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ABSTRACT 

Fully Constrained Design (FCD) is a new method for discrete sizing optimization of steel 

frames. Based on the optimality criteria approach, FCD handles constraints and generates 

designs in a new way that enables it to be readily applied to different problem 

formulations, even when the search space is discontinuous. The quality of solution 

produced by the proposed method is superior to optimality criteria (>7% difference) and 

comparable to leading heuristic methods (<2% difference), based on the benchmarking 
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studies we conducted. We present a successful industry application of FCD that yields 

cost savings of 19% compared to conventional design methods. 

Keywords: structural optimization; size optimization; discrete variables; steel structures; 

frame; truss 

 

1. Introduction 

Engineers are often challenged to design steel structures that use the least amount 

of economic and environmental resources possible to satisfy the system’s functional 

requirements. The design of these structures can be decomposed into three components: 

(i) topology, which concerns the number and connectivity of members; (ii) shape, which 

pertains to the location of structural joints; and (iii) sizing, which involves defining 

member cross-sections [1]. This paper presents a flexible, general, and scalable algorithm 

to optimize the sizing of steel members given a fixed topology and shape. The objective 

of the optimization process is to minimize the cost of the structure while satisfying design 

performance requirements for safety and serviceability. In this case, the total weight of 

the structure is used to estimate cost. Steel weight is commonly used as a surrogate for 

cost in the structural design industry and has been demonstrated to be accurate, provided 

that the construction methods required do not become too expensive or impractical [2]. 

To achieve this objective, engineers select steel sections from a discrete set which 

contains certain designations of steel profiles that are produced by steel mills [3]. 
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Member sizing optimization is traditionally an iterative process that is performed 

manually by the engineer. The number of possible design alternatives (i.e., the design 

space) for sizing problems is an exponential function of the number of design variables 

and the number of possible choices for each variable. Even for a relatively simple 10-bar 

truss problem as described in Section 4.1, the number of possible sizing configurations is 

greater than 1.0E+10. Finding optimum designs within such a large design space using 

manual methods is very difficult. Often engineers leave vast areas of the design space 

unexplored that potentially contain better performing design configurations [4, 5]. 

Optimization algorithms enable engineers to leverage computer processing power 

to systematically search the design space for optimal member size configurations. 

Researchers have developed and applied a variety of optimization algorithms to discrete 

sizing problems for steel truss and frame structures over the past 50 years as surveyed by 

Arora [6]. These algorithms can be broadly categorized as deterministic or non-

deterministic. Deterministic methods such as mathematical programming [7-11] and 

optimality criteria [12-14] were first applied to discrete sizing problems in the 1960s. 

These algorithms need an initial design configuration to begin the search and require 

gradient computations in the exploration process, namely the calculation of the first 

derivative of the objective and constraint functions with respect to the design variables. In 

some cases, the objective and/or constraint functions are discontinuous or irregular, 

making the gradient search difficult [15]. In addition, the constraint functions may vary 

depending on local regulatory requirements and stakeholder preferences [16], thus 
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requiring the customization of the algorithm for each unique set of constraint functions. 

The implementation of the algorithm can be time consuming and error prone in such 

cases [17]. 

Another group of optimization techniques that have emerged recently do not 

require gradient information for the objective and constraint functions and use 

probabilistic transition rules rather than deterministic ones. The basic idea behind these 

stochastic techniques is to simulate a natural phenomenon, such as survival of the fittest, 

the immune system, swarm intelligence and the cooling process of molten metal through 

annealing. A detailed review of these algorithms as well as a comparison of their 

performance for discrete sizing problems is provided by Hasancebi [18, 19]. These 

heuristic search and optimization methods have a couple of advantages when compared 

to the deterministic methods discussed above. First, they separate domain knowledge 

from search, making them generally applicable to a wide variety of problem formulations 

without customization. Second, there is no limitation on the continuity of the search 

space since no gradient information is required. 

A disadvantage of heuristic methods, however, is that they require significantly 

more computational resources than deterministic techniques [20]. Research on the 

convergence of these algorithms has shown that the number of evaluations required to 

reach a given solution quality grows as a function of the square root of the size of the 

problem [21]. To keep computation times manageable, researchers have focused on 

applying heuristic methods to truss and frame structures involving fewer than 100 sizing 
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variables. Further research is required to compare the performance of these methods to 

deterministic techniques for large-scale member sizing problems involving hundreds or 

even thousands of variables which are common in industry practice. 

The goal of the research presented in this paper was to develop a discrete member 

sizing optimization method that is (i) flexible (i.e., can accommodate different objective 

and constraint functions without modification); (ii) general (i.e., does not require the 

search space to be continuous) and (iii) scalable (i.e., can be applied to large structures 

involving greater than 100 sizing variables in a time frame that is at least comparable to 

conventional design practice). To achieve these objectives, the proposed optimization 

algorithm, which we call the Fully Constrained Design method, employs a new way of 

handling constraints and generating new designs that is presented in Section 3. We 

benchmark the method against the best performing existing deterministic and heuristic 

optimization methods in Section 4. In Section 5, we benchmark the method against 

conventional industry practice on a large stadium roof structure to demonstrate the 

scalability of the method. Finally, we summarize the benchmarking results and discuss 

the suitability of the method for general industry application in Section 6. 

