002; Khajehpour and Grierson 2003; Stump, Yukish et al. 2004) and 
Parallel Coordinate (Parmee 2005; Parmee, Abraham et al. 2008) plots have proven useful for this purpose. 

2.1.6 Communicate Process and Information Dependencies 

Practitioners must be able to understand the steps involved in the MDO process easily, as well as how 
information flows between process tasks.  This is important for quality control purposes (Baldock, Shea et al. 
2005) as well as to improve the reusability of the process on future projects (Lee, Sacks et al. 2007), since it may 
involve the modification of the original process by new personnel.  Researchers have developed methods to 
visually communicate process and information dependencies, e.g. (Steward 1981; Smith and Eppinger 1997; 
Haymaker, Kunz et al. 2004). 

2.2 Strengths and Limitations of Existing Tools in Meeting the MDO Requirements 
This section briefly discusses several design optimization techniques/tools in the context of the AEC 
requirements outlined in the previous section. 

2.2.1 Computing Platforms for Structural Optimization 

The first application of computational optimization methods to structural design followed the development of 
reliable Finite Element Analysis (FEA) methods in the 1950s and 1960s.  Subsequently, researchers have 
focused on (1) developing algorithms capable of dealing with a variety of different types of optimization 
formulations, (2) formulating decision-making methods for problems with multiple objectives, and (3) 
integrating conventional CAD/CAE software into the optimization process. 

Developing robust and efficient optimization algorithms to deal with structural topology, shape and member 
sizing has been the focus of a large body of work.  Researchers have experimented with evolutionary computing 
methods, including genetic algorithms (Grierson and Pak 1993; Deb and Gulati 2001; Togan and Daloglu 2008), 
genetic programming (Soh and Yang 2000; Baldock and Shea 2006; Giger and Ermanni 2006; Hasançebi 2008) 
and simulated annealing (Kirkpatrick, Gelatt et al. 1983) to sample and find areas of good performance in highly 
complex, multi-dimensional search spaces.  This research has enabled designers to optimize fairly large, 
complex problems, including electric transmission towers (Shea and Smith 2006) and bracing topologies for tall 
building structures (Baldock, Shea et al. 2005).  However, these methods have not supported multi-objective 
optimization, nor do they adequately visualize the optimization process and results. 

Optimization methods that are able to manage multiple, conflicting objectives has been an active field of 
research in recent years.  Khajepour and Grierson have developed methods involving multi-objective genetic 
algorithms (MOGAs) and Pareto optimization to investigate trade-offs for high-rise structures (Grierson and 
Khajehpour 2002; Khajehpour and Grierson 2003).  Grierson subsequently has developed a Multi-Criteria 
Decision Making (MCDM) strategy that employs a trade-off analytic technique to identify compromise designs 
in which competing criteria are mutually satisfied in a Pareto-optimal sense (Grierson 2006; Grierson 2008).  In 
related work, Parmee and Machwe have led efforts to incorporate aesthetic criteria into the decision-making 
process through the use of interactive methods and machine learning that incorporate designer preferences into 
the computational optimization process (Machwe, Parmee et al. 2005; Machwe and Parmee 2007).  The 
methods, however, are not integrated with conventional CAD / CAE tools nor can they incorporate parameters 
that lie outside of the structural design domain. 

Related research has created integrated, performance-driven, generative design tools that link CAD, FEA and 
optimization software.  To guide this generative method, Shea et al incorporated an optimization process called 
Structural Topology and Shape Annealing (STSA), which combines structural grammars; performance 
evaluation, including structural analysis and performance metrics; and stochastic optimization via simulated 
annealing (Shea, Aish et al. 2005).  Similarly, Holzer et al used a parametric CAD tool linked with a proprietary 
optimization algorithm to optimize the shape of a stadium roof structure (Holzer, Hough et al. 2007).  This work 
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has shown that software integration can lead to improved collaboration among multiple disciplines (i.e. 
architects and structural engineers) and to better performing designs.  However, these systems do not provide 
capabilities to adequately visualize multi-dimensional design spaces or to decide between competing objectives.   

