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ABSTRACT

Fully Constrained Design (FCD) is a new method for discrete sizing optimization of steel
frames. Based on the optimality criteria approach, FCD handles constraints and generates
designs in a new way that enables it to be readily applied to different problem
formulations, even when the search space is discontinuous. The quality of solution
produced by the proposed method is superior to optimality criteria (>7% difference) and

comparable to leading heuristic methods (<2% difference), based on the benchmarking
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studies we conducted. We present a successful industry application of FCD that yields
cost savings of 19% compared to conventional design methods.
Keywords: structural optimization; size optimization; discrete variables; steel structures;

frame; truss

1. Introduction

Engineers are often challenged to design steel structures that use the least amount
of economic and environmental resources possible to satisfy the system’s functional
requirements. The design of these structures can be decomposed into three components:
(i) topology, which concerns the number and connectivity of members; (ii) shape, which
pertains to the location of structural joints; and (iii) sizing, which involves defining
member cross-sections [1]. This paper presents a flexible, general, and scalable algorithm
to optimize the sizing of steel members given a fixed topology and shape. The objective
of the optimization process is to minimize the cost of the structure while satisfying design
performance requirements for safety and serviceability. In this case, the total weight of
the structure is used to estimate cost. Steel weight is commonly used as a surrogate for
cost in the structural design industry and has been demonstrated to be accurate, provided
that the construction methods required do not become too expensive or impractical [2].
To achieve this objective, engineers select steel sections from a discrete set which

contains certain designations of steel profiles that are produced by steel mills [3].



Member sizing optimization is traditionally an iterative process that is performed
manually by the engineer. The number of possible design alternatives (i.e., the design
space) for sizing problems is an exponential function of the number of design variables
and the number of possible choices for each variable. Even for a relatively simple 10-bar
truss problem as described in Section 4.1, the number of possible sizing configurations is
greater than 1.0E+10. Finding optimum designs within such a large design space using
manual methods is very difficult. Often engineers leave vast areas of the design space
unexplored that potentially contain better performing design configurations [4, 5].

Optimization algorithms enable engineers to leverage computer processing power
to systematically search the design space for optimal member size configurations.
Researchers have developed and applied a variety of optimization algorithms to discrete
sizing problems for steel truss and frame structures over the past 50 years as surveyed by
Arora [6]. These algorithms can be broadly categorized as deterministic or non-
deterministic. Deterministic methods such as mathematical programming [7-11] and
optimality criteria [12-14] were first applied to discrete sizing problems in the 1960s.
These algorithms need an initial design configuration to begin the search and require
gradient computations in the exploration process, namely the calculation of the first
derivative of the objective and constraint functions with respect to the design variables. In
some cases, the objective and/or constraint functions are discontinuous or irregular,
making the gradient search difficult [15]. In addition, the constraint functions may vary

depending on local regulatory requirements and stakeholder preferences [16], thus



requiring the customization of the algorithm for each unique set of constraint functions.
The implementation of the algorithm can be time consuming and error prone in such
cases [17].

Another group of optimization techniques that have emerged recently do not
require gradient information for the objective and constraint functions and use
probabilistic transition rules rather than deterministic ones. The basic idea behind these
stochastic techniques is to simulate a natural phenomenon, such as survival of the fittest,
the immune system, swarm intelligence and the cooling process of molten metal through
annealing. A detailed review of these algorithms as well as a comparison of their
performance for discrete sizing problems is provided by Hasancebi [18, 19]. These
heuristic search and optimization methods have a couple of advantages when compared
to the deterministic methods discussed above. First, they separate domain knowledge
from search, making them generally applicable to a wide variety of problem formulations
without customization. Second, there is no limitation on the continuity of the search
space since no gradient information is required.

A disadvantage of heuristic methods, however, is that they require significantly
more computational resources than deterministic techniques [20]. Research on the
convergence of these algorithms has shown that the number of evaluations required to
reach a given solution quality grows as a function of the square root of the size of the
problem [21]. To keep computation times manageable, researchers have focused on

applying heuristic methods to truss and frame structures involving fewer than 100 sizing



variables. Further research is required to compare the performance of these methods to
deterministic techniques for large-scale member sizing problems involving hundreds or
even thousands of variables which are common in industry practice.

The goal of the research presented in this paper was to develop a discrete member
sizing optimization method that is (i) flexible (i.e., can accommodate different objective
and constraint functions without modification); (ii) general (i.e., does not require the
search space to be continuous) and (iii) scalable (i.e., can be applied to large structures
involving greater than 100 sizing variables in a time frame that is at least comparable to
conventional design practice). To achieve these objectives, the proposed optimization
algorithm, which we call the Fully Constrained Design method, employs a new way of
handling constraints and generating new designs that is presented in Section 3. We
benchmark the method against the best performing existing deterministic and heuristic
optimization methods in Section 4. In Section 5, we benchmark the method against
conventional industry practice on a large stadium roof structure to demonstrate the
scalability of the method. Finally, we summarize the benchmarking results and discuss

the suitability of the method for general industry application in Section 6.