2. Mathematical model for discrete sizing optimization introduction 

A general discrete sizing structural optimization problem can be formulated as: 

Minimize:  𝑊𝑊 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑),   𝑑𝑑 = 1,2, … ,𝐷𝐷                     (1) 

Satisfying: 𝐺𝐺𝑞𝑞 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) ≤ 1, 𝑑𝑑 = 1,2, … ,𝐷𝐷     and     𝑞𝑞 = 1,2, … ,𝑀𝑀        (2) 
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 𝑥𝑥𝑛𝑛 ∈ 𝑆𝑆𝑛𝑛 �𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝�                       (3) 

Where W is the weight of the structure, which is a scalar function. The set of 

design variables are represented as 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑 . The design variable 𝑥𝑥𝑛𝑛 belongs to the 

set  𝑆𝑆𝑛𝑛, which describes the available list of discrete member section values. The 

inequality 𝐺𝐺 ≤ 1 represents the constraint functions, which must be less than unity in this 

case. The structural constraints considered in the numerical examples in Section 4 include 

member stresses and nodal displacements. The letters 𝐷𝐷 and 𝑀𝑀 are the number of design 

variables and constraint functions, respectively. The letter p is the number of available 

section size choices for a given design variable. 

3. Fully constrained design method 

3.1. Description 

The Fully Constrained Design (FCD) method for member sizing optimization is 

based on the optimality criteria approach discussed in Section 1. FCD possesses a new 

approach to constraint handling and the generation of new designs that overcomes the 

observed limitations to the flexibility and generality of the optimality criteria method, 

namely (1) the requirement that the objective and constraint functions are continuously 

differentiable in terms of the design variables, and (2) the requirement that the algorithm 

be customized for each unique problem formulation. 

The proposed method does not require gradient information. It involves creating a 

one-to-one mapping between each member size design variable and a governing 
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constraint. Based on the value of the governing constraint, the section size of each 

member variable is adjusted incrementally from an ordered list of choices.  

Figure 1 provides an overview of the FCD process. Steps 1-5 are identical to the 

optimality criteria method; steps 6-10 are unique. Each process step is described in more 

detail below. 

 

Figure 1: Overview of Fully Constrained Design (FCD) method 
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Step 1 – Start: The optimization process begins with the creation of an analytical model 

that contains an initial configuration of member sizes. This initial configuration of 

member sizes can either be chosen at random or be based on a previous design solution. 

Step 2 – Analyze structure: The analytical model is used to calculate the structure’s 

response to the defined loading. The responses calculated in the numerical examples 

discussed in Section 4 include the maximum stress (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛
 ) for each member, the 

maximum deflection (∆𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛
 ) for each member, and the global deflection (∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 ), 

considering all of the members in the structure. The value of the objective function, total 

steel weight (𝑊𝑊 ) in this case, is also calculated. 

Step 3 – Scale constraints: The structural responses calculated in the previous step are 

then normalized to unity based on the allowable values for each design constraint, as 

specified in the problem formulation. The constraint function for stress (𝐺𝐺𝜎𝜎) therefore can 

be expressed as follows: 

𝐺𝐺𝜎𝜎 = 𝑔𝑔𝜎𝜎(𝑥𝑥𝜎𝜎1 , 𝑥𝑥𝜎𝜎2, 𝑥𝑥𝜎𝜎3, … , 𝑥𝑥𝜎𝜎𝑑𝑑) ≤ 1,  where  𝑥𝑥𝜎𝜎𝑛𝑛 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 𝜎𝜎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛⁄                        (4) 

Similarly, for member deflection (𝐺𝐺∆𝑚𝑚): 

 𝐺𝐺∆𝑚𝑚 = 𝑔𝑔∆𝑚𝑚�𝑥𝑥∆𝑚𝑚1 ,𝑥𝑥∆𝑚𝑚2 ,𝑥𝑥∆𝑚𝑚3 , … , 𝑥𝑥∆𝑚𝑚𝑑𝑑 � ≤ 1,  where  𝑥𝑥∆𝑚𝑚𝑛𝑛 = ∆𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 ∆𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛⁄             (5) 

Finally, the normalized global displacement (∆𝐺𝐺𝑛𝑛) scalar is calculated as follows: 

∆𝐺𝐺𝑛𝑛= ∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 ∆𝐺𝐺𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄ ≤ 1                      (6) 
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Step 4 – Global displacement satisfied? If the normalized global displacement constraint 

is satisfied (∆𝐺𝐺𝑛𝑛 ≤ 1), it is unnecessary to calculate strain energy density as described in 

Step 5. If the global displacement constraint is violated (∆𝐺𝐺𝑛𝑛 > 1), Step 5 is required. 