2.2.2 Computing Platforms for Energy Optimization 

Government and academic researchers have developed a variety of optimization platforms for energy 
performance.  National Renewable Energy Laboratory (NREL) developed BEopt and OptEPlus.  BEopt uses the 
DOE2 and TRNSYS simulation engines and a sequential search technique to optimize building designs 
(Christenson, Anderson et al. 2006).  The application includes a Graphical User Interface (GUI) that allows the 
user to select from a range of predefined and discrete building alternatives to be used in the optimization process. 
BEopt allows the user to rapidly generate and visualize the design space through a browser, but its flexibility is 
limited as a result of having predefined building alternatives and its inability to consider a wide range of 
objective functions.  OptEPlus utilizes EnergyPlus and various search routines to identify optimal buildings 
designs for energy usage (Ellis, Griffith et al. 2006).  The framework consists of a collection of EnergyPlus input 
and output files, system directories, and computer routines that use an XML data model to transfer information 
among the various components. This application integrates with multiple data sources, is modular to allow 
distributed programming, and supports selection of automation and optimization strategies. Visualization of the 
trade space however is limited, and it does not support multidisciplinary optimization. 

Recently, Evolutionary computing (EC) has been explored in energy performance analysis (Wright, Loosemore 
et al. 2002; Fong, Hanby et al. 2006).  GENE_ARCH combines the use of a Genetic Algorithm (GA) and DOE-2 
for constraint-based, multi-objective optimization (Caldas 2006).  The application has advanced geometry 
generation functionality, is scalable, and has good visualization capabilities.  GENE_ARCH, however, does not 
allow for multi-disciplinary optimization using multiple simulation engines.  GenOpt is a generic optimization 
program that can be used with any simulation program that has text-based input and output, such as EnergyPlus, 
DOE-2, SPARK, BLAST, TRNSYS, or any user-written code (Wetter 2000).  This tool is able to access a library 
of different optimization algorithms, and can use either continuous or discrete variables. The modularity, 
flexibility, and ability to select from a range of optimization strategies make GenOpt a robust platform, but its 
visualization capabilities are limited. 

2.3 PIDO Software Framework 
Process Integration and Design Optimization (PIDO) comprise software and design techniques intended to help 
engineers and analysts (Daratech 2001): 

• Automate and manage the setup and execution of digital prototyping, simulation, and analysis 
tools  

• Integrate and/or coordinate analysis results from multiple physical domains in order to produce a 
more holistic model of product performance 

• Optimize one or more aspects of a product design by iterating analyses of the design across a range 
of input parameters toward a specified set of target conditions. 

After evaluating commercially available PIDO software against the requirements listed in Section 2.1, we 
selected Phoenix Integration’s ModelCenter® to implement the case study.  ModelCenter allows users bring 
commercial or proprietary software tools into a common environment using a software “wrapper” or “plug-in” 
which interfaces with the tool to be automated.  Once an integrated model has been built, ModelCenter’s design 
exploration and optimization tools can be used to perform optimization and trade-off studies, and to compare 
different design options.  

The next section describes a case study application of ModelCenter to support MDO on a classroom building.  
We use this case study to assess the extent to which an MDO process implemented in ModelCenter can satisfy 
the requirements of the AEC industry as defined above. 

3. CASE STUDY 

3.1 Overview 
The case study we chose to evaluate was a single room classroom building, with windows on two opposite 
facades and a steel frame structure (Fig. 2, left).  We evaluated the classroom design for its structural integrity, 
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energy consumption, daylighting as well as initial capital and life-cycle costs.  We chose San Diego, CA as the 
building’s location for the purpose of determining weather conditions, building regulations and energy costs.  

The objectives for the case study were to: 

• Minimize the capital cost of the building’s steel frame 
• Minimize the life-cycle cost for the building’s operation  

The design constraints were: 

• Structural safety: All the members of the steel frame had to meet building code requirements for 
strength (Code 1997). 

• Daylighting performance: Maximum annual average lighting power multiplier of 0.6. 
• Space: Floor area fixed at 960 sq ft, and the single-story height fixed at 10 feet. 

The design variables for the study are shown in Fig. 2, right. 

FIG. 2: Design variables for classroom case study 

 

Next, we discuss the design process, optimization, and results in three parts: structural, energy, and combined 
structure and energy.   

