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METRICS TO ASSESS DESIGN GUIDANCE  

 
Heightened sustainability concerns and emerging technologies give building professionals the 
desire and ability to explore more alternatives for more objectives. As design challenges become 
more complicated, and as strategies become more advanced, the need and opportunity emerges 
to measure processes and to compare the guidance afforded. Through literature review and 
industry observations, we synthesize a comprehensive framework of definitions and metrics. We 
apply the metrics to an industry case study to illustrate how they help communicate information 
about challenges, strategies, and explorations present in the domain of energy efficient design. 
We measure and compare the guidance provided by applying two strategies to one challenge. 
The ability to measure guidance marks a valuable step for prescribing design process 
improvement. 

Keywords:  Design Process, Guidance, Design strategy, Evaluation, Environmental Design 

 
Managing and reducing the environmental impacts of buildings has become a priority of building 
stakeholders and the architecture, engineering and construction (AEC) community. For example, 
the American Institute of Architects (AIA) in the 2030 Challenge (AIA, 2007) and the Federal 
Government in the Energy Independence and Security Act (FEMP, 2007) both call for zero 
estimated net annual fossil fuel energy consumption for new building designs by the year 2030. 
However, maximizing energy performance has proven elusive to industry for years because it 
requires understanding stochastic, dynamic, continuous event-based systems (Bazjanac, 2006). 
Performance-based design typically embody complex multi-criteria problems that quickly 
exceed the limits of human cognition and frequently involve trade-offs and interdependences 
among variables which make it difficult to elicit meaningful design guidance (Papamichael & 
Protzen, 1993). As project teams today are asked to face the daunting task of identifying 
transcendent, high performing solutions, the ability to evaluate design strategies becomes 
increasingly critical.  
 
Historically, and still today, much of the AEC industry has relied on variously named precedent-
based design, experienced-based design or case-based design strategies to help resolve design 
challenges (Watson & Perera, 1997) (Clevenger & Haymaker, 2009). Precedent-based design is 
a process of creating a new design by combining and/or adapting previously tested design 
solutions. It benefits from tacit knowledge, and lessons learned. Using precedent to meet 
building performance objectives, however, has proven to be less than satisfactory with regard to 
energy efficiency, and little reason exists to assume that it will be effective in addressing the 
recently proposed, aggressive energy performance goals. Research has shown that professionals 
generally lack the tacit understanding necessary to guide energy efficient decision-making in a 
typical design project (Papamichael et al., 1998).  
 
Performance-based strategies involving computer software simulation were introduced with 
some success in the 1970’s (LBNL, 1982). While improving, the tools remain imperfect. Actual 
energy performance data frequently fails to meet operational design intent for numerous reasons 
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including complex building science, sub-par construction and/or insufficient operational 
practices (Clark, 2001; Bazjanac, 2008; Kunz et al., 2009). This research intentionally disregards 
issues related to the accuracy of energy models and their divergence from actual building 
performance. It measures the effectiveness of distinct design strategies assuming the underlying 
energy simulation techniques to be sound.  
 
The primary use of energy models in professional practice to date has been for performance 
verification of individual design alternatives. Of promise, design strategies incorporating 
building information modeling (BIM), parametric modeling and advanced analysis techniques 
such as optimization and sensitivity analysis are expanding by orders of magnitude the number 
of alternatives it is possible to analyze within a reasonable amount of time. As innovative design 
strategies emerge resulting in new and powerful explorations, design teams need a method to 
assess the guidance provided. We define design guidance as variation in exploration produced 
by applying different strategies to a given challenge. Figure 1, graphically represents this 
relationship by establishing the dimensions of design process.  
 

 
Figure 1: Diagram of design process dimensions. Each axis represents a range from low to high levels of 
advancement, complication, and guidance for strategy, challenge and exploration respectively. Based on 
these assessments it is possible to evaluate the level of guidance afforded.  
 
This research seeks to gain traction in answering the question:  
 

How much guidance does a design strategy provide? 
 
To answer this question, a designer needs to clearly delineate performance-based design 
processes in terms of the challenges faced, the strategies applied, and the exploration achieved. 
A comparison across processes will enable an assessment of guidance. We use energy 
performance as the domain of our study.  However, the research applies to performance-based 
design processes in general. 
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1 EXISTING FRAMEWORKS AND METRICS 
 
Design Theory and Design Research are vast fields with application(s) to a broad spectrum of 
disciplines. We focus on theory most closely related to architectural design processes. Cross 
(2001) reviews major historical developments in Design Methodology and observes a forty-year 
cycle in the characterization of the nature of design, oscillating between design as discipline and 
design as science. In the latest scientific swing, Takeda et al (1990) identify three models for 
design process: descriptive, cognitive and computable. Under descriptive, Eckert & Clark (2005) 
identify three classification models: staged based vs. activity-based models, solution-oriented vs. 
problem oriented literature, abstract vs. procedural vs. analytical approaches. Other research 
emphasizes the dynamic rather than static nature of design spaces, stating that co-evolution or 
redefinition of design spaces may, in fact, be the foundation of creativity (Gero, 1996; Maher et 
al., 1996; Dorst & Cross, 2001). Design Methodology has developed a deep and rich 
understanding of the process of design. Our contribution is the organization of design process 
into three discrete dimensions: challenge, strategy and exploration and the development of 
metrics for each dimension.  
 