Step 5 – Calculate strain energy density: In cases where the global displacement 

constraint is violated (∆𝐺𝐺𝑛𝑛 > 1), member strain energy density is used to map this scalar 

function to each design variable. The maximum strain energy density for each member is 

calculated for a single load case in which a unit displacement is applied to the particular 

node in the structure where the maximum global displacement is observed. The strain 

energy density for each member (𝑆𝑆𝑆𝑆𝐷𝐷𝑛𝑛) is then normalized by the member with the 

maximum strain energy density (𝑆𝑆𝑆𝑆𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚). Finally, the normalized strain energy density 

values are multiplied by the normalized global deflection scalar to calculate the constraint 

function for global displacement (𝐺𝐺∆𝑔𝑔) as described in Eq. (7). 

 𝐺𝐺∆𝑔𝑔 = 𝑔𝑔∆𝑔𝑔�𝑥𝑥∆𝑔𝑔1 ,𝑥𝑥∆𝑔𝑔2 , … , 𝑥𝑥∆𝑔𝑔𝑑𝑑 �,  where  𝑥𝑥∆𝑔𝑔𝑛𝑛 = ∆𝐺𝐺𝑛𝑛(𝑆𝑆𝑆𝑆𝐷𝐷𝑛𝑛 𝑆𝑆𝑆𝑆𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚⁄ )                    (7) 

Step 6 – Evaluate critical constraint: Once all of the constraint functions have been 

calculated, the values must be compared to identify the critical constraint for each design 

variable. From Eq. 2, the inequality 𝐺𝐺 ≤ 1 represents the constraint functions where the 

letter 𝐷𝐷 is the number of design variables and the letter 𝑀𝑀 is the number of constraint 

functions (e.g., stress, global displacement). The critical constraint function (𝐺𝐺𝑐𝑐) is 

calculated by comparing the different constraint values for each design variable and 

taking the maximum: 
9 



 𝐺𝐺𝑐𝑐 = 𝑔𝑔𝑐𝑐(𝑥𝑥𝑐𝑐1, 𝑥𝑥𝑐𝑐2, … , 𝑥𝑥𝑐𝑐𝑑𝑑),  where  𝑥𝑥𝑐𝑐𝑛𝑛 =  max
𝑑𝑑

[𝑥𝑥1𝑛𝑛, 𝑥𝑥2𝑛𝑛 … 𝑥𝑥𝑀𝑀𝑛𝑛 ]                         (8) 

Step 7 – Modify design variables: Each design variable (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) has a 

corresponding set of possible values (𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑑𝑑), which describes the available list of 

discrete member section values for each variable as described in Eq. 3. These sets 

(𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑑𝑑) are ordered by section area from low to high. New designs are generated 

iteratively by adjusting the variable values up or down the corresponding ordered list of 

section sizes based on the critical constraint value calculated for each design variable. 

The design variables are organized into three groups according to their critical constraint 

value. This grouping determines the sequence in which the variables are modified as well 

as the increment as described in Table 1. 

Variable group name Critical constraint range 
(% of allowable) 

Rank Discrete section 
size increment 

Margin Range 1 0-90% 2 𝑋𝑋𝑛𝑛−1 
Constant Range 90-100% 3 𝑋𝑋𝑛𝑛 
Violation Range 1 100%-inf. 1 𝑋𝑋𝑛𝑛+1 

Table 1: FCD process for modifying design variables based on critical constraint values 

The discrete section size increment determines how the variable values in a 

particular group are to be adjusted. If the critical constraint is in the violation range (i.e., 

greater than allowable) the section with the next largest area is selected for the next 

iteration. If the critical constraint is in the margin range (i.e., less than allowable) the 

section with the next smallest area is selected. The rank of the variable group determines 

the sequence of adjustment. Variables with a lower rank are adjusted first. The algorithm 

continues to adjust the variable values in a particular group until there are no longer any 
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variables in that group. The rationale for prioritizing the adjustment of the variable group 

in the violation range is to identify a feasible design configuration (i.e., set of design 

variable values that satisfy all of the problem constraints) with as little iteration as 

possible. 

Step 8 – Is configuration unique? If the current design configuration (i.e., set of design 

variable values) is unique, the process proceeds to Step 10. If the current design 

configuration is identical to a previous iteration of the optimization process, the optimizer 

enters ‘oscillation mode’, which is discussed in the following step. 