3.2 Structural Design Process, Optimization, and Results 
The structural optimization process model for the classroom case study is shown in Figure 3 below.  The model 
representation is based on the Design Structure Matrix (DSM) (Steward 1981) and Narratives (Haymaker, Kunz 
et al. 2004; Haymaker 2006).  The five major components are represented along the downward diagonal of the 
diagram, going from left to right.  In DSM, horizontal arcs represent the outputs from tasks, while vertical arcs 
represent inputs to the tasks.  The coupling between modules is represented by a solid circle.   Couplings above 
the diagonal of the DSM are feed-forward couplings, representing sequential execution. Couplings below the 
diagonal of the DSM are feedback couplings, representing iteration.  

The major components in the process are described in more detail below, along with the optimization 
formulation and results. 
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FIG. 3: Structural design, analysis, and optimization process 

 

3.2.1 Geometric Design 

The geometry for the classroom building was created using the parametric CAD software Digital Project (DP 
2008), and is shown in Fig 2, left.   The structural analysis representation consisted of centreline geometry for all 
of the structural members in the model.  There were 9 beams spanning the roof, and 8 girders transferring the 
load to 10 supporting columns. The independent variable in the structural geometry model is building length.  
One of the challenges associated with the structural model was that varying the geometry of the building 
changed the loading on the structural members.  To ensure that the loading remained accurate for all possible 
geometric configurations, parametric loading panels were defined for each structural member in the model.  The 
area of these panels corresponded to the tributary area of the building that each member was responsible for 
supporting.  The area of each panel updates automatically when the building geometry changes.  The point 
coordinates defining the structural members and the loading panels are automatically loaded into the structural 
analysis software.  

3.2.2 Structural analysis  

The Finite Element Analysis (FEA) for the structure was performed using GSA (GSA 2008).  Once the 
centreline geometry for the structural members is imported into GSA, all of the structural properties for the 
members including steel sections, member end conditions, and loading are defined manually in GSA.  We 
considered three load cases in the analysis: (1) dead load, consisting of the weight of the structure, (2) live load, 
consisting of the weight of occupants and impermanent furniture, equipment etc., and (3) wind loads for the site.  
We then combined these loads into five-factored load combinations as specified by the building code.  Once all 
of this information was specified in GSA, the FEA was run and internal forces and moments for each member 
were exported by load combination to the code check component along with selected member properties.  For 
each subsequent iteration, the point coordinates defining the structural members and the loading panels were 
updated automatically. 

3.2.3 Structural code check and cost calculator 

The structural code check and cost calculator is a custom Visual Basic application.  The code check component 
determines if the structural members have sufficient strength to resist the applied loading as specified by the 
building code (Code 1997).  This is determined by calculating the factor of safety (FS) for each member under 
each load combination, where: FS = demand (D) / capacity (C).  The demand (D) is calculated based on the 
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applied forces and moments from the structural analysis.  The capacity (C) is calculated based on applied loading 
and the member properties.  A FS of less than unity indicates that a particular member meets all of the structural 
design requirements for strength.  A constraint in the optimization process was to have the FS for all members be 
less than one.  This was expressed as a single constraint in the formulation of the optimization problem (max 
(FS) < 1).  The cost calculator component calculated the total cost of the building’s steel frame based on the sum 
of the weight of each member multiplied by an assumed price of steel per unit weight. 

3.2.4 Structural optimization 

Our preliminary investigation of the design space indicated that it was highly non-linear; meaning small changes 
in variable values sometimes resulted in large changes in performance.  This observation, combined with the 
optimization formulation being comprised of only discrete variables, led us to choose a genetic algorithm to 
perform the structural steel optimization study.  Genetic algorithms utilize processes analogous to natural 
selection to stochastically search for the best designs.  Since they do not require objective or constraint gradient 
information, genetic algorithms are able to search discontinuous and “noisy” design spaces effectively. 
Compared to gradient-based optimization algorithms, we concluded genetic optimizers are much more likely to 
find globally optimal designs for this problem.  

We configured the optimization problem in ModelCenter’s genetic algorithm-based optimization tool called 
Darwin (Darwin 2004).  The size of the design space for a section optimization study consisted of approximately 
29,575 possible designs.  In order to optimize for structural geometry, a section optimization was conducted for 
each geometric configuration.  We looked at four different building lengths: 24ft, 32ft, 40ft, and 48ft. The 
following genetic algorithm parameters were used for the optimization run: Population Size = 25; Probability of 
Crossover = 100%; Probability of Mutation = 5%; Convergence Criteria: Fixed number of iterations = 250.  