2. Mathematical model for discrete sizing optimization introduction

A general discrete sizing structural optimization problem can be formulated as:
Minimize: W = f(x%,x?,...,x%), d=1,2,..,D (1)

Satisfying: G, = f(x%,x?,..,x3)<1,d=12,..,D and ¢q=12,..M (2
q



x™ € Sp{X1, Xz, o, Xp) (3)

Where W is the weight of the structure, which is a scalar function. The set of
design variables are represented as x1,x?2, ..., x%. The design variable x™ belongs to the
set S,, which describes the available list of discrete member section values. The
inequality G < 1 represents the constraint functions, which must be less than unity in this
case. The structural constraints considered in the numerical examples in Section 4 include
member stresses and nodal displacements. The letters D and M are the number of design
variables and constraint functions, respectively. The letter p is the number of available

section size choices for a given design variable.

3. Fully constrained design method
3.1. Description

The Fully Constrained Design (FCD) method for member sizing optimization is
based on the optimality criteria approach discussed in Section 1. FCD possesses a new
approach to constraint handling and the generation of new designs that overcomes the
observed limitations to the flexibility and generality of the optimality criteria method,
namely (1) the requirement that the objective and constraint functions are continuously
differentiable in terms of the design variables, and (2) the requirement that the algorithm
be customized for each unique problem formulation.

The proposed method does not require gradient information. It involves creating a

one-to-one mapping between each member size design variable and a governing



constraint. Based on the value of the governing constraint, the section size of each

member variable is adjusted incrementally from an ordered list of choices.

Figure 1 provides an overview of the FCD process. Steps 1-5 are identical to the

optimality criteria method; steps 6-10 are unique. Each process step is described in more
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Figure 1: Overview of Fully Constrained Design (FCD) method



Step 1 — Start: The optimization process begins with the creation of an analytical model
that contains an initial configuration of member sizes. This initial configuration of

member sizes can either be chosen at random or be based on a previous design solution.

Step 2 — Analyze structure: The analytical model is used to calculate the structure’s
response to the defined loading. The responses calculated in the numerical examples

discussed in Section 4 include the maximum stress (o;nq,) fOor each member, the
maximum deflection (A},,.) for each member, and the global deflection (Agmax):

considering all of the members in the structure. The value of the objective function, total

steel weight (W) in this case, is also calculated.

Step 3 — Scale constraints: The structural responses calculated in the previous step are
then normalized to unity based on the allowable values for each design constraint, as
specified in the problem formulation. The constraint function for stress (G,) therefore can

be expressed as follows:

Go = 9o (x5, %3, %5, ., x§) < 1, where xF = 0fax/ 0G110w (4)
Similarly, for member deflection (Ga,):

Gam = Jam(Xam» X2m, Xam - Xm) < 1, Where x, = A% /A%, 0 (5)
Finally, the normalized global displacement (A,,) scalar is calculated as follows:

Agn= AGmax/AGallow <1 (6)



Step 4 — Global displacement satisfied? If the normalized global displacement constraint
is satisfied (A, < 1), it is unnecessary to calculate strain energy density as described in

Step 5. If the global displacement constraint is violated (A¢,, > 1), Step 5 is required.

Step 5 — Calculate strain energy density: In cases where the global displacement
constraint is violated (As,, > 1), member strain energy density is used to map this scalar
function to each design variable. The maximum strain energy density for each member is
calculated for a single load case in which a unit displacement is applied to the particular
node in the structure where the maximum global displacement is observed. The strain
energy density for each member (SED™) is then normalized by the member with the
maximum strain energy density (SED,,,,). Finally, the normalized strain energy density
values are multiplied by the normalized global deflection scalar to calculate the constraint

function for global displacement (G,4) as described in Eq. (7).
Gag = Gng(XAg X2 gs s X85), Where xF) = Agn(SED™/SEDyyq5) (7)

Step 6 — Evaluate critical constraint: Once all of the constraint functions have been
calculated, the values must be compared to identify the critical constraint for each design
variable. From Eq. 2, the inequality G < 1 represents the constraint functions where the
letter D is the number of design variables and the letter M is the number of constraint
functions (e.g., stress, global displacement). The critical constraint function (G.) is
calculated by comparing the different constraint values for each design variable and

taking the maximum:



G, = g.(x},x2,...,x&), where x! = mc?x[x{‘, L xl] (8)

Step 7 — Modify design variables: Each design variable (x!,x2,..,x%) has a
corresponding set of possible values (S, S5, ..., S4), which describes the available list of
discrete member section values for each variable as described in Eg. 3. These sets
(84,55, ...,S4) are ordered by section area from low to high. New designs are generated
iteratively by adjusting the variable values up or down the corresponding ordered list of
section sizes based on the critical constraint value calculated for each design variable.
The design variables are organized into three groups according to their critical constraint
value. This grouping determines the sequence in which the variables are modified as well

as the increment as described in Table 1.

