
Concurrent Knowledge Systems
Engineering

C I F E c E N T E R FOR INTEGRATED FAclLl-rY ENGINEERING

Stanford University

John C. Kunz

WORKING PAPER
Number 5

July, 1989

Copyright O 1989

Center for Integrated Facility Engineering

If you would like to contact the authors please write to:

C/O CIFE, Civil and Environmental Engineering Dept,
Stanford University,

Termun Engineering Center
Mail Code: 4020

Stanford, CA 94305-4020

Concurrent Knowledge Systems Engineering

John C. Kunz

"Maximum anxiety causes anxiety. " Bob Fi lman

ABSTRACT
To build a knowledge system, it is necessary to specify the purposes in building
the system, the domain description, reasoning and decision criteria, user and
system interfaces, and a set of case examples to use in testing. These issues
are offered as the major issues in building knowledge systems. This paper
argues that they should be developed concurrently so that each is understood
at an equal level of maturity at each stage of the knowledge systems
development process. The "maximum anxiety heuristic" is an organizing
principle to direct the attention of developers to these issues: the development
process should focus on one of these issues until some other appears to be
less well defined, or until some other causes greater anxiety. This opportunistic
development activity can be used throughout the software development
process, from concept definition through maintenance. The benefit of using ,this
heuristic is that all of the basic knowledge engineering issues will be addressed
explicitly, and addressing one helps to clarify understanding of the others.

1. Methodoloav

Based on the results of cognitive and computer science, human problem-
solving can involve analysis of heuristics, algorithmic procedures, hierarchical
descriptions of systems, and pictures. Thus, we can expect that Al reasoning,
representation, and interface methodologies will each serve useful yet limited,
distinct, and mutually supportive roles in the systems development process.
The goal of the maximum anxiety heuristic is to provide a concrete and effective
method for guiding knowledge system (KS) development activity so that the
most important perspectives on knowledge systems are developed concurrently
with equal maturity.

This section introduces the five issues of building knowledge systems and
presents simple examples of each. The next section discusses the relation of
this methodology to other problem-solving strategies, and Section 3 presents a
brief case example of the application of the methodology in the early system
and software requirements phases of system development.

1.A. Identify the Purposes of the System

In building a knowledge system, one question to ask is "What, precisely, are the
purposes of the system", both from the perspective of the user and from the
perspective of the expert. Creating a short statement of purpose helps focus the
design team on solving ,the problem, as distinguished from issues related to the
problem, and a simple statement of purposes helps other interested people to
understand the project purposes.

Examples of statements of purposes might be:

The purpose of the system is to diagnose presence of any of three
pulmonary diseases by interpreting pulmonary function test data.

The purposes of the system are to help development engineers to
identify all single fault failure modes in a system, to characterize
system functions when running with such faults, to develop
procedures for diagnosing and repairing those faults; and to help
operators to identify faults in an operating system;

The purpose of the system is to identify all feasible plans for
manufacturing a particular metal part, given a set of raw materials;
description of the part features, dimensions and tolerances; machines
which are available for part fabrication; and characteristics of those
machines.

A useful design goal is that intended users -- users with good general domain
knowledge but only rudimentary skills in computer use -- should be able to sit in
front of a screen and discover most problems the computer can analyze with
only a few moments of training and some browsing. This kind of access
appears to be possible if the program embodies models of the problem domain
area and of the problem solving process to which the user can readily relate. In
addition, appropriate graphical diagrams on the screen, a small set of fixed top-
level menus, and help text all help with achieving this goal of providing access
to the technology by motivated untrained users.

Often, operational and executive users will have somewhat different purposes
in wanting to use a system. Operational users often need to analyze individual
problems while executive users often want to analyze multiple related cases. In
attempting to identify the general objectives of the user, the knowledge system
developers should attempt to identify the project gestalt. What is the problem
faced by the user, and how does the user of the proposed knowledge system
currer~tly solve the problem? How are simple cases now identified and handled
by users? How do users identify and handle difficult cases? The purpose of
understanding the way problems are currently solved is not to form the basis for
an exact model of current behavior, but rather to identify the issues which must
be considered and the answers to particular problems. In general, the goal of
the problem-specification process is to identify the purposes of building the

system, rather than to identify in detail how the problem is now or could be
solved.

The purposes are ,the specific aims of the project, and they are implemented as
top-level capabilities of the knowledge system. Thus, purposes can be viewed
as the actions which can be performed by the knowledge system as a whole.