Step 9 – Enter oscillation mode: If a repeated design configuration is detected, the 

oscillation mode perturbs individual design variables to avoid an infinite loop of repeated 

configurations. This is achieved by first reverting back to the ‘best’ sizing configuration 

(i.e., the least weight configuration that satisfies the constraints), considering all previous 

iterations. Next, the design configuration is adjusted using similar logic to that described 

in Table 1. The only difference compared to Step 7 is that a single design variable is 

adjusted per iteration rather than an entire group of variables. The variable with a critical 

constraint value that is farthest from the allowable limit in terms of absolute value is 

adjusted. Oscillation mode continues until an improved design configuration is found or 

the convergence criteria described in Step 10 are met. 

Step 10 – Convergence? The optimization process is concluded in one of four possible 

ways: (a) a fully constrained design is achieved, meaning that all of the design variables 
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have critical constraint values in the Constant Range as described in Table 1; (b) a local / 

global optimum is reached, meaning that the optimizer manipulates all of the variables 

while in oscillation mode and is unable to find an improved design; (c) the number of 

iterations without improvement specified by the user is met; or (d) the maximum number 

of iterations specified by the user is met. 

3.2. Implementation 

The proposed method was implemented in ModelCenter® [22], a commercial 

software package. It allows users to bring commercial or proprietary software tools into a 

common environment using software “wrappers” or “plug-ins”. Four software 

components were created in ModelCenter as shown on the diagonal in Figure 2. The four 

components are described in more detail below. 
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Figure 2: ModelCenter® interface showing the implementation of the FCD process. 

Arrows above the diagonal represent data dependencies for sequential execution 

while arrows below the diagonal represent iteration. 

Step 1 – FEA: (i) Reads an existing Finite Element Analysis (FEA) model and allows the 

user to specify the desired design variables and the corresponding discrete set of 

candidate section sizes for each variable; and (ii) executes the FEA and stores the desired 

structural responses (e.g., deflections, member forces and moments). See Section 3.1, 

step 2. 
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Step 2 – ASD Check: Calculates the strength utilization ratio for each member based on 

the applicable building code. A utilization ratio of less than unity indicates that the 

strength of the member is adequate for the defined loading. See Section 3.1, step 2. 

Step 3 – PreProcessor: (i) Scales each constraint type (e.g., strength utilization, member 

deflection, global deflection) to unity based on the allowable value; (ii) determines if the 

global displacement constraint is satisfied; and (iii) calculates the critical constraint for 

each design variable. See Section 3.1, steps 3-6. 

Step 4 – SizingOPT: (i) Modifies the design variables based on the critical constraint 

values; (ii) checks whether the design configuration is unique and enters ‘oscillation 

mode’ if necessary; and (iii) concludes the optimization process if the convergence 

criteria have been met. See Section 3.1, steps 7-10. 

4. Numerical examples 

Three standard member sizing optimization problems are used to benchmark the 

performance of the FCD method: a 10-bar truss, a 25-bar truss and a 200-bar truss. The 

objective of each problem is to minimize the total steel weight of the structure while 

satisfying local stress and global displacement constraints. FCD is compared to other 

methods in terms of solution quality and computational efficiency. Solution quality is 

measured in terms of the total steel weight of the lightest design configuration that 

satisfies the design constraints. Computational efficiency is measured in terms of the 

number of finite element analyses required to arrive at the ‘optimal’ solution. The 
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“leading heuristic methods” listed in Table 6, Table 7, Table 11, and Table 14 refer to the 

methods that have the highest solution quality of the algorithms surveyed for that 

particular numerical example. 

The FCD results are based on conducting six different optimization runs for each 

problem using different initial design configurations. Each starting point is described in 

Table 2. 

Start Point Description of design variable values 
1 uniform: smallest section area 
2 uniform: largest section area 
3 uniform: median section area 
4 mixed: smallest and largest section areas 
5 mixed: smallest and median section areas 
6 mixed: median and largest section areas 

Table 2: Initial variable configurations used by FCD for the numerical examples 

4.1. 10-bar truss 

The 10-bar truss geometry is shown in Figure 3. A single load case is applied to 

the structure as described in Table 3. The members are subjected to a stress limitation of 

±25 ksi, and a displacement limitation of 2.0 in. is imposed at each node in both 

directions. These design constraints as well as the material properties are summarized in 

Table 4. There are 10 independent design variables in the problem corresponding to the 

cross-sectional area for each structural member. In this example, variable values must be 

selected from one of two discrete sets, which are enumerated in Table 5. 

Several heuristic methods have been applied to this problem, including genetic 

algorithms [2, 3, 20, 23, 24], evolutionary strategies [25, 26], and heuristic particle swarm 
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optimization [27]. In addition, benchmarking studies using SODA [28] have been 

conducted. SODA is a design and engineering software that utilizes the optimality criteria 

method to perform discrete sizing optimization. No additional benchmarking results 

involving discrete design variables could be found in the literature for the optimality 

criteria method. Therefore, the continuous solutions presented [29, 30] have been 

rounded to the nearest discrete section of equal or larger area to facilitate comparison. 