3.2.5 Results 

Our objective in the structural optimization process was to minimize the cost of the steel frame while satisfying 
structural safety criteria for strength design.  The genetic algorithm described above converged in approximately 
300 iterations (1% of the total possible designs).  A single iteration took approximately 10 seconds running on 
desktop PC with a 3.00GHz processor and 8GB of memory.   

The scatter plot (Fig. 4) shows the results of the section optimization for beams in the structure.  Each design 
candidate (consisting of a unique set of steel section sizes) is represented as a single point.  The best performing 
designs (i.e. cheapest designs that satisfy the constraints) are dark blue.  Grey points represent infeasible designs 
(i.e. those which do not satisfy the structural strength criteria). The two different swaths of design points shown 
in the plot correspond to the two different depths of beam section that were considered in the optimization 
(W12x and W14x).  From the graph, one can quickly see the most efficient section sizes for the given problem as 
well as the trade off between different section sizes and depths.     

 
FIG. 4: Beam section optimization results 
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The parallel coordinates plot (Fig. 5) provides an alternative view of the design space.  The ranges of values for 
each variable are represented as a vertical axis (increasing in value from the bottom of the axis to the top).  Each 
coloured line represents a different design. As in the scatter plot, the darker blue lines represent the best designs.  
The point where each line intersects a vertical axis represents the value of the corresponding design variable for 
a particular design.  Visualizing results in this fashion allows the designer to quickly identify the range of 
variable values that often result in the best design configurations.  For example, we can see that the best designs 
all have a small range of beams section sizes in the two depths considered (as shown in the scatter plot).  The 
best (blue) designs also pass through the entire range of column sections, indicating that the choice for column 
size from the available alternatives has less influence on design performance. 

The parallel coordinates plot also shows that designs which have a larger building length (see Fig. 2) perform 
better.  This is what we might expect based on structural engineering principles given that roof beams are simply 
supported and governed by gravity loading.  As the building length increases, the loading (w) increases, but the 
beam span (S) is reduced due to the floor area constraint described in the overview.  Therefore, as expected, the 
maximum bending moment decreases as the building gets longer, allowing for lighter beam sections and a 
cheaper overall design.   

 

 
FIG. 5: Impact of structural design variables on building steel cost 

 

3.3 Energy Design Process, Optimization, and Results 
This section describes the energy design process including geometric design, analysis, optimization, and results. 
The process is shown in Fig. 6. 

 
 

 
FIG. 6: Energy design, analysis, and optimization process  
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3.3.1 Geometric Design 

The geometry was generated using the same Digital Project model described in section 3.2.1.  The design space 
was constrained to be a rectangular room with two windows on the grid east and west walls. The independent 
variables were building orientation, building length, and window-to-wall ratio (See Fig. 2).  The windows were 
centred on their respective walls and the aspect ratio of the windows was constrained to be the same as the wall.  
A daylighting sensor location point was placed in the centre of the room two feet above the ground level.  Wall, 
roof, and floors were modelled as single planar surfaces.  Four node coordinates for each wall and window 
surface, and the daylighting sensor were then passed onto the energy analysis component. 

3.3.2 Energy analysis 

The thermal performance of the classroom was analyzed using EnergyPlus. The thermal runs simulated the 
energy requirements to maintain a space temperature of 70-73oF between 7am-4pm Monday-Friday (operation 
hours for the classroom) with setbacks of 50oF and 90oF for off operation hours during the winter and summer, 
respectively. The building was assumed to operate all year, except holidays. The HVAC system used was a 
Packaged Terminal Air Conditioner (PTAC) with gas heating and electric cooling. The lighting load was set at 
1.5 watts/ft2, the equipment load at 1.0 watts/ft2, and the number of occupants for the classroom was 20. The 
wall/roof construction had a structural steel frame with rigid board insulation and the floor was an un-insulated 
concrete slab. The windows were modelled as argon filled double pane and low-e. 

For the process to be automated, the EnergyPlus input file had to be parametric to absorb changes to the building 
node coordinates and the daylighting sensor location. This was done using a batch file format that gathered 
together the input data and modified the EnergyPlus input file to conduct the runs.  