While metrics have generally proven elusive for design processes as a whole (Briand et al., 1994; 
Bashir & Thompson, 1997), research has successfully developed metrics which address 
individual design process dimensions. For example, (Phadke & Taguchi, 1987) identified signal-
to-noise ratios in design variables as the basis for evaluating the robustness of a design 
challenge. McManus et al. (2007) use the metrics flexibility, robustness, and survivability to 
evaluate design strategy. Simpson et al. (1996) propose design knowledge and design freedom to 
measure the flexibility of design exploration, and (Dorst & Cross, 2001) compare creativity 
across various student explorations.  
 
Additional research exists which begins to evaluate metrics across dimensions. (Cross, 2004) 
characterizes the explorations of outstanding designers as ’solution–‘ rather than ’problem-
based.’ Shah et al., (2003) proposed the metrics quantity, variety, quality, and novelty to show 
how well a design strategy explores various design challenges. (Chang & Ibbs, 1999) identified 
meaningful indicators of architecture and engineering (A/E) consultants’ performance for various 
design challenges. Numerous theoretical mathematical evaluations have been performed to 
assess algorithm efficiency (i.e.; speed and accuracy) for various strategies with regard to certain 
types of challenge (e.g.; local versus absolute maximums). Limited data exists to compare 
human explorations across strategies since parallel or redundant design processes are rarely 
performed in the real-world. With the use of Building Information Modeling (BIM) and other 
electronic information transfers, however, researchers have become increasingly successfully at 
measuring the flow of information within real-world construction projects (Tribelsky & Sacks, 
2010). In conclusion, while existing research addresses various aspects of the dimensions of 
challenge, strategy and exploration, research lacks complete and full quantification of all three. 
We note that existing research addresses the dimension of challenge and its associated metrics 
least well.  
 
Terminology currently used for Design Methodology research lacks precision. Love (2002) 
reviews nearly 400 texts and shows a range of definitions for ‘design’ or ‘design process’ that are 
unique and insufficiently specific. He concludes that these important core concepts are 
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indeterminate. Design Space, Problem Space, Solution Space, and Trade-space are all terms used 
in literature. However, ‘the set of all possible design options’ called ‘Design Space’ by Shah et 
al., (2003), is called ‘Trade Space’ by Ross & Hastings (2005). Conversely, Woodbury and 
Burrow (2006) state that Design Space is limited to ‘designs that are visited in an exploration 
process,’ excluding unexplored options, in apparent disagreement with the previous definitions. 
A number of frameworks also already exist relating design variables, including fuzzy-logic 
(Ciftcioglu et al., 1998), set-based design (Simpson et al., 1998), and hierarchical systems (Wang 
& Liu, 2006). The lack of consistency within the literature and its terms across dimensions, 
however, demonstrates a need for additional research. Striving for clear communication, we 
begin by precisely defining the terms and relationships intended to explicitly characterize and 
measure performance-based design. We use italics throughout this paper to indicate specific 
reference to the proposed component and process dimension definitions. 
 

2 PERFORMANCE-BASED DESIGN DEFINITIONS 
 
In his discussion of Design Research, Dorst (2008) proposes that explanatory frameworks can be 
used to prescribe improvement to practice. Building upon previous frameworks for design (Akin, 
2001; McManus et al., 2007; Chachere & Haymaker, 2011), Figure 2 illustrates our framework 
of the components, relationships, and spaces in performance-based design. Set notation for each 
space is given in the left column, while examples of the components in each space are called out 
in the right column. Sections 2.2 – 2.4 define these terms which serve as a foundation for our 
metric definitions presented in Section 3. Section 4 gives real-world examples of these concepts 
based on an industry case study. 
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Figure 2: Performance-based Design Framework: Component map for design process in Express-G 
Notation (ISO, 2004). The framework delineates design spaces (left) and illustrates the basic relationships 
between components (middle). Specific instances of these components are listed (right).  

 
In our framework, performance-based design is an iterative cycle of objective identification, 
alternatives generation, impact analysis, and value assignment to maximize value. We do not 
distinguish a hierarchy among variables, nor do we consider uncertainty within our framework. 

 

2.1  COMPONENTS 
 
Here we present the components in reverse order of Figure 2 to emphasize their cumulative 
nature. 
  

Stakeholder: a party with a stake in the selection of alternatives. 
Goal: declaration of intended properties of alternative(s) (Lamsweerde, 2001). 
Preference: weight assigned to a goal by a stakeholder (Payne et al., 1999; Chachere & 

Haymaker, 2011). 
Variable: a design choice to be made. A variable can be discreet (e.g., number of windows) 

or continuous (e.g., building length).  
Option: individual variable input(s) (e.g., number of windows = {1, 2, or 3}; building length 

= 10-20 meters). 
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Decision: the selection of an option (e.g., a number of windows = 2; building   length = 12.75 
meters)  

Alternative: a combination of decisions about options. 
Constraint: limit placed on variable. 
Requirement: limit placed on impacts. 
Impact: alternative’s estimated performance according to a specified goal. Estimates range 

from relatively quick and simple to elaborate and detailed and may or may not be easily 
quantifiable (Earl et al., 2005).  

Value: net performance of an alternative relative to preferences, goals and constraints (see 
Equation 1). 

