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Improving Facility Performance Prediction by Formalizing an Activity-Space-Performance Model 

Tae Wan Kim, Amir Kavousian, Martin Fischer, Ram Rajagopal 

 

Abstract: 

The design, construction, and operation of high-performing facilities depends on the ability of planners 

and designers to predict the future performance of a facility with reasonable accuracy and granularity, and 

tailor the performance to support the facility users' business and operational requirements and activities. 

However, today's design and engineering methods are not able to predict, document and communicate the 

performance of facilities with sufficient accuracy and granularity to allow the users to select the building 

design that works best for them. Thus, we developed a logical framework that enables planners and 

designers to connect users, their activities, and spaces to generate activity-space pairs. We then 

formalized the relationships between activity-space pairs and two performance metrics (i.e., space 

utilization and energy consumption) to provide space-level prediction of these metrics. Our model 

provides the rationale for tailoring functional performance by providing information of activity-space 

pairs and by shedding light on who this information affects other performance, such as space utilization 

and energy consumption. 

Keywords: User activity; Space; Performance; Space-use analysis; Energy consumption analysis; 
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1. Introduction 

Improving the methods of predicting the performance of a complex system, such as a facility where a mix 

of technical systems and user activities shapes the performance, depends on appropriate models to 

represent the design choices and analyze the performance impacts of these choices. Since a facility's 

performance depends on the performance of its technical systems in connection with the users' and 

operator's activities, a model that differentiates between the product, organization, and process aspects of 

a facility is needed. Such models exist for the prediction of a facility's first monetary cost (Staub-French 

et al. 2003), but they do not exist for the use phase of a facility. 

Therefore, we represented users’ activities, spaces, and performance and formalized the relationships 

among them, in a model called the Activity-Space-Performance (ASP) model, to help planners and 

designers better predict, document, and communicate the performance of facilities throughout the 

lifecycle of a facility. By allocating user activities in their spaces, planners and designers would be able to 

predict, document, and communicate the performance of a facility in a level of granularity that is suitable 

for providing feedback to the design and operation choices, i.e., at the space level (Figure 1). As more 

data about the users and their activities in facility spaces becomes available (e.g., through installing and 

collecting sensor data), our ASP model would be able to use those data to calibrate itself. 

 

Figure 1. Vision of the research: formalizing activity-space-performance relationships to increase 
accuracy and granularity of performance analysis. 

 



3 
 

Although many research efforts integrate user activities and spaces to generate occupancy schedules 

(Ioannidis et al. 2012; Pennanen 2004; V. Tabak 2008), they do not automatically generate activity-space 

pairs in support of automated performance analysis methods. Therefore, in this paper, we first developed 

a logical framework that enables planners and designers to connect users, their activities, and spaces to 

generate activity-space pairs. We then formalized the relationships between activity-space pairs and two 

performance metrics (i.e., space utilization and energy consumption) to provide space-level prediction of 

these metrics. Our research contributes to the broad CIFE vision of VDC and the specific focus of 2011-

12 Seed Fund, sustainability, by representing user activity models and integrating them with facility 

performance to help realize a facility of better functionality with less space and less energy consumption, 

i.e., more sustainable facility. Building less space with higher performance contributes to sustainable 

design and construction because most of the life cycle primary energy of a facility is consumed during its 

use phase, e.g., by HVAC and electricity, in proportion to the area of the facility (Scheuer 2003). 

However, having less space without a clear rationale can diminish the functional performance of a facility. 

The dysfunctionality of the facility then directly and continuously makes users struggle to perform their 

activities (Vischer 2007; Vischer 2008). In this context, our ASP model provides the rationale for 

tailoring functional performance by providing information of activity-space pairs and by shedding light 

on who this information affects other performance, such as space utilization and energy consumption. 

Note: The energy analysis part of the research was supported by the Advanced Research Projects 

Agency-Energy (ARPA-E) research. The rest was supported by the Center for Integrated Facility 

Engineering (CIFE) Seed research. 

 

2. Motivating case 

The ASP model can make a difference in current practices of both space-use analysis and energy 

consumption analysis by allowing planners and designers to understand the space and energy use from 

different perspectives, e.g., per user and per activity-hour. Furthermore, by explaining the relationships 
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between activities, spaces, and performance of the facility, the ASP model allows planners and designers 

to easily and rapidly capture changes in users (having different user profiles) or different user activities 

(having a mix of activities) and perform the analyses to understand the impact of those changes on the 

space allocation and energy consumption of the facility. This section first shows how the current space-

use analysis can be improved by the ASP model. 

During facility planning, planners should ask and seek to answer various space-use questions. These 

questions vary from simple questions such as ‘how many students eat lunch?’ to rather complex questions 

such as ‘how good is the healthcare service given a set of spaces?’ When developing a space program, 

planners repetitively ask and answer these questions to speculate about the requirements for space-use and 

develop the space program to fulfill the requirements. Planners also try to answer these questions to 

assess the suitability of existing spaces or space program when a given user or user activity information 

changes. However, current practice of space-use analysis does not provide answers to these questions 

because it does not explicitly model user activity and integrate it with other required information such as 

space and performance. 

For example, Kim and Fischer (2011) describe the planning practice of a publishing company building 

project. In 2010, a publishing company consulted with an architect (planner) because the company wanted 

to build a new building to provide more space for employees and to provide the president with a gallery 

space for her paintings. Although the company had built its own building before, it had abandoned the 

building because of functional inconvenience. Therefore, the company tried to develop the space program 

very carefully for the new building. At the first meeting, they determined the target gross area (660 m2) in 

accordance with the company’s financial plan and identified the needs for various spaces including 

storage for books, a gallery, and a commemorative room for successive presidents of the company. The 

planner converted the needs to space requirements using his architectural knowledge. When he was 

uncertain about the size of a space, he used test drawings to define the size. Figure 2 illustrates the current 

practice of space programming. 
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Figure 2. Space programming for a publishing company example. Considering user information and space 
requirements, a planner develops a space program that satisfies the requirements. Green lamps mean that 

all requirements in this example are fulfilled by the space program. 
 

During facility planning, the company wanted to increase the size of the storage room to hold an 

additional 10,000 books (from 20,000 to 30,000 books). However, because the project had already 

exceeded the budget, in order to increase the size of the storage, the company had to reduce the size of 

other spaces (Figure 3). Multiple options were discussed to evaluate this trade-off, including reducing the 

gallery area and work station area. Therefore, the planner had to answer following questions including 

space (e.g., gallery and meeting room) and user activity (e.g., meeting): 

• “How many meetings of employees happen daily in average?”  

• “How long is the meeting in average?” 

• “Which user activities are affected when reducing the size of the gallery area? And how?” 

• “Which user activities are affected when reducing the number of meeting rooms? And how?” 
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However, without any analytic tool for answering these questions, the impact of the options could not be 

adequately assessed and compared. With great hesitation, the company eventually decided to reduce the 

number of meeting rooms (from 3 to 2) without clear understanding of the impact of the decision on the 

space-use. 

 

Figure 3. Challenges in space-use analysis. The planner had difficulty understanding the change in space-
use when making a decision about a space program to satisfy the requirement of the maximum gross area. 
 

The ASP model must address these problems because it represents activity, space, and performance 

models and formalizes their relationships. In this example, when the number of meeting rooms is reduced, 

the ASP model must be able to automatically find all activities that are related with the space ‘meeting 

room’ and to predict the impact of the change using space-use metrics of the performance model (Figure 

4). Consequently, planners must be able to easily and rapidly answer various space-use questions 

whenever they acquire new information on user activities or whenever they change their space program. 

 

 

 

“Now, what can we do?” 
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Figure 4. Contribution of the ASP model to the space-use analysis. When the number of meeting rooms is 
reduced from 3 to 2, based on the formalized relationships among user activity, space, and performance 
models, it automatically calculates the space-use metrics of impacted activities and the changed space. 

 

3. Points of departure 

Theories of user activity modeling, space-use performance models, and energy consumption performance 

models serve as points of departure for our research. Although the importance of modeling user activity 

and predicting facility performance during facility planning and design has been emphasized in several 

theories, activity modeling is not represented and integrated with other elements to predict and document 

facility performance with sufficient accuracy and granularity. 

 

3.1. Prior research on user activity modeling 

The most common way of documenting user activity information in a construction project is recording it 

using natural languages, such as English. However, natural languages are not appropriate for expressing 

knowledge for use in computer models because of their ambiguity and traceability issues  (Brachman and 

Levesque 2004; Jain et al. 1989). In contrast, ontological modeling, a systematic approach for 

representing knowledge in ontologies, enables analyzers to clearly express project-specific knowledge 

and enables computer models to interpret the knowledge for their own purposes (Wang et al. 2011). 
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To this end, many researchers in the construction industry have developed ontologies for representing 

construction activities for various purposes, such as planning (Aalami et al. 1998; Darwiche et al. 1989), 

time-space conflict analysis (Akinci et al. 2002), cost estimation (Staub-French et al. 2003), and field 

instruction generation (Mourgues et al. 2008). However, these ontologies cannot be directly used in 

representing building user activities because of the following two reasons: (1) a user activity ontology 

mainly serves the purpose of describing activities of building users, while construction activity ontologies 

mainly serve the purpose of planning activities of field workers. Therefore, in contrast to construction 

activities, which have specific planned location for their operations, user activities need to be modeled in 

a way that an activity is accommodated by a space that satisfies certain requirements, e.g., a room that is 

larger than 20 m2 and with lighting conditions that allow reading a book. (2) Concepts and their properties 

in a user activity ontology must be developed on the understandings of the characteristics of user 

activities, which are different from those of construction activities. For example, Akinci et al. (2002) 

represent construction activities as <Component><Action><Resources><Work space> tuple and divide 

the concept <Work space> into four subclasses, i.e., hazard space, crew space, equipment space, and 

protected space. However, these subclasses cannot be directly used in representing spatial requirements of 

user activities. Similarly, Staub-French et al. (2003) specify properties of construction activities, such as 

cost implication and design conditions, for use in cost estimation; these properties cannot be used in 

describing user activities for use in space-use analysis. 

Research efforts to represent user activities in relation to space-use analysis are yet limited. Users’ 

movement simulation models, whether in an emergency (Pan et al. 2007) or in an normal situation 

(Dijkstra and Timmermans 2002; Yan and Kalay 2006), only partially represent user activities for use in 

space-use analysis. Tabak and de Vries (2010) classify user activities into skeleton activities (i.e., user 

activities that are formed in sequence) and intermediate activities (i.e., physiological or social activities) 

and model them separately to generate activity schedules. Similarly, Zimmermann (2007) classifies user 

activities into continuous activities, regular activities, irregular activities, and secondary activities to 
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prioritize activities to generate activity schedules. Ioannidis et al. (2012) model user activities as linked to 

organization information (i.e., roles and organizational units) to take into account multi-level 

organization-related information in predicting occupancy presence. Pennanen (2004) models user 

activities as having properties for utilization computation, including user group, temporal load, and group 

size. However, these models do not specify spatial requirements of user activities, and therefore, they are 

not formal enough to be used in automated generation of activity-space pairs. 

 

3.2. Space-use performance models 

Space-use analysis is defined as the prediction of how much each space in a facility will be used by users 

and their activities. Space-use has three different perspectives: space perspective that questions if there is 

too much space, user perspective that questions if all users can work as they expect, and activity 

perspective that questions if a building supports the activities an organization needs to do for its business. 

Since these perspectives of space-use are interrelated, space utilization has been developed and used as a 

metric of space-use that embraces different perspectives simultaneously. According to Cherry (1999), for 

example, 100% utilization of a space implies that it is unacceptable from user and activity perspectives 

due to scheduling inflexibility and long queues for activities in the space, while 0% utilization of a space 

implies that it is unacceptable from space perspective due to building costs. Space utilization is similar to 

capacity utilization in the manufacturing industry, which is a ratio of the actual output to a sustainable 

maximum output, i.e., capacity (Corrado and Mattey 1997). However, while capacity utilization is 

targeted at the point where marginal costs equal average costs in manufacturing, space utilization is 

targeted at the point that is predetermined by a planner or an architect (Cherry 1999; Pennanen 2004). In 

this paper, we use space utilization (or utilization) as a metric of space-use. 

Although the importance of space-use analysis has been recognized widely (Gibson 2000; Pendlebury 

1990), conventional methods that have been used in analyzing space-use, such as architectural 

programming (Ann et al. 2008; Cherry 1999; Peňa and Parshall 2001) and post-occupancy evaluation 
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(Preiser et al. 1988; Whyte and Gann 2001; Wilson et al. 2003; Zimmerman and Martin 2001), provide 

limited formalization of the analysis because of the following two reasons: (1) these methods do not 

specialize in space-use analysis, but serve broader purposes upon a client’s demand or an analyzer’s 

intention. Therefore, although generally accepted steps for conducting these methods exist, it is difficult 

to formalize detailed information (e.g, input, output, control, and mechanism) for each of the steps. These 

methods heavily depend on the analyzer’s experience and expertise. (2) Although space, user, and user 

activity are interrelated and thus must be taken into account simultaneously, the relationships among these 

concepts are not formalized in these methods. Consequently, user activity information in these methods is 

often gathered and analyzed on an ad hoc basis, which makes space-use analysis inconsistent and time-

consuming. 

Workplace planning has been developed and applied in practice by a Finnish company named Haahtela 

(Pennanen 2004; Whelton 2004). Based on the value generation concept of lean production theory 

(Koskela et al. 2002), workplace planning attempts to reduce waste of spaces, i.e., spaces that are not 

needed by value-adding activities. Therefore, it sets target utilization for each space and determines an 

“appropriate” number of spaces where utilization does not exceed target utilization but is maximized. To 

do so, it needs the following information: the number of user groups, activities that are linked to a user 

group and a set of spaces, temporal load of activities, and target utilization of spaces. When a planner 

provides this information to a workplace planning system, this system computes the total load of each 

space, i.e., an aggregated value of temporal loads of activities that are mapped onto this space. Then the 

system determines the “appropriate” number of this space that makes utilization as large as possible 

within the boundary of target utilization. Workplace planning provides the operational knowledge for 

computer-assistive space-use analysis. However, despite this advance in the formalization of space-use 

analysis, it does not model user activity and its relationship with space at a sufficient level of detail for 

answering various space-use questions. 
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3.3. Energy consumption performance models 

To plan and execute consumption reduction policies and programs effectively, a sound understanding of 

the determinants that drive household electricity consumption (such as floor area, average outside 

temperature, and number of occupants) is needed (Haas 1997). However, because of lack of easily-

accessible, high-resolution consumption data, underlying determinants of energy use and energy-related 

behaviors have hardly been examined before (Abrahamse et al. 2005). Therefore, we need a bottom-up 

model that can make use of high-resolution electricity consumption data and a large set of information 

about the households. Existing models cannot support the use of high-resolution data due to: 

• Use of aggregate (low-resolution) consumption data: Most studies in the past have used monthly 

billing data, mainly because the advanced metering technologies of today were not easily 

accessible (Aigner et al. 1984; Aydinalp et al. 2003; Caves et al. 1987; Hsiao et al. 1995; 

Goldfarb and Huss 1988; LaFrance and Perron 1994; Lins et al. 2003; Parti and Parti 1980; Swan 

and Ugursal 2009). However, Masiello and Parker (1992) show that residential electricity 

consumption has strong temporal variation, which is not captured with low-resolution 

consumption data such as monthly bills.  

• Partial set of explanatory variables: A large number of previous studies have analyzed only a 

partial set of residential electricity consumption determinants; e.g., only appliance stock, weather 

conditions, or behavioral factors (Cayla et al. 2011; Sütterlin et al. 2011). However, the 

interaction between different factors (e.g., the relationship between weather, appliance load, 

lighting load, and heating load) offer considerable potential for improving energy efficiency 

(Abrahamse et al. 2005). Another limitation of some of the previous studies is the use of “bundle” 

variables (such as zip code) that combine (hence obscure) the effect of several underlying 

determinants.  

• No distinction between “idle” consumption of the house and peak consumption: Most studies in 

the past have either looked at peak consumption (mostly at the utility level) or the total electricity 
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load. However, understanding the lower limit of electricity consumption (i.e., the part of 

consumption that is almost constant, regardless of active end uses) enables policy makers and 

planners to quantify the potential for energy efficiency. In this paper we also show that the 

distinction between idle and maximum consumption distinguishes the ways in which different 

factors impact electricity consumption. 

• Using energy intensity as the only indicator for analyzing electricity consumption: Most studies 

have used energy intensity (kWh per square foot) as the metric to measure residential electricity 

consumption (Baltagi 2002; Haas and Schipper 1998; Halvorsen 1975; Hirst 1978; Houthakker 

1980; Kamerschen and Porter 2004; Dubin and Mcfadden 1984). This designation implies that, 

for example, a refrigerator in a 2000 sq.ft house will consume twice as much as the same 

refrigerator in a 1000 sq.ft house, even when all other factors are held constant. Instead, we scale 

only those factors whose consumption is dependent on floor area by the area of the house (e.g., 

lighting and heating loads), and use the actual kWh value for other factors. 

 

4. Automated activity-space pairing 

This section describes the ontological relationship between user activity and space we formalized to 

support automated pairing of user activities (i.e., user model) onto spaces (i.e., product model). We 

represent user activities as a tuple of <User>, <Action>, and <Spatial requirements>, or <UAS> tuple, 

where spatial requirements are defined as “properties of a space that a user activity requires for occupying 

the space.” Examples of user activities from one case study we analyzed are (1) <Employees><Have a 

meeting><In a meeting room that is larger than 15m2>, (2) <Editors><Edit a book><In any room with 

quiet conditions>, and (3) <A company president><Paints as her hobby><In an art room>. In this model, 

a user activity is mapped onto a space when all spatial requirements of the activity are met by the features 

of the space (Figure 5).  
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Figure 5. Ontological relationships between user activity and space. Dotted line between space and spatial 

requirements means that a user activity is linked to a space when features of the space satisfy all spatial 
requirements of the user activity. 

 

We defined the following classes for automated generation of activity-space pairings: 

• User activity: An action of users that requires occupying spaces. Therefore, user activity is 

defined not only by its action, but also by its users and its requirements. It is represented by a 

tuple of <User>, <Action>, and two <Spatial requirements> instances, i.e., preferences and 

constraints. 

• User: A subject of a user activity, e.g., students and employees. In this paper, user and user group 

are interchangeable because we do not consider individual users and their personal needs, e.g., 

Tom works well with Jane, so he wants to study near her. User has two subclasses: (1) <Regular 

user> that requires satisfying the constraints of his or her activities, and (2) <Important user> that 

requires satisfying the preferences of his or her activities. 

• Action: What is being performed by a user activity. We assume that a user activity has only one 

action and has no workflow because it is difficult and often vague to represent all user activities 

as workflows. 

• Spatial requirements: Conditions of a space that a user activity requires for occupying the space. 

Since some activities require occupying a whole room, while others need only part of a room, 

spatial requirements have the following two subclasses: (1) <Whole room use requirements> that 
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characterizes the required conditions of a whole room, and (2) <Equipment use requirements> 

that characterizes the required conditions of part of a room, i.e., equipment. 

• Space: A physical element of a building by which user activities are accommodated. Building 

Information Model (BIM) provides a foundation for representing spaces in a computer-

interpretable form for automated activity-space pairing. Maile (2010) introduces a building object 

hierarchy that combines the spatial and thermal aspects of a facility to improve the energy 

consumption prediction and comparison. This structure includes relationships between different 

levels of detail of building objects and allows for aggregation or disaggregation of building 

energy consumption data into units appropriate for estimation. Since our ASP model has a 

product aspect for energy consumption analysis, this building object hierarchy can be used to 

inform our research regarding space-level energy consumption analysis. 

 

5. Improved space-use performance prediction using ASP model 

Activity-space pairings, automatically generated by formalized relationship between user activity and 

space, must be connected to performance metrics that are heavily affected by the pairing information. We 

took the model-driven approach to predict space utilization because many aspects of the analysis have 

been formalized by our work (Section 4) and previous work on space-use analysis (see Section 3.2).  

 

5.1. The implication of space utilization 

Utilization of a space is calculated by dividing activity loads in the space by open time of the space. For 

example, if an activity A occurs three hours and an activity B occurs one hour in a space that has eight-

hour open time, the utilization of the space is 50%. Based on the previous work that suggests the 

implication of the utilization (Cherry 1999; Pennanen 2004), we categorized the utilization of non-

designated spaces or equipment into 4 groups and the utilization of designated spaces or equipment into 2 
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groups, as shown in Table 1. In space-use analysis, the categories are color-coded to visualize the 

implication. Space utilization is computed in light of the pairs of a user activity and a space. 

 

Table 1. The implication of the utilization 
Non-designated spaces or equipment 
Range of utilization Implication Description Color-code 
utilization <=50% No wait Activities can be done without waiting. Green 
50%< utilization <=75% Adequate Activities may need to be scheduled. Yellow 
75%< utilization <=100% Inconvenient Activities need to be relocated. Red 
100%< utilization Infeasible Activities cannot be physically 

accommodated. 
Gray 

Designated spaces or equipment 
Range of utilization Implication Description Color-code 
utilization <=100% No wait Activities can be done without waiting. Green 
100%< utilization Infeasible Activities cannot be physically 

accommodated. 
Gray 

 

5.2. Space-use analysis process 

We defined functions of the automated space-use analysis process using the ASP model. The functions 

consist of “building the knowledge base,” “mapping user activities onto spaces,” “computing utilization,” 

and “visualizing the results.” 

(1) Building the knowledge base: 

The “building the knowledge base” function takes input from the architectural design, user profiles, and 

the external database to provide the knowledge base for a specific project as an output. Table 2 explains 

the information that needs to be gathered for building the knowledge base. The ontology for space-use 

analysis is needed as a control. Data collecting templates, another control, can help analyzers input the 

necessary information even without knowing the ontology for space-use analysis. Gathering data and 

building the knowledge base are two mechanisms in this function. 
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Table 2. Required information for building the knowledge base for space-use analysis 
Concept for space-use analysis Required information 
User Name, 

The number of users, 
Regular users or important users 

User activity User,  
Action,  
Preferences (spatial requirements),  
Constraints (spatial requirements),  
Ratioa,  
Frequencyb, 
Typical or atypical 

Action Group size,  
Durationc, 
space criteria 

Spatial requirementsd 
(In case of whole room use 
requirements) 

The name of space, 
The number of space, 
The minimum size of space, 
The type of space, 
Conditions of space, 

Spatial requirementsd 
(In case of equipment use 
requirements) 

The name of space,  
The name of equipment, 
The number of equipment,  
The minimum size of equipment,  
The type of equipment, 
Conditions of equipment 

Space Size,  
Type,  
Number,  
Conditions,  
Open hour,  
Inaccessible user group, 
Equipment set if the space is non-occupiable 

Equipment set Equipment, 
The number of equipment, 
Conditions of equipment,  
Open hour of equipment,  
Inaccessible user group 

Equipment Size, 
Type 

a what percentage of users are involved in this activity – 1.0 means all of the user group are involved 
b how many times a user is involved in this activity per day 
c how many hours an action continues per occurrence 
d values for all the properties are not mandatory  
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(2) Mapping user activities onto spaces 

The “mapping user activities onto spaces” function takes the knowledge base as an input to provide the 

pairs of user activities and spaces or equipment sets as its output. The mapping is conducted not manually 

by analyzers but automatically by a set of rules. The rules consist of metrics necessary for the mapping 

and space mapping heuristics, which are controls of this function.  Calculating the metrics, finding spaces, 

and mapping user activities onto the spaces are three mechanisms in this function. We defined the 

following three metrics for the mapping: 

• Event quantity refers to the number of groups for a given activity; it is calculated by dividing the 

number of users by the size that the activity requires to have, i.e., group size 

Event quantity = (the number of users of the activity × the ratio of the activity) ÷ the group size of 

the action of the activity  

• Load refers to hours that an activity demands from spaces  

Load = event quantity of the activity × the frequency of the activity × the duration of the action of 

the activity 

• Space-use area refers to the area that a group of users requires for an activity 

Space-use area = the group size of the action of the activity × space criteria of the action of the 

activity 

We divided space mapping heuristics into two groups: “mapping activities requiring designated spaces” 

and “mapping activities not requiring designated spaces.” As for “mapping activities requiring designated 

spaces,” there should be rules to find spaces. Activities of important users should satisfy their preferences, 

while activities of regular users should satisfy their constraints. If the preferences or constraints are whole 

room use requirements, then the activities should be mapped onto occupiable spaces. If the preferences or 

constraints are equipment use requirements, then the activities should be mapped onto equipment sets and 

non-occupiable spaces that contain the equipment sets. Then, (1) if the number of spaces that occupy the 

activity is larger than the event quantity of the activity, the spaces should be divided into two entities; the 
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number of the first entity is equal to the event quantity, and the number of the second entity is the 

remaining number. The first entity should be mapped with the activity and flagged as “designated”, while 

the second entity is not. (2) If the number of spaces is equal to the event quantity, the spaces should be 

mapped with the activity and be flagged as “designated”. (3) If the number of spaces is less than the event 

quantity, the spaces should be mapped with the activity, be flagged as “designated”, and store the number 

of lacking spaces (the event quantity minus the number of spaces) in the lack property of the spaces. In 

terms of “mapping activities not requiring designated spaces,” knowledge systems do not need to 

calculate the difference between the number of spaces and the event quantity. These systems only need to 

find spaces that are not designated and satisfy the spatial requirements of an activity and map the activity 

onto the spaces (Figure 6). 

 

Figure 6. Space mapping heuristics 

 

(3) Computing utilization 

The “computing utilization” function takes the knowledge base (i.e., output of the first function) and the 

mapping results (i.e., output of the second function) to compute the utilization based on the utilization 

theory. Computing the utilization is a mechanism of this function, which has the following four steps: 

• Step 1: For all user activities, sum up the number of spaces or equipment that occupy the activity 

and record the value in the activity. 
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• Step 2: For all user activities, compute the load per space or equipment by dividing the load of the 

activity by the recorded value in Step 1. 

• Step 3: For all spaces or equipment sets, compute the total loads by summing up all the loads per 

space or equipment of activities that occupy the space or the equipment set. 

• Step 4: For all spaces or equipment sets, compute the utilization by dividing the total loads by 

open time. 

 

(4) Visualizing the results 

The “visualizing the results” function takes outputs of “mapping user activities onto spaces” and 

“computing utilization” functions to provide visualized results of space-use analysis. The policy on 

utilization, one of the controls in this function, was defined in Table 1. We propose the visualization 

method of activity-loaded spaces, which is another control of this function, as shown in Figure 7. This 

visualization shows which activities occupy a space (by black area and the name of the activities), how 

long the activities occupy the space (by loads per space in the x-axis), how much of the space the 

activities occupy (by space-use area in the y-axis), and how many area-hours of the space cannot be used 

even if the space is vacant (by gray area). 

 

Figure 7. Visualization method of activity-loaded spaces: (a) activity-loaded space where activity 1 does 
not require designated spaces, (b) activity-loaded space where activity 2 requires designated spaces 
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This function has three outputs: activity-loaded spaces, the activity-space mapping diagram, and the 

utilization summary. Since automated space-use analysis makes spaces in the architectural design 

“activity-loaded,” analyzers can see the visualization of an activity-loaded space easily by selecting the 

space in the design. The activity-space mapping diagram illustrates the links between user activities and 

spaces so that analyzers can see the automated mapping results at a glance. The utilization summary 

allows analyzers to see and document the utilization of each space by providing color-coded spaces in the 

architectural design based on the policy on utilization and by providing a table that lists spaces, their 

utilizations and the implications thereof. 

 

5.3. Validation: Case studies 

We compared our method to the workplace planning method, which is the existing state-of-the-art 

method we have found (please see Section 3.2 for further information). we conducted three case studies 

on which we hypothetically tested these methods to see how these methods would deal with the tests. The 

three cases are the Jerry Yang and Akiko Yamazaki Environmental and Energy (Y2E2) Building located 

at Stanford University, United States of America, the Cygnaeus High School located in Jyväskylä, 

Finland, and the H Publishing Company located in Seoul, South Korea (Table 1). 

Table 1. Summary of case studies. 

 Y2E2 Cygnaeus H Publishing 
The number of space types 9 6 3 
The number of user groups 5 4 3 

The number of user activities 13 5 4 
The number of hypothetical tests 2 3 3 

 

5.3.1. The Y2E2 Building, Stanford University 

We applied our method into the select areas in the Y2E2 Building (educational building) to demonstrate 

its effectiveness in analyzing and visualizing utilization of this building (Kim et al. 2012). Based on this 

case study, we conducted the following two hypothetical tests: 
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T1: Changes in space configuration 

We increased the number of small conference rooms from 2 to 3 while maintaining the gross area of the 

building by reducing the size of a large conference room (546 ft2 to 389 ft2). Since workplace planning 

relies on a fixed relationship between spaces and users, which is manually constructed by a planner, it 

computes the utilization of each space based on the same activity-space mapping. Thus, the total load of 

each small conference room is reduced due to the increased number of this space, and sequentially, the 

utilization of this space is also decreased from 0.99 to 0.66. The utilization of other spaces remains 

unchanged. However, in our method, activities are mapped onto spaces based on their spatial 

requirements, and reduced size of a large conference room triggers changes in activity-space mapping. In 

this case study, links from two activities (“grads having class” and “undergrads having class”) to the 

space “large conference room” are deleted because these activities require any space that is larger than 

400 ft2. This change then affects utilization of other spaces. The utilization of small conference rooms is 

decreased from 0.99 to 0.82. 

 

T2: Changes in space usage 

In this test, we prevented undergraduate students from using small conference rooms and required them to 

find other conference rooms for their individual study activity while maintaining the results of previous 

test T1. To respond to this change, workplace planning requires a planner to delete all activities of 

undergraduate students from small conference rooms, find other conference rooms in the space list, and 

map these activities onto the found conference rooms. In contrast, our method formulates spatial 

requirements of each activity as the knowledge base, and therefore, an analyzer has to change spatial 

requirements of undergraduate students’ activities. An analyzer also needs to add “undergraduate students” 

into the “block” property of the space “small conference room” to prevent them from using this space. 

Thus, although the computation of utilization is based on the same theory, workplace planning and our 

method map activities onto spaces in a different way. 
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5.3.2. The Cygnaeus High School 

Pennanen (2004) describes the Cygnaeus High School project (educational building) in Finland to 

demonstrate the effectiveness of workplace planning. This case is described also in Whelton’s work 

(2004). Based on this case study, we conducted the following three hypothetical tests: 

T3: Unsatisfied requirements 

This case study describes a discussion about an auditorium where the auditorium was removed due to its 

low utilization and three 80m2 classrooms were planned to be utilized for the activity “final examination 

before graduation.” To accommodate the activity, these classrooms need to have portable walls with good 

sound insulation. Based on this discussion, we developed a test where the good sound insulation 

requirements are not satisfied (or specified) during the design process. In this case, workplace planning 

does not change the utilization of any space because the mapping between activities onto spaces remains 

the same regardless of whether or not the requirements are fulfilled by design. In contrast, since our 

method represents spatial requirements and their relationships to the mapping, it automatically deletes the 

link from the “final exam” activity to “flexible classrooms” when the design does not satisfy the spatial 

requirements of this activity. 

 

T4: Changes in user information 

In this test, we doubled the number of teachers (from 70 to 140) and saw how two methods react to this 

change. Given that the utilization of 70 workstations for teachers is 18% according to this case study, 

workplace planning would change the utilization from 18% to 36%, which is still fairly low according to 

Cherry (1999) and Pennanen (2004), since the total load for each workstation is doubled. However, 

because all 140 teachers would like to have their own workstations, this doubling in the number of 

teachers would result in the lack of workstations. Workplace planning does not represent the designation 

of a space, and therefore, an analyzer has to explain this “real” meaning to the client on an ad hoc basis. 
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In contrast, our method takes into account the designation in the analysis, and therefore, maintains the 

utilization of 18% and notifies the analyzer that 70 workstation are lacking (Figure 8). 

 

Figure 8. Activity of workstation set example in T4. 

 

T5: Addition of a space type 

This case describes that the school added a club for the student association at the request of the 

association. We investigated how two methods deal with this addition into their systems. workplace 

planning does not automatically analyze the impact of adding the club on space-use because it depends on 

fixed relationships between activities and spaces. A planner must map activities that can be 

accommodated by the club onto this space on an ad-hoc basis. On the other hand, our method 

automatically finds activities that can be accommodated by the club (i.e., activities whose spatial 

requirements are satisfied by the club), such as “student meeting” and “student association meeting,” and 

links these activities to the space. 

 

5.3.3. The H Publishing Company 

We examined the planning and design phase of a publishing company building (office building) in Korea. 

This building set 660 m2 as its gross area for 20 employees of the company. However, after an architect 

developed the space program, this company wanted to refine the space program to increase the size of a 

storage room to hold additional books without exceeding its space budget (660 m2). To make a decision 

to address this trade-off, this company needed to be informed of space-use of each space and the impact 
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of each option on the space-use. For detailed information, please read (T. Kim and Fischer 2011). Based 

on this case study, we conducted the following three hypothetical tests: 

T6: Changes in space configuration 

In this test, we reduced the number of meeting rooms from 3 to 2 to increase the size of the storage room. 

In this case, both workplace planning and our method are able to rapidly provide consistent utilization 

information in response to this change. However, these methods work in a different way. workplace 

planning updates the utilization of meeting rooms immediately because it relies on the activity-space 

mapping that is predetermined by a planner. In our method, an analyzer predetermines spatial 

requirements of activities rather than the activity-space mapping itself. Thus, our method first re-evaluates 

the relationships between activities and spaces before computing utilization whenever it finds any 

modification in user, user activity, and space information. 

 

T7: Changes in space usage 

There was an art room that was designated for the president of the company to use for the activity of 

painting. In this test, we allowed this art room to be used for activities other than the painting activity to 

reduce the utilization of meeting rooms. To respond to this change, workplace planning requires a planner 

to manually update the mapping because (1) the designation that was originally needed by the painting 

activity is not represented, (2) rules for activity-space mapping regarding the designation are not 

formalized, and (3) spatial requirements of other activities, such as employees’ meeting and editors’ 

editing books, are not represented. In contrast, when an analyzer changes the designation property in the 

spatial requirement of the painting activity, our method automatically updates the activity-space mapping, 

i.e., it adds a new link of “editors’ editing books” activity to “art room” space. 

 

T8: Generation of multiple options 
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In space-use analysis, there is a need for generating and testing multiple options to find the best space 

configuration or usage solution that fits client’s needs and business purposes. We generated the following 

three space usage options regarding where “editors’ editing books” activity can be accommodated: (1) a 

quiet room, (2) a workstation placed in an office area, and (3) a workstation placed in any space. To test 

and compare these options in terms of the utilization of spaces, workplace planning planner must 

manually find spaces that satisfy the required condition and link the “editors’ editing books” activity to 

these spaces to compute utilization for each option. However, since our method can generate and 

represent different options in explicit knowledge bases, a planner can easily and efficiently test these 

options simply by generating many spatial requirements and changing requirements linked to the “editors’ 

editing books” activity. For example, using F-Logic (Angele et al. 2009), a knowledge representation and 

reasoning language, the three options in this test can be represented by: 

Constraint1:WholeRoomUseRequirement [space -> anySpace, number -> 1, conditions -> quiet]. 

Constraint2:EquipmentUseRequirement [space -> officeArea, equipment -> workstation]. 

Constraint3:EquipmentUseRequirement [space -> anySpace, equipment -> workstation]. 

 

6. Improved energy consumption performance prediction using ASP model 

We took the data-driven approach to predict energy consumption because mechanisms to connect the 

performance and the information of activity-space pairings are yet unclear to be modeled, and there are 

large data sets of residential smart meter data available. 

 

6.1. Model development 

Through a review of the residential electricity consumption models and building sciences literature (Haas 

1997), we identified four major categories of residential electricity consumption determinants: 

• Weather and location. Examples: daily outdoor temperature and climate zone; these determinants 

are normally outside the scope of influence of the household. 
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• Physical characteristics of the building. Examples: level of insulation and fuel use for water 

heating; modifying these determinants is normally considered long-term investments.  

• Appliance and electronics stock. Examples: the number of refrigerators or computers; modifying 

these determinants is normally considered medium to short-term investments.  

• Occupancy and occupants’ behavior towards energy consumption: determinants in this category 

have different levels of effort and impact span. Some behavioral modification determinants such 

as proper management of thermostat settings are of short-term effort and impact. Another group 

of determinants are associated with long-term effort and impact (such as purchasing energy-

efficient appliances). Finally, some determinants in this category are outside the scope of interest 

of occupants to change (such as occupancy level during the day). 

We then established the following four different features of the hourly electricity consumption data as 

response variables: daily average, minimum, maximum, and maximum-minus-minimum (also called 

“range”). For example, daily minimum and daily maximum consumption refer to the lowest and highest 

values of the hourly consumption data as recorded by the meter (2 extreme values from 24 daily values). 

Each feature was then used as the response variable in a separate regression model. Such approach 

enables disaggregating the role of structural versus behavioral determinants of consumption. 

We developed a weighted regression model to explain the variation in household electricity consumption. 

Those determinants whose contribution to electricity consumption has a linear relationship with floor area 

are multiplied by the floor area of the residence. For example, poor insulation will cause larger houses to 

waste more energy (through increased envelope surface) compared to smaller houses. On the other hand, 

a refrigerator has the same consumption level regardless of the size of the house. The majority of previous 

papers that we reviewed regress energy intensity (kWh/sq.ft) on all end uses. The regression equation of 

our model is given by: 
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 yj=β0j+ ∑
i=1

M
 βijXij+Aj. ∑

i=M+1

K
 βijXij+εj, (1) 

where yj is the electricity consumption (kWh) of household j, Xij is the value of the determinant number i 

for household j, and βij is the regression coefficient for that determinant. M is the number of variables 

(household features) that do not depend on floor area, while K is the total number of variables, and ε is the 

error term.  

After selecting the p variables that contribute the most to the model fit using forward stepwise model 

selection (explained above), and multiplying the floor-area-dependent variables by the square foot value 

of the dwelling, we formed a single matrix X and formed the final regression model as:  

 y=Xβ+ε, (2) 

where y is the n×1 vector of household consumption values (in kWh), X is a n×(p+1) matrix where p is the 

number of selected variables, ε is a n×1 vector of residuals, and β is the (p+1)×1 vector of regression 

coefficients. 

Our model enables working with large data sets of electricity consumption data and large household 

surveys, by (a) using several indicators (electricity consumption features or load characteristics) in 

addition to the aggregate load that help understand different aspects of consumption (e.g., long-term 

steady idle load versus short-term volatile peak load); and, (b) choosing variables that contribute the most 

to those load characteristics. Our model also introduces a novel approach to understanding the effect of 

appliances more accurately by (c) properly considering the effect of floor area. 

 

6.2. Data summary for data-driven analysis 

We applied our model to a data set of ten-minute interval smart meter data for 1628 households, collected 

over 238 days starting from February 28, 2010 through October 23, 2010. Detailed data about household 
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characteristics were available via a 114-questions online survey. The survey questions covered a wide 

range of characteristics including climate and location, building characteristics, appliances and electronics 

stock, demographics, and behavioral characteristics of occupants. The following sections explain the data 

in more detail. 

Consumption Data 

Participant households were selected through a voluntary enrollment in the program, and were provided 

with a device that recorded the electricity consumption of the household every ten minutes and sent the 

data to a central server to be stored. The device installation and server costs were covered by the 

experiment administrators, and participants volunteered to participate merely based on their interest (for 

more details of the experiment, refer to (Houde et al., 2012). 

The consumption data were converted to hourly data (a) to ensure that the fluctuations in electricity 

consumption are considered, but not obscured by sudden spikes in the consumption; and (b) to compare 

the results of our models with those of previous studies on smart meter data and electricity market 

analysis (Lijesen, 2007). Furthermore, we chose not to remove extreme-consumption households from the 

sample to ensure that the model captures determinants that are associated with a wide range of 

consumption volumes. Such a model would enable the prediction of likely extreme users in other 

household samples. 

 

Household data 

The smart meter data were supported with a detailed survey of geographical and physical characteristics 

of dwellings as well as appliance stock, occupant profiles, and attitude of occupants towards electricity 

usage, for a total of 114 questions. The survey was administered online. After collecting the data, 952 

households for which reliable smart meter and survey data were available were selected for the analysis. 

Less than 3% of survey responses were inconsistent or missing, for which we imputed data using iterative 

model-based imputation techniques (Courrieu and Rey 2011; Gelman and Hill 2007). The selected 
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households are located in 419 different zip codes, 140 different counties, 26 different states, and are 

spread across all six climate zones defined by the Department of Energy (US Department of Energy 2011). 

California has the largest representation (53% of households) of all states in the data set. During the data 

collection process, the weather conditions in most areas where participant households resided were 

similar to the 30-year average climatic conditions; however, some areas, especially in the north east of the 

U.S., experienced slightly higher-than-normal temperatures (NOAA 2010). Average electricity 

consumption in our sample lies between California and US averages. Some structural determinants such 

as household size, square footage of the house, and the proportion of single family detached units in our 

sample are close to US population averages (Houde et al. 2012). Furthermore, to ensure that the 

homogeneity of socioeconomic status does not reduce the power of our model in explaining behavioral 

determinants, we performed a factor analysis of the behavioral variables.  

All participants in our study had at least a house member working for a high-tech company. As such, the 

attitudes and lifestyles of these families were more homogeneous than the real sample of US households. 

In particular, 79% of the participants were engineers, and they were mostly from well-educated, upper 

and middle class families. More than 50 percent reported income higher than $150,000. However, it is 

worth mentioning that the mix of households in our study (i.e., well-educated, upper and middle class 

families who are also early adopters of new technologies such as home energy monitoring systems) are 

also more likely to respond to energy efficiency programs by investing in energy-efficient products 

(Ehrhardt-Martinez and Donnelly 2010). Hence, the results of our analysis can be particularly helpful to 

energy efficiency program managers and policy makers to develop programs specifically targeted towards 

the households represented by our sample. 

We transformed some variables to better reflect the technical characteristics of buildings. For example, 

we transformed the construction year to a categorical variable that indicated the residential building code 

that was effective at the time of the construction (i.e., different revisions of ASHRAE 90.2 (US DOE 

2011)). We also included a categorical variable for House Size to capture the effects of the floor area that 
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are not completely explained by square footage. For example, when a building’s floor area passes a 

certain threshold, the type of structural and architectural material that is used in the building often 

changes significantly. Since we do not have a separate variable for floor area and are not dividing the 

electricity consumption of the dwelling by its floor area, introducing the house size variable does not 

create a multicollinearity problem. We also examined mathematical transformations of the variables, such 

as power and logarithm transforms, and included those that showed statistically significant correlation 

with electricity usage in the regression model. 

The household survey captured the attitudes of occupants towards energy consumption using 40 variables, 

many of which capturing similar behavioral information from different perspectives. Using Factor 

Analysis as was explained in previous sections, and informed by behavioral sciences research, we formed 

22 major factors that collectively explain more than 80% of the information included in the original 40 

questions. The 22 variables explain the attitudes of households in three major dimensions, i.e., energy 

efficiency actions, information seeking behaviors, and home improvements behaviors. 

 

6.3. Findings from energy consumption analysis 

After factor analysis and adding a number of transformations of the original variables, the total number of 

household variables was reduced from 114 to 97. We fit separate models for daily maximum, minimum, 

maximum minus minimum, and average consumption, both for summer and winter (for the period when 

the data were available), and ranked the variables by their importance through a forward stepwise model 

selection procedure. 

Through comparison of these different models, we show that the daily minima are most influenced by 

external conditions or physical characteristics of the building. On the other hand, end uses that are energy-

intensive and do not run constantly (e.g., electric water heater) are mostly influenced the daily maxima. 

This group of end uses mostly depends on the occupancy levels and activities of occupants. 
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Overall, locality (usually measured by a proxy such as Zip Code) and House Size demonstrate 

considerable correlation with residential electricity consumption (Howard 2012), most likely because they 

are correlated with several other variables that characterize a household. For example, Zip Code is often 

correlated with weather conditions, building type, type of systems used in the building, building materials, 

and socioeconomic status of the household. On the other hand, House Size is often correlated with 

affluence, socioeconomic status, number of residents, and appliance stock. We fitted separate models with 

and without Zip Code (using the first two digits of zip code to avoid over-fitting) and House Size to (a) 

study the impact of locality and house size on electricity consumption, and (b) identify the variables that 

are obscured by zip code and house size through a comparison of the models with and without these two 

variables. This report only focuses on the effect of occupants (users) we have found. For other findings, 

please see (Kavousian et al. 2012). 

The Effect of occupancy level 

Number of Occupants is a significant variable in explaining daily maximum models while it is not a 

significant variable in daily minimum models, which supports the notion that the presence of occupants 

primarily impacts the consumption in excess of the daily minimum. Furthermore, the models suggest a 

non-linear relationship between household electricity consumption and the number of occupants, selecting 

the Square Root of Number of Occupants over the Number of Occupants. In other words, our model 

verifies that when the number of occupants double, electricity consumption increases at a slower rate (1.4 

in our data), leading to the conclusion that larger households have higher aggregate electricity 

consumption but lower per capita consumption. A similar concave non-linear relationship between 

number of occupants and electricity consumption has been reported by (Barnes et al. 2004; Heltberg 2005; 

Xiaohua and Zhenmin 2003). 

Pet Ownership (a proxy for determining whether the house is “active” during the day or not) is a 

statistically significant factor in all of the models, while the magnitude of its impact is the largest for the 

summer daily minimum, winter daily maximum, and winter daily maximum-minimum models. We are 
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not aware of any study that has studied the impact of pet ownership on residential electricity consumption; 

however, previous studies have reported similar results for the impact of occupancy on residential 

electricity consumption (Guerra Santin et al. 2009). 

 

The Effect of Long-Term Habits and Preferences 

Behavioral factors that have long-term impacts (such as Purchasing Energy-Star Appliances and Air 

Conditioners) or are considered long-term habits (such as Energy Conservation When Using Electric 

Heater; i.e., adjusting thermostat settings moderately and according to occupancy) are significant 

explanatory variables for daily minimum consumption.  

In the daily minimum model, the behavior of Purchasing Energy-Star Appliances and Air Conditioners 

has a positive coefficient. This suggests that, in our study sample, contrary to common belief, households 

that have expressed motivation to buy energy-efficient appliances and air conditioners have higher levels 

of daily minimum consumption, after adjusting for all other variables. Similar observations have been 

reported by several previous researchers, leading Sütterlin et al. (2011) to declare that “the green 

purchaser is not necessarily the green consumer”. Some researchers have attributed this behavior to the 

“rebound effect” where an increase in the efficiency of appliances results in increased use of them 

(Abrahamse et al. 2005; Beerepoot 2007). 

Another long-term habit is Turning Off Lights When Not in Use, which is significant for most winter 

models. However, the variable that represents the habit of Turning Lights Off When Not In Use manifests 

a significant geographical pattern, as it becomes insignificant when Zip Code is included in the model. 

While turning unnecessary lights off reduces consumption, the effect of its associated variable is 

augmented in our sample by the geographical distribution of the households on the two coasts that have 

declared environment-conscious behavior, and at the same time benefit from milder climate throughout 

the year. Therefore, further data are needed to quantify the individual effect of energy-conscious behavior 

of turning off unnecessary lights. 
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Effect of Income Level 

We did not observe any statistically significant correlation between Income Level and electricity 

consumption. In our sample, more affluent households tend to have lower daily maximum consumption 

values in the summer compared to less-affluent households, because they have more energy-efficient 

appliances on average. This is significant because the most important determinants of the summer daily 

maximum model are (model coefficients in parenthesis): cooling degree days (0.052), ownership of 

electric water heater (0.670), ownership of electric clothes dryer (0.344), number of occupants (0.984), 

and climate zone (five categorical variables ranging from -0.353 to 0122).  

Furthermore, since all participants of the study are well-educated and work in a high-tech company, one 

can conclude that once the consumers pass a certain level of education and awareness of energy efficiency 

matters, the more affluent they are, the lower their daily maximum consumption is likely to be, mainly 

because of improved efficiency of high-consumption appliances.  

The relationship between household income and energy consumption has been the subject of extensive 

research. While a large number of studies have concluded that energy consumption increases 

monotonically with income (Biesiot and Noorman 1999; Cayla et al. 2011; Filippini 2011; Vringer et al. 

2007), a number of studies have reported observing an inverted U-path comparing energy consumption 

and household income. At the same time, the effect of income on household electricity consumption has 

been shown to be mediated by ownership of appliances: since electricity cost makes up a small percent of 

households’ expenditure, economic factors such as price of electricity and income of the household 

impact the consumption through affecting the stock (quantity and quality) of appliances rather than 

having a direct effect. This hypothesis is in agreement with the inverse U-path observation: in the lower-

income segment of the inverted U-path which is the monotonically-increasing part, households acquire 

more energy-intensive appliances as the level of income increases. Then, once the income passes a certain 

level, in the decreasing segment of the U-path, households purchase more efficient appliances as their 
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level of income increases (Elias and Victor 2005; Foster et al. 2000; Kowsari and Zerriffi 2011; Leach 

1992). Our data captures the latter part of the inverted U-path when the energy consumption decreases as 

the level of income increases, since we have data from well-educated and middle to upper class 

households. 

 

7. Conclusion 

The design, construction, and operation of high-performing facilities depends on the ability of planners 

and designers to predict the future performance of a facility with reasonable accuracy and granularity, and 

tailor the performance to support the facility users' business and operational requirements and activities. 

However, today's design and engineering methods are not able to predict, document and communicate the 

performance of facilities with sufficient accuracy and granularity to allow the users to select the building 

design that works best for them. We formalized a facility user’s activity model for the design and 

operation of facilities with the relevant connections to BIM and models describing the organization of 

people. The focus was on understanding and predicting the performance of a facility with respect to space 

use and energy consumption. 

We developed a framework for automated space-use analysis to enable analyzers to predict and update 

space utilization simultaneously considering these three perspectives with computational assistance. The 

framework includes the formalization of the concepts for space-use analysis such as users, user activities, 

spaces, and equipment, and the automated space-use analysis process. We demonstrated the effectiveness 

of the proposed framework through three case studies (two educational buildings and one office building). 

Our results show that the proposed framework can support iterative refinement of the architectural design 

and its usage by predicting the utilization and visualizing the results automatically. 

We also analyzed large data sets of residential electricity consumption to derive insights for policy 

making and energy efficiency programming. This approach is then applied on a large data set of smart 

meter data and household information as a case example. Underlying behavioral determinants that impact 
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residential electricity consumption are identified using Factor Analysis. A distinction is made between 

long-term and short-term determinants of consumption by developing separate models for daily maximum 

and daily minimum consumption and analyzing their differences. Finally, the set of determinants are 

ranked by their impact on electricity consumption, using a stepwise regression model. The results show 

that location, floor area, number of occupants, occupancy rate, and use of electric water heater are the 

most significant factors in explaining daily maximum (peak) consumption. 

This research encompasses relatively new areas of facility planning, design, construction, and operation 

and therefore, has great possibility of application and expansion. Based on our findings, we will expand 

our model to include space layout, building system and probability theory so that it can additionally 

answer questions such as: “What happens to work productivity of researchers if we change the space 

layout of laboratory?” and “How well do spaces support customers’ activities when the number of 

customers fluctuates daily?” We will also study to integrate user activity with other elements such as 

facility performance and user performance to enlarge the application of our system so that it can 

additionally answer questions such as: “What spaces of our building are most required to be fixed? And 

how?” and “What happens to students’ music education quality when the number of music teaching 

spaces is reduced?” Furthermore, our system can be expanded by future research to using the ability to 

collect and analyze building sensor data in developing the POP model (Kunz and Fischer 2009) for the 

usage phase. Our system can be used in properly sensed facilities to collect, analyze and visualize facility 

performance, and give appropriate feedback both to the facility operators and to the occupants. 
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