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Design Exploration Assessment Methodology: Testing the Guidance 
of Design Processes 
 

This paper introduces the Design Exploration Assessment Methodology 
(DEAM) for comparing the impact of differences in process on outcome for 
given design problems. Current practice fails to reliably generate high 
performing alternatives in part because it lacks systematic means to compare 
existing or emerging design processes. Researchers lack empirical methods and 
data to evaluate design challenges and the strategies available to address them. 
In this paper we document, and then apply DEAM to professional 
implementation of six design strategies across two design challenges using the 
charrette test method. Results compare strategies according to the performance 
of the solution(s) generated. For the strategies and challenges investigated, 
more information during design does not always assist the designer to produce 
better performing alternatives. We discuss possible explanations, and conclude 
with a discussion of the strengths and weaknesses of DEAM as an evaluation 
method. Initial findings demonstrate that DEAM is a method capable of 
providing meaningful comparison of strategies in the domain of energy 
efficient design challenges. 

 
Keywords: design theory, strategy, challenge, exploration, guidance, creativity 

 

Terms: 
Components 

Variable: a design choice to be made. A variable can be discreet (i.e., number of 
windows) or continuous (i.e., building length).  

Option: individual variable input(s) (i.e., number of windows = {1, 2, or 3}; 
building length = 10-20 meters). 

Decision: the selection of an option (i.e., a number of windows = 2; building   
length = 12.75 meters). 

Alternative: a combination of decisions about options. 
Stakeholder: a party with a stake in the selection of alternatives. 
Goal: declaration of intended properties of alternatives. 
Preference: weight assigned to a goal by a stakeholder.  
Constraint: limit placed on options. 
Impact: alternative’s estimated performance according to a specified goal.  
Requirement: limit placed on impacts. 
Objective: union of stakeholders, goals, preferences and constraints. 
Value: net performance of an alternative relative to all objectives. 

Dimensions 
Challenge: a set of decisions to be made ranging from simple to complex.  
Strategy: a procedure to generate decisions ranging from none to advanced.  
Exploration: a history of decisions made ranging from misled to guided.  
Design Process: implementation of a strategy to a challenge resulting in an 

exploration. 
Guidance: variation in exploration produced by applying different strategies to a 

given challenge.  
Spaces 

Objective space: set of stakeholders, goals, preferences and constraints.  
Alternative space: feasible (explored or unexplored) alternatives for a given 

challenge. 

mailto:caroline.clevenger@colostate.edu
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Impact space: analyzed impacts of alternatives relative to goals, determined to be 
acceptable or unacceptable according to requirements.  

Value space: values of the set of alternatives generated during an exploration.  
 
We use italics throughout this paper to indicate explicit reference to these definitions. 
 

Introduction 
 
Performance-based design consists of explorations supported by strategies to generate 

and analyze alternatives that address challenges with explicit objectives. Strategies 

used by designers range from none to advanced. As new strategies emerge, designers 

lack a method to assess the guidance provided. To assess guidance designers need to 

compare the explorations afforded by available strategies on potential challenges. 

This paper asks: what is a method for evaluating how well strategies address 

challenges? Metrics and a framework relating these process components are important 

for process improvement (Dorst, 2008). Clevenger and Haymaker, 2011 proposes a 

framework to describe design as exploration through objective, alternative, impact, 

and value spaces.  It proposes the following metrics, categorized as to whether they 

describe challenge, strategy or exploration: 

Challenge Metrics 
Objective space size (OSS): the number of objectives considered in the challenge. 
Alternative space interdependence (ASI) - the number of first order interactions 

among variables divided by total number of variable combinations. ASI 
represents the extent to which interactive affects impact value. In the synthetic 
experiment performed for this research, it is calculated using built-in 
capabilities of existing process integration design optimization (PIDO) 
software. In general, the higher the ASI is, the more complex the challenge. 

Impact space complexity (ISC): the number of variables found to result in 
performance trade-offs (divergent impacts) divided by total number of 
variables. ISC represents the percentage of variables with competing 
objectives. In the synthetic experiment performed for this research, ISC is 
observable using built-in capabilities of existing PIDO software. The higher the 
ISC is, the more complex the challenge. 

Value space dominance (VSD): the extent to which value is dominated by 
individual variables calculated using sensitivity analyses. VSD represents the 
importance of individual design decisions. In the synthetic experiment 
performed for this research, it is calculated using built-in capabilities of 
existing PIDO software. Because the lower the VSD, the more complex the 
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challenge, VSD is presented as its reciprocal (1-importance) in our metric 
assessment. 