The benchmarking results are reported in Table 6 and Table 7 for Cases 1 and 2, 

respectively. 

 

Figure 3: 10-bar truss [2] 
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Name Magnitude 
(kips) Direction Nodes 

Case 1 -100 y-axis 2,4 

Table 3: 10-bar truss loading 

Material properties 
Density (lbs/in3) 0.1 
Modulus of elasticity (ksi) 10,000 

Constraints 
Allowable tensile stress (ksi) 25 
Allowable compressive stress (ksi) -25 
Maximum displacement (in) 2 

Table 4: 10-bar truss design parameters 

 

Case Reference Set of cross sectional areas (in2) 

1 [26] 
{0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 
3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180, 
23.680, 28.080, 33.700} 

2 [31] 
{1.62,  1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 
3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50,  13.90,  14.20,  15.50, 
16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50} 

Table 5: 10-bar truss discrete section set 

Reference 
LEADING HEURISTIC METHODS OPTIMALITY CRITERIA FCD 

[26] [25] [24] [29] [30] [28] (this study) 

Weight (lb) 5,153 5,100 5,046 5,734 
(5,060) 

5,716 
(5,067) 5,356 5,109 

Max. defl. (in) 2.00 - 2.00 - 2.00 1.97 2.01 
Num analyses 4,000 - 30,000 14 18 6 461 

Variable Optimal area (in2) 

A1 33.700 - 28.080 33.700 
(30.520) 

33.700 
(30.980) 33.700 33.700 

A2 0.100 - 0.100 0.100 
(0.100) 

0.100 
(0.100) 0.347 0.100 

A3 23.680 - 23.680 28.080 
(23.200) 

28.080 
(24.170) 19.180 23.680 

A4 14.290 - 17.170 17.170 
(15.220) 

17.170 
(14.810) 19.180 13.330 

A5 0.347 - 0.100 0.100 
(0.100) 

0.100 
(0.100) 0.347 0.100 

A6 0.100 - 0.100 0.954 
(0.550) 

0.440 
(0.410) 0.539 0.100 

A7 7.192 - 7.192 8.525 
(7.460) 

8.525 
(7.550) 10.850 7.192 

A8 19.180 - 19.180 23.680 
(21.040) 

23.680 
(21.050) 23.000 19.180 

A9 23.680 - 23.680 23.680 
(21.530) 

23.680 
(20.940) 19.180 23.680 

A10 0.100 - 0.100 0.100 
(0.100) 

0.100 
(0.100) 0.347 0.100 

Table 6: 10-bar truss results – case 1. Continuous solutions are shown in parenthesis 
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Reference 
LEADING HEURISTIC METHODS OPTIMALITY 

CRITERIA FCD 

[8] [27] [31] [24] [20] [28] (this study) 

Weight (lb) 5,557 5,532 5,499 5,480 5,448 5,760 5,559 
Max. defl. (in) - - - 2.00 - 1.95 1.99 
Num analyses - 50,000 - 30,000 40,000 5 94 

Variable Optimal area (in2) 

A1 30.00 30.00 33.50 33.50  33.50 30.00 33.50 
A2 1.62 1.62 1.62 1.62 1.62 3.13 1.62 
A3 26.50 22.90 22.90 22.90 22.00 30.00 26.50 
A4 13.50 13.50 15.50 13.90 13.90 13.50 14.20 
A5 1.62 1.62 1.62 1.62 1.62 1.62 1.62 
A6 1.62 1.62 1.62 1.62 1.62 3.13 1.62 
A7 7.22 7.97 7.22 7.97 7.97 13.50 11.50 
A8 22.90 26.50 22.90 22.90 22.90 18.80 19.19 
A9 22.00 22.00 22.00 22.00 22.90 18.80 19.19 
A10 1.62 1.80 1.62 1.62 1.62 4.49 1.99 

Table 7: 10-bar truss results – case 2 

4.2. 25-bar truss  

The next example is a 25-bar space truss as shown in Figure 4. The loading for 

the structure is summarized in Table 8. The members are subjected to a stress limitation 

of ±40 ksi and nodes 1 and 2 are limited to a maximum displacement of 0.35 in. The 

design constraints and material properties are summarized in Table 9. 