The outputs from EnergyPlus consisted of the annual energy intensity, cooling energy intensity, heating energy 
intensity, lighting energy intensity, solar heat gain intensity, and annual operating costs for gas and electricity. 
The unit cost for gas and electricity were based on local utility rates. Total life-cycle operating costs were 
calculated over a lifetime of 30 years in current dollars using a 3% discount rate. The EnergyPlus simulation also 
provided us with values for the hourly lighting power multiplier for the building, which was averaged over the 
total number of operational hours during the year to provide a single representative annual average lighting 
power multiplier for the design. The lighting power multiplier is the fraction of artificial lighting that is required 
to meet the design luminance in the space.  A lighting power multiplier of 0 means the space is completely day 
lit and 1 being completely lit by artificial lights.  

3.3.3 Energy optimization 

A Design of Experiments (DoE) was conducted to evaluate performance trends over the entire spectrum of the 
design space.  The DoE tool in ModelCenter was used to gather information about the analysis model’s behavior 
by running it for a number of different input variable combinations.  The DoE tool is a convenient way to begin 
exploring the design space, and is often the starting point used to validate more sophisticated model methods like 
optimization.  N-dimensional parametric studies can be performed by specifying the number of samples for each 
of the input variables or you can choose from a variety of pre-defined “experimental designs”, including Full 
Factorial, Central Composite, Latin Hypercube, or a customized experiment.  In this case, a customized factorial 
was used involving the evaluation of 1881 different designs.  

We chose to compare the results of the DoE with the results of the optimization to evaluate differences in the 
two methods in terms of performance of the ‘best’ design and the required simulation time.  A gradient-based 
algorithm was selected to perform the optimization study because the optimization formulation comprised a 
single objective and continuous design variables.  The algorithm chosen was called Design Explorer 
(DesignExplorer 2004), which was developed by Boeing to solve complex problems characterized by long 
running models, noisy search spaces, and multiple optima. It intelligently uses non-physics based mathematical 
models to reduce the number of required model executions. It is a global search algorithm, so it is not likely to 
get stuck in local optima. 

The design variables were building length, window-to-wall ratio, and orientation (Figure 2, right).  The 
performance constraint was the annual average lighting power multiplier.  We set the single objective function to 
minimize total life-cycle operating costs.  
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3.3.4 Results 

We explored the data generated by the Design of Experiments (DoE) including surface charts to understand 
general trends and glyphs charts to study data point spreads.  In our particular case study, the tradeoffs between 
daylighting performance and energy performance were evaluated by varying window size, building length, and 
orientation.  Larger windows generally result in improved daylight in the space, a reduction in artificial lighting 
(assuming photo sensors and dimmable ballasts for the lighting), and a consequent reduction in ventilation and 
air-conditioning energy consumption due to the reduced heat load from the lighting energy.  However, the larger 
windows also result in larger solar heat gains to the space and conductive losses through the fenestration, which 
increase the load on the HVAC system.  In addition, changes to the relative total window to wall area of the 
building changes the relative envelope conductive heat gains/losses.   
 

 
FIG. 7: Glyph chart of building window and wall area vs. lifecycle operating cost  

The glyph chart in Fig. 7 shows that the designs with the lowest total life-cycle energy costs are those with the 
highest total wall area and the lowest total window area.  Each point represents a design alternative, with blue 
representing the best and red the worst performing designs.  Intuition would suggest that total energy 
consumption would be minimized when both window area and wall area are minimized; however the chart 
shows that due to the geometric constraints, a design that minimizes total window area cannot result in a total 
wall area in the lower range of that parameter.  This is an example of how data visualization capabilities in 
ModelCenter can allow a designer to interpret what may otherwise may be a complex and non-transparent 
solution space, in this case why architectural constraints prevent energy consumption from reaching the lowest 
possible value for the given floor area. 

 

 
FIG. 8: DoE results vs. optimization results.  Both plots show building orientation and length vs. lifecycle 
operating cost. 
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Figure 8 compares the results of the DoE with the optimization.  The correlation between the optimum designs 
using DoE and the optimizer was extremely high, with the optimizer identifying the best performing design with 
almost the exact same design characteristics as the best design identified in the DoE. The daylighting 
performance constraint applied in the optimization resulted in little variation in optimum designs since the vast 
majority of the designs had annual average lighting power multipliers less than 0.6 due to the shallow range of 
building depths relative to the range of window areas present in the design space.  The number of simulations 
required to achieve the optimum design was reduced from 1881 to 93 (95%). 