Strategy Metrics 
Objective space quality (OSQ): a scalar number (0 to 1) that measures the extent 

to which the objectives analyzed using a particular strategy match the 
objectives proposed for a challenge.  

Alternative space sampling (ASS): the number of alternatives generated divided 
by the number of alternatives required for a “significant sampling” of all 
feasible alternatives. It measures the extent to which a sampling is 
“representative” of all alternatives. Significant sampling can be determined 
mathematically using standard statistical techniques to calculate “sample size.” 
For comparative purposes when the statistically significant sample size is 
unknown, we use the total population of alternatives. 

Alternative space flexibility (ASF): the average number of option changes 
between any two alternatives divided by the number of variables modeled. 
ASF indicates the variety in alternatives generated in a given exploration.  

Exploration Metrics 
Value space average (VSA): the mean value for the set of alternatives analyzed. 

This metric characterizes the average performance of alternatives generated in 
an exploration.  

Value space range (VSR): the standard deviation in value for the set of 
alternatives analyzed. This metric characterizes the dispersion of alternatives 
generated in an exploration. 

Value space iterations (VSI): the number of alternatives generated before the 
highest value is reached. This metrics characterizes the efficiency of an 
exploration. 

Value space maximum (VSM): the top value calculated for alternatives generated 
in a given exploration. This metric characterizes the maximum value 
generated. 

 
Existing literature provides metrics to evaluate individual design process dimensions.  

For example, signal-to-noise ratios have been used to evaluate the robustness of a 

design challenge (Phadke & Taguchi, 1987). Flexibility, robustness, and survivability 

have been used to evaluate design strategy (McManus et al., 2007). Design 

knowledge and design freedom have been used to evaluate the flexibility of a design 

exploration (Simpson et al., 1996). Our research focuses on collecting data to 

compare the guidance provided by a given strategy relative to a specific challenge.  

Research exists that compares strategies (for example, Avigad & Moshaiov, 2009), 

and significant and detailed research exists examining the efficiency and convergence 

properties automated algorithms. For example, (Marler & Arora, 2004) provide a 

comprehensive survey of strategies that use continuous nonlinear multi-objective 
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optimization. They classify these strategies according to: ones that involve a priori 

articulation of preferences, ones that involve a posteriori articulation of preferences, 

and ones that involve no articulation of preferences.  Strategies involving a 

progressive articulation of preferences are not included. They conclude the 

effectiveness of a strategy depends on the type of information provided in the 

challenge, user preferences, solution requirements, and software availability.   

Research also exists which begins to evaluate the role of the designer on outcome 

in terms of the expertise or creativity as supported by various strategies for a given 

challenge (Dorst & Cross, 2001; Cross, 2004). In general, limited real-world data 

exists to evaluate exploration performance achieved by actual designers. This is due, 

primarily, to the fact that parallel or redundant explorations are not performed across 

strategies in the real-world due to limited project resources. Arguably, designers often 

execute similar strategies across challenges over time. In the absence of inter- or 

intra- project baselines, however, it is difficult to compare the effectiveness of various 

applications of the same strategy.   

The methodology defined in this paper enables quantitative and objective 

assessment of the guidance afforded in human-performed or automated explorations. 

We use data from a laboratory experiment to assess the guidance that results from six 

design strategies across two design challenges to provide initial evidence for the 

method’s power and generality. The domain of the challenges addressed is energy 

efficiency, although other strategies and challenges could be similarly tested across 

additional explorations.     
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Design Exploration Assessment Methodology (DEAM) 

Using the defined terms and metrics we construct a Design Exploration Assessment 

Methodology (DEAM) to measure and compare the guidance afforded by distinct 

strategies applied to unique challenges. DEAM consists of the following six steps: 

(1) Generate value space: Generate representative alternatives and assess 
multidisciplinary impacts and values for a given challenge. 

(2) Assess challenge: apply objective space size (OSS), alternative space 
interdependence (ASI), impact space complexity (ISC), value space 
dominance (VSD) metrics to assess the level of challenge presented by the 
representative alternatives.  

(3) Assess strategies: apply objective space quality (OSQ), alternative space 
sampling, (ASS), alternative space flexibility (ASF) metrics to the objectives, 
options and alternatives considered by candidate strategies.  