. Critical constraint range Rank Discrete section
VEITELS B TR (% of allowable) ’ size increment
Margin Range 1 0-90% 2 Xn_1
Constant Range 90-100% 5 Xn
Violation Range 1 100%-inf. 1 Xns1

Table 1: FCD process for modifying design variables based on critical constraint values

The discrete section size increment determines how the variable values in a
particular group are to be adjusted. If the critical constraint is in the violation range (i.e.,
greater than allowable) the section with the next largest area is selected for the next
iteration. If the critical constraint is in the margin range (i.e., less than allowable) the
section with the next smallest area is selected. The rank of the variable group determines
the sequence of adjustment. Variables with a lower rank are adjusted first. The algorithm

continues to adjust the variable values in a particular group until there are no longer any
10



variables in that group. The rationale for prioritizing the adjustment of the variable group
in the violation range is to identify a feasible design configuration (i.e., set of design
variable values that satisfy all of the problem constraints) with as little iteration as

possible.

Step 8 — Is configuration unique? If the current design configuration (i.e., set of design
variable values) is unique, the process proceeds to Step 10. If the current design
configuration is identical to a previous iteration of the optimization process, the optimizer

enters ‘oscillation mode’, which is discussed in the following step.

Step 9 — Enter oscillation mode: If a repeated design configuration is detected, the
oscillation mode perturbs individual design variables to avoid an infinite loop of repeated
configurations. This is achieved by first reverting back to the ‘best’ sizing configuration
(i.e., the least weight configuration that satisfies the constraints), considering all previous
iterations. Next, the design configuration is adjusted using similar logic to that described
in Table 1. The only difference compared to Step 7 is that a single design variable is
adjusted per iteration rather than an entire group of variables. The variable with a critical
constraint value that is farthest from the allowable limit in terms of absolute value is
adjusted. Oscillation mode continues until an improved design configuration is found or

the convergence criteria described in Step 10 are met.

Step 10 — Convergence? The optimization process is concluded in one of four possible

ways: (a) a fully constrained design is achieved, meaning that all of the design variables
11



have critical constraint values in the Constant Range as described in Table 1; (b) a local /
global optimum is reached, meaning that the optimizer manipulates all of the variables
while in oscillation mode and is unable to find an improved design; (c) the number of
iterations without improvement specified by the user is met; or (d) the maximum number

of iterations specified by the user is met.

3.2. Implementation

The proposed method was implemented in ModelCenter® [22], a commercial
software package. It allows users to bring commercial or proprietary software tools into a
common environment using software “wrappers” or “plug-ins”. Four software
components were created in ModelCenter as shown on the diagonal in Figure 2. The four

components are described in more detail below.

12



Figure 2: ModelCenter® interface showing the implementation of the FCD process.
Arrows above the diagonal represent data dependencies for sequential execution

while arrows below the diagonal represent iteration.

Step 1 — FEA: (i) Reads an existing Finite Element Analysis (FEA) model and allows the
user to specify the desired design variables and the corresponding discrete set of
candidate section sizes for each variable; and (ii) executes the FEA and stores the desired
structural responses (e.g., deflections, member forces and moments). See Section 3.1,

step 2.

13



Step 2 — ASD Check: Calculates the strength utilization ratio for each member based on
the applicable building code. A utilization ratio of less than unity indicates that the

strength of the member is adequate for the defined loading. See Section 3.1, step 2.

Step 3 — PreProcessor: (i) Scales each constraint type (e.g., strength utilization, member
deflection, global deflection) to unity based on the allowable value; (ii) determines if the
global displacement constraint is satisfied; and (iii) calculates the critical constraint for

each design variable. See Section 3.1, steps 3-6.

Step 4 — SizingOPT: (i) Modifies the design variables based on the critical constraint
values; (ii) checks whether the design configuration is unique and enters ‘oscillation
mode’ if necessary; and (iii) concludes the optimization process if the convergence

criteria have been met. See Section 3.1, steps 7-10.

4. Numerical examples

Three standard member sizing optimization problems are used to benchmark the
performance of the FCD method: a 10-bar truss, a 25-bar truss and a 200-bar truss. The
objective of each problem is to minimize the total steel weight of the structure while
satisfying local stress and global displacement constraints. FCD is compared to other
methods in terms of solution quality and computational efficiency. Solution quality is
measured in terms of the total steel weight of the lightest design configuration that
satisfies the design constraints. Computational efficiency is measured in terms of the

number of finite element analyses required to arrive at the ‘optimal’ solution. The

14



“leading heuristic methods” listed in Table 6, Table 7, Table 11, and Table 14 refer to the
methods that have the highest solution quality of the algorithms surveyed for that
particular numerical example.

The FCD results are based on conducting six different optimization runs for each
problem using different initial design configurations. Each starting point is described in

Table 2.

Start Point Description of design variable values
uniform: smallest section area

uniform: largest section area

uniform: median section area

mixed: smallest and largest section areas
mixed: smallest and median section areas
mixed: median and largest section areas

o OB WN B

Table 2: Initial variable configurations used by FCD for the numerical examples

4.1. 10-bar truss

The 10-bar truss geometry is shown in Figure 3. A single load case is applied to
the structure as described in Table 3. The members are subjected to a stress limitation of
25 ksi, and a displacement limitation of 2.0 in. is imposed at each node in both
directions. These design constraints as well as the material properties are summarized in
Table 4. There are 10 independent design variables in the problem corresponding to the
cross-sectional area for each structural member. In this example, variable values must be
selected from one of two discrete sets, which are enumerated in Table 5.