2.2 DESIGN SPACES 
 

Building on our components, we define the following spaces illustrated in the left column of 
Figure 2. 
  

Objective Space { S, G, P, C }: Set of stakeholders, goals, preferences and constraints.. 
These individual components are inter-related since weights and acceptable ranges of 
performance can never be completely separated (Earl et al., 2005).  

 
Alternative Space { A, uA }: All feasible alternatives for a given challenge, including 

explored and unexplored alternatives (Tate & Nordlund, 1998). The space is sufficiently 
vast that it can be thought of effectively unbounded relative to designer’s time and 
reasoning ability (Kotonya & Sommerville, 1997).  

 
Impact Space { I, R }: All analyzed impacts for alternatives relative to goals and determined 

to be acceptable or unacceptable according to requirements.  
 
Value Space { V }: Values generated during an exploration. Value is a function of an 

alternative’s impact and stakeholder preference relative to project goals.  
 
In addition to these explicit delineations is the implicit frame of the design space.  Most similar 
to “problem space” as defined by others (Dorst & Cross, 2001), we acknowledge that our design 
space assumes which variables or goals to include.  We limit our research to decisions within a 
design space, and do not include metrics for evaluating the frame of that space. 

2.3  PROCESS DIMENSIONS  
 
Based on our defined components and spaces we provide the additional terms to form the 
dimensions of design process. 
 

Challenge: a set of decisions to be made ranging from simple to complicated. 
Strategy: a procedure to generate decisions ranging from none to advanced. 
Exploration: a history of decisions made ranging from random to guided. 
Design process: implementation of a strategy to a challenge resulting in an exploration. 
Guidance: variation in exploration produced by applying different strategies to a given 

challenge.  
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3 MEASURING DESIGN PROCESS 
 
We use our defined components, spaces and dimensions to organize and develop our design 
process metrics. Most metrics are normalized from 0 to 1 and, with a few noted exceptions, the 
higher numbers are generally considered better. 

3.1 QUESTIONS MOTIVATING METRICS 
 
The following questions motivate our metrics. Grounded in literature, these questions are 
organized according to dimension and span performance-based design spaces. In the next section 
we individually address each of these questions by developing a corresponding numeric measure. 

3.1.1 DESIGN PROCESS CHALLENGE 
 
1) How many objectives are included in the challenge and how clearly are they defined? 
Designers need to assess the quantity and quality of project objectives (Chachere & Haymaker, 
2011). 
 
2) To what extent do objectives interact? Other researchers have noted that performance goals 
can be in competition (Ross, 2003; McManus et al., 2007). Designers need to understand the 
extent to which trade-offs exist when assessing the complexity of a challenge.  
 
3) To what extent do decisions interact? Building science is not a system of independent 
variables to be sub-optimized. (Deru & Torcellini, 2004; Wang & Liu, 2006; Bazjanac, 2008). 
Designers need a measure of the interactive effects between variables when assessing challenge. 
  
4) What is the relative impact of each decision? Research has shown the important role of 
screening and sensitivity analyses (Kleijnen, 1997.) Designers need a measure of the extent to 
which the impact caused by any one or pair of variables dominates value.  

3.1.2. DESIGN PROCESS STRATEGY 
 
5) Of the goals identified, what goals does the design strategy consider? Performance goals are 
fundamental to performance-based design, and previous research lays the groundwork for 
defining and assessing the completeness of the goals analyzed (Gero, 1990; Ross, 2003; 
Edvardsson & Hansson, 2005; Chachere & Haymaker 2011).  
 
6) What alternatives does the design strategy consider? Discrete alternatives have been long 
considered the building-blocks of design (Gero, 1990; Smith & Eppinger,1997). Emerging 
generative and parametric modeling techniques test the boundaries of “discrete” design 
alternatives (Gane & Haymaker, 2007; Hudson, 2009). Research predominantly supports the 
hypothesis that generating more alternatives increase the chance of high performance (Akin, 
2001; Ïpek et al., 2006). Designers need to understand the size and substance of the alternative 
space. 
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7) How diverse are the investigated alternatives? Many researchers have written about the role 
of creativity in design (Akin & Lin, 1995; Gero, 1996; Dorst & Cross, 2001; Shah et al., 2003). 
Designers need to assess the diversity of combinations of options used to generate alternatives in 
an exploration. 

3.1.3. DESIGN PROCESS EXPLORATION 
 
8) What is the average performance of alternatives generated? Common metrics in descriptive 
statistics include mean and mode.  
 
9) What is the range of performance of alternatives generated? A common metric in descriptive 
statistics is standard deviation to measure variability within a given data set.  
 
10) How many alternatives are generated before best value is achieved? Other researchers have 
studied iterations as well as process efficiency to understand how and how quickly a strategy 
will converge on an solution(s) (Smith & Eppinger, 1997; Wang & Liu, 2006, Chen et al., 2008). 
 
11) What is the best performing alternative generated? A common metric in descriptive statistics 
is maximum value. Research in set-based design and pareto-fronts also provides the possibility 
of multiple optimums in design (Simpson et al, 1998; Ross & Hastings, 2005).   
 
Collectively these questions illuminate information that can help designers to understand a 
design process. In the next section, we use our framework to develop metrics for these questions. 
We then test these metrics by comparing the guidance provided by two different strategies in a 
real-world case study. 