(4) Conduct explorations: record the set and sequence of designer generated 
alternatives using distinct strategies. Assess value through analysis, results of 
which may or not be apparent to designer depending on the strategy 
implemented.  

(5) Assess explorations: apply value space average (VSA), value space range 
(VSR), value space iterations (VSI), value space maximum (VSM) metrics to 
the value space generated in an exploration.  

(6) Evaluate guidance: compare the challenge, strategy and exploration to deduce 
levels of guidance afforded by candidate strategies. 
 

DEAM applied in synthetic experiment 

We applied DEAM in a synthetic experiment using a charrette test to document the 

explorations performed by professional designers on two challenges, using six 

strategies. Two challenges were used to bring generality to the data. We acknowledge 

inherent differences exist between any two challenges, and we use challenge metrics 

to evaluate differences and allow for normalized comparison. We also used distinct 

challenges during the charrette test to discourage participant “learning” across 

strategies since different strategies are applied to the same challenge. While learning 

is a natural and intended consequence within any design exploration, in our 

experiment we changed challenges after the implementation of two strategies in an 

attempt to keep results representative of strategy rather than dependent (improved by) 

consecutive explorations. Figure 1 illustrates our application of DEAM. 
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Figure 1. Process map showing how in this paper we use the Design Exploration 
Assessment Methodology (DEAM) to assess the guidance afforded from six 
strategies across two challenges.   
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In our synthetic experiment, we applied DEAM in the following manner.  

(1) Generate value space: we used Phoenix Integration PIDO Software (Phoenix 
Integration, 2004) to automate input generation and analysis of EnergyPlus 
(LBNL, 2008) and to perform a full analysis of two simple building models, 
representing a new construction and a renovation project challenge. Full 
analysis provided first cost and annual energy cost estimates. We assessed 
value in units of Net Present Value ($) for all feasible alternatives, a total of 
864 and 576 respectively. The value spaces for each challenge are shown in 
Figure 10.  

(2) Assess challenge: we applied our challenge metrics to the results of our full 
analysis for both challenges. Results from applying metrics are presented in 
Table 3.  

(3) Conduct exploration: we collected charrette test data using our custom 
software, EnergyExplorerTM, to assist and document professional design 
explorations. EnergyExplorerTM is an interface that enables a user to easily 
generate alternatives using strategies different types of access to the 
previously simulated value space.  

(4) Assess strategy: we applied strategy metrics to six strategies implemented in 
the experiment. The six strategies evaluated include: random guessing, tacit 
knowledge, point-based analysis, trend-based analysis, trend and point-based 
analysis, and full analysis. Results from applying metrics are presented in 
Table 4. Process diagrams of the strategies are provided in Figures 4-9.  

(5) Assess exploration: we applied exploration metrics to charrette test results for 
the six strategies applied to two challenges. Results from applying metrics are 
presented in Table 5. 

(6) Evaluate guidance: we compared explorations and guidance afforded by 
various combinations of strategies and challenges. Our comparison is shown 
in Figure 13. 

 
While the order of steps 3 and 4 appears counter-intuitive, our evaluation 

method tests strategies that incorporate human decision (e.g.; tacit knowledge) rather 

than prescriptive algorithms alone (see Marler & Arora, 2004). In order to assess non-

prescriptive strategies, it is necessary to first observe decisions made. While 

prescriptive or fully automated strategies such as optimization or full analysis are 

strategies that can be assessed independently of resultant explorations, we assess all 

strategies post exploration for consistency.  

Next we outline further detail of the individual strategies tested in our 

synthetic experiment and their process maps.  
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Design Strategy 1: Random Guessing - Random algorithm generates 

alternatives. 

 
Figure 2. Random Guessing strategy process. 
 

Design Strategy 2: No NPV Data - No NPV information is provided. Participants 

generate alternatives using intuition and tacit knowledge.    

 
Figure 3. Tacit Knowledge strategy process. 
 

Design Strategy 3: Point NPV Data - participants generate an alternative and then 

“simulate” NPV performance.  Instant feedback regarding NPV of the generated 

alternative is provided and, presumably, assists in selection of the next alternative.    

 
Figure 4. Point NPV Data strategy process. 
 

Design Strategy 4: Trend NPV Data - Prior to exploration, participants are given first 

cost and lifecycle energy cost impact and NPV trend data illustrating dominance and 

interactive effects among variables and trade-offs among impacts. Participants were 

not given instruction on how to interpret this information. 
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Figure 6. NPV Trend Data strategy process. 
 

Figure 7 shows examples of the trend data representations provided to participants. 

   

 
Figure 7. Sample trend data for the new construction challenge provided to 

participants implementing the NPV Trend Data strategy.  The bar chart on the left 
represents the extent to which a decision affects an alternative’s value (either 
positively or negatively).  The graph in the center shows the relationship of one 
decision to another.  The diagrams on the right show the impact of individual 
decisions on individual goals (ie.; first cost and energy savings). 
 

Design Strategy 5: Trend + Point NPV Data - Prior to exploration, participants are 

given the same information provided in the Trend NPV Data strategy.  Armed with 

this trend information, participants generate an alternative and, in addition, “simulate” 

NPV performance. Instant feedback regarding NPV is provided to participants after 

each alternative is generated to supplement the trend data alone.  
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Figure 8. Trend NPV Data and Point NPV Data strategy process. 
 

Design Strategy 6: Full Analysis - a full Design of Experiment (DoE) (Box et al, 

2005) analysis of the value (i.e.; NPV) of all alternatives in the alternative space are 

generated. Exploration based on this strategy simply consists of selecting an 

alternative with maximum NPV since the space is fully explored.  

 
Figure 9. Full Analysis strategy process. 

 
Next we discuss the application of the six steps of DEAM in our synthetic 

experiment: 
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Value Space Generated 
 
The first step of DEAM is to generate a value space. We built a DoE using Phoenix 

Integration PIDO software and EnergyPlus energy modeling software (Welle & 

Haymaker, 2011, Flager et al., 2009)). We applied this full analysis to two distinct 

challenges. The objective for both challenges is to maximize the Net Present Value 

(NPV) of decisions regarding energy efficiency. The first challenge simulated the 

renovation of a 3 story, 100,000 sf, rectilinear office building located in Phoenix, 

Arizona. We modeled eight variables representing design decisions typical to an 

energy efficiency upgrade. Table 1 lists the options for the variables modeled in the 

renovation challenge with associated first cost implications. The second challenge 

simulated the design of a new 3 story, 100,000 sf, rectilinear office building located in 

Burlington, Vermont. We modeled eight variables representing typical design 

decisions that have effects on energy performance in new construction. Table 2 lists 

the options for the variables modeled in the new construction challenge with 

associated first cost estimates. The main difference between the renovation and new 

construction challenges is the inclusion of geometric variables in the new 

construction challenge. We model all variables as discrete options. However, the 

variables modeled and the number of options for these variables differed between the 

two challenges. After presenting the variables and options considered, we will use 

challenge metrics to characterize how the two challenges differ to assess the impact 

of these differences on the guidance provided.   
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Table 1. Variables and options modeled for Renovation Project, Phoenix Arizona. 
Variable Existing Condition  

(baseline cost ) 
Options 

(cost delta) 

Window Type single-pane  
($0) 

double-pane, Low-E 
($32/sf) 

Argon filled, Low-E 
($39/ sf) 

Lighting Load 1.2 W/sf 
($0/sf of building area) 

1 W/sf 
($2/sf of building area) 

0.8W/sf 
($3.3/sf) 

Exterior 
Shading 

No exterior shading  
($0/sf) 

50% exterior shading 
($24/sf) 

Daylight 
Controls 

No Daylight Controls  
($0/sf) 

Daylight Controls  
($125/unit) 

Roof Type Uninsulated Concrete Roof  
($0/sf) 

2" Rigid insulation added to 
Concrete Roof ($1.2/sf) 

Interior Office 
Equipment 

5W/sf 
($0/sf of building area) 

2W/sf 
 ($2/sf of building area) 

Wall 
Insulation 

R-11 Insulation  
($0/sf) 

R-19 Insulation  
($.5/sf) 

HVAC 
Efficiency 

Existing VAV System  
($0/sf of building area) 

High Efficiency VAV 
($/sf)1 

1. If the HVAC system is upgraded, the size (and resulting cost) of the system depends on other options. For the 
existing system the size is fixed and independent of other options. 
 
 
Table 2. Variables and options modeled for New Construction Project, Burlington 
Vermont. 

Variable Options 
(first cost factor per sf) 

Window Type double-pane  
($19/sf) 

double-pane, Low-E 
($32/sf) 

double-pane, low-e, 
argon filled ($39/ sf) 

Lighting Load 1W/sf 
($2/sf of building area) 

0.8W/sf 
($3.3/sf of building area) 

Exterior  
Shading 

No exterior shading 
($0/sf) 

50% exterior shading  
($24/sf) 

Daylight 
 Controls 

No Daylight Controls 
($0/sf) 

Daylight Controls 
($500/floor) 

Building  
Shape 

Square 
[1:1 aspect ratio] ($0/sf) 

Rectangular 
[1:2 aspect ratio] ($0/sf) 

Long-Skinny  
[1:5 aspect ratio] ($0/sf) 

Building 
Orientation 

0 
(rotation from N) 

45 
(rotation from N) 

90 
(rotation from N) 

Window to 
Wall Ratio 

40% 
($/sf)1 

90% 
($/sf)1 

HVAC 
Efficiency 

Low Efficiency2 
($8/sf of building area) 

High Efficiency 
(~$9.3/sf of building area) 

1. Cost dependent on window type and aspect ratio. 
2. The size (and resulting cost) of the HVAC system depends on other options.  

 We used the following equations to calculate value in units of NPV for the 

two challenges, and assumed $.10/kWh energy cost with 3% inflation: 

Equation 1, Renovation:  
 

NPV = Pre-renovation Energy Budget - 30 year Discounted Annual Energy Cost ($) – First Cost ($) 
 

Equation 2, New Construction:   
 

NPV =  Baseline Project Budget - 30 year Discounted Annual Energy Costs ($) - First Cost($) 
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We developed NPV estimates primarily to be internally consistent, rather than 

accurate representations of true or full costs of actual building projects.  For example, 

we excluded plumbing costs, and potential impact of site conditions relative to 

building orientation, and assumed utility rates to be fixed over the 30 years. We felt 

the abstractions were necessary and appropriate to reduce calculation time, manage 

the number of alternatives analyzed, and avoid introducing the concept of uncertainty 

into the experiment. 

Figure 10 graphs the results of the full analysis of the two challenges in 

ascending order. It shows that although the renovation challenge includes fewer 

alternatives, a larger range of performance and a higher maximum value exists 

relative to the new construction challenge. The inset is an illustration of the clustering 

of results that occurs for various options. Each cluster in the inset represents the 

impact of all options relative to a single option. The impact of each single option can 

be seen between clusters. The inset serves as a visual demonstration that certain 

decisions have more impact than others. 

 

 
Figure 10.  Full analysis of alternatives in renovation and new construction 
challenges ordered by NPV ($).  Inset shows clusters of value generated by changing 
options in a given challenge.  
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Challenge Assessed 

After value space is generated, the next step in DEAM is to assess the challenge. 

Table 3 shows the challenge metrics evaluated for the renovation and new 

construction challenges. 

Table 3. Challenge metrics evaluated for renovation and new construction challenges. 
 Challenge 

Metric Renovation New Construction 
Objective Space Size (OSS) 2 2 

Alternative Space Interdependence (ASI) .58 .70 
Impact Space Complexity (ISC) .25 .25 
Value Space Dominance (VSD) .31 .63 

Total: 3.14 3.58 

Evaluation of these metrics supports the following observations: 

(1) Objective space size (OSS) is 2 for both challenges since first cost and annual 
energy cost are considered in both. 

(2) Alternative space interdependence (ASI) is higher in the new construction 
challenge, meaning a higher number of interactions exist among the 26 
pairings of variables in the new construction alternative space than the 
renovation alternative space. This is not surprising since changing building 
geometry can affect numerous variables. 

(3) Impact space complexity (ISC) is equal in both challenges meaning the 
renovation and new construction impact spaces include a similar number of 
design trade-offs. Both challenges have the same number of goals (2) and 
variables (8).  Analysis reveals that for both challenges two variables, 
window type and exterior shading, have competing impacts.  

(4) Value space dominance (VSD) is significantly lower for the renovation 
challenge, meaning select variables in the renovation challenge play a more 
dominant role in the renovation value space, than select variables in the new 
construction challenge. Evaluation of ranked impacts of individual variables 
on value (i.e., NPV) demonstrates that one decision, HVAC efficiency, is 
highly dominant during renovation. This dominance is the result of the fact 
that, unlike in the new construction challenge, in the renovation challenge, the 
size of an existing (low efficiency) system is fixed, but a new system is “right-
sized” doubly increasing the efficiency impact.  

 
Assessment of the challenge metrics indicates that the new construction 

challenge is more complex than the renovation challenge:  3.58 versus 3.14 according 

to crude evaluation by simple summation. In general, although the number of 

objectives and complexity of impacts is comparable, more interactions occur between 

similarly influential variables, in the new construction challenge.  Specifically, a 
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greater number of alternatives exist in the new construction alternative space, but 

with less variation in value space (see Figure 10).  Intuition might tell us that new 

construction is generally a simpler challenge with more opportunity for gain in energy 

efficiency.  However, some of the variables in the renovation challenge include 

options that do not meet energy code requirements or include an improperly sized 

HVAC system. Such options, excluded from the new construction challenge assuming 

code-compliant design for new construction, result in an artificially low baseline in 

building renovation by providing “low-hanging fruit.”  In addition, as previously 

noted, the renovation challenge is highly dominated by the HVAC selection variable. 

By comparison the new construction challenge is not strongly dominated, but has 

more interdependences resulting in more trade-offs and less obvious option selections.  

Exploration Conducted 

The next step in this application of DEAM is to observe designers conducting 

explorations. To gather this data, we used the Charrette Test Method (Clayton et al, 

1998), an established research technique that “employs a short but intensive design 

problem and compares the performance of several designers in undertaking the 

problem using various carefully defined design processes.” For this purpose, we 

developed a custom interface we called the EnergyExplorerTM, shown in Figure 11. 

Using this tool, designers are able to quickly and easily generate and record design 

alternatives, and, employing certain strategies, assess their energy performance. 

Supporting the interactive interface are hidden libraries in excel that contain the 

results from pre-simulated full NPV analyses for both the new construction and 

renovation value spaces. Participants have access to different levels of data analysis 

(none, point, or trend data) depending on which strategy they implement.   
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Figure 11. Custom interface for EnergyExplorer™, an interactive software tool used 
by charrette participants to document explorations supported by various strategies.  

Figure 11 shows sample new construction alternatives generated by participants using 

the EnergyExplorer™ interface. If the tacit knowledge strategy had been shown, by 

way of example, participants would not have access to NPV data (far right).   

Charrette tests were conducted with 15 building industry professional 

participants. These participants were asked to answer several questions regarding their 

professional background. Information regarding professional background was not 

used in the statistical analysis of results presented in this paper; nevertheless, we 

briefly summarize participant profiles to highlight the diversity and experience among 

the professionals who participated in the two charrettes.  Professional roles of 

participants included: 4 Energy Analyst/Consultants, 2 Construction Managers, 3 

Mechanical Engineers, 4 Program Managers, 1 Designer/Architect, 1 Owner/operator; 

years of experience in industry ranged from 0-5 to over 20; and, level of self-reported 

energy expertise ranged from low to high (with no individuals claiming to be an 

expert although several worked as energy consultants).  Not surprisingly, given the 

variety of industry roles and experience represented, participants had significantly 

different exposure to energy modeling in practice with a few individuals reporting that 
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energy modeling was used on 0-5% of their projects and others reporting it was used 

on >75% of their projects.  Finally, on the real-world projects where energy modeling 

was performed, nearly all professionals report that typically 2-5 energy simulations 

were run. This estimate is consistent with the findings of other researchers (Flager & 

Haymaker, 2007), (Gane & Haymaker, 2010), although in another similar case study 

(Clevenger & Haymaker, 2011) 13 energy simulations were performed.  Regardless 

of whether 2 or 13 energy model simulations are performed, observations confirm that 

traditional industry energy modeling practice most closely aligns with Design 

Strategy 3: Point NPV Data. 

Strategies Assessed 

Each participant completed a total of four explorations across two challenges, each 

using a different strategy (No NPV Data, Point NPV Data, Trend NPV Data and 

Trend + Point NPV Data).  Each participant generated up to 10 alternatives using 

each strategy to create approximately 40 alternatives per participant during the 

charrette test. PIDO was used to generate the alternatives produced by random 

guessing and full analysis strategies for both challenges. We used EnergyExplorerTM 

to record the total of up to 150 alternatives per strategy, or approximately 75 

alternatives generated for each of the two challenges. 

Table 4 shows the strategy metrics evaluated for the six strategies tested     

averaged over both renovation and new construction challenges. The objective space 

quality (OSQ) calculation reflects the degree (0 to 1) to which a given strategy 

provides designers information directly representative of a stated goal(s) (e.g.; 

maximize NPV).  For the strategies that provide value (i.e.; NPV) results to designers, 

OSQ = 1. For the strategies where no data is provided about NPV, (i.e.; random 

guessing), OSQ = 0. Finally, where impact patterns are identified, but individual 
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alternative’s impact data are not provided, we assigned OSQ = .5, and where 

presumably designers had some tacit knowledge but no definitive analysis, we 

assigned OSQ = .33. Although these evaluations of OSQ are internally consistent, 

they remain somewhat subjective.  Future research is necessary to more fully define 

the evaluation of OSQ, particularly for complex challenges with wide-ranging and 

disparate goals. 

Alternative space sampling (ASS) indicates the percentage (although not the 

distribution) of the alternatives generated relative to the total number of feasible 

alternatives in value space. We generated the trend data provided during the charrette 

from a DoE using a PIDO script to automate EnergyPlus.  Nevertheless, ASS for 

trend (NPV) data requires only a statistical sampling to determine trend data, which 

can be added in future research. 

Alternative space flexibility (ASF) calculations communicate the number of 

differences between options among the alternatives generated by a given strategy 

regardless of sequence.  For automated strategies (e.g.; full analysis) this metric is 

evaluated as a very small number of changes, but is deterministic and can be 

calculated prior to exploration. For strategies that incorporated human decision (e.g.; 

tacit knowledge, point analysis, trend analysis etc.) the metric is assessed after human 

exploration. As observed, the strategy that generated alternatives with more 

flexibility among options was trend data, followed by tacit knowledge and trend + 

point data. Full analysis has an extremely low ASF since each alternative only differs 

by one option of one variable, while random guessing is likely to have different 

options for up to 50% of the variables. ASF signifies that while varying one option in 

isolation provides significant information in the comparison of two alternatives, it 

provides almost no information about the overall design space.   
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Table 4.  Strategy metrics evaluated for six strategies tested. Results support 
characterization and comparison of strategies. 

 
Metric 

Random 
Guessing 

No NPV  
Data (Tacit 
Knowledge) 

Point 
NPV 
Data 

Trend 
NPV 
Data 

Trend +  
Point               
NPV 
Data 

Full 
Analysis 

Objective Space 
Quality (OSQ) 0 .33 1 ~.5 1 1 

Alternative Space 
Sampling (ASS) 

 
0 

 
0 

 
~.015 

(10/576; 
10/864)   

 
~.40  

(231/576; 
266/864) 

 
~.415 

 
1 

(576/576; 
864/864) 

Alternative Space 
Flexibility (ASF) ~.5 .25 .19 .31 .23 ~.001 

Total: .5 .58 1.205 1.21 1.645 2.001 
 

 

 
Debate exists in design theory regarding the importance of individual metrics. For 

example, is depth versus breadth a more effective strategy?  (Goldschmidt, 2006) 

argues in favor of the depth strategy where novices to expert designers work in a 

limited alternative space to conduct a more complete exploration. In contrast, (Akın, 

2001) argues that expert designers tend to start with breadth before depth strategies. 

Many researchers argue that design improvement and innovation are generally 

supported by breadth (Sutton, 2002). Multiple assessments comparing strategies are 

possible using the strategy metrics presented in Table 4. For example, depth versus 

breadth can be assessed and compared as a function of a combination of variously 

weighted ASS, the number of alternatives generated, and ASF, the level of similarity 

among alternatives.  

For this research, we simply sum the three metrics without weights to evaluate the six 

strategies from least to most advanced (Table 5). Future research could be performed 

that varies the assessment algorithm to assess and compare strategies differently. 

Although certain strategies score closely in our research, the contribution is that 

application of these metrics supports a range of comparisons of strategies.  
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Table 5.  Ranking of strategy from least to most advanced, based on strategy metrics. 
Level of 

Advancement  
(1= least, 6= most) Strategy Sum of Strategy Metrics  

1 Random Guessing .5 

2 No NPV Data, Tacit Knowledge .58 

3 Point NPV Data 1.205 
4 Trend NPV Data 1.21 
5 Trend + Point NPV Data 1.645 
6 Full Analysis 2.001 

 

 

 

Initial assessment, while crude, appears intuitive since rank is ordered 

according to the level of data provided to the designer by a given strategy. Future 

research may be performed to determine if past performance on a given challenge 

with a given strategy is a reliable predictor of exploration performance on similar 

challenges in the future.  If so, this will enable consideration of the effectiveness of 

strategies relative to challenge prior to exploration. 

Explorations Assessed  
 

The next step in DEAM is to analyze the exploration achieved by the strategy 

implemented. Table 6 summarizes the exploration metrics assessed for the six 

strategies across the two challenges. Results, originally NPVs, are normalized to 

percentages of value space maximum. For example, VSA for an exploration is the 

average value achieved among alternatives generated using a given strategy over the 

maximum value of the full value space. In the renovation challenge a significant 

number of alternatives have a low value, which results in a low VSA. Conversely, in 

the new construction challenge a significant number of alternatives have relatively 

high value, which results in a high VSA. 

  

http://en.wikipedia.org/wiki/George_E._P._Box
http://en.wikipedia.org/wiki/Special:BookSources/0471718130
http://www.stanford.edu/~haymaker/Research/Papers/Importance-Process-Clevenger-Haymaker-SB514-Sept2008.pdf
http://www.stanford.edu/~haymaker/Research/Papers/Importance-Process-Clevenger-Haymaker-SB514-Sept2008.pdf
http://www.stanford.edu/~haymaker/Research/Papers/ConceptualDesignOfHighRises_Gane_Haymaker.pdf
http://www.stanford.edu/~haymaker/Research/Papers/Comparison-Of-MDAO-Flager-Haymaker-2007.pdf
http://www.stanford.edu/~haymaker/Research/Papers/Comparison-Of-MDAO-Flager-Haymaker-2007.pdf
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Table 6. Exploration metrics evaluated for the six strategies and two challenges 
tested. Data is shown as a percentage of the maximum value of the value space. VSI 
is the exception; assessments represent the number of iterations generated prior to 
achieving maximum value in a given exploration. Data sample size generated by 
charrette participants using the various strategies is provided under each assessment 
in parentheses. 

 
Metric Challenge 

Random 
Guessing 

No NPV  
Data (Tacit 
Knowledge) 

Point 
NPV 
Data 

Trend 
NPV 
Data 

Trend +  
Point               

NPV Data 
Full 

Analysis 

Value Space 
Average 
(VSA) 

Renovation 

New 
Construction 

~30% 
(100) 

 
~74% 
(100) 

51% 
(52) 

 
79% 
(37) 

58% 
(53) 

 
86% 
(38) 

73% 
(36) 

 
87% 
(41) 

53% 
(41) 

 
84% 
(41) 

30% 
(576)  

 
74% 
(864)   

Value Space 
Range 
(VSR) 

Renovation 

New 
Construction 

<37% 
(100) 

 
<18% 
(100) 

41% 
(52) 

 
15% 
(37) 

38% 
(53) 

 
13% 
(38) 

28% 
(36) 

 
17% 
(41) 

43% 
(41) 

 
24% 
(41) 

 
70% 
(576)  

 
74% 
(864)   

 
Value Space 

Iterations 
(VSI) 

Renovation 

New 
Construction 

~5 
 

~5 

4.2 
 

5.0 

5.7 
 

5.8 

4.4 
 

2.4 

3.8 
 

4.0 

576 
 

864 

Value Space 
Maximum 

(VSM) 

Renovation 

New 
Construction 

~67% 
(10) 

 
~83% 
(10) 

92% 
(7) 

 
97% 
(6) 

92% 
(7) 

 
95% 
(6) 

93% 
(7) 

 
99% 
(6) 

76% 
(7) 

 
98% 
(6) 

100% 
(1) 

 
100% 

(1) 
   

The following notes discuss the findings presented in Table 6. Statistical 

significance was determined using the threshold of a T-distribution test < .10.  While 

sample size (shown in Table 6 in parentheses) was sufficient in certain cases to make 

claims about statistical significance, in many cases it was not. The real value of the 

data is less in the findings themselves and more in the fact that this methodology 

support systematic comparison of strategies.  Furthermore, such comparison may be 

customizable depending on designer or researcher preference.  Observable findings 

from this initial data set include:  

(1) Tacit knowledge guides the generation of a set of alternatives that have a 
higher average value than those generated using random guessing.   

Supporting evidence:  The VSA of alternatives generated using tacit 
knowledge was, on average, superior to the average value of alternatives 
guided by random guessing.  The improvement maintains statistical 
significance by a margin of 44% for the renovation challenge, and 3% in the 
new construction challenge. 