3.4 Multidisciplinary Optimization and Results 
The following section describes the combined structural and energy MDO formulation and the results. 

3.4.1 Multidisciplinary Optimization 

The multidisciplinary geometric design and analysis inherited the characteristics and parameters of the structural 
and energy analyses.  The fact that the optimization formulation was comprised of both continuous and discrete 
variables and multiple objectives led us to choose Darwin (Darwin 2004) to perform the multidisciplinary 
optimization study.  For multi-objective problems, Darwin will generate Pareto trade-off curves, with the points 
on the curve all being optimal in the sense that each represents a design point at which it would be impossible to 
improve one of the objectives without degrading the other(s).  The objective functions, constraints, and design 
variables used for the combined optimization were the same ones listed in Fig. 2.  Building orientation was 
varied from 0-180 degrees (in 10 degree increments), the building length varied from 4-14 meters (in 1m 
increments), and window-to-wall ratio from 0.1-0.9 (in 0.1 increments).  For the structural analysis, there were 
65 types of girders, 7 types of columns, and 65 types of beams.  The design space had a population of 
approximately 55x106 possible designs. The following genetic algorithm parameters were used for the 
optimization run: Population Size = 25; Probability of Crossover = 100%; Probability of Mutation = 5%; 
Convergence Criteria: Fixed number of iterations = 250. The MDO process is shown in Fig. 9. 
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FIG. 9: Multidisciplinary design, analysis, and optimization process 

 

3.4.2 Results 

The optimization run required 5,600 iterations (0.01% of the total number of possible designs).  This took 
approximately 34 hours on a desktop PC with a 3.00GHz processor and 8GB of memory.   

The trade-off between structural costs and energy (operating) costs is shown in Fig. 10.  The designs marked 
with a black ‘+’ are Pareto optimal.  One can see that the best designs from the perspective of operating cost 
have a relatively high capital cost and vice versa. The ‘optimal’ design depends on the client’s preference.  Only 
by analyzing and visualizing a large number of design alternatives is it possible to accurately characterize these 
tradeoffs.  For example, Fig. 11 illustrates how building length impacts the first and life-cycle costs of the 
classroom.  The cost of the structure decreases as the length of the building increases because as the length of the 
building increases, the beam span is reduced, resulting in a more efficient (and cheaper) structural frame.  From 
the perspective of operating costs, however, the building becomes less efficient as the building length increases.  
This is due to several factors, including greater surface area of building skin, which resulted in greater 
conductive losses, and a larger wall area for windows to meet day lighting requirements, which resulted in 
increased solar gains and cooling requirements.  These figures are examples of how designers can use PIDO to 
better understand performance trade-offs, allowing them to make more informed decisions. 

 
FIG. 10: Pareto front showing the trade-off between minimizing life-cycle energy costs and structural first costs 
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Fig. 11: When structural costs (left) and energy costs (right) are plotted against building length, the Pareto 
optimal designs show opposite performance trends 

4. CONCLUSIONS AND FURTHER WORK 
AEC practitioners today typically create very few design alternatives before choosing a final design.  Design 
theory argues that this leads to underperforming designs.  The aerospace and automotive industries have 
overcome similar limitations using MDO methods implemented in PIDO software, resulting in reduced design 
cycle time and improved product performance.  For the AEC case study presented, we found that PIDO software 
enabled orders of magnitude improvements in the number of design cycles when compared to conventional 
methods. Instead of the usual two to three design cycles in a typical project, using PIDO we were able rapidly to 
analyze over 5,000 design alternatives and choose from a range of near-optimal solutions. We now discuss our 
observations with respect to the MDO requirements we outlined in section 2.1. 

4.1 MDO Process Requirements and PIDO Case Study Application 
4.1.1 Rapidly Generate and Analyze Design Alternatives 

Alternatives were automatically and rapidly generated using the parametric CAD model.  The challenge was in 
creating and integrating the geometry for the analysis representation into a common parametric logic.  This step 
required close coordination among the design team members and thorough testing to ensure that the analysis 
representations were valid over the full range of design parameters.  Once a robust parametric model was 
developed, ModelCenter successfully automated the creation of analytical representations for structure and 
energy.  In this case study, the space of alternatives we explored was limited because the classroom was 
geometrically simple and topological variations were not explored.  Future work should test alternative topology 
generation techniques in the PIDO environment. 