3.2 DESIGN PROCESS METRICS 
 
Table 1 defines the specific terms we use to develop metrics that can help to numerically 
characterize the dimensions of design process. In certain instances a complete analysis of the 
alternative space and value space is required to evaluate the individual terms.  
 

Table 1: Design Process Terms.  

n, the number of variables.  
ntrade-off, the number of  variables resulting in competing impacts. 
ninteract, the number of  variables with first order dependence (covariance). 
nimportant, the number of  variables with (>1%) impact on value performance. 
oi, the number of options for variable, nj. For variables with large or infinite (continuous variable) 

number of alternatives, oi is defined through analysis (i.e., how many options were assigned to the 
variable in the model or simulation). 

A, the number of alternatives explored. 
As, statistically significant sample size for alternative Space. 
uA, the number of unexplored alternatives consisting of options that meet the constraints. 
∆oAiAj, the count of variables using different options when comparing two alternatives. 
G, the number of goals identified in the Objective Space. 
Ga, the number of goals analyzed in the Impact Space.  
p1, . . . ,pG, preference relative to each goal analyzed. 
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i11, . . . ,iAG, impact of individual alternatives relative to goals analyzed. 
t,  total time required to generate and analyze all options. 
c, the number of constraints.  
I, importance, the ranked (% of 100) impact of a variable (or variable pair) on value. 
IAVG,  average rank of impact for all variables. 
IMEDIAN,  median rank of impact for all variables. 
IHIGH,  rank of variable with the highest impact. 
ItheorecticalHIGH,  the highest percentage rank possible in a series, given the median rank of impact over all 

variables. 
vA, value of an alternative, the aggregate impact of an alternative weighted according to stakeholder 

preference.  
V, the set of alternatives generated with acceptable impacts. 
 
Using the terms listed in Table 1, we develop the following metrics to measure design process.  

OBJECTIVE SPACE SIZE, OSS = {Ga} 
 
OSS is the number of goals analyzed by a given strategy. This metric is a count, and is not 
normalized. 
 
For example, if an energy simulation software tool is capable of analyzing energy usage, thermal 
performance as well as first cost (LBNL, 2008), OSS = 3. 

ALTERNATIVE SPACE INTERDEPENDENCE, ASI = n𝐢𝐧𝐭𝐞𝐫𝐚𝐜𝐭 
�𝒏𝟐�

 

ASI is the number of first order interactions among variables divided by the number of variable 
pairs. A high ASI (0 to 1) indicates a higher number of interactions occurring among variables. 
A high ASI contributes to the level of complication of a challenge. 

In this example, we illustrate interdependence visually. A-symmetry about the X-Y diagonal 
indicates that an interaction is occurring among variables. Visual inspection of Figure 3 
demonstrates interdependence between Window Type and HVAC Efficiency (left), HVAC 
Efficiency and Roof Insulation (center), but no significant interdependence between Window 
Type and Roof Insulation (right).  
 

   
Figure 3: Value (NPV) as a function of combinations of Window Type, HVAC Efficiency, and Roof 
Insulation variables. The asymmetry of the first two graphs shows two interactions of the first order 
among the three variables. 
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From the data shown in Figure 3, ASI = 2 /3 = .66. 

IMPACT SPACE COMPLEXITY, ISC = ntrade-offs / n  
 

ISC is the number of variables that result in performance trade-offs (divergent impacts) divided 
by total number of variables considered. ISC represents the percent of variables for which goals 
are competing. A high ISC (0 to 1) contributes to the level of complication of a challenge. In the 
case where only one goal is assessed, ISC, by definition equals zero.  
 
For example, consider the case where 3 variables (HVAC Efficiency, Window Type and 
Exterior Shading) are evaluated relative to the goals to minimize energy usage, and minimize 
first cost. Both HVAC Efficiency and Window Type show competing impacts- higher first costs 
resulting in lower energy usage. However, for Exterior Shading, the first cost increase of the 
Exterior Shading is offset by cost savings resulting from a downsized HVAC system. In the case 
of Exterior Shading impacts are not competing and the option with the lower first cost also has 
lower energy usage. In this case ISC = 2 / 3 = .667.  
 

VALUE SPACE DOMINANCE, VSD =    IAVG – IMEDIAN

� 𝟏𝟎𝟎
Nimportance�

 *  
IHIGH

ItheorecticalHIGH 
 

 

VSD is the extent to which value is dominated by individual or combinations of variables. The 
metric features the terms average, median, and high rank of variable impact. It is a function of 
the theoretical high rank, over the median rank. A high VSD (0 to 1) indicates that the value 
space is highly dominated and suggests that the challenge is not complicated. 

 
We demonstrate VSD using a simple, but extreme example. Consider two cases where variables 
are ranked in terms of their potential effect on value. Figure 4, Series 1 represents minimal 
dominance, Figure 4, Series 2, represents maximum dominance. 
 
 

 
Series 1: Variable Potential Impact on Value (%) 

 
 Series 2: Variable Potential Impact on Value (%) 

Figure 4: Diagrams depicting minimum (left) and maximum (right) dominance among five 
variables. High dominance indicates a high correlation between optimization of a single variable 
and maximum value. 
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Numerically these series have values: 
 Series 1: 20,20,20,20,20  
 Series 2: 1,1,1,1,96 
 
We add a third, less extreme series for illustrative purposes. 
 Series 3: 5, 10, 15, 25, 45 
 
In all cases, the numbers in the series sum to 100 since the numbers each represent a percentage 
impact. Here we calculate the VSD for the three series showing Series 1 being the least 
dominated, Series 2 the most, and Series 3 partially dominated: 
 

VSDseries1 = 
20 – 20

�100
5
�

 *  
20
20 

 = 0 

 

VSDseries2 = 20 – 1

�100
5
�
 * 

96
96 = .95 

 

VSDseries3 = 
20 – 15

�100
5
�

 *  
45
55 

 = .20 

 
OBJECTIVE SPACE QUALITY, OSQ = Ga / G 
 
OSQ is the ratio of the number of goals analyzed to the number of goals identified. It 
demonstrates the extent to which (0 to 1) the strategy addresses project goals. 
 
If, for example, in addition to energy usage, thermal performance and first cost, acoustic 
performance is important, then for a strategy relying exclusively on energy simulation software 
has an OSQ = 3 / 4 because acoustic impact is not assessed. 
 
ALTERNATIVE SPACE SAMPLING, ASS = A / AS  ~ A / (A + UA)  
 
ASS is the number of alternatives generated divided by the number of alternatives required for 
“significant sampling” of the alternative space. It demonstrates the extent to which a strategy’s 
sampling is statistically significant. Significant sampling can be determined using standard 
mathematical calculations for a statistical “sample size.” While such analysis is non-trivial, the 
mathematical algorithms addressing such anomalies falls outside scope of this research. When 
the statistically significant sample size is unknown, the total number of possible alternatives is 
used. 
 
If, for example, AS is unknown, but the alternative Space includes 1000 feasible alternatives, yet 
only four alternatives are analyzed, then ASS = 4 / (4 + 996) = .004  
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ALTERNATIVE SPACE FLEXIBILITY, ASF = (∆oAiAj / ) / n  
 
ASF is the average number of option changes between any two alternatives divided by the 
number of variables. ASF measures the level of decision variation in a given exploration. ASF is 
calculated by taking every pair of alternatives in a design process and averaging how many 
variables have differing options between all pairs. Because ASF averages across every 
combination of alternative, sequence of exploration becomes immaterial. The metric represents 
the breadth or diversity of an exploration, regardless of sequence.  
 
For example, the following exploration consists of three alternatives, each including three 
Variables. 
 

Alternative 1:  Low Efficiency HVAC, Single Pane Windows, Low Roof Insulation 
Alternative 2: Low Efficiency HVAC, Single Pane Windows, High Roof Insulation 
Alternative 3: Low Efficiency HVAC, Double Pane-LowE Windows, High Roof Insulation 

        Alternative 1 to Alternative 2:  1 option change 
 Alternative 1 to Alternative 3:  2 option changes 
 Alternative 2 to Alternative 3: 1 option change   
 
     ASF = ((1+2+1)/3) / 3 = .444 
 

VALUE SPACE AVERAGE, VSA = V 

VSA is the mean value for the set of alternatives analyzed. It characterizes the average 
alternative generated in an exploration.   

For example, 
NPVAlternative1 =  $25 
NPVAlternative2 =  $32 
NPVAlternative3 =  $30 
  
VSA = $29 

VALUE SPACE RANGE, VSR = STDEV(vI)      

VSR is the standard deviation of all values for the set of alternatives analyzed. It characterizes 
the dispersion of alternatives generated in an exploration. 

For example, 
NPVAlternative1 =  $25 
NPVAlternative2 =  $32 
NPVAlternative3 =  $30 
  
VSR = $3.6 
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VALUE SPACE ITERATIONS,VSI= Number of alternatives generated prior to achieving 
maximum value 

VSI is the number of alternatives generated before the highest value is reached. It characterizes 
the efficiency of an exploration and is to be minimized. 

For example, 
NPVAlternative1 =  $25 
NPVAlternative2 =  $32 
NPVAlternative3 =  $30 
  
VSI = 2 
 

VALUE SPACE MAXIMUM, VSM = MAX(vi)     

VSM is the highest value of all alternatives generated. It identifies the maximum performance 
achieved in an exploration. 

For example, 
NPVAlternative1 =  $25 
NPVAlternative2 =  $32 
NPVAlternative3 =  $30 
 
VSM = $32 

 
In the next section we use these metrics to measure and compare design processes in real-world, 
industry case studies.  

4 INDUSTRY CASE STUDIES 
 
To test and illustrate our metrics, we applied them to an industry case study. The first documents 
a professional energy analysis performed in 2006 during schematic design of a 338,880sf Federal 
Building with 10 floors and a parking sub-basement sited in a mixed (hot in summer, cold in 
winter), dry climate at an elevation of 4220ft. At the beginning of the project, the client set an 
annual energy usage target of 55 kBtu/sf/yr as a requirement for the project. Additional goals 
were low first cost, and pleasing aesthetics. The mechanical engineer on the project used DOE-2 
(LBNL, 1982) to simulate energy performance. A total of 13 energy simulation runs were 
generated during 4 rounds of energy modeling. Figure 5 represents the alternatives modeled and 
associated annual energy savings (kBTU/sf/yr) estimates generated by professional energy 
modelers and delivered to the project team in several reports in table or written narrative format.  
 
The case study represents a process which involves multiple parties in a collective decision 
making process, an arrangement which has been shown to protract decision making (Tribelsky & 
Sacks, 2010). The example is, nevertheless, relevant to our research because collaborative 
design, distinct from concurrent or cooperative design, has the distinguishing characteristics of 
shared objective(s) (Ostergaard & Summers, 2009). As such professional analysis using 
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collaborative design can be meaningfully compared with advanced analysis, since each is reliant 
singular rather than multi-objective decision-making process. 

4.1. PROFESSIONAL DESIGN PROCESS 
 
Results from the 13 energy simulations, generated over a 27 month period are summarized in 
Figure 5. The black line shows estimated annual energy savings (kBTU/sf/yr) for individual 
whole building simulations during Schematic Design. The strategy for generating and analyzing 
the alternatives can primarily be characterized as performance verification: performance “point-
data” is provided as individual design alternatives are generated for the primary purpose of 
verifying performance relative to the performance goal(s) as well as the previous runs.  
 

 
Figure 5: Graphical representation of a professional energy modeling during the design process. Variables 
are listed on the right. Alternatives are shown as vertical stacks of specific combinations of options 
(represented in greyscale.) Changes in options for each alternative can be observed through horizontal 
color change. Estimated energy saving is depicted with a solid dark grey line. The dashed light grey line 
shows target energy savings. The figure suggests that the professional energy modeling performed using 
this strategy supported a slow, disjointed, unsystematic exploration. 

 
Additional detail regarding the variables and options analyzed in the professional exploration 
case is provided in Table 3 in the appendix. Energy savings are calculated relative to a 
professionally estimated baseline, which assumes the minimum inputs necessary for prescriptive 
code compliance. 

4.2. ADVANCED DESIGN PROCESS 
 
An emerging technique to support the development of multidisciplinary design and analysis 
strategies is Process Integration and Design Optimization (PIDO) tools such as those provided by 
Phoenix Integration (Phoenix, 2004).  PIDO integrates 3-dimensional parametric representations 
and analysis packages to facilitate the rapid and systematic iteration and analysis of geometric 
and non-geometric variables. Recent work applied this technique to the energy efficiency domain 
in AEC (Welle & Haymaker, 2011). In our research, we used PIDO to support application of an 
advanced strategy to the industry case study. We implemented a design of experiment to explore 

Simulated
Performance

Target 
(55 kBTU/sf/yr)

Alternatives Generated by Professionals through Time

Variable Varied 

1 2 3          4 5 6    7 8 9              10 11 12        13

Energy Savings 
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the variables described in the professional exploration to estimate annual energy savings (Figure 
6), and to evaluate trade-offs between first cost and energy consumption. While it is possible to 
easily expand this method to explore many more variables and/or options, we chose to scale the 
exploration using our advanced strategy to be similar to the scale of the professional analysis to 
facilitate comparison. For additional detail regarding the variables and options analyzed in the 
professional exploration case, see Table 4 in the appendix. Energy savings are calculated relative 
to the professionally estimated baseline, which assumes the minimum inputs necessary for 
prescriptive code compliance.  
 

  
Figure 6: Graphical representation of advanced energy modeling process using PIDO. 1280 alternatives 
are represented as grey diamonds. Each alternative changes a single option. Y-axis shows the estimated 
energy savings of a given alternative. The 13 energy performance estimates generated by professional 
modelers (Figure 5) are overlaid in black. The dashed black line shows target energy savings. The figure 
contrasts the more systematic full design process supported by the advanced strategy to professional 
practice. It demonstrates that a significant number of alternatives, unanalyzed in professional energy 
modeling, have superior value, and exceed target performance. 

 
To compare the strategy used to support professional practice today to emerging advanced 
strategies being studied in research, we applied our metrics to two processes using each strategy. 
Calculations, assessments and comparisons of the two processes are presented in Table 2.  
 
  

6
Alternatives Generated using Advanced Modeling

Professional Exploration

Target: 55 kBTU/sf/yr

Energy Savings 

75 kBTU/sf/yr

20 kBTU/sf/yr
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Table 2: Metrics evaluated comparing traditional professional design processes to the advanced process 
We developed using PIDO. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* see appendix, Figure 8, ** see appendix, Figure 9, *** see appendix, Figure 10 

 

Challenge metrics for the two case studies are presumed to be closely aligned. In traditional 
energy modeling, however, neither statistical sampling nor full analysis is performed and direct 
assessment of challenge metrics is not possible. We assume the challenge metrics assessed using 
the advanced strategy apply to both case studies since the challenges contain only minor 
modeling differences due differences necessitated by modeling. The advanced strategy reveals 
that value in the case study is highly dominated (VSD = .68) by one decision, window area (see 
Appendix, Figure 8). In the traditional process, the designers displayed a strong preference for an 
all-glass exterior having qualitative but not quantitative knowledge of the extent of its 
dominance. The high impact of the decision regarding window area is observable in Figure 6, 
where estimated energy savings dramatically drops between Alternative 3 and Alternative 4 due 
to an increase in window area. Interestingly, in traditional practice the designers never revisited 
the decision regarding “window area,” but maintained the 95% exterior glass option for all 
remaining alternatives explored. Alternative Space Interdependence (ASI) from the advanced 
strategy reveals that nearly half of the variables modeled have some level of dependency. This 
result is not surprising since building geometry (e.g., square or rectangular) was a design 
variable that affected nearly every other variable modeled (e.g., percentages of window or 

Dimension Question Metric Professional Design 
Process 

Advanced 
Design Process 

 How many project goals 
exist? 

Objective Space 
Size, OSS 3 3 

 To what extent do 
decisions interact? 

Alternative Space 
Interdependence, 

ASI* 

unknown, 
see Advanced 15 / 32 = 0.47 

Challenge To what extent do 
objectives interact? 

Impact Space 
Complexity, ISC** 

unknown, 
see Advanced 9 / 10 = 0.9 

 What is the relative 
impact of each decision? 

Value Space 
Dominance, 

VSD*** 

unknown, 
see Advanced 0.68 

 How many project goals 
are assessed? 

Objective Space 
Quality, OSQ 2 / 3 = 0.66 2 / 3 = 0.66 

Strategy How complete are the 
alternatives generated? 

Alternative Space 
Sampling, ASS 13 / 1280 = 0.01 1280 / 1280 = 

1 
 How comprehensive are 

the decision options 
being investigated? 

Alternative Space 
Flexibility, ASF 

(~500 / 156) / 9 
=.35 

(1280 / 1280) / 
9 = 0.11 

 What is the average 
performance of 

alternatives generated? 

Value Space 
Average, VSA $564,400 $669,400  

Exploration 
What is the range of 

performance of 
alternatives generated? 

Value Space Range, 
VSR $165,100 $398,060 

 How many alternatives 
are generated before best 

performance? 

Value Space 
Iterations, VSI 12 1280 

 What is the best 
performing alternative 

generated? 

Value Space 
Maximum, VSM 

[NPV $] 
$720,600 ~$998,400 
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shading). Finally, Impact Space Complexity (ISC) in the advanced strategy shows relatively little 
competition between first cost and energy savings. This result is unintuitive and is a function of 
the “self-sizing” HVAC currently modeled. In other words, although energy efficiency measures 
may have a higher first cost, these are partially offset by the cost savings that result from a 
smaller HVAC system. 
  
Strategy metrics are similar in Objective Space Quality (OSQ). Both strategies quantify energy 
savings and first cost, but do not directly assess aesthetics. Such assessment is left to designer 
judgment. Alternative Space Sampling (ASS) score for the advanced strategy is orders of 
magnitude better than the traditional strategy. By scripting and queuing the execution of model 
simulation runs, the advanced strategy performs full analysis (ASS = 1) for all feasible options 
of 9 variables in a fraction of the time (4 hours versus 2.3 mo.) compared to the traditional 
design process, which relies upon manual model revision to execute a total of 13 runs. 
Alternative Space Flexibility (ASF), using the traditional strategy, however, is higher. On 
average, each alternative differs by three options when manually selected while only one 
variable at a time is changed according to the script of the advanced strategy.  
 
Exploration metrics for the advanced process show improved maximum and average value 
generated. In the case of advanced analysis, we assume a designer would merely select the top 
performer identified. We were able to perform full analysis for our case study since the total 
number of runs required was relatively small. Other research has addressed much more 
complicated challenges with nearly exponential number of runs. Nevertheless, our case is 
informative since the level of challenge mimics the one actually addressed through professional 
energy modeling in our real-world case study. In the future, as more advanced modeling 
capabilities come on-line, we predict that statistically significant sample sizes will frequently 
become the norm and that the metric, Value Space Iteration (VSI), will likely become relatively 
insignificant and will primarily depend on computing power.   
 
While multiple metrics support the characterization of each of design process dimension, it is 
possible to crudely graph these relationships by simply summing the metrics without weights.  
Figure 7 summarizes our findings graphically. Future research is necessary to refine and calibrate 
these dimensions and their relationships. 

 
Figure 7:  Diagram of the guidance provided by two different strategies representing professional energy 
modeling and advanced energy modeling applied to the same challenge, the design of a federal office 
building. 

Ex
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n
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(2.06)
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Assessment of the metrics suggest that advanced design strategy tools being developed by 
researchers provide better guidance than the traditional energy analysis being performed in 
industry today based on higher Value Space Average (VSA), Value Space Range (VSR) and 
Value Space Maximum (VSM) (Table 2). Our ability to apply the framework and metrics to test 
cases is evidence for the claim that they help clarify both relative and absolute design process 
performance assessment. 

5 CONCLUSION 
 
In the face of expanding objectives and alternatives, professionals need to choose design 
strategies that efficiently generate high performing alternatives. The use of precedent and point-
based analysis strategies has proven less than satisfactory in addressing energy efficiency. 
Significant opportunity exists for advanced strategies to provide designers better guidance that 
results in more effective explorations. To realize this potential, designers need a language to 
compare and evaluate the ability of strategies to meet their challenges. Literature review 
provides a foundation, but not a complete basis for such comparison.  
 
In this paper, we define design process to consist of three dimensions: challenge, strategy and 
exploration. We develop a framework to precisely define the components and spaces of 
performance-based design. We synthesize a set of metrics to consistently measure all dimensions 
of design process. Finally, we demonstrate the power of the framework and metrics by applying 
them to the application of two distinct strategies on a challenge. We observe that the framework 
and metrics facilitate comparison and illuminate differences in design processes. 
 
Strengths of the metrics include the ability to assess differences in challenges not previously 
quantified using traditional point-based design processes. Alternative Space Flexibility (ASF) is 
potentially the most important and controversial metric. One interpretation of ASF is as a proxy 
for creativity. In our case studies, the metric shows full analysis to be the least creative strategy. 
Researchers have long recognized the antagonism between creativity and systematic search and 
the link between creativity and break-through performance. (Gero,1996; Dorst & Cross, 2001; 
Shah et al., 2003). Here, we recognize that creativity exists on at least two levels: within set 
bounds of a decision frame, and beyond (re-formulated) project boundaries. Our ASF metric 
currently addresses the lesser level of creativity within the bounds of established project 
constraints. The higher level of creativity is not addressed. Similar to the rationale for much 
computer-assisted design, however, we propose that relieving designers of iterative tasks and 
examining more alternatives and objectives potentially enables them to be more creative.  
 
We encountered several areas where improvement and future research is needed. Certainly, full 
analysis in all but the simplest challenges is not possible in building design. We anticipate that 
advance strategies in real-world applications will rely on sophisticated sampling techniques, 
modeling simplifications, or precedent-based knowledge bases for alternative and/or objective 
formulation. Alternative Space Sampling (ASS), measures the degree to which the number of 
alternatives generated is a representative, statistical sampling of alternative space, but says 
nothing of the distribution of this sampling. Finally, debate remains surrounding the role and 
potential supremacy of Value Space Maximum (VSM) as a design exploration metric. Should a 
process that produces the highest VSM be considered the best regardless of other exploration 
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metrics, such as Value Space Average (VSA) generated? In general, the relative weight and 
relationships of all of the metrics merits further clarification and research.  
 
The strength of these metrics is that they begin to address the eleven questions outlined in 
Section 3.1, and provide quantitative measure of the three dimensions of design process. While 
we provide evidence of their power using a challenge based on a real-world case study related to 
building energy performance, the findings of this research are not limited to the field of energy 
efficiency. Future work will expand the application of these metrics to evaluate and compare 
more and, more advanced and diverse challenges, strategies and explorations in theoretical and 
real-world design. The metrics enable comparison both within and across dimensions, perhaps 
indicating which strategies are best suited for which challenges (Clevenger et al, 2010). In this 
case, the concept of “process cost” for a strategy will need to be explicitly addressed to enable 
designers to select the best strategies for a particular design (Clevenger & Haymaker, 2010).  In 
general, this research allows designers to better evaluate existing and emerging design processes 
and, potentially, to prescribe improvement to practice. 
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Appendix 
 

Table 3: Options for Variables explored in professional Design Process 

Variables Options 

 Final Schematic Design 
Additional 
alternatives ASHRAE Baseline 

Building Geometry A B, C A 
Windows U-value: 0.30; SC: 0.44;  

SHCG: 0.378 
 U-value: 0.57; SC: 0.57; 

SHCG: 0.49 
Roof U-value: 0.33  U-value: 0.65 

Wall, Above Grade U-value: 0.083 (above grade)  U-value: 0.113 
Wall Below Grade U-value: 0.056  U-value: 0.1 
Percent Glass on 

Exterior 
95%  40% 

Percent Exterior with 
Shading 

50% 38% 0% 

Electric Lighting 1.10 w/sf  1.22 w/sf 
Daylight Sensors Yes  No 

HVAC B: 
High efficiency, Heat recovery 

Outside air minimum: 10% 

A, C B: 
Standard Efficiency,  

Outside air minimum: 
20% 

For the purposes of comparison in our case studies, above and below grade wall Variables are  
modeled together. 

Table 4: Options for Variables explored in advanced Design Process 

Variables Options 
Building Geometry Square (100ft x 100ft) Rectangular (200ft x 50ft) 

Building Orientation -90, -45, 0, 45, 90 
Window Construction U-value: 0.30 

SC: 0.44 
SHCG: 0.378 

U-value: 0.57 
SC: 0.57 

SHCG: 0.49 
Exterior Wall  U-value: 0.083 U-value: 0.113 

Percent Glass on 
Exterior 

95% 40% 

Percent Exterior Shading 50% 0% 
Electric Lighting 1.10 w/sf 1.22 w/sf 
Daylight Sensors Yes No 

HVAC High efficiency, Heat 
recovery, Outside air 

minimum: 10% 

Standard Efficiency,  
Outside air minimum: 20% 

 alternatives = 2*5*2*2*2*2*2*2*2 = 1280 
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Figure 8: Asymmetries used to determine ASI for Advanced Design Process. First order interaction between 
all combinations of Variables. Graphs generated by PIDO technology.  
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Figure 9: Estimated Impact on annual operating costs and first cost by Variable. Diagrams, generated by 
PIDO, show that one Variable (window construction) out of nine has competing Impacts on project Goals 
(energy use vs. first cost). These results are used to determine ISC. 
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Figure 10: Estimated percentage impact on Net Present Value ranked by Variable. Graph generated by PIDO. 
The following series of “importance percentages” were used to calculate VSD 0,1,4,8,10,14,15,16,32 for our 
case study according to the following equation. 
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