Several heuristic methods have been applied to this problem, including genetic

algorithms [2, 3, 20, 23, 24], evolutionary strategies [25, 26], and heuristic particle swarm

15



optimization [27]. In addition, benchmarking studies using SODA [28] have been
conducted. SODA is a design and engineering software that utilizes the optimality criteria
method to perform discrete sizing optimization. No additional benchmarking results
involving discrete design variables could be found in the literature for the optimality
criteria method. Therefore, the continuous solutions presented [29, 30] have been
rounded to the nearest discrete section of equal or larger area to facilitate comparison.
The benchmarking results are reported in Table 6 and Table 7 for Cases 1 and 2,

respectively.

360 1n. 360 1n.
Pie

6 360 1in.

\j
100 kip 100 kip

Figure 3: 10-bar truss [2]
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Magnitude Material properties

Name Ki Direction Nodes
(kips) : Density (Ibs/in®) 0.1
Casel -100 y-axis 24 Modulus of elasticity (ksi) 10,000
. . Constraints
Table 3: 10-bar truss loading _ -
Allowable tensile stress (ksi) 25
Allowable compressive stress (ksi) -25
Maximum displacement (in) 2

Table 4: 10-bar truss design parameters

Case Reference Set of cross sectional areas (in?)
{0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131,
1 [26] 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180,

23.680, 28.080, 33.700}

{1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87,
2 [31] 3.88,4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50,

16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50}

Table 5: 10-bar truss discrete section set

- LEADING HEURISTIC METHODS OPTIMALITY CRITERIA FCD
eference

[26] [25] [24] [29] [30] [28] (this study)
. 5,734 5,716

Weight (Ib) 5,153 5,100 5,046 (5,060) (5,067) 5,356 5,109

Max. defl. (in) 2.00 - 2.00 - 2.00 1.97 2.01

Num analyses 4,000 - 30,000 14 18 6 461

Variable Optimal area (in?)

33.700 33.700

A 33.700 - 28.080 (30.520) (30.980) 33.700 33.700
0.100 0.100

Az 0.100 - 0.100 (0.100) (0.100) 0.347 0.100
28.080 28.080

As 23.680 - 23.680 (23.200) (24.170) 19.180 23.680
17.170 17.170

Ay 14.290 - 17.170 (15.220) (14.810) 19.180 13.330
0.100 0.100

As 0.347 - 0.100 (0.100) (0.100) 0.347 0.100
0.954 0.440

Ag 0.100 - 0.100 (0.550) (0.410) 0.539 0.100
8.525 8.525

A; 7.192 - 7.192 (7.460) (7.550) 10.850 7.192
23.680 23.680

Ag 19.180 - 19.180 (21.040) (21.050) 23.000 19.180
23.680 23.680

Ay 23.680 - 23.680 (21.530) (20.940) 19.180 23.680
0.100 0.100

A 0.100 - 0.100 (0.100) (0.100) 0.347 0.100

Table 6: 10-bar truss results — case 1. Continuous solutions are shown in parenthesis
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OPTIMALITY

Reference LEADING HEURISTIC METHODS CRITERIA FCD

8] [27] [31] [24] [20] [28]  (this study)

Weight (Ib) 5,557 5,532 5,499 5,480 5,448 5,760 5,659

Max. defl. (in) - - 2.00 - 1.95 1.99

Num analyses 50,000 30,000 40,000 5 94
Variable Optimal area (in?)

Ay 30.00 30.00 33.50 33.50 33.50 30.00 33.50

A, 1.62 1.62 1.62 1.62 1.62 3.13 1.62

As 26.50 22.90 22.90 22.90 22.00 30.00 26.50

Ay 13.50 13.50 15.50 13.90 13.90 13.50 14.20

As 1.62 1.62 1.62 1.62 1.62 1.62 1.62

Ag 1.62 1.62 1.62 1.62 1.62 3.13 1.62

A; 7.22 7.97 7.22 7.97 7.97 13.50 11.50

Ag 22.90 26.50 22.90 22.90 22.90 18.80 19.19

Aqg 22.00 22.00 22.00 22.00 22.90 18.80 19.19

A 1.62 1.80 1.62 1.62 1.62 4.49 1.99

4.2. 25-bar truss

Table 7: 10-bar truss results — case 2

The next example is a 25-bar space truss as shown in Figure 4. The loading for

the structure is summarized in Table 8. The members are subjected to a stress limitation

of +40 ksi and nodes 1 and 2 are limited to a maximum displacement of 0.35 in. The

design constraints and material properties are summarized in Table 9.

The structural members are aggregated into eight groups, making the structure

doubly symmetric about the X and Y axes. All members constituent to a particular group

must assume the same variable value. The discrete cross-sectional area values for the

design variables are enumerated in Table 10. The benchmarking results are shown in

Table 11.

18
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Figure 4: 25-bar truss [32]
Name Magnll(t_ude Direction Nodes Material properties
(Kips) i Density (Ibs/in®) 01
Casel -1 y-axis 12 Modulus of elasticity (ksi) 10,000
gase 1 1 z-axis 1’i Constraints
ase x-ax!s Allowable tensile stress (ksi) 40
Case 1 0.5 X-axis 3 . .
. Allowable compressive stress (ksi) -40
Case 1 0.6 X-axis 6 035
Maximum displacement (in) (nodes 1,2)

Table 8: 25-bar truss loading
Table 9: 25-bar truss design parameters

Case Reference Set of cross sectional areas (in?)