The structural members are aggregated into eight groups, making the structure 

doubly symmetric about the X and Y axes. All members constituent to a particular group 

must assume the same variable value. The discrete cross-sectional area values for the 

design variables are enumerated in Table 10. The benchmarking results are shown in 

Table 11. 
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Figure 4: 25-bar truss [32] 

Name Magnitude 
(kips) Direction Nodes 

Case 1 -1 y-axis 1,2 
Case 1 -1 z-axis 1,2 
Case 1 1 x-axis 1 
Case 1 0.5 x-axis 3 
Case 1 0.6 x-axis 6 

Table 8: 25-bar truss loading 

Material properties 
Density (lbs/in3) 0.1 
Modulus of elasticity (ksi) 10,000 
Constraints 
Allowable tensile stress (ksi) 40 
Allowable compressive stress (ksi) -40 

Maximum displacement (in) 0.35 
(nodes 1,2) 

Table 9: 25-bar truss design parameters 

 

Case Reference Set of cross sectional areas (in2) 

1 [31] {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 
2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.2, 3.4} 

Table 10: 25-bar discrete section set 
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Reference LEADING HEURISTIC METHODS OPTIMALITY 
CRITERIA FCD 

 
[33] [32] [27] [24] [28] (this study) 

Total weight (lb) 493.8 484.9 484.9 483.4 562.9 526.8 
Max. defl. (in) - 0.351 - 0.351 0.342 0.3369 
Num analyses - 13,523 25,000 17,500 4 45 

Variable Constituent 
members Optimal area (in2) 

A1 1 0.1 0.1 0.1 0.1 0.1 0.1 
A2 2-5 1.2 0.3 0.3 0.3 1.9 0.1 
A3 6-9 3.2 3.4 3.4 3.4 2.6 3.4 
A4 10,11 0.1 0.1 0.1 0.1 0.1 0.1 
A5 12,13 1.1 2.1 2.1 2.0 0.1 0.1 
A6 14-17 0.9 1.0 1.0 1.0 0.8 0.8 
A7 18-21 0.4 0.5 0.5 0.5 2.1 2.5 
A8 22-25 3.4 3.4 3.4 3.4 2.6 2.5 

Table 11: 25-bar truss results 

4.3. 200-bar truss  

The final benchmarking problem is the 200-bar plane truss shown in Figure 5. 

The truss is subjected to three loading conditions as described in Table 12. The design 

parameters are summarized in Table 13. For this problem, the members are aggregated 

into 29 groups as enumerated in Table 14 and subjected to a stress limitation of ±10 ksi. 

The discrete section choices can be found in Table 5, Case 1. The benchmarking results 

are shown in Table 14. 
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Figure 5: 200-bar truss [25] 

21 



Name Magnitude 
(kips) Direction Nodes 

Case 1 1 x-axis 1,2 
Case 2 -10 y-axis 1,2 
Case 3 Case 1 + Case 2 

Table 12: 200-bar truss loading 

Material properties Value 
Density (lbs/in3) 0.283 
Modulus of elasticity (ksi) 30,000 

Constraints Value 
Allowable tensile stress (ksi) 10 
Allowable comp. stress (ksi) -10 
Maximum displacement (in) N/A 

Table 13: 200-bar truss design parameters 

 

Reference 

LEADING 
HEURISTIC 

METHOD 

OPTIMALITY 
CRITERIA FCD 

[24] [28] (this study) 

Total weight (lb) 28,544 28,806 27,151 
Num analyses 51,360 7 327 

Variable Constituent members Optimal area (in2) 

A1 1,2,3,4 0.347 0.347 0.100 

A2 5,8,11,14,17 1.081 0.954 0.954 

A3 19,20,21,22,23,24 0.100 0.347 0.100 

A4 
18,25,56,63,94,101, 
132,139,170,177 0.100 0.100 0.100 

A5 26,29,32,35,38 2.142 2.142 2.142 

A6 
6,7,9,10,12,13,15,16, 
27,28,30,31,33,34,36, 
37 

0.347 0.440 0.347 

A7 39,40,41,42 0.100 0.347 0.100 

A8 43,46,49,52,55 3.565 3.131 3.131 

A9 57,58,59,60,61,62 0.347 0.347 0.100 

A10 64,67,70,73,76 4.805 4.805 4.805 

A11 
44,45,47,48,50,51,53, 
54,65,66,68,69,71,72, 
74,75 

0.440 0.954 0.440 

A12 77,78,79,80 0.440 0.347 0.347 

A13 81,84,87,90,93 5.952 5.952 5.952 

A14 95,96,97,98,99,100 0.347 0.347 0.347 

A15 102,105,108,111,114 6.572 6.572 6.572 

A16 
82,83,85,86,88,89,91, 
92,103,104,106,107, 
109,110,112,113 

0.954 0.954 0.954 

A17 115,116,117,118 0.347 0.347 0.347 
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A18 119,122,125,128,131 8.525 8.525 8.525 

A19 
133,134,135,136,137, 
138 0.100 0.347 0.100 

A20 140,143,146,149,152 9.300 10.850 9.300 

A21 

120,121,123,124,126, 
127,129,130,141,142, 
144,145,147,148,150, 
151 

0.954 1.081 1.081 

A22 153,154,155,156 1.764 9.300 0.347 

A23 157,160,163,166,169 13.330 13.330 13.330 

A24 
171,172,173,174,175, 
176 0.347 0.954 0.954 

A25 178,181,184,187,190 13.330 13.330 13.330 

A26 

158,159,161,162,164,1
65,167,168,179,180, 
182,183,185,186,188, 
189 

2.142 2.142 1.764 

A27 191,192,193,194 4.805 3.565 3.813 

A28 195,197,198,200 9.300 8.525 8.525 

A29 196,199 17.170 17.170 17.170 

Table 14: 200-bar truss results 

4.4. Discussion of numerical results 

The results of these numerical examples indicate that the computational efficiency 

of the FCD method falls between that of the leading deterministic and heuristic methods. 