The purposes specify the top-level features of the system from the user
perspective. 'These features are distinct from any system benefits. The usual
project goals are to achieve the benefits. Thus, the project purposes are distinct
from the overall project goals. For example, the purposes above might all be in
support of projects whose overall goal is to help users to analyze particular
problenis better.

1.B. Describe the Representation or Model of the Domain

Knowledge system designers must describe the domain in which the problem
exits, or the context in which decisions to be made. In general, it is useful to
identify generic concepts of the domain and their attributes, as described by
experts to peers and to interested novices. In addition, it is necessary to identify
specific instances of the generic concepts as they are found in any modeled
systems of interest. Represented concepts might include components,
subsystems and states of a system, and attributes might include both
measurable parameters such as height and voltage, and they might include
states such as whether or not a subsystem is operational.

Examples of concepts and specific instances in a modeled system description
include:

Descriptions of generic and particular parts in a system, such as heat
exchangers, pipes, valves, and measurement instruments; description
of the attributes of these parts, such as their specified dimensions and
tolerances, cost, power consumption, and connectivity to each other;
' ~nd principles describing flow of heat and mass in the plant.

Description of generic and particular concepts in a problem-analysis
theory such as project management, including concepts such as
projects included in a program, activities of each project, capital and
consumable resources, functional definition of cost and value, and
policies for resource assignment.

Domain representation can be viewed as the nouns which are to be described
in the knowledge system along with ,their associated adjectives. 'Thus, problem
domains can be represented conveniently as units and slots using frame-based
representation systems.

1.C. Specify the Reasoning to Analyze the Model

Systems have behavior. For each specific problem to be analyzed, the
knowledge system developers must identify criteria by which problems are to be
analyzed and decisions are to be made. It is often necessary to specify the way
those criteria are to be applied, or the control of the analysis process. Some
decision-making criteria will describe implementations of principles of a field,
such as an algorithm for computing the shortest path through a network, and
other criteria will be heuristic, such as a process for approaching a diagnostic
problem.

Behavior might include procedures to find related systems, diagnose problems,
and display aspects of the structure or function of a system.

Examples of reasoning activities a system is to perform might include:

Identify all likely single faults in a system;

Identify all machines downstream of a particular machine;

Schedule machine operations in a factory using a particular
scheduling heuristic;

Infer some aspects of the behavior of a system by analyzing its
structure and function.

The reasoning defines the actions which objects can perform. The reasoning
processes will reference particular attributes of particular objects, for example to
determine the status and features of objects. In addition, the reasoning process
will make conclusions about objects, or cha.nge the values of particular
attributes of objects. Reasoning within a problem domain can be represented
conveniently as rules or as algorithms in a procedural language. The
reasoning procedures can usefully be associated with the objects they modify.

Reasoning procedures are often context-dependent: particular algorithms and
heuristics work in some circumstances and not in others. One of the strengths
of knowledge systems is that they can express the context in which a reasoning
procedure is assumed to apply. The representation of a system should
explicitly include description of the states and conditions of a system, and the
reasoning procedures should then be conditional so that they apply when the
appropriate conditions are met. The premise of an If-Then rule provides a
natural place to state the conditions in which a rule applies.

Reasoning procedures are most flexible when they are generic. Thus, it is best
for rules and methods to refer to variables or patterns of data, rather than to
specific attribute values or to specific objects. Specific objects are best
described as frames within the representation of the problem. Specialized

utilities and editors can be built to display and modify attributes of object
descriptions easily.

Representation of a domain and reasoning about the domain are related. A
useful simple distinction between the two is that the representation includes
facts which can be asserted directly into or retrieved directly from the model.
Reasoning is the process of inferring values which are not explicitly represented
within the model. Thus, specification of the reasoning process must describe
both of the relations among facts which are complex enough that they must be
determined through an inference procedure and a strategy for carrying out 'the
inference procedure. Typically, inference is performed at the time that a fact is
asserted in the model or that an inquiry is made regarding the values of some
attribute in the model. Thus, reasoning knowledge is normally implemented as
rules or algorithms in a programming language.

Some reasoning may be performed by a representation system. For example,
frame inheritance specifies the way that attributes and their values are passed
from one object to some related objects. In addition, some systems support
particular constraint propagation algorithms automatically.

A useful development procedure is to start the knowledge system development
process by creating the rules and methods whichcan be used to analyze a
particular test case. Then the representation and reasoning can be generalized
as much as possible to handle a broader set of cases. Thus, initially rules and
methods will be associated with and will reference particular objects, particular
attributes and particular attribute values. During the process of generalization
of the reasoning, the references to particular objects, attributes and attribute
values can all be generalized to variables as possible and appropriate. The
initial reasoning procedure may be rather heuristic.

While attempting to generalize the reasoning, a valuable exercise is to ask
"Why" a particular heuristic or reasoning process should apply. Increasingly
general reasoning procedures can often be developed by attempting to elicit
the principles which underlie analysis of simple test cases.

1.D. Create User and System Interfaces

Knowledge systems typically include interfaces to the user, to sources of data
and to destinations for results. These input and output data often lie in other
systems applications on other computers.

The purpose of the user interface is to communicate the questions of the system
to the user, solicit and receive input from the user, and communicate results of
its analysis. When appropriate, the user interface also presents the reasons that
the knowledge system made a decision or the assumptions made in the system
about the structure and function of an application area. The most effective
interfaces exploit natural idioms of a domain, including commonly-used forms,
graphical diagrams and graphs.

Examples of elements of user interfaces include:

A tree showing relations among concepts in a knowledge base, such
as CLASS-SUBCLASS, PART-WHOLE, or DOWNSTREAM.

A graphical layout of a system, such as an architectural drawing for a
building, or a schematic of machines in a factory or parts in an
electromechanical system. The layout can include animation to show
flow of parts, material, or information.

Graphical network showing successful rule invocation. Rule graphs
can be very useful for helping developers to extend and debug their
applications, but their fine level of detail often makes them of limited
value for users.

The system interface is not required for stand-alone applications. Often,
however, knowledge systems obtain data from existing data -bases, and they
return results to other applications systems.

1.E. Create Procedures to Test Model Validity

Systems must be tested repeatedly during their development to assure their
validity and to determine whether changes fix identified problems or create new
problems. Test procedures should include criteria for selecting individual test
cases and, ideally, a "gold standard" for judging the accuracy of the
interpretation of those cases. It is then necessary to identify actual individual
test cases, the desired system responses for each individual test case, and
procedures for comparing the system output for those cases with the expected
results of analyzing those cases.

Examples of useful sets of test cases include:

The simplest case which makes any sense;

Simple extensions of the most simple case and the way they are to
be interpreted;

A test case which is relatively complex which prototype versions of
the system will not be able to solve but which a second-generation
production system should be able to be solve;

100 test cases (i.e., a large representative sample), identified over a
period of time, which represent a broad set of situations of interest to
the developers and potential users.

-The most useful' suite of test cases includes all of the kinds of cases listed
above.

These sets of test cases can be rerun each time a change is made to the
system. By reviewing results of analyzing these test cases, developers can
determine whether desired performance enhancements were made and identify
whether any unintended changes were introduced into the analysis process. A
test support system can be built to compare actual with desired test results and
to report discrepancies and changes since ,the test set was run previously.

The first test case, the simplest which makes any sense, is crucial for
developing the prototype. A nieasure of success and completion is that the
initial prototype system successfully can accept this simple test case and
interpret it properly.

One of the risks of rapid prototyping is building a prototype which cannot be
extended to handle important difficult cases. The second test case identifies a
difficult case of interest, and the set of 100 test cases normally -should include a
number of additional difficult cases. The purpose of identifying difficult test
cases at the outset is to attempt to focus early attention on the issues of
extension. The initial prototype should not be designed to handle the difficult
cases. It should either be designed to be extensible to handle difficult cases, or
when it beconies clear that the initial prototype will not accommodate the
difficult cases, plans should be made to discard the initial prototype design and
to create a second prototype which addresses the design issues presented by
the difficult case.

2. Relation t o other Problem-Analysis Strategies

Polya describes a related method for analyzing mathematical problems.
Polya's "How to Solve it" method has four steps [Polya]:

Understand the problem by understanding what is unknown, what is
given, and the conditions on the problem. (He recommends drawing a
diagram.)

Devise a plan to solve the problem. (Attempt to identify a related
problem and modify the plan which solves the related problem.)

Carry out the plan

Review the problem solution; check its reasonableness. (Check its
sensitivity to varying assumptions; attempt to use the result or the
method for some other problem.)

This four-step process was later elaborated and specialized in the software
development waterfall, as discussed below. Polya's remarks about how to

perform these steps are what is particularly interesting about his method. He
emphasizes using heuristics in problem solving, and he offers a number of
useful ones. For example, he recommends using diagrams to describe a
problem -- a technique widely used in classical physics, chemistry, engineering
and now model-based reasoning [Kunz]. He recommends using a variant
method of problem solving: he suggests identifying similar problems and
modifying their solutions to solve the given problem. Finally, he recommends
using sensitivity analysis to assess the robustness of the problem solution as
input parameters are pushed to their expected extremes.

The five-issue maximum anxiety method is obviously close to Polya's method.
Polya's first step relates to the "Purposes", "Representation" and "User Interface"
issues in the building knowledge systems. His second and third steps relate to
the "Reasoning" issue. His fourth step is a embodied in the maximum anxiety
heuristic and analysis of each of the five issues of building knowledge systems.
The five-step maximum anxiety method includes a number of heuristics to help
guide the analysis, including all the major ones suggested by Polya.

An important difference between Polya's and the five-issue maximum anxiety
method is that maximum anxiety emphasizes an opportunistic rather than an
iterative control of the problem solving process. A second important difference
is that Polya emphasizes use of a variant method: he suggests identifying
similar problems and modifying their solution to solve the given problem. -The
variant method is most likely to be effective in circumstances, such as
mathematics, in which there exists a well-understood body of existing problem-
solution techniques to survey and to adapt. In knowledge systems, we are just
beginning to develop a similar body of experience. Thus, while the variant
method may become more effective in the future, we now see most developers
building knowledge systems using ad hoc heuristic approaches or generating
new methods based on analysis of basic principles.

The classic waterfall model of software development was described in 1970 by
Royce [Royce] and has been elaborated often, such as in [Boehm, Davis]. The
waterfall method was offered by Royce to describe and to prescribe the
traditional software development process.

(System I

I I Program Design

Coding u
Operations

Waterfall software development process described in [Royce]

Most traditional software development methodologies have followed some
variant of ,the waterfall method, often using slightly different names and slightly
different numbers of steps.

Software projects are often delivered later and are more expensive than
planned, and they often lack intended functionality and include bugs. One
source of these software development difficulties is that requirements are
difficult to specify precisely, and they often change as users see new
possibilities and developers identify new ways to represent and analyze
problems. Thus, while the waterfall method is simple to describe and easy to
use in principle, it alone has not been sufficient to provide the basis for effective
software development.

Knowledge systems technology has both helped and confused the software
development issues. The hardware and software are more powerful then ever
before. For example, in recent years the combination of interactive workstations
and new software development environments have allowed development of
knowledge-intensive applications which had not been attempted using
,traditional software technology, and they have allowed use of rapid prototyping
throughout the development process. However, the KS problems are
particularly difficult: if some problem is simple, it has been or will be solved
using traditional technologies, so KS developers end with only the most difficult
problems. Knowledge is difficult to specify when it is at all complex. Finally, the
KS technologies provide powerful new techniques to work with, such as frame-
based representation, object-oriented programming and production rules, but
developers must learn to use these methodologies effectively.

The argument behind the five-issue maximum anxiety method is that it is
valuable -- and with KS hardware and software it is now feasible -- to attempt to
develop all of the knowledge systems issues concurrently as work proceeds
down the software development waterfall. The five KS development issues
should each be considered at every step down (and up) ,the waterfall. Royce
argued that preliminary program design should consider program design,
analysis, coding, testing and operations. (We now perform his preliminary
design by rapid-prototyping.) His preliminary design step was valuable
because it provided results for later use in program analysis, design, coding,
testing and operation. The five-issue maximum anxiety method extends his
argument and calls for attention to the entire development process throughout
each step of the process.

3. Case Example

This section is an edited transcript of a seminar discussion on Model-Based
Reasoning in Engineering. Italics indicate remarks about the session;
underlines indicate phrases written on the chalk board. LW is a Stanford civil
engineering graduate student who volunteered to discuss his project. Prior to
starting this knowledge engineering session, his research proposal stated that
he plans to use "knowledge-based techniques in a deterministic approach that
resembles simulation to produce precedence relations hips for project activities
[using] an algorithm which emphasizes a fundamental model of the planning
process and exploits the use of project component relationships".