1 [31] {0.1,0.2,0.3,0.4,05,0.6,0.7,08,09,1.0,1.1,1.2,1.3,14,15,16,1.7,1.8, 1.9, 2.0, 2.1, 2.2, 2.3,
2.4,25,2.6,2.7,2.8,29,3.0,3.2, 3.4}

Table 10: 25-bar discrete section set

19



OPTIMALITY

Reference LEADING HEURISTIC METHODS CRITERIA FCD

[33] [32] [27] [24] [28] (this study)

Total weight (Ib) 493.8 484.9 484.9 483.4 562.9 526.8

Max. defl. (in) - 0.351 - 0.351 0.342 0.3369

Num analyses - 13,523 25,000 17,500 4 45
Variable CETTETS Optimal area (in?)

members

As 1 0.1 0.1 0.1 0.1 0.1 0.1

A, 2-5 1.2 0.3 0.3 0.3 1.9 0.1

As 6-9 3.2 34 34 34 2.6 34

Ay 10,11 0.1 0.1 0.1 0.1 0.1 0.1

As 12,13 11 21 21 2.0 0.1 0.1

As 14-17 0.9 1.0 1.0 1.0 0.8 0.8

A; 18-21 0.4 0.5 0.5 05 21 25

As 22-25 34 34 34 34 2.6 25

Table 11: 25-bar truss results

4.3. 200-bar truss

The final benchmarking problem is the 200-bar plane truss shown in Figure 5.
The truss is subjected to three loading conditions as described in Table 12. The design
parameters are summarized in Table 13. For this problem, the members are aggregated
into 29 groups as enumerated in Table 14 and subjected to a stress limitation of +10 ksi.
The discrete section choices can be found in Table 5, Case 1. The benchmarking results

are shown in Table 14.

20



Figure 5: 200-bar truss [25]
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Name Magpltude Direction Nodes Material properties Value
(kips) : Density (Ibs/in?) 0.283
Case 1 1 X-axis 12 Modulus of elasticity (ksi) 30,000
gaseg -10 Case 1 y:ms ) 1.2 Constraints Value
+
a5 ase e Allowable tensile stress (ksi) 10
Table 12: 200-bar truss loading Allowable comp. stress (ksi) 10
Maximum displacement (in) N/A
Table 13: 200-bar truss design parameters
LEADING  qorypmaLiTY
HEURISTIC CRITERIA FCD
Reference METHOD
[24] [28] (this study)
Total weight (Ib) 28,544 28,806 27,151
Num analyses 51,360 7 327
Variable Constituent members Optimal area (in?)
AL 1234 0.347 0.347 0.100
A, 58111417 1.081 Ui 0.954
As 19,20,21,22,23,24 0.100 0.347 0.100
18,25,56,63,94,101, 0.100
Ac 135139170177 e e
2.142
As 26,29,32,35,38 2.142 2.142
6,7,9,10,12,13,15,16, 0.440
As 27,28,30,31,33,34,36, 0.347 : 0.347
37
A 39,40,41,42 0.100 0.347 0.100
A 4346495255 3.565 Sl 3.131
A 57,58,59,60,61,62 0.347 0.347 0.100
Asw 64,67,70,73,76 4.805 B 4.805
44,45 47,48,50,51,53, 0.954
An 54,65,66,68,69,71,72, 0.440 : 0.440
74,75
Ap  77,78,79.80 0.440 et 0.347
As  81:8487,90,93 5.952 5.952 5.952
Au 95,96,97,98,99,100 0.347 e 0.347
As  102,105108,111,114 6.572 6.572 6.572
82,83,85,86,88,89,01, 0.954
Ass 92,103,104,106,107, 0.954 : 0.954
109,110,112,113
0.347
As 115,116,117,118 0.347 0.347
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Ap  119122,125128131 8.525 5 8.525

A, 133134135136137, 0,100 0.347 0,100
138

Aw  140,143,146,149,152 9.300 oz 9.300
120,121,123,124,126,
127.129,130,141.142, 1.081

Ax 144,145,147,148,150, 0.954 1.081
151

A»  153154,155156 1.764 ety 0.347

Ay 157,160,163,166,169 13.330 13330 13.330

p, 1717217374175, 0347 0.954 0954
176

As  178181,184,187,190 13.330 13.330 13.330
158,159,161,162,164,1
65,167,168,179,180, 2.142

Ass 182,183,185,186,188, e Lo
189

Ay 191,192,193194 4.805 3.565 3813

As  195197,198,200 9.300 e 8.525

Aw 196,199 17.170 17.170 17.170

Table 14: 200-bar truss results

4.4. Discussion of numerical results

The results of these numerical examples indicate that the computational efficiency
of the FCD method falls between that of the leading deterministic and heuristic methods.
Generally, the number of analyses required for convergence of the optimization process
is on the order of 100 for the proposed method, compared to 10 for optimality criteria and
10,000 for heuristic methods such as genetic algorithms (Figure 6). Similar to optimality
criteria, the scale of the problem does not have a significant impact on the efficiency of
the method.