Generally, the number of analyses required for convergence of the optimization process 

is on the order of 100 for the proposed method, compared to 10 for optimality criteria and 

10,000 for heuristic methods such as genetic algorithms (Figure 6). Similar to optimality 

criteria, the scale of the problem does not have a significant impact on the efficiency of 

the method. 

With regard to solution quality, the best designs produced by the FCD method are 

comparable to leading heuristic methods (<2% difference) and superior to optimality 
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criteria (>7% difference) based on averaging the numerical example results (Table 15). 

The data also suggest that deterministic methods such as optimality criteria and FCD 

perform relatively better as the scale of the problem increases. 

 

Figure 6: Comparison of computational efficiency by method for numerical examples 

Numerical Example 
Problem Scale 

(number of possible 
combinations) 

LEADING HEURISTIC 
[24]  

OPTIMALITY CRITERIA 
 [28] 

FCD 
(this study) 

Total weight (lb) Weight difference (% of total) 

25-bar truss 1.10E+12 483.4 +16.4 +9.0 

10-bar truss: case 1 5.90E+14 5046 +6.1% +1.2% 

10-bar truss: case 1 1.71E+16 5480 +5.1% +1.4% 

200-bar truss 6.86E+42 28,544 +0.9% -4.9% 

Avg. weight difference - +7.2% +1.7% 

Table 15: Comparison of solution quality by method for numerical examples 
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5. Case study: stadium space frame roof structure 

5.1. Background 

The roof structure of a 65,000 seat athletics stadium was selected to test the 

scalability of the FCD method and to compare the performance of the method to the 

results achieved in conventional industry practice. The roof structure consists of two 

identical arched steel space frames that cover the north and south main stands for the 

stadium (Figure 7). The arches span 210 m (689 ft) and reach a maximum height of 72 m 

(236 ft). Two design methods were applied in parallel to optimize the member sizing 

configuration for the space frames: (1) the conventional design method of a leading 

engineering firm and (2) the FCD optimization method. The implementation of the FCD 

method is described in Section 3.2 and the implementation of the conventional method is 

explained below. The results for each method are then compared in terms of solution 

quality and process efficiency. 

5.2. Problem specification 

The objective of the optimization process was to minimize the total weight of the 

roof structure while satisfying the structural performance criteria for strength and 

serviceability as summarized in Table 16. The section size for each member in the roof 

structure was a design variable (1,955 total variables). The variables were aggregated into 

34 groups. The candidate section sizes within each group were chosen from the British 

Standards Institution [34] catalogue and possessed a consistent depth or outer diameter, 

depending on the type of section being considered. This was done for two reasons: (1) to 
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ensure symmetry, continuity, and proportion for the structural elements since the roof 

structure was exposed, and (2) to standardize member connections to some degree to 

simplify the fabrication and erection process. Sample member grouping and associated 

section types are shown in Figure 7. 

 

 

Figure 7: Building Information Model of the case study roof structure (TOP). Finite 

element analysis model and sample member grouping with associated section types 

(BOTTOM) 
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Objective Minimize steel weight 

Variables 
• 1,955 member sizing variables aggregated into 34 groups 
• 10-30 candidate sections per variable  

Constraints 

• Member strength [34] 
• Member deflection (span / 360 for SLS load cases) 
• Global deflection limit (450mm at mid-span)  

Design Space ≈ 1.7E2435 possible configurations of sizing variables 

Table 16: Overview of case study sizing optimization problem formulation 

5.3. Conventional process 

The conventional member sizing optimization method of a leading design firm 

was an iterative process performed manually by the engineering team. First, a detailed 

finite element analysis model of the structure was created. It included 150 unique design 

loading combinations consisting of the weight of the roof as well as wind, snow, and 

seismic loading. The initial configuration of member sizes was determined based on the 

best judgment of the engineering team from their past experience with similar stadium 

roof structures. After completing the finite element analysis of the structure, the 

engineering team post-processed the structural responses to calculate a strength 

utilization ratio for each structural member based on the British engineering code of 

practice [35]. The member and global deflections of the structure were also checked 

against the allowable values specified in Table 16. After reviewing the performance of 

the structure relative to the design constraints, the engineering team then selected a new 

configuration of member section sizes with the goal of minimizing the weight of the 
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structure while satisfying the design constraints. This process was repeated until the 

engineering team arrived at a satisfactory design configuration. 