Due to the simplified nature of our case study, simulation times for both structural and energy performance were 
minimal.  Even with minimal simulation times and a limited number of design variables, our MDO of 5,600 
alternatives took 34 hours.  Practitioners typically work on larger, more complex projects with much larger 
design spaces.  On projects of this scale, the computation time required for MDO may be a major barrier.  This 
obstacle, however, may be addressed with the utilization of distributed and parallel computing and improved 
analysis application performance and wrapper communication. 

4.1.2 Integrate Conventional CAD/CAE Tools 

ModelCenter was able to integrate and automate the industrial applications we selected. The only requirement 
was that the application be able to run in batch mode.  We needed software development expertise to write the 
wrappers, an uncommon skill among architects and civil engineers. Once wrappers have been written, however, 
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engineers and architects can reuse wrappers to create new processes as long as the data inputs and outputs are 
supported.  On this project, it took approximately 100 man-hours to integrate EnergyPlus, 200 man-hours to 
integrate GSA, and 60 man-hours to write the structural code checker. CATIA/Digital Project already had a 
plug-in available.  We believe this development work can be reused on future projects, but more work is needed 
to test the generality of the wrappers.  There are many other AEC tools including lighting and computational 
fluid dynamics (CFD) analyses which are not currently wrapped for the ModelCenter Environment. Future work 
should implement these wrappers and test their suitability for inclusion into the PIDO methodology.  

We avoided typical interoperability issues frequently encountered in integrating industry CAD and CAE 
applications by bypassing the intermediate step of converting geometric information into a proprietary or open-
data schema and then importing and converting that information into the receiving application’s required format 
(Eastman, Wang et al. 2005).  Future work should test the viability of utilizing emerging industry standard data 
models for information exchange such as IFC, and to measure and compare the development and execution time 
necessary to automate the process against the benefits gained. 

4.1.3 Customize Optimization Strategies  

Once automated, we were able to choose from a variety of optimization methods suitable for both discrete and 
continuous variables.  In this project, we used a genetic algorithm for the discrete structural section optimization 
analysis and a gradient-based method for the energy optimization analysis.  A genetic algorithm was used for the 
multidisciplinary optimization.  The optimization methods worked well for these respective formulations.  
Further research is needed to examine whether these optimization methods are capable of tackling larger, more 
complex AEC design problems or whether new methods will be required. 

4.1.4 Visualize Trade Spaces 

We used advanced tools for multi-dimensional visualization, including glyph, parallel coordinates, scatter, and 
histogram plots.  The visualizations may be represented with any combination of input design variables and 
output results.  This allowed us to understand general performance trends as well as variable sensitivities to 
support the decision-making process. For example, the parallel coordinates plot in Fig. 5 revealed that the choice 
of column section was not as influential as the choice of beams.  In the energy design process, the Design of 
Experiments tool allowed us to visualize the entire design space and to validate the optimization method (Fig. 8).  
Future work is needed to allow designers to explore the design space and simultaneously see the impact upon 
product performance and geometry.  

4.1.5 Communicate Process and Information Dependencies 

ModelCenter contains a window for viewing the process similar to the process diagrams shown (Fig. 3, 6 and 9).  
It is possible to further interrogate this model to determine data dependencies.  We found it helpful to sketch the 
process before implementation in ModelCenter in order to identify the actors responsible for each step in the 
process and the specific information being exchanged.  These diagrams helped us communicate the processes, 
and to plan interoperability strategies.  Future work should include the integration of such visualizations of 
process and data interoperability into the PIDO software and the testing of the extent to which they aid design 
teams design and manage MDO processes more easily.  

In conclusion, we found that PIDO has great promise to transform the AEC industry by changing the way we 
solve design problems; by giving us the ability to generate and analyze many times the number of design 
alternatives; and by providing tools and methods to systematically search for better performing building designs.  
The work on PIDO, nevertheless, is in its early stages, and much work remains to determine the applicability of 
PIDO on large scale, complex AEC projects and how it may be integrated with conventional tools and methods.  
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