With regard to solution quality, the best designs produced by the FCD method are

comparable to leading heuristic methods (<2% difference) and superior to optimality

23



criteria (>7% difference) based on averaging the numerical example results (Table 15).

The data also suggest that deterministic methods such as optimality criteria and FCD

perform relatively better as the scale of the problem increases.
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Figure 6: Comparison of computational efficiency by method for numerical examples

Problem Scale LEADING HEURISTIC OPTIMALITY CRITERIA FCD
Numerical Example (number of possible [24] [28] (this study)
combinations . . .

) Total weight (Ib) Weight difference (% of total)

25-bar truss 1.10E+12 483.4 +164 +9.0
0, 0,

10-bar truss: case 1 5.90E+14 5046 R 20

10-bar truss: case 1 1.71E+16 5480 +5.1% +1.4%
0, - 0,

200-bar truss 6.86E+42 28,544 e e

- +7.2% +1.7%

Avg. weight difference

Table 15: Comparison of solution quality by method for numerical examples
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5. Case study: stadium space frame roof structure
5.1. Background

The roof structure of a 65,000 seat athletics stadium was selected to test the
scalability of the FCD method and to compare the performance of the method to the
results achieved in conventional industry practice. The roof structure consists of two
identical arched steel space frames that cover the north and south main stands for the
stadium (Figure 7). The arches span 210 m (689 ft) and reach a maximum height of 72 m
(236 ft). Two design methods were applied in parallel to optimize the member sizing
configuration for the space frames: (1) the conventional design method of a leading
engineering firm and (2) the FCD optimization method. The implementation of the FCD
method is described in Section 3.2 and the implementation of the conventional method is
explained below. The results for each method are then compared in terms of solution

quality and process efficiency.

5.2. Problem specification

The objective of the optimization process was to minimize the total weight of the
roof structure while satisfying the structural performance criteria for strength and
serviceability as summarized in Table 16. The section size for each member in the roof
structure was a design variable (1,955 total variables). The variables were aggregated into
34 groups. The candidate section sizes within each group were chosen from the British
Standards Institution [34] catalogue and possessed a consistent depth or outer diameter,
depending on the type of section being considered. This was done for two reasons: (1) to
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ensure symmetry, continuity, and proportion for the structural elements since the roof
structure was exposed, and (2) to standardize member connections to some degree to
simplify the fabrication and erection process. Sample member grouping and associated

section types are shown in Figure 7.

Rectangular Hollow
Section (RHS)

Circular Hollow 4
Section (CHS) -

Universal Beam
(UB) Section

Figure 7: Building Information Model of the case study roof structure (TOP). Finite
element analysis model and sample member grouping with associated section types

(BOTTOM)
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Objective Minimize steel weight

e 1,955 member sizing variables aggregated into 34 groups

VA e 10-30 candidate sections per variable

e Member strength [34]
Constraints o Member deflection (span / 360 for SLS load cases)
o Global deflection limit (450mm at mid-span)

Design Space ~ 1.7E2435 possible configurations of sizing variables

Table 16: Overview of case study sizing optimization problem formulation

5.3. Conventional process

The conventional member sizing optimization method of a leading design firm
was an iterative process performed manually by the engineering team. First, a detailed
finite element analysis model of the structure was created. It included 150 unique design
loading combinations consisting of the weight of the roof as well as wind, snow, and
seismic loading. The initial configuration of member sizes was determined based on the
best judgment of the engineering team from their past experience with similar stadium
roof structures. After completing the finite element analysis of the structure, the
engineering team post-processed the structural responses to calculate a strength
utilization ratio for each structural member based on the British engineering code of
practice [35]. The member and global deflections of the structure were also checked
against the allowable values specified in Table 16. After reviewing the performance of
the structure relative to the design constraints, the engineering team then selected a new

configuration of member section sizes with the goal of minimizing the weight of the
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structure while satisfying the design constraints. This process was repeated until the

engineering team arrived at a satisfactory design configuration.

5.4. Results

The performance of the FCD method on the project was compared to the
conventional design process in terms of process efficiency and solution quality. In terms
of process efficiency, the FCD method took substantially longer to set up. The additional
80 man hours of set-up time was divided between developing the software ‘wrapper’
necessary to integrate the finite element analysis software into the ModelCenter
environment (=30 hrs) and implementing / testing the FCD optimization algorithm (=50
hrs). These components were designed for general use such that the finite element model
of the structure could be modified or replaced without modifying the underlying software
or process. As a result, the same implementation of the FCD method that was used for the
case study was also used for all of the numerical examples described in Section 4 without
further modification. Therefore, the set-up time required to implement the FCD process
in this case study would likely be significantly reduced or eliminated in subsequent
applications.

Once implemented, the FCD optimization method required 340 iterations to
complete, resulting in a total run time of 32 hours and 35 minutes using a Dell
workstation with 2.83 GHz processor and 4 Mb of memory (Table 17). The total time
required by the FCD process, including set-up, was 172 hours and 35 minutes versus 216

hours for conventional practice, or about 20% less time. In less time, the FCD method
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generated over eight times the number of design alternatives as the conventional practice

method.

Design method Set-up time Dgsign cycle Nl_meer of Tota! design
(man hours) time (avg.) alternatives evaluated time
Conventional Practice 60 4 hrs 39 216hrs
FCD Method 140 5min45sec 340 172hrs35min

Table 17: Comparison of process efficiency for case study project

In terms of solution quality, the best design found by FCD method possessed a
total steel weight of 2,292 metric tons while satisfying all of the design constraints. This
design represents a weight reduction of 19% compared to the best design found using the
conventional practice method. The weight reduction achieved equates to an estimated
cost savings of approximately US $4 million for the total cost of the steelwork (US $2
million per roof structure) assuming a unit cost of structural steel of US $4,500 per metric
ton. The professional engineering firm responsible for the structural design of the project
chose to submit the FCD design to the contractor for tender with only a few minor

modifications.

6. Summary and Conclusions

This paper presents the Fully Constrained Design (FCD) method for discrete
member sizing optimization of steel truss and frame structures. FCD is different from
other deterministic methods, such as optimality criteria, in that it does not require the first
derivative of the objective and constraint functions with respect to the design variables.

This feature improves the flexibility and robustness of the algorithm. Since the search
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logic for the algorithm is independent of the specific objective and constraint functions
used, the FCD method can be applied to different problem formulations without
modification of the algorithm to suit a particular problem formulation as required to
implement the optimality criteria method. Also, there is no limitation on the continuity of
the search space as there is with the deterministic methods discussed in Section 1. The
FCD method can readily be applied to problems where the objective and constraint
functions are discontinuous or not easily expressed in terms of the design variables.

The performance of the FCD method was compared to other optimization
approaches found in the literature using three standard truss problems: a 10-bar truss, a
25-bar truss and a 200-bar truss. The results of these numerical examples indicate that the
computational efficiency of the FCD method falls between that of the leading
deterministic and heuristic methods. With regard to solution quality, the best designs
produced by the FCD method are comparable to leading heuristic methods (<2%
difference) and superior to optimality criteria (>7% difference) based on averaging the
numerical example results. The benchmark studies also suggest that the scale of the
problem does not have a significant impact on the efficiency of the FCD method. The
numerical examples presented in this paper included only truss structures. Additional
benchmarking studies using frame structures are required to generalize the claims made
in this paper regarding the performance of the FCD method in comparison with other

optimization methods.
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We also compared the FCD method to the conventional design process used by a
leading engineering firm by conducting a parallel case study: the sizing of 1,955
structural members for a steel space frame roof structure. In terms of process efficiency,
the FCD implementation required an additional 80 man-hours to set up compared to the
conventional (manual) process, but reduced design cycle time by approximately 40 times,
once in place. The set up time required to implement the FCD process in this case study
would likely be significantly reduced or eliminated in subsequent projects for the reasons
discussed in Section 5.4. With regard to the quality of the final solution, the FCD solution
required 19% less steel than the conventional solution, resulting in an estimated
construction cost savings of US $4 million. Further case studies will be required to
comment more generally on the performance and robustness of the FCD method in
comparison with manual design iteration methods that are commonly used in industry.

The results we present in this paper support the claim that the FCD method has
certain advantages with regard to flexibility, generality, and solution quality compared to
the deterministic methods surveyed. In addition, the method is demonstrated to be
scalable to structures involving greater than 100 sizing variables in a time frame that is
comparable to conventional design practice. The significant savings achieved in the case
study project demonstrate the potential of the FCD method to substantially improve

design process efficiency and product performance.

31



Acknowledgements

The authors wish to thank Martin Simpson for his support of the industry case study
project. In addition, we thank Dennis Shelden, and Greg Deierlein for their input to this
research. The authors would also like to thank the following companies for their technical
support: Arup, Oasys, and Phoenix Integration. Finally, we thank the Stanford Graduate
Fellowship (SGF) program and the Center for Integrated Facility Engineering (CIFE) at

Stanford University for the financial support of this research.

32



REFERENCES

[1] Kicinger R, Arciszewski T, Jong KD. Evolutionary computation and structural design: A
survey of the state-of-the-art. Computers & Structures. 2005;83:1943-78.

[2] Nanakorn P, Meesomklin K. An adaptive penalty function in genetic algorithms for structural
design optimization. Computers & Structures. 2001;79:2527-39.

[3] Rajeev S, Krishnamoorthy CS. Discrete Optimization of Structures Using Genetic
Algorithms. Journal of Structural Engineering. 1992;118:1233-50.

[4] Coello C. Discrete optimization of trusses using genetic algorithms. In: Cheng J, Attia F,
Crabtree D, editors. Expert Systems Applications and Artificial Intelligence JG Cheng, FG Attia
and DL Crabtree: IITT International; 1994. p. 331-6.

[5] Shea K, Aish R, Gourtovaia M. Towards integrated performance-driven generative design
tools. Automation in Construction. 2005;14:253-64.

[6] Arora JS. Methods for discrete variable structural optimization. In: Burns S, editor. Recent
advances in optimal structural design. USA: ASCE; 2002. p. 1-40.

[7] Moses F. Optimum structural design using linear programming. J Struct Div. 1964;90:89-
104.

[8] Camp C, Pezeshk S, Cao G. Optimized design of two-dimensional structures using a genetic
algorithm. Structural and Multidisciplinary Optimization. 1998;124:551-9.

[9] Arora J, Huang M, Hsieh C. Methods for optimization of nonlinear problems with discrete
variables: a review. Structural and Multidisciplinary Optimization. 1994;8:69-85.

[10] Svanberg K. The method of moving asymptotes-a new method for structural optimization.
International Journal for Numerical Methods in Engineering. 1987;24:359-73.

[11] Lasdon L, Waren A, Jain A, Ratner M. Design and testing of a generalized reduced gradient
code for nonlinear programming. ACM Transactions on Mathematical Software (TOMS).
1978;4:34-50.

[12] Barnett R. Minimum weight design of beams for deflection. Journal of the Engineering
Mechanics Division. 1961:75—1009.

[13] Prager W. Optimality criteria in structural design. Proceedings of the National Academy of
Sciences of the United States of America. 1968;61:794-6.

[14] Venkayya V. Design of optimum structures. Computers & Structures. 1971;1:265-309.

[15] Horst R, Tuy H. Global optimization: Deterministic approaches: Springer; 2003.

[16] Sriram D, Maher ML. The representation and use of constraints in structural design.
Applications of Artificial Intelligence in Engineering Problems. 1986;1:355-68.

[17] Cohn MZ, Dinovitzer AS. Application of Structural Optimization. Journal of Structural
Engineering. 1994;120:617-50.

[18] Hasancebi O, Carbas S, Dogan E, Erdal F, Saka MP. Performance evaluation of
metaheuristic search techniques in the optimum design of real size pin jointed structures.
Computers & Structures. 2009;87:284-302.

[19] Hasancebi O, Carbas S, Dogan E, Erdal F, Saka MP. Comparison of non-deterministic
search techniques in the optimum design of real size steel frames. Computers & Structures.
2010;88:1033-48.

33



[20] Ghasemi M, Hinton E, Wood R. Optimization of trusses using genetic algorithms for
discrete and continuous variables. Engineering Computations. 1997;16:272-301.

[21] Harik G, Cantu-Paz E, Goldberg DE, Miller BL. The gambler's ruin problem, genetic
algorithms, and the sizing of populations. Evolutionary Computation. 1999;7:231-53.

[22] PHX. ModelCenter 8.0. Blacksburg, VA, USA: Phoenix Integration, Inc.
(http://www.phoenix-int.com/); 2008.

[23] Camp C, Pezeshk S, Cao G. Optimized design of two-dimensional structures using a genetic
algorithm. Journal of Structural Engineering. 1998;124:551-9.

[24] Togan V, Daloglu AT. An improved genetic algorithm with initial population strategy and
self-adaptive member grouping. Computers & Structures. 2008;86:1204-18.

[25] Thierauf G, Cai J. Parallelization of the evolution strategy for discrete structural
optimization problems. Computer-Aided Civil and Infrastructure Engineering. 1998;13:23-30.
[26] Jenkins W. A decimal-coded evolutionary algorithm for constrained optimization.
Computers & Structures. 2002;80:471-80.

[27] Li L, Huang Z, Liu F. A heuristic particle swarm optimization method for truss structures
with discrete variables. Computers & Structures. 2009;87:435-43.

[28] Grierson DE, Cameron GE. SODA--structural optimization design and analysis. Waterloo,
Ontario, Canada: Waterloo Engineering Software; 1987.

[29] Khot NS, Berke L, Venkayya VB. Comparison of optimality criteria algorithms for
minimum weight design of structures. AIAA Journal. 1979;17:182-90.

[30] Khan MR, Thornton WA, Willmert KD. An optimality criterion method for large-scale
structures. AIAA Journal. 1979;17:753-61.

[31] Nanakorn P, Meesomklin K. An Adaptive Penalty Function in Genetic Algorithms for
Structural Design Optimization. Computer and Structure. 2001;79:2527-39.

[32] Lee KS, Geem ZW. A new structural optimization method based on the harmony search
algorithm. Computers & Structures. 2004;82:781-98.

[33] Erbatur F, Hasangebi O, Tattnc I, Killg H. Optimal design of planar and space structures
with genetic algorithms. Computers & Structures. 2000;75:209-24.

[34] BS. Structural steel sections. Specification for hot-rolled sections. In: Institution BS, editor.
supersedes BS 4-1:19932005.

[35] BSI. BS5950 - Structural Use of Steelwork in Building - Part 1: Code of Practice for Design
- Rolled and Welded Sections. London, UK: British Standards Institution; 1999.

34


http://www.phoenix-int.com/);

	CIFECENTER FOR INTEGRATED FACILITY eNGINEERING
	Copyright © 2011 by
	TR201_content_Jul2013.pdf
	Fully constrained design: a general and scalable method for discrete member sizing optimization of steel frame structures
	ABSTRACT
	Acknowledgements

	REFERENCES
	LIST OF TABLES