5.4. Results 

The performance of the FCD method on the project was compared to the 

conventional design process in terms of process efficiency and solution quality. In terms 

of process efficiency, the FCD method took substantially longer to set up. The additional 

80 man hours of set-up time was divided between developing the software ‘wrapper’ 

necessary to integrate the finite element analysis software into the ModelCenter 

environment (≈30 hrs) and implementing / testing the FCD optimization algorithm (≈50 

hrs). These components were designed for general use such that the finite element model 

of the structure could be modified or replaced without modifying the underlying software 

or process. As a result, the same implementation of the FCD method that was used for the 

case study was also used for all of the numerical examples described in Section 4 without 

further modification. Therefore, the set-up time required to implement the FCD process 

in this case study would likely be significantly reduced or eliminated in subsequent 

applications. 

Once implemented, the FCD optimization method required 340 iterations to 

complete, resulting in a total run time of 32 hours and 35 minutes using a Dell 

workstation with 2.83 GHz processor and 4 Mb of memory (Table 17). The total time 

required by the FCD process, including set-up, was 172 hours and 35 minutes versus 216 

hours for conventional practice, or about 20% less time. In less time, the FCD method 
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generated over eight times the number of design alternatives as the conventional practice 

method. 

 
Design method Set-up time  

(man hours) 
Design cycle 
time (avg.)  

Number of 
alternatives evaluated 

Total design  
time 

Conventional Practice 60 4 hrs 39 216hrs 
FCD Method  140 5min45sec 340 172hrs35min 

Table 17: Comparison of process efficiency for case study project 

In terms of solution quality, the best design found by FCD method possessed a 

total steel weight of 2,292 metric tons while satisfying all of the design constraints. This 

design represents a weight reduction of 19% compared to the best design found using the 

conventional practice method. The weight reduction achieved equates to an estimated 

cost savings of approximately US $4 million for the total cost of the steelwork (US $2 

million per roof structure) assuming a unit cost of structural steel of US $4,500 per metric 

ton. The professional engineering firm responsible for the structural design of the project 

chose to submit the FCD design to the contractor for tender with only a few minor 

modifications. 

6. Summary and Conclusions 

This paper presents the Fully Constrained Design (FCD) method for discrete 

member sizing optimization of steel truss and frame structures. FCD is different from 

other deterministic methods, such as optimality criteria, in that it does not require the first 

derivative of the objective and constraint functions with respect to the design variables. 

This feature improves the flexibility and robustness of the algorithm. Since the search 
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logic for the algorithm is independent of the specific objective and constraint functions 

used, the FCD method can be applied to different problem formulations without 

modification of the algorithm to suit a particular problem formulation as required to 

implement the optimality criteria method. Also, there is no limitation on the continuity of 

the search space as there is with the deterministic methods discussed in Section 1. The 

FCD method can readily be applied to problems where the objective and constraint 

functions are discontinuous or not easily expressed in terms of the design variables. 

The performance of the FCD method was compared to other optimization 

approaches found in the literature using three standard truss problems: a 10-bar truss, a 

25-bar truss and a 200-bar truss. The results of these numerical examples indicate that the 

computational efficiency of the FCD method falls between that of the leading 

deterministic and heuristic methods. With regard to solution quality, the best designs 

produced by the FCD method are comparable to leading heuristic methods (<2% 

difference) and superior to optimality criteria (>7% difference) based on averaging the 

numerical example results. The benchmark studies also suggest that the scale of the 

problem does not have a significant impact on the efficiency of the FCD method. The 

numerical examples presented in this paper included only truss structures. Additional 

benchmarking studies using frame structures are required to generalize the claims made 

in this paper regarding the performance of the FCD method in comparison with other 

optimization methods. 
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We also compared the FCD method to the conventional design process used by a 

leading engineering firm by conducting a parallel case study: the sizing of 1,955 

structural members for a steel space frame roof structure. In terms of process efficiency, 

the FCD implementation required an additional 80 man-hours to set up compared to the 

conventional (manual) process, but reduced design cycle time by approximately 40 times, 

once in place. The set up time required to implement the FCD process in this case study 

would likely be significantly reduced or eliminated in subsequent projects for the reasons 

discussed in Section 5.4. With regard to the quality of the final solution, the FCD solution 

required 19% less steel than the conventional solution, resulting in an estimated 

construction cost savings of US $4 million. Further case studies will be required to 

comment more generally on the performance and robustness of the FCD method in 

comparison with manual design iteration methods that are commonly used in industry. 

The results we present in this paper support the claim that the FCD method has 

certain advantages with regard to flexibility, generality, and solution quality compared to 

the deterministic methods surveyed. In addition, the method is demonstrated to be 

scalable to structures involving greater than 100 sizing variables in a time frame that is 

comparable to conventional design practice. The significant savings achieved in the case 

study project demonstrate the potential of the FCD method to substantially improve 

design process efficiency and product performance. 